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ABSTRACT 

 

Production data analysis for low permeability shale reservoirs is crucial in 

characterizing flow regimes as well as reservoir properties, and the forecasting of 

production is essential for portfolio and reservoir management. However, traditional 

methods have failed due to incorrect physics or complicated convolution from the well 

control history. In this research, we investigate several novel machine learning approaches 

and their variations to better facilitate production surveillance as well as accelerate the 

analysis of variable and noisy historical production data.  

Current production data analyses are on the basis of either simple constant 

drawdown-pressure rate solutions or constant rate pressure-drop solutions in which we 

cannot handle field data variation. Therefore, deconvolution methods have been developed 

to transform the variable pressure variable rate profiles into those two simple solutions. 

Pressure-rate or rate-pressure deconvolution is an ill-posed, complex time-series 

problems. Much research has indicated that Echo-State Networks (ESN) and Long Short-

Term Memory (LSTM) are useful for dynamic time-series problems, however, the 

connections between physics and machine-learning-based solutions remain unpublished. 

Thus, one of the motivations of this research is to establish the connection between 

transient physics and machine learning algorithms specifically using ESN and LSTM 

paradigms.  

Traditional decline curve analysis (DCA) models have played an important role in 

the oil and gas industry for nearly a century because of their simplicity. However, 
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forecasting models with too much simplicity sometimes rely on unnecessary assumptions 

and fail to honor important realities. Unlike those DCA methods which rely solely on rate 

histories, this research first introduces novel analytic methods to accomplish forecasting 

using pressure-rate-time information while still maintaining the reduced complexities. By 

switching the application from rate transient analysis to pressure transient analysis, these 

analytic models are demonstrated to be useful in identifying the reservoir model with only 

pressure-rate information.  

In general, the purpose of this study is to present alternative methodologies for 

deconvolution to facilitate the production data analysis. We forecast future production in 

addition to applying the ‘inverse’ process for reservoir characterization. We also utilize 

the merits of physics-based training features to further enhance the production surveillance 

and finally, we illustrate the proposed workflows for production analysis, production 

forecasting and production surveillance using variants under the ESN and LSTM 

paradigms with synthetic cases and field examples. 
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CHAPTER I  

INTRODUCTION  

 

1.1 Background Overview 

Within recent decades, horizontal wells with multistage hydraulic fractures as the 

major driving force for economic growth have been ubiquitously applied in unconventional 

reservoirs. Production analysis based on historical rate/pressure data is a basic process to 

determine reservoir properties and identify the reservoir model either depending on 

Pressure Transient Analysis (PTA) or Rate Transient Analysis (RTA). The outcome from 

RTA could be further used in forecasting future production. The theoretical behavior of 

unconventional reservoirs that produce economically with massive fracture treatments and 

complex fracture networks is shown in Fig. 1 and Fig. 2. The rapid rate change induced 

by unstable operating conditions as well as the long-term transient dominated behavior 

complicate production analysis and forecasting for unconventional reservoirs. With the 

emerging digitized technology and intelligent algorithms, production surveillance and 

monitoring have been raised as fundamental pillars for production data analysis, reservoir 

diagnostics and company-wise operational costs checking as illustrated. 
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Fig. 1-A theoretical model of a multiple transverse fractured horizontal well in a 

rectangular reservoir with complex fracture networks (Wang et al. 2015).  

 

 
Fig. 2-A theoretical approach for unconventional reservoir production forecasting 

and prediction of estimate ultimate recoveries (EUR) (DeGolyer and MacNaughton, 

2019).  
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Fig. 3-An example of downhole production monitoring followed by some real-time 

analysis (Camilleri, 2010) and a schematic workflow of data analyses, reservoir 

diagnostics and strategy making (Infosys, Automate Workflow to Meet Production 

Targets).  

 

Common techniques for production data analysis are either to establish a numerical 

model to match history or use analytical models to recognize flow patterns and analytically 

estimate reservoir properties. Numerical history matching, a ‘feed-forward’ process 

shown in Fig. 4 (which requires prior knowledge of geological information), is widely 

applied in modern production data analysis due to its accuracy and versatility. Once the 
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numerical model has been validated, future production can be simulated with the 

forecasting procedure. In contrast, the analytical method such as using diagnostic plots, is 

an inverse process for reservoir parameters estimation as indicated in Fig. 5. Then, 

traditional decline curve analysis (DCA) models illustrated in Fig. 6 such as Arp’s decline 

model (Arps 1945), the stretched exponential decline model (Valko and Lee 2010) could 

be further utilized for forecasting. Production data gathering from downhole relies on real-

time monitoring equipped with permanent downhole gauges (PDG). It enables engineers 

to diagnose the production status and rapidly respond to the changed the conditions (Mittal 

2018). Driven by the reduction of data storage expenses and the development of machine 

learning algorithms, downhole real-time data is no longer limited to decision making, 

instead, a more -collaborative, -automated and -efficient process can be implemented 

without increasing downtime (Mittal 2018). Real-time pressure-rate information 

inevitably carries missing values, aberrant segments, outliers, and systematic noise due to 

unexpected failures, routinely system offline as well as random errors (Cao et al. 2018) 

which can be clearly depicted in Fig. 7. In section 2.1, we propose novel analytic methods 

to analyze production data using both PTA and RTA, and to forecast production using 

reduced-complexity models as the basis in RTA while achieving results comparable with 

full field modeling and inversion. In section 2.2, we propose a deep learning workflow to 

reconstruct pressure-rate-time information from production surveillance. It captures the 

attributes of the flow mechanisms by considering spatial dependency, inherits physics-

based training features from section 2.1, further enables engineers to use entire production 
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histories even with outliers, aberrant segments, and augmented noise, and thus improves 

production data analysis and forecasting for unconventional reservoirs. 

 

Fig. 4-Numerical simulation for history matching using CMG IMEX.  
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Fig. 5-A practical analytical process using Fetkovich type curve to match production 

data. 

 

 
Fig. 6 (a)-Arps decline fit for the Canadian unconventional well; (b)-Stretched 

exponential decline model fit for the Marcellus well at the bottom (Kabir et al. 2011). 
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Fig. 7-Permanent downhole gauge sampling noisy data with outliers, aberrant 

segment and outliers (Tian and Horne 2015). 

 

1.2 Motivation and Objectives 

Applying analytical solutions for production data analysis (PDA), with the help of 

pressure transient analysis (PTA) (Lee et al. 2003) or rate transient analysis (RTA) is 

usually an ill-conditioned ‘inverse’ process that is constrained in application due to 

variations in pressure or rate and the effect of backpressure in the wellbore (Kuchuk et al. 

2005). To achieve the mathematically preferable constant pressure or constant rate 

solution, deconvolution has been proposed and applied to pressure/rate data. An issue 

arising in the traditional deconvolution in PTA is addressed by Liu and Horne (Liu et al. 
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2013). Systematic curve-fitting techniques were required because of the additional impact 

of noise on the deconvolved response. Further, the entire process becomes more difficult 

and unreliable with only a few ‘good’ pressure-buildup tests. Linearizing the convolution 

equation using normalized pressure or normalized rate are common alternatives for 

analyzing variable pressure-rate-time information. Nonetheless, Kuchuk et al. (2016) 

demonstrated the equivalence between the normalized pressure or normalized rate solution 

and Gladfelter deconvolution (Kuchuk et al. 2016) illustrated in Fig. 8, and he emphasized 

that this type of deconvolution is limited in applications if the flow rate varies linearly 

with time for simple flow geometries, and is not valid for arbitrary variable flow rates. 

The difficulties and uncertainties of using current deconvolution techniques undermined 

the critical value of integrated process using Permanent Downhole Gauges (PDG) to 

survey real-time data with additional data imperfections and distortions. Therefore, we 

propose to develop new analytic approaches as reliable diagnostic tools to interpret 

pressure-rate-time data using traditional PTA and RTA for unconventional reservoirs. 

Advantages of this analytic approach are that the algorithm: (1) employs physics-based 

training features and training algorithm to facilitate the PDA with the help of diagnostic 

plots and specialized plots; (2) enables engineers to further forecast future production 

rapidly and accurately with limited data; and (3) can deal with moderate noise. 

Additionally, the procedure is informed by physics-based training features and increasing 

bytes of data storage gathered from downhole. More specifically, aberrant segments, 

outliers, and systematic noise can be regarded as the inherent characteristics of downhole 

data and would likely cause interpretation bias and lead to a less representative estimation 
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of reservoir properties. Hence, we propose a systematic workflow employing a deep-

learning approach for rate-pressure reconstruction to facilitate production surveillance so 

that the procedure (1) inherently tolerates the effects of outliers, aberrant segments, and 

noise, and preserves the intrinsic characteristics during the pressure-rate-reconstruction 

procedure; (2) successfully generates missing production histories to fill gaps and enables  

entire production histories to be applicable in production analysis; and (3) robustly adapts 

to higher frequency data with increasing bytes cost-effectively. 

 

Fig. 8 (a)-Stepwise-varying flowrates, corresponding wellbore pressures, and 

Gladfelter deconvolution yielding a false constant-rate solution; (b)-varying wellbore 

pressure and normalized rate and Gladfelter deconvolution yielding a false constant-

pressure solution (Kuchuk et al. 2016). 
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1.3 Literature Review 

Deconvolution was first used to compute the equivalent constant-rate behavior of 

a variable rate/variable pressure system (Lee et al. 2003). von Schroeter et al. presented a 

time-domain deconvolution method for a specific level of noise existed in both pressures 

and rates by using a separable non-linear total least squares algorithm (von Schroeter et 

al. 2001). In addition to the significant breakthroughs presented by von Schroeter et al. 

(2004), Levitan derived a workflow by matching pressures and pressure derivatives from 

various pressure build-up periods (Levitan et al. 2003). This extended work from Levitan 

proved to be more practical when applied to several ‘good’ pressure build-up tests. Onur 

extended Levitan and von Schroeter’s work by changing the objective function from 

matching the pressure drawdown to matching the pressure derivatives (Onur et al. 2012). 

Benefitting from Onur’s method, the dependency of initial pressure can be removed and 

the initial pressure estimation error impact on late-time periods deconvolved response can 

be alleviated. This methodology is based on pressure transient analysis for conventional 

reservoirs in which constant rate drawdown-pressure responses are acquired to determine 

flow regimes and estimate reservoir properties. In unconventional reservoirs, rate transient 

analysis is commonly used as a substitute for pressure transient analysis. Constant-

pressure decline curves are used to diagnose decline types. Kuchuk et al. proposed 

rate/pressure deconvolution to calculate the constant pressure drawdown response 

(Kuchuk et al. 2005). As previously stated, piecewise pressure control or piecewise rate 

control as the wellbore inner condition in this research cannot be transformed to RNP or 
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PNR since flow rates vary nonlinearly with time. Thus, our analytic methods have unique 

value as real-world data are usually correlated nonlinearly.  

The issues in the methods discussed above used in PTA were addressed by Liu and 

Horne (2013). For example, they advised that only part of the ‘good’ data should be used 

to ensure a consistent deconvolution process. Noise deteriorates the deconvolution results 

especially for rate/pressure deconvolution methodology (Kuchuk et al. 2005). Moreover, 

the assumption of reasonable accuracy in identifying breakpoints in flow regimes is 

sometimes unrealistic. To make full use of the entire history data, Liu and Horne proposed 

a data-mining approach using kernelization (Liu and Horne 2013). The key idea in their 

‘kernel tricks’ is to use the superposition principle; the reservoir pressure response is 

controlled by a linear combination of individual flow rate described in Fig. 9. They 

demonstrated that their non-parametric data-mining algorithm does not require any prior 

knowledge about the physical geological model, and that the appropriate reservoir model 

can be approximated in high-dimensional polynomial space with corresponding physics-

based training features. This modern concept of combining data-driven and model-based 

approaches is critical and should become repeatable workflow in many engineering 

analyses (Deng et al. 2018).  
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Fig. 9-Demonstration of superposition principle (Liu et al. 2013). 

