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ABSTRACT

The surface finite element method is an important tool for discretizing and solving elliptic

partial differential equations on surfaces. Recently the surface finite element method has been

used for computing approximate eigenvalues and eigenfunctions of the Laplace-Beltrami operator,

but no theoretical analysis exists to offer computational guidance. In this dissertation we develop

approximations of the eigenvalues and eigenfunctions of the Laplace-Beltrami operator using the

surface finite element method. We develop a priori estimates for the eigenvalues and eigenfunctions

of the Laplace-Beltrami operator. We then use these a priori estimates to develop and analyze an

optimal adaptive method for approximating eigenfunctions of the Laplace-Beltrami operator.
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1. INTRODUCTION

The need for accurate approximations of Laplace-Beltrami eigenpairs arises in a variety of ap-

plications. For example, there are approaches to shape classification based on the Laplace-Beltrami

operator’s spectral properties [2, 3, 4, 5, 6, 7, 8]. More specifically, the spectrum has been used as a

“shape DNA” to create a fingerprint of a surface’s shape. One possible application of shape classi-

fication is medical imaging. In this scenario the underlying surface γ is not known precisely, but is

instead sampled via a medical scan. The spectrum that is studied is thus that of a reconstructed ap-

proximate surface rather than the underlying surface γ. Often this reconstruction is represented as

a polyhedral approximation (triangulation). Bootstrap methods are another potential application of

Laplace-Beltrami spectral calculations [9]. Finally, Laplace-Beltrami eigenvalues on subsurfaces

of the sphere characterize singularities in solutions to elliptic PDE arising at vertices of polyhedral

domains [10, 11, 12]. Many of these papers use the surface finite element method (SFEM) in order

to calculate Laplace-Beltrami spectral properties. While these methods show empirical evidence of

success, there has to date been no detailed analysis of the accuracy of the eigenpairs calculated us-

ing SFEM. Some of these papers employing SFEM also propose using higher-order finite element

methods to improve accuracy, but do not suggest how to properly balance the discretization of γ

with the degree of the finite element space. Guidance for understanding the interaction between

geometric consistency and Galerkin errors in the context of spectral problems is needed.

In this work we study the approximation properties of SFEM when applied to computing eigen-

pairs of the Laplace-Beltrami operator. In the remaining sections of this chapter we provide an

overview of both a priori and adaptive finite element results for the source problem and eigen-

value problem on flat (Euclidean) domains and surfaces that are relevant to the rest of this work. In

Chapter 2 we present an a priori analysis of the SFEM approximations of eigenpairs of the Laplace-

Beltrami operator based on our work in [1]. In Chapter 3 we develop and analyze an SFEM-based

adaptive algorithm for approximating the eigenfunctions of the Laplace-Beltrami operator.

1



1.1 A Priori Estimates for the Source Problem on Flat Domains

We begin by examining a prototypical example problem for testing the finite element method

(FEM). We solve the source problem with homogeneous Dirichlet boundary conditions defined on

a convex domain Ω, i.e.

−∆u = f on Ω

u|∂Ω = 0

(1.1)

with f ∈ L2(Ω). We can define a weak formulation of this problem: Find u ∈ H1
0 (Ω) such that

∫
Ω

∇u∇v dΩ =

∫
Ω

fv dΩ ∀v ∈ H1
0 (Ω). (1.2)

We call the left hand side of (1.2) the bilinear form and denote it as

a(u, v) :=

∫
Ω

∇u∇v dΩ.

We use the shorthand (f, v) for the L2 inner product on the right hand side of (1.2).

We say a bilinear form a(u, v) is continuous on a space V if there exists a constantM > 0 such

that

|a(u, v)| ≤M‖u‖V ‖v‖V ∀u, v ∈ V.

We say a bilinear form is V -elliptic if there exists a constant c such that

a(u, u) ≥ c‖u‖2
V ∀u, v ∈ V.

The V -ellipticity and continuity properties of the bilinear form guarantee a unique solution to (1.2)

thanks to the following result from Lax and Milgram.

Lemma 1.1 (Lax-Milgram). Let a(·, ·) : V ×V → R be a continuous coercive bilinear form. Then

2



for each f ∈ V ∗ the variational equation

a(u, v) = (f, v) ∀v ∈ V

has a unique solution u ∈ V , furthermore the a priori estimate

‖u‖V ≤
1

c
‖f‖V ∗

is valid. Here, by V ∗ we mean the dual of V .

Essential to the finite element method is the creation of a mesh T which we will assume to

be triangular unless specified otherwise. Given a mesh T of Ω, we can define a degree-r finite

element space for the weak problem (1.2) as

V := {vh ∈ H1
0 (Ω) : vh|T ∈ Pr(T ), T ∈ T }.

We define the finite element problem as: find the solution uh ∈ V such that

a(uh, vh) = (f, vh) ∀vh ∈ V.

In this situation uh can be thought of as a unique projection Gh : u 7→ uh onto the finite

element space V. Noting that since V ⊂ H1
0 (Ω) we have for vh ∈ V

a(u, vh) = (f, vh) = a(uh, vh),

we then define the Galerkin projection operator Gh : H1
0 (Ω)→ V as the operator satisfying

a(u, vh) = a(Ghu, vh) ∀vh ∈ V.

A natural question to ask is how close is the finite element solution uh to u and in what sense?

3



Common norms used for measuring the finite element error are L2, H1, and L∞. A priori error

estimates seek to characterize error if we know the regularity of u.

We say that a family of meshes is shape-regular if there exists a constant C such that for any

mesh T in the family and every triangle T ∈ T the ratio of the longest edge length hT to that of

the radius ρT of the largest inscribed ball is bounded by C, i.e.

hT
ρT
≤ C.

For a quasi-uniform mesh a priori estimates in the L2 and H1 norms for flat domains state that if

u ∈ Hk+1(Ω), f ∈ L2(Ω), and Ω is convex, then the error when using a degree-r finite element

method with mesh size h satisfies the following bounds:

‖u−Ghu‖H1(Ω) ≤ hmin(r,k)|u|Hk+1(Ω) (1.3)

‖u−Ghu‖L2(Ω) ≤ hmin(r+1,k+1)|u|Hk+1(Ω). (1.4)

1.2 A Priori Estimates for the Eigenvalue Problem on Flat Domains

The spectrum of the Laplacian is ubiquitous in the sciences and engineering. Consider the

eigenvalue problem

−∆u = λu

u|∂Ω = 0

on a flat domain Ω. There is then a sequence 0 < λ1 ≤ λ2 ≤ λ3 ≤ ... of eigenvalues with

corresponding L2-orthonormal eigenfunctions {ui}. Given a finite element space V ⊂ H1
0 (Ω), the

natural finite element counterpart is to find (uh, λh) ∈ V× R+ such that

∫
Ω

∇uh · ∇vh dΩ = λh

∫
Ω

uhvh dΩ, ∀vh ∈ V.
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Finite element methods (FEM) are a natural and widely used tool for approximating spectra

of elliptic PDE. Analyzing the error behavior of such FEM is more challenging than for source

problems because of the nonlinear nature of the problem. A priori error estimation for FEM ap-

proximations of the eigenvalues and eigenfunctions of the Laplacian and related operators in flat

space is a classical topic in finite element theory; cf. [13, 14, 15, 16]. We highlight the review ar-

ticle [17] of Babuška and Osborn in this regard. These bounds are all asymptotic in the sense that

they require an initial fineness condition on the mesh. More recently, sharp bounds for eigenvalues

(but not eigenfunctions) appeared in [18]. These bounds are notable because they are truly a priori

in the sense that they do not require a sufficiently fine mesh. Finally, over the past decade a number

of papers have appeared analyzing convergence and optimality of adaptive finite element methods

(AFEM) for eigenvalue problems [19, 20, 21, 22, 23, 24]. Because sharp a priori estimates are

needed in order to analyze AFEM optimality properties, some of these papers also contain im-

proved a priori estimates. We particularly highlight [21, 23] as our analysis of eigenfunction errors

largely employs the framework of these papers.

Also, the constants in the first estimate are asymptotically independent of λ, while the constants

in the second estimate depend in essence on the separation of λ from the remainder of the spectrum

and the degree to which the discrete spectrum respects that separation. Corresponding “cluster-

robust” estimates also hold for simultaneous approximation of clusters of eigenvalues.

Of particular interest to us will be what are known as eigenvalue clusters. Given an interval

[A,B], we define the eigenvalue cluster to be the set of all eigenvalues within the interval [A,B]

and their associated eigenfunctions. The assumptions on eigenvalue clusters are slightly weaker

and only require that for any λi ∈ [A,B] we have λh,i ∈ [A,B].

When measuring the approximation errors for eigenfunctions one must be more careful and

cannot just measure u − uh like in the context of the source problem. We illustrate this through

a simple example. Suppose −∆ has an eigenvalue λ with geometric multiplicity two. There will

then be two FEM eigenvalues λh,1, λh,2 converging to λ; λh,1, λh,2 → λ. The eigenvalue λ will

have two eigenfunctions u1 and u2 and the FEM eigenvalues will have two eigenfunctions uh,1
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and uh,2. The issue occurs when we try to ask if uh,1 converge to u1. It is just as valid to ask if

uh,1 converge to u2 or any linear combination of u1 and u2, but uh,1 can only converge to a single

function.

The correct question to ask when studying eigenfunction approximation becomes how well

does the subspace of FEM eigenfunctions associated with the cluster approximate the eigenfunc-

tions of the cluster. We can express this through the language of projection operators. Define

Wh := span{uh,i}i∈J .

Let Ph : L2(Ω)→Wh be the L2 projection onto Wh, i.e.

(u,wh) = (Phu,wh) ∀wh ∈Wh.

In the case of eigenvalue clusters on flat domains, if u ∈ Hr+1(Ω) the a priori estimates when

using degree-r finite elements are typically of the form

‖u−Phu‖H1(Ω) . ‖u−Ghu‖H1(Ω) . hr|u|Hr+1(Ω)

‖u−Phu‖L2(Ω) . h‖u−Ghu‖H1(Ω) . hr+1|u|Hr+1(Ω)

|λ− λh| . ‖u−Phu‖2
H1(Ω) . h2r|u|2Hr+1(Ω).

(1.5)

We see in (1.5) that the convergence rates for eigenfunctions match the rates in (1.3) and (1.4)

that we’ve come to expect for FEM solutions to the source problem. However, the eigenvalues

converge much faster. In fact, they converge at twice the rate of the eigenfunctions.

While Ph is commonly used in eigenfunction error estimates, it is sometimes convenient to

characterize the eigenfunction error in terms of a different projection operator. We will regularly

use the projection operator

Zh := PhGh : H1
0 (Ω)→Wh.
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We note that Zh is the Galerkin projection onto Wh ⊂ V, i.e.

a(u, vh) = a(Zhu, vh), ∀vh ∈Wh.

It can be shown that for u ∈ Hr+1, Zh satisfies similar a priori estimates to those of Ph:

‖u− Zhu‖H1(Ω) . ‖u−Ghu‖H1(Ω) . hr|u|Hr+1(Ω)

‖u− Zhu‖L2(Ω) . h‖u−Ghu‖H1(Ω) . hr+1|u|Hr+1(Ω).

1.3 A Posteriori Estimates and Adaptivity for the Source Problem on Flat Domains

While a priori estimates are a useful tool in the study of convergence, we sometimes do not

know anything about the true solution u. A posteriori estimates seek to estimate the finite element

error based solely on computable quantities. Early studies of a posteriori estimation were carried

out in 1978 by Babuska and Rheinboldt [25]. We will focus solely on what is known as the residual

estimator. For the source problem with a triangulation T and FEM solution U it takes the form

ηT (U, T )2 := h2
T‖f + ∆U‖2

L2(T ) +
∑
S∈∂T

hT‖n+ · ∇U+ + n− · ∇U−‖2
L2(S), (1.6)

ηT (U)2 :=
∑
T∈T

ηT (U, T )2.

The estimator ηT (U, T ) can be used to locally estimate the finite element error in the H1(Ω) norm

for the source problem. It can be shown that this estimator is equivalent to ‖u − uh‖H1(Ω) up to

higher order terms. Let Π2
n denote the L2 projection onto Pn(T ). There exist constants Crel and

Ceff such that

‖u− U‖2
H1(Ω) ≤ Crelη

2
T , (1.7)

Ceffη
2
T ≤ ‖u− U‖2

H1(Ω) +OscT (f, U)2, (1.8)
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where

OscT (f, U)2 :=
∑
T∈T

h2
T‖(id− Π2

2r−2)(f + ∆U)‖2
L2(T )

+
∑
S∈∂T

hT‖(id− Π2
2r−1)(n+ · ∇U+ + n− · ∇U−)‖2

L2(S)

is higher order than the finite element degree. The bounds in (1.7) and (1.8) are commonly referred

to as a posteriori estimates. The upper bound in (1.7) is commonly referred to the reliability bound.

It guarantees that the estimator ηT (U) does not underestimate the H1 error. The lower bound in

(1.8) is commonly referred to as the efficiency bound. It guarantees that up to the higher order

oscillation term the estimator ηT (U) does not overestimate the error.

With the ability to estimate error contributions on individual mesh triangles comes the possibil-

ity of driving mesh refinement based on these estimates. Rather than creating a family of meshes

that is quasi-uniform, it is possible to create a family of meshes T such that the mesh T`+1 is a

refinement of T` in regions where the error is estimated to be largest according to ηT`(U`, T ). We

call such systems of refinement adaptive algorithms. Typical adaptive mesh refinement algorithms

consist of looping over the sequence of 4 steps:

SOLV E → ESTIMATE →MARK → REFINE.

The 4 steps break down as follows:

1. SOLVE: Solve the finite element problem on the mesh T` for U` ∈ V`.

2. ESTIMATE: Estimate the error using ηT`(U`, T ).

3. MARK: Mark a set of trianglesM` of minimum cardinality satisfying

∑
T∈M`

ηT`(U`, T )2 ≥ θ
∑
T∈T`

ηT`(U`, T )2,

where 0 < θ ≤ 1 is a user specified quantity called the bulk parameter which can roughly be
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interpreted as the fraction of the total error that the user wants marked for refinement. This

style of marking is called Dörfler or bulk marking.

4. REFINE: Refine the elements ofM` b ≥ 1 times and refine additional elements to ensure

the new mesh T`+1 is conforming with V` ⊂ V`+1.

In 1984 Babuska and Vogelius gave an adaptive convergence analysis for 1D problems [26]. In

1996 Dörfler [27] provided foundational ideas for analysis of adaptive FEM. Binev, Dahmen,

DeVore used ideas from nonlinear approximation theory in 2004 [28] to establish optimality of

AFEM. Stevenson’s work in 2007 [29] establishes optimality of a standard AFEM. In 2008 Cas-

con, Kreuzer, Nochetto, and Siebert [30] established a standard recipe for linear elliptic scalar

problems. The ingredients are as follows:

1. A posteriori upper bounds as in (1.7).

2. Orthogonality

Lemma 1.2 (Orthogonality). If for any pair T , T∗ ∈ T with T ≤ T∗ there holds V(T ) ⊂

V(T∗), then

‖u− U∗‖2
H1

0 (Ω) = ‖u− U‖2
H1

0 (Ω) + ‖U − U∗‖2
H1

0 (Ω)

for U ∈ V(T ) and U∗ ∈ V(T∗).

3. Estimator Reduction

Lemma 1.3 (Estimator Reduction). For T ∈ T and M ⊂ T let T∗ ∈ T be given by

T∗ := REFINE(T ,M). If λ := 1 − 2
b
d > 0 then there holds for any V ∈ V(T ) and

V∗ ∈ V(T∗) and any δ > 0

ηT∗(T∗;V∗)2 ≤ (1 + δ)(ηT (T ;V )2 − ληT (M;V )2) + Cred(1 + δ−1)‖V∗ − V ‖2
H1

0 (Ω).

4. Contraction Property
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Theorem 1.4 (Contraction Property). There exist constants β > 0 and 0 < ρ < 1 depending

on the shape regularity of T0, the refinement level b, and the bulk parameter θ such that

‖u− U`+1‖H1
0 (Ω) + βηT`+1

(T`+1;U`+1)2 ≤ ρ
(
‖u− U`‖H1

0 (Ω) + βηT`(T`;U`)2
)

for any two consecutive mesh refinements T0 ≤ T` ≤ T`+1.

When the ingredients are combined the recipe yields a result that says if the solution data pair

(u, f) belongs to a specific approximation class As

σ(N ; v, f) := inf
T ∈TN

inf
V ∈V(T )

(
‖v − V ‖2

H1(Ω) +OscT (V, T )2
) 1

2

As :=

{
(v, f) : |v, f |As := sup

N>0
(N sσ(N ; v, f)) <∞

}
then the adaptive algorithm will recover the expected optimal order s convergence rate.

Theorem 1.5 (Theorem 5.11 of [30]). If the bulk parameter θ << 1 is sufficiently small, then

the adaptive algorithm using the estimator in (1.6) generates dicrete solutions with optimal rate of

convergence. Let u be the solution and let {T`,V`, U`}`≥0 be the sequence of meshes, finite element

spaces, and discrete solutions produced by AFEM. Let (u, f) ∈ As, then

(
‖u− U`‖2

H1
0 (Ω) +OscT`(U`, f)2

) 1
2 ≤ C|u, f |As(#T` −#T0)−s.

1.4 Adaptivity for the Eigenvalue Problem on Flat Domains

Just as it is possible to create an a posteriori estimator to measure errors for the source problem,

it is also possible to derive an a posteriori estimator to measure eigenfunction errors for the eigen-

value problem. For example, in [23, 24] the estimator used for eigenfunctions associated with an
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eigenvalue cluster indexed by the set J takes the form

ηT`(J, T )2 :=
∑
j∈J

h2
T‖Λ`,jU`,j + ∆U`,j‖2

L2(T ) +
∑
S∈∂T

hT‖n+ · ∇U+
`,j + n− · ∇U−`,j‖

2
L2(S). (1.9)

Notice that this is just the residual estimator in (1.6) with f = Λ`,jU`,j for individual eigenfunctions

summed over the cluster.

Unfortunately, the form of this estimator does not lend itself well to deriving the necessary

ingredients for proving optimality of an AFEM algorithm. In particular, it is difficult to compare

FEM solutions on different meshes since the estimator depends explicitly on the discrete eigen-

functions. In [22] the idea of analyzing an AFEM algorithm for eigenfunctions using a theoretical

estimator which avoids the pitfalls of working with the original estimator was introduced. The

algorithm is analyzed as if the theoretical estimator is used for driving refinement and then the

theoretical estimator is shown to be equivalent to the actual computable estimator. In the case of

eigenvalue clusters this theoretical estimator which is equivalent to ηT`(J, T ) takes the form

µT`(J, T )2 :=
∑
j∈J

h2
T‖λjP`uj + ∆Z`uj‖2

L2(T ) +
∑
S∈∂T

hT‖n+ · ∇Z`u
+
j + n− · ∇Z`u

−
j ‖2

L2(S).

The proof of optimality of adaptive eigenfunction approximation not only contains analogues to

all of the steps presented in the work of [30] for the source problem, but it also contains additional

assumptions on the maximum mesh size of T0 much like the a priori analysis for the eigenvalue

problem. In fact, in order to handle the nonlinearities present in the eigenvalue problem in the

theoretical analysis it is necessary to have a priori H1 and L2 estimates for eigenfunctions associ-

ated with the cluster. These estimates are used to measure the nonlinearity present in the problem

and their presence in the analysis results in restrictions on the initial mesh resolution before the

adaptive mesh refinement algorithm runs. The analysis culminates in the following theorem.

Theorem 1.6 ([23, 24]). If uj ∈ As, j ∈ J , the bulk parameter θ << 1 is sufficiently small,

and the maximum mesh size H0 is sufficiently small, then the adaptive algorithm using estimator

11



(1.9) generates a set {T`,V`, {(Uj, λh,j)}j∈J}`≥0 of meshes, finite element spaces, and discrete

eigenpairs satisfying

(∑
j∈J

‖uj − Z`uj‖2
H1(Ω)

) 1
2

. (#T` −#T0)−s

(∑
j∈J

|uj|2A′s

) 1
2

.

1.5 A Priori Estimates for the Surface Finite Element Method

In this section we briefly explain the ideas behind the surface finite element method when

applied to the source problem on surfaces. More details about the SFEM formalism specific to the

topics in Chapters 2 and 3 can be found in their respective chapters.

Let γ ⊂ Rd+1 be a smooth, closed, orientable d-dimensional surface, and let ∆γ be the Laplace-

Beltrami operator on γ. Given an f satisfying
∫
γ
f dσ = 0 one can define the source problem on γ

as

−∆γu = f,∫
γ

u dσ = 0.

One can also write a weak form as: find u ∈ H1
0 (γ)

∫
γ

∇γu∇γv dσ =

∫
γ

fv dσ ∀v ∈ H1
0 (γ), (1.10)

where∇γ denotes the tangential gradient on γ andH1
0 (γ) is to be interpreted as functions inH1(γ)

satisfying
∫
γ
u dσ = 0. We call the left hand side of (1.10) the bilinear form and denote it as

a(u, v) :=

∫
γ

∇γu∇γv dσ.

The right hand side of (1.10) is the L2 inner product for functions defined on γ and will be denoted

by the more compact notation m(u, v) :=
∫
γ
uv dσ.

SFEM allows us to approximate solutions to (1.10). The SFEM corresponding to the cotangent
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method was introduced by Dziuk [31] in 1988. In [32] Demlow developed a natural higher order

analogue to this method. Given a surface γ an approximate polyhedral surface Γ with shape-

regular triangular faces of diameter h having vertices on γ is introduced. We assume the presence

of a bijective mapping ψ : Γ → γ. This provides a piecewise linear approximation of γ. It

is possible to create a higher order approximation if we take each of the triangular faces of the

polyhedron Γ and create a degree-k Lagrange interpolant of ψ, ψk := Ikψ. We then define the new

piecewise polynomial surface Γ = ψk(Γ). The mappings ψ and ψk give a way to relate functions

defined on γ and Γ through compositions of mappings. These concepts are illustrated in Figure

1.1.

γ

Γ
Γx

ψ(x)
ψk(x)

Figure 1.1: Typical surface approximation in SFEM. Surface γ with approximate surfaces Γ, Γ,
and mappings.

A weak formulation can then be introduced on the new surface Γ: Find U ∈ H1
0 (Γ) such that

A(U, V ) :=

∫
Γ

∇ΓU∇ΓV dΣ =

∫
Γ

UF dΣ =: M(U, V ), ∀V ∈ H1
0 (Γ).

Here F is a function related to f that satisfies the mean 0 condition on Γ. For instance, if the

measures on γ and Γ satisfy a relation of the form dσ = q
Q
dΣ, then F = f q

Q
is a valid choice.

Let T denote the mesh on Γ and V denote functions originally defined on Γ. We define a finite
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element space

V := {V ∈ H1(Γ) : V = V ◦ ψ−1
k , with V |T ∈ Pr(T ) ∀T ∈ T }.

Here Pr(T ) denotes the space of polynomials of degree at most r on T . Its subspace consisting of

zero mean value functions is denoted V#:

V# := V#(Γ) = {V ∈ V :

∫
Γ

V dΣ = 0}.

The surface finite element problem is then: seek U ∈ V# such that

A(U, V ) = M(F, V ), ∀V ∈ V#. (1.11)

It is immediately clear from comparing (1.11) with (1.10) that the bilinear forms, L2 inner

products, and functions f and F differ. This leads to variational crimes. All of these crimes are

due to the geometric approximations. We commonly refer to these errors as geometric consistency

errors. Taking G to be the Galerkin projection onto V#, the results of the a priori analysis of

Demlow [32] are stated in Theorem 1.7. It can be seen that SFEM exhibits two error sources, a

standard Galerkin error and a geometric consistency error due to the approximation of γ by Γ.

Theorem 1.7 (Corollary 4.2 of [32]). Let u ∈ Hr+1(γ) and γ be a C∞ surface. If a degree-r finite

element method is used and a degree-k surface interpolant is used, then

‖u−Gu‖H1(γ) ≤ C(hr‖u‖Hr+1(γ) + hk+1‖∇γu‖L2(γ)), (1.12)∥∥∥∥u−Gu−
(∫

γ

u−Gu dσ

)∥∥∥∥
L2(γ)

≤ C(hr+1‖u‖Hr+1(γ) + hk+1‖∇γu‖L2(γ)). (1.13)

1.6 An Adaptive Surface Finite Element Method

A posteriori estimators and adaptive algorithms based on SFEM have been developed for the

source problem on surfaces [33, 34, 35, 36]. Our adaptive algorithm for eigenfunctions in Chapter
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3 borrows from [35] and so here we summarize the ideas of [35] relevant to this work.

With the need to approximate the surface comes the need to modify the adaptive algorithm

of Section 1.3. We envision a situation where the surface has low regularity and quasi-uniform

refinement cannot recover the expected convergence rates. One might naively hope that the surface

version of the estimator (1.6) in (1.14) could be used to drive mesh refinement, but that does not

control the geometric consistency errors.

ηT (U, T )2 := h2
T‖F + ∆ΓU‖2

L2(T ) +
∑
S∈∂T

hT‖n+ · ∇ΓU
+ + n− · ∇ΓU

−‖2
L2(S) (1.14)

The form of the a priori estimates in Theorem 1.7 offers some intuition as to what should be

expected. In (1.12) the finite element approximation errors are bounded by the hr‖u‖Hk+1(γ) term

while the surface approximation errors are bounded by the hk+1‖∇γu‖L2(γ) term. There are two

independent quantities bounding the total error. From this one should suspect that surface AFEM

should consist of two estimators, one which locally estimates the surface approximation errors and

another which estimates the FEM solution error. The geometric estimator used in [35] is equivalent

to

ζ(T ) := ‖∇(ψ − ψk)‖L∞(T ). (1.15)

This estimator measures the surface interpolation error in W 1,∞.

When (1.15) is used in tandem with (1.14), these two estimators lead to a successful adaptive

algorithm. We now summarize the AFEM algorithm of [35] and its two modules that drive mesh

refinement, ADAPT_SURFACE which is driven by (1.15) and ADAPT_PDE which is driven by

(1.14).

AFEM Algorithm: Given an initial triangulation T0 and parameters ε0 > 0, 0 < ρ < 1, and

ω > 0, set k = 0.

1. T +
k = ADAPT_SURFACE(Tk, ωεk)

2. [Uk+1, Tk+1] = ADAPT_PDE(T +
k , εk)

3. εk+1 = ρεk; k = k + 1

15



4. go to 1.

Module ADAPT_SURFACE: Given a tolerance ε > 0 and an admissible subdivision T , T∗ =

ADAPT_SURFACE(T , ωε) refines the mesh until the new subdivision T∗ ≥ T satisfies

ζT (γ) ≤ ωε,

i.e. until the geometric error as measured by the geometric estimator is sufficiently reduced. This

module is based on a greedy algorithm and acts on a generic mesh T :

T∗ = ADAPT_SURFACE(T , ωε)
1. ifM := {T ∈ T : ζT (γ, T ) > ωε} = ∅

return(T ) and exit

2. T = REFINE(T ,M)

3. go to 1.

Module ADAPT_PDE: Given a tolerance ε > 0 and an admissible subdivision T , [U∗, T∗] =

ADAPT_PDE(T , ε) outputs a refinement T∗ ≥ T and the associated FEM solution U∗ such that

ηT∗(U∗) ≤ ε.

This module is based on the sequence:

[U∗, T∗] = ADAPT_PDE(T , ε)
1. U = SOLVE(T )

2. {ηT (U, T )}T∈T = ESTIMATE(T , U)

3. if ηT < ε

return(T , Ui) and exit

4. M = MARK(T , {ηT (U, T )}T∈T )

5. T = REFINE(T ,M)

6. go to 1.

When ADAPT_SURFACE and ADAPT_PDE are combined in the AFEM algorithm the pres-

ence of the ω term in ADAPT_SURFACE guarantees that once ADAPT_SURFACE exits we have
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ζT (γ) < ηT (U) for the duration of ADAPT_PDE. This means that during ADAPT_PDE the H1

error satisfies the equivalent of flat domain a posteriori estimates with respect to ηT (U). It can

then be shown that within ADAPT_PDE the rest of the ingredients necessary for the flat domain

analysis of [30] are provably true. This eventually culminates in the following bound assuming

(u, f, γ) belongs to the appropriate order s approximation class As.

Theorem 1.8 (Theorem 8.3 of [35]). Let the initial mesh T0 have an admissible labeling for refine-

ment, and θ ∈ (0, θ∗), ω ∈ (0, ω∗) for θ∗, ω∗ sufficiently small. If (u, f, γ) ∈ As then the sequence

{Γ`, T`, U`} generated by AFEM satisfies

‖u− U`‖H1(Ω) +OscT (U`, F ) + ω−1ζ . (#T` −#T0)−s.

In Chapter 3 we will combine the geometric estimator used in ADAPT_SURFACE with the

surface equivalent of the eigenfunction cluster estimator (1.9) to create an adaptive surface finite

element algorithm for eigenvalue clusters.
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2. A PRIORI ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATIONS TO

EIGENVALUES AND EIGENFUNCTIONS OF THE LAPLACE-BELTRAMI

OPERATOR∗

In this chapter we present a priori error estimates for the SFEM approximation of the eigenpairs

of the Laplace-Beltrami operator based from our work in [1]. In particular, we develop a priori error

estimates for the SFEM approximations to the solution of

−∆γu = λu

on γ. Let 0 = λ0 < λ1 ≤ λ2 ≤ ... be the Laplace-Beltrami eigenvalues with corresponding

L2(γ)-orthonormal eigenfunctions {ui}. We show that the eigenvector error converges as the error

for the source problem, up to a geometric term. Our first main result is:

‖ui − Zui‖H1(γ) ≤ C‖ui −Gui‖H1(γ) + C(λi)h
k+1 ≤ C(λi)(h

r + hk+1). (2.1)

We also prove L2 error bounds and explicit upper bound for C(λi) in terms of spectral proper-

ties. In addition to eigenfunction convergence rates, we prove the cluster robust estimate for the

eigenvalue error:

|λi − Λi| ≤ C(λi)(‖ui −Gui‖2
H1(γ) + hk+1) ≤ C(λi)(h

2r + hk+1), (2.2)

where as above, explicit bounds for C(λi) are given below.

Numerical results presented in Section 2.6 reveal that (2.2) is not sharp for k > 1. The deal.ii

library [37] uses quadrilateral elements and Gauss-Lobatto points to interpolate the surface. The

∗Reprinted with permission from “A Priori Error Estimates for Finite Element Approximations to Eigenvalues and
Eigenfunctions of the Laplace-Beltrami Operator" by Andrea Bonito, Alan Demlow, and Justin Owen. First published
in SIAM Journal on Numerical Analysis Volume 56 Number 5, published by the Society for Industrial and Applied
Mathematics (SIAM). Copyright c© by SIAM. Unauthorized reproduction of this article is prohibited.
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geometric consistency error for every shape we tested using deal.ii was found to be O(h2k) rather

than O(hk+1) as in (2.2). This inspired our second main result which is stated in Theorem 2.20 in

Section 2.5:

|λi − Λi| . h2r + h2k + h`.

Here ` is the order of the quadrature rule associated with the interpolation points used to construct

the surface. Thus with judicious choice of interpolation points, it is possible to obtain superconver-

gence for the geometric consistency error when k > 1. This phenomenon is novel as a geometric

error of order hk+1 has been consistently observed in the literature for a variety of error notions.

We also investigate this framework in the context of one-dimensional problems and triangular ele-

ments.

We finally comment on our proofs. Geometric consistency errors fit into the framework of vari-

ational crimes [38]. Banerjee and Osborn [39, 40] considered the effects of numerical integration

on errors in finite element eigenvalue approximations, but did not provide a general variational

crimes framework. Holst and Stern analyzed variational crimes analysis for surface FEM within

the finite element exterior calculus framework and also briefly consider eigenvalue problems [41].

Their discussion of eigenvalue problems does not include convergence rates or a detailed descrip-

tion of the interaction of geometric and Galerkin errors. The recent paper [42] gives a variational

crimes analysis for eigenvalue problems that applies to surface FEM. However, their analysis yields

suboptimal convergence of the geometric errors in the eigenvalue analysis, considers a different er-

ror quantity than we do, and does not easily allow for determination of the dependence of constants

in the estimates on spectral properties.

