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ABSTRACT

The advancement in technology and computational power has enabled large amounts of data

collection in real time, which has initiated the "Big Data" era. Big data analytics is playing an

essential role in academy, business as well as government, providing assistance in decision-making

in numerous fields. In this work, selected challenges in process systems engineering are addressed

through advances of and applications in big data analytics.

First, challenges in chemical process monitoring, such as fault detection and diagnosis, are ad-

dressed by exploiting the industrial data abundance. Data-driven process monitoring has become

one of the key approaches in industry to maintain a safe and robust operation while increasing

process efficiency to ensure high standards in product quality. In this work, a novel fault detection

and diagnosis framework based on nonlinear Support Vector Machine-based feature selection and

modeling algorithm is developed for the simultaneous fault detection and diagnosis of chemical

processes (s-FDD framework) in both continuous and batch modes. The major advantage of the

s-FDD framework is its ability to identify the optimal number of process variables diagnosing the

fault while providing highly accurate models for fault detection. The s-FDD framework is further

improved with the integration of (i) maintenance optimization strategies, and (ii) multi-parametric

model predictive control (mp-MPC) in order to maximize the process profitability and resilience

while minimizing process downtime. A novel "parametric fault-tolerant control" concept has been

developed for chemical/biochemical processes that serves as an active fault tolerant strategy. This

work can serve as an online decision support tool during process operations to enable (i) early de-

tection and diagnosis of process faults, and (ii) rapid actions to adapt altering process or controller

conditions to achieve smarter operation.

Secondly, we address challenges in understanding the environmental health impact of com-

plex substance/mixture exposures during environmental emergency-related contamination events

(i.e. hurricanes). A data-driven framework is developed to group complex substances with known

chemicals by analyzing high dimensional analytical chemistry data, and predict their impact on the

environmental health. This facilitates the communication of substance characteristics and decision-

making via read-across in order to mitigate the adverse environmental health effects.
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1. INTRODUCTION*

The advancements in technology and computational power has enabled large amounts of data

collection in real time, which has initiated the "Big Data" era. Big data analytics has become

an essential tool for academy, business as well as government, providing assistance in decision-

making process in numerous fields, specifically process systems engineering (PSE).

In this dissertation, selected challenges in PSE are addressed through advances and applica-

tions in big data analytics for modeling, optimization and control of processes/systems. The tack-

led challenges related to energy and process efficiency, and environmental health are introduced

respectively, where data can facilitate the interpretation of processes and undesired conditions,

and further provide solution. The motivation and background behind the stated challenges are

presented, and the targeted objectives towards solving them are provided below.

1.1 Smart Manufacturing

Energy and process efficiency is a key player in industry in order to maximize the profit and

minimize the adverse impacts on the environment. Simultaneous achievement of high efficiency,

safety, and profitability is of utmost importance and urgency in modern manufacturing and process

industries, yet a challenging one due to the (i) growing demand for higher product quality, (ii)

constant need for higher process efficiency at minimum cost, (iii) increasing stringency of environ-

mental and safety regulations (7; 5). This need has urged industry to adopt and automatize novel

process technologies and methodologies that can optimize their process, in other words to pursue

”Smart Manufacturing”(8). Recently, smart manufacturing, which integrates automated, digital

technologies with advanced manufacturing capabilities throughout the product life-cycle(9), has

gained significant interest from academia, industry and government encouraging advancements

in information, characterization, process, and sensing technology. It improves energy efficiency

and accordingly manufacturing performance by implementing next-generation sensor and control

*Part of this chapter is reprinted with permission from “Big data approach to batch process monitoring: Simul-
taneous fault detection and diagnosis using nonlinear support vector machine-based feature selection” by Onel, M.
and Kieslich, C.A. and Pistikopoulos, E.N., 2018, AIChE Journal, Vol. 65, Issue 3, pp 992-1005, John Wiley Sons
[2018] by John Wiley and Sons and Copyright Clearance Center and “A nonlinear support vector machine-based fea-
ture selection approach for fault detection and diagnosis: Application to the Tennessee Eastman process” by Onel,
M. and Kieslich, C.A. and Guzman, Y.A. and Floudas, C.A. and Pistikopoulos, E.N., 2018, Computers & Chemical
Engineering, Vol. 116, pp 503-520, Elsevier [2019] by Elsevier and Copyright Clearance Center
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technologies along with communication devices. This ensures and expedites the collection and

dissemination of large amounts of process data, often referred as "Big Data", in real time. This

concept has also given birth to emergence of industrial Internet of Things (IoT), which refers to

the network of inter-connected industrial equipment and systems that can exchange and process

the collected high-dimensional data. In 2012, the potential of Big Data for decision-making in in-

dustry has been recognized by former president, Mr. Obama, with the launch of $200 million "Big