 

In this study, we first extended Liu and Horne’s work; however, instead of solving 

pressure-rate deconvolution using ‘kernel tricks’, we adopted an echo state network (ESN) 

approach to solve both pressure/rate and rate/pressure deconvolution problems. The echo 

state network is a novel design for non-parametric modeling of nonlinear dynamic 

systems. Unlike traditional recurrent neural networks (RNNs), it contains a large sparsely 

connected reservoir where only the connections from the reservoir to the output layer are 

trainable by linear regression algorithms, and other connected weights such as reservoir 

internal weights and connections between inputs and reservoirs remain unchanged. A 

recent application of ESN in the oil and gas industry was to estimate downhole pressure 

in gas-lift oil wells (Antonelo et al. 2017). The workflow is shown in Fig. 10. Eight gauge 

recordings deployed on the surface with the choke opening versus time were used as inputs 

to estimate downhole pressure. Prospectively, the critical concept is trying to set up a 

proxy model to substitute some empirical mathematical correlation such as the Beggs and 
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Brill correlation. Yet the connection between physics and the data-driven solution still 

remains veiled. Pressure variation with time is a chaotic time-series problem, and the ESN 

approach proved to offer an effective approximation of model-free prediction of large 

spatiotemporal chaotic systems (Pathak et al. 2018). Additionally, Hermans et al. 

demonstrated that an infinite number of hidden states which employ large, randomly 

initiated neural networks (for instance, ESN) can be considered equivalent to recursive 

kernels (Hermans and Schrauwen, 2012). However, Han and Xu indicated that the hidden 

states could be ill-posed and their singular values could possibly decay to zero when the 

number of real-time training samples is less than the number of hidden states (Han and Xu 

2018). To overcome this problem, the Laplacian Eigenmaps Coupled Echo-State Network 

(LEESN) was utilized to create a lower dimensional representation of relatively large 

hidden states, and this algorithm intuitively solves the production forecasting problem in 

unconventional reservoirs during the early production stage when fewer months of 

production data are available. Additionally, the Laplacian Eigenmap is relatively 

insensitive to outliers and noise and is more robust with real-time data. 
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Fig. 10-Echo-State Networks for downhole pressure estimation (Antonelo et al. 

2017). 

 

Additionally, Tian and Horne extended their previous work using various data-

mining tricks and performed sensitivity analysis (Tian and Horne, 2015). The applicability 

of using physics-based training features for production surveillance was addressed in their 

paper; however, few discussions have been presented explaining how engineers can 

implement this machine learning algorithm in the real world. These considerations 

propelled us to investigate an in-house workflow using a deep-learning approach for real-

time data integrity. In the past few years, permanent downhole gauges have been equipped 

for real-time monitoring. Common production data management strategies are established 

in a rigorous procedure to ensure a Quality Assurance (QA)/Quality Check (QC) of 

structured and unstructured data (Gonzalez et al. 2018). Unexpected failure, system offline 
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and random sampling error can cause false real-time data such as missing values, aberrant 

segments and outliers. Classical models rely on the ‘linear interpolation’ scheme such as 

autoregressive-moving average model (ARMA) and autoregressive-integrated moving 

average model (ARIMA) aiming to smoothly fit observations (Ansley et al. 1984). 

However, ignorance of the correlation of variables over time could be critical and possibly 

result in an erratic interpolation (Che et al. 2018). Aberrant segments, outliers, and 

systematic noise can be regarded as inherent behavior of downhole data and would highly 

likely trigger interpretation bias and lead to a less representative estimation of reservoir 

properties. Recently, Madasu utilized LSTM to correlate actual pumping slurry rates and 

surface treatment pressures to monitor the hydraulic fracturing process depicted in Fig. 11 

(Madasu, 2018). Another intriguing study illustrated in Fig. 12 was conducted by Zhang, 

who demonstrated the Cascaded Long Short-Term Memory (CLSTM) method (the design 

of cascaded combination of LSTM units and dense units) as an accurate and cost-effective 

way to reconstruct well-logging curves by comparing the performances of CLSTM and 

Fully Connected Neural Networks (FCNNs) (Zhang, et al. 2018). Still, no detail 

explanation of the physics behind the algorithm was provided and the outstanding 

performance still remains a mystery. Thus, in the second part of our study, we employed 

the basic idea from Zhang by using CLSTM for filling the missingness and adapted the 

algorithm for incomplete production history reconstruction using physics-based training 

features. 
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Fig. 11-One example using LSTM and available slurry rate to predict surface 

pressure and monitor hydraulic fracturing process (Madasu et al. 2018). 
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Fig. 12 (a)-CLSTM schematic topology for missing well-logging curve 

reconstruction; (b)-A field example using CLSTM to reconstruct missing logging 

curves (Zhang et al. 2018). 
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CHAPTER II  

METHODOLOGY 

2.1 Echo State Network 

Our pilot works successfully demonstrated that combining the ‘kernel trick’ 

method and physics-based training features broadens the ‘pathway’ to deconvolve variable 

pressures and variable rates into a constant-rate pressure-drawdown response using 

relatively more complete pressure-rate-time information. However, choosing the correct 

kernel function could be arbitrary and is usually achieved by trial and error. Additionally, 

the kernel space depends on the feature space, and the feature space especially using 

superposition in time, could cause a large-size matrix that leads to computationally 

expensive process. Echo State Network constrains the reservoir space as an approximation 

of kernel space to improve the computation expenses and instead of randomly selecting a 

kernel function, the reservoir space is controlled by an extra hyperparameter. 

------------------------------------- 
Part of section 2.1 is reprinted with permission of the Society of Petroleum Engineers from Pan, Y., Zhou, 

P., Deng, L., Lee, J. 2019. Production Analysis and Forecasting for Unconventional Reservoirs 

Using Laplacian Echo-State Networks. Proceedings of SPE Western Regional Meeting, San Jose, 

California, 23-26 April. SPE-195243-MS. DOI:10.2118/195243-MS, and from Pan, Y., Deng, L., Lee, J. 

2019. Data-Driven Deconvolution Using Echo-State Networks Enhances Production Data Analysis in 

Unconventional Reservoirs. Proceedings of SPE Eastern Regional Meeting, Charleston, West 

Virginia, 15-17 October. SPE-196598-MS. DOI: 10.2118/196598-MS. Permission conveyed through 
Copyright Clearance Center, Inc.
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2.1.1 Background of Echo State Network 

Considerable research on neural networks, especially on recurrent neural networks 

(RNNs), has proved the capability of supervised-learning from data to establish feature-

based classifiers and nonlinear predictive models. However, the nonconvex objective 

functions which result in the costly computation of gradients make it infeasible for 

applications (Scardapane and Wang 2017). An alternative approach known as reservoir 

computing (RC) under the paradigm of RNN was then developed. The key characteristics 

are first to use randomization to define a feature-based, commonly data-dependent 

mapping, and then by transforming the feature inputs into a higher dimensional ‘reservoir’ 

space which is comparable with Hilbert space or Kernel space, and the learning process is 

ultimately simplified (Dambre et al. 2012). Second, the optimization of the objective 

function becomes a standard linear-square adaptation problem. This idea initiated the twin 

pair of echo state networks (ESNs) (Jaeger and Haas 2004) and liquid state machines 

(LSMs) (Maass and Markram 2002). In this research, we focus on the ESN, which is made 

of three layers, the input layer, the reservoir layer which is utilized with random 

initialization and finally the readout layer which can be linearly adaptable (Scardapane 

and Wang 2017). From the topology as shown in Fig. 13, after the transformation of 

feature inputs through the weighted connection between input and ‘reservoir,’ each neuron 

in the reservoir acts as a dynamic filter/extractor to create the chronological ‘echo’ state 

of the input sequence for classification/regression purposes. The basic insight behind the 

application of ESNs is the intriguing notions connecting the reservoir (infinite neurons) 

and recursive kernel methods that have been proved by Hermans and Schrauwen (2012). 
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For those reasons, it is crucial to creating physics-based training features to successfully 

train the algorithms and perform further deconvolution in production data analysis and 

production forecasting. A handful of global parameters could also influence the model 

performance, thus these must be treated carefully in terms of model stability and locality 

(Lukoševičius, 2012). However, this was beyond the scope of this study. Lukoševičius’s 

paper was adopted as a practical guide of applying ESN. During experiments, we found 

once these global values are set to fulfill the stability check, the model performance 

depends solely on the dimensionality of the reservoir space with the proposed physics-

based training features. 

 

Fig. 13-The topology of a typical Echo State Network (Modified from Jaeger and 

Haas 2004). 

 

The specific category of machine learning algorithm presented here is supervised 

learning for regression, in which for a given dataset containing measured target values 𝑦 

and feature values 𝑢, the ultimate purpose is to correlate 𝐲 and 𝐮 to approximate a general 

function 𝐲 = 𝑓(𝐮) that could be utilized for predictions. Although this type of algorithm 

has been widely applied in engineering problems, there is still a special case in which the 
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targets 𝐲(𝑡)  and features 𝐮(𝑡)  are both functions of time that has not been explored 

thoroughly. A more rigorous approach is to introduce an additional variable 𝑡 and then 

incorporate it as a sequential pattern into the machine learning algorithm. Thereafter, the 

reservoir computing under the paradigm of Recurrent Neural Networks (RNNs) emerged 

by considering the inherent chronological behavior inside the data sequence. In this 

chapter, we mainly focus on Echo State Networks (ESNs) - one of kind in reservoir 

computing. It was demonstrated as an approximation of recursive kernels Support Vector 

Machine (SVM) and can be expressed as following (Hermans and Schrauwen 2012): 

𝐲(𝑡) =∑𝛼𝑖𝜅𝑡(𝐮(𝑡: 𝑡 − 𝜏), 𝐮𝐢(0:−𝜏))

N

𝑖=1

+ 𝛽 (1) 

𝐲(𝑡) =∑𝛼𝑖𝐱𝐢 ∙ 𝐱(𝑡)

N

𝑖=1

+ 𝛽 = 𝛉𝐓 ∙ 𝐱(𝑡) + 𝛽 (2) 

where  𝐱𝐢 is the last hidden state caused by time series 𝐮(0:−𝜏), and 𝐱(𝑡) is the 

hidden state triggered by 𝐱(𝑡: −∞). A similar idea was borrowed from ‘kernel tricks’; the 

kernel function can be expressed as 𝜅(𝐱𝐢, 𝐱(𝑡)) = 𝐱𝐢 ∙ 𝐱(𝑡) . Superior to the recursive 

kernel tricks, ESNs introduces a parametric control of kernel space. 

 

2.1.2 Leaky Integrator Echo State Network 

In the recent development of ESNs, the Leaky Integrator Echo State Network 

(LIESN) was first developed and demonstrated mathematically by Jaeger (Jaeger et al. 

2007). Thereafter, Lukoševičius came up with a practical guide to applying LIESN for 
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various engineering problems (Lukoševičius 2012). The basic LIESN method can be 

summarized with the following mathematical equations: 

𝐱̃(𝑡) = 𝜑(𝐖𝐮[1, 𝐮(𝑡)] + 𝐖𝐱𝐱(𝑡 − 1)) (3) 

𝐱(𝑡) = (1 − 𝛼)𝐱(𝑡 − 1) + 𝛼𝐱̃(𝑡) (4) 

𝐲(𝑡) = 𝐖𝐲[1; 𝐮(𝑡); 𝐱(𝑡)] (5) 

where 𝜑 is the activation function, which can be sigmoid, logistic, or ReLu etc., 

however, in our study, we adopted the hyperbolic tangent function: 

𝜑(𝑥) = tanh(𝑥) = (
1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
) (6) 

The objective function is typically a Mean-Square Error (MSE) function: 

𝐸(𝐲, 𝐲̂) =
1

Ny
∑(

1

Nt
∑(𝐲𝐢(𝑡) − 𝐲̂𝐢(𝑡))

2
+ 𝛽𝑟‖w𝑦𝑖‖

2

Nt

𝑡=1

)

Ny

𝑖=1

 (7) 

In the training procedure, the state matrix can be described as below: 

𝐗 =

[
 
 
 
𝐱𝐓(𝟏)

𝐱𝐓(𝟐)
⋮

𝐱𝐓(𝐍𝐭)]
 
 
 
=

[
 
 
 
x1(1) x2(1) ⋯ xNr(1)

x1(2) x2(2) ⋯ xNr(2)

⋮ ⋮ ⋱ ⋮
x1(Nt) x2(Nt) ⋯ xNr(Nt)]

 
 
 

 (8) 

Similarly, the target matrix can be written in a matrix form shown below: 

𝐘 = [

𝐲(1)

𝐲(2)
⋮

𝐲(Nt)

] (9) 

The universal stable solution to Eq. 7 is ridge regression also known as regression 

with Tikhonov regularization: 

𝐖𝐲 = 𝐘𝐗
𝐓(𝐗𝐗𝐓 + 𝛽𝑟𝐈)

−1 (10) 
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Ridge regression has been intensively applied to cope with the overfitting issue. 

The tuning parameter 𝛽𝑟 > 0  has been widely studied and we did not devote much 

attention to it in this study. Usually, a K-fold (e.g., K=5 or 10) cross-validation is used to 

select the appropriate 𝛽𝑟  and this procedure has been well explained fully in various 

studies (Tian and Horne 2015).  An alternative is to use a Gaussian process/Bayesian 

Regression interpretation of the linear readout for setting 𝛽𝑟  directly which will be 

introduced in section 2.1.4 (Lukoševičius 2012). 