In Section 2.1 we give preliminaries. In Section 2.2, we prove a cluster-robust bound for the

eigenvalue error which is sharp for the practically most important case k = 1. We also establish

spectral convergence, which is foundational to all later results. In Section 2.3 we prove eigenfunc-

tion error estimates. In Section 2.4 we numerically confirm these convergence rates and investigate

the sharpness of the constants in our bounds with respect to spectral properties. In Section 2.5 we

prove superconvergence of eigenvalues and in Section 2.6 provide corresponding numerical results.
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2.1 Surface Finite Element Method for Eigenclusters

2.1.1 Weak Formulation and Eigenclusters

We first define the set

H1
#(γ) :=

{
v ∈ H1(γ) :

∫
γ

v dσ = 0

}
⊂ H1(γ).

The problem of interest is to find (u, λ) satisfying −∆γu = λu with
∫
γ
u = 0. The corresponding

weak formulation is: Find (u, λ) ∈ H1
#(γ)× R+ such that

∫
γ

∇γu · ∇γvdσ = λ

∫
γ

uv dσ ∀v ∈ H1
#(γ). (2.3)

In order to shorten the notation, we define the bilinear form on H1(γ) and the L2 inner product on

L2(γ) respectively as

ã(u, v) :=

∫
γ

∇γu · ∇γv dσ, (2.4)

m̃(u, v) :=

∫
γ

uv dσ. (2.5)

We equip H1(γ) with the norm ‖.‖ã :=
√
ã(., .).We also use the m̃(., .) bilinear form to define the

L2 norm on γ: ‖.‖m̃ :=
√
m̃(., .). We denote by {ui}∞i=1 a corresponding orthonormal basis (with

respect to m̃(·, ·)) of H1
#(γ) consisting of eigenfunctions satisfying (2.3).

We wish to approximate an eigenvalue cluster. For n ≥ 1 and N ≥ 0, we assume

λn−1 < λn and λn+N < λn+N+1 (2.6)

so that the targeted cluster of eigenvalues λi, i ∈ J := {n, ..., n + N} is separated from the

remainder of the spectrum.
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2.1.2 Surface approximations

Distance Function. We assume that γ is a compact, orientable, C∞, D-dimensional surface

without boundary which is embedded in RD+1. Let d be the oriented distance function for γ taking

negative values in the bounded component of RD+1 delimited by γ. The outward pointing unit

normal of γ is then ν := ∇d. We denote by N ⊂ RD+1 a strip about γ of sufficiently small width

so that any point x ∈ N can be uniquely decomposed as

x = ψ(x) + d(x)ν(x). (2.7)

ψ(x) is the unique orthogonal projection onto γ of x ∈ N . We define the projection onto the

tangent space of γ at x ∈ N as P (x) := I − ν(x) ⊗ ν(x) and the surface gradient satisfies

∇γ = P∇. From now, we assume that the diameter of the strip N about γ is small enough for the

decomposition (2.7) to be well defined.

2.1.2.1 Approximations of γ

Multiple options for constructing polynomial approximations of γ have appeared. We prove

our results under abstract assumptions in order to ensure broad applicability. Let Γ be a polyhedron

or polytope (depending on D = dim(γ)) whose faces are triangles or tetrahedra. This assumption

is made for convenience but is not essential. The set of all triangular faces of Γ is denoted T .

The higher order approximation Γ of γ is constructed as follows. Letting T ∈ T , we define the

degree-k approximation of ψ(T ) ⊂ γ via the Lagrange basis functions {φ1, ..., φnk} with nodal

points {x1, ..., xnk} on T . For x ∈ T , we have the discrete projection L : Γ→ Γ defined by

L(x) :=

nk∑
j=1

L(xj)φj(x), where |L(xj)−ψ(xj)| ≤ Chk+1. (2.8)

Since we have used the Lagrange basis we have a continuous piecewise polynomial approximation
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of γ which we define as

Γ := {L(x) : x ∈ Γ} and T := {L(T ) : T ∈ T }. (2.9)

The requirement |L(xj)−ψ(xj)| ≤ Chk+1 ensures good approximation of γ by Γ while allowing

for instances where Γ and γ do not intersect at interpolation nodes, or even possibly for γ ∩Γ = ∅.

This could occur when Γ is constructed from imaging data or in free boundary problems. The

assumption (2.8) also allows for maximum flexibility in constructing Γ, as we could for instance

take L(xj) = l(xj) with l a piecewise smooth bi-Lipschitz lift l : Γ→ γ (cf. [43, 44, 35]).

2.1.2.2 Shape regularity and quasi-uniformity

Associated with a degree-k approximation Γ of γ, we follow [45] and let ρ := ρ(T ) be its

shape regularity constant defined as the largest positive real number such that

ρ|ξ| ≤ |DF T (x)ξ| ≤ ρ−1|ξ|, ∀ξ ∈ RD, ∀T ∈ T and x ∈ T,

where

F T := L ◦ F T (2.10)

with F T the natural affine mapping from a Kuhn (reference) simplex T̂ ⊂ RD to T . Further, the

quasi-uniform constant η := η(T ) of T is the smallest constant such that

h := max
T∈T

diam(T ) ≤ ηmin
T∈T

diam(T ).

We recall that ν = ∇d : N → RD+1 is the normal vector on γ and letN be the normal vector
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on Γ. The assumption (2.8) yields

‖d‖L∞(Γ) ≤ Chk+1, (2.11)

‖ν −N‖L∞(Γ) ≤ Chk, (2.12)

‖L−ψ‖W i,∞(T ) ≤ Chk+1−i, T ∈ T , 0 ≤ i ≤ k + 1, (2.13)

where C is a constant only depending on ρ(T ), η(T ) and γ.

2.1.2.3 Function Extensions

We assume Γ is contained in the strip N . If ũ is a function defined on γ, we extend it to N as

u = ũ ◦ ψ, where ψ is defined in (2.7). Note that ψ|Γ : Γ → γ is also a smooth bijection. We

can leverage this to relate functions defined on the two surfaces. For a function u defined on Γ we

define its lift to γ as ũ = u ◦ψ|−1
Γ . As a general rule, we use the tilde symbol to denote quantities

defined on γ but when no confusion is possible, the tilde symbol is dropped.

2.1.2.4 Bilinear Forms on Γ

Given a degree-k approximation Γ of γ, let H1
#(Γ) := {v ∈ H1(Γ) :

∫
Γ
v dΣ = 0} ⊂ H1(Γ)

and define the forms on H1(Γ):

A(u, v) :=

∫
Γ

∇Γu · ∇Γv dΣ, M(u, v) :=

∫
Γ

uv dΣ. (2.14)

The energy and L2 norms on Γ are then ‖.‖A :=
√
A(., .) and ‖.‖M :=

√
M(., .).

We have already noted that ψ|Γ provides a bijection from Γ to γ. Its smoothness (derived from

the smoothness of γ) guarantees that H1(γ) and H1(Γ) are isomorphic. Moreover, the bilinear

form A(., .) on H1(Γ) can be defined on H1(γ)

Ã(ũ, ṽ) :=

∫
γ

Aγ∇γũ · ∇γ ṽ dσ =

∫
Γ

∇Γu · ∇Γv dΣ = A(u, v) (2.15)
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and similarly for the L2 inner product

M̃(ũ, ṽ) :=

∫
γ

ũṽ
1

Q
dσ =

∫
Γ

uv dΣ = M(u, v). (2.16)

Here QdΣ = dσ and Aγ depends on the change of variable x̃ = Ψ(x). We refer to [31, 32] for

additional details. Again, we use the notations ‖.‖Ã :=

√
Ã(., .) and ‖.‖M̃ :=

√
M̃(., .). For the

majority of this paper we will work with these lifted forms.

2.1.3 Geometric approximation estimates

The results in this section are essential for estimating effects of approximation of γ by Γ. Recall

that we assume that the diameter of the stripN about γ is small enough for the decomposition (2.7)

to be well defined and that Γ ⊂ N .

The following lemma provides a bound on the geometric quantities Aγ and Q appearing in

(2.15) and (2.16); cf. [32] for proofs. As we make more precise in Section 2.1.4, we write f . g

when f ≤ Cg with C a nonessential constant.

Lemma 2.1 (Estimates on Q and Aγ). Let P = I−ν⊗ν be the projection onto the tangent plane

of γ. Let Aγ and Q as in (2.15) and (2.16) respectively. Then

‖1− 1/Q‖L∞(γ) + ‖Aγ − P‖L∞(γ) . hk+1. (2.17)

The above geometric estimates along with (2.15) and (2.16) immediately yield estimates for

the approximations of m̃(., .) and ã(., .) by M̃(., .) and Ã(., .) respectively.

Corollary 2.2 (Geometric estimates). The following relations hold:

|(m̃− M̃)(v, w)| . hk+1‖v‖m̃‖w‖m̃, ∀v, w ∈ L2(γ) (2.18)

|(ã− Ã)(v, w)| . hk+1‖v‖ã‖w‖ã, ∀v, w ∈ H1(γ). (2.19)
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The following relations regarding the equivalence of norms are found e.g. in [32]:

‖.‖Ã . ‖.‖ã . ‖.‖Ã and ‖.‖M̃ . ‖.‖m̃ . ‖.‖M̃ . (2.20)

They are valid under the assumption that the diameter of the stripN around γ is small enough and

that Γ ⊂ N . We now provide a slight refinement of the above equivalence relations leading to

sharper constants.

Corollary 2.3 (Equivalence of norms). Assume that the diameter of the strip N around γ is small

enough. There exists a constant C only depending on γ and on the shape-regularity and quasi-

uniformity constants ρ(T ), η(T ) such that

‖.‖Ã ≤ (1 + Chk+1)‖.‖ã, ‖.‖ã ≤ (1 + Chk+1)‖.‖Ã, (2.21)

‖.‖M̃ ≤ (1 + Chk+1)‖.‖m̃, ‖.‖m̃ ≤ (1 + Chk+1)‖.‖M̃ . (2.22)

Proof. For brevity, we only provide the proof of (2.21) as the arguments to guarantee (2.22) are

similar and somewhat simpler. Let v ∈ H1(γ). We have

‖v‖2
Ã
− ‖v‖2

ã = Ã(v, v)− ã(v, v) = (Ã− ã)(v, v) (2.23)

so that in view of the geometric estimate (2.21), we arrive at

‖v‖2
Ã
≤ ‖v‖2

ã + |(Ã− ã)(v, v)| ≤ (1 + Chk+1)‖v‖2
ã.

When x ≥ 0, the slope of
√

1 + x is greatest at x = 0 with a value of 1
2
, so
√

1 + x ≤ 1 + 1
2
x.

Thus
√

1 + Chk+1 ≤ 1 + 1
2
Chk+1, and the first estimate in (2.21) follows by taking a square root.

The remaining estimates are derived similarly.
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2.1.4 Surface Finite Element Methods

We construct approximate solutions to the eigenvalue problem (2.3) via surface FEM consisting

of a finite element method on degree-k approximate surfaces. See [32, 31] for more details.

2.1.4.1 Surface Finite Elements

Recall that the degree-k approximate surface Γ and its associated subdivision T are obtained

by lifting Γ and T via (2.9). Similarly, finite element spaces on Γ consist of finite element spaces

on the (flat) subdivision T lifted to Γ using the interpolated lift L given by (2.8). More precisely,

for r ≥ 1 we set

V := V(Γ, T ) := {V ∈ H1(Γ) : V = V ◦L−1, with V |T ∈ Pr(T ) ∀T ∈ T }. (2.24)

Here Pr(T ) denotes the space of polynomials of degree at most r on T . Its subspace consisting of

zero mean value functions is denoted V#:

V# := V#(Γ) = {V ∈ V :

∫
Γ

V dΣ = 0}.

2.1.4.2 Discrete Formulation

The proposed finite element formulation of the eigenvalue problem on Γ reads: Find (U,Λ) ∈

V# × R+ such that

A(U, V ) = Λ M(U, V ) ∀V ∈ V#. (2.25)

By the definitions (2.15), (2.16) of Ã(., .) and M̃(., .), relations (2.25) can be rewritten

Ã(Ũ , Ṽ ) = Λ M̃(Ũ , Ṽ ) ∀V ∈ V#.

We denote by 0 < Λ1 ≤ ... ≤ Λdim(V#) and {U1, ..., Udim(V#)} the positive discrete eigen-

values and the corresponding M -orthonormal discrete eigenfunctions satisfying M(Ui, 1) = 0,
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i = 1, ..., dim(V#). From the definition (2.16) of M̃(., .), {Ũi}
dim(V#)
i=1 are pairwise M̃−orthogonal

and M̃(Ũi, 1) = 0, for i = 1, ..., dim(V#).

2.1.4.3 Ritz projection

We define a Ritz projection for the discrete bilinear form

G : H1(γ)→ V#

for any ṽ ∈ H1(γ) as the unique finite element functionGṽ := W ∈ V# satisfying

Ã(W̃ , Ṽ ) = Ã(ṽ, Ṽ ), ∀V ∈ V#. (2.26)

2.1.4.4 Eigenvalue cluster approximation

We recall that we target the approximation of an eigencluster indexed by J satisfying the sep-

aration assumption (2.6). We denote the discrete eigencluster and orthonormal basis (with respect

to M̃(·, ·)) by {Λn, ...,Λn+N} ⊂ R+ and {Un, ..., Un+N} ⊂ V#. In addition, we use the notation

W# := span{Ui : i ∈ J}

to denote the discrete invariant space. We also define the quantity

µ(J) := max
`∈J

max
j /∈J

∣∣∣∣ λ`
Λj − λ`

∣∣∣∣ , (2.27)

which will play an important role in our eigenfunction estimates. It is finite provided h is suffi-

ciently small, see Remark 2.7.
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2.1.4.5 Projections onto W#

We denote by P : H1(γ) → W# the M̃(., .) projection onto W# , i.e., for ṽ ∈ H1(γ),

P v := W ∈W# satisfies

M̃(W̃ , Ṽ ) = M̃(ṽ, Ṽ ), ∀V ∈W#.

The other projection operator onto W# is defined by

Z : H1(γ)→W# s.t. Ã(Z̃ṽ, Ṽ ) = Ã(ṽ, Ṽ ), ∀V ∈W#.

Notice that Z can be thought of as the Galerkin projection onto W#, since

Zṽ = P (G̃(ṽ)). (2.28)

2.1.4.6 Alternate surface FEM

In our analysis of eigenvalue errors we employ a conforming parametric surface finite element

method as an intermediate theoretical tool. For this, we introduce a finite element space on γ:

Ṽ := {Ṽ : V ∈ V}.

The space of vanishing mean value functions (on γ) is denoted by Ṽ#:

Ṽ# := {V ∈ Ṽ :

∫
γ

V dσ = 0}.

For i = 1, ..., dim(Ṽ#), we let (Uγ,Λγ
i ) ∈ Ṽ# ×R+ be finite element eigenpairs computed on

the continuous surface γ, that is,

ã(Uγ
i , V ) = Λγ

i m̃(Uγ
i , V ) ∀V ∈ Ṽ#. (2.29)
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2.1.4.7 Notation and constants

Generally we use small letters (γ, u, v,...) to denote quantities lying in infinite dimensional

spaces in opposition to capital letters used to denote quantities defined by a finite number of pa-

rameters (Γ, U , V ). We also recall that for every function v : Γ→ R defines uniquely (via the lift

Ψ|Γ) a function ṽ : γ → R and conversely. We identify quantities defined on γ using a tilde but

drop this convention when no confusion is possible, i.e. v could denote a function from Γ to R as

well as its corresponding lift defined from γ to R.

Whenever we write a constant C or c, we mean a generic constant that may depend on the reg-

ularity properties of γ and the Poincaré-Friedrichs constant CF in the standard estimate ‖v‖L2(γ) ≤

CF‖v‖a, v ∈ H1
#(γ) and on the shape-regularity ρ(T ) and quasi-uniformity η(T ) constants, but

not otherwise on the spectrum of−∆γ and h. In addition, by f . g we mean that f ≤ Cg for such

a nonessential constant C. All other dependencies on spectral properties will be made explicit.

2.2 Clustered Eigenvalue Estimates

Theorem 3.3 of [46] gives a cluster-robust bound for cluster eigenvalue approximations in the

conforming case. We utilize this result by employing the conforming surface FEM defined in

(2.29) as an intermediate discrete problem. We first use the results of [46] to estimate |λi − Λγ
i |

in a cluster-robust fashion and then independently bound |Λγ
i − Λi|. Note that if λi is a multiple

eigenvalue so that λi−k = ... = λi = ... = λi+k̄, then our bounds also immediately apply to

|λi − Λj|, for i− k ≤ j ≤ i+ k̄.

Because our setting is non-conforming, we introduce two different Rayleigh quotients defined

for v ∈ Ṽ:

Rã(v) :=
ã(v, v)

m̃(v, v)
and RÃ(v) :=

Ã(v, v)

M̃(v, v)
,

where we exclude the case of division by zero. We invoke the min-max approach to characterize
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the approximate eigenvalues

Λγ
j = min

S⊂Ṽ
dim(S)=j+1

max
V ∈S

Rã(V ) and Λj = min
S⊂Ṽ

dim(S)=j+1

max
V ∈S

RÃ(V ). (2.30)

Notice that we do not restrict the Rayleigh quotients to functions with vanishing mean values. Thus

we consider subspaces of dimensions dim(S) = j+ 1 rather than the usual dim(S) = j. The extra

dimension is the space of constant functions.

The bound for |Λγ
j −Λj| given in the following lemma shows that this difference is only related

to the geometric error scaled by the corresponding exact eigenvalue Λγ
j .

Lemma 2.4. For i = 1, ..., dim(V)− 1, let Λγ
i and Λi be the discrete eigenvalues associated with

the finite element method on γ and Γ respectively. Then, we have

|Λγ
i − Λi| . Λγ

i h
k+1. (2.31)

Proof. We use the characterization (2.30) and compare Ra(.) and RÃ(.). Using the finer norm

equivalence properties (2.21) and (2.22), we have for V ∈ Ṽ

RÃ(V ) ≤ (1 + Chk+1)2ã(V, V )

m̃(V, V )/(1 + Chk+1)2
= (1 + Chk+1)4Rã(V ).

Thus

Λi ≤ min
S⊂V

dim(S)=i+1

max
V ∈S

(1 + Chk+1)4Rã(V ) = (1 + Chk+1)4Λγ
i ,

Λi − Λγ
i . Λγ

i h
k+1.

(2.32)

A similar argument gives Λγ
i −Λi . Λih

k+1 . Λγ
i h

k+1, where we used (2.32) in the last step. This

implies (2.31), as claimed.

We now translate Theorem 3.3 of [46] into our notation in order to bound |λi−Λγ
j | in a cluster-

robust manner. First, let Gγ be the Ritz projection calculated with respect to ã(·, ·). That is, for
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v ∈ H1(γ),Gγv ∈ Ṽ# satisfies

ã(Gγv, V ) = ã(v, V ), ∀V ∈ Ṽ#.

Next, let T : H1
#(γ) → H1

#(γ) be the solution operator associated with the source problem (re-

stricted to H1
#(γ))

ã(Tf, v) = m̃(f, v), ∀v ∈ H1
#(γ).

Finally, let Zγ
n be the ã-orthogonal projection onto the space spanned by

{Uγ
i }i=1,..,n−1, that is, onto the first n− 1 discrete eigenfunctions calculated with respect to ã and

m̃, see (2.29). Theorem 3.3 of [46] provides the following estimates.

Lemma 2.5 (Theorem 3.3 of [46]). Let j ∈ J , and assume that

min
i=1,...,n−1

|Λγ
i − λj| 6= 0. (2.33)

Then,

0 ≤
Λγ
j − λj
λj

≤

1 + max
i=1,..,n−1

(Λγ
i )

2λ2
j

|Λγ
i − λj|2

sup
v∈H1

#(γ)

‖v‖ã=1

‖(I −Gγ)TZγ
nv‖2

ã


× sup

w∈span(uk : k∈J)
‖w‖ã=1

‖(I −Gγ)w‖2
ã.

We now provide some interpretation of this result. Because Gγ is the Ritz projection defined

with respect to ã(·, ·), we have

‖(I −Gγ)v‖ã = inf
V ∈Ṽ#

‖v − V ‖ã. (2.34)

That is, the term supw∈span(uk : k∈J),‖w‖ã=1 ‖(I −Gγ)w‖2
ã measures approximability in the energy

norm of the eigenfunctions in the targeted cluster span(uk : k ∈ J) by the finite element space.

Next, we unravel the term ‖(I − Gγ)TZγ
nv‖ã. For v ∈ H1

#(γ), we have Zγ
nv ∈ Ṽ# ⊂
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H1
#(γ). Because γ is assumed to be smooth, a standard shift theorem guarantees that for f :=

Zγ
nv ∈ H1

#(γ), Tf ∈ H3(γ) ∩ H1
#(γ) and ‖Tf‖H3(γ) . ‖f‖H1(γ). Thus, TZγ

nv ∈ H3(γ), and

‖TZγ
nv‖H3(γ) . ‖v‖H1(γ). Therefore, ‖(I − Gγ)TZγ

nv‖ã measures the Ritz projection error of

v ∈ H3(γ) in the energy norm, and so (cf. [32])

sup
v∈H1

#(γ), ‖v‖ã=1

‖(I −Gγ)TZγ
nv‖ã . hmin{2,r}. (2.35)

Combining the previous two lemmas with these observations yields the following.

Theorem 2.6 (Cluster robust estimates). Let j ∈ J , and assume in addition that mini=1,...,n−1 |Λγ
i −

λj| 6= 0. Then

|λj − Λj| . Λγ
j

(
1 + Chmin{2r,4} max

i=1,..,n−1

(Λγ
i )

2λ2
j

|Λγ
i − λj|2

)
× sup

w∈span(uk : k∈J)
‖w‖ã=1

inf
V ∈Ṽ#

‖w − V ‖2
ã + Chk+1Λγ

j .
(2.36)

Remark 2.7 (Asymptotic nature of eigenvalue estimates). The constant

maxi=1,...,n−1
Λγi λj
|Λγi −λj |

is not entirely a priori and could be undefined if by coincidence Λγ
i − λj = 0

for some i < n. Because this constant arises from a conforming finite element method, however,

its properties are well understood; cf. [46, Section 3.2] for a detailed discussion. In short, conver-

gence of the eigenvalues Λγ
i → λi is guaranteed as h → 0, so maxi=1,...,n−1

Λγi λj
|Λγi −λj |

→ λn−1λj
|λn−1−λj | .

Because j ≥ n and we have assumed separation property (2.6), namely λn > λn−1, this quantity

is well-defined.

In the following section we prove eigenfunction error estimates under the assumption that the

quantity µ(J) = max`∈J maxj /∈J

∣∣∣ λ`
Λh,j−λ`

∣∣∣ defined in (2.27) above is finite. The observation in the

preceding paragraph and (2.36) guarantee the existence of h0 such that µ(J) <∞ for all h ≤ h0.

Thus there exists h0 such that for all h ≤ h0 the discrete eigenvalue cluster respects the separation

of the continuous cluster from the remainder of the spectrum in the sense that Λn > λn−1 and

Λn+N < λn+N+1.

32



Remark 2.8 (Constant in (2.36)). The spectrally dependent constants in (2.36) are expressed with

respect to the intermediate discrete eigenvalues Λγ
j instead of with respect to the computed discrete

eigenvalues Λj . It is not difficult to essentially replace Λγ
j by Λj at least for h sufficiently small by

noting that Lemma 2.4 may be rewritten as |Λj − Λγ
j | . Λjh

k+1. We do not pursue this change

here.

2.3 Eigenfunction Estimates

2.3.1 L2 Estimate

We start by bounding the difference between the Galerkin projectionG of an exact eigenfunc-

tion and its projection to the discrete invariant space. It is instrumental for deriving L2 and energy

bounds (Theorems 2.10 and 2.11).

Lemma 2.9. Let {λj}j∈J be an exact eigenvalue cluster satisfying the separation assumption (2.6).

Let {Λj}
dim(V#)
j=1 be the set of approximate FEM eigenvalues satisfying µ(J) < ∞, where µ(J) is

defined in (2.27). Fix i ∈ J and let ui ∈ H1
#(γ) be any eigenfunction associated with λi. Then for

any α ∈ R, there holds

‖Gui −Zui‖M̃ . (1 + µ(J)) (‖ui −Gui − α‖M̃ + hk+1‖ui‖M̃). (2.37)

Proof. Our proof essentially involves accounting for geometric variational crimes in an argument

given for the conforming case in [21] (cf. [23]).

1 Recall that {Uj}
dim(V#)
j=1 ∈ V# denotes the collection of discrete M̃ -orthonormal eigenfunctions

associated with {Λj}
dim(V#)
j=1 . For l ∈ {1, ..., dim(V#)} \ J , Ul ∈ Ran(I − P ) ⊂ V# is M̃ -

orthogonal to the approximate invariant space W# = span(Uj : j ∈ J}. According to relation

(2.28), we then have M̃(Zui, Ul) = M̃(PGui, Ul) = 0, which implies

M̃(Gui −Zui, Ul) = M̃(Gui, Ul). (2.38)

In addition, W := Gui − Zui = (I − P )Gui can be written as W =
∑dim(V#)

l=1
l 6∈J

βlUl for some
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βl ∈ R, so that, together with (2.38), we have

‖W‖2
M̃

= M̃(W,W ) = M̃

Gui, dim(V#)∑
l=1
l 6∈J

βlUl

 . (2.39)

2 We now proceed by deriving estimates for M̃ (Gui, Ul), l 6∈ J . Since Ul is an eigenfunction of

the approximate eigenvalue problem associated with Λl, we have

ΛlM̃(V, Ul) = ΛlM̃(Ul, V ) = Ã(Ul, V ) = Ã(V, Ul), ∀V ∈ V#.

Choosing V = Gui gives

ΛlM̃(Gui, Ul) = Ã(Gui, Ul) = Ã(ui, Ul) = ã(ui, Ul) + (Ã− ã)(ui, Ul).

We now use the fact that ui is an eigenfunction of the exact problem to get

ΛlM̃(Gui, Ul) = λim̃(ui, Ul) + (Ã− ã)(ui, Ul)

= λiM̃(ui, Ul) + λi(m̃− M̃)(ui, Ul) + (Ã− ã)(ui, Ul).

Subtracting λiM̃(Gui, Ul) from both sides yields

(Λl − λi)M̃(Gui, Ul) = λiM̃(ui −Gui, Ul) + λi(m̃− M̃)(ui, Ul) + (Ã− ã)(ui, Ul),

or

M̃(Gui, Ul) =
1

Λl − λi

[
λiM̃(ui −Gui, Ul) + λi(m̃− M̃)(ui, Ul) + (Ã− ã)(ui, Ul)

]
.

34



3 Returning to (2.39), we obtain

‖W‖2
M̃

= M̃(W,W ) = M̃

ui −Gui − α, dim(V#)∑
l=1
l 6∈J

λi
Λl − λi

βlUl


+

[
(m̃− M̃) +

1

λi
(Ã− ã)

]ui, dim(V#)∑
l=1
l 6∈J

λi
Λl − λi

βlUl


where we used M̃(Ul, 1) = 0 to incorporate α ∈ R into the estimate. To continue further, we use

the orthogonality property of the discrete eigenfunctions to obtain

∥∥∥∥∥∥∥
dim(V#)∑
l=1
l 6∈J

λi
Λl − λi

βlUl

∥∥∥∥∥∥∥
2

M̃

=

dim(V#)∑
l=1
l 6∈J

(
λi

Λl − λi

)2

β2
l ‖Ul‖2

M̃
≤ µ(J)‖W‖2

M̃

and similarly
∥∥∥∥∑dim(V#)

l=1
l 6∈J

λi
Λl−λi

βlUl

∥∥∥∥2

Ã

≤ µ(J)‖W‖2
Ã

since Ã(Ul, Uk) = ΛlM̃(Ul, Uk). Thus the

geometric error estimates (Corollary 2.2) and a Young inequality imply

‖W‖2
M̃
≤ µ(J)‖ui −Gui − α‖M̃‖W‖M̃ + Chk+1µ(J)‖ui‖M̃‖W‖M̃

+ Ch2k+2µ(J)2

λi
‖ui‖2

Ã
+

1

4λi
‖W‖2

Ã
.

(2.40)

4 To bound ‖W‖Ã, we recall that P ◦ G and G are the Ã(·, ·) projections onto W# and V#,

respectively, and that P is the L2 projection onto W#. Thus

‖W‖2
Ã

= Ã(W,W ) = Ã((I − P )Gui, (I − P )Gui) = Ã(Gui, (I − P )Gui)

= Ã(ui, (I − P )Gui) = Ã(ui,W ).

To isolate the geometric error, we rewrite for any α ∈ R the right hand side of the above
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equation as

ã(ui,W ) + (Ã− ã)(ui,W ) = λim̃(ui,W ) + (Ã− ã)(ui,W )

= λi(m̃− M̃)(ui,W ) + λiM̃(ui −Gui,W ) + λiM̃(Gui −Zui,W ) + (Ã− ã)(ui,W )

= λi(m̃− M̃)(ui,W ) + λiM̃(ui −Gui − α,W ) + λiM̃(W,W ) + (Ã− ã)(ui,W ),

upon invoking the orthogonality relations (2.38) and M̃(W, 1) = 0. We take advantage again of

the geometric error estimates (Corollary 2.2) to arrive at

‖W‖2
Ã
≤ λiCh

k+1‖ui‖M̃‖W‖M̃ + λi‖ui −Gui − α‖M̃‖W‖M̃ + λi‖W‖2
M̃

+ Chk+1‖ui‖Ã‖W‖Ã.
(2.41)

Now, noting that ‖ui‖Ã . ‖ui‖ã =
√
λi‖ui‖m̃ by (2.20) and using Young’s inequality to absorb

the last term by the left hand side gives

‖W‖2
Ã
≤ Chk+1λi‖ui‖M̃‖W‖M̃ + 2λi‖ui −Gui − α‖M̃‖W‖M̃ + 2λi‖W‖2

M̃

+ Cλih
2k+2‖ui‖2

M̃
.

(2.42)

5 Using (2.42) in (2.40) gives

‖W‖2
M̃
≤
(

1

2
+ µ(J)

)
‖ui −Gui − α‖M̃‖W‖M̃ + Chk+1 (1 + µ(J)) ‖ui‖M̃‖W‖M̃

+ Ch2k+2
(
1 + µ(J)2

)
‖ui‖2

M̃
+

1

2
‖W‖2

M̃
.

We apply Young’s inequality again to arrive at

‖W‖2
M̃

. (1 + µ(J))2
[
‖ui −Gui − α‖2

M̃
+ h2k+2‖ui‖2

M̃
+ h2k+2‖ui‖2

M̃

]
,

which yields the desired result upon taking a square root.

Theorem 2.10 (L2 error estimate). Let {λj}j∈J be an exact eigenvalue cluster satisfying the sep-
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aration assumption (2.6). Let {Λj}
dim(V#)
j=1 be the set of approximate FEM eigenvalues satisfying

µ(J) < ∞. We fix i ∈ J and denote by ui ∈ H1
#(γ) any eigenfunction associated with λi. Then

for any α ∈ R, the following bound holds:

‖ui − Pui − α‖M̃ ≤ ‖ui −Zui − α‖M̃

. (1 + µ(J))‖ui −Gui − α‖M̃ + (1 + µ(J)) ‖ui‖M̃h
k+1.

(2.43)

Proof. Because Pα = Zα = 0 and P is the M̃ -projection onto W#, we have

‖(ui − α)− Pui‖M̃ = ‖ui − α− P (ui − α)‖M̃ ≤ ‖(ui − α)−Z(ui − α)‖M̃

= ‖ui −Zui − α‖M̃ ≤ ‖ui −Gui − α‖M̃ + ‖Gui −Zui‖M̃ .

The second leg is bounded using Lemma 2.9.

2.3.2 Energy Estimate

We now focus on estimates for ‖ui −Zui‖Ã.

Theorem 2.11 (Energy estimate). Let {λj}j∈J be an exact eigenvalue cluster satisfying the sep-

aration assumption (2.6). Let {Λj}
dim(V#)
j=1 be a set of approximate FEM eigenvalues satisfying

µ(J) < ∞. We fix i ∈ J and denote by ui ∈ H1
#(γ) any eigenfunction associated with λi. Then

for any α ∈ R, the following bound holds:

‖ui −Zui‖Ã ≤ ‖ui −Gui‖Ã + C
√
λi(1 + µ(J))‖ui −Gui − α‖M̃

+ C
√
λi(1 + µ(J))hk+1‖ui‖M̃ .