Data Research and Development Initiative”, where the main goals are set as: (i) advancing state-

of-the-art core technologies needed to collect, store, preserve, manage, analyze, and share huge

quantities of data, (ii) expanding the workforce needed to develop and use big data technologies,

and (iii) harnessing technologies to accelerate the pace of discovery in science and engineering,

strengthening the national security, and transforming teaching and learning (10). This has launched

the Big Data era in numerous PSE fields, including process monitoring, fault detection and diag-

nosis (11; 12; 13), process optimization and control (14; 15; 16), and healthcare (17). In this work,

advances in data-driven fault detection and diagnosis, maintenance optimization and fault-tolerant

control of chemical processes is presented.

1.2 Process Monitoring, Maintenance Optimization and Control

The emergence of the fourth industrial revolution, Industry 4.0, along with the recent Big Data

initiatives (18; 12) has enabled a research breakthrough in the field of data-driven (or statisti-

cal) process monitoring. The main goal is to ensure smart manufacturing, a concept envisioned

by numerous agencies including the US Department of Energy (DoE) and the National Institute

of Standards and Technology (NIST), which describes the motivation to design intelligent facto-

ries that can rapidly adapt to changes/disturbances by sharing and analyzing process data during

manufacturing operation. Thus, integration of the advancements in information technology (i.e.

enhanced networking, cloud services, and data analytics) with operations technology (i.e. adap-

tive automation, sensor and software technology) is of utmost importance to produce a network

communication between process instruments known as industrial Internet of Things (19). As the

industry is moving towards such automated and integrated process architecture, the analysis of

process data produced in large amount in real time is becoming more practical in various engi-

neering applications to understand underlying trends, and subsequently improve decision-making
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for operation. Data-driven process monitoring is one of these major fields where industrial pro-

cess data play a significant role in accurate and timely decision-making to maintain a safe and

profitable operation. As the modern process industry aims for smarter, safer, and more efficient

operation, the need for developing novel, more accurate, thus powerful process monitoring and

fault detection and diagnosis framework continues to grow. While the computational and techno-

logical advancements are leading processes to integrate more operating variables under closed loop

control and cause increase in process structure complexity, which obfuscates process control, the

Big Data outbreak in industry immensely facilitates process monitoring. Today, by using process

big data (historic and/or simulation-based), one can detect faults, diagnose them from key process

variables, predict future state of process variables, and prevent any undesired conditions (12).

Data-driven process monitoring exploits multivariate statistics and data mining methods to de-

termine whether a fault has occurred or not during industrial process operations. Here, fault is

defined as abnormal process behavior due to an unpermitted deviation in at least one observed

variable or computed parameter of the system, where controllers cannot reverse it (20). Faults

may occur due to equipment failure, equipment wear, or extreme process disturbances (21). Early

and rapid detection and diagnosis of process faults is one of the top major challenges of industry

in order to sustain a safe operation and minimize losses in productivity(22). These issues are ad-

dressed via process monitoring (i.e. fault detection and diagnosis) techniques, where deviations

from normal operation (i.e. faulty operation) and resolving (diagnosing) the characteristics of the

detected problem (i.e. fault diagnosis) is the main interest.

1.2.1 Process Monitoring

Process monitoring techniques can be classified into three categories: model-based (a.k.a first-

principle based), knowledge-based and data-based methods (20). Model-based methods (23) are

based on first-principles which uses of a priori physical and mathematical knowledge of the pro-

cess. Therefore they are apt to yield more accurate solutions than the other techniques. However;

the success of model-based methods heavily depend on the accuracy of process models, which

is significantly challenging to ensure as the modern industrial processes are becoming increas-

ingly complex in structure. Knowledge-based methods gather the available information on the

process performance and develop qualitative or semi-quantitative relations via causal analysis with
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signed directed graphs (24; 25), decision trees (26), pattern recognition techniques like artificial

neural networks and self-organizing maps (27; 28; 29). The major drawback of these techniques

is their dependency on human knowledge which may produce solutions that are susceptible to

change (30; 31). On the other hand, data-driven process monitoring methods do not involve any

prior knowledge, where models for fault detection and diagnosis are constructed solely on data.