 

2.1.3 Laplacian Eigenmaps Coupled Echo State Network 

Laplacian Eigenmaps (LE) was proposed by Belkin, et al. to provide a proper 

representation of complex data by transforming data in high-dimensional space into a low-

dimensional manifold (Belkin and Niyogi 2003). Unlike Principle Component Analysis 

(PCA), this method explicitly considers the structure of the manifold on which data could 

possibly locate. A benchmark result comparing LE and PCA is illustrated in Fig. 14. 
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Fig. 14-Benchmark dimension reduction problem using Laplacian Eigenmaps and 

Principal Component Analysis (Belkin and Niyogi 2003). 

 

LE was first coupled with ESN by Han and Xu, and it was able to extract the 

nonlinear manifold from the chaotic time-series data (Han and Xu 2018). Additionally, 

the LE is relatively insensitive to outliers and noise. The coupled algorithm is 

mathematically interpreted below: 

Please recall the standard leaky integrator ESNs’ dynamic system from Eq. 3 to 

Eq. 5, modified slightly for simplicity: 

𝐱̃(𝑡) = 𝜑(𝐖𝐮𝐮(𝑡) +𝐖𝐱̃𝐱̃(𝑡 − 1)) (11) 

𝐲(𝑡) = 𝐖𝐲
𝐓𝐱̃(𝑡) (12) 

The schematic topology of LEESN is presented in Fig. 15. To enhance the 

consistency of implementation of the proposed LEESN algorithm, we present a workflow 

for analysis of data with moderate noise and highly variable production histories; this 

workflow enables engineers to recognize flow patterns and estimate reservoir properties. 
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Fig. 15-The topology of a Laplacian Eigenmaps Coupled Echo State Network. 

 

Deconvolution Process 

1. Prepare the training features. 

2. Standardize or normalize the inputs and outputs. 

3. Initialize ESN reservoir parameters; e.g., neuron numbers in reservoir Nr. 

4. Activate reservoir neurons and acquire reservoir states 𝐗  using training 

samples flushing through Eqs. 3 and 4. 

5. For ℋ = 1:Nr do 

Construct an adjacency matrix based on the reservoir states 𝐗 using K-Nearest-

Neighbor (KNN) and then sort them from smallest to largest in terms of the 

distance value 𝑑𝑠𝑡. 

The reservoir state matrix is expressed as 𝐗 = [𝐗𝟏 𝐗𝟐…𝐗𝐍𝐫] , where 𝐗𝐢 

indicates [𝐱𝐢(1) 𝐱𝐢(2)…𝐱𝐢(Nt)]. 

𝑑𝑠𝑡 = √∑(𝐗𝐢 − 𝐗𝐣)
2

Nr

𝑗=1

 (13) 

𝑑𝑠𝑡 is then sorted from smallest to largest: 𝑧1 < 𝑧2 < ⋯ < 𝑧Nr. 
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Choose the appropriate value to connect the edge of the adjacency matrix by 

using the heat kernel: 

𝑊𝑖𝑗 = 𝑒
−‖𝐗𝐢−𝐗𝐣‖

2
/𝜎 (14) 

where 𝜎 is the predefined kernel width and 𝑊𝑖𝑗 = 0 when the two elements are 

not connected in the adjacency matrix. 

Calculate the eigenmaps and minimize the objective function: 

𝑎𝑟𝑔𝑚𝑖𝑛∑(𝐟𝐢 − 𝐟𝐣)
2
𝑊𝑖𝑗

𝑖,𝑗

≡ 𝑎𝑟𝑔𝑚𝑖𝑛
1

2
∑(𝐟𝐢 − 𝐟𝐣)

2
𝑊𝑖𝑗

𝑖,𝑗

= 𝑎𝑟𝑔𝑚𝑖𝑛 𝐟𝐓𝐿𝐟 (15) 

A generalized eigenvalue problem is eventually formed. Determine the 

minimum eigenvalue solution. 

𝐿𝐟 = 𝜆𝐃𝐟 (16) 

Denote [𝐟𝟎, 𝐟𝟏, 𝐟𝟐, … , 𝐟𝐍𝐫−𝟏] as the ordered solutions of Eq. 16 according to the 

eigenvalues: 

0 = 𝜆0 ≤ 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆Nr−1 (17) 

𝑳𝐟𝟎 = 𝜆0𝐃𝐟𝟎, 𝑳𝐟𝟏 = 𝜆1𝐃𝐟𝟏, … ,    𝑳𝐟𝐍𝐫−𝟏 = 𝜆Nr−1𝐃𝐟𝐍𝐫−𝟏 (18) 

The first eigenvector 𝐟𝟎 is neglected corresponding to the eigenvalue 𝜆0 = 0. 

The next ℋ eigenvectors are the lower transformation factors 𝐅 =

[𝐟𝟏, 𝐟𝟐, … , 𝐟𝓗]. 

𝐗̇ = 𝐅𝐓𝐗 (19) 

𝐖̇𝐲 = 𝐘𝐗̇𝐓(𝐗̇𝐗𝐓̇ +𝜷𝒓𝐈)
−𝟏

 (20) 

𝐘 = 𝐖̇𝐲
𝐓𝐗̇ (21) 

Using the Hannan-Quinn Criterion to select best ℋ, 
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𝛜 = 𝐘 − 𝐘 (22) 

HQ(ℋ) = − ln σ̂2 +
2ℋ ln(ln(Ny))

Ny
(23) 

where σ̂2 =
1

Ny
∑ ‖𝜖‖
Ny
𝑛=1

2

. 

6. Given constant 𝑞(𝑡), repeat steps 1 to 4 to generate 𝐮⋆.

7. Using the saved ℋand 𝐖̇𝐲
𝐓,

𝐗̇∗ = 𝐅𝐓𝐗∗ (24) 

𝐘∗ = 𝐖̇𝐲
𝐓𝐗̇∗ (25) 

𝐘∗ is the deconvolution response.

Using the lower dimension of 𝐗̇𝐓𝐗̇ could solve the ill-conditioned problem as

stated previously. It also reduces the computational expenses to o(ℋ3)  from o(Nr
3).

Again, lower transformation 𝐗̇ tolerates noise and outliers due to its locality preserving 

attributes. The applications are performed in the section 3.1 and section 3.2. 

2.1.4 Bayesian Echo State Network 

The original solver for Leaky Integrator Echo State Network (LIESN) and 

Laplacian Echo State Network (LEESN) is the linear solver – ridge regression expressed 

in Eq. 10. An alternative Bayesian regression can substitute for ridge regression to 

automatically estimate model parameters using only training data and additionally provide 

the confidence interval of prediction. However, Bayesian regression assumes that errors 

are zero-mean Gaussian noise with the variance 𝛽𝐵𝑅 and the likelihood function can be

expressed as following (Li et al. 2012): 
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𝑝(𝐲|𝐖𝐲, 𝛽𝐵𝑅) = (
𝛽𝐵𝑅
2𝜋
)

N
𝟐
exp {−

𝛽𝐵𝑅
2
(𝐲 − 𝐗𝐖𝐲)

2
} (26) 

The prior probability over the output weights 𝐖𝐲 is governed by 𝛼𝐵𝑅:

𝑝(𝐖𝐲|𝛼𝐵𝑅) = (
𝛼𝐵𝑅
2𝜋

)

Nr
𝟐
exp {−

𝛼𝐵𝑅
2
𝐖𝐲

𝐓𝐖𝐲}
(27) 

Combining Eq. 26 and Eq. 27, the posterior distribution over output weights can 

be acquired according to Bayes’ rule. The Gaussian prior 𝑝(𝐖𝐲|𝛼𝐵𝑅)  is a Gaussian

distribution with mean and variance as below: 

𝜅 = 𝛽𝐵𝑅Σ𝐗
𝐓𝒚 (28) 

Σ = (𝛼𝐵𝑅𝐈 + 𝛽𝐵𝑅𝐗
𝐓𝐗)−1 (29)

Model performance depends on the critical hyper parameter 𝛼𝐵𝑅 and 𝛽𝐵𝑅, which

can be obtained from 

𝛼𝐵𝑅 =
𝛾

𝜅𝑇𝜅
(30) 

𝛽𝐵𝑅 =
(Nt − 𝛾)

‖𝐲 − 𝐗𝜅‖
2 (31) 

where 𝛾 is defined as: 

𝛾 =∑
𝜆𝐵𝑅

𝜆𝐵𝑅 + 𝛼𝐵𝑅

Nr

𝑖=1

(32) 

𝜆𝐵𝑅 is the eigenvalue of the Hessian matrix of the error function shown as below

(Li et al. 2015): 
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𝐸 =
1

2
(𝐲 − 𝐗𝐖𝐲)

2
(33) 

The ultimate goal is to minimize the equation 

𝐹(𝐖𝐲) =
𝛽𝐵𝑅
2
(𝐲 − 𝐗𝐖𝐲)

2
+
𝛼𝐵𝑅
2
(𝐖𝐲

𝐓𝐖𝐲) (34) 

2.2 Long Short-Term Memory 

With more data gathering from downhole leading to increasing bytes in data 

storage, the computation expenses in kernel space or equivalent reservoir space can be 

increased drastically. Therefore, we adopted a deep learning approach, Long-Short Term 

Memory (LSTM) considering the sequential dependencies to reconstruct the missing 

production rates with the presence of aberrant segments, outliers and systematic noise. 

------------------------------------- 
Part of section 2.2 is reprinted with permission of URTeC from Pan, Y., Bi, R., Zhou, P., Deng L., Lee, J. 

2019. An Effective Physics-Based Deep Learning Model for Enhancing Production Surveillance and 

Analysis in Unconventional Reservoirs. Proceedings of Unconventional Resources Technology 

Conference, Denver, Colorado, 22-24 July. URTEC-2019-145. DOI:10.15530/urtec-2019-145. Copyright 
2019 URTeC.
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2.2.1 Long Short-Term Memory Unit 

A typical LSTM unit process comprises two components, the forward components 

and the backward components. The topology of LSTM unit is depicted in Fig. 16. The 

critical improvements beyond the SRNs are the introduction of the forget gate (Gers et al. 

1999) and the utilization of full gradient backpropagation through time (BPTT) 

(Hochreiter et al. 1997). The forget gate allows learning for continual tasks such as 

language processing. BPTT makes gradient check feasible in practical implementation and 

alleviates gradient vanishing, gradient exploding problems (Greff et al. 2017).  

 

Fig. 16-The topology of a typical LSTM unit without peephole connection (Modified 

from Olah 2015). 

 

Forward components: Mathematically, the gates are defined as follows: input gate 

𝑖𝑡, forget gate 𝑓𝑡, output gate 𝑜𝑡, the formula for each gate is presented below. 

Block input activation: 

𝑎̅𝑡 = 𝑊𝑎 ∙ 𝑥𝑡 + 𝑈𝑎 ∙ 𝑦𝑡−1 + 𝑏𝑎  (35) 
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𝑎𝑡 = ℎ(𝑎̅𝑡) (36) 

Input gate: 

𝑖𝑡 = 𝑊𝑖 ∙ 𝑥𝑡 +𝑈𝑖 ∙ 𝑦𝑡−1 + 𝑏𝑖 (37) 

𝑖𝑡 = 𝜎(𝑖𝑡) (38) 

Forget gate: 

𝑓𝑡̅ = 𝑊𝑓 ∙ 𝑥𝑡 + 𝑈𝑓 ∙ 𝑦𝑡−1 + 𝑏𝑓 (39) 

𝑓𝑡 = 𝜎(𝑓𝑡̅) (40) 

Output gate: 

𝑜̅𝑡 = 𝑊𝑜 ∙ 𝑥𝑡 +𝑈𝑜 ∙ 𝑦𝑡−1 + 𝑏𝑜 (41) 

𝑜𝑡 = 𝜎(𝑜̅𝑡) (42) 

Updating iteratively and passing internal states: 

𝑐𝑡 = 𝑎𝑡⊙ 𝑖𝑡 + 𝑓𝑡⊙𝑐𝑡−1 (43) 

𝑦𝑡 = ℎ(𝑐𝑡)⊙ 𝑜𝑡 (44) 

𝑥𝑡  is the input vector at time 𝑡, 𝑁 is the number of LSTM units, and 𝑀 is the 

number of inputs.  

• Input weights: 𝑊𝑎,𝑊𝑖 ,𝑊𝑓,𝑊𝑜  ∈  𝔑
𝑁×𝑀. 

• Recurrent weights: 𝑈𝑎, 𝑈𝑖 , 𝑈𝑓 , 𝑈𝑜 ∈  𝔑
𝑁. 

• Bias weights: 𝑏𝑎, 𝑏𝑖 , 𝑏𝑓, 𝑏𝑜 ∈  𝔑
𝑁. 