(2.44)

Proof. Let W := Gui − Zui. We restart from the estimate (2.42) for ‖W‖Ã, apply Young’s

inequality, and take advantage of the L2 error bound (2.37) to deduce

‖W‖2
Ã
. λi(h

2k+2‖ui‖2
M̃

+ ‖ui −Gui − α‖2
M̃

+ ‖W‖2
M̃

)

. λi(1 + µ(J))2(h2k+2‖ui‖2
M̃

+ ‖ui −Gui − α‖2
M̃

).
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The desired result follows from ‖ui −Zui‖Ã ≤ ‖ui −Gui‖Ã + ‖W‖Ã.

We end by commenting on (2.44). Because G is the Galerkin projection onto V# with respect

to Ã(·, ·), we have for the first term in (2.44) that

‖ui −Gui‖Ã ≤ inf
V ∈V#

‖ui − V ‖Ã = inf
V ∈V
‖ui − V ‖Ã. (2.45)

Here we used that Ã(ṽ, 1) = 0, v ∈ H1(γ). The last term above may be bounded in a standard

way (cf. [34] for definition of a suitable interpolation operator of Scott-Zhang type in any space

dimension). Similar comments apply to (2.43).

Bounding ‖ui − G‖M̃ is more complicated. Because Γ is not smooth, it is not possible

to directly carry out a duality argument to obtain L2 error estimates for G with no geomet-

ric error term. Abstract arguments of [32] however give error bounds for ui − Gui satisfying

ã(ui − Gui, V ) = F (V ) ∀V ∈ V#. Letting F (V ) = (ã − Ã)(ui − Gui, V ), the fact that

Ã(ṽ, 1) = 0 for any v ∈ H1(γ) yields

ã(ui −Gui, V ) = F (V ) ∀V ∈ V.

Choosing α = 1
|γ|

∫
γ
G(u− ui), [32, Theorem 3.1] along with (2.19) then yield

‖ui −Gui − α‖m̃ . hmin
V ∈V
‖ui − V ‖ã + hk+1‖ui −Gui‖ã . hmin

V ∈V
‖ui − V ‖Ã.

Thus the L2 term above may also be bounded in a standard way.

2.3.3 Relationship between projection errors

Many classical papers on finite element eigenvalue approximations contain energy error bounds

for the projection error ‖v − P v‖ã [16, 17]. We briefly investigate the relationship between this

error notion and our notion ‖v−Zv‖ã. BecauseZ is a Galerkin projection, we have ‖v−Zv‖Ã ≤

‖v−P v‖Ã. In Proposition 2.13 we show that the reverse inequality holds up to higher-order terms.
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These two error notions are thus asymptotically equivalent.

Lemma 2.12. Let {λj}j∈J be an exact eigenvalue cluster indexed by J satisfying the separation

assumption (2.6). Let {Λj}
dim(V#)
j=1 be set of approximate FEM eigenvalues satisfying µ(J) < ∞.

We assume that for an absolute constant B, there holds max{Λn+N} ≤ B. Then for v ∈ H1(γ),

we have

‖P v‖Ã ≤
√
B‖v‖M̃ .

Proof. Since P v ∈W#, there exists βj , j ∈ J , such that P v =
∑

j∈J βjUj. Thus

‖P v‖2
Ã

= Ã(P v,P v) =
∑
j∈J

βjÃ(Uj,P v) =
∑
j∈J

βjΛjM̃(Uj,P v)

=
∑
j∈J

βjΛjM̃(Uj,
∑
j∈J

βjUj) =
∑
j∈J

β2
jΛjM̃(Uj, Uj) ≤ B‖P v‖2

M̃
≤ B‖v‖2

M̃
,

where we used that the discrete eigenfunctions {Uj} are M̃ -orthogonal.

Proposition 2.13. Let {λj}j∈J be an exact eigenvalue cluster indexed by J satisfying the sep-

aration assumption (2.6). Let {Λj}
dim(V#)
j=1 be set of approximate FEM eigenvalues satisfying

µ(J) < ∞. Furthermore, assume that for some absolute constant B, ΛN+n ≤ B. Let ui be

an eigenfunction with eigenvalues λi, for some i ∈ J . Then the following bound holds for any

α ∈ R:

‖ui − Pui‖Ã ≤ ‖ui −Zui‖Ã +
√
B‖ui −Gui − α‖M̃ .

Proof. By the triangle inequality we have:

‖ui − Pui‖Ã ≤ ‖ui −Zui‖Ã + ‖Zui − Pui‖Ã = ‖ui −Zui‖Ã + ‖P (ui −Gui − α)‖Ã.

Applying Lemma 2.12 for the last term gives

‖P (ui −Gui − α)‖Ã ≤
√
B‖ui −Gui − α‖M̃ ,
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and as a consequence

‖ui − Pui‖Ã ≤ ‖ui −Zui‖Ã +
√
B‖ui −Gui − α‖M̃ .

2.4 Numerical Results for Eigenfunctions

Let γ be the unit sphere in R3. The eigenfunctions of the Laplace-Beltrami operator are then

the spherical harmonics. The eigenvalues are given by `(` + 1), ` = 1, 2, 3..., with multiplicity

2` + 1. Computations were performed on a sequence of uniformly refined quadrilateral meshes

using deal.ii [37]; our proofs extend to this situation with modest modifications. When comparing

norms of errors we took the first spherical harmonic for each eigenvalue `(` + 1) as the exact

solution and then projected this function onto the corresponding discrete invariant space having

dimension 2`+ 1.

2.4.1 Eigenfunction error rates

We calculated the eigenfunction error ‖u1−Pu1‖M̃ and ‖u1−Pu1‖Ã for the lowest spherical

harmonic corresponding to λ1 = 2. From Theorem 2.10 and the results of [32], we expect

‖u1 − Pu1‖M̃ . C(λ)(hr+1 + hk+1). (2.46)

From Proposition 2.13 and Theorem 2.11, we expect

‖u1 − Pu1‖Ã . C(λ)(hr + hk+1). (2.47)

We postpone discussion of dependence of the constants on spectral properties to Section 2.4.2.

When r = 1 and k = 2, the L2 error is dominated by the PDE approximation (Figure 2.1),

hk+1 = h3 . h2 = hr+1. When r = 3 and k = 1 we see the L2 error is dominated by the

geometric approximation (Figure 2), hr+1 = h4 . h2 = hk+1. This illustrate the sharpness of our
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theory with respect to the approximation degrees. The energy error behavior reported in Figure 2.1

similarly indicates that (2.47) is sharp.
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Figure 2.1: Convergence rates of the approximate invariant eigenspace corresponding to the first
eigenvalue on the sphere: L2 errors (left) and energy errors (right). Reprinted from [1].

2.4.2 Numerical evaluation of constants

In the left plot of Figure 2.2 we plot ‖u−Pu‖Ã√
λ(1+µ(J))hk+1 vs. h for r = 3 and k = 1 to evaluate the

quality of our constant in Theorem 2.11. Here the Galerkin error is O(h4) and the geometric error

O(h2), so the geometric error dominates. Consider the eigenvalues λ = `(`+ 1), ` = 1, ..., 10 and

corresponding spherical harmonics. We chose two different exact spherical harmonics for ` = 10

to determine whether the choice of harmonic would affect the computation. In the left plot of

Figure 2.2, we see that the ratio ‖u−Pu‖Ã√
λ(1+µ(J))hk+1 decreases moderately as λ increases, indicating that

the constant in Theorem 2.11 may not be sharp. We thus also plotted ‖u−Pu‖Ã√
λ(2+
√
µ(J))hk+1

and found

this quantity to be more stable as λ increases (see the right plot of Figure 2.2). Thus it is possible

that the dependence of the constant in front of the geometric error term in Theorem 2.11 is not

sharp with respect to its dependence on µ(J). Our method of proof does not seem to provide a

pathway to proving a sharper dependence, however, and our numerical experiments do confirm

that the constant in front of the geometric error depends on spectral properties.

In Figure 2.3 we similarly test the sharpness of the geometric constant in the eigenvalue error
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estimate (2.36) by plotting |λ−Λ|
λh2

. This quantity is very stable as λ increases, thus verifying the

sharpness of the estimate as well as the correctness of the order, O(hk+1) for k = 1. In Section 7

we observe that for k ≥ 2 the geometric error is between hk+1 and h2k. We delay giving numerical

details until laying a theoretical foundation for explaining these superconvergence results.
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Figure 2.2: Dependence of geometric portion in energy errors on spectral constants: Theoretically
established constant ‖u−Pu‖Ã√

λ(1+µ(J))hk+1 (left) and conjectured alternative constant ‖u−Pu‖Ã√
λ(2+
√
µ(J))hk+1

(right). Reprinted from [1].
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Figure 2.3: Dependence of geometric portion of eigenvalue errors on spectral constants, k = 1:
Theoretically established constant |λ−Λ|

λh2
for eigenvalues `(`+ 1), ` = 1, ..., 10. Reprinted from [1].
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2.5 Superconvergence of Eigenvalues

In this section we analyze the geometric error estimates (2.16) and (2.17) from the viewpoint

of numerical integration. Our approach is not cluster robust, but allows us to analyze superconver-

gence effects and leads to a characterization of the relationship between the choice of interpolation

points in the construction of Γ and the convergence rate for the eigenvalues. We show that we

may obtain geometric errors of order O(h`) for k + 1 ≤ ` ≤ 2k by choosing interpolation points

in the construction of Γ that correspond to a quadrature scheme of order `. Because these super-

convergence effects require a more subtle analysis, we do not trace the dependence of constants

on spectral properties in this section and are only interested in orders of convergence. We de-

note the untracked spectrally dependent constant by Cλ, which may change values throughout the

calculations.

We first state a result similar to [39, Theorem 5.1], where effects of numerical quadrature on

eigenvalue convergence were analyzed. Let λj be an eigenvalue of (2.3) with multiplicity N . Let

W and W# be the spans of the eigenfunctions of λj and the N FEM eigenfunctions associated

with the approximating eigenvalues of λj .

Lemma 2.14. Eigenvalue Bound. Let P λj be the projection onto W using the L2 inner product

m(·, ·). Let Uj be an eigenfunction in W# such that ‖Uj‖m = 1 and A(Uj, Uj) = ΛjM(Uj, Uj).

Then

|λj − Λj| =

∣∣∣∣∣ a(P λjUj,P λjUj)

m(P λjUj,P λjUj)
− Ã(Uj, Uj)

M̃(Uj, Uj)

∣∣∣∣∣ ≤ ‖P λjUj − Uj‖2
a

+ λj‖P λjUj − Uj‖2
m + Λj|m(Uj, Uj)− M̃(Uj, Uj)|+ |Ã(Uj, Uj)− a(Uj, Uj)|.

(2.48)

Proof. Since a(P λjUj, Uj) = λjm(P λjUj, Uj) and ‖P λjUj‖2
a = λj‖P λjUj‖2

m,

‖P λjUj − Uj‖2
a − λj‖P λjUj − Uj‖2

m = ‖P λjUj‖2
a + ‖Uj‖2

a − 2a(P λjUj, Uj)

−λj‖P λjUj‖2
m + 2λjm(P λjUj, Uj)− λj‖Uj‖2

m = a(Uj, Uj)− λj‖Uj‖2
m.
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Noting the assumption that ‖Uj‖m = 1, we get

− λj = ‖P λjUj − Uj‖2
a − λj‖P λjUj − Uj‖2

m − a(Uj, Uj). (2.49)

Because Ã(Uj, Uj)− ΛjM̃(Uj, Uj) = 0 we get

−λj = ‖P λjUj − Uj‖2
a − λj‖P λjUj − Uj‖2

m + [Ã(Uj, Uj)− a(Uj, Uj)]− ΛjM̃(Uj, Uj).

Adding Λj = Λjm(Uj, Uj) to both sides and taking absolute values gives the result.

We now give a series of results bounding the terms on the right hand side of (2.48). Recall that

P denotes the M̃ projection onto W#.

Lemma 2.15. For h small enough, {Pu : u ∈ W} forms a basis for span{U : U ∈ W#}.

Moreover, for any U ∈W# with ‖U‖m = 1,

N∑
i=1

|αi|2 ≤ C(N). (2.50)

Proof. The proof follows the same steps given in the proof of [23, Lemma 5.1].

Lemma 2.16. Let h be small enough that {Pu : u ∈ W} forms a basis for span{U : U ∈ W#}.

Let {ui}Ni=1 be an orthonormal basis for W with respect to m(·, ·). Then

‖U − P λjU‖a ≤ Cλ max
i=1,...,N

‖ui − Pui‖a . hr + hk+1, (2.51)

‖U − P λjU‖m ≤ Cλ max
i=1,...,N

‖ui − Pui‖m . hr+1 + hk+1 (2.52)

for any u ∈W and U ∈W#.

Proof. Recall that N = dim(W). Since U ∈ span{Pu : u ∈ W}, there holds U =
∑N

i=1 αiPui
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with the coefficients satisfying (2.50). Thus

P λjU − U =
N∑
k=1

m(
N∑
i=1

αiPui, uk)uk −
N∑
i=1

αiPui.

Adding −
∑N

i=1 αim(ui, ui)ui +
∑N

i=1 αiui = 0 and using m(ui, uk) = 0, i 6= k, yields

P λjU − U =
N∑
i=1

αi

(
N∑
k=1

m(Pui − ui, uk)uk + (ui − Pui)

)
. (2.53)

Using m(Pui − ui, uk) = 1
λj
a(Pui − ui, uk), noting (2.50) and applying ‖ · ‖a to both sides

of (2.53) yields the first inequality in (2.51), while applying ‖ · ‖m to both sides of (2.53) yields

similarly the first inequality in (2.52). The second inequality in (2.51) follows from Proposition

2.13 and (1.12).

To obtain the second inequality in (2.52), we first use (2.43) and ‖ · ‖m ' ‖ · ‖M̃ :

‖uk − Puk‖m . ‖uk −Guk‖m

≤ ‖uk −Guk −m(uk −Guk, 1)‖m + ‖m(uk −Guk, 1)‖m.
(2.54)

Since m(uk, 1) = M̃(uk, 1) = 0, we have from (2.18) that

‖m(uk −Guk, 1)‖m = ‖m(Guk, 1)‖m

=
√
|γ||m(Guk, 1)− M̃(Guk, 1)| ≤ |γ|‖Guk‖M̃h

k+1.

Also, ‖Guk‖M̃ . ‖Guk‖Ã . ‖uk‖a . Cλ. Bounding the first term on the right hand side of

(2.54) using (1.13) completes the proof.

Lemma 2.17. Let v ∈ H1
#(γ), let d(x) be the signed distance function for γ, let ψ(x) be the

closest point projection onto γ, let ν be the normal vector of γ, let N be the normal vector of Γ,
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and {ei}ni=1 be the eigenvectors of the Hessian, H, of γ, then

|a(v, v)− Ã(v, v)| ≤
∣∣∣∣∫

Γ

d(x)H [∇Γv]T ∇ΓvdΣ

∣∣∣∣
+ 2

∣∣∣∣∣
∫

Γ

d(x)

(
n∑
i=1

κi(ψ(x)) [∇Γv]T [ei ⊗ ei]∇Γv

)
dΣ

∣∣∣∣∣+O(h2k),

(2.55)

∣∣∣m(v, v)− M̃(v, v)
∣∣∣ ≤ ∣∣∣∣∫

Γ

v2d(x)HdΣ

∣∣∣∣+O(h2k). (2.56)

HereH =
∑n

i=1 κi(ψ(x)) is the scaled mean curvature of γ.

Proof. We shall need the two identities from [33]:

∇γv(x) = [(I− dH)(x)]−1

[
I− N⊗ ν

N · ν

]
∇Γv, (2.57)

dσ = ν ·N

[
n∏
i=1

(
1− d(x)

κi(ψ(x))

1 + d(x)κi(ψ(x))

)]
dΣ := QdΣ. (2.58)

We note that since |1− ν ·N| = 1
2
|ν −N|2 . h2k and ‖d‖L∞(Γ) . hk+1,

Q = (1− dH) +O(h2k). (2.59)

Using (2.57) and (2.59) we then have

|a(v, v)− Ã(v, v)| =
∣∣∣∣∫
γ

[∇γv]T∇γvdσ −
∫

Γ

[∇Γv]T∇ΓvdΣ

∣∣∣∣
≤
∣∣∣∣ ∫

Γ

[∇Γv]T
[
I− ν ⊗N

N · ν

]
[[(I− dH)(x)]−1]T [(I− dH)(x)]−1

×
[
I− N⊗ ν

N · ν

]
∇Γv [1− d(x)H]− [∇Γv]T∇ΓvdΣ

∣∣∣∣+O(h2k).

(2.60)

Expanding the Hessian H as on page 425 of [33], we obtain:

[(I− dH)(x)]−1 = ν ⊗ ν +
n∑
i=1

[1 + d(x)κi(ψ(x))]ei ⊗ ei = I +
n∑
i=1

d(x)κi(ψ(x))ei ⊗ ei.
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Using ei ⊥ ν and ei ⊥ ej , 1 ≤ i, j ≤ n, yields

[[(I− dH)(x)]−1]T [(I− dH)(x)]−1 = I + 2
n∑
i=1

d(x)κi(ψ(x))ei ⊗ ei +O(h2k+2).

Combining the above and carrying out a short calculation yields

[
I− ν ⊗N

N · ν

]
[[(I− dH)(x)]−1]T [(I− dH)(x)]−1

[
I− N⊗ ν

N · ν

]
=

[
I− ν ⊗N

N · ν

]
[I + 2

n∑
i=1

d(x)κi(ψ(x))ei ⊗ ei]

[
I− N⊗ ν

N · ν

]
+O(h2k)

= I− ν ⊗N

N · ν
− N⊗ ν

N · ν
+

ν ⊗ ν
(N · ν)2

+ 2
n∑
i=1

d(x)κi(ψ(x))

[
ei ⊗ ei −

N · ei
N · ν

(ν ⊗ ei + ei ⊗ ν) +

(
N · ei
N · ν

)2

ν ⊗ ν

]

+O(h2k).

Let PΓ := I−N⊗N. Then

I− ν ⊗N

N · ν
− N⊗ ν

N · ν
+

ν ⊗ ν
(N · ν)2

= PΓ +
(
N− ν

N · ν

)
⊗
(
N− ν

N · ν

)
= PΓ +O(h2k).

We know ‖N− ν‖∞ . hk, so N · ei = O(hk) which means all terms containing d(x)N · ei are of

order h2k+1. Therefore we have[
I− ν ⊗N

N · ν

]
[[(I− dH)(x)]−1]T [(I− dH)(x)]−1

[
I− N⊗ ν

N · ν

]
= PΓ + 2

n∑
i=1

d(x)κi(ψ(x)) [ei ⊗ ei] +O(h2k).

(2.61)
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Multiplying equations (2.61) and (2.59) gives

[
I− ν ⊗N

N · ν

]
[[(I− dH)(x)]−1]T [(I− dH)(x)]−1

[
I− N⊗ ν

N · ν

]
Q

= PΓ(1− d(x)H) + 2
n∑
i=1

d(x)κi(ψ(x)) [ei ⊗ ei] +O(h2k).

Inserting the above into (2.60) and noting that PΓ∇Γv = ∇Γv yields

|a(v, v)− Ã(v, v)| ≤
∣∣∣∣∫

Γ

d(x)H |∇Γv|2 dΣ

∣∣∣∣
+ 2

∣∣∣∣∣
∫

Γ

(
n∑
i=1

d(x)κi(ψ(x)) [∇Γv]T [ei ⊗ ei]∇Γv

)
dΣ

∣∣∣∣∣+O(h2k).

This is (2.55). The proof of (2.56) follows directly from (2.59).

We next define a quadrature rule on the reference element:

∫
T̂

ϕ̂(x̂)dΣ̂ ≈
L∑
i=1

ŵiϕ̂(q̂i),

where {ŵj}Lj=1 are weights and {q̂j}Lj=1 is a set of quadrature points. Recall the definition (2.10)

of F T : T̂ → T . The mapped rule on a physical element T ⊂ Γ is

∫
T

ϕ(x)dΣ ≈
L∑
i=1

wiϕ(qi),

where wi = QF T (q̂i)ŵi, QF T =
√

det(JTJ) with J the Jacobian matrix of F T , and qi = F T (q̂i).

The quadrature errors on the unit and physical elements are

ET̂ (ϕ) :=

∫
T̂

ϕ̂(x̂)dΣ̂−
L∑
i=1

ŵiϕ̂(q̂i), ET (ϕ) :=

∫
T

ϕ(x)dΣ−
L∑
i=1

wiϕ(qi). (2.62)

We say that a mapping F T is regular if |F T |W i,∞(T̂ ) ≤ hi, 0 ≤ i ≤ k. This is implied by

assumption (2.13). Note also that |F T |W i,∞(T̂ ) = 0, i > k.
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Lemma 2.18. Suppose ET̂ (χ̂) = 0 ∀χ̂ ∈ P`−1(T̂ ), d ∈ W `,∞(T ), and F T is a regular mapping.

Then there is a constant C, independent of T , such that

|ET (dϕψ)| ≤ C‖d‖W `,∞(T )h
`|ϕ|Hmin{r,`}(T )|ψ|Hmin{r,`}(T ), ∀ϕ̂, ψ̂ ∈ Pr(T̂ ). (2.63)

Proof. We use standard steps from basic finite element theory [47]. For each T ,

ET (dϕψ) = ET̂

(
d(F T )QF T ϕ̂ψ̂

)
. (2.64)

Since ET̂ (χ̂) = 0,∀χ̂ ∈ P`−1(T̂ ), it follows from the Bramble-Hilbert Lemma and (2.62) that

|ET̂ (ĝ)| = inf
χ∈P`−1

|ET̂ (ĝ − χ)| ≤ inf
χ∈P`−1

‖ĝ − χ‖L∞(T̂ ) ≤ Ĉ|ĝ|W `,∞(T̂ ).

Substituting ĝ = d(F T )QF T ϕ̂ψ̂, we thus have

∣∣∣ET̂ (d(F T )QF T ϕ̂ψ̂
)∣∣∣ ≤ Ĉ

∣∣∣d(F T )QF T ϕ̂ψ̂
∣∣∣
W `,∞(T̂ )

.

We now apply equivalence of norms over finite dimensional spaces and scaling arguments noting

that Dαϕ̂ = Dαψ̂ = 0 for |α| > r to get

∣∣∣d(F T )QF T ϕ̂ψ̂
∣∣∣
W `,∞(T̂ )

≤
min{r,`}∑
i,j=0

`−i−j≥0

|d(F T )QF T |W `−i−j,∞(T̂ ) |ϕ̂|W i,∞(T̂ )|ψ̂|W j,∞(T̂ )

.
min{r,`}∑
i,j=0

`−i−j≥0

|d(F T )QF T |W `−i−j,∞(T̂ ) |ϕ̂|Hi(T̂ )|ψ̂|Hj(T̂ ).

Through standard arguments we have

|ϕ̂|Hi(T̂ )|ψ̂|Hj(T̂ ) . hi+j‖QF−1
T
‖L∞(T )|ϕ̂|Hi(T )|ψ̂|Hj(T ).
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Noting that |QF T |Wk,∞(T̂ ) . hn+j and ‖QF−1
T
‖L∞(T ) . h−n along with

|d(F T )QF T |W `−i−j,∞(T̂ ) .
`−i−j∑
k=0

|QF T |Wk,∞(T̂ ) |d(F T )|W `−i−j−k,∞(T̂ )

and

|d(F T )|W `−i−j−k,∞(T̂ ) . h`−i−j−k ‖d‖W `−i−j−k,∞(T )

gives ∣∣∣d(F T )QF T ϕ̂ψ̂
∣∣∣
W `,∞(T̂ )

. h`‖d‖W `,∞(Ω)‖ϕ‖Hmin{r,`}(T )‖ψ‖Hmin{r,`}(T ),

which is the desired result.

We now consider the effects of constructing Γ by interpolating ψ.

Lemma 2.19 (Superconvergent Geometric Consistency). Let QUADT̂ be a degree ` − 1, R point

quadrature rule on the unit element with quadrature points {q̂i}Ri=1, V ∈ V be degree-r function,

and assume that d(x)H ∈ W `,∞(N ). If the points {L(xj)}nkj=1 in (2.8) and {qi}Li=1 coincide and

in addition L(xj) = ψ(xj), then

|a(V, V )− Ã(V, V )| ≤ h` ‖d(x)H‖W `,∞
T (Γ) |V |

2

H
min{r,`}
T (Γ)

+O(h2k), (2.65)

|m(V, V )− M̃(V, V )| . h` ‖d(x)H‖W `,∞
T (Γ) |V |

2

H
min{r,`}
T (Γ)

+O(h2k). (2.66)

Here a subscript T denotes a broken (elementwise) version of the given norm.

Proof. We prove (2.66). (2.65) follows from similar arguments. Recalling (2.56) and partition the

first integral based on the underlying mesh.

∣∣∣∣∫
Γ

V 2d(x)HdΣ

∣∣∣∣ ≤ #elements∑
j=1

∣∣∣∣∣
∫
Tj

V 2d(x)HdΣ

∣∣∣∣∣ .
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Let q be a quadrature point on Tj . By assumption L(q) = ψ(q), so d(q) = 0 and

∣∣∣∣∣
∫
Tj

V 2d(x)HdΣ

∣∣∣∣∣ =

∣∣∣∣∣
∫
Tj

V 2d(x)HdΣ− QUADTj

(
V 2d(x)H

)∣∣∣∣∣
= ETj(d(x)HV 2) . h`‖d(x)H‖W `,∞

T (Γ)|V |
2

H
min{r,`}
T (Tj)

by Lemma 2.18. Summing over all of the elements yields (2.66).

Theorem 2.20 (Order of eigenvalue error). If Γ be constructed using interpolation points that

correspond to a degree `− 1 quadrature rule as in Lemma 2.19, then

|λj − Λj| . h2r + h2k + h`. (2.67)

Proof. Standard arguments (adding and subtracting an interpolant and applying inverse inequali-

ties) yield ‖U‖Hk . ‖PλjU‖Hk+1 . Combining Lemma 2.19 and Lemma 2.16 into Lemma 2.14

completes the proof.

Remark 2.21. Our proofs carry over to the setting of quadrilateral elements with appropriate

modification of the definition of regularity of the mapping F T . If Gauss-Lobatto points are used

on the faces of Γ as the Lagrange interpolation points to define the surface Γ, then the O(h`) term

in (2.67) is the error due to tensor-product k + 1-point Gauss-Lobatto quadrature, which is exact

for polynomials of order 2k − 1. Thus ` = 2k and |λj − Λj| . h2r + h2k. We demonstrate this

numerically below.

Remark 2.22. It follows from (2.66) that computation of area(γ) using quadrature may also be

superconvergent. This has been observed numerically when using deal.ii [37, Step 10 Tutorial].

2.6 Numerical results for eigenvalue superconvergence

In this section we numerically investigate the convergence rate of the geometric term in the

eigenvalue estimate of Theorem 2.20. Using the upper bound we derived as a guide, we set the

order r of the PDE approximation so that h2r is higher order in the experiments.
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We first approximated the unit circle using a sequence of polygons with uniform faces. For

higher order approximations we interpolated the circle using equally spaced points and points

based on Gauss-Lobatto quadrature. The left plot in Figure 2.4 shows convergence rates for λ1 for

various choices of k for both spacings. The error when using Gauss-Lobatto points follows a trend

of h2k as predicted by our analysis in Section 2.5. The errors when using equally spaced Lagrange

points are O(hk+1) for odd values of k and O(hk+2) for even values of k. These quadrature errors

arise from the Newton-Cotes rule corresponding to standard Lagrange points, yielding for example

Simpson’s rule with error O(h4) = O(hk+2) when k = 2.
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Figure 2.4: Left: Convergence rates of the first eigenvalue for the circle using typical equally
spaced Lagrange basis points and Gauss-Lobatto Lagrange basis points. Right: Convergence rates
of the first eigenvalue for (x− z2)2 + y2 + z2 + 1

2
(x− 0.1)(y+ 0.1)(z+ 0.2)− 1 = 0 surface using

a quadrilateral mesh with Gauss-Lobatto Lagrange basis points. Reprinted from [1].

In our next experiment we used a quadrilateral mesh to approximate the surface (x − z2)2 +

y2 + z2 + 1
2
(x − 0.1)(y + 0.1)(z + 0.2) − 1 = 0. We used Gauss-Lobatto quadrature points on

each face to construct the interpolated surface. Convergence rates for the first eigenvalue using

k = 2, 3 are seen in the right plot in Figure 2.4. The trend of order h2k convergence predicted by

our analysis holds for surfaces in 2D when using Gauss-Lobatto interpolation points. Experiments

yielding similar convergence rates were also performed on the sphere and torus.
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We next investigated convergence on triangular meshes. We first created a triangulated approx-

imation of the level set (x− z2)2 + y2 + z2 − 1 = 0 using standard Lagrange basis points. These

points do not correspond to a known higher order quadrature rule. In the left plot in Figure 2.5,

we see convergence rates of order hk+1 for odd values of k and hk+2 for even values of k. Unlike

in one space dimension, these results cannot be directly proved using our framework above. More

subtle superconvergence phenomenon may provide an explanation. For example, it is easy to show

that the Newton-Cotes rule for k = 2 corresponding to standard Lagrange interpolation points

exactly integrates cubic polynomials on any two triangles forming a parallelogram. It has previ-

ously been observed that meshes in which most triangle pairs form approximate parallelograms

may lead to superconvergence effects, and it has been argued that many practical meshes fit within

this framework; cf. [48].
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Figure 2.5: Left:. Convergence rates of an eigenvalue for (x − z2)2 + y2 + z2 − 1 = 0 surface
using triangular mesh and typical Lagrange basis points. Right: Convergence rates of the first
eigenvalue for spherical surface using triangular mesh and unperturbed interpolation points, ran-
domly perturbed interpolation points from a uniform distribution centered at 0 displacement, and
randomly perturbed interpolation points from a uniform distribution centered at 0.5hk+1 displace-
ment. Reprinted from [1].

Finally, we attempted to break this even-odd superconvergence behavior by perturbing the

points used to interpolate the sphere. First we perturbed points by O(hk+1) using a uniform dis-

tribution on hk+1(−1, 1). In expectation we then have a radial perturbation of 0. The supercon-
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vergence of O(hk+2) for even k values persisted for this situation. We then biased the previous

distribution to be hk+1(−0.5, 1.5) so that perturbations tended to be outward of the surface of the

sphere. This led to convergence of O(hk+1) for both even and odd values of k. Numerical results

for the error of the first eigenvalue of the sphere when r = 3 and k = 2 for an unperturbed sphere

as well as these two perturbations are seen in the right plot in Figure 2.5.

Remark 2.23. The perturbations of interpolation points on the sphere described above satisfy

the abstract assumptions (2.11) through (2.13) and so fit within the basic eigenvalue convergence

theory of Section 2.2. That theory is thus sharp without additional assumptions, but clearly does

not satisfactorily explain many cases of interest.

Remark 2.24. The superconvergence effects we have observed appear to be relatively robust.

They may still occur even in applications where the continuous surface is not interpolated exactly

as long as surface approximation errors at the interpolation points are uniformly distributed inside

and outside of γ with zero mean.
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3. OPTIMALITY OF ADAPTIVE FINITE ELEMENT METHODS FOR EIGENFUNCTIONS

OF THE LAPLACE-BELTRAMI OPERATOR

In this chapter we develop a quasi-optimal adaptive finite element method (AFEM) based on

SFEM to approximate eigenfunctions associated with a cluster J of eigenvalues associated with

the eigenvalue problem

−∆γu = λu on γ. (3.1)

We take γ ⊂ Rd+1 to be a closed hypersurface, which is globally Lipschitz and piecewise in a

Besov class that embeds into C1,α with α ∈ (0, 1]. Here, ∆γ is the Laplace-Beltrami operator on

γ.

We combine tools from SFEM with those from the analysis of AFEM and eigenvalue problems.

In addition to the usual Galerkin approximation errors, the SFEM framework introduces geometric

consistency errors. In the adaptive context this means that not only must the solution be resolved

by the mesh, but the surface must also be sufficiently resolved by the mesh. One approach for

adaptively approximating solutions to the source problem via SFEM has been analyzed in [35].