Compared to the other two categories, data-driven methods are advantageous in capturing intrinsic

complexity of the industrial processes by benefiting of the abundance in process data. Thus, data-

driven methodologies have sparked significant interest within the last two decades and their appli-

cations have become prevalent in wide range of industries including the chemical, energy, medical,

photo-voltaic, semiconductor manufacturing, and steel industries (32; 33; 34; 35; 36; 37; 38; 39).

Today, data-driven or statistical process monitoring (SPM) techniques(40; 5) are providing

promising results due to the availability of large amounts of recorded process data. These tech-

niques exploit multivariate statistical analysis and machine learning algorithms to build data-driven

models that can determine deviations from normal operation, and partition high dimensional data

space into distinct fault regions for identification. The widely accepted, so-called traditional,

technique for data-driven fault detection is anomaly/outlier, out-of-control situation, identifica-

tion via the Hotelling’s T 2 and Q-statistics (20; 5). Other data-based methods centering around

classification/regression-based analysis have been proposed that employ Artificial Neural Network

(ANN) (41) and more recently Deep Learning algorithms (42), Classification and Regression De-

cision Trees (CART) (43; 44) as well as different Support Vector Machines (SVM) formulations

being Support Vector Classification (SVC) (3; 45; 46; 47), Support Vector Regression (SVR) (48),

and Support Vector Data Description (SVDD) (49). In particular, a major advantage of Support

Vector Machines is their ability to provide nonlinear and robust models for non-Gaussian dis-

tributed process data, and due to their succinct representation as convex nonlinear optimization

problem to obtain global parameters for models.

Regardless of the data type and mining technique, the ultimate goal in data-driven process mon-

itoring is to attain the highest model accuracy with lowest false-positive rate for fault detection and

diagnosis, which is one of the major challenges when dealing with high-dimensional process data.

As the data volume grows, the risk of having spurious features increases, which would in turn

deteriorate the accuracy of the data-driven models. In particular, the increase in (i) plant-wide pro-
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cess control structure complexity with new technologies, and (ii) speed in process data collection

has risen the number of process variables and parameters to consider during process monitoring.

This paves the way for the use of advanced dimensionality reduction techniques during the model-

building phase (50; 51; 52; 53; 54). Accordingly, this has opened a new research area, where there

is a growing need for novel data-driven fault detection and diagnosis techniques development that

employs powerful dimensionality reduction methodologies, thus produces more accurate and re-

liable models. Dimensionality reduction can be achieved via either: (i) feature extraction, or (ii)

feature selection. In process monitoring setting, features represent process variables used in fault

detection model development. Feature extraction entails projection of the features of original space

into a new, lower dimensional space, where the extracted features become linear combinations of

the original ones.

Prominent feature extraction based dimensionality reduction methods include latent variable-

based models being Principal Component Analysis (PCA) (55; 56; 57; 58; 59; 60), Partial Least

Squares (PLS) (61; 62; 63; 64), Fisher Discriminant Analysis (FDA)(21), and Correspondence

Analysis (65; 66). These methods project the original data into a lower-dimensional space where

accurate and simplified characterization can guide process monitoring (40). Nonlinear and dy-

namic extensions of these techniques (i.e. Kernel PCA/PLS (67; 68), Dynamic PCA/PLS (69; 70))

have also been introduced to handle nonlinearity and serial (temporal) correlations of process data,

respectively. However, a major disadvantage of these methods is that they assume Gaussian dis-

tributed process data, which poses limitation in producing accurate fault detection and diagnosis

(30). Independent Component Analysis (71) is another feature extraction technique which does

not assume Gaussian distributed data. Nonetheless, the disadvantages of this technique include (i)

unstable monitoring performance due to the random initialization, (ii) ambiguity in the selection of

retained independent components, (iii) unclear value assessment of each independent component,

and finally (iv) perplexing control limit determination due to non-Gaussian distribution of the ex-

tracted independent components (30). Finally, regardless of the assumption on data distribution,

feature extraction based methods cause significant loss in information during the transformation of

the original features into a lower dimensional space which impairs the interpretation. This reflects

as a delay or even deterioration in fault diagnosis due to loss in physical interpretation. This can

be prevented with the adoption of feature selection techniques.
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Feature selection is the process of selecting the most informative and relevant original features

(e.g., process attributes, variables) characterizing the system which is crucial to encapsulate highly

nonlinear and interconnected nature of the process data inputs accurately. This in turn improves

data-driven, predictive model accuracy and robustness by reducing the probability of overfitting.