𝜎, ℎ are the nonlinear activation functions -- more specifically in this study, 𝜎 is 

the sigmoid function (𝜎(𝑥) =
1

1+𝑒−𝑥
), ℎ is the tanh function (tanh(𝑥) =

𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
). In the 
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above equations, ⊙  represents the pointwise multiplication of two vectors and inner 

productions are denoted as  ∙ .  

Backward Components: After the forward components are fully calculated, the 

backpropagation through time (BPTT) should be performed to back transfer the errors and 

the weights and states are updated. To simplify the equation, we define 

𝐺𝑡 = [

𝑎𝑡
𝑖𝑡
𝑓𝑡
𝑜𝑡

] ,𝑊 = [

𝑊𝑎
𝑊𝑖

𝑊𝑓
𝑊𝑜

] , 𝑈 = [

𝑈𝑎
𝑈𝑖
𝑈𝑓
𝑈𝑜

] , 𝑏 =

[
 
 
 
𝑏𝑎
𝑏𝑖
𝑏𝑓
𝑏𝑜]
 
 
 
 (45) 

In the BPTT 

𝛿𝑦𝑡 = ∆𝑡 + ∆𝑦𝑡 (46) 

𝛿𝑐𝑡 = 𝛿𝑦𝑡⊙𝑜𝑡⊙ℎ′(𝑐𝑡) + 𝛿𝑐𝑡+1⊙𝑓𝑡+1 (47) 

𝛿𝑏 = ∑𝛿𝐺𝑡+1

𝑁𝑡

𝑡=0

 (48) 

𝛿𝑎𝑡 = 𝛿𝑐𝑡 ⊙ 𝑖𝑡⊙ℎ′(𝑎̅𝑡) (49) 

𝛿𝑖𝑡 = 𝛿𝑐𝑡⊙ 𝑎𝑡⊙𝜎′(𝑖𝑡̅) (50) 

𝛿𝑓𝑡 = 𝛿𝑐𝑡⊙ 𝑐𝑡−1⊙𝜎′(𝑓𝑡̅) (51) 

𝛿𝑜𝑡 = 𝛿𝑦𝑡⊙ℎ(𝑐𝑡) ⊙ ℎ′(𝑜̅𝑡) (52) 

𝛿𝑥𝑡 = 𝑊𝑇 ∙ 𝛿𝐺𝑡 (53) 

∆𝑦𝑡 = 𝑈
𝑇 ∙ 𝛿𝐺𝑡+1 (54) 

Here, ∆𝑡 is the vector of the difference passed down from the layer above. ∆𝑦𝑡 is 

the output difference computed by the next time-step. Finally, the gradients for the weights 

are updated as follows:  
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𝛿𝑊 =∑𝛿𝐺𝑡⊗𝑥𝑡

𝑁𝑡

𝑡=0

 (55) 

𝛿𝑈 = ∑ 𝛿𝐺𝑡+1⊗𝑦𝑡

𝑁𝑡−1

𝑡=0

 (56) 

𝛿𝑏 = ∑𝛿𝐺𝑡+1

𝑁𝑡

𝑡=0

 (57) 

 

2.2.2 Denoising Long Short-Term Memory 

The Denoising Long Short-Term Memory (DeLSTM) approach investigated in 

this research is based on the structure of deep bidirectional Long Short-Term Memory 

(DBLSTM) for voice conversion proposed by Wu (Wu et al. 2017). Recall that, despite 

the purpose of denoising the target signals, one of our main tasks is to reconstruct the 

missing and/or distorted signals for the scenario in which only production rates are 

recorded. Therefore, the training scheme is modified and generalized as shown in Fig. 17. 
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Fig. 17-The structure of the DeLSTM model. A model with 𝑳 hidden layers and the 

rolling window length 𝒕, 𝒌  for input layer and output layer respectively. [𝒏 − 𝒕] 
denotes the batch sizde of data sequence (Modified from Wu et al. 2017). 

 

Unlike the 3-3-1 (three observations [𝑦𝑡−1, 𝑦𝑡 , 𝑦𝑡+1] per sequence, three hidden 

layers [ℎ𝑡
1, ℎ𝑡

2, ℎ𝑡
3], one output [𝑦𝑡] per sequence) structure in the original paper, we derive 

a sequence-to-sequence topology to fit the missing imputation problem. For example, if 

the number of a continual missing period is less than 5 consecutive points, suggested 𝑘 ≤

5 for each output sequence. In practice, to achieve a faster convergence and avoid the 

gradient exploding while training, 𝑡 ≥ 𝑘 is preferable. In section 3.3, we will discuss the 
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rolling window method which provides data augmentation and simultaneously increases 

the accuracy of prediction based on the fact that only one time-series sequence is available. 

2.2.3 Savitzky-Golay Cascaded Long Short-Term Memory 

We recommend the Savitzky-Golay (SG) polynomial smoothing algorithm as a 

reliable technique for smoothing time-series data. The fundamental description can be 

found in the original paper (Savitzky et al. 1964) and a thorough investigation of SG 

method applied in petroleum signal processing was performed by Reynolds (Reynolds et 

al. 2005).  

The SG method is then coupled with CLSTM and the workflow is illustrated in 

Fig. 18 below.  

Fig. 18-The workflow of SG-CLSTM for denoising and missingness imputation with 

both pressure and rate signals presented. 

In the SG-CLSTM workflow, both available noisy pressure and rate signals are 

fed into the SG filter and the resulting denoised signals are then fed into CLSTM for 

training. The well-trained model is saved after cross-validation. Then, the missing rate 

interval corresponding filtered pressures are sent to the saved model to reconstruct the 
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missing rates to complete the rate sequence. Finally, the saved model can be used for 

further deconvolution and forecasting by feeding in an artificial constant-pressure-drop. 

2.2.4 Systematic Workflow for Production Surveillance 

Fig. 19-The systematic workflow combining DeLSTM and SG-CLSTM for 

production surveillance. 
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The systematic workflow presented in Fig. 19 illustrates the entire process from 

production data acquisition to data realization such as production data analysis and 

forecasting. Two scenarios are considered, one with both pressures and rates recorded. 

Then in this case, SG-CLSTM will be used for data processing and data realization. In 

contrast, with only rate signals recorded, DeLSTM will be used only for data processing, 

however, production data analysis and forecasting are still performed using traditional 

decline curve analysis (DCA). Both scenarios are demonstrated with one synthetic case 

and a field case described in Chapter III and IV. 
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CHAPTER III  

APPLICATION TO SYNTHETIC CASE 

3.1 Synthetic Case in Rate Transient Analysis 

3.1.1 Synthetic Case Model Setup 

Machine-learning based algorithms require a certain amount of data for training 

and validation, and the more data observed by the machine learning model, the more the 

physics that resides in the data can be captured by the model, allowing more accurate 

forecasts. However, in the early development of the unconventional reservoirs, the data 

acquired is quite limited, usually daily data for several months to one or two years. We 

created two synthetic cases to approximate this situation.  The first case is a homogeneous 

reservoir produced through a horizontal well with a single fracture. We ran the simulation 

for 11 years with the only first year or first two years being observed by the model as Fig. 

20 and Fig. 21 illustrate. The second synthetic case is also a homogeneous reservoir, 

produced through a horizontal well with multiple transverse fractures. We ran this 

simulation for 2 years as shown in Fig. 22. The important reservoir parameters for the 

single-fracture case and the multi-fracture case are summarized in Table 1 and Table 2. 

------------------------------------- 
Part of Chapter III is reprinted with permission of Society of Petroleum Engineers from Pan, Y., Zhou, P., 

Deng, L., Lee, J. 2019. Production Analysis and Forecasting for Unconventional Reservoirs Using 

Laplacian Echo-State Networks. Proceedings of SPE Western Regional Meeting, San Jose, 

California, 23-26 April. SPE-195243-MS. DOI:10.2118/195243-MS. Permission conveyed through 
Copyright Clearance Center, Inc.
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Fig. 20 (a)-Synthetic case reservoir pressure at the end of 1st year; (b)-Synthetic case 

reservoir pressure at the end of the 2nd year; (c)-Synthetic case reservoir pressure at 

the end of 11th year. 

 

 

Fig. 21-Top-down view of the reservoir. 
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Table 1-Synthetic Single Fractured Case Simulation Parameters Under Piecewise 

BHP. 

 

The synthetic test is under piecewise bottom hole pressure (BHP) control so that 

the pressure drop is not a continuous function of time, and neither is the corresponding 

rate response. As we stated previously, traditional rate normalized pressure (RNP) or 

pressure normalized rate (PNR) approaches are not feasible for discontinuous changes in 

pressure and the corresponding rate response. Four cases will be elucidated in the synthetic 

single-fractured model: base case, extended base case, noisy data base case, and noisy-

data extended base case. After the training procedure is done, the deconvolution test and 

production forecasting are further performed based on the well-trained proxies (Sun and 

Ertekin, 2015, 2017). 

We then extended the synthetic single-fractured horizontal well case to a synthetic 

multiple-transverse fracture horizontal well (MTFW) case. This synthetic test is controlled 

by piecewise BHP in the first year and constant BHP for the next year. The transient flow 

behavior can be observed in Fig. 22 with the critical reservoir parameters shown in Table 

2. 
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Fig. 22 (a)-Synthetic MTFW case pressure map at the end of 2nd month under 

piecewise BHP control; (b)-Synthetic MTFW case pressure map at the end of the 6th 

month under piecewise BHP control; (c)-Synthetic MTFW case pressure map at the 

end of 12th month under piecewise BHP control; (d)-Synthetic MTFW case pressure 

map at the end of 24th month under piecewise BHP control. 

 

Table 2-Synthetic MTFW Case Simulation Parameters Under Piecewise BHP. 
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3.1.2 Single Fracture Base Case  

Rate and pressure signals are functions of time and are expressed as 𝑞(𝑡), 𝑝(𝑡). 

Both behave chaotically nature in time. Since the primary purpose of this research is to 

forecast production accurately, we set 𝑞(𝑡) as the target. However, the success of training 

and forecasting is based on constructing physics-based training features. Intuitively, we 

based training features on superposition in time (Lee et al. 2003) and modified them in 

addition to the features proposed by Tian and Horne (2019) which are illustrated in Table 

3. In the synthetic case, the BHP was changed every two months in the first year as shown 

in Fig. 23; the corresponding flow rate and model rate regeneration are shown in Fig. 24. 

Both 1-year signals are exposed to the model for training using Eq. 58 as training inputs 

and Eq. 59 as training outputs. These physics-based training features are applied 

thoroughly in the entire study. We first tested LIESN without any additive noise.  

 

Superposition of Pressure Drop Σ∆𝑝(𝑓) =∑[∆𝑝𝑗 − ∆𝑝𝑗−1]

Nt

𝑗=1

 

Superposition with Linear Flow Time Σ∆𝑡𝐿(𝑓) =∑
[∆𝑝𝑗 − ∆𝑝𝑗−1]

[√𝑡Nt − 𝑡𝑗−1]

Nt

𝑗=1

 

Superposition with Bilinear Flow Time Σ∆𝑡𝐵𝐿(𝑓) =∑
[∆𝑝𝑗 − ∆𝑝𝑗−1]

[(𝑡Nt − 𝑡𝑗−1)
1
4]

Nt

𝑗=1

 

Superposition with Pseudo-Radial Flow 

Time 
Σ∆𝑡𝑃𝑅(𝑓) =∑

[∆𝑝𝑗 − ∆𝑝𝑗−1]

[log(𝑡Nt − 𝑡𝑗−1)]

Nt

𝑗=1

 

Superposition with Pseudo Steady-State 

Flow Time 
Σ∆𝑡𝑃𝑆𝑆(𝑓) = ∑

[∆𝑝𝑗 − ∆𝑝𝑗−1]

[𝑡Nt − 𝑡𝑗−1]

Nt

𝑗=1

 

Table 3-Superposition Time Functions for RTA. 
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Hence, the training features then can be written as below: 

𝐮𝐢(𝑡) =

{
 
 

 
 
Σ∆𝑝
Σ∆𝑡𝐿
Σ∆𝑡𝐵𝐿
Σ∆𝑡𝑃𝑅
Σ∆𝑡𝑃𝑆𝑆}

 
 

 
 

, 𝑖 = 1, … , N (58) 

and the target 𝐲(𝑡) is simply the production rate array which is a function of 𝑡,  

𝐲(𝑡) = {𝑞(𝑡)} (59) 

 

 

Fig. 23-The pressure changes over time of synthetic base case under piecewise BHP 

control. 
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Fig. 24-The corresponding flow rates over time of synthetic base case under piecewise 

BHP control. 

 

The black solid line in Fig. 24 is the target training output and the red dashed line 

is the model regeneration after training. We observe a good alignment between the training 

regeneration and the true rate. This training process has been validated by several trials 

using cross-validations (CVs). The regularization also avoids the overfitting problem, and 

using CVs to save the best model is still a required procedure. After the training procedure 

is finished and the best model is saved, we further perform a deconvolution test and 

forecast production. 