In the framework of [35] two estimators are used to drive refinements, one for the Galerkin error

and another for the geometric error with each estimator having a separate dedicated refinement

procedure.

Unlike the source problem, the eigenvalue problem is nonlinear which makes for a more chal-

lenging problem to analyze. Over the past decade a number of papers have appeared analyzing

convergence and optimality of AFEM for eigenvalue problems on flat domains. These papers re-

quire a priori L2 estimates which are used to control the nonlinearity of the eigenvalue problem

and lead to minimal mesh resolution requirements to guarantee the nonlinearity has been resolved.

We summarize these requirements in Table 3.1. For the purposes of proving a priori L2 estimates

we require and prove a new regularity result for the source problem on globally W 1,∞ piecewise

C1,α surfaces.
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(H1) D(J) := max`∈J maxj /∈J

∣∣∣ λ`
Λj−λ`

∣∣∣ <∞ Lemma 3.14

(H2) maxj∈J ‖uj − Zuj‖L2(γ) ≤
√

1 + (2|J |)−1 − 1 Lemma 3.22

(H3) λ2
maxK0H

2s
0 ≤ 1

2
Lemma 3.24

(H4)
(
K1

2B3
λ2

maxH
2
0 + (1 + λ2

max)K2 + λ2
max

)
CH2s

0 < min
{

1
8B3(2C1+C2)

ξ2θ4

4−2ξθ2
, ξθ

2

8

}
Theorem 3.31

(H5) (B3K0 +K1H
2
0 )λ2

maxCH
2s
0 ≤ 0.2 Lemma 3.41

(H6)
(
K2(1 + λ2

max) + λ2
max + 3

2
K0λ

2
max

)
CH2s

0 ≤ 0.2 Lemma 3.41

(H7)C(1 + 2B3)λ2
maxH

2s
0 + C(1 + 2B3)K2(1 + λ2

max)H2s
0 + CK1λ

2
maxH

2+2s
0 ≤ 1

2
Lemma 3.43

(H8) CK1λ
2
maxH

2
0 ≤ 1

2
Lemma 3.43

Table 3.1: The restrictions on the maximum mesh size H0 and where they are first used.

Our approach borrows heavily from [35]. Our adaptive algorithm (AFEM) consists of loops

made up of an ADAPT_SURFACE step followed by an ADAPT_EIGENFUNCTION step.

The ADAPT_SURFACE step is the same as that of [35] and employs the same geometric estimator

ζ . It should be noted that in [1] the a priori analysis for approximating eigenfunctions with SFEM

found that the geometric error for a piecewise degree-k approximation of the surface was O(hk+1)

when the surface is of regularity Ck+1, k ≥ 1. Unfortunately, the geometric estimator we use

from [35] is heuristically only O(hk) for Ck+1 surfaces. A new geometric estimator for Ck+1,

k ≥ 1 surfaces that is heuristically O(hk+1) has recently been introduced in [36]. We choose
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to use the geometric estimator used in [35] since it can handle surfaces of lower regularity and

the adaptive algorithm for the source problem has been shown to be optimal unlike the algorithm

using the heuristically O(hk+1) estimator in [36]. Even in the context of the source problem,

the discrepancy between the order hk+1 geometric errors observed for C2 surfaces and the order

hk geometric errors that have been proved for less regular surfaces is not well understood. Our

ADAPT_EIGENFUNCTION step uses a residual type estimator, η, to control the eigenfunction

error. This estimator will be analyzed via a theoretical estimator, µ, in a similar fashion to what

was done for flat domains in [23]. We show that µ and η are equivalent up to geometric error terms

which can be controlled by ζ . We will show in Section 3 that this implies any results proven for

the estimator µ are also true for η within ADAPT_EIGENFUNCTION. We will also develop an

L2 a priori estimate for eigenfunction approximations on piecewise C1,α globally W 1,∞ surfaces.

In order to extend the a priori estimates of [1] from C2 surfaces to these lower regularity surfaces

we must prove a regularity estimate in Section 2 for eigenfunctions on on piecewise C1,α globally

W 1,∞ surfaces which is our first main result:

Let γ be a piecewise C1,α globally W 1,∞ d-dimensional closed surface in Rd+1. Let

f ∈ L2(γ). Let u ∈ H1(γ) solve −∆γu = f in a weak sense subject to
∫
γ
u dσ = 0.

Then

‖∇γu‖Hs(γ) . ‖f‖L2(γ).

It should be noted that this result not only extends the a priori estimates for eigenfunctions on

surfaces of [1], but it can also be used to extend the a priori estimates of [32] for the source

problem from C2 surfaces to piecewise C1,α globally W 1,∞ surfaces.

The rest of the paper is laid out as follows. In Section 2 we introduce the surface approximation

scheme used as well as the geometric estimator ζ , the Galerkin formulation, surface finite element

method, and our regularity result stated above. In Section 3 we prove a posteriori estimates for the

theoretical estimator. In Section 4 we introduce our modified eigenfunction version of the AFEM

algorithm used in [35] for the source problem. The major change is the replacement of the residual
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based PDE estimator of [35] with our residual based eigenfunction estimator η. In Section 5 we

prove our second main result, a conditional contraction property:

If the parameter ω > 0 is small enough and the largest mesh size H0 is small enough,

then there exist constants β > 0 and an 0 < α < 1 such that for all iterate 0 ≤ j < R

of ADAPT_EIGENFUNCTION we have

∑
i∈J

‖∇γe
j+1
i ‖2

L2(γ) + β(µj+1(J))2 ≤ α2

(∑
i∈J

‖∇γe
j
i‖2
L2(γ) + β(µj(J))2

)
.

Moreover, the number of inner iterates of ADAPT_EIGENFUNCTION is uniformly

bounded.

In Section 6 we give a partial characterization of our approximation classes A′s in terms of Besov

regularity. In Section 7 we prove convergence rates:

If {(uj, λj, γ)}j∈J ∈ A′s(J) for some 0 < s ≤ n/d, ω > 0 is small enough, and the

largest mesh size H0 is small enough, then there exists a constant C, depending on

the Lipschitz constant L of γ, λmax, the refinement depth b, the initial triangulation T0,

and AFEM parameters θ, ω, ρ such that

∑
j∈J

e(Zkuj) +OscTk(λjPkuj,Zkuj, γ) + |J |ζTk(γ) ≤ C|J, γ|A′s(J)(#Tk −#T0)−s.

. In Section 8 we verify the convergence rates with numerical experiments.

3.1 Preliminaries

In this section we present the necessary background information from the differential geometry

of surfaces as well as a priori estimates for the approximation of eigenfunctions. The latter esti-

mates will be necessary for handling higher order terms which appear in the a posteriori analysis.

Our presentation in this section closely follows that of [35], and we refer to that work for more

details.
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3.1.1 Parametric Surfaces

We assume that the surface γ is the deformation of a

d-dimensional polyhedral surface Γ0, with vertices on γ, and described by a globally Lipschitz

homeomorphism P0 : Γ0 → γ ⊂ Rd+1. The overline notation for Γ0 is to emphasize the piecewise

affine nature of the surface. If Γ0 =
⋃F
i=1 Γ

i

0 is made up of F polyhedral faces Γ
i

0, i = 1, . . . , F , we

denote by P i
0 : Γ

i

0 → Rd+1 the restriction of P0 to Γ
i

0. The macro-elements Γ
i

0 induce a partition

{γi}Fi=1 of γ upon setting

γi := P i
0(Γ

i

0).

This non-overlapping decomposition allows for piecewise smooth surfaces γ with possible kinks

aligned with the decomposition {γi}Fi=1. We assume that the macro-elements are simplices, i.e.

there exists a closed reference simplex Ω ⊂ Rd and a mapping X i
0 : Rd → Rd+1 such that

Γ
i

0 = X i
0(Ω).

We define χi := P i
0 ◦X

i

0 : Ω→ γi to be the mapping from the reference simplex to a member

γi of the partition of γ which is also bi-Lipschitz, i.e. there exists a constant L ≥ 1 such that for

1 ≤ i ≤ F

L−1|x̂− ŷ| ≤ |χi(x̂)− χi(ŷ)| ≤ L|x̂− ŷ|, ∀x̂, ŷ ∈ Ω,

which implies

L−1|w| ≤ |∇̂χi(x̂)w| ≤ L|w|, ∀w ∈ Rd.

We also note that a function vi : γ → R uniquely defines two other functions v̂i : Ω → R and

vi : Γ
i

0 → R

v̂i(x̂) = vi(χi(x̂)) ∀x̂ ∈ Ω and vi(x) = vi(P0(x)) ∀x ∈ Γ
i

0.

In fact, given any of the functions vi, v̂i, or vi the other two are automatically and uniquely de-

fined. Throughout this paper we will drop the superscript and denote all three functions by v. The

meaning should be clear from context.
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3.1.2 Finite Element Spaces and Surface Approximations

The partition of Γ0 into macro-elements creates a conforming triangulation of Γ0 which we will

denote by Γ
i

0. We denote the class of conforming meshes generated by successive bisections of T 0

as T. A triangulation T ∈ T produces triangulations of F copies of Ω and a piecewise polynomial

approximation Γ of γ. Any number of conforming graded bisections of each macro-element Γ
i

0

generate via (X i
0)−1 a partition of the local parametric domain Ω ⊂ Rd denoted T̂ i(Ω) or T̂ i for

short.

Let n ≥ 1 and V̂i := V(T̂ i) denote the finite element space of globally continuous piecewise

polynomials of degree≤ n subordinate to the partition T̂ i. Let IT i : C0(Ω)→ V̂i be the Lagrange

interpolation operator. We shall also denote the componentwise Lagrange interpolant operator as

IT i : (C0(Ω))d → (V̂i)d. We define

X i
T i := IT iχ

i Γi := X i
T i(Ω) T i := {T := X i

T i(T̂ ) : T̂ ∈ T̂ i}

to be the piecewise polynomial interpolations of χi, γi, and the associated mesh. The global

parametric space denoted ΩF consists of F copies of Ω. Its subdivision is denoted T̂ and defined

as

T̂ :=
F⋃
i=1

T̂ i.

Each triangulation T ∈ T uniquely determines T̂. This allows us to define the forest

T̂ := T(T̂0) := {T̂ : T ∈ T}.

It should be noted that T̂ does not necessarily correspond to F copies of the same forest, but

rather F different compatible forests. The bisection rule is governed by the topology of T 0 and

dictates which initial bisection of each separate Ω is performed. Refinement of a macro-element

in T 0 induces a partition of its boundary which must be compatible with refinements of adjacent
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macro-elements. The global subdivision T is given by

T :=
F⋃
i=1

T i

and the corresponding forest is

T := T(T0) := {T : T ∈ T}.

It should be noted that T0 = T 0 only for polynomials of degree n = 1. The global polynomial

surface and parameterization XT of Γ are given by

Γ :=
⋃
T∈T

T, XT = {X i
T i}Fi=1.

We say that (T ,Γ) is a mesh-surface approximation pair when T ∈ T and Γ = ΓT . For a

subdivision T ∈ T we denote by ST the set of interior faces.

We define the two finite element spaces on Γ:

V(T ) := {V ∈ C0(Γ) : V |Γi is the lift of some V̂ i ∈ V̂i via X i
T i}

and

V#(T ) := {V ∈ V(T ) : V = 0 on ∂Γ or
∫

Γ

V = 0 if ∂Γ = ∅}.

The refinement procedure consists of bisecting elements in T 0 and propagating its effects on

T̂ and T via the mappings X−1
0 and XT ◦X−1

0 , respectively. For T , T ∗ ∈ T, we use the notation

T ∗ ≥ T to mean that T ∗ is a conforming refinement of T . Given two subdivisions T , T∗ ∈ T, we

write T∗ ≥ T to indicate that T ∗ ≥ T . It should be noted that given T , T∗ ∈ T with T∗ ≥ T , the

finite element space V(T ) is not a subspace of V(T∗) since the associated surface approximations Γ

and Γ∗ do not match. Fortunately, we still have the nested property V(T̂ i) ⊂ V(T̂ i∗ ) for 1 ≤ i ≤ F .
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The three different subdivisions T , T̂ , and T have various uses. T is the triangulation on the

flat surface and drives the refinement procedure; T̂ is the triangulation on Ω and used to evaluate

such quantities as oscillation and the geometric estimator; T is made of the curved faces that define

Γ = ΓT where the approximate eigenvalue problem is solved.

3.1.3 Shape Regularity and Geometric Estimators

Definition 3.1 (Shape regularity). We say that the class of conforming meshes T is shape regular

if there is a constant C0 only depending on T 0, such that T̂ ∈ T̂, and all i = 1, . . . , F ,

C−1
0 |x̂− ŷ| ≤ |X i

T i(x̂)−X i
T i(ŷ)| ≤ C0|x̂− ŷ| ∀x̂, ŷ ∈ T̂ , ∀T̂ ∈ T̂ i. (3.2)

It should be noted that (3.2) also implies

C−1
0 |w| ≤ |∇̂X i

T i(x̂)w| ≤ C0|w| ∀w ∈ Rd.

We define the elementwise geometric error estimator to be

ζT i(γ, T ) := ‖∇̂(χi −X i
T i)‖L∞(T̂ ) = ‖∇̂(χi − IT iχi)‖L∞(T̂ )

and the corresponding global geometric error estimator to be

ζT (γ) := max
i=1,...,F

max
T∈T i

ζT i(γ, T ). (3.3)

We will need the following two Lemmas about ζT (γ) from [35].

Lemma 3.2 (Quasi-monotonicity of the geometric estimator (Lemma 2.3 of [35])). There exists

a constant B0 > 1 solely dependent on T 0, the polynomial degree k used to construct Γ, and the

dimension d such that

ζT∗(γ) ≤ B0ζT (γ) (3.4)
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for any T∗, T ∈ T with T∗ ≥ T . This bound holds elementwise as well.

Lemma 3.3 (Shape regularity (Lemma 2.4 of [35])). The forest T = T(T0) is shape-regular with

constant C0 = 2L provided

ζT0(γ) ≤ 1

2B0L

with L ≥ 1 the non-degeneracy constant.

3.1.4 The Laplace-Beltrami Operator

We now introduce the basic notions from differential geometry that will be necessary for the

remainder of the paper. Let T ∈ R(n+1)×n be the matrix

T := [∂̂1χ, · · · , ∂̂nχ].

The first fundamental form of γ is the symmetric positive-definite matrix G ∈ Rn×n defined by

G := (∂̂iχ
T ∂̂jχ)1≤i,j≤d = TTT.

We define D to be the matrix satisfying

∇γv = ∇̂vD.

The inverse of G can be expressed as G−1 = DDT . We define the measure on γ to be

q :=
√

det G.

We denote the measure on subfaces of χ(T̂ ) ∈ χ(T̂ ) by qs. We denote the unit normal vector of

γ as n. We denote the analogues of G, D, q, qs, and n on Γ by appending a Γ subscript. When
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χ ∈ C2(Ω) and v ∈ H2(γ), we have

∆γv :=
1

q
d̂iv(q∇̂vG−1).

In this case we also have the integration by parts formula

∫
γ

∇γw∇γv dσ =

∫
γ

−∆γwv dσ +

∫
∂γ

(∇γw · n)v d(∂γ).

3.1.5 Variational Formulation and Galerkin Method

We define the space H1(γ) to be

H1(γ) :=

{
v ∈ L2(γ) : ∇γv

i ∈ [L2(γi)]d+1, vi = vj on γi ∩ γj, 1 ≤ i, j ≤ F

}
,

and the space H1
#(γ) to be

H1
#(γ) :=

{
v ∈ H1(γ) :

∫
γ

v dσ = 0

}
.

We define the bilinear form and L2 inner product on γ to be:

a(u, v) :=

∫
γ

∇γu∇γv dσ and m(u, v) :=

∫
γ

uv dσ

respectively. The weak formulation of (3.1) is then: Find an eigenpair (u, λ) ∈ H1
#(γ)× R+ such

that

a(u, v) = λm(u, v) ∀v ∈ H1
#(γ), (3.5)

where the eigenvalues satisfy 0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . . We define the bilinear form and L2

inner product on Γ to be:

A(u, v) :=

∫
Γ

∇Γu∇Γv dΣ and M(u, v) :=

∫
Γ

uv dΣ
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respectively. The corresponding finite element problem associated with (3.5) is: Find an eigenpair

(U,Λ) ∈ V#(Γ)× R+ such that

A(U, V ) = ΛM(U, V ) ∀V ∈ V#(Γ). (3.6)

3.1.6 Eigenvalue Clusters

We now define what it is to be an eigenvalue cluster as well as various projection operators

essential to our analysis. Let p ≥ 1, N ≥ 0 and

λp−1 < λp and λp+N < λp+N+1. (3.7)

We define the set of eigenvalues λi associated with the index set

J := {p, ..., p+N}

to be an eigenvalue cluster. We denote by {ui}∞i=1 a corresponding orthonormal basis (with respect

to m(·, ·)) of H1
#(γ). We denote the span of the FEM eigenfunctions {Uj}j∈J associated with the

eigenvalue cluster with index set J as

W(J) := span{Uj}j∈J . (3.8)

We define the Galerkin projection operator R : H1(Γ) → V#(Γ) with respect to the discrete

bilinear form as the operator satisfying:

A(u, V ) = A(Ru, V ) ∀V ∈ V#(Γ).

We define the L2-projection P : L2(Γ)→W(J) as the operator satisfying:

M(u, V ) = M(Pu, V ) ∀V ∈W(J). (3.9)
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We define the Z projection operator as:

Z := PR. (3.10)

It should be noted that Z satisfies:

A(u, V ) = A(Zu, V ) ∀V ∈W(J) (3.11)

as seen in [1].

We next present Lemma 3.4 which is the surface finite element analogue of Lemma 2.2 of [23].

Lemma 2.2 of [23] gives an algebraic identity relating Zu to λPu in terms of the bilinear form and

L2 inner product on flat domains. Our version is similar, but the effect of using an approximate

surface manifests itself in the form of extra geometric consistency terms.

Lemma 3.4 (Algebraic Identity). Let {(uj, λj)}j∈J be the set of eigenpairs associated with a clus-

ter that satisfies (3.5). Let W(J), P, and Z be defined as in (3.8), (3.9), and (3.10). Then for any

exact eigenpair (u, λ) ∈ H1
#(γ)× R+ associated with the cluster, we have

A(Zu, V ) = λM(Pu, V ) + [A(u,PV )− a(u,PV )] + λ[m(u,PV )−M(u,PV )] ∀V ∈ V(Γ).

(3.12)

Proof. Noting that Zu =
∑

j∈JM(Ru, Uj)Uj =
∑

j∈J
A(Ru,Uj)

Λj
Uj =

∑
j∈J

A(u,Uj)

Λj
Uj , we get the
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following:

A(Zu, V ) = A(
∑
j∈J

A(u, Uj)

Λj

Uj, V ) =
∑
j∈J

1

Λj

A(u, Uj)A(Uj, V )

=
∑
j∈J

(λM(u, Uj) + [A(u, Uj)− λM(u, Uj)])M(Uj, V )

= λM(Pu, V ) +
∑
j∈J

[A(u, Uj)− a(u, Uj) + λm(u, Uj)− λM(u, Uj)]M(Uj, V )

= λM(Pu, V ) + [A(u,PV )− a(u,PV )] + λ[m(u,PV )−M(u,PV )].

3.1.7 Geometric Error and Estimator

We now elaborate on the relationship between the geometric estimator defined in (3.3) and the

geometric consistency errors. Following [35], we express the difference between the bilinear forms

as ∫
Γ

∇Γv∇Γw dΣ−
∫
γ

∇γv∇γw dσ =

∫
γ

∇γvEΓ∇γw dσ ∀v, w ∈ H1(γ),

where EΓ ∈ R(n+1)×(n+1) stands for the error matrix

EΓ :=
1

q
T(qΓG−1

Γ − qG
−1)TT .

The following lemma shows that if the initial mesh T0 is sufficiently refined as measured by ζ , then

the difference of the bilinear forms is bounded by the geometric estimator ζ .

Lemma 3.5 (Corollary 5.1 of [44]). If ζT0(γ) satisfies

ζT0(γ) .
1

6B0L3
, (3.13)

then we have for T ∈ T,

‖EΓ‖L∞(T̂ ) . ζT (γ, T ) ∀T ∈ T . (3.14)
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The next lemma from [35] states that all other forms of geometric consistency errors we will

encounter are bounded by the geometric estimator ζ .

Lemma 3.6 (Geometric Consistency Error Bounds (Lemma 4.1 of [35])). If ζT0(γ) satisfies (3.13),

then the matrices G and GΓ have eigenvalues in the interval [L−2, L2] and [1
2
L−2, 3

2
L2], respec-

tively. Moreover, the forest T is shape regular, L−n . q, qΓ . Ln, and for T ∈ T

‖q − qΓ‖L∞(T̂ ) + ‖qs − qsΓ‖L∞(∂T̂ ) + ‖ν − νΓ‖L∞(T̂ )

+ ‖G−GΓ‖L∞(T̂ ) + ‖D−DΓ‖L∞(T̂ ) . ζT (γ, T ) ∀T ∈ T
(3.15)

where we recall that Γ = ΓT .

It follows from (3.15) that the difference of the L2 inner products satisfies

∫
Γ

vw dΣ−
∫
γ

vw dσ . ζT (γ)‖v‖L2(γ)‖w‖L2(γ).

Lemma 3.7 (Equivalence of norms (Lemma 4.2 of [35])). If ζT0(γ) satisfies (3.13), then the fol-

lowing equivalence of norms holds for all T ∈ T with constants depending on T0 and L:

‖v‖L2(T̃ ) ≈ ‖v‖L2(T ) ≈ ‖v‖L2(T̂ ), |v|H1(T̃ ) ≈ |v|H1(T ) ≈ |v|H1(T̂ ) ∀T ∈ T , (3.16)

where T̂ = χ−1
T (T ) and T̃ = χ(T̂ ). It follows that the equivalence of norms holds globally.

Lemma 3.8. Let Z and P be the projection operators onto W(J) defined in (3.9) and (3.10). Let

v ∈ H1(γ) and V ∈ V(Γ), then

‖∇γZv‖L2(γ) . ‖∇γv‖L2(γ) (3.17)

‖∇γPV ‖L2(γ) . ‖∇γV ‖L2(γ) (3.18)

‖Pv‖L2(γ) . ‖v‖L2(γ). (3.19)
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Proof. Inequality (3.17) follows from (3.16) and (3.11):

‖∇γZv‖2
L2(γ) . ‖∇ΓZv‖2

L2(Γ) = A(Zv,Zv) = A(v,Zv)

≤ ‖∇Γv‖L2(Γ)‖∇ΓZv‖L2(Γ) . ‖∇γv‖L2(γ)‖∇γZv‖L2(γ).

Inequality (3.18) follows from (3.16), the definition of P, and eigenfunction properties:

‖∇γPV ‖2
L2(γ) . ‖∇ΓPV ‖2

L2(Γ) = A(PV,PV ) = A(
∑
j∈J

M(V, Uj)Uj,PV )

=
∑
j∈J

M(V, Uj)A(Uj,PV ) =
∑
j∈J

M(V, Uj)ΛjM(Uj,PV )

=
∑
j∈J

M(V, Uj)ΛjM(Uj, V ) =
∑
j∈J

M(V, Uj)A(Uj, V )

= A(
∑
j∈J

M(V, Uj)Uj, V ) = A(PV, V ) . ‖∇ΓPV ‖L2(Γ)‖∇ΓV ‖L2(Γ)

. ‖∇γPV ‖L2(γ)‖∇γV ‖L2(γ).

Inequality (3.19) follows from the fact that P is an L2-projection with respect to L2(Γ):

‖Pv‖L2(γ) . ‖Pv‖L2(Γ) ≤ ‖v‖L2(Γ) . ‖v‖L2(γ).

3.1.8 Regularity of Solutions on C1,α Surfaces

We now prove that weak solutions to

−∆γu = f on piecewise C1,α globally W 1,∞ surfaces have more than H1 regularity. The main

result of this subsection is the following theorem.

Theorem 3.9 (Regularity of u). Let γ be a piecewise C1,α globally W 1,∞ d-dimensional closed

surface in Rd+1. Let f ∈ L2(γ). Let u ∈ H1(γ) solve −∆γu = f in a weak sense subject to
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∫
γ
u dσ = 0. Then there exists some s ≤ α such that for all s ∈ [0, s] we have

‖∇γu‖Hs(γ) . ‖f‖L2(γ).

Remark 3.10. We note that in contrast to our regularity result in Theorem 3.9, it was recently

shown in Lemma 4 of [49] that if γ satisfies the stronger assumption of being globally W 2
p (which

embeds into C1,α for 0 < α = 1− d
p
) then the solution to −∆γu = f is H2 for f ∈ L2(γ).

In order to prove Theorem 3.9 we require some results from [50]. Let ΩF ⊂ Rd be a flat

domain. Define A : H1
0 (ΩF )→ H−1(ΩF ) by

〈Au, v〉H−1(ΩF ),H1
0 (ΩF ) :=

∫
ΩF

E∇u∇v dΩF ∀v ∈ H1
0 (ΩF )

where E ∈ L∞(ΩF ,Cd×d) denotes a matrix-valued function which is assumed to be uniformly

positive definite with multiplier property

Ef ∈ Hs0(ΩF ) for all f ∈ Hs0(ΩF ) with some s0 ∈ (0, 1/2).

The results of [50] address the regularity of the weak solution to the problem with flat domain ΩF

and data f ∈ H−1(ΩF ): Find u ∈ H1
0 (ΩF ) such that

〈Au, v〉H−1(ΩF ),H1
0 (ΩF ) = 〈f, v〉H−1(ΩF ),H1

0 (ΩF ) ∀v ∈ H1
0 (ΩF ). (3.20)

The following theorem is a reformulation of Theorem 3 of [50] for the weak problem in (3.20).

It is also the flat domain version of Theorem 3.9.

Theorem 3.11 (Theorem 3 of [50]). Let ΩF be a flat domain of Rd. There exists some s ∈ (0, s0),

depending on ΩF ⊂ Rd, the boundary ∂ΩF , and E, such that for all s ∈ [0, s] and u ∈ H1
0 (ΩF )

70



with Au ∈ Hs−1(ΩF ) one has ∇u ∈ Hs(ΩF ) and

‖∇u‖Hs(ΩF ) ≤ C0

(
‖∇u‖L2(ΩF ) + ‖Au‖Hs−1(ΩF )

)
,

with some constant C0 ∈ (0,∞) independent of s and u.

In addition to Theorem 3.11 we will need the following two lemmas to prove Theorem 3.9.

Lemma 3.12 (Lemma 1 of [50]). Let ΩF ⊂ Rd be a Lipschitz domain and let s ∈ (0, 1
2
]. Then

there exists a constant Cs ∈ (0,∞) such that

∣∣∣∣∫
ΩF

w∇g dΩF

∣∣∣∣ ≤ Cs‖w‖Hs(ΩF )‖g‖H1−s(ΩF )

for all vector fields w ∈ Hs(Ω,Cd) and functions g ∈ H1(Ω).

Lemma 3.13 (Lemma 2 of [50]). Let ΩF ⊂ Rd be a Lipschitz domain and let s ∈ (0, 1
2
]. Assume

further that the function h : Rd → C has the form

h =
n∑
k=1

χkhk,

where the bounded functions hk ∈ Cα(Rd) are Holder continuous for α > s, and the χk are

characteristic functions for Lipschitz domains in Rd. Then

gh ∈ Hs(ΩF ) for all g ∈ Hs(ΩF )

Proof of Theorem 3.9. Let {Un}Nn=1 be a finite covering of γ with charts {ϕn}Nn=1 and let {ψn}Nn=1

form a partition of unity subordinate to {Un}Nn=1. For u, v ∈ H1
0 (γ) we have

∫
γ

∇γu∇γv dσ =
N∑
n=1

∫
γ

∇γ(ψnu)∇γv dσ =
N∑
n=1

∫
Un
∇γ(ψnu)∇γv dσ.
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Noting that the presence of ψn in the integrands makes integrals over a single patch equal to

integrals over all of γ, we then have

∫
Un
∇γ(ψnu)∇γv dσ =

∫
γ

∇γu∇γ(ψnv) dσ −
∫
γ

(∇γu∇γψn)v dσ +

∫
γ

(∇γv∇γψn)u dσ

=

∫
γ

f(ψnv) dσ −
∫
γ

(∇γu∇γψn)v dσ +

∫
γ

(∇γv∇γψn)u dσ.

(3.21)

We now map the integral (3.21) from Un to a flat Lipschitz domain Ωn
F := ϕ−1

n (Un) ⊂ Rd. Let

V ∈ H1
0 (Ωn

F ) and Ṽ := V ◦ ϕ−1
n ∈ H1

0 (Un). Then

∫
Un
∇γ(ψnu)∇γṼ dσ =

∫
ΩnF

∇
[
(ψn ◦ ϕn)(u ◦ ϕn)

]
G−1∇V

√
| det(G)| dΩn

F .

We define An : H1
0 (Ωn

F )→ H−1(Ωn
F ) to be the operator satisfying:

〈AnU, V 〉H−1(ΩnF ),H1
0 (ΩnF ) =

∫
ΩnF

∇UG−1∇V
√
| det(G)| dΩn

F ∀V ∈ H1
0 (Ωn

F ).

By the regularity of u, ψn, and ϕn we have [(ψn ◦ ϕn)(u ◦ ϕn)] ∈ H1
0 (Ωn

F ). We now prove
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An[(ψn ◦ϕn)(u◦ϕn)] ∈ Hs−1(Ωn
F ) in order to apply Theorem 3.11. From equation (3.21) we have

〈An[(ψn ◦ ϕn)(u ◦ ϕn)], V 〉H−1(ΩnF ),H1
0 (ΩnF ) = 〈f, ψnṼ 〉H−1(γ),H1

0 (γ) −
∫
γ

(∇γu∇γψn)Ṽ dσ

+

∫
γ

(∇γṼ∇γψn)u dσ

= 〈f, ψnṼ 〉H−1(γ),H1
0 (γ) −

∫
Un

(∇γu∇γψn)Ṽ dσ

+

∫
Un

(∇γṼ∇γψn)u dσ

≤ |〈f, ψnṼ 〉H−1(Un),H1
0 (Un)|+

∣∣∣∣∫
Un

(∇γu∇γψn)Ṽ dσ

∣∣∣∣
+

∣∣∣∣∣
∫

ΩnF

[
∇VG−1∇(ψn ◦ ϕn)

]
(u ◦ ϕn)

√
| det(G)| dΩn

F

∣∣∣∣∣
= I1 + I2 + I3.

Noting that 0 ≤ ψn ≤ 1, we have

I1 := |〈f, ψnṼ 〉H−1(Un),H1
0 (Un)| =

∣∣∣∣∫
Un
fψnṼ dσ

∣∣∣∣ ≤ ‖ψnf‖L2(γ)‖Ṽ ‖L2(γ) ≤ ‖f‖L2(γ)‖Ṽ ‖L2(Un)

= ‖f‖L2(γ)

√∫
ΩnF

V 2
√
| det(G)| dx ≤ ‖f‖L2(γ)

√
‖
√
| det(G)|‖L∞(γ)‖V ‖L2(ΩnF )

. ‖f‖L2(γ)‖V ‖Ha(ΩnF ).

with 0 ≤ a ≤ 1 and the boundedness of
√
| det(G)| owing to ϕn ∈ W 1,∞(Ωn). Using similar

arguments to those used to bound I1, we get the following for I2:

I2 :=

∣∣∣∣∫
Un

(∇γu∇γψn)Ṽ dσ

∣∣∣∣ ≤ ‖∇γψn‖L∞(γ)‖∇γu‖L2(γ)‖Ṽ ‖L2(Un)

≤
√∥∥∥√| det(G)|

∥∥∥
L∞(γ)

‖∇γψn‖L∞(γ)‖∇γu‖L2(γ)‖V ‖Ha(ΩnF )

. ‖f‖L2(γ)‖V ‖Ha(ΩnF ).