Furthermore, obtaining the highest model accuracy with “minimum” number of features is of ut-

most interest for facilitating the results interpretation. Use of feature selection in process monitor-

ing yields high model accuracy without impairing interpretation for diagnosis, and also provides a

reference in configuration of sensors in the process for data collection. The later notably becomes

important when the measurement resource is limited (72). Therefore, applications of feature selec-

tion in fault detection and diagnosis field have been significantly increasing (73; 74; 75; 76), where

the researchers have now focused on determining the optimal set of process information (process

variables, equipment health data, process parameters etc.) to (i) improve the model accuracy, thus

reliability, for fault detection and diagnosis, (ii) minimize the number of process variables diag-

nosing the detected fault for facilitated interpretation, thus expedited recovery, and (iii) minimize

the operation cost by ensuring optimal sensor configuration and sensor network design.

1.2.2 Maintenance Optimization

In order to maintain a safe and profitable operation, the next steps after accurate and rapid

fault detection and diagnosis are (i) fault identification and reconstruction, (ii) fault isolation, and

(iii) process recovery and maintenance. Fault identification is the determination of the type of the

occurring fault. While fault detection corresponds to discovering any abnormalities in an ongoing

process, fault identification is finding the exact type of the occurring fault. It is very common to

observe multiple different fault types in process industries, therefore fault identification plays a

key role in deciding on the next steps for process recovery (30). In addition to the fault type, the

magnitude of the disturbance as well as the direction need to be explored to determine the level of

corrective actions. Revealing the quanititative details of the detected fault type is known as fault

reconstruction which is another important component for process recovery. If fault reconstruction

is not precise, this may cause bigger problems during correction actions even though fault detection

and diagnosis is done accurately. In other words, even if we know a certain type of fault occurring

within the process and the cause, we still need to learn the exact amount of deviation in the causing

6



process variables to fix the problem and return the operation to the nominal stage. Once the fault

type and magnitude are identified, the next task is fault isolation in order to prevent fault propa-

gation. Any failure in ensuring fault isolation may end up causing plant-wide oscillations, and in

turn deteriorates control performance of the whole plant. In such cases, diagnosis becomes more

challenging due to unexpected propagation pathways. In fact, root cause analysis in plant-wide

oscillations has been extensively studied in the literature (77; 78; 79; 80; 81; 82; 83; 84). Final

step in process monitoring methodology is to recover the faulty process to normal by selecting and

applying necessary maintenance strategies while using the revealed information on the fault.

Maintenance optimization plays a key role for sustaining a safe and profitable operation, re-

covering and further preventing from faulty condition. Maintenance optimization is a term used to

describe the engineering decisions and associated actions performed to optimize (i) process safety,

(ii) product quality, and (iii) process efficiency (85; 86). Regardless of the maintenance type, the

main goal is to maximize system availability and reliability to meet the targeted product output

level and quality, thus to achieve high profitability, without compromising safety and environmen-

tal issues (87; 88). Therefore, maintenance optimization is crucial and necessary for industrial

operations. One of the major challenges in industry has been to increase plant availability and

reliability at the lowest cost. This has even become harder with the emergence of Industry 4.0

(12) and Smart Manufacturing (89) initiatives, where mechanization and automation in industry

has reduced the number of production personnel, increased the capital employed in production

equipment and civil structures, and thus placed maintenance costs as the second largest spending

in operation budget after energy costs (90). Therefore, there is an eminent need for improving

Maintenance strategies are grouped under two broad categories: (i) corrective, and (ii) pre-

ventive. The major difference between corrective and preventive maintenance strategies is the

existence of a fault/failure in a process. In particular, a fault or failure occurs prior to the applica-

tion of corrective maintenance tasks, whereas preventive tasks are applied to hinder abnormalities

in the process. Therefore, corrective maintenance is a reactive approach, whereas preventive main-

tenance actions fall under the proactive approach category. In particular, corrective maintenance

describes the all actions to correct, repair and if necessary replace the failed units in a system or

process. Based on the extremity of the abnormality in a process, corrective maintenance can be

grouped into two categories: (i) “run-to-failure” reactive category, where complete unit failure
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occurs and equipment replacements are the only solution to correct the abnormality, and (ii) cor-

rective category, where individual/minor faults are identified and addressed when they occur and

tasks are performed to avoid a complete equipment failure (91). In other words, reactive mainte-

nance is performed after a failure occurs in a system, whereas corrective maintenance strategies

are followed when a fault is detected in the system to remediate the process.