 We firstly deconvolve the variable pressure -- variable rate profile into a constant- 

pressure rate response. By feeding in an artificial constant-pressure-drop (in this case 2750 

psi) using physics-based feature transformation from Eq. 58, the rate response is then 

acquired. Fig. 25 indicates the deconvolution results for the base case. 
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Fig. 25-LIESN deconvolved rate response for the base case comparing with the 

simulation model true rate response.  

 

In the simulated results, we observed a linear flow regime, so the full deconvolved 

response compared to simulated constant pressure rate response was based on a 1/𝑞𝑜  vs. 

√𝑡 plot as shown in Fig. 26. Again, a good match can be observed; a 1/𝑞𝑜 vs. √𝑡 plot 

usually identifies the errors preserved in the deconvolution test. Nonetheless, we see only 

small deviations at the curve tail where the reservoir being drained under a linear flow 

regime. We suspect that the training data length is short using 1-year data in which errors 

are not pervasively aggregated. 
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Fig. 26-LIESN deconvolved rate response for the base case compared to the 

simulation model true rate response on 𝟏/𝐪𝐨 𝒗𝒔. √𝒕 plot.  

 

The purpose of production data analysis is to identify the flow regimes from the 

available production data and analytically estimate the reservoir properties such as matrix 

permeability. To illustrate the procedure, we will show an example of a specialized plot 

for determining matrix permeability. As Fig. 27 shows, the linear flow regime is extracted. 

According to Eq. 60 and the fluid properties in Table 1, the reservoir matrix permeability 

can be calculated through the slope on the plot m=0.0079. 

𝑘 = (
31.3𝐵

𝑚ℎ𝑥𝑓(𝑝𝑖 − 𝑝𝑤𝑓)
)

2
𝜇

𝜙𝑐𝑡
 (60) 
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Fig. 27-Base case production analysis using LIESN deconvolved rate response on 

𝟏/𝐪𝐨 𝒗𝒔.√𝒕  specialized plot.  

 

Another purpose is to forecast the production based on the given 1 or 2-year of 

production histories. The base case used the 1-year based well-trained model to forecast 

10 years of future production. The first year’s production regeneration combined with the 

10-year forecast was then compared with simulation results in Fig. 28. 
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Fig. 28-The comparison of simulated production rate, cumulative production and 

LIESN forecasted production rate and cumulative production in the base case. 

 

3.1.3 Single Fracture Extended Base Case  

With regard to the 1-year training data, the linear flow regime data (roughly √𝑡 >

15) being exposed to the LIESN model is limited. Therefore, we added a 1-year extension 

to form a 2-year training data. The purpose of this second test is to further validate the 

proposed methodology in addition to investigating the potential effect of doubling the 

training duration. The 2-year BHP, corresponding true rates and model flow rates 

regeneration are shown in Fig. 29 and Fig. 30.  



 

49 

 

Fig. 29-The pressure changes over time for the extended synthetic base case under 

piecewise BHP control. 

 

 

Fig. 30-The corresponding flow rates over time for the synthetic extended base case 

under piecewise BHP control.  
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Again, a constant-pressure-drop (2750 psi) was transformed from Eq. 58 and used 

to determine the rate response. Fig. 31 illustrates the deconvolution results for the 

extended base case. Similarly, to identify the linear flow regime, the 1/𝑞𝑜 𝑣𝑠. √𝑡 plot in 

Fig. 32 compares the full deconvolved response and simulated constant pressure rate 

response. 

 

Fig. 31-LIESN deconvolved rate response for the extended base case compared to the 

simulated rate response. 
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Fig. 32-LIESN deconvolved rate response for the extended base case compared to the 

simulated rate response. 

 

In Fig. 32, we observe good agreement between true rate and deconvolved rate 

despite the transition regime. These results align with our purpose of using physics-based 

training features and training algorithms as key flow regimes are the primary targets to be 

captured. 

The slope of the curve during linear flow was again extracted as shown in Fig. 33. 

The matrix permeability can then be calculated and compared with other cases during 

sensitivity analysis. 
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Fig. 33-Extended base case production analysis using LIESN deconvolved rate 

response on 𝟏/𝐪𝐨 𝒗𝒔. √𝒕  specialized plot. 

 

The extended base case used a 2-year based well-trained model to forecast 9 years 

of future production. Again, combining production regeneration for the first two years and 

the 9-year forecast and comparing with the simulated rate response is shown in Fig. 34. 
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Fig. 34-The comparison of simulated production rates and cumulative production to 

LIESN forecasted production rates, cumulative production for the extended base 

case. 

 

3.1.4 Single Fracture Noisy Data Base Case  

In actual cases, data gathered downhole including noise could possibly affect 

deconvolution results and production forecasting. The source of noise may come from 

system errors or random errors. To study this, we artificially added 5% white Gaussian 

noise to both BHP and flow rate signals based on the clean data in the base case. The noisy 

pressure changes, noisy flow rates, and model smoothed rates regeneration are shown in 

Fig. 35 and Fig. 36. We performed several deconvolution trials using LIESN, and found 

that the deconvolved rate response was strongly influenced by noise and will not be shown 

here. Therefore, the LEESN approach was developed and tested to demonstrate its 

tolerance to noisy data. 
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The training input features using LEESN are different from those proposed in Eq. 

58. We added an additional unit array as shown in Eq. 61. The training output features are 

the same as Eq. 59. 

𝐮𝐢(𝑡) =

{
 
 

 
 

1
Σ∆𝑝
Σ∆𝑡𝐿
Σ∆𝑡𝐵𝐿
Σ∆𝑡𝑃𝑅
Σ∆𝑡𝑃𝑆𝑆}

 
 

 
 

, 𝑖 = 1, … , N (61) 

 

 

Fig. 35-The true pressure changes and 5% additive white Gaussian noise pressure 

changes over time for synthetic noisy data base case under piecewise BHP control. 

 



 

55 

 

Fig. 36-The true flow rates, 5% additive white Gaussian noise flow rates and model 

smoothed rates regeneration over time for synthetic noisy data base case under 

piecewise BHP control. 

 

We continued to use a constant pressure drop (2750 psi) as input into the model to 

acquire a deconvolved rate response. A constant-pressure rate decline plot and a 1/𝑞𝑜  vs. 

√𝑡 specialized plot are presented in Fig. 37 and Fig. 38. From the specialized plot, we can 

observe that after Laplacian eigenmaps reduced the dimensionality of the original 

reservoir space, deconvolved linear flow characteristics start to deviate from the true 

response. 
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Fig. 37-LEESN deconvolved rate response for synthetic noisy data base case under 

piecewise BHP control compared to simulated rates. 

 

 

Fig. 38-LEESN deconvolved rate response for synthetic noisy data base case under 

piecewise BHP control compared to simulated rates. 
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In Fig. 39 we compute the slope of the linear flow plot from the noisy data base 

case deconvolution results. From this slope, we can calculate matrix permeability and 

compare it to the input value in the simulation. 

 

Fig. 39-Noisy data base case production analysis using LEESN deconvolved rate 

response. 

 

Fig. 40 compares forecasts and simulated production rates and cumulative 

production. 
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Fig. 40-The comparison of simulated production rate, cumulative production to 

LEESN forecasted production rate, cumulative production for noisy data base case. 

 

3.1.5 Single Fracture Noisy-Data Extended Base Case 

We next added 5% white Gaussian noise to both BHP and flow rate signals based 

on clean data in the extended base case previously described. Fig. 41 and Fig. 42 present 

the noisy pressure changes, noisy flow rates and model smoothed rate regeneration 

separately. We further investigated extended training length using Eqs. 61 and 59 as 

training input features and output features respectively, and determined how aggregated 

noise influences on LEESN approach in deconvolution and production forecasting. 
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Fig. 41-The simulated pressure changes and pressure chages with 5% additive white 

Gaussian noise added over time for extended base case under piecewise BHP control. 

 

 

Fig. 42-The simulated flow rates, rates with 5% white Gaussian noise added and 

model smoothed rates regeneration over time for synthetic noisy extended base case 

under piecewise BHP control. 
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The deconvolved rate was generated with the same constant-pressure-drop (2750 

psi) and comparing to the simulated rates with constant pressure drop. Fig. 43 and Fig. 44 

show the comparison. 

 

Fig. 43-LEESN deconvolved rate response for the synthetic noisy extended base case 

under piecewise BHP control compared to the simulated rate response. 
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Fig. 44-LEESN deconvolved rate response for the synthetic noisy extended base case 

under piecewise BHP control compared with simulated rates on 𝟏/𝐪𝐨 𝒗𝒔 √𝒕 plot. 

 

Following the same procedure as before, we generated the specialized plot, Fig. 

45, for flow pattern recognition. We estimated the matrix permeability from the slope of 

the curve in this plot, and we compared it to other cases during sensitivity analysis. 
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Fig. 45-Noisy-data extended base case production analysis using LEESN 

deconvolved rate response on 𝟏/𝐪𝐨 𝒗𝒔. √𝒕  specialized plot. 

 

Similar to the setting of production forecasting in the extended base case, we also 

forecasted production for the noisy-data extended base case well-trained model for the 

following 9 years with a combination of curves comparing model forecasts and simulated 

responses. 
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Fig. 46-The comparison between true simulated production rate and cumulative 

production and LEESN forecasted production rate and cumulative production for 

the noisy-data extended base case. 

 

3.1.6 Single Fracture Case Sensitivity Analysis 

The impact of noise on deconvolution in production data analysis and in 

production forecasting has not been explored thoroughly in a quantitative manner. We 

summarize errors in Table 4 by comparing four categories of tests among various synthetic 

cases. Root mean square error (RMSE), symmetric mean absolute percentage error 

(SMAPE) and correlation coefficient are used to evaluate the results from different cases. 

In the training regeneration process results as shown in Fig. 36 and Fig. 42 and training 

errors in Table 4, LEESN is able to smooth the noisy data and approximate the synthetic 

true rate. Table 4 also indicates that LISEN applied to extended base case outperforms 

other as approaches because the data are clean and the training length was increased. In 

the cases with noisy data, errors in deconvolution and production forecasting are still 

acceptable. Another intriguing trend is that LEESN with extended data duration performs 
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better both in forecasting and in deconvolution. The deviation during the linear flow 

regime caused by noise may lead to a poorer representation of the reservoir model. This 

phenomenon conforms with our expectation as Laplacian eigenmaps which reduce the 

noise perturbations could also obscure the characteristics of the original data. Nonetheless, 

the extended training data duration is more critical as it promotes more confidence in 

identifying flow patterns.   

Table 4-Case Error Performance in Various Tests. 

From specialized plot Fig. 27, Fig. 33, Fig. 39 and Fig. 45, the slope and calculated 

permeability are summarized in  

. These results should be conformed with a permeability of 0.1 md used to simulate 

the “clean” production profiles. Errors present in the training data can possibly cause the 

deconvolved response to deteriorate. However, a good approximation can still be acquired 

using LEESN with noisy data. These results further demonstrate the applicability of 

LIESN and LEESN. 
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Table 5-Permeability Calculation in Different Cases. 

 

3.1.7 Single Fracture Analysis Using BESN 

Section 2.1.4 presented an alternative linear solver, Bayesian Ridge Regression 

(BRR), as an alternative to Ridge Regression. In this part of the study, we used the same 

synthetic single-fracture noisy data base case in Section 3.1.4 to validate the regression 

performance of BRR. Fig. 47 and Fig. 48 illustrate the deconvolution test case we analyzed. 

Similar deconvolution results can be achieved with LEESN.  

 

Fig. 47-BESN deconvolved rate response for synthetic noisy data base case under 

piecewise BHP control compared to simulated rates. 



 

66 

 

Fig. 48-BESN deconvolved rate response for synthetic noisy data base case under 

piecewise BHP control compared with simulated rates on 𝟏/𝐪𝐨 𝒗𝒔 √𝒕 plot. 

 

The value of BESN is that it provides error intervals, assuming Gaussian 

distribution of noise. Using BESN, we forecasted 10 years of production rates and 

cumulative production and compared with simulated values. Fig. 49 illustrates 10% 

standard deviation intervals in addition to the mean prediction. This confidence interval 

would highly likely to cover most future production outcomes. 
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Fig. 49-The comparison of simulated production rates, cumulative production and 

BESN forecasted production rate with 10% error interval, cumulative production 

with 10% error interval on noisy data base case. 

 

3.1.8 Multiple Transverse Fractures Noisy Case 

In section 3.1.1 we described a case in which we simulated synthetic production 

data for a horizontal well with multiple transverse hydraulic fractures (MTFW). We 

described the variable operation control with piecewise bottom-hole pressures changing 

every two months during a one-year simulation. The pressure drawdown for the entire 

year is illustrated in Fig. 50. We employed the LEESN smoothing procedure using Eq. 61 

and Eq. 59 as the training features. The training regeneration results are shown in Fig. 51. 
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Fig. 50-The simulated pressure changes and pressure changes with 5% white 

Gaussian noise  added over time for synthetic noisy-data MTFW case under 

piecewise BHP control. 