We now bound I3 by applying Lemma 3.12 with g = V and
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w = G−1∇(ψn◦ϕn)(u◦ϕn)
√
| det(G)| and noting that in w the Cα terms are Sobolev multipliers

of Hs(Ωn
F ) to get

I3 ≤ Cs

∥∥∥G−1∇(ψn ◦ ϕn)(u ◦ ϕn)
√
| det(G)|

∥∥∥
Hs(ΩnF )

‖V ‖H1−s(ΩnF )

. ‖u‖H1(γ)‖V ‖H1−s(ΩnF )

. ‖f‖L2(γ)‖V ‖H1−s(ΩnF ).

Here we have used that w ∈ Hs(Ωn
F ), which we justify as follows. Since G is constructed from the

derivatives of piecewise C1,α maps and GG−1 = 1, we have that both G and G−1 are piecewise

Cα. Since G is a Riemannian metric, it is positive definite. Thus
√
| det(G)| is piecewise Cα as

well. By the definition of ψn, we have that ψn ◦ ϕn ∈ C∞. Finally, since ϕn ∈ W 1,∞(Ωn
F ) and

u ∈ H1
0 (γ), we have that u ◦ ϕn ∈ H1(Ωn

F ). Noting that
√
| det(G)|G−1 is of the same form as h

in Lemma 3.13, we can apply Lemma 3.13 to w to get w =
√
| det(G)|G−1∇(ψn ◦ϕn)(u ◦ϕn) ∈

Hs(Ωn
F ) for s ∈ (0,min(1

2
, α)].

Combining the bounds on I1, I2, and I3 and noting that the regularity of V is limited by that of

I3 then gives

〈An[(ψn ◦ ϕn)(u ◦ ϕn)], V 〉H−1(ΩnF ),H1
0 (ΩnF ) . ‖f‖L2(γ)‖V ‖H1−s(ΩnF ), s ∈ (0,min(1/2, α).

By Theorem 3.11 we then have

∇[(ψn ◦ ϕn)(u ◦ ϕn)] ∈ Hsn(Ωn
F )

for each Ωn
F . We now map everything back to γ. It is well known from differential geometry that

(∇γv)|Un = ∇(v ◦ ϕn)G−1(∇ϕn)T ,

where on Ωn
F we have G = (∇ϕn)T (∇ϕn). Taking v = ψnu, we know ∇(v ◦ ϕn) ∈ Hs(Ωn

F ).
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Noting that G and ∇ϕn are piecewise Cα and applying Lemma 3.13 then gives

∇Un(ψnu) ∈ Hsn(Un).

Since (ψnu)|∂Un = 0, we can extend by 0 to all of γ to get ∇Un(ψnu) ∈ Hsn(γ). Let s0 =

minn{sn}Nn=1. Exploiting the linearity of∇γ and stitching the patches together then gives

N∑
n=1

∇γ(ψnu) = ∇γ(
N∑
n=1

ψnu) = ∇γu ∈ Hs0(γ) and ‖∇γu‖Hs(γ) . ‖f‖L2(γ).

3.1.9 A Priori Estimates

We will need the following lemma which is a modification of Theorem 4.2 from [1]. We

assume lower surface regularity than that of [1] and thus use a different geometric estimator. We

bound the geometric consistency errors of Theorem 4.2 of [1] with the geometric estimator (3.3)

rather than a power of h since geometric consistency errors in the AFEM algorithm are controlled

through the geometric estimator. The steps of the proof are essentially the same and we do not

repeat them here.

Lemma 3.14 (L2 Eigenfunction Bound). Let γ be a piecewise C1,α globally W 1,∞ surface. Given

a mesh of maximum mesh size H0 with H0 sufficiently small so that

D(J) := max
`∈J

max
j /∈J

∣∣∣∣ λ`
Λj − λ`

∣∣∣∣ <∞ (H1)

and an eigencluster J with eigenpairs {(ui, λi)}i∈J , fix i ∈ J . Then the following bound holds:

‖ui −Pui − ui −Pui‖L2(γ) . ‖ui − Zui − ui − Zui‖L2(γ)

. (1 +D(J))‖ui −Rui − ui −Rui‖L2(γ) + ζT (γ).
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We now give an a priori estimate for ‖ui − Rui − ui −Rui‖L2(γ) in terms of the maximum

mesh size H0. The following lemma can be viewed as a generalization to C1,α surfaces of the L2

estimate in Theorem 3.1 of [32].

Lemma 3.15 (L2 A Priori Estimate). Let γ be a piecewise C1,α globally W 1,∞ surface. Given a

mesh of maximum mesh sizeH0 satisfying (H1) and an eigencluster J with eigenpairs {(ui, λi)}i∈J ,

fix i ∈ J . Then the following bound holds:

‖ui −Rui − ui −Rui‖L2(γ) . Hs
0‖∇γ(ui −Rui)‖L2(γ)

Proof. Let e := ui −Rui. Let z be the solution to the dual problem: Find z ∈ H1
#(γ) such that

a(v, z) = m(e− e, v) ∀v ∈ H1
#(γ).

Since ‖∇γz‖2
L2(γ) = a(z, z) = m(e − e, z) ≤ ‖e − e‖L2(γ)‖z‖L2(γ), we also have ‖∇γz‖L2(γ) .

‖e− e‖L2(γ). Using this bound on ‖∇γz‖L2(γ), Galerkin orthogonality, equivalence of norms, and

the results of Theorem 3.9, we have

‖e− e‖2
L2(γ) = a(e, z) = A(e, z) + (a− A)(e, z) = A(e, z − Ihz) + (a− A)(e, z)

. ‖∇Γe‖L2(Γ)‖z − Ihz‖L2(Γ) + ζT (γ)‖∇γe‖L2(γ)‖∇γz‖L2(γ)

. ‖∇γe‖L2(γ)‖z − Ihz‖L2(γ) + ζT (γ)‖∇γe‖L2(γ)‖∇γz‖L2(γ)

. ‖∇γe‖L2(γ)h
s‖∇γz‖Hs(γ) + ζT (γ)‖∇γe‖L2(γ)‖∇γz‖L2(γ)

. ‖∇γe‖L2(γ)h
s‖e− e‖L2(γ) + ζT (γ)‖∇γe‖L2(γ)‖e− e‖L2(γ)

(3.22)

which gives

‖ui −Rui − ui −Rui‖L2(γ) . (Hs
0 + ζT (γ))‖∇γ(ui −Rui)‖L2(γ).
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Recalling that ζT (γ) = maxi=1,...,F maxT∈T i ‖∇̂(χi − IT iχi)‖L∞(T̂ ), and applying standard argu-

ments gives ζT (γ) . Hα
0 |χ|W 1+α,∞(Ω). By Theorem 3.9 we have that α ≤ s, so

‖ui −Rui − ui −Rui‖L2(γ) . Hs
0‖∇γ(ui −Rui)‖L2(γ).

Combining Lemma 3.14 with 3.15 yields the following corollary.

Corollary 3.16 (A Priori Estimates). Given a mesh of maximum mesh size H0 satisfying (H1) and

an eigencluster J with eigenpairs {(ui, λi)}i∈J , fix i ∈ J . Then for any α ∈ R, the following

bound holds:

‖ui −Pui − ui −Pui‖L2(γ) . ‖ui − Zui − ui − Zui‖L2(γ)

. (1 +D(J))Hs
0‖∇γ(ui − Zui)‖L2(γ) + ζT (γ)

(3.23)

Lemma 3.17 (H1 Eigenfunction Bound). Let γ be a piecewise C1,α globally W 1,∞ surface.

Given a mesh of maximum mesh size H0 satisfying (H1) and an eigencluster J with eigenpairs

{(ui, λi)}i∈J , fix i ∈ J . Then the following bound holds:

‖∇γ(ui − Zui)‖L2(γ) . (1 +D(J))‖∇γ(ui −Rui)‖L2(γ) + ζT (γ).

3.2 A Posteriori Error Analysis

3.2.1 Upper and Lower Bounds for Energy Error

In this section we introduce the computable and theoretical estimator for the eigenfunctions.

The FEM eigenpair (Uj,Λj)T , generated on the mesh T may not approximate the same eigenpair

as (Uj,Λj)T∗ for T∗ > T . The computable estimator’s dependence on (Uj,Λj) causes difficulty

in comparing estimators ηT and ηT∗ . The theoretical estimator approach, first introduced in [22]
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for flat domains, overcomes this comparison difficulty through the use of projection operators onto

W(J). Our analysis throughout the paper will be carried out using the theoretical estimator which

allows for comparison between finite element solutions on different meshes. We show that the

theoretical estimator is reliable and efficient. We also show that the two estimators are equivalent

up to geometric consistency errors and our results for the theoretical eigenfunction estimator are

indeed enough to prove optimality of the AFEM algorithm.

Given an FEM eigenpair (U,Λ) and a triangle T ∈ T , we define the computable local error

indicator ηT (Λ, U, T ) for the eigenpair as

ηT (Λ, U, T )2 := h2
T‖ΛU + ∆ΓU‖2

T + hT‖J∇ΓUK‖2
∂T ∀T ∈ T .

We define the computable estimator for the eigenpairs {(Uj,Λj)}j∈J of a cluster as

ηT (J, T )2 :=
∑
j∈J

ηT (Λj, Uj, T )2 ∀T ∈ T .

Let (u, λ) be an eigenpair of (3.5) associated with the cluster of eigenpairs {(uj, λj)}j∈J . Let Z

and P be the projection operators associated with the cluster. We now derive a theoretical residual

estimator for ‖∇γ(u − Zu)‖L2(γ) which will depend entirely on projections P and Z onto W(J)

rather than explicitly on {(Uj,Λj)}j∈J . We introduce the theoretical interior and jump residual

RT := λPu|T + ∆ΓZu|T , J∂T := {JS}S⊂∂T ∀T ∈ T ,

JS := ∇ΓZu+|Sn+
S +∇ΓZu−|Sn−S ∀S ∈ ST .

Let (u, λ) be an eigenpair associated with the cluster {(uj, λj)}j∈J and let v ∈ H1(γ). Our strategy

will be to express a(u − Zu, v) in terms of the computable bilinear form and L2 inner product on

Γ. This will result in the expected residual terms plus geometric consistency errors and a higher

order L2 projection error term which can be reabsorbed later on. Through standard manipulaitons
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we have

a(u− Zu, v) = λm(u, v)− a(Zu, v) = λm(u, v)− A(Zu, v) + [A(Zu, v)− a(Zu, v)]

= λm(u−Pu, v) + λm(Pu, v)− A(Zu, v) + [A(Zu, v)− a(Zu, v)]

= λm(u−Pu, v) + λM(Pu, v)− A(Zu, v)

+ λ[m(Pu, v)−M(Pu, v)] + [A(Zu, v)− a(Zu, v)] .

Adding and subtracting V ∈ V(Γ) and applying Lemma 3.4 to A(Zu, V ) then gives

a(u− Zu, v) = λm(u−Pu, v) + λM(Pu, v)− A(Zu, v − V )− A(Zu, V )

+ λ[m(Pu, v)−M(Pu, v)] + [A(Zu, v)− a(Zu, v)]

= λm(u−Pu, v) + λM(Pu, v)− A(Zu, v − V )

− λM(Pu, V )− [A(u,PV )− a(u,PV )]− λ[m(u,PV )−M(u,PV )]

+ λ[m(Pu, v)−M(Pu, v)] + [A(Zu, v)− a(Zu, v)]

= λm(u−Pu, v) + [λM(Pu, v − V )− A(Zu, v − V )]

+ [a(u,PV )− A(u,PV )] + [A(Zu, v)− a(Zu, v)]

+ λ[M(u,PV )−m(u,PV )] + λ[m(Pu, v)−M(Pu, v)].

After integration by parts, we then have

a(u− Zu, v) = λm(u−Pu, v) +
∑
T∈T

∫
T

RT (v − V ) dΣ−
∑
S∈ST

∫
S

JS(v − V ) dΣ

+ [a(u,PV )− A(u,PV )] + [A(Zu, v)− a(Zu, v)]

+ λ[M(u,PV )−m(u,PV )] + λ[m(Pu, v)−M(Pu, v)]

= I1 + I2 + I3 + I4 + I5 + I6 + I7.

(3.24)

Motivated by the above calculations, the higher order nature of I1, and the fact that I4 through I6
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are geometric consistency errors, we define the theoretical eigenfunction error indicator as

µT (λPu,Zu, T )2 := h2
T‖RT‖2

L2(T ) + hT‖J∂T‖2
∂T ∀T ∈ T ,

and the eigenfunction error indicator for the cluster {(uj, λj)}j∈J as

µT (J, T )2 :=
∑
j∈J

µT (λjPuj,Zuj, T )2 ∀T ∈ T .

We now show that the theoretical estimator is reliable. Similar to the reliability estimate in [23] for

flat domains, a higher order term of the form Hs
0‖∇γ(u− Zu)‖L2(γ) is present. This term may be

reabsorbed for H0 sufficiently small.

Theorem 3.18 (Reliability of Theoretical Estimator). Let H0 satisfy (H1). Let {(uj, λj)}j∈J be

an exact eigenvalue cluster indexed by J and satisfying the separation assumption (3.7). Let

(u, λ) ∈ {(uj, λj)}j∈J be any eigenpair associated with the cluster. Let ζT0(γ) satisfy (3.13)and

(T ,Γ) be a pair of mesh-surface approximations. Then there exist constants C1, B1, and K0

depending only on T0, the Lipschitz constant of γ, and λ, such that

‖∇γ(u− Zu)‖2
L2(γ) ≤ C1µT (λ, u)2 +B1ζT (γ)2 +K0H

2s
0 λ

2‖∇γ(u− Zu)‖2
L2(γ).

Proof. We begin by bounding the terms in (3.24) with v ∈ H1
#(γ). Throughout the proof we take

V to be the Scott-Zhang interpolant built on Γ and lifted to Γ. Noting that for v ∈ H1
#(γ) we have

that m(α, v) = 0 for α ∈ R, we compute

I1 :=

∫
γ

λ(u−Pu− α)v dσ ≤ λ‖u−Pu− α‖L2(γ)‖v‖L2(γ)

≤ λ‖u−Pu− α‖L2(γ)CF‖∇γv‖L2(γ)

. λHs
0‖∇γ(u− Zu)‖L2(γ)CF‖∇γv‖L2(γ) + λζT (γ)CF‖∇γv‖L2(γ).
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We now turn to bounding I2 and I3:

I2 :=
∑
T∈T

∫
T

RT (v − V ) dΣ =
∑
T∈T

‖RT‖L2(T )‖v − V ‖L2(T ) .

√∑
T∈T

h2
T‖RT‖2

L2(T )‖∇γv‖L2(γ),

I3 := −
∑
S∈ST

∫
S

JS(v − V ) dΣ .

√∑
S∈ST

hT‖JS‖2
L2(T )‖∇γv‖L2(γ)

Combining I2 and I3 and enforcing shape regularity gives

I2 + I3 .

√∑
T∈T

h2
T‖RT‖2

L2(T ) +

√∑
S∈ST

hT‖JS‖2
L2(T )

 ‖∇γv‖L2(γ)

The bounds for I4 through I7 follow from (3.14), (3.15), and Lemma 3.8

I4 :=

[∫
Γ

∇ΓZu∇T
Γv dΣ−

∫
γ

∇γZu∇T
γ v dσ

]
=

∫
γ

∇γZuEΓ∇T
γ v dσ

. ζT (γ)‖∇γZu‖L2(γ)‖∇γv‖L2(γ) . ζT (γ)‖∇γu‖L2(γ)‖∇γv‖L2(γ)

= ζT (γ)
√
λ‖∇γv‖L2(γ)

I5 :=

[∫
γ

∇γu∇γPV dσ −
∫

Γ

∇Γu∇ΓPV dΣ

]
=

∫
γ

∇γuEΓ∇T
γPV dσ

. ζT (γ)‖∇γu‖L2(γ)‖∇γPV ‖L2(γ) . ζT (γ)‖∇γu‖L2(γ)‖∇γV ‖L2(γ)

. ζT (γ)‖∇γu‖L2(γ)‖∇γv‖L2(γ) = ζT (γ)
√
λ‖∇γv‖L2(γ)

I6 :=

[∫
Γ

λuPV dΣ−
∫
γ

λuPV dσ

]
=
∑
T̂∈T̂

∫
T̂

λuPV (qΓ − q) dΣ̂

. λζT (γ)‖u‖L2(γ)‖PV ‖L2(γ) . λζT (γ)‖u‖L2(γ)‖V ‖L2(γ)

. λζT (γ)‖u‖L2(γ)‖v‖L2(γ) . λζT (γ)CF‖∇γv‖L2(γ)
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I7 :=

[∫
γ

λPuv dσ −
∫

Γ

λPuv dΣ

]
=
∑
T̂∈T̂

∫
T̂

λPuv(qΓ − q) dΣ̂

. λζT (γ)‖Pu‖L2(γ)‖v‖L2(γ) . λζT (γ)‖u‖L2(γ)‖v‖L2(γ)

≤ λζT (γ)‖u‖L2(γ)CF‖∇γv‖L2(γ) = λζT (γ)CF‖∇γv‖L2(γ).

The rest follows from taking α = u−Pu := m(u−Pu, 1) and applying Young’s inequality.

Before proving the efficiency bound, we introduce the oscillation for a single eigenpair (u, λ)

of the cluster {(uj, λj)}j∈J on a triangle T ∈ T :

OscT (λPu,Zu, T )2 := h2
T

∥∥∥(id− Π2
2n−2)

(
λPuqΓ + d̂iv(qΓ∇̂ZuG−1

Γ )
)∥∥∥2

L2(T̂ )

+ hT‖(id− Π2
2n−1)(q+

Γ ∇̂Zu+(G+
Γ )−1n+ + q−Γ ∇̂Zu−(G−Γ )−1)n−‖2

L2(∂T̂ )
,

(3.25)

where P and Z are the projection operators associated with the cluster.

Remark 3.19. It is possible to remove the qΓ term on λPu, but this comes at the cost of changing

the other terms in the definition of the oscillation. We choose this form for ease of comparison with

the oscillations involved in the definition of the approximation classes used in [35].

We now show that the theoretical estimator is efficient. Once again, like the reliability estimate,

a higher order term appears.

Theorem 3.20 (Efficiency). Let H0 satisfy (H1). Let {(uj, λj)}j∈J be an exact eigenvalue cluster

indexed by J and satisfying the separation assumption (3.7). Let (u, λ) ∈ {(uj, λj)}j∈J be any

eigenpair associated with the cluster. Let ζT0(γ) satisfy (3.13)and (T ,Γ) be a pair of mesh-surface

approximations. Then there exist constants C2, B1, and K0 depending only on T0, the Lipschitz

constant of γ, and λ, such that

C2µT (λPu,Zu)2 ≤ ‖∇γ(u− Zu)‖2
L2(γ) +OscT (λPu,Zu, γ)2 +B1ζT (γ)2

+K0H
2s+1
0 λ2‖∇γ(u− Zu)‖2

L2(γ)

(3.26)
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Proof. We begin by pulling the residual on a triangle T ∈ Γ back to the reference element T̂ :

‖RT‖L2(T ) =
∥∥∥(λPu+ q−1

Γ d̂iv(qΓ(∇̂Zu)G−1
Γ )
)√

qΓ

∥∥∥
L2(T̂ )

≤
∥∥∥∥ 1

qΓ

∥∥∥∥1/2

L∞(T̂ )

∥∥∥(λPuqΓ + d̂iv(qΓ(∇̂Zu)G−1
Γ )
)∥∥∥

L2(T̂ )

≤
∥∥∥∥ 1

qΓ

∥∥∥∥1/2

L∞(T̂ )

∥∥∥(id− Π2
2n−2)

(
λPuqΓ + d̂iv(qΓ(∇̂Zu)G−1

Γ )
)∥∥∥

L2(T̂ )

+

∥∥∥∥ 1

qΓ

∥∥∥∥1/2

L∞(T̂ )

∥∥∥Π2
2n−2

(
λPuqΓ + d̂iv(qΓ(∇̂Zu)G−1

Γ )
)∥∥∥

L2(T̂ )

.
∥∥RT −RT

∥∥
L2(T̂ )

+
∥∥RT

∥∥
L2(T̂ )

(3.27)

where Πp
m denotes the best Lp approximation operator onto the space Pm of polynomials of degree

≤ m and

RT := Π2
2n−2

(
λPuqΓ + q−1

Γ d̂iv(qΓ(∇̂Zu)G−1
Γ )
)

on T̂ and zero elsewhere. We now set out to bound ‖RT‖L2(T̂ ). Let φT be the standard bubble

function on T̂ given by the product of the barycentric coordinates on T̂ . Using the equivalence of

norms on different triangles (3.16) gives

‖RT‖2
L2(T̂ )

. ‖
√
φTRT‖2

L2(T̂ )
. ‖
√
φTRT‖2

L2(T ) =

∫
T

φT (RT −RT +RT )RT dΣ

. ‖
√
φT (RT −RT )‖L2(T )‖RT‖L2(T ) +

∫
T

RT (RTφT ) dΣ

. ‖
√
φT (RT −RT )‖L2(T̂ )‖RT‖L2(T̂ ) +

∫
T

RT (RTφT ) dΣ.

(3.28)

Using (3.24) with V = 0 and v = RTφT ∈ H1(γ), and noting that φT = 0 on ∂T we have

∫
γ

∇γ(u− Zu)∇γ(RTφT ) dσ = λ

∫
γ

(u−Pu)(RTφT ) dσ +

∫
Γ

RT (RTφT ) dΣ

+

[∫
Γ

∇ΓZu∇Γ(RTφT ) dΣ−
∫
γ

∇γZu∇γ(RTφT ) dσ

]
+ λ

[∫
γ

Pu(RTφT ) dσ −
∫

Γ

Pu(RTφT ) dΣ

]
,
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which reduces to∫
T̃

∇γ(u− Zu)∇γ(RTφT ) dσ = λ

∫
T̃

(u−Pu)(RTφT ) dσ +

∫
T

RT (RTφT ) dΣ

+

[∫
T

∇ΓZu∇Γ(RTφT ) dΣ−
∫
T̃

∇γZu∇γ(RTφT ) dσ

]
+ λ

[∫
T̃

Pu(RTφT ) dσ −
∫
T

Pu(RTφT ) dΣ

]
.

This then implies

∫
T

RT (RTφT ) dΣ ≤ λ‖u−Pu‖L2(T̃ )‖(RTφT )‖L2(T̃ )

+ ‖∇γ(u− Zu)‖L2(T̃ )‖∇γ(RTφT )‖L2(T̃ )

+

∣∣∣∣∫
T

∇ΓZu∇Γ(RTφT ) dΣ−
∫
T̃

∇γZu∇γ(RTφT ) dσ

∣∣∣∣
+ λ

∣∣∣∣∫
T̃

Pu(RTφT ) dσ −
∫
T

Pu(RTφT ) dΣ

∣∣∣∣ .
(3.29)

Noting that

‖(u−Pu)‖L2(T̃ ) ≤ ‖u−Pu− u−Pu‖L2(T̃ ) + ‖u−Pu‖L2(T̃ )

= ‖u−Pu− u−Pu‖L2(T̃ ) + |u−Pu||T̃ |1/2

. ‖u−Pu− u−Pu‖L2(T̃ ) + |u−Pu|hd/2T ,

we now bound |u−Pu|. Since u ∈ H1
#(γ), m(u, 1) = 0. We also know that since Pu ∈ V#(Γ),

M(Pu, 1) = 0. These mean 0 conditions then yield

u−Pu =
1

|γ|
m(u−Pu, 1) =

1

|γ|
m(u, 1)− 1

|γ|
m(Pu, 1) = − 1

|γ|
m(Pu, 1)

=
1

|γ|
(M −m)(Pu, 1)− 1

|γ|
M(Pu, 1) =

1

|γ|
(M −m)(Pu, 1) . ζT (γ)‖u‖L2(γ).
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Combining these results yields

‖(u−Pu)‖L2(T̃ ) . ‖u−Pu− u−Pu‖L2(T̃ ) + ζT (γ)‖u‖L2(γ)h
d/2
T . (3.30)

Combining the inequalities (3.30), (3.29), and (3.28) then yields

‖RT‖2
L2(T̂ )

. ‖
√
φT (RT −RT )‖L2(T̂ )‖RT‖L2(T̂ )

+ λ‖u−Pu− u−Pu‖L2(T̃ )‖(RTφT )‖L2(T̃ )

+ λζT (γ)‖u‖L2(γ)h
d/2
T ‖(RTφT )‖L2(T̃ ) + ‖∇γ(u− Zu)‖L2(T̃ )‖∇γ(RTφT )‖L2(T̃ )

+

∣∣∣∣∫
T

∇ΓZu∇Γ(RTφT ) dΣ−
∫
T̃

∇γZu∇γ(RTφT ) dσ

∣∣∣∣
+ λ

∣∣∣∣∫
T̃

Pu(RTφT ) dσ −
∫
T

Pu(RTφT ) dΣ

∣∣∣∣ .
Applying an inverse inequality yields

‖∇Γ(RTφT )‖L2(T ) . h−1
T ‖RTφT‖L2(T ) . h−1

T ‖RT‖L2(T ). (3.31)

Applying (3.31), equivalence of norms, and ‖
√
φT (RT −RT )‖L2(T̂ ) . ‖(RT −RT )‖L2(T̂ ) we get

‖RT‖2
L2(T̂ )

. ‖RT −RT‖L2(T )‖RT‖L2(T̂ ) + λ‖(u−Pu− u−Pu)‖L2(T̃ )‖RT‖L2(T̂ )

+ λζT (γ)‖u‖L2(γ)h
d/2
T ‖RT‖L2(T̂ ) + h−1

T ‖∇γ(u− Zu)‖L2(T̃ )‖RT‖L2(T̂ )

+

∣∣∣∣∫
T

∇ΓZu∇Γ(RTφT ) dΣ−
∫
T̃

∇γZu∇γ(RTφT ) dσ

∣∣∣∣
+ λ

∣∣∣∣∫
T̃

Pu(RTφT ) dσ −
∫
T

Pu(RTφT ) dΣ

∣∣∣∣
. ‖RT −RT‖L2(T )‖RT‖L2(T̂ ) + λ‖(u−Pu− u−Pu)‖L2(T̃ )‖RT‖L2(T̂ )

+ λζT (γ)‖u‖L2(γ)h
d/2
T ‖RT‖L2(T̂ ) + h−1

T ‖∇γ(u− Zu)‖L2(T̃ )‖RT‖L2(T̂ )

+ ζT (γ)‖∇γZu‖L2(T )h
−1
T ‖RT‖L2(T̂ ) + λζT (γ)‖Pu‖L2(T )‖RT‖L2(T̂ ).

(3.32)
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Combining (3.27) with (3.32) and equivalence of norms on triangles then gives

hT‖RT‖L2(T̂ ) . hT‖RT −RT‖L2(T ) + hTλ‖(u−Pu− u−Pu)‖L2(T̃ )

+ λζT (γ)‖u‖L2(γ)h
d/2+1
T + ‖∇γ(u− Zu)‖L2(T̃ )

+ ζT (γ)‖∇γZu‖L2(T̃ ) + hTλζT (γ)‖Pu‖L2(T̃ ).

(3.33)

Squaring (3.33), summing over the triangulation, and using the bound (3.23) gives

∑
T∈T

h2
T‖RT‖2

L2(T̂ )
.
∑
T∈T

h2
T‖RT −RT‖2

L2(T ) +
(
1 +H2+2s

0 λ2
)
‖∇γ(u− Zu)‖2

L2(γ)

+
(
h2
Tλ

2|γ|‖u‖2
L2(γ) + ‖∇γZu‖2

L2(γ) + h2
Tλ

2‖Pu‖2
L2(γ)

)
ζT (γ)2.

(3.34)

The jump terms follow in a similar manner

‖JS‖L2(S) =
∥∥∇ΓZu+|Sn+

S +∇ΓZu−|Sn−S
∥∥
L2(S)

=

∥∥∥∥(
q+

Γ

rΓ

∇̂Zu+(G+
Γ )−1n̂+ +

q−Γ
rΓ

∇̂Zu−(G−Γ )−1n̂−)
√
rΓ

∥∥∥∥
L2(Ŝ)

=

∥∥∥∥ 1
√
rΓ

∥∥∥∥
L∞(Ŝ)

∥∥∥∥q+
Γ ∇̂Zu+(G+

Γ )−1n̂+ + q−Γ ∇̂Zu−(G−Γ )−1n̂−
∥∥∥∥
L2(Ŝ)

.

∥∥∥∥(id− Π2
2n−1)

(
q+

Γ ∇̂Zu+(G+
Γ )−1n̂+ + q−Γ ∇̂Zu−(G−Γ )−1n̂−

)∥∥∥∥
L2(Ŝ)

+

∥∥∥∥Π2
2n−1

(
q+

Γ ∇̂Zu+(G+
Γ )−1n̂+ + q−Γ ∇̂Zu−(G−Γ )−1n̂−

)∥∥∥∥
L2(Ŝ)

. ‖JS − JS‖L2(Ŝ) + ‖JS‖L2(Ŝ),

where we define

J S := Π2
2n−1

(
q+

Γ ∇̂Zu+(G+
Γ )−1n̂+ + q−Γ ∇̂Zu−(G−Γ )−1n̂−

)

to be the L2 projection onto P2n−1(Ŝ) and extending it to the edge patch ωS by extending constantly

along the normals to Ŝ. Let φS be the standard bubble function on the edge patch ωS of S. We
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then have

‖J S‖2
L2(Ŝ)

≤ ‖
√
φSJ S‖2

L2(Ŝ)
. ‖
√
φSJ S‖2

L2(S) =

∫
S

φS(J S − JS + JS)J S dS

. ‖
√
φS(J S − JS)‖L2(Ŝ)‖J S‖L2(Ŝ) +

∫
S

JSJ SφS dS

(3.35)

Using (3.24) with V = 0 and v = J SφS gives

∫
γ

∇γ(u− Zu)∇γ(J SφS) dσ = λ

∫
γ

(u−Pu)(J SφS) dσ +

∫
Γ

RT (J SφS) dΣ

−
∫
S

JS(J SφS) dS

+

[∫
Γ

∇ΓZu∇Γ(J SφS) dΣ−
∫
γ

∇γZu∇γ(J SφS) dσ

]
+ λ

[∫
γ

Pu(J SφS) dσ −
∫

Γ

Pu(J SφS) dΣ

]
.

Rearranging terms and restricting to supports then gives

∫
S

JS(J SφS) dS = −
∫
ω̃S

∇γ(u− Zu)∇γ(J SφS) dσ + λ

∫
ω̃S

(u−Pu)(J SφS) dσ

+

∫
ωS

RT (J SφS) dΣ +

[∫
ωS

∇ΓZu∇Γ(J SφS) dΣ−
∫
ω̃S

∇γZu∇γ(J SφS) dσ

]
+ λ

[∫
ω̃S

Pu(J SφS) dσ −
∫
ωS

Pu(J SφS) dΣ

]
.

Applying Cauchy-Schwarz then gives:

∫
S

JS(J SφS) dS . ‖∇γ(u− Zu)‖L2(ω̃S)‖∇γ(J SφS)‖L2(ω̃S) + λ‖u−Pu‖L2(ω̃S)‖J SφS‖L2(ω̃S)

+ ‖RT‖L2(ωS)‖J SφS‖L2(ωS) + ζT (γ)‖∇γZu‖L2(ω̃S)‖∇γ(J SφS)‖L2(ω̃S)

+ λζT (γ)‖Pu‖L2(ω̃S)‖J SφS‖L2(ω̃S).
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Applying (3.30) on the patch ωS and standard arguments then give

∫
S

JS(J SφS) dS . ‖∇γ(u− Zu)‖L2(ω̃S)h
−1/2
T ‖(J S)‖L2(S)

+ λ‖u−Pu− u−Pu‖L2(ω̃S)‖J S‖L2(S)

+ ‖RT‖L2(ωS)‖J S‖L2(S) + ζT (γ)‖∇γZu‖L2(ω̃S)h
−1/2
T ‖J S‖L2(S)

+ λζT (γ)‖Pu‖L2(ω̃S)‖J S‖L2(S) + ζT (γ)‖u‖L2(γ)h
d/2
T ‖J S‖L2(S).

(3.36)

Using (3.36) in (3.35) just as we did when using (3.29) to handle (3.28) yields the result final

result.

We now show that the theoretical estimator satisfies a discrete reliability condition.