On the other hand, preventive maintenance strategies are further divided into two groups: (i)

timed maintenance, where maintenance tasks are performed based on a pre-determined schedule

to prevent failures, and (ii) predictive maintenance, where the schedule of preventive maintenance

tasks are based on numerous factors such as equipment condition, process risk level, reliability

condition etc (92; 93; 94). Figure 1.1 summarizes the grouping of maintenance strategies. The ad-

vantage of corrective maintenance strategies is fully utilization of the equipment until a problem is

detected, thus lower short-term maintenance costs. Whereas the disadvantage is the increased long-

term maintenance costs due to increased process downtime in the event of unexpected abnormal-

ities, thus lower availability and reliability. Therefore, it is crucial to take proactive approach and

perform preventive maintenance tasks before failure occurs. Yet, one also needs to avoid schedul-

ing unnecessary preventive tasks, which increases the operation cost, and find the optimal main-

tenance schedule to attain high availability and reliability. As a result, the object of maintenance

optimization is finding the balance between the two main maintenance strategies. Specifically, the

goal is to find optimal frequency and timing of corrective and preventive maintenance tasks that

would maximize the process availability and reliability at minimum cost (95). In fact, with the in-

crease in data collection in real time and huge amount of process and equipment data availability,

data analytics has become an essential in achieving this goal, which is supported by the increase in

studies that combine data analytics with maintenance optimization (96; 97; 98; 99; 100).
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Figure 1.1: Maintenance strategies.

In addition to process availability and reliability, achieving high process resilience is of utmost

importance and one of the major growing demands in process systems engineering (101). As the

automation increases in industry, the systems become more vulnerable to faults (102). Deficiencies

in sensors, actuators, controllers or disturbances in a process may cause fault occurrence, which can

be amplified within a closed-loop control systems and lead to a serious failure unless faulty process

is recovered rapidly and returned back to the nominal condition (103). Therefore, early detection

and diagnosis of faults is crucial on order to prevent fault propagation and further development of

simple faults into failure. One way to handle this problem is to build fault-aware or fault-tolerant

control (FTC) systems, which would understand the existence of faults in a process and adjust the

controller actions accordingly to guarantee stability and satisfactory performance.

1.2.3 Fault-tolerant Control

FTC methods are classified into (i) active and (ii) passive fault-tolerance strategies. Passive

approaches use robust control techniques to protect the system from instabilities, hence ensure the

closed-loop control system to stay insensitive to certain faults, by using the existing controller pa-

rameters. On the contrary, active fault-tolerant strategies do not necessarily use existing controller
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parameters. They use online fault detection and identification (FDI) mechanism to monitor the

process and get information on faults for further fault accommodation. Therefore, reliability of

online FDI mechanisms play a significant role in the effectiveness and robustness of active FTC

strategies. Yet, regardless of the FTC approach, the main goal is to recover the original system per-

formance by using the same control objective (104; 105). Active approaches are further grouped

under two categories: (i) projection-based, and (ii) online reconfiguration/adaptation. For projec-

tion based FTC approaches, in addition to an accurate and robust FDI mechanism for getting online

fault information, a priori knowledge on expected fault types is required to design controllers a

priori for all possible faults that can be observed in the process. Hence, this technique necessitates

offline calculation and storage of control laws. Once the information is received on a certain fault

from online FDI system, the corresponding projected controller actions are activated via one of

the three approaches: (i) model switching or blending, (ii) scheduling, and (iii) prediction (102).

On the other hand, active FTC can also be achieved via adaptive control and re-configuration/re-

structuring of the control signal distribution (a.k.a control allocation). The taxonomy of FTC

methods is summarized in Figure 1.2.