 

 

Fig. 51-Simulated flow rates, noisy-data rates with 5% added white Gaussian noise 

and model-smoothed rate regeneration over time for synthetic noisy-data MTFW 

case under piecewise BHP control. 
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Similar to the single-fracture cases, the constant-pressure-drawdown was set at 

2750 psi. We compared the deconvolution performance to the simulation results shown 

in both a cartesian plot, Fig. 52, and a specialized plot, Fig. 53. 

 

Fig. 52-LEESN deconvolved rate response for the synthetic MTFW case under 

piecewise BHP control compared to simulated rates. 
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Fig. 53-LEESN deconvolved response for the synthetic noisy-data MTFW case under 

piecewise BHP control compared to simulated rates on diagnostic 𝐑𝐍𝐏, 𝐑𝐍𝐏′ 𝒗𝒔 𝐭𝐞 
plot. 

 

The initial production rate in the noisy-data MTFW case is much higher than in 

the single-fracture case and declines rapidly. We simulated a two-year production period 

to compare the forecasting performance in both daily production and cumulative 

production using LEESN. The first-year data is exposed to the model and the forecasted 

one-year data is shown in red beyond the vertical dashed line in Fig. 54.  
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Fig. 54-The comparison of simulated production rate, cumulative production and 

LEESN forecasted production rate, cumulative production for the noisy-data 

MTFW case. 

3.2 Synthetic Case in Pressure Transient Analysis 

3.2.1 Single Fracture Horizontal Well Case 

The first synthetic case in pressure transient analysis is for a horizontal well with 

a single hydraulic fracture in a homogeneous reservoir which we described in section 3.1.1. 

Unlike the previous setup, we ran the simulation for one year under piecewise surface flow 

rate (STO) control. The nonlinearity of flow rates with time is guaranteed, so that RNP or 

PNR functions are not applicable in this scenario. The reservoir flow regimes during the 

one-year simulation are clearly identified in Fig. 55, and the corresponding simulation 

parameters are summarized in Table 6. 

------------------------------------- 
Part of section 3.2 is reprinted with permission of Society of Petroleum Engineers from Pan, Y., 

Deng, L., Lee, J. 2019. Data-Driven Deconvolution Using Echo-State Networks Enhances 

Production Data Analysis in Unconventional Reservoirs. Proceedings of SPE Eastern Regional 

Meeting, Charleston, West Virginia, 15-17 October. SPE-196598-MS. DOI: 10.2118/196598-MS. 

Permission conveyed through Copyright Clearance Center, Inc.
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Fig. 55 (a)-3D view of the synthetic single-fracture case pressure map at the end of 

simulation under piecewise STO; (b)-Synthetic single-fracture case pressure map at 

the end of 3rd month under piecewise STO; (c)-Synthetic single-fracture case 

pressure map at the end of the 8th month under piecewise STO; (d)-Synthetic single-

fracture case pressure map at the end of 1st year under piecewise STO. 

Table 6-Synthetic Single Fracture Case Simulation Parameters Under Piecewise 

STO. 
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Based on the physics training features in Table 3, the critical factor in applying 

deconvolution in PTA successfully is to reconstruct the training features. Table 7 

summarizes the training features for PTA. 

 

Superposition on Rate Σ𝑞(𝑓) =∑[𝑞𝑗 − 𝑞𝑗−1]

Nt

𝑗=1

 

Superposition on Linear Time Σ∆𝑡𝐿(𝑓) =∑[𝑞𝑗 − 𝑞𝑗−1][√𝑡Nt − 𝑡𝑗−1]

Nt

𝑗=1

 

Superposition on Bilinear Time Σ∆𝑡𝐵𝐿(𝑓) =∑[𝑞𝑗 − 𝑞𝑗−1] [(𝑡Nt − 𝑡𝑗−1)
1
4]

Nt

𝑗=1

 

Superposition on Pseudo Radial Time Σ∆𝑡𝑃𝑅(𝑓) =∑[𝑞𝑗 − 𝑞𝑗−1][log(𝑡Nt − 𝑡𝑗−1)]

Nt

𝑗=1

 

Superposition on Pseudo Steady-State 

Time 
Σ∆𝑡𝑃𝑆𝑆(𝑓) =∑[𝑞𝑗 − 𝑞𝑗−1][𝑡Nt − 𝑡𝑗−1]

Nt

𝑗=1

 

Table 7-Superposition Time Functions for PTA. 

 

The training features are modified using Eq. 61 and Eq. 59: 

𝐮𝐢(𝑡) =

{
 
 

 
 

1
Σ∆𝑞
Σ∆𝑡𝐿
Σ∆𝑡𝐵𝐿
Σ∆𝑡𝑃𝑅
Σ∆𝑡𝑃𝑆𝑆}

 
 

 
 

, 𝑖 = 1, … , N (62) 

The target 𝐲(𝑡) is simply the drawdown pressure array, a function of 𝑡,  

𝐲(𝑡) = {∆𝑝(𝑡)} (63) 

Fig. 56 and Fig. 57 shows that the STO was altered every two months 

corresponding to the variation of pressure drawdown. We added 3% additive white 
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Gaussian noise to both pressure and rate signals, shown in blue. Both transformed noisy-

data signals using Eq. 62 and Eq. 63 were fed into the LEESN algorithm for training 

purpose, then, after training was completed, the clean rate signal was transformed and 

input into the proxy model to regenerate a clean pressure drawdown response as shown in 

Fig. 57 with the red dashed curve. We deconvolved the data based on the well-trained 

model. 

 
Fig. 56-Clean production rates and noisy rates with 3% additive white Gaussian 

noise over time for synthetic case I under piecewise STO control. 
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Fig. 57-Simulated pressure drawdown, pressure drawdown with 3% additive white 

Gaussian noise and model smoothed drawdown pressure regeneration over time for 

synthetic case I under piecewise STO control. 

 

Deconvolution process is performed by feeding in a constant-rate physics-assisted 

transformed features using Eq. 62. The resultant pressure drawdown is illustrated in Fig. 

58. The deconvolved pressure derivatives are aligned with the simulated pressure 

derivatives. 
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Fig. 58-Synthetic single fracture case production analysis using LEESN deconvolved 

drawdown pressure response and its Bourdet derivative on a diagnostic plot. 

The diagnostic plot presented here conform to the ‘basement’ reservoir model 

proposed by Kuchuk, in which the matrix permeability is unlikely to contribute to any 

hydrocarbon extraction (Kuchuk et al. 2012). In the synthetic single-fracture case, the 

noisy variable-rate drawdown test from a horizontal well with a single fracture is 

deconvolved into a constant rate drawdown pressure response. The derivative exhibits a 

half slope during the pseudo-linear flow period, followed by an ambiguous nearly unit 

slope possibly corresponding to the pseudo pseudo-steady state period which indicates the 

‘basement’ effects have been initiated. This further demonstrates that physics-based 

training features and training algorithms play the key roles in identifying the flow regimes 

even with noisy data. 
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Fig. 59-Synthetic single-fracture case production analysis using LEESN deconvolved 

drawdown pressure response on a 𝐑𝐍𝐏 𝒗𝒔. √𝒕  specialized plot. 

Another purpose of production analysis is to identify flow patterns based on the 

deconvolved response and determine the corresponding reservoir properties. We use 

reservoir matrix permeability as an example. In Fig. 59, the linear flow regime is identified; 

accordingly, Eq. 64 and the reservoir properties in Table 6 allow us to estimate the matrix 

permeability using the slope m=5.617. 

𝑥𝑓√𝑘 = 4.064
𝐵𝜇

𝑚ℎ√𝜙𝜇ct
 (64)

The comparison between calculated matrix permeability and the permeability used 

as input in synthetic simulation is illustrated in Table 8. The permeability determined from 

deconvolved pressure drawdown is very close to the synthetic input value. 
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Table 8-Comparison of Calculated Matrix Permeability and Simulation Input 

Matrix Permeability. 

3.2.2 Multiple Transverse Fractures Horizontal Well Case 

In the second synthetic case to examine PTA, we extended the previous model to 

a model for a horizontal well with multiple transverse fractures (MTFW). The synthetic 

data includes a 3-year simulation under piecewise surface flow rate (STO) control, with 

rate changes every 6-month as shown in Fig. 61. The corresponding pressure drawdown 

is illustrated in Fig. 62. The reservoir model and critical reservoir parameters are depicted 

and summarized in Fig. 60 and Table 9. 
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Fig. 60 (a)-Synthetic MTFW case pressure map at the end of 3rd month under 

piecewise STO; (b)-Synthetic MTFW case pressure map at the end of the 8th month 

under piecewise STO; (c)-Synthetic MTFW case pressure map at the end of 18th 

month under piecewise STO; (d)-Synthetic MTFW case pressure map at the end of 

36th month under piecewise STO. 

Table 9-Synthetic MTFW Case Simulation Parameters Under Piecewise STO. 
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Again, 3% additive white Gaussian noise was combined with both pressure and 

rate signals shown in blue. We applied Eq. 62 and Eq. 63 to transform the raw signals into 

the target training features before we input them into the model. As expected, the 

alignment between regenerated response and true synthetic pressure drawdown signals 

can be observed after training was completed. 

Fig. 61-Clean production rates and rates with 3% additive white Gaussian noise over 

time for synthetic MTFW case under piecewise STO control. 
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Fig. 62-Simulated pressure drawdown, pressure drawdown with 3% additive white 

Gaussian noise, and model-smoothed drawdown pressure regeneration over time for 

synthetic MTFW case under piecewise STO control. 

We further input in a set of training features using constant rate to obtain pressure 

drawdown response. Fig. 63 illustrates the deconvolved results and the corresponding 

Bourdet derivative. The deconvolved response and the simulated response align well for 

both pressure drawdown and Bourdet derivative. 
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Fig. 63-Synthetic MTFW case production analysis using LEESN deconvolved 

drawdown pressure response and its Bourdet derivative on a diagnostic plot. 

Fig. 64-Synthetic MTFW case production analysis using LEESN deconvolved 

drawdown pressure response on a 𝐑𝐍𝐏 𝒗𝒔. √𝒕  specialized plot. 
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The linear flow regime and the pseudo pseudo-steady state flow regime were 

identified as shown in Fig. 64 and Fig. 65. Reservoir properties were estimated from these 

plots. Based on Eq. 64, equation for linear flow in a well with multiple fractures has the 

form of Eq. 65. Eq. 66 is the pseudo pseudo-steady state equation. 

4𝑛𝑓𝑥𝑓√𝑘 = 4.064
𝐵𝜇

𝑚ℎ√𝜙𝜇ct
(65) 

Fig. 65-Synthetic MTFW case production analysis using LEESN deconvolved 

drawdown pressure response on a 𝐑𝐍𝐏 𝒗𝒔. ∆𝒕  specialized plot. 

𝑉𝑆𝑅𝑉 = 𝐴𝑆𝑅𝑉ℎ𝜙 =
0.234

𝑚ct
(66) 

Matrix permeabilities and stimulated reservoir volumes are compared in Table 10. 

The difference between the results are acceptable, further demonstrating that LEESN can 

perform deconvolution for horizontal wells with single and multiple fractures. 
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Table 10-Comparison of Calculated 𝒌𝑺𝑹𝑽, 𝑽𝑺𝑹𝑽 and Simulation Input 𝒌𝑺𝑹𝑽 , 𝑽𝑺𝑹𝑽.

3.3 Synthetic Case in Production Surveillance 

3.3.1 Multiple Transverse Fractures Horizontal Well Case Model Setup 

Performance of deep-learning based algorithms in training and validation 

ordinarily rely on the richness of data. The frequency of data acquisition in a PDG depends 

on the initial setup and the resolution of the tool. We developed a synthetic case to 

approximate a PDG recording downhole data hourly for 3.5 years with variable pressures 

and variable rates throughout the entire sampling period. The synthetic case shown in Fig. 

66 and Fig. 67 is for a homogeneous reservoir produced through a horizontal well with 

multiple transverse fractures. 

------------------------------------- 
Part of section 3.3 is reprinted with permission of URTeC from Pan, Y., Bi, R., Zhou, P., Deng L., Lee, J. 

2019. An Effective Physics-Based Deep Learning Model for Enhancing Production Surveillance and 

Analysis in Unconventional Reservoirs. Proceedings of Unconventional Resources Technology 

Conference, Denver, Colorado, 22-24 July. URTEC-2019-145. DOI:10.15530/urtec-2019-145. Copyright 
2019 URTeC.
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Fig. 66 (a)-Synthetic case reservoir pressure after two months of production; (b)-

Synthetic case reservoir pressure at the end of 1st year; (c)-Synthetic case reservoir 

pressure during fracture interference; (d)-Synthetic case reservoir pressure profile 

at almost 3.5 years. 