Theorem 3.21 (Discrete Reliability). LetH0 satisfy (H1). Let {(uj, λj)}j∈J be an exact eigenvalue

cluster indexed by J and satisfying the separation assumption (3.7). Let (u, λ) ∈ {(uj, λj)}j∈J be

any eigenpair associated with the cluster. Let ζT0(γ) satisfy (3.13). Given any pair (T∗,Γ∗), (T ,Γ)

of mesh-surface approximations with T ≤ T∗, letR := RT →T∗ ⊂ T be the set of elements refined

in T to create T∗. Let Z∗ and Z be the cluster projections associated with Γ∗ and Γ, respectively.

Then the following bound holds

‖∇γ(Z∗u− Zu)‖2
L2(γ) ≤ C1µT (λPu,Zu,R)2 +B1ζT (γ)2 + λ2K0‖P∗u−Pu‖2

L2(γ), (3.37)

with constants C1, B1 and K0 defined as in Theorem 3.18.

Proof. We use the shorthand E∗ = Z∗u − Zu. We also use the ∗ subscript throughout to de-

note quantities defined on Γ∗. We follow similar arguments to those used in the derivation of the

reliability estimate in Theorem 3.18, but with Γ∗ used in place of γ. For V ∈ V(T ) we have

A∗(Z∗u−Zu,E∗) = −A(Zu, V )−A(Zu,E∗ − V ) +A∗(Z∗u,E∗) + [A(Zu,E∗)−A∗(Zu,E∗)]

(3.38)
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We now apply (3.12) to A(Zu, V ) to get

A(Zu, V ) = λM(Pu, V ) + [A(u,PV )− a(u,PV )] + λ[m(u,PV )−M(u,PV )]. (3.39)

Combining (3.38) and (3.39) then yields:

A∗(Z∗u− Zu,E∗) = −λM(Pu, V ))− A(Zu,E∗ − V )

+ A∗(Z∗u,E∗)− [A(u,PV )− a(u,PV )]− λ[m(u,PV )−M(u,PV )]

+ [A(Zu,E∗)− A∗(Zu,E∗)]

= λM(Pu,E∗ − V ))− A(Zu,E∗ − V )

− [A(u,PV )− a(u,PV )]− λ[m(u,PV )−M(u,PV )]

+ [A(Zu,E∗)− A∗(Zu,E∗)] + A∗(Z∗u,E∗)− λM(Pu,E∗)).

(3.40)

We now apply (3.12) to A∗(Z∗u,E∗) to get

A∗(Z∗u,E∗) = λM∗(P∗u,E∗) + [A∗(u,P∗E∗)− a(u,P∗E∗)] + λ[m(u,P∗E∗)−M∗(u,P∗E∗)].

(3.41)
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Using (3.41) in (3.40) we then have

A∗(Z∗u− Zu,E∗) = λM(Pu,E∗ − V ))− A(Zu,E∗ − V )

− [A(u,PV )− a(u,PV )]− λ[m(u,PV )−M(u,PV )]

+ [A(Zu,E∗)− A∗(Zu,E∗)] + λ[M∗(P∗u,E∗)−M(Pu,E∗))]

+ [A∗(u,P∗E∗)− a(u,P∗E∗)] + λ[m(u,P∗E∗)−M∗(u,P∗E∗)]

= λM(P∗u−Pu,E∗)) + [λM(Pu,E∗ − V ))− A(Zu,E∗ − V )]

− [A(u,PV )− a(u,PV )]− λ[m(u,PV )−M(u,PV )]

+ [A(Zu,E∗)− A∗(Zu,E∗)] + λ[M∗(P∗u,E∗)−M(P∗u,E∗))]

+ [A∗(u,P∗E∗)− a(u,P∗E∗)] + λ[m(u,P∗E∗)−M∗(u,P∗E∗)].

(3.42)

We now follow the arguments given in the proof of Lemma 4.6 of [35] to bound λM(Pu,E∗−

V )) − A(Zu,E∗ − V ) in (3.42). We first construct an approximation V ∈ V(T ) of E∗ ∈ V(T∗).

Let ω be the union of elements of R = T \ T∗. Let ω be the corresponding union in T . Let ωj

(resp. ωj), 1 ≤ j ≤ N be the connected components of the interior of ω (resp. ωj). Let T j be the

subset of elements of T contained in ωj . Let V(T j) be the restriction of V(T ) to ωj . We construct

the Scott-Zhang operator on each ωj and use the map XT ◦X−1
0 to lift it to Γ. We denote the lifted

interpolant as πj : H1(ωj)→ V(Tj), with

Tj := {T = XT ◦X−1
0 (T ) : T ∈ T j} ⊂ T .

Let V ∈ V(T ) be the following approximation of E∗ ∈ V(T∗):

V := πjE∗ ∈ ωj, V := E∗ elsewhere.

Since V = E∗ on Γ \ ω, we get via the same arguments in the proof of Theorem 3.18 that

λM(Pu,E∗ − V ))− A(Zu,E∗ − V ) . µT (λPu,Zu,R)‖∇ΓE∗‖L2(Γ).
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Applying the same arguments as in the proof of Theorem 3.18 and equivalence of norms on sur-

faces to the rest of the terms in (3.42) then yields the final result.

3.2.2 Properties of the Eigenfunction Estimator and Oscillation

We begin with a lemma that gives the relationship between the theoretical and computable

eigenfunction estimators.

Lemma 3.22 (Relation between Eigenfunction Estimators). Let µT (J, T ) and ηT (J, T ) be the

theoretical and computable estimators, respectively for the cluster indexed by J on a subset S ⊆ T .

Let ζT (γ) be the geometric estimator for the entire domain γ. Let the largest mesh sizeH0 be small

enough so that

max
j∈J
‖uj − Zuj‖L2(Γ) ≤

√
1 + (2|J |)−1 − 1. (H2)

Then

µT (J, T )2 ≤ 3ηT (J, T )2 +B1|J |2ζT (γ)2 (3.43)

ηT (J, T )2 ≤ 4µT (J, T )2 +B1|J |2ζT (γ)2, (3.44)

where |J | is the cardinality of J .

Proof. Let (ui, λi) be in the cluster {(uj, λj)}j∈J . Let {(Uj,Λj)}j∈J be the set of eigenpairs asso-

ciated with the FEM cluster. Then by the definition of P and the properties of eigenfunctions

λiPui = λi
∑
j∈J

M(ui, Uj)Uj = λi
∑
j∈J

m(ui, Uj)Uj + λi
∑
j∈J

[M(ui, Uj)−m(ui, Uj)]Uj

=
∑
j∈J

a(ui, Uj)Uj + λi
∑
j∈J

[M(ui, Uj)−m(ui, Uj)]Uj

=
∑
j∈J

ΛjM(Zui, Uj)Uj +
∑
j∈J

[a(ui, Uj)− A(ui, Uj)]Uj

+ λi
∑
j∈J

[M(ui, Uj)−m(ui, Uj)]Uj

=
∑
j∈J

ΛjM(Zui, Uj)Uj +
∑
j∈J

[λiM(ui, Uj)− A(ui, Uj)]Uj.

(3.45)
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By the definition (3.10) of Z we have

Zui =
∑
j∈J

M(Zui, Uj)Uj. (3.46)

Taking the Laplacian of (3.46) and adding it to (3.45) yields

[λiPui + ∆ΓZui]T =
∑
j∈J

M(Zui, Uj)[ΛjUj + ∆ΓUj]T

+
∑
j∈J

[λiM(ui, Uj)− A(ui, Uj)]Uj|T

when restricted to a single triangle. We can write this in matrix format as ~v = F~V + M~U , where

~vi = [λiPui + ∆ΓZui]T , ~Vi = [ΛiUi + ∆ΓUi]T , ~Ui = Ui|T ,

Fi,j = M(Zui, Uj), Mi,j = [λiM(ui, Uj)− A(ui, Uj)].

Squaring ~v = F~V + M~U , then gives

|~v|2 = ~vT~v = (F~V + M~U)T (F~V + M~U)

= (~V TFT + ~UTMT )(F~V + M~U)

= ~V TFTF~V + ~UTMTM~U + ~UTMTF~V + ~V TFTM~U.

Applying Young’s inequality then gives |~v|2 ≤ 2~V TFTF~V +2~UTMTM~U . Since (H2) is satisfied,

we can employ the arguments made in Lemma 3.1 of [24] to get ‖FTF‖2 ≤ 3
2
. We now have

|~v|2 ≤ 3|~V |2 + 2‖MTM‖2|~U |2. Taking a closer look at the elements of M we see that

Mi,j = λiM(ui, Uj)−A(ui, Uj) = λi[M(ui, Uj)−m(ui, Uj)] + [a(ui, Uj)−A(ui, Uj)] . ζT (γ),

which implies

|(MTM)i,j| . |J |ζT (γ)2.
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The largest eigenvalue, σmax, of MTM equals ‖MTM‖2. By Gershgorin’s theorem,

σmax . |J |2ζT (γ)2 We now have |~v|2 ≤ 3|~V |2 +B1|J |2ζT (γ)2 which implies

µT (J, T )2 ≤ 3ηT (J, T )2 +B1|J |2ζT (γ)2

Going the other way, we have ~V = F−1~v − F−1M~U . After squaring we get

|~V |2 ≤ 2~vT (F−1)TF−1~v + 2~UMT (F−1)TF−1M~U.

Using arguments from Lemma 3.1 of [24] to handle (F−1)TF−1 and the above arguments again

we have |~V |2 ≤ 4|~v|2 +B1|J |2ζT (γ)2 which implies

ηT (J, T )2 ≤ 4µT (J, T )2 +B1|J |2ζT (γ)2.

The jump computations follow directly from (3.46).

The next lemma shows that for a sufficiently small ADAPT_SURFACE parameter ω, if the

computable estimator ηT (J) bounds the geometric estimator within ADAPT_EIGENFUNCTION,

then so does the theoretical estimator µT (J). This will be important for proving the equivalence

of the error and estimator within the ADAPT_EIGENFUNCTION loop.

Lemma 3.23. Let H0 satisfy (H2). Define

ω1 :=
1√

2B2
0B1|J |2

. (W1)

If ω < ω1 and ζT (γ)2 ≤ B2
0ω

2ηT (J)2, then

ζT (γ)2 ≤ 8B2
0ω

2µT (J)2. (3.47)
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Proof. If ζT (γ)2 ≤ B2
0ω

2ηT (J)2, then (3.44) gives

ζT (γ)2 ≤ B2
0ω

2ηT (J)2 ≤ 4B2
0ω

2µT (J)2 +B2
0B1|J |2ω2ζT (γ)2,

which implies ζT (γ)2 ≤ 4B2
0ω

2

1−B2
0B1|J |2ω2µT (J)2. To simplify the algebra later on we note that bx >

x
1−ax in the interval [0, b−1

ab
) for b > 1 and a > 0. Taking a = B2

0B1|J |2, b = 2, and x = ω2, we

then have for ω < 1√
2B2

0B1|J |2
that

ζT (γ)2 ≤ 4B2
0ω

2

1−B2
0B1|J |2ω2

µT (J)2 ≤ 8B2
0ω

2µT (J)2.

As is customary for flat domains, the definition (3.25) of oscillation guarantees that

OscT (λPu,Zu, γ, T ) is dominated by µT (λPu,Zu, T ), namely

OscT (λPu,Zu, γ, T )2 ≤ C3µT (λPu,Zu, T )2 T ∈ T , (3.48)

where the constant C3 depends on the surface γ. We define the eigenfunction error for the cluster

as

ET (J)2 :=
∑
j∈J

(
‖∇γ(uj − Zuj)‖2

L2(γ) +OscT (λjPuj,Zuj, γ)2
)
. (3.49)

We now show that if the initial mesh is sufficiently refined and the parameter ω > 0 is sufficiently

small, then the eigenfunction error for the cluster is equivalent to the theoretical eigenfunction

estimator for the cluster within ADAPT_EIGENFUNCTION.

Lemma 3.24 (Equivalence of error and estimator). Let C1, C2, B1 be given in Theorems 3.18 and

3.26 and C3 be as in 3.48. Let λmax be the maximum eigenvalue in the cluster {λj}j∈J . Let H0

satisfy (H1), (H2), and

λ2
maxK0H

2s
0 ≤

1

2
. (H3)
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Define

ω2 :=

√
C2

16B2
0B1|J |

. (W2)

If ζT (γ)2 ≤ B2
0ω

2ηT (J)2 and ω < min{ω1, ω2} as in Lemma 3.23, then there exist constants

C4 ≥ C5 > 0, depending on C1, C2, and C3, such that

C5µT (J) ≤ ET (J) ≤ C4µT (J). (3.50)

Proof. Combining Theorem 3.18 summed over J and (3.47) we get

1

2

∑
j∈J

‖∇γ(uj − Zuj)‖2
L2(γ) ≤

(
C1 +

C2

2

)
µT (J)2. (3.51)

Combining this with (3.48) gives

1

2
ET (J)2 =

1

2

(∑
j∈J

‖∇γ(uj − Zuj)‖2
L2(γ) +OscT (λjPuj,Zuj, γ)2

)

≤
(
C1 +

C2

2
+
C3

2

)
µT (J)2.

For the lower bound we combine (3.26) and (3.47) to get

(
C2 −

C2

2

)
µT (J)2 ≤ 3

2

(∑
j∈J

‖∇γ(uj − Zuj)‖2
L2(γ) +OscT (λjPuj,Zuj, γ)2

)
=

3

2
ET (J)2

which then implies C2

3
µT (J)2 ≤ ET (J)2.

Lemma 3.25 (Residual Estimator Reduction). Let (u, λ) ∈ {(uj, λj)}j∈J be an eigenpair associ-

ated with the cluster of eigenpairs. Given a mesh-surface pair (T ,Γ), letM⊂ T be the subset of

elements bisected at least b ≥ 1 times in refining T to obtain T∗ ≥ T . If ξ := (1−2b/d), then there

exists a constant δ to be defined in Theorem 3.31 as well as constants B2 and B3, solely depending
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on the shape regularity of T, and the Lipschitz constant L of γ such that a

µT∗(λP∗u,Z∗u)2 ≤ (1 + δ)

(
µT (λPu,Zu)2 − ξµT (λPu,Zu,M)2

)
+ (1 + δ−1)

(
B3‖∇γ(Z∗u− Zu)‖2

L2(γ) +B2ζT (γ)2 +K1H
2
0λ

2‖P∗u−Pu‖2
L2(γ)

) (3.52)

Proof. We begin by bounding the residual on triangles. Let T∗ ∈ T∗ and T ∈ T satisfy T̂∗ ⊂ T̂ .

We also define T ′ := XT ◦X−1
T∗ (T∗) ⊂ T . The residual term in the error estimator on the triangle

T∗ then satisfies

‖RT∗(λP∗u,Z∗u)‖L2(T∗) = ‖q
1
2
Γ∗
RT∗(λP∗,Z∗u)‖L2(T̂∗)

≤ ‖q
1
2
Γ∗

(RT∗(λP∗,Z∗u)−RT (λPu,Zu))‖L2(T̂∗)

+ ‖q
1
2
Γ∗
RT (λPu,Zu)‖L2(T̂∗)

≤ ‖q
1
2
Γ∗

(RT∗(λP∗,Z∗u)−RT (λP,Zu))‖L2(T̂∗)

+ ‖(q
1
2
Γ∗
− q

1
2
Γ )RT (λPu,Zu)‖L2(T̂∗)

+ ‖q
1
2
ΓRT (λPu,Zu)‖L2(T̂∗)

.

(3.53)

Noting the boundedness of ‖qΓ∗‖L∞(Γ∗), the first term on the right hand side of (3.53) can be

bounded as

‖q
1
2
Γ∗

(RT∗(λP∗u,Z∗u)−RT (λPu,Zu))‖L2(T̂∗)
. λ‖P∗u−Pu‖L2(T̂∗)

+ ‖∆Γ∗(Z∗u− Zu)‖L2(T̂∗)

+ ‖(∆Γ∗ −∆Γ)Zu‖L2(T̂∗)

. λ‖P∗u−Pu‖L2(T ′)

+
1

hT∗
‖∇γ(Z∗u− Zu)‖L2(T ′)

+
1

hT∗
ζT (γ, T ′)‖∇Γ(Zu)‖L2(T ′),

(3.54)
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where the last line follows from inverse inequalities, equivalence of norms, and

‖(∆Γ∗ −∆Γ)Zu‖L2(T̂∗)
≤ ‖(q−1

Γ∗
− q−1

Γ )d̂iv(qΓ∗∇̂ZuG−1
Γ∗

)‖L2(T̂∗)

+ ‖q−1
Γ d̂iv((qΓ∗ − qΓ)∇̂ZuG−1

Γ∗
)‖L2(T̂∗)

+ ‖q−1
Γ d̂iv(qΓ∇̂Zu(G−1

Γ∗
−G−1

Γ ))‖L2(T̂∗)

.
1

hT∗
ζT (γ, T ′)‖∇Zu‖L2(T ′).

Noting the boundedness of ‖(q
1
2
Γ∗

+ q
1
2
Γ )−1‖L∞(Γ∗) and using (3.15) to bound ‖(qΓ∗ − qΓ)−1‖L∞(Γ∗);

the second term on the right hand side of (3.53) can be bounded as

‖(q
1
2
Γ∗
− q

1
2
Γ )RT (λPu,Zu)‖L2(T̂∗)

= ‖(qΓ∗ − qΓ)(q
1
2
Γ∗

+ q
1
2
Γ )−1RT (λPu,Zu)‖L2(T̂∗)

. ζT (γ, T ′)‖RT (λPu,Zu)‖L2(T ′)

. ζT (γ, T ′)

(
1

hT∗
‖∇ΓZu‖L2(T ′) + ‖λPu‖L2(T ′)

)
.

(3.55)

Using (3.54) and (3.55) to bound the terms on the right hand side of (3.53) and multiplying by hT∗

yields

hT∗‖RT∗(λP∗u,Zu)‖L2(T∗) ≤ hT∗‖RT (λPu,Zu)‖L2(T ′) + hT∗λ‖P∗u−Pu‖L2(T ′)

+ C‖∇γ(Z∗u− Zu)‖L2(T ′) + CζT (γ, T ′)
(
2‖∇ΓZu‖L2(T ′) + hT∗‖λPu‖L2(T ′)

)
=

(
hT∗‖RT (λPu,Zu)‖L2(T ′)

)
+

(
hT∗λ‖P∗u−Pu‖L2(T ′) + C‖∇γ(Z∗u− Zu)‖L2(T ′)

+ CζT (γ, T ′)
(
2‖∇ΓZu‖L2(T ′) + hT ∗‖λPu‖L2(T ′)

))
,

where C represents the generic constant in the (3.54) and (3.55) bounds.

Squaring both sides, applying Young’s inequality (with constant δ), and summing over triangles
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then yields

∑
T ∗∈T∗

h2
T∗‖RT∗(λP∗,Z∗u)‖2

L2(T ′) ≤ (1 + δ)

( ∑
T ∗∈T∗

h2
T∗‖RT (λPu,Zu)‖2

L2(T ′)

)
+ (1 + δ−1)

(
K1H

2
0λ

2‖P∗u−Pu‖2
L2(γ) + C‖∇γ(Z∗u− Zu)‖2

L2(γ) + CζT (γ)2

)
.

Noting that

∑
T ∗∈T∗

h2
T∗‖RT (λPu,Zu)‖2

L2(T ′) ≤
∑
T ∗∈T∗

h2
T‖RT (λPu,Zu)‖2

L2(T ′)

−
∑
T ∗∈M

ξh2
T‖RT (λPu,Zu)‖2

L2(T ′)

completes the proof. The same steps apply to the jumps and can be found in [35].

Lemma 3.26. Let ζT0(γ) satisfy (3.13). Let (T ,Γ), (T∗,Γ∗) be mesh-surface pairs with T ≤ T∗.

Then, there exist constants C6, B2, and B3 depending only on T0, the Lipschitz constant L of γ,

and λ, such that

OscT∗(λP∗u,Z∗u, γ)2 ≤ C6OscT (λPu,Zu, γ)2 +B3‖∇γ(Z∗u− Zu)‖2
L2(γ) +B2ζT (γ)2

+K1H
2
0λ

2‖P∗u−Pu‖2
L2(γ)

(3.56)

Proof. Noting that id−Π2
2n−2 is a projection, so ‖(id−Π2

2n−2)v‖L2(T̂ ∗) ≤ ‖v‖L2(T̂ ∗) and hT∗ ≤ hT ,
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we have

OscT∗(λP∗u,Z∗u, γ) = hT∗

∥∥∥(id− Π2
2n−2)

(
λP∗uqΓ∗ + d̂iv(qΓ∗∇̂Z∗uG−1

Γ∗
)
)∥∥∥

L2(T̂∗)

≤ hT∗

∥∥∥(id− Π2
2n−2)

(
λPuqΓ + d̂iv(qΓ∇̂ZuG−1

Γ )
)∥∥∥

L2(T̂∗)

+ hT∗
∥∥(id− Π2

2n−2) (λP∗uqΓ∗ − λPuqΓ)
∥∥
L2(T̂∗)

+ hT∗
∥∥(id− Π2

2n−2) (qΓ∆ΓZu− qΓ∗∆Γ∗Z∗u)
∥∥
L2(T̂∗)

≤ hT∗

∥∥∥(id− Π2
2n−2)

(
λPuqΓ + d̂iv(qΓ∇̂ZuG−1

Γ )
)∥∥∥

L2(T̂∗)

+ hT∗
∥∥(id− Π2

2n−2) (λP∗uqΓ∗ − λPuqΓ)
∥∥
L2(T̂∗)

+ hT∗
∥∥(id− Π2

2n−2) ((qΓ∆Γ − qΓ∗∆Γ∗)Zu)
∥∥
L2(T̂∗)

+ hT∗
∥∥(id− Π2

2n−2)qΓ∗∆Γ∗ (Zu− Z∗u)
∥∥
L2(T̂∗)

≤ hT

∥∥∥(id− Π2
2n−2)

(
λPuqΓ + d̂iv(qΓ∇̂ZuG−1

Γ )
)∥∥∥

L2(T̂∗)

+ hT∗ ‖(λP∗uqΓ∗ − λPuqΓ)‖L2(T̂∗)

+ hT∗ ‖((qΓ∆Γ − qΓ∗∆Γ∗)Zu)‖L2(T̂∗)
+ hT∗ ‖qΓ∗∆Γ∗ (Zu− Z∗u)‖L2(T̂∗)

for the residual portion of the oscillation. The rest of the proof follows from the steps taken in the

proof of Lemma 3.25.

Remark 3.27 (Local perturbation of data oscillation). The previous Lemma is also valid locally,

that is for any subset τ ⊂ T∗. If τ = T ∩ T∗, the same proof gives (3.56) with C6 = 2,

OscT∗(λP∗u,Z∗u, τ)2 ≤ 2OscT (λPu,Zu, τ)2 +B3‖∇γ(Z∗u− Zu)‖2
L2(γ) +B2ζT (γ)2

+K1H
2
0λ

2‖P∗u−Pu‖2
L2(γ)

(3.57)

3.3 AFEM: Design and Properties

In this section we discuss the AFEM algorithm in detail.

AFEM Algorithm: Given T0 and parameters ε0 > 0, 0 < ρ < 1, and ω > 0, set k = 0.
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1. T +
k = ADAPT_SURFACE(Tk, ωεk)

2. [{(Uk+1,i,Λk+1,i)}Ni=1, Tk+1] = ADAPT_EIGENFUNCTION(T +
k , εk)

3. εk+1 = ρεk; k = k + 1

4. go to 1.

3.3.1 Module ADAPT_SURFACE

Given a tolerance ε > 0 and an admissible subdivision T , T∗ = ADAPT_SURFACE(T , ε)

improves the surface resolution until the new subdivision T∗ ≥ T satisfies

ζT (γ) ≤ ε, (3.58)

where ζT is the geometric estimator. This module is based on a greedy algorithm and acts on a

generic mesh T = ∪Fi=1T i ∈ T :

T∗ = ADAPT_SURFACE(T , ε)

1. ifM := {T ∈ T : ζT (γ, T ) > ε} = ∅

return(T ) and exit

2. T = REFINE(T ,M)

3. go to 1.

We require ADAPT_SURFACE to be t-optimal, i.e. there exists a constant C(γ) such that the

setM of all the elements marked for refinement in a call to ADAPT_SURFACE(T , ε) satisfies

#M≤ C(γ)ε−1/t

It is shown in [35] and Lemma 3.32 that this assumption is satisfied by a greedy algorithm as long

as χi ∈ B1+td
q (Lq(Ω)) with tq > 1, 0 < q ≤ ∞ and td ≤ k for all 1 ≤ i ≤ F .
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3.3.2 Module ADAPT_EIGENFUNCTION

Given a tolerance ε > 0 and an admissible subdivision T ∈ T, [{(U∗,i,Λ∗,i)}i∈J , T∗] =

ADAPT_EIGENFUNCTION(T , ε) outputs a refinement T∗ ≥ T and an associated set of FEM

eigenpairs {(U∗,i,Λ∗,i)}i∈J such that

ηT∗(J) ≤ ε. (3.59)

This module is based on the sequence:

[{(U∗,i,Λ∗,i)}i∈J , T∗] = ADAPT_EIGENFUNCTION(T , ε)

1. {(Ui,Λi)}i∈J = SOLVE(T )

2. {ηT (J, T )}T∈T = ESTIMATE(T , {(Ui,Λi)}i∈J)

3. if ηT < ε

return(T , {(Ui,Λi)}i∈J)

4. M = MARK(T , {ηT (T )}T∈T )

5. T = REFINE(T ,M)

6. go to 1.

Procedure ESTIMATE. Given the FEM eigenpairs {(Ui,Λi)}i∈J ∈ V#(T )×R+ associated with

the cluster, we want ω to satisfy

ω < min{ω1, ω2, ω3, ω4, ω5}, (3.60)

where we have summarized the restrictions on ω in Table 3.2.
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(W1) ω1 := 1√
2B2

0B1|J |2
Lemma 3.23

(W2) ω2 :=
√

C2

16B2
0B1|J | Lemma 3.24

(W3) ω3 := ξθ2√
512
(
B2

(
1+ 1

2B3

)
+
CK1
2B3

λ2max+(1+λ2max)K2C+Cλ2max

)
B3B0

Theorem 3.31

(W4) ω4 := C5√√√√√
(

9
2
B1+2B3B2+5B2+3CK2+( 9

2
CK0+3CK2+3C+2CB3K0+2CK1H2

0)λ2max

)
8B2

0 |J |

Lemma 3.41

(W5) ω5 := θ√
6B1|J |2

Lemma 3.42

Table 3.2: The set of upper bounds on ω and where they first appear.

Given a tolerance ε > 0 to be reached by ADAPT_EIGENFUNCTION and starting from the

input subdivision T satisfying ζT (γ) ≤ ωε, we observe that (3.4) guarantees that T as well as all

subdivisions T∗ ≥ T constructed within the inner iterates of ADAPT_EIGENFUNCTION satisfy

ζT∗(γ)2 ≤ B2
0ζT (γ)2 ≤ B2

0ω
2ε2.

Within the while loop of ADAPT_EIGENFUNCTION we have ηT (J) > ε, so we deduce

ζT (γ)2 ≤ B2
0ω

2ηT (J)2 (3.61)

and so by Lemma 3.23 we have ζT (γ)2 ≤ C2

2|J |B1
µT (J)2. Thus (3.50) is valid within the

ADAPT_EIGENFUNCTION loop.

Procedure MARK. We rely on an optimal Dörfler marking strategy for the selection of ele-
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ments. Given the set of computable indicators {ηT (J, T )}T∈T and a marking parameter θ ∈ (0, 1],

MARK outputs a subset of marked elementsM⊂ T such that

ηT (J,M) ≥ θηT (J). (3.62)

Procedure REFINE. Given a subdivision T and a setM ⊂ T of marked elements, the call

REFINE(T ,M) bisects all elements inM at least b ≥ 1 times and performs additional refinements

necessary to maintain conformity. The resulting subdivision is denoted by T∗. Recall that the

bisection procedure is first executed on faces of the corresponding flat subdivision T and its effext

is transferred to the actual subdivision via interpolation of maps X i
T i ◦ (X i

0)−1 for i = 1, . . . , F .

Since the refinement procedure is performed on T or on T̂ , the complexity results of the overall

refinement algorithm proved by Binev, Dahmen, and DeVore for d = 2 [28] and Stevenson [29]

for d > 2 hold in our setting.

Remark 3.28. For d = 1, any subdivision is said to have admissible labeling. For d = 2 we say

T0 has an admissible labeling is each edge of T0 has an admissible labeling if each edge of T0

has either a 0 or 1 such that each element of T0 has two edges labeled as 1 and one edge labeled

as 0 [28]; refining an element consists of connecting the middle of the edge labeled zero with the

opposite angle. For d > 2 the condition is much more technical and we omit it. In short the

admissible initial labeling guarantees that the bisection procedure terminates in a finite number of

steps with a conforming mesh and any uniform refinement is conforming.

Lemma 3.29 (Complexity of REFINE). Assume that the initial triangulation T0 has an admissible

labeling. Let {Tk}k≥0 be a sequence of triangulations produced by successive calls to Tk+1 =

REFINE(Tk,Mk), whereMk is any subset of Tk, k ≥ 0. Then, there exists a constant C7 solely

ddependent on T0, its labeling, and the refinement depth b, such that

#Tk −#T0 ≤ C7

k−1∑
j=0

#Mj, ∀k ≥ 1.
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3.4 Conditional Contraction Property

We show that the procedure

ADAPT_EIGENFUNCTION yields a contraction property. Given a single eigenpair (ui, λi) ∈

{(uj, λj)}j∈J , the following shorthand will be used:

eji := ui − Zjui Ej
i := Zj+1ui − Zjui

µji := µTj(λi, ui), µj+1
i := µTj+1

(λi, ui), ζj := ζTj(γ)

(µj(J))2 :=
∑
i∈J

(µji )
2, (µj+1(J))2 :=

∑
i∈J

(µj+1
i )2.

We begin by proving a quasi-orthogonality property which will be important for the proof of the

conditional contraction property.

Lemma 3.30 (Quasi-orthogonality). Let (ui, λi) be an eigenpair of the cluster with ‖ui‖L2(γ) = 1

and Tj+1 ≥ Tj . There exists a constant B2 > 0 depending only on λi and the Lipschitz constant L

of γ such that for j ≥ 0, we have

‖∇γe
j+1
i ‖2

L2(γ) ≤ ‖∇γe
j
i‖2
L2(γ) −

1

2
‖∇γE

j
i ‖2
L2(γ) +B2(ζj)2

+ λ2
i ‖ui −Pj+1ui‖2

L2(γ) +K2(1 + λ2
i )‖E

j
i ‖2
L2(γ)

(3.63)

‖∇γe
j
i‖2
L2(γ) −

3

2
‖∇γE

j
i ‖2
L2(γ) −B2(ζj)2 ≤ ‖∇γe

j+1
i ‖2

L2(γ)

+ λ2‖ui −Pj+1ui‖2
L2(γ) +K2(1 + λ2)‖Ej

i ‖2
L2(γ).

(3.64)

Proof. We begin with the identity

‖∇γe
j
i‖2
L2(γ) = ‖∇γe

j+1
i ‖2

L2(γ) + ‖∇γE
j
i ‖2
L2(γ) + 2a(ui − Zj+1ui, E

j
i ). (3.65)
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Rearranging terms in (3.65) then yields

‖∇γe
j
i‖2
L2(γ) − ‖∇γE

j
i ‖2
L2(γ) ≤ ‖∇γe

j+1
i ‖2

L2(γ) + 2|a(ui − Zj+1ui, E
j
i )| (3.66)

and

‖∇γe
j+1
i ‖2

L2(γ) ≤ ‖∇γe
j
i‖2
L2(γ) − ‖∇γE

j
i ‖2
L2(γ) + 2|a(ui − Zj+1ui, E

j
i )|. (3.67)

It is apparent from (3.66) and (3.67) that we must bound the term |a(ui−Zj+1ui, E
j
i )|. Expanding

a(ui − Zj+1ui, E
j
i ) gives

a(ui − Zj+1ui, E
j
i ) = λim(ui, E

j
i )− a(Zj+1ui, E

j
i )

= λim(ui −Pj+1ui, E
j
i ) + λim(Pj+1ui, E

j
i )− a(Zj+1ui, E

j
i )

= λim(ui −Pj+1ui, E
j
i ) + λi[m(Pj+1ui, E

j
i )−Mj+1(Pj+1ui, E

j
i )]

+ λiMj+1(Pj+1ui, E
j
i )− a(Zj+1ui, E

j
i ).