 

Fig. 67-Top-down view of the reservoir. 
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Reservoir parameters are summarized in Table 11. 

Table 11-Synthetic MTFW Case Simulation Parameters Under Piecewise STO. 

3.3.2 Scenario I Production Surveillance with Only Production Rates 

Scenario I approximates production surveillance data using PDG to record only 

production rates. In this test, 5% additive white Gaussian noise (WGN), aberrant segments 

and outliers were artificially added to mimic real data gathered downhole. The noisy rate 

profile and synthetic rates are shown in Fig. 68 in the blue solid line and green solid line. 

Additionally, three segments were distorted to form the aberrant segments, and we 

generated outliers randomly throughout the data sequence. Besides, by removing a 500-

data-point sequence shown in red dashed line is to simulate a workover or system offline 

for approximately 500 hours. 
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Fig. 68-Synthetic case scenario I – production rates + [5% WGN, aberrant segments, 

outliers] and 500 consecutive hours of missing values. 

Fig. 69-DeLSTM denoise process for scenario I. 

The noisy distorted rate signal was divided into batches of sequences for training 

and validation. A k-fold cross-validation was then performed and the model was saved. 

The noisy distorted signal was first reconstructed with the denoising process shown in 

yellow in Fig. 69. We observe that the noise and outliers were alleviated, but the aberrant 

segments still prevail in the data sequence. Therefore, the second step was to reconstruct 

the missing intervals and distorted segments. To simplify the process, we combined the 
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missing interval and one aberrant segment into a special data sequence to be reconstructed 

as illustrated in red; the duration of the data sequence remains approximately 500 hours. 

a)

b)

Fig. 70 (a)-Zoom-in view of 500-hour continuous missing data sequence. (b)-First 100 

hours missing data sequence from subdivided 500-hour missing interval. 

Fig. 70 is a zoom-in view of the missing interval. The missing 500-hour duration 

data interval was segregated into 5 shorter data sequences. The window length is then 100 

data points. By using the nature of the rolling window and flexibility of the DeLSTM 

structure displayed in Fig. 17, the first 100 continuous missing values were imputed, and 

the result is displayed in Fig. 71. The ground-truth synthetic rates and the imputed values 

align well. 
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Fig. 71-First imputed rates for first 100 hours of missing value compared to ground-

truth synthetic rates and noisy aberrant rates. 

We then reconstructed the remaining 400-data-point sequence, and the imputed 

500-hour duration missing interval shown in Fig. 72. The deviation from the ground-truth

production rates is enlarged as the rolling window moves forward. This result was 

expected, since the prediction for the first 100 hours is based on the previously observed 

sequence, and as the rolling window moves more deeply, the later data sequence depends 

solely on the previously predicted values and the error increases. More importantly, since 

only production rates are recorded during production surveillance, DeLSTM is used only 

to discover the time dependence between data sequences without considering any physics. 

This indicates the limitation of using DeLSTM for long-term production forecasting. 



90 

Fig. 72-DeLSTM imputation for 500-hour duration continuous data compared with 

ground truth production rates and noisy aberrant rates. 

3.3.3 Scenario II Production Surveillance with Both BHP and Production Rates 

Scenario II mimics production monitoring based on surveying both bottom hole 

pressures (BHP) and production rates. The ground-truth synthetic production rates are 

simulated by specifying piecewise BHP which changes every 6 months as shown in Fig. 

73. An approximately 5000-hour missing interval was generated by removing the data

sequence shown by the red dashed curve. Both signals outside of the missing interval are 

exposed to the model for training using Eq. 58 as training inputs and Eq. 59 as training 

outputs. The purpose of this clean signal test is to demonstrate the applicability of these 

physics-based training features. 
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Fig. 73-Synthetic case scenario II – clean production rates with 5000-hour of 

consecutive missing values and corresponding clean BHPs. 

Fig. 74-Comparison of reconstructed production rates and ground-truth synthetic 

production rates. 

The dashed curves in Fig. 74 indicates the reconstructed production profile. The 

blue solid line is the target output. This figure indicates that the green dashed curve 

representing the missing interval regeneration is in acceptable alignment with the ground-

truth signal and that the matches in training and validation are good. This demonstrates 

the critical importance of using physics-based training features. We further tested these 
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features by specifying a constant pressure drawdown to deconvolve the variable-pressures 

variable-rate data into a constant pressure rate response, shown in Fig. 75. The good 

alignment of constant-pressure rate response and good matches of cumulative production 

further demonstrate the versatility of our proposed algorithm.  

Fig. 75-Comparison of simulated rates for constant pressure drawdown and 

corresponding cumulative production with SG-CLSTM deconvolved production 

rates and cumulative production for clean base case. 

As in scenario I, we added 5% additive WGN, aberrant segments and outliers to 

the clean signals to construct a noise-distorted case, illustrated in Fig. 76 and Fig. 77. The 

same 5000-hour continual missing interval is hidden for model imputation. 
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Fig. 76-Synthetic case scenario II – production rates + [5% WGN, aberrant 

segments, outliers] with 5000 consecutive hours of missing values. 

Fig. 77-Synthetic case scenario II – Corresponding BHP + [5% WGN]. 

By following the systematic workflow illustrated in Fig. 18, both signals were 

filtered by a SG polynomial smoothing algorithm; results are displayed in Fig. 78 and Fig. 

79. Obviously, the SG algorithm can smooth the noisy signals with outliers, however, the

aberrant segments remained problematic. 
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Fig. 78-Synthetic case scenario II – SG smoothed production rate signals compared 

to ground-truth synthetic rates + [5% WGN, aberrant segments, outliers]. 

Fig. 79-Synthetic case scenario II – corresponding SG smoothed pressure signals 

compared to ground-truth synthetic pressures + [5% WGN]. 

Both denoised signals were sent to the CLSTM for training and cross-validation. 

The rate signals were reproduced and the missing interval was reconstructed as presented 

in Fig. 80. We can observe that SG-CLSTM is able to reconstruct the missing flow rates 

and simultaneously alleviate the distorted signals. 
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Fig. 80-Comparison of reconstructed, SG-denoised and ground-truth synthetic 

production rates for 5% noisy distorted case. 

Again, a constant-pressure-drop was transformed using Eq. 58 and fed in to obtain 

the rate response. Fig. 81 illustrates the deconvolved daily production rates and cumulative 

production. We see some deviation from the synthetic true signals, however, the overall 

prediction is acceptable. Thus, we have demonstrated that SG-CLSTM is able to 

deconvolve the variable-pressure, variable-rate data into a constant-pressure-drawdown 

rate response for further production analysis and forecasting and to reconstruct noisy 

signals with aberrant segments, outliers, and missing values. 
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Fig. 81-Comparison of constant pressure drawdown from simulated production 

rates and simulated cumulative production to SG-CLSTM deconvolved production 

rates and cumulative production for 5% noise-distorted case. 
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CHAPTER IV  

APPLICATION TO FIELD CASE 

4.1 Forecasting Performance Using LEESN 

After applications in the synthetic cases described in section 3.1 were completed, 

we analyzed a field case with about 1-year of production history, including rates and 

bottom hole pressures. Since no data or supplementary information was available to 

validate deconvolution, we utilized LEESN only for hindcasting to assess its forecasting 

capability.  

Fig. 82-Bottom hole pressure and flow rate histories for field case 50H. 

------------------------------------- 
Part of Chapter IV is reprinted with permission of Society of Petroleum Engineers from Pan, Y., Zhou, P., 

Deng, L., Lee, J. 2019. Production Analysis and Forecasting for Unconventional Reservoirs Using 

Laplacian Echo-State Networks. Proceedings of SPE Western Regional Meeting, San Jose, 

California, 23-26 April. SPE-195243-MS. DOI:10.2118/195243-MS, and from Pan, Y., Deng, L., Lee, J. 

2019. Data-Driven Deconvolution Using Echo-State Networks Enhances Production Data Analysis in 

Unconventional Reservoirs. Proceedings of SPE Eastern Regional Meeting, Charleston, West 

Virginia, 15-17 October. SPE-196598-MS. DOI: 10.2118/196598-MS. Permission conveyed 
through Copyright Clearance Center, Inc.; and permission of URTeC from Pan, Y., Bi, R., Zhou, P., 

Deng L., Lee, J. 2019. An Effective Physics-Based Deep Learning Model for Enhancing Production 

Surveillance and Analysis in Unconventional Reservoirs. Proceedings of Unconventional Resources 

Technology Conference, Denver, Colorado, 22-24 July. URTEC-2019-145. DOI:10.15530/

urtec-2019-145. Copyright 2019 URTeC. 
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Rates and pressure changes from test well is 50H (in an unconventional reservoir) 

shown in Fig. 82. Rate changes are uncorrelated with pressure changes. The history is 

divided into 20% training and 80% forecasting segments. 

Fig. 83 shows the forecasting results. We observe a good alignment in overall 

tendencies which demonstrates the effectiveness of our proposed methodology in the field 

case. The physics-based training features and training algorithm, honoring the transient 

low mechanism, has been further validated. We then predicted well performance for an 

additional 10 years as shown in Fig. 84. The nature of the constant-pressure rate decline 

provides alternative forecasting method to estimate unconventional reserves. We 

recommend further investigation based on the model limitations in the near future. 

 

Fig. 83-LEESN hindcast test for well 50H using 20% training, 80% forecasting and 

comparison with observed flow rates. 
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Fig. 84-LEESN hindcast test for well 50H with 10-year rate forecast at constant-BHP. 

 

4.2 Forecasting Performance Using BESN 

Proper application of Bayes’ theorem requires that we know the probability of the 

errors to forecast future production correctly. To study this application, we used well 50H 

to test the versatility of the Bayesian Echo State Network (BESN). As in section 4.1, we 

divided the data set into 20% training and 80% testing segments, and we further input the 

same constant pressure drawdown to forecast an extra 10 years production. The hindcast 

result is shown in Fig. 85 and the forecasting result is illustrated in Fig. 86 with 10% error 

interval. These results reaffirm that using BESN could provide more confidence in 

production forecasting.  
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Fig. 85-BESN hindcast test for well 50H using 20% training, 80% forecasting and 

comparison with observed rates. 

 

 

Fig. 86-BESN hindcast test for well 50H and additional 10-year forecast for constant 

pressure drop with a 10% error interval. 
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4.3 Deconvolution Performance in PTA Using LEESN 

After application to synthetic cases in PTA using LEESN (presented in section 

3.2), we studied a field case with nearly 400 consecutive days of pressure and rate records. 

We applied LEESN for the pressure-rate deconvolution. The raw signals are from a well 

located in a West Texas unconventional resource play, and both signals are shown in Fig. 

87. The highly variable rates and pressure are somewhat uncorrelated indicating noise 

within the raw data. We used hindcasting to validate the deconvolution performance. The 

production history was separated into an 80% training segments and a 20% validation 

segments as illustrated in Fig. 88. The training regeneration is aligned with the observed 

pressure drawdown. 

 
Fig. 87-Pressure drawdown and flow rate histories for well 46H. 
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Fig. 88-LEESN hindcast test for well 46H using 80% training, 20% forecasting 

segments, with comparison to observed pressure drawdown histories. 

 

Fig. 89 shows the deconvolved response using diagnostic plots. We can observe 

the half-slope pseudolinear flow regime. The following pseudo pseudo-steady state flow 

regime may be somewhat controversial as the nearly unit slope has not yet prevailed for a 

long time. Since we do not have any additional information about this well, we do not 

present an estimation of reservoir properties. 

 

 



103 

Fig. 89-Well 46H production analysis using LEESN deconvolved drawdown pressure 

response and its Bourdet derivative on a diagnostic plot. 

4.4 Production Surveillance Using Deep Learning Systematic Workflow 

Data for this field case is from well 50H (in an unconventional reservoir) with both 

pressure and rate histories. To test the systematic workflow branching to the DeLSTM 

algorithm, we first hid 30 continuous hours of rate data and analyzed only rates displayed 

in solid blue lines in Fig. 90. 
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Fig. 90-DeLSTM denoising and missing-data imputation for well 50H. 

Fig. 91 shows the results of DeLSTM denoising and missing interval imputation, 

and we observe a good alignment in overall tendencies. However, the model overestimates 

the imputated rates in the missing interval. Recall that DeLSTM is trained and utilized for 

prediction based only on the time dependence along the available sequence without 

introducing any physics. This could be the main reason that it limits the application of 

DeLSTM to a certain small period of missing-data imputation. Further investigation of 

this model limitation would be rewarding. 
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Fig. 91-Bottom hole pressure and flow rate histories with approximately 50 days of 

missing data for well 50H. 

Once the pressure data is recorded along with the rate history, the SG-CLSTM can 

be used for denoising and missing-data imputation during production surveillance. Fig. 92 

shows the rate changes along with the pressure changes, and, obviously, a level of noise 

exists in both data sets. Following the workflow in Fig. 19, the SG-denoised signals are 

illustrated in Fig. 92 and the reconstructed signals and missing interval imputation is 

compared with the SG denoised 𝑞𝑜 shown in Fig. 93. By incorporating the pressure data,

the reconstructed response for the entire surveyed period is improved. We attribute this 

result to the introduction of physics-based training features by honoring the transient flow 

mechanism. At this point, we further demonstrated the versatility of the systematic 

workflow and accuracy of missing-data regeneration using SG-CLSTM by surveying both 

pressure and rate data. 
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Fig. 92-SG smoothed BHP and production rate signals compared to original signals 

from well 50H. 

Fig. 93-Comparison of reconstructed and SG-denoised production rates for well 

50H. 
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CHAPTER V  

CONCLUSIONS 

5.1 LEESN and BESN in Rate Transient Analysis 

The objective of this algorithm presented in section 2.1 is to provide alternative 

approaches for rate/pressure deconvolution and to facilitate production forecasting. The 

physics-based training features and training algorithms play the key roles in successful 

application of deconvolution in production data analysis and production forecasting by 

honoring superposition transient flow physics. In the synthetic cases in section 3.1.6, 

sensitivity analysis based on the noise scale and training scale performed on LIESN and 

LEESN demonstrates LEESN’s capability of handling a moderate noise level. An 

excessive level of noise might enlarge the deviation from the true flow regimes. Overall, 

we have provided a reliable diagnostic tool to use before forecasting production. Based on 

the accuracy provided by capturing correct physics in the proposed methodologies, we 

enhance the precision of production forecasting.  

------------------------------------- 
Part of Chapter V is reprinted with permission of the Society of Petroleum Engineers from Pan, Y., Zhou, 

P., Deng, L., Lee, J. 2019. Production Analysis and Forecasting for Unconventional Reservoirs 

Using Laplacian Echo-State Networks. Proceedings of SPE Western Regional Meeting, San Jose, 

California, 23-26 April. SPE-195243-MS. DOI:10.2118/195243-MS, and from Pan, Y., Deng, L., Lee, J. 

2019. Data-Driven Deconvolution Using Echo-State Networks Enhances Production Data Analysis in 

Unconventional Reservoirs. Proceedings of SPE Eastern Regional Meeting, Charleston, West 

Virginia, 15-17 October. SPE-196598-MS. DOI: 10.2118/196598-MS, with permission conveyed 
through Copyright Clearance Center, Inc., and with permission of URTeC from Pan, Y., Bi, R., Zhou, 

P., Deng L., Lee, J. 2019. An Effective Physics-Based Deep Learning Model for Enhancing Production 

Surveillance and Analysis in Unconventional Reservoirs. Proceedings of Unconventional Resources 

Technology Conference, Denver, Colorado, 22-24 July. URTEC-2019-145. DOI:10.15530/

urtec-2019-145.Copyright 2019 URTeC. 
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Extra functionality for the probability of error interval can be provided by 

substituting the LEESN with BESN. This extra feature could critically increase confidence 

when forecasting future production. All in all, we demonstrated the capability of the 

proposed methodologies using a synthetic case and a field example. The workflow of 

LEESN regulates the consistency of how engineers implement the proposed algorithm 

from which the proposed approaches in production forecasting enhance the accuracy in 

reserves bookings. Moreover, as these algorithms are still a work in progress, further 

development and investigation are necessary to fully understand the limitations and 

capabilities.  

5.2 LEESN in Pressure Transient Analysis 

In section 4.2, we extended the Laplacian Eigenmaps coupled Echo State Network 

(LEESN) from deconvolution in rate transient analysis to pressure transient analysis and 

provide a more reliable deconvolution approach to facilitate the interpretation of pressure-

rate data using the traditional diagnostic plot for unconventional reservoirs. The physics-

based training features and training algorithms were reaffirmed regarding the critical 

aspect for successful application in deconvolution and production analysis. LEESN can 

cope with moderate noise and highly variable pressure-rate-time information accurately 

and rapidly because of its locality-preserving attribute. Using diagnostic tools including 

diagnostic plots or specialized plots based on the deconvolved response, we can easily and 

precisely recognize the flow patterns in addition to determining the corresponding 
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reservoir properties. Finally, following the proposed workflow, we demonstrated the 

versatility and applicability of LEESN using synthetic and field cases.  

 

5.3 Production Surveillance Using Deep Learning Approach 

In section 3.3, we proposed a comprehensive and systematic workflow for 

production surveillance and to facilitate the production analysis and forecasting. With only 

the production rate being surveyed, DeLSTM can smooth the signals and impute missing 

data for a relatively short period. By surveying additional pressure histories along with 

rate data, the physics-based training features play key roles in successfully reconstructing 

the consecutive missing data and further assist deconvolution and forecasting. 

Consequently, we provided a reliable systematic workflow to apply prior to any end-user’s 

analysis and demonstrated this with scenarios I and II cases and a field example. 

Automation can be achieved based on the accuracy of production profile completion, 

thereby enhancing the efficiency of data integration in production surveillance. 
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NOMENCLATURE 

 

Roman symbols 

𝐴𝑆𝑅𝑉 The stimulated reservoir area, 𝑓𝑡2 

𝑎𝑡 Block activation input 

𝑎𝑡 Block input 

𝐵 Formation volume factor, RB/STB 

𝑏 The vector form of [𝑏𝑎, 𝑏𝑖 , 𝑏𝑓 , 𝑏𝑜] 

𝑏𝑎, 𝑏𝑖 , 𝑏𝑓 , 𝑏𝑜 Bias weights 

𝑐𝑡 Internal state 

ct Total compressibility psi-1 

𝐃 

Diagonal weight matrix where it can be determined using 𝐷𝑖𝑖 =
∑ 𝑊𝑗𝑖𝑗 , the column sums of W, the weight matrix of the edge of 

adjacent matrix 

𝑑𝑠𝑡 Euclidean distance 

𝐸 Error Function 

𝐅 The vector form of eigenvector 

𝐟, 𝐟𝐢, 𝐟𝐣 The vector or matrix form of eigenvector 

𝑓𝑡 Forget gate 
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𝑓
𝑡
 Forget gate before activation function 

𝐺𝑡 Vector form of [𝑎𝑡 , 𝑖𝑡 , 𝑓𝑡 , 𝑜𝑡] 

ℎ(𝑥) tanh function 

ℎ Reservoir height, ft 

𝐈 Identity matrix or vector 

𝑖𝑡 Input gate 

𝑖𝑡 Input gate before activation function 

𝑘 Reservoir matrix permeability, MD 

𝐿 Laplacian matrix, 𝐿 = 𝑫−𝑾 

Lwb Length of horizontal wellbore, ft 

𝑀 The number of inputs 

𝑚 The slope of linear flow regime on specialist plot 

𝑁 The number of LSTM units 

N,Ny, Nt, Nr 
Total number of observations, total number of output samples, total 

number of time series data, total number of reservoir nodes 

𝑛𝑓 The number of fractures 

𝑜𝑡 Output gate 
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𝑜𝑡 Output gate before activation function 

𝑝𝑖 Reservoir initial pressure, psi 

𝑝𝑤𝑓, 𝑝𝑤𝑠 
Well bottomhole flowing pressure, Well bottom hole sand face 

pressure, psi 

𝑞, 𝑞𝑖 The surface flow rate, STB/D 

𝑠𝑤 Water saturation, % 

𝑡 Time, hrs or days 

𝑈 The vector form of [𝑈𝑎, 𝑈𝑖 , 𝑈𝑓, 𝑈𝑜] 

Ua, Ui, Uf, Uo Recurrent weights 

𝐮, 𝐮𝐢, 𝐮(𝑡) The vector or matrix form of training inputs 

𝐮⋆ The matrix form of prediction inputs under LEESN generative mode 

𝑉𝑆𝑅𝑉 The stimulated reservoir volume, 𝑓𝑡3 

𝑊 The vector form of [𝑊𝑎,𝑊𝑖 ,𝑊𝑓,𝑊𝑜] 

𝑊𝑎,𝑊𝑖 ,𝑊𝑓,𝑊𝑜 Input weights 

𝑊𝑖𝑗 Heat kernel weights for the adjacency matrix 

𝐖𝐮 The matrix form of internal weights in reservoir temporal space 

𝐖𝐱,𝐖𝐱̃ 
The vector form of input weights connecting input layer to reservoir 

temporal space 
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𝐖𝐲 
The vector form of output weights connecting reservoir temporal 

space to output layer 

𝐖̇𝐲 Corresponding lower dimension output weights 

wyi Output weights connecting reservoir temporal space to output layer 

𝐗𝐢, 𝐗𝐣 The matrix form of reservoir intermediate states 

𝐗̇ The lower dimension representation of reservoir states 

𝐗 The original representation of reservoir states after activation  

𝐗⋆ 
Reservoir original states after activation under model generative mode 

using new input data 𝒖⋆ 

𝐗̇⋆ 
Reservoir lower dimensional representatitve of original states 

corresponding to 𝑿̃⋆ 

𝐱, 𝐱𝐢, 𝐱(𝑡) The vector or matrix form of reservoir intermediate states 

𝐱̃(𝑡) 
The matrix form of reservoir intermediate states before leaky 

integrator unit activated 

𝑥𝑓 Fracture half-length, ft 

𝑥𝑡 Input vector at time t 

𝐘 The vector or matrix form of true target feature 

𝐘 The LEESN regeneration output 

𝐘⋆ Predictions using new input data 𝒖⋆ under generative mode of LEESN 

𝐲, 𝐲𝐢, 𝐲(𝑡) The vector or matrix form of target outputs 
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Greek letters 

𝛼 
Leaking rate, the speed of the reservoir update dynamics discretized in 

time 

𝛼𝑖 The slope representing the regressed systems 

𝛽 The intercept representing the regressed systems 

𝜶𝑩𝑹 
The hyper parameter governs the prior distribution over the output 

weights 

𝛽𝑟 Regularization coefficient of ridge regression 

𝜷𝑩𝑹 Zero-mean Gaussian distribution  

𝜸 Intermediate parameter to update 𝜶𝑩𝑹, 𝜷𝑩𝑹 

𝛜 Residual between the prediction and target outputs 

𝛉𝐓 The vector of regression coefficients 

𝜆, 𝜆𝑖 Eigenvalues  

𝜆𝐵𝑅 
Eigenvalues of the Hessian matrix of the error function in Bayesian 

ridge regression 

𝜇 Fluid viscosity, cp 

𝐲̂, 𝐲̂𝐢, 𝐲̂(𝑡) The vector or matrix form of model prediction 

𝑦𝑡 Target output vector at time t 

𝑧𝑖 Sorted distance 𝑑𝑠𝑡 
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𝜎 Predefined heat kernel width 

𝜎(𝑥) Sigmoid activation function 

𝜏 
Specified recursion depth, the recursion for practical reasons is needed 

to be cutoff at a specific point 

𝜑 The activation function, tanh is selected in this paper 

𝜙 Porosity, % 

𝜙𝑆𝑅𝑉 Stimulated reservoir volume porosity 

ℋ 
The number of lower dimensional space representing the original 

reservoir space 

𝜅𝑡 Kernel function can be expressed as <,> 

𝜅 Intermediate parameter to update 𝜶𝑩𝑹, 𝜷𝑩𝑹  

𝜮 Intermediate parameter to update 𝜶𝑩𝑹, 𝜷𝑩𝑹 
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APPENDIX A 

TRANSIENT FLOW EQUATION FOR GAS 

The equations in Table 3 and Table 7 can be applied only to slightly compressible 

fluids, but when pseudo pressure is substituted for pressure and the pseudo time is 

substituted for time, both tables can be applied to gases.  

The pseudo pressure is defined as: 

𝑃𝑝 = 2 ∫
𝑝

𝜇𝑧

𝑝

𝑝0

𝑑𝑝 (67) 

where 𝑃𝑝  is pseudo pressure in psi2/cp , and the integral group
𝑝

𝜇𝑧
 requires 

numerical integration. 

Pseudo time is defined and expressed as: 

𝑡𝑝 = 𝜇𝑖cti∫
𝑑𝑡

𝜇̅ct̅

𝑡

0

(68) 

where 𝜇𝑖 is the initial gas viscosity in cp, cti is the initial total compressibility in

psi−1 ,  𝜇̅  is the viscosity based on average reservoir pressure in cp, ct̅  is the total

compressibility based on average reservoir pressure in psi−1.
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