(3.68)

Using the algebraic identity (3.12) on λiMj+1(Pj+1ui, E
j
i ) gives

λMj+1(Pj+1ui, E
j
i ) = Aj+1(Zj+1ui, E

j
i ) + [a(ui,Pj+1E

j
i )− Aj+1(ui,Pj+1E

j
i )]

+ λi[Mj+1(ui,Pj+1E
j
i )−m(ui,Pj+1E

j
i )].

(3.69)

Combining (3.69) with (3.68) then gives

a(ui − Zj+1ui, E
j
i ) = λim(ui −Pj+1ui, E

j
i ) + λi[m(Pj+1ui, E

j
i )−Mj+1(Pj+1ui, E

j
i )]

+ [Aj+1(Zj+1ui, E
j
i )− a(Zj+1ui, E

j
i )] + [a(ui,Pj+1E

j
i )− Aj+1(ui,Pj+1E

j
i )]

+ λi[Mj+1(ui,Pj+1E
j
i )−m(ui,Pj+1E

j
i )].
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Applying Cauchy-Schwarz in combination with (3.15) gives

|a(ui − Zj+1ui, E
j
i )| ≤ λi‖ui −Pj+1ui‖L2(γ)‖Ej

i ‖L2(γ)

+ Cλi‖Pj+1ui‖L2(γ)‖Ej
i ‖L2(γ)ζ

j+1 + Cλ‖ui‖L2(γ)‖Pj+1E
j
i ‖L2(γ)ζ

j+1

+ C‖∇γZj+1ui‖L2(γ)‖∇γE
j
i ‖L2(γ)ζ

j+1

+ C‖∇γui‖L2(γ)‖∇γPj+1E
j
i ‖L2(γ)ζ

j+1.

We now apply (3.19) to ‖Pj+1ui‖L2(γ) and ‖Pj+1E
j
i ‖L2(γ), (3.17) to ‖∇γZj+1ui‖L2(γ), and (3.18)

to ‖∇γPj+1E
j
i ‖L2(γ) to get

|a(ui − Zj+1ui, E
j
i )| ≤ λi‖ui −Pj+1ui‖L2(γ)‖Ej

i ‖L2(γ)

+ Cλi‖ui‖L2(γ)‖Ej
i ‖L2(γ)ζ

j+1 + Cλi‖ui‖L2(γ)‖Ej
i ‖L2(γ)ζ

j+1

+ C‖∇γui‖L2(γ)‖∇γE
j
i ‖L2(γ)ζ

j+1 + C‖∇γui‖L2(γ)‖∇γE
j
i ‖L2(γ)ζ

j+1.

Noting that our assumption ‖ui‖L2(γ) = 1 implies ‖∇γui‖2
L2(γ) = λi‖ui‖2

L2(γ) = λi, we then have

|a(ui − Zj+1ui, E
j
i )| ≤ λi‖ui −Pj+1ui‖L2(γ)‖Ej

i ‖L2(γ)

+ Cλi‖Ej
i ‖L2(γ)ζ

j+1 + C
√
λi‖∇γE

j
i ‖L2(γ)ζ

j+1.

Applying Young’s inequality and being careful to make the coefficient of ‖∇γE
j
i ‖L2(γ) equal

to 1
4

gives

|a(ui − Zj+1ui, E
j
i )| ≤

λ2
i

2
‖ui −Pj+1ui‖2

L2(γ) +
1

2
(1 + Cλ2

i )‖E
j
i ‖2
L2(γ)

+
1

2
(1 + 2C2λi)(ζ

j+1)2 +
1

4
‖∇γE

j
i ‖2
L2(γ).

Using (3.4) on ζj+1 we then have

|a(ui − Zj+1ui, E
j
i )| ≤

λ2
i

2
‖ui −Pj+1ui‖2

L2(γ) +
1

2
(1 + Cλ2

i )‖E
j
i ‖2
L2(γ)

+
B0

2
(1 + 2C2λi)(ζ

j)2 +
1

4
‖∇γE

j
i ‖2
L2(γ).

(3.70)
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Plugging (3.70) into (3.66) and (3.67) gives the final result.

With the quasi-orthogonality result just presented, we now prove a conditional contraction

property which holds true within the ADAPT_EIGENFUNCTION module of the AFEM algorithm

described in Section 4.

Theorem 3.31 (Contraction Property). Let θ ∈ (0, 1] be the marking parameter of MARK and

let {T j,Zj,Pj}Rj=1 be a sequence of meshes and projection operators associated with the cluster

produced by a call to ADAPT_EIGENFUNCTION(T 0, ε) inside AFEM, i.e., ζT0 ≤ ωε. Assume H0

satisfies (H1), (H2), and

(
K1

2B3

λ2
maxH

2
0 + (1 + λ2

max)K2 + λ2
max

)
CH2s

0 < min

{
1

8B3 (2C1 + C2)

ξ2θ4

4− 2ξθ2
,
ξθ2

8

}
.

(H4)

Define

ω3 :=
ξθ2√

512
(
B2

(
1 + 1

2B3

)
+ CK1

2B3
λ2

max + (1 + λ2
max)K2C + Cλ2

max

)
B3B0

. (W3)

Assume that the AFEM algortihm parameter ω used in ADAPT_SURFACE satisfies

ω < min{ω1, ω2, ω3},

where ω1 and ω2 are given in (W1) and (W2), respectively. Then there exist constants β > 0 and

an 0 < α < 1 such that

∑
i∈J

‖∇γe
j+1
i ‖2

L2(γ) + β(µj+1(J))2 ≤ α2

(∑
i∈J

‖∇γe
j
i‖2
L2(γ) + β(µj(J))2

)
, ∀0 ≤ j < R.

Moreover, the number of inner iterates of ADAPT_EIGENFUNCTION is uniformly bounded.

Proof. We apply the quasi-orthogonality upper bound (3.63) in combination with the estimator
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reduction property (3.52) for a single eigenpair (ui, λi) of the cluster J to get

‖∇γe
j+1
i ‖2

L2(γ) + β(µj+1
i )2 ≤ ‖∇γe

j
i‖2
L2(γ) −

1

2
‖∇γE

j
i ‖2
L2(γ) +B2(ζj)2

+ λ2
i ‖ui −Pj+1ui‖2

L2(γ) +K2(1 + λ2
i )‖E

j
i ‖2
L2(γ)

+ β(1 + δ)

(
(µji )

2 − ξµji (Mj)2

)
+ β(1 + δ−1)

(
B3‖∇γE

j
i ‖2
L2(γ) +B2(ζj)2 +K1λ

2
iH

2
0‖Pj+1ui −Pjui‖2

L2(γ)

)
.

Regrouping terms then gives

‖∇γe
j+1
i ‖2

L2(γ) + β(µj+1
i )2 ≤ ‖∇γe

j
i‖2
L2(γ) +

(
−1

2
+ β(1 + δ−1)B3

)
‖∇γE

j
i ‖2
L2(γ)

+ β(1 + δ)

(
(µji )

2 − ξ(µji (Mj))2

)
+B2(1 + β(1 + δ−1))(ζj)2

+ β(1 + δ−1)K1λ
2
iH

2
0‖Pj+1ui −Pjui‖2

L2(γ)

+ λ2
i ‖ui −Pj+1ui‖2

L2(γ) +K2(1 + λ2
i )‖E

j
i ‖2
L2(γ).

(3.71)

We make the coefficient of ‖∇γE
j
i ‖2
L2(γ) on the right hand side of (3.71) zero by choosing β such

that

β(1 + δ−1)B3 =
1

2
=⇒ β(1 + δ) =

δ

2B3

. (3.72)

We now have

‖∇γe
j+1
i ‖2

L2(γ) + β(µj+1
i )2 ≤ ‖∇γe

j
i‖2
L2(γ) + β(1 + δ)

(
(µji )

2 − ξµji (Mj)2

)
+B2

(
1 +

1

2B3

)
(ζj)2 +

1

2B3

K1λ
2
iH

2
0‖Pj+1ui −Pjui‖2

L2(γ)

+ λ2
i ‖ui −Pj+1ui‖2

L2(γ) +K2(1 + λ2
i )‖E

j
i ‖2
L2(γ).

(3.73)
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Next, we combine (3.30) and (3.23) with the monotonicity condition ζj+1 . ζj , to get

‖Pj+1ui −Pjui‖2
L2(γ) ≤ CH2s

0 (‖∇γe
j
i‖2
L2(γ) + ‖∇γe

j+1
i ‖2

L2(γ)) + C(ζj)2

‖Ej
i ‖2
L2(γ) = ‖Zj+1ui − Zjui‖2

L2(γ) ≤ CH2s
0 (‖∇γe

j
i‖2
L2(γ) + ‖∇γe

j+1
i ‖2

L2(γ)) + C(ζj)2

‖ui −Pj+1ui‖2
L2(γ) ≤ CH2s

0 ‖∇γe
j+1
i ‖2

L2(γ) + C(ζj)2,

(3.74)

where C is a generic constant derived from the a priori estimates in Section 3. Combining (3.74)

with (3.73) we then have

(
1− CK1

2B3

λ2
iH

2s+2
0 −(1 + λ2

i )K2CH
2s
0 − λ2

iCH
2s
0

)
‖∇γe

j+1
i ‖2

L2(γ) + β(µj+1
i )2

≤
(

1 +
CK1

2B3

λ2
iH

2s+2
0 + (1 + λ2

i )K2CH
2s
0

)
‖∇γe

j
i‖2
L2(γ)

+

(
B2

(
1 +

1

2B3

)
+
CK1

2B3

λ2
iH

2
0 + CK2(1 + λ2

i ) + Cλ2
i

)
(ζj)2

+ β(1 + δ)

(
(µji )

2 − ξµji (Mj)2

)
.

(3.75)

Since ω < ω1, we have that (ζj)2 ≤ 8B2
0ω

2(µj(J))2 by Lemma 3.23. We now sum (3.75) over the

entire cluster in order to invoke the Dörfler marking property, (3.62), for the theoretical estimator.

Dörfler marking yields

(µj(J))2 − ξµj(J,Mj)2 ≤ (1− ξθ2)(µj(J))2.

We also bound all λi in the sum by λmax to get

(
1− CK1

2B3

λ2
maxH

2s+2
0 − (1 + λ2

max)K2CH
2s
0 − λ2

maxCH
2s
0

)∑
i∈J

‖∇γe
j+1
i ‖2

L2(γ) + β(µj+1(J))2

≤
(

1 +
CK1

2B3

λ2
maxH

2s+2
0 + (1 + λ2

max)K2CH
2s
0

)∑
i∈J

‖∇γe
j
i‖2
L2(γ)

+

(
B2

(
1 +

1

2B3

)
+
CK1

2B3

λ2
maxH

2
0 + (1 + λ2

max)K2C + Cλ2
max

)
8B2

0ω
2(µj(J))2

+ β(1 + δ)

(
1− ξθ2

)
(µj(J))2.
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We now split the θ2 term and regroup to get

(
1− CK1

2B3

λ2
maxH

2s+2
0 − (1 + λ2

max)K2CH
2s
0 − λ2

maxCH
2s
0

)∑
i∈J

‖∇γe
j+1
i ‖2

L2(γ)

+ β(µj+1(J))2

≤
(

1 +
CK1

2B3

λ2
maxH

2s+2
0 + (1 + λ2

max)K2CH
2s
0

)∑
i∈J

‖∇γe
j
i‖2
L2(γ)

−
(
β(1 + δ)

ξθ2

2

)
(µj(J))2

+

(
B2

(
1 +

1

2B3

)
+
CK1

2B3

λ2
maxH

2
0 + (1 + λ2

max)K2C + Cλ2
max

)
8B2

0ω
2(µj(J))2

+ β(1 + δ)

(
1− ξθ2

2

)
(µj(J))2.

(3.76)

Since ω < min{ω1, ω2}, (3.51) holds:

∑
i∈J

‖∇γe
j
i‖2
L2(γ) ≤ (2C1 + C2) (µj(J))2. (3.77)

Bounding the (µj(J))2 in the −
(
β(1 + δ) ξθ

2

2

)
(µj(J))2 term by (3.77) and replacing β using

(3.72) then gives

ε(H0)

(∑
i∈J

‖∇γe
j+1
i ‖2

L2(γ) + β(µj+1(J))2

)

≤

(
1 +

CK1

2B3

λ2
maxH

2s+2
0 + (1 + λ2

max)K2CH
2s
0 −

δ

2B3 (2C1 + C2)

ξθ2

2

)∑
i∈J

‖∇γe
j
i‖2
L2(γ)

+
1

β

(
B2

(
1 +

1

2B3

)
+
CK1

2B3

λ2
maxH

2
0 + (1 + λ2

max)K2C + Cλ2
max

)
8B2

0ω
2β(µj(J))2

+ (1 + δ)

(
1− ξθ2

2

)
β(µj(J))2,

(3.78)

where ε(H0) := 1− CK1

2B3
λ2

maxH
2s+2
0 − (1 + λ2

max)K2CH
2s
0 − λ2

maxCH
2s
0 is a monotonic function

110



of H0 and ε(H0) < 1. Inequality (3.78) then implies

ε(H0)

(∑
i∈J

‖∇γe
j+1
i ‖2

L2(γ) + β(µj+1(J))2

)
≤ α1(δ)2

∑
i∈J

‖∇γe
j
i‖2
L2(γ) + α2(δ)2β(µj(J))2,

where

α1(δ)2 := 1 +
CK1

2B3

λ2
maxH

2s+2
0 + (1 + λ2

max)K2CH
2s
0 −

δ

2B3 (2C1 + C2)

ξθ2

2

α2(δ)2 :=

(
B2

(
1 +

1

2B3

)
+
CK1

2B3

λ2
maxH

2
0 + (1 + λ2

max)K2C + Cλ2
max

)
8B0ω

2

β

+ (1 + δ)

(
1− ξθ2

2

)
.

We now choose δ such that

(1 + δ)

(
1− ξθ2

2

)
= 1− ξθ2

4
=⇒ δ =

ξθ2

4− 2ξθ2
. (3.79)

From (3.72) we then have β = ξθ2

2B3(4−ξθ2)
≥ ξθ2

8B3
which implies

α2(δ)2 ≤
(
B2

(
1 +

1

2B3

)
+
CK1

2B3

λ2
maxH

2
0 + (1 + λ2

max)K2C + Cλ2
max

)
64B3B0ω

2

ξθ2
+ 1− ξθ2

4
.

The assumption that ω ≤ ω3 then guarantees that α2
2 ≤ 1− ξθ2

8
< 1. With the choice of δ in (3.79)

we have

α2
1 ≤ 1 +

CK1

2B3

λ2
maxH

2s+2
0 + (1 + λ2

max)K2CH
2s
0 −

1

4B3 (2C1 + C2)

ξ2θ4

4− 2ξθ2
.

We choose H0 small enough so that

CK1

2B3

λ2
maxH

2s+2
0 + (1 + λ2

max)K2CH
2s
0 <

1

8B3 (2C1 + C2)

ξ2θ4

4− 2ξθ2
. (3.80)
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This then implies that

α2
1 < 1− 1

8B3 (2C1 + C2)

ξ2θ4

4− 2ξθ2
< 1.

We then have

α2
1, α

2
2 ≤ max

{
1− 1

8B3 (2C1 + C2)

ξ2θ4

4− 2ξθ2
, 1− ξθ2

8

}
= 1−min

{
1

8B3 (2C1 + C2)

ξ2θ4

4− 2ξθ2
,
ξθ2

8

}
.

For a contraction property we then need H0 small enough so that

1−min
{

1
8B3(2C1+C2)

ξ2θ4

4−2ξθ2
, ξθ

2

8

}
ε(H0)

< 1,

or

CK1

2B3

λ2
maxH

2s+2
0 + (1 + λ2

max)K2CH
2s
0 + λ2

maxCH
2s
0 < min

{
1

8B3 (2C1 + C2)

ξ2θ4

4− 2ξθ2
,
ξθ2

8

}
,

(3.81)

which also implies (3.80). We then have that there exists an α satisfying

∑
i∈J

‖∇γe
j+1
i ‖2

L2(γ) + β(µj+1(J))2 ≤ α

(∑
i∈J

‖∇γe
j
i‖2
L2(γ) + β(µj(J))2

)

which completes the contraction proof.

The contraction property guarantees that ADAPT_EIGENFUNCTION stops in a finite number

of iterations I . To show that I is independent of the outer iteration counter k, take k ≥ 1 and note

that before the call to ADAPT_EIGENFUNCTION(T +
k , εk) in AFEM, we have

ηk := ηTk(J) ≤ εk−1 =
εk
ρ
, ζk := ζTk(γ) ≤ B0ζT +

k−1
(γ) ≤ B0ω

ρ
εk.
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From (3.52) with δ = 1 and (3.63) we have

µT∗(λjP∗uj,Z∗uj)
2 ≤ 2µT (λjPuj,Zuj)

2 + 2B3‖∇γ(Z∗uj − Zuj)‖2
L2(γ) + 2B2ζT (γ)2

+ 2K1H
2
0λ

2
j‖P∗uj −Puj‖2

L2(γ),

(3.82)

‖∇γ(Z∗uj − Zuj)‖2
L2(γ) ≤ 2‖∇γ(uj − Zuj)‖2

L2(γ) + 2B2ζT (γ)2

+ 2λ2
j‖uj −P∗uj‖2

L2(γ) + 2K2(1 + λ2
j)‖Z∗uj − Zuj‖2

L2(γ).

(3.83)

Combining (3.82) with (3.83) yields

µT∗(λjP∗uj,Z∗uj)
2 ≤ 2µT (λjPuj,Zuj)

2 + 4B3‖∇γ(uj − Zuj)‖2
L2(γ)

+ (4B3B2 + 2B2)ζT (γ)2 + 4B3λ
2
j‖uj −P∗uj‖2

L2(γ)

+ 4B3K2(1 + λ2
j)‖Z∗uj − Zuj‖2

L2(γ) + 2K1H
2
0λ

2
j‖P∗uj −Puj‖2

L2(γ).

(3.84)

Applying (3.74) to (3.84) yields

µT∗(λjP∗uj,Z∗uj)
2 ≤ 2µT (λjPuj,Zuj)

2

+

(
4B3 + 4B3K2(1 + λ2

j)CH
2s
0 + 2K1H

2
0λ

2
jCH

2s
0

)
‖∇γ(uj − Zuj)‖2

L2(γ)

+

(
4B3λ

2
jC + 4B3K2(1 + λ2

j)C + 2K1H
2
0λ

2
jC

)
H2s

0 ‖∇γ(uj − Z∗uj)‖2
L2(γ)

+

(
4B3B2 + 2B2 + 4B3λ

2
jC + 4B3K2(1 + λ2

j)C + 2K1H
2
0λ

2
jC

)
ζT (γ)2.

(3.85)

Applying Theorem 3.18 to ‖∇γ(uj − Zuj)‖2
L2(γ) and ‖∇γ(uj − Z∗uj)‖2

L2(γ) in (3.85) with

113



K0H
2s
0 λ

2
max ≤ 1

2
yields

µT∗(λP∗uj,Z∗uj)
2 ≤ 2µT (λPuj,Zuj)

2

+

(
4B3 + 4B3K2(1 + λ2

j)CH
2s
0 + 2K1H

2
0λ

2
jCH

2s
0

)(
2C1µT (λPuj,Zuj)

2 + 2B1ζT (γ)2

)
+

(
4B3λ

2
jC + 4B3K2(1 + λ2

j)C + 2K1H
2
0λ

2
jC

)
H2s

0

×
(

2C1µT∗(λjP∗uj,Z∗uj)
2 + 2B0B1ζT (γ)2

)
+

(
4B3B2 + 2B2 + 4B3λ

2
jC + 4B3K2(1 + λ2

j)C + 2K1H
2
0λ

2
jC

)
ζT (γ)2.

(3.86)

Rearranging terms and summing over the cluster then yields

µ2
0 := µT +

k
(J)2 . µ2

k + ζ2
k . εk.

The contraction property and the equivalence between µ and η within ADAPT_EIENFUNCTION

then implies that the number of iterates I will be bounded independent of k.

3.5 Approximation Classes

In this section we define our notions of total error and introduce an associated approximation

class A′s for our eigenfunctions. We then show that our approximation classes are equivalent to

the As ones used in [35]. With this equivalence in approximation classes in hand, the partial

characterizations of As in terms of Besov regularity from [35] carry over to our approximation

classes A′s.

3.5.1 Total Error

We define the total error for an eigenpair (uj, λj) for j ∈ J as

ET (uj, λj, γ)2 := ‖∇γ(uj − Zuj)‖2
L2(γ) +OscT (λjPuj,Zuj, γ)2 + ζT (γ)2. (3.87)
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We then have that the total error for the cluster is

ET (J, γ)2 :=
∑
j∈J

(
‖∇γ(uj − Zuj)‖2

L2(γ) +OscT (λjPuj,Zuj, γ)2

)
+ |J |ζT (γ)2.

or ET (J, γ)2 = ET (Z, J)2 + |J |ζT (γ)2. Mapping back to Ω we obtain the following equivalent

notions of total error provided ζT0(γ) satisfies (3.13):

ÊT (uj, λj, γ)2 :=
∑
T∈T

‖∇̂(uj − Zuj)‖2
L2(T̂ )

+OscT (λjPuj,Zuj, γ)2 + ζT (γ)2,

ÊT (J, γ)2 :=
∑
j∈J

(∑
T∈T

‖∇̂(uj − Zuj)‖2
L2(T̂ )

+OscT (λjPuj,Zuj, γ)2

)
+ |J |ζT (γ)2.

For a single eigenpair (uj, λj) ∈ {(ui, λi)}i∈J we define the quality of the best approximation

based on the total error for meshes in TN to be

σ′(N ;uj, λj, γ) := inf
T ∈TN

ÊT (uj, λj, γ),

where TN := {T ∈ T : #T −#T0 ≤ N}. We define our approximation class to be

A′s := {(uj, λj, γ) : j ∈ J, |uj, λj, γ|A′s := sup
N≥1

(N sσ′(N ;uj, λj, γ)) <∞}.

We will use the shorthand

|J, γ|2A′s :=
∑
j∈J

|uj, λj, γ|2A′s . (3.88)

3.5.2 Constructive Approximation of u and γ

Lemma 3.32 (Constructive Approximation of γ, Corollary 7.4 of [35]). Let γ be globally of class

W 1
∞ and be parameterized by χ ∈ [B1+td

q (Lq(Ω))]F with tq > 1, 0 < q ≤ ∞, td ≤ n. Let T0 have

an admissible labeling. Then T∗=ADAPT_SURFACE(T , δ) is t-optimal, i.e.

ζT∗ ≤ δ, #M . C1(γ)1/tδ−1/t
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whereM denotes the number of elements marked during the execution of the procedure

ADAPT_SURFACE(T , δ) and C1(γ) ≤ |χ|B1+td
q (Lq(Ω)).

Lemma 3.33 (Constructive Approximation of u, Corollary 7.5 of [35]). Let u ∈ H1
#(γ) be piece-

wise of class

B1+sd
p (Lp(Ω)), namely u ∈ [B1+sd

p (Lp(Ω))]F , with s−1/p+1/2 > 0, 0 < p ≤ ∞ and 0 < sd ≤ n.

Let T0 have an admissible labeling. Then, given δ > 0 there exists a triangulation T ∈ T such that

inf
v∈V(T )

‖∇̂(u− V )‖L2(Ω) . δ, #M . C(u)1/sδ−1/s,

whereM is the set of marked elements to create T and C(u) = |u|B1+sd
p (Lp(Ω)).

We now define a notion of oscillation for any function V ∈ V(T ). Let T ∈ T , then we define

OscT (V, T )2 := h2
T

∥∥∥(id− Π2
2n−2)d̂iv(qΓ∇̂VG−1

Γ )
∥∥∥2

L2(T̂ )

+ hT‖(id− Π2
2n−1)(q+

Γ ∇̂V
+(G+

Γ )−1n+ + q−Γ ∇̂V
−(G−Γ )−1)n−‖2

L2(∂T̂ )
,

(3.89)

and

OscT (V )2 :=
∑
T∈T

h2
T

∥∥∥(id− Π2
2n−2)d̂iv(qΓ∇̂VG−1

Γ )
∥∥∥2

L2(T̂ )

+ hT‖(id− Π2
2n−1)(q+

Γ ∇̂V
+(G+

Γ )−1n+ + q−Γ ∇̂V
−(G−Γ )−1)n−‖2

L2(∂T̂ )
.

Lemma 3.34 (Uniform Decay of OscT (V ), Proposition 7.12 of [35]). Let γ be globally of class

W 1
∞ and be parameterized by χ ∈ [B1+td

q (Lq(Ω))]F with tq > 1, 0 < q ≤ ∞, td ≤ n. Let T0 have

an admissible labeling and let T ≥ T0 be a refinement of T0. Then, for any tolerance δ > 0 there

exists a subdivision Tδ ∈ T such that Tδ ≥ T and

max
V ∈V(Tδ)

OscTδ(V )

‖∇̂V ‖L2(Ω)

. δ, ζTδ(γ) . δ, #M . C2(γ)1/tδ−1/t,

whereM is the set of elements marked to create Tδ from T and the constant C2(γ) depends on γ.
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Lemma 3.35 (Proposition 7.1 of [35]). Let T :=
⋃F
i=1 T i be created by successive bisection of

T0, which has an admissible labeling. Let 0 < p ≤ ∞ and let g := {gi}Fi=1 : Ω → RF be a

vector-valued function and {ξT (g, T )}T∈T be corresponding local error estimators that satisfy

ξT (g, T ) . hrT |gi|T , r > 0, T ∈ T i, 1 ≤ i ≤ F, (3.90)

where hT := |T̂ |1/d and
(∑F

i=1

∑
T∈T i |gi|

p
T

)1/p

≤ |g|Ω is a given semi-(quasi) norm.

If |g|Ω < ∞, then the module GREEDY (g, T , δ) terminates in a finite number of steps and

the number of elements markedM within GREEDY satisfies

#M . |g|
dp
d+rp

Ω δ−
dp
d+rp .

Lemma 3.36 (Corollary 7.2 of [35]). Let ξT (g) satisfy (3.90) with r = d(s− 1/p+ 1/q) > 0. Let

the initial subdivision T0 have an admissible labeling. Given δ > 0 there exists a conforming mesh

refinement T ∈ T such that

‖ξT (g)‖`q . δ, #T −#T0 . #M . |g|1/sΩ δ−1/s.

Lemma 3.37. Let γ be globally of class W 1
∞ and be parameterized by χ ∈ [B1+td

q (Lq(Ω))]F with

tq > 1, 0 < q ≤ ∞, td ≤ n. Let T0 have an admissible labeling. Then, for any tolerance δ > 0

there exists a triangulation T ∈ T such that

√∑
T∈T

h2
T

∥∥(id− Π2
2n−2)(Pujq)

∥∥2

L2(γ)
. δ, #T −#T0 . C3(γ)1/sδ−1/s,

where

C3(γ) := ‖χ‖B1+td
q (Lq(Ω)) + ‖χ‖k

B1+td
q (Lq(Ω))

.
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Proof. We first note the following bound from Lemma 3.2 of [30],

‖(id− Π2
n)(vV )‖L2(ω) ≤ ‖(id− Π∞n−m)v‖L∞(ω)‖V ‖L2(ω), (3.91)

for 0 ≤ m ≤ n, V ∈ Pm(ω), and v ∈ L∞(ω) for any domain ω of Rd or Rd+1. Using (3.91) we

have

hT
∥∥(id− Π2

2n−2)(Pujq)
∥∥
L2(T̂ )

. hT
∥∥(id− Π∞n−2)q

∥∥
L∞(T̂ )

‖Puj‖L2(T̂ )

. hT
∥∥(id− Π∞n−2)q

∥∥
L∞(T̂ )

‖Puj‖L2(T̂ )

. hrT |q|Btdq (Lq(T̂ )) ‖Puj‖L2(T̂ ),

with r = td− d/q and 0 < r ≤ n. The rest follows from Lemmas 3.35 and 3.36.

3.5.3 Membership in A′s

We now state a bound for the oscillation in terms of quantities we have shown to be t-optimal

in Section 6.2.

Lemma 3.38. Let (uj, λj) ∈ {(ui, λi)}i∈J , V ∈ V(T ), and the assumptions of Lemma 3.17 be

satisfied. Then

OscT (λjPuj,Zuj, γ)2

.
∑
T∈T

λ2
jh

2
T

∥∥(id− Π2
2n−2)(PujqΓ)

∥∥2

L2(T̂ )
+OscT (V )2 + ‖∇γ(uj − V )‖2

L2(γ) + ζT (γ).

(3.92)

Proof. By Lemma 3.17 we have the following H1 a priori bound

‖∇γ(uj − Zuj)‖2
L2(γ) . ‖∇γ(uj −Ruj)‖2

L2(γ) + ζT (γ)2.
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By equivalence of norms and the definition of R we have for V ∈ V(T )

‖∇γ(uj −Ruj)‖2
L2(γ) . ‖∇γ(uj − V )‖2

L2(γ),

and so

‖∇γ(uj − Zuj)‖2
L2(γ) . ‖∇γ(uj − V )‖2

L2(γ) + ζT (γ)2. (3.93)

By the definition of OscT (λjPuj,Zuj, γ) and standard arguments we have

OscT (λjPuj,Zuj, γ)2 =
∑
T∈T

h2
T

∥∥∥(id− Π2
2n−2)

(
λjPujqΓ + d̂iv(qΓ∇̂ZujG

−1
Γ )
)∥∥∥2

L2(T̂ )

+ hT

∥∥∥(id− Π2
2n−1)(q+

Γ ∇̂Zu+
j (G+

Γ )−1n+ + q−Γ ∇̂Zu−j (G−Γ )−1)n−
∥∥∥2

L2(∂T̂ )

.
∑
T∈T

h2
T

∥∥(id− Π2
2n−2)λjPujqΓ

∥∥2

L2(T̂ )
+ h2

T

∥∥∥(id− Π2
2n−2)d̂iv(qΓ∇̂ZujG

−1
Γ )
∥∥∥2

L2(T̂ )

+ hT

∥∥∥(id− Π2
2n−1)(q+

Γ ∇̂Zu+
j (G+

Γ )−1n+ + q−Γ ∇̂Zu−j (G−Γ )−1)n−
∥∥∥2

L2(∂T̂ )

.
∑
T∈T

h2
T

∥∥(id− Π2
2n−2)λjPujqΓ

∥∥2

L2(T̂ )
+ h2

T

∥∥∥(id− Π2
2n−1)d̂iv(qΓ∇̂VG−1

Γ )
∥∥∥2

L2(T̂ )

+ hT

∥∥∥(id− Π2
2n−1)(q+

Γ ∇̂V
+(G+

Γ )−1n+ + q−Γ ∇̂V
−(G−Γ )−1)n−

∥∥∥2

L2(∂T̂ )

+ h2
T

∥∥∥(id− Π2
2n−2)d̂iv(qΓ∇̂(Zuj − V )G−1

Γ )
∥∥∥2

L2(T̂ )

+ hT

∥∥∥(id− Π2
2n−1)(q+

Γ ∇̂(Zuj − V )+(G+
Γ )−1n+ + q−Γ ∇̂(Zuj − V )−(G−Γ )−1)n−

∥∥∥2

L2(∂T̂ )
.

Noting that since (id−Π2
2n−2) is a projection we have ‖(id−Π2

2n−2)‖L2(T̂ )→L2(T̂ ) ≤ 1 and applying
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inverse inequalities yields

OscT (λjPuj,Zuj, γ)2 .
∑
T∈T

h2
T

∥∥(id− Π2
2n−2)λjPujqΓ

∥∥2

L2(T̂ )

+ h2
T

∥∥∥(id− Π2
2n−1)d̂iv(qΓ∇̂VG−1

Γ )
∥∥∥2

L2(T̂ )

+ hT‖(id− Π2
2n−1)(q+

Γ ∇̂V
+(G+

Γ )−1n+ + q−Γ ∇̂V
−(G−Γ )−1)n−‖2

L2(∂T̂ )

+ ‖∇γ(Zuj − V )‖2
L2(γ)

.
∑
T∈T

λ2
jh

2
T

∥∥(id− Π2
2n−2)(PujqΓ)

∥∥2

L2(T̂ )
+OscT (V )2 + ‖∇γ(Zuj − V )‖2

L2(γ)

.
∑
T∈T

λ2
jh

2
T

∥∥(id− Π2
2n−2)(Pujq)

∥∥2

L2(T̂ )
+ λ2

jh
2
T

∥∥(id− Π2
2n−2)(Puj(qΓ − q))

∥∥2

L2(T̂ )

+OscT (V )2 + ‖∇γ(Zuj − V )‖2
L2(γ)

.
∑
T∈T

λ2
jh

2
T

∥∥(id− Π2
2n−2)(Pujq)

∥∥2

L2(T̂ )
+ λ2

jH
2
0 ‖qΓ − q‖2

L∞(γ) +OscT (V )2

+ ‖∇γ(Zuj − V )‖2
L2(γ)

.
∑
T∈T

λ2
jh

2
T

∥∥(id− Π2
2n−2)(PujqΓ)

∥∥2

L2(T̂ )
+OscT (V )2 + ‖∇γ(uj − V )‖2

L2(γ)

+ ζT (γ)2,

where in the last line we used (3.93) and (3.15).

From (3.92) and (3.93) we immediately get that the total error (3.87) is bounded by the optimal

terms in Lemmas 3.32, 3.34, and 3.37.

Corollary 3.39. Let (uj, λj) ∈ {(uj, λj)}j ∈ J , V ∈ V(T ), and the assumptions of Lemma 3.17

be satisfied. Then

ET (uj, λj, γ)2 = ‖∇γ(uj − Zuj)‖2
L2(γ) +OscT (λjPuj,Zuj, γ)2 + ζT (γ)2

.
∑
T∈T

‖∇̂(uj − V )‖2
L2(T̂ )

+ h2
Tλ

2
j

∥∥(id− Π2
2n−2)(PujqΓ)

∥∥2

L2(T̂ )

+OscT (V )2 + ζT (γ)2.

(3.94)
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Theorem 3.40 (Membership in A′s). Let H0 satisfy (H1). Let γ be globally of class W 1
∞ and

be parameterized by χ ∈ [B1+td
q (Lq(Ω))]F with tq > 1, 0 < q ≤ ∞, td ≤ n, and let k :=

btdc+ 1. Let u ∈ H1
#(γ) be piecewise of class B1+sd

p (Lp(Ω)), namely u ∈ [B1+sd
p (Lp(Ω))]F , with

s− 1/p + 1/2 > 0, 0 < p ≤ ∞, and 0 < sd ≤ n. Let T0 have an admissible labeling and ζT0(γ)

satisfy (3.13). Then,

(uj, λj, γ) ∈ A′s,

i.e. given a δ > 0 there exists a conforming refinement T such that

ET (uj, λj, γ) . δ, #T −#T0 . |uj, λj, γ|
1
s∧t
A′s∧t

δ−
1
s∧t .

Proof of Theorem 3.40. By Lemmas 3.33 and 3.37, there exist triangulations Tu, Tq ∈ T such that

inf
V ∈V(Tu)

‖∇̂(u− V )‖L2(Ω) . δ, #Mu . δ−1/s,

√∑
T∈T

h2
T

∥∥(id− Π2
2n−2)(Pujq)

∥∥2

L2(γ)
. δ, #Tq −#T0 . C3(γ)1/sδ−1/s,

By Lemma 3.34 there exists a mesh Tγ ∈ T with Tγ ≥ Tu such that

max
V ∈V(Tγ)

OscTγ (V )

‖∇̂V ‖L2(Ω)

. δ, ζTγ (γ) . δ, #Mγ . C2(γ)1/tδ−1/t.

By Lemma 3.29 we then have that

#Tγ −#T0 . #Mγ + #Mu . C(γ)1/tδ−1/t + C(u)1/sδ−1/s

. (C(γ)1/(s∧t) + C(uj, λj)
1/(s∧t))δ−1/(s∧t).

Let T = Tq ⊕ Tγ be the overlay of the meshes Tq and Tγ . By Lemma 3.7 of [30] the cardinality
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#T −#T0 is bounded by #Tq + #Tγ − 2#T0, whence

#T −#T0 . |uj, λj, γ|
1
s∧t
A′s∧t

δ
− 1
s∧t

By (3.94) ETγ (uj, λj, γ) . δ which implies (uj, λj, γ) ∈ A′s.

3.6 Convergence Rates

Define

ω4 :=

C5√(
9B1

2
+ 2B3B2 + 5B2 + 3CK2 +

(
9K0

2
+ 3K2 + 3 + 2B3K0 + 2K1H2

0

)
λ2

max

)
8CB2

0 |J |

(W4)

and

θ∗ :=
C5√

2
(

9
4
C1 + C3 + C1B3

) . (3.95)

Lemma 3.41 (Dörfler Marking). Let H0 satisfy (H1), (H2), (H3),

(B3K0 +K1H
2
0 )λ2

maxCH
2s
0 ≤ 0.2, (H5)

and (
K2(1 + λ2

max) + λ2
max +

3

2
K0λ

2
max

)
CH2s

0 ≤ 0.2. (H6)

Let ζT0(γ) satisfy (3.13), and the parameter θ and ω satisfy

0 < θ < θ∗, 0 < ω ≤ min{ω1, ω2, ω4},

where θ∗, ω4 are defined in (3.95) and (W4). Let κ := 1
2

√
1− θ2

θ2∗
and (Γ, T ,Z) be the approximate

surface, mesh, and discrete projection operator produced by an inner iterate of
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ADAPT_EIGENFUNCTION. If (Γ∗, T∗,Z∗) is a surface-mesh-resolution triple with T∗ ≥ T , such

that the eigenfunction error satisfies

ET∗(Z∗, J) ≤ κET (Z, J), (3.96)

then the refined setR := T \ T∗ satisfies Dörfler property with parameter θ, namely

µT (Z,R, J) ≥ θµT (J). (3.97)

Proof. Since ω ≤ min{ω1, ω2} and λ2
maxK0H

2s
0 ≤ 1

2
, we combine the lower bound of (3.50) with

(3.96) to get

(1−2κ2)C5µ
2
T ≤ (1− 2κ2)

∑
j∈J

(‖∇γe(Zuj)‖2
L2(γ) +OscT (Zuj, γ)2)

≤
∑
j∈J

‖∇γe(Zuj)‖2
L2(γ) − 2‖∇γe(Z∗uj)‖2

L2(γ) +OscT (Zuj, γ)2 − 2OscT∗(Z∗uj, γ)2

(3.98)

We begin by bounding the oscillation terms. From (3.48) we know that

OscT (Zuj,R)2 ≤ C3µT (Zuj,R)2.

For T∗ ∩ T , (3.57) with the roles of T∗ and T reversed, yields

OscT (Zuj, T ∩ T∗)2 − 2OscT∗(Z∗uj, γ)2 ≤ B3‖∇γ(Z∗uj − Zuj)‖2
L2(γ) +B2ζT (γ)2

+K1H
2
0λ

2
j‖P∗uj −Puj‖2

L2(γ).
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Combining these estimates with (3.37) and noting that T = (T ∩ T∗) ∪R yields

OscT (Zuj, γ)2 − 2OscT∗(Z∗uj, γ)2 = OscT (Zuj,R)2 +OscT (Zuj, T ∩ T∗)2

− 2OscT∗(Z∗uj, γ)2

≤ (C3 +B3C1)µT (Zuj,R)2 + (B3B2 +B2)ζT (γ)2

+ (B3K0 +K1H
2
0 )λ2

j‖(P∗uj −Puj‖2
L2(γ).

Applying (3.74) to the ‖(P∗uj −Puj‖2
L2(γ) term then gives

OscT (Zuj, γ)2 − 2OscT∗(Z∗uj, γ)2 ≤ (C3 +B3C1)µT (Zuj,R)2

+ (B3B2 +B2 + C[B3K0λ
2
j +K1λ

2
jH

2
0 ])ζT (γ)2

+ (B3K0 +K1H
2
0 )λ2

jCH
2s
0 ‖∇γ(uj − Zuj)‖2

L2(γ)

+ (B3K0 +K1H
2
0 )λ2

jCH
2s
0 ‖∇γ(uj − Z∗uj)‖2

L2(γ).

(3.99)

Using (3.99) in (3.98) then yields

(1− 2κ2)C5µ
2
T ≤

∑
j∈J

‖∇γe(Zuj)‖2
L2(γ) − 2‖∇γe(Z∗uj)‖2

L2(γ)

+OscT (Zuj, γ)2 − 2OscT∗(Z∗uj, γ)2

≤
∑
j∈J

(C3 + C1B3)µT (Zuj,R)2

+
∑
j∈J

(
1 + (B3K0 +K1H

2
0 )λ2

jCH
2s
0

)
‖∇γ(uj − Zuj)‖2

L2(γ)

−
∑
j∈J

(
2− (B3K0 +K1H

2
0 )λ2

jCH
2s
0

)
‖∇γ(uj − Z∗uj)‖2

L2(γ)

+ |J |
(
B3B2 +B2 + CB3K0λ

2
j + CK1λ

2
jH

2
0

)
ζT (γ)2
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We enforce that (B3K0 +K1H
2
0 )λ2

maxCH
2s
0 ≤ 0.2 to get

(1− 2κ2)C5µ
2
T ≤

∑
j∈J

(C3 + C1B3)µT (Zuj,R)2

+
∑
j∈J

1.2‖∇γ(uj − Zuj)‖2
L2(γ) − 1.8‖∇γ(uj − Z∗uj)‖2

L2(γ)

+ |J |
(
B3B2 +B2 + CB3K0λ

2
j + CK1λ

2
jH

2
0

)
ζT (γ)2.

(3.100)

From (3.64) we have

‖∇γe(Zuj)‖2
L2(γ) − ‖∇γe(Z∗uj)‖2

L2(γ) ≤
3

2
‖∇γ(Z∗uj − Zuj)‖2

L2(γ) +B2ζT (γ)2

+ λ2
j‖uj −P∗uj‖2

L2(γ) +K2(1 + λ2
j)‖Z∗uj − Zuj‖2

L2(γ).

Reducing using (3.74) then gives

‖∇γe(Zuj)‖2
L2(γ) − ‖∇γe(Z∗uj)‖2

L2(γ) ≤
3

2
‖∇γ(Z∗uj − Zuj)‖2

L2(γ)

+ (B2 + CK2(1 + λ2
j) + Cλ2

j)ζT (γ)2

+ (K2(1 + λ2
j) + λ2

j)CH
2s
0 ‖∇γe(Z∗uj)‖2

L2(γ)

+ (K2(1 + λ2
j) + λ2

j)CH
2s
0 ‖∇γe(Zuj)‖2

L2(γ)

(3.101)

From (3.37) and (3.74) we have

‖∇γ(Z∗uj − Zuj)‖2
L2(γ) ≤ C1µT (λjPuj,Zuj,R)2 +B1ζT (γ)2 + λ2

jK0‖P∗uj −Puj‖2
L2(γ)

≤ C1µT (λjPuj,Zuj,R)2 + (B1 + CK0λ
2
j)ζT (γ)2

+ CK0λ
2
jH

2s
0 ‖∇γe(Z∗uj)‖2

L2(γ)

+ CK0λ
2
jH

2s
0 ‖∇γe(Zuj)‖2

L2(γ).

(3.102)
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Combining (3.101) and (3.102) then gives

‖∇γe(Zuj)‖2
L2(γ) − ‖∇γe(Z∗uj)‖2

L2(γ) ≤
3

2
C1µT (λjPuj,Zuj,R)2

+

(
3

2
B1 +

3

2
CK0λ

2
j +B2 + CK2(1 + λ2

j) + Cλ2
j

)
ζT (γ)2

+

(
K2(1 + λ2

j) + λ2
j +

3

2
K0λ

2
j

)
CH2s

0 ‖∇γe
j+1
i ‖2

L2(γ)

+

(
K2(1 + λ2

j) + λ2
j +

3

2
K0λ

2
j

)
CH2s

0 ‖∇γe
j
i‖2
L2(γ).

Using the H0 assumption
(
K2(1 + λ2

max) + λ2
max + 3

2
K0λ

2
max

)
CH2s

0 ≤ 0.2 then gives

0.8‖∇γe(Zuj)‖2
L2(γ)−1.2‖∇γe(Z∗uj)‖2

L2(γ) ≤
3

2
C1µT (λjPuj,Zuj,R)2

+

(
3

2
B1 +

3

2
CK0λ

2
j +B2 + CK2(1 + λ2

j) + Cλ2
j

)
ζT (γ)2,

or

1.2‖∇γe(Zuj)‖2
L2(γ)−1.8‖∇γe(Z∗uj)‖2

L2(γ) ≤
9

4
C1µT (λjPuj,Zuj,R)2

+
3

2

(
3

2
B1 +

3

2
CK0λ

2
j +B2 + CK2(1 + λ2

j) + Cλ2
j

)
ζT (γ)2.

(3.103)

Combining (3.103) with (3.100) then gives

(1− 2κ2)C5µ
2
T ≤

∑
j∈J

(
9

4
C1 + C3 + C1B3

)
µT (λjPuj,Zuj,R)2

+ |J |
(

9

4
B1 +

9

4
CK0λ

2
max +

3

2
B2 +

3

2
CK2(1 + λ2

max)

+
3

2
Cλ2

max +B3B2 +B2 + CB3K0λ
2
max + CK1λ

2
maxH

2
0

)
ζT (γ)2.

(3.104)

By the assumption ω ≤ min{ω1, ω2}, we have within ADAPT_EIGENFUNCTION that (3.47)
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holds which implies ζT (γ) ≤
√

8B0ωµT (J). Using this inequality with (3.104) then gives

(1− 2κ2)C2
5µT (J)2 ≤

(
9

4
C1 + C3 + C1B3

)∑
j∈J

µT (λjPuj,Zuj,R)2

+

(
9

4
B1 +B3B2 +

5

2
B2 +

3

2
CK2

+

(
9

4
CK0 +

3

2
CK2 +

3

2
C + CB3K0 + CK1H

2
0

)
λ2

max

)
8B2

0 |J |ω2µT (J)2.

By the assumption that ω ≤ ω4 and the definition of θ∗ we then have

(1− 2κ2)C2
5µT (J)2 ≤ C2

5

2θ2
∗

∑
j∈J

µT (λjPuj,Zuj,R)2 +
C2

5

2
µT (J)2

which implies

(1− 4κ2)θ2
∗µT (J)2 ≤

∑
j∈J

µT (λjPuj,Zuj,R)2.

The choice of κ implies the final result.

Lemma 3.42. Let H0 satisfy (H2). LetM⊂ T and define

ω5 :=
θ√

6B1|J |2
. (W5)

Let ω ≤ ω5. Within the ADAPT_EIGENFUNCTION loop we have that if θµT (J) ≤ µT (M, J),

then
θ√
72
ηT (J) ≤ ηT (M, J).

Proof. From (3.43) we have

θ2µT (J)2 ≤ µT (M, J)2 ≤ 3ηT (M, J)2 +B1|J |2ζT (γ)2. (3.105)
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Since ω ≤ ω5 within ADAPT_EIGENFUNCTION we have ω2 ≤ θ2

6B1|J |2 , which implies

ζT (γ)2 ≤ θ2

6B1|J |2
ηT (J)2. (3.106)

Combining (3.106) with (3.44) then gives

1

4

(
1− θ2

6

)
θ2ηT (J)2 =

1

4

(
θ2 − θ4

6

)
θ2ηT (J)2 ≤ θ2µT (J)2. (3.107)

Using (3.106) and (3.107) in (3.105) and noting that θ4 ≤ θ2 for 0 < θ < 1 then gives

1

3

(
θ2

4
− θ4

24
− θ2

6

)
ηT (J)2 ≤ 1

3

(
θ2

4
− θ2

24
− θ2

6

)
ηT (J)2 =

θ2

72
ηT (J)2 ≤ ηT (M, J)2,

which completes the proof.

Lemma 3.43 (Cardinality ofM). Let H0 satisfy (H1), (H2), (H3), (H5), (H6),

C(1 + 2B3)λ2
maxH

2s
0 + C(1 + 2B3)K2(1 + λ2

max)H2s
0 + CK1λ

2
maxH

2+2s
0 ≤ 1

2
, (H7)

and

CK1λ
2
maxH

2
0 ≤

1

2
. (H8)

Let ζT0(γ) satisfy (3.13) and the procedure MARK select a setM with minimum cardinality and

bulk parameter θ√
72

. Let the parameters θ and ω satisfy

0 < θ < θ∗, 0 < ω ≤ min{ω1, ω2, ω4, ω5}

with θ∗, ω1, ω2, ω4, and ω5 given in (3.95), (W1), (W2), (W4), and (W5) respectively. Let

{(uj, λj)}j∈J be solutions of (3.5), and let (Γ, T ,Z) be produced within
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ADAPT_EIGENFUNCTION. If {(uj, λj, γ)}j∈J ∈ A′s, then

#M . |J, γ|
1
s

A′s
ET (Z, J)−

1
s .

Proof. We set

δ2 = κ̂2ET (Z, J)2 = κ̂2

(∑
j∈J

e(Zuj)
2 +OscT (Zuj)

2

)

for 0 < κ̂ < κ = 1
2

√
1− θ2

θ2∗
< 1 sufficiently small to be determined later. Throughout we shall use

the shorthand notation e(Zu) = u− Zu. Since (uj, λj, γ) ∈ A′s, there exists a subdivision Tδ ∈ T

with projection Zδ satisfying

#Tδ −#T0 . |J, γ|
1
s

A′s
δ−

1
s ,

ÊTδ(J, γ)2 =
∑
j∈J

‖∇γe(Zδuj)‖2
L2(γ) +OscTδ(Zδuj)

2 + |J |ζTδ(γ)2 ≤ δ2.

Let T∗ = T ⊕ Tδ be the overlay of T and Tδ, i.e. the smallest common refinement which satisfies

#T∗ ≤ #T + #Tδ −#T0 (3.108)

Let Z∗ be the projection operator associated with T∗. We observe that T∗ ≥ Tδ, T , and invoke the

upper bound (3.63) along with (3.56) to get

‖∇γe(Z∗uj)‖2
L2(γ) +OscT∗(λjP∗uj,Z∗uj, γ)2 ≤ ‖∇γe(Zδuj)‖2

L2(γ) +B2ζTδ(γ)2

+ λ2
j‖uj −P∗uj‖2

L2(γ) +K2(1 + λ2
j)‖Z∗uj − Zδuj‖2

L2(γ)

+ C6OscTδ(λjPδuj,Zδuj, γ)2 +B3‖∇γ(Z∗uj − Zδuj)‖2
L2(γ)

+B2ζTδ(γ)2 +K1H
2
0λ

2
j‖P∗uj −Pδuj‖2

L2(γ).

(3.109)
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Using (3.63) once again to bound ‖∇γ(Z∗uj − Zδuj)‖L2(γ) gives

‖∇γ(Z∗uj − Zδuj)‖2
L2(γ) ≤ 2‖∇γe(Zδuj)‖2

L2(γ) + 2B2ζTδ(γ)2

+ 2λ2
j‖uj −P∗uj‖2

L2(γ) + 2K2(1 + λ2
j)‖Z∗uj − Zδuj‖2

L2(γ).

(3.110)

Using (3.110) in (3.109) then gives

‖∇γe(Z∗uj)‖2
L2(γ) +OscT∗(λjP∗uj,Z∗uj, γ)2 ≤ (1 + 2B3)‖∇γe(Zδuj)‖2

L2(γ)

+ (2 + 2B3)B2ζTδ(γ)2 + (1 + 2B3)λ2
j‖uj −P∗uj‖2

L2(γ)

+ (1 + 2B3)K2(1 + λ2
j)‖Z∗uj − Zδuj‖2

L2(γ)

+ C6OscTδ(λjPδuj,Zδuj, γ)2 +K1H
2
0λ

2
j‖P∗uj −Pδuj‖2

L2(γ).

(3.111)

We now use (3.74) to bound ‖uj − P∗uj‖L2(γ), ‖P∗uj − Pδuj‖L2(γ), and ‖Z∗uj − Zδuj‖L2(γ) in

(3.111) to get

‖∇γe(Z∗uj)‖2
L2(γ) +OscT∗(λjP∗uj,Z∗uj, γ)2

≤
(

1 + 2B3 + C(1 + 2B3)K2(1 + λ2
j)H

2s
0 + CK1H

2+2s
0 λ2

j

)
‖∇γe(Zδuj)‖2

L2(γ)

+

(
C(1 + 2B3)λ2

jH
2s
0 + C(1 + 2B3)K2(1 + λ2

j)H
2s
0 + CK1H

2+2s
0 λ2

j

)
‖∇γe(Z∗uj)‖2

L2(γ)

+

(
(2 + 2B3)B2 + (1 + 2B3)λ2

jC + (1 + 2B3)K2(1 + λ2
j)C +K1H

2
0λ

2
jC

)
ζTδ(γ)2

+ C6OscTδ(λjPδuj,Zδuj, γ)2.

(3.112)

Enforcing

C(1 + 2B3)λ2
maxH

2s
0 + C(1 + 2B3)K2(1 + λ2

max)H2s
0 + CK1λ

2
maxH

2+2s
0 ≤ 1

2

and

CK1λ
2
maxH

2
0 ≤

1

2
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in (3.112) and rearranging terms yields

‖∇γe(Z∗uj)‖2
L2(γ) +OscT∗(λjP∗uj,Z∗uj, γ)2 ≤ 2

(
3

2
+ 2B3

)
‖∇γe(Zδuj)‖2

L2(γ)

+ 2

(
(2 + 2B3)B2 + (1 + 2B3)λ2

jC + (1 + 2B3)K2(1 + λ2
j)C +

1

2

)
ζTδ(γ)2

+ 2C6OscTδ(λjPδuj,Zδuj, γ)2.

(3.113)

We now choose κ̂ = κ√
max

{
2C6,3+4B3,2

(
(2+2B3)B2+(1+2B3)λ2jC+(1+2B3)K2(1+λ2j )C+ 1

2

)} to end up with

∑
j∈J

‖∇γe(Z∗uj)‖2
L2(γ) +OscT∗(λjP∗uj,Z∗uj, γ)2

≤ max

{
2C6, 3 + 4B3, 2

(
(2 + 2B3)B2 + (1 + 2B3)λ2

jC + (1 + 2B3)K2(1 + λ2
j)C +

1

2

)}
δ2

= κ2

(∑
j∈J

|∇γe(Zuj)‖2
L2(γ) +OscT (λjPuj,Zuj, γ)2

)
.

Thus by Lemma 3.41 the setRT →T∗ ⊂ T satisfies the Dörfler property (3.97)

θµT (J) ≤ µT (Z,RT →T∗ , J)

which implies
θ√
72
ηT (J) ≤ ηT (Z,RT →T∗ , J).

SinceM is the smallest cardinality set satisfying

θ√
72
ηT (J) ≤ ηT (M, J)

and thus we have

#M≤ #R ≤ #T∗ −#T ≤ #Tδ −#T0 . |J, γ|
1
s

A′s
δ−

1
s .
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Theorem 3.44 (Convergence Rate of AFEM). Let H0 satisfy conditions (H1) through (H8). Let

ε0 ≤ 1
ω6K0L3 be the initial tolerance, and the parameters θ, ω, ρ of AFEM satisfy

0 < θ ≤ θ∗, 0 < ω ≤ ω∗ := min{ω1, ω2, ω3, ω4, ω5}, 0 < ρ < 1,

where θ∗, ω1, ω2, ω3, ω4, and ω5 are given in (3.95), (W1), (W2), (W3), (W4), and (W5), respec-

tively. Let T0 have an admissible labeling, and let the procedure MARK select sets with minimal

cardinality. Let {(uj, λj)}j∈J be the solutions of (3.5) and {Γk, Tk,Zku}k≥0 be the sequence of

approximate surfaces, meshes, and solutions generated by AFEM.

If {(uj, λj, γ)}j∈J ∈ A′s for some 0 < s ≤ n/d, then there exists a constant C, depending on

the Lipschitz constant L of γ, λmax, the refinement depth b, the initial triangulation T0, and AFEM

parameters θ, ω, ρ such that

∑
j∈J

e(Zkuj) +OscTk(λjPkuj,Zkuj, γ) + |J |ζTk(γ) ≤ C|J, γ|A′s(#Tk −#T0)−s, (3.114)

where |J, γ|A′s is defined in (3.88).

Proof. We start by noting that since ωε0 ≤ 1
6K0L3 , the output of the procedure

ADAPT_SURFACE fulfills ζT +
0

(γ) ≤ 1
6K0L3 which is (3.13) and implies that T(T +

0 ) is shape

regular.

There are two instances where elements are added, inside ADAPT_SURFACE and inside

ADAPT_EIGENFUNCTION. We observe that ADAPT_SURFACE is s-optimal with

C(γ) . |J, γ|1/sA′s
, whence the set of all the elements marked for refinement in the k-th call to

ADAPT_SURFACE satisfies

#Mk . C(γ)ω−
1
s ε
− 1
s

k . |J, γ|1/sA′s
ε
− 1
s

k
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Within the ADAPT_EIGENFUNCTION loop we apply Lemma 3.43 for the ith loop to get

#Mi
k . |J, γ|

1/s
A′s

(∑
j∈J

e(Zi
kuj) +OscT ik (λPi

kuj,Z
i
kuj, γ)

)− 1
s

0 ≤ i ≤ I.

We also have (3.50) within ADAPT_EIGENFUNCTION which implies

∑
j∈J

e(Zi
kuj) +OscT ik (Zkuj) ≈

∑
j∈J

e(Zi
kuj) + µT ik (J). (3.115)

Finally, the contraction property (Theorem 3.31) holds within ADAPT_EIGENFUNCTION

and gives

∑
j∈J

e(ZI−1
k uj) + µT I−1

k
(J) . αI−1−i

(∑
j∈J

e(Zi
kuj) +OscT ik (Zi

kuj)

)
. (3.116)

Combining (3.115) with (3.116) then gives

(∑
j∈J

e(Zi
kuj) +OscT ik (Zi

kuj)

)− 1
s

. α
I−1−i
s

(∑
j∈J

e(ZI−1
k uj) + µT I−1

k
(J)

)− 1
s

. α
I−1−i
s ε

− 1
s

k .

Summing over the inner iterates then gives

I−1∑
i=0

#Mi
k . |J, γ|

1/s
A′s
ε
− 1
s

k

I−1∑
i=0

α
I−i−1
s . |J, γ|1/sA′s

ε
− 1
s

k .

Counting the marked elements from ADAPT_SURFACE, we then have by Lemma 3.29

#Tk −#T0 ≤ C7

k−1∑
j=0

(
#Mj +

I−1∑
i=0

#Mi
j

)
. |J, γ|1/sA′s

k−1∑
j=0

ε
− 1
s

j
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Noting that εk+1 = ρεk as part of the AFEM algorithm together with ρ < 1 we obtain

k−1∑
j=0

ε
− 1
s

j = ε
− 1
s

k−1

k−1∑
j=0

ρ
j
s . ε

− 1
s

k .

Hence

#Tk −#T0 . |J, γ|1/sA′s
ε
− 1
s

k . (3.117)

Noting the stopping criteria (3.58) and (3.59) are satisfied gives

∑
j∈J

e(Zkuj) +OscTk(λjPkuj,Zkuj, γ) + ω−1ζTk(γ) . εk.

The bound (W1) implies |J | . ω−1 which implies

∑
j∈J

e(Zkuj) +OscTk(λjPkuj,Zkuj, γ) + |J |ζTk(γ) . εk. (3.118)

Combining (3.117) with (3.118) yields the final result.

3.7 Numerical Experiments

In this section we numerically investigate the rates of convergence for our adaptive algorithm.

We choose the cluster associated with the interval [1, 50]. We use the C1,α surface defined as the

graph of z(x, y) =
(

3
4
− x2 − y2

)1+α

+
on the unit square Ω = (0, 1)2 and assume homogeneous

Dirichlet boundary conditions. We use piecewise linear finite elements to approximate the solution

and surface. It is shown in Section 9 of [44] that for α = 3
5
γ is a member of an order 1

2
approx-

imation class when measured by ζT (γ), i.e. in terms of degrees of freedom ζT (γ) converges as

DOF−1/2. Our analysis of the regularity of the eigenfunctions showed that the eigenfunction had

regularity H1+s for some s ≤ α. In Figure 3.1 we have plotted the values of the geometric estima-

tor ζT (γ) during both the ADAPT_SURFACE and ADAPT_EIGENFUNCTION loops. We have

plotted the values of ηT (J) only during ADAPT_EIGENFUNCTION. We see the eigenfunction

estimator is converging at the best rate we could expect, DOF−1/2. We also see strong evidence
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that ζT (γ) is indeed order 1
2
. For γ corresponding to α = 2

5
the results of [44] say that the

Figure 3.1: Convergence rates of total error, geometric error estimator, and eigenfunction cluster
estimator in AFEM when α = 3

5
.

expected rate of ζT (γ) is DOF−0.4. We see in Figure 3.2 that ζT (γ) is indeed order 0.4 and so is

the eigenfunction estimator.
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Figure 3.2: Convergence rates of total error, geometric error estimator, and eigenfunction cluster
estimator in AFEM when α = 2

5
.
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4. SUMMARY AND CONCLUSIONS

In this dissertation we have developed the theory of approximation of eigenvalues and eigen-

functions of the Laplace-Beltrami operator using the surface finite element method. In Chapter 2

we presented a priori estimates for eigenpairs of the Laplace-Beltrami operator on C∞ surfaces

based on joint work with Andrea Bonito and Alan Demlow. Our analysis showed that the SFEM

eigenfunctions converge with the same rates as the SFEM solutions to the source problem. There is

the usual FEM approximation error we see when solving problems on flat domains plus anO(hk+1)

term which accounts for the geometric consistency errors introduced by the SFEM framework. We

were able to verify that our estimates for the convergence rates were sharp through numerical tests

which matched the theoretical rates. We developed a priori estimates for the convergence of the

SFEM eigenvalues and showed that for clusters of eigenvalues we could not guarantee better than

the usual error for flat domains plus an O(hk+1) term which accounts for the geometric consis-

tency errors introduced by the SFEM framework. However, for single eigenvalues we developed

new theoretical tools based on the theory of numerical quadrature for analyzing geometric con-

sistency errors. Using this new theoretical framework we were able to show that it is possible

to attain superconvergent geometric consistency errors on quadrilateral meshes. The framework

also showed a clear way of improving geometric consistency errors by using surface interpolation

points in the construction of Γ which coincide with a quadrature rule. This culminated in a best

possible convergence rate of O(h2k) when using Gauss-Lobatto quadrature points for interpolation

rather than the typical O(hk+1) rate that results from using equally spaced Lagrange interpolation

points. We also proved that these theoretical results were sharp via numerical experiments.

In Chapter 3 we developed and analyzed an adaptive algorithm for approximating eigenfunc-

tions with SFEM. We used a modified version of the adaptive algorithm for the source problem

on surfaces presented in Section 1.6 as our template. We employed the theoretical tools discussed

in Section 1.4 for an adaptive eigenfunction algorithm on flat domains with proper modifications

for SFEM to analyze our algorithm and prove it is optimal. In the process we introduced a new
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regularity result for solutions to the source problem on piecewise C1,α globally W 1,∞ surfaces.

We then used this result to extend the a priori estimates for eigenfunctions results of Chapter 2 to

piecewise C1,α globally W 1,∞ surfaces. We then used these new a priori estimates to show that

if our eigenfunctions and surface belong to an approximation class A′s, then for a sufficiently fine

initial mesh T0 our eigenfunction estimator does indeed lead to optimal order s convergence rates.

We also provided a partial characterization of our approximation classes in terms of Besov spaces.

There is still room for future improvement and extension of our results. The geometric esti-

mator we used is heuristically O(hk) for C∞ surfaces. Based on a priori analysis we would hope

to find an estimator that is heuristically O(hk+1) for C∞ surfaces. Recently a new heuristically

correct geometric estimator for surfaces of regularity C2 or better was introduced in [36]. This

estimator should bound all of the geometric consistency errors encountered in our analysis from

Chapter 3. Algorithmic performance has not yet been theoretically analyzed, but we would expect

the performance of this new estimator when used in our adaptive algorithm to offer an advantage

when working with C2 surfaces. In the future we hope to analyze this new estimator and improve

our algorithmic performance on higher regularity surfaces.
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