Figure 1.2: Categorization of fault-tolerant control strategies.
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FTC has become an emerging research field in automatic control in the late 70s in order to

overcome the limitations posed by conventional feedback control, where conventional feedback

control design may end up performing poorly and lead to instabilities in the event of actuator, sen-

sor or another system component malfunctions (104). The motivation in designing fault-tolerant

systems have been driven by the problems observed in aircraft control systems, where particular

automatic fault accommodation strategies are needed to guide pilots, and prevent development of

simple faults into severe failures that may lead to accidents (106; 107). FTC has been studied

extensively in the literature (108; 109; 110; 111); however the interest has spiked especially in

the late 90s and early 2000s (112; 103; 113; 114), and the applications have started to become

prevalent especially in safety-critical systems with the increase in computational power and ad-

vancements in sensor technology (115; 116). Fault-tolerant systems are widely used in numerous

fields including aircrafts (107; 117; 118), mechatronics (119), power plants (120; 121), spacecrafts

(122; 123; 124; 125), and industrial plants producing hazardous materials such as nuclear plants

(126; 127). The number of the application areas is yet increasing as the demand for higher process

availability and profitability grows, and tolerance for process failures decreases in industry under

smart manufacturing initiatives (111). Moreover, development of novel fault tolerance strategies

is of great interest for enabling operational reliability and resilience, another key pillar for smart

manufacturing.

1.2.4 Objectives

The common practice in industry is to (i) monitor chemical process data, (ii) detect faults occur-

ring during operation, and (iii) diagnose faults after detecting them by performing further analysis.

In this work, our perspective is to combine detection and diagnosis in order to decrease the process

runtime spent under faulty condition, and expedite the corrective actions so as to maintain safe

operation and prevent further reduce in profit. Therefore, the idea is to build data-driven models

which uses a reduced, particularly optimum (i.e. the most informative) set of features (process

variable information), to detect abnormalities in a process. This can be achieved via performing

modeling and model-informed feature selection simultaneously.

Model-informed feature selection is finding the optimal subset of the input process data vari-

ables by using the model accuracy information during training stage. In other words, the feature
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elimination criteria is based on the model performance with selected set of features, where optimal

set of features can be identified by an iterative procedure. Using only the most descriptive process

features, one can (i) achieve high-performance models, (ii) reduce the model complexity, and (iii)

lessen data collection and storage requirements. In terms of process monitoring, this corresponds

to developing accurate, simple yet reliable models for fault detection and diagnosis. Thus, the first

objective is to develop a framework for simultaneous fault detection and diagnosis, which employs

simultaneous modeling and model-informed feature selection analysis, and then test it extensively

on both benchmark batch and continuous chemical processes. To this end, Support Vector Ma-

chines are inherited since they can (i) capture nonlinearity among process variables, (ii) handle

high-dimensionality of data, and (iii) be used for simultaneous modeling and feature selection due

to their succinct formulation as convex nonlinear optimization problem, where binary variables are

introduced in the objective function for each variable (128).

The main goal is to design an online decision support tool for data-driven process monitoring

which (i) enables rapid and accurate fault detection/identification and diagnosis, (ii) produces pre-

cise fault reconstruction to facilitate recovery, and prevents propagation of the detected fault, (iii)

provides maintenance strategies to process operators while maximizing profit. Rapid and accurate

fault detection and diagnosis is aimed to be achieved and validated within first two objectives. Un-

der the second objective, we aim to (i) implement the framework within a benchmark simulation

to validate online process monitoring performance, and (ii) employ advanced regression analysis

to provide information on the detected fault’s magnitude and direction, where different advanced

data mining algorithms, including Support Vector Regression along with model-informed feature

selection, are tested to find the most precise model.

Third objective is the integration of different maintenance tasks to the proposed framework in

order to optimize the process efficiency and profit, known as maintenance optimization. Mainte-

nance optimization is an essential component of industry operations to minimize process down-

time, and maximize profit while sustaining safety and sustainability. In this dissertation, corrective

and periodic preventive maintenance strategies are integrated to the proposed framework. The

premise is that the integration of maintenance strategies to the framework minimizes the operation

cost by simultaneously monitoring the process for early detection of abnormalities and improving

the equipment health, which is crucial to achieve targeted end-product quality.
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Final objective is to propose a novel corrective maintenance strategy that can eliminate process

downtime, maximize process reliability and profit by integrating multi-parametric model predictive

control to the proposed framework for fault detection, diagnosis and reconstruction. The traditional

corrective maintenance is online re-tuning of existing controllers which causes a significant time

spent under faulty condition, which may extend the total operation time to achieve targeted end-

product quality or even further deteriorate it. Although switching based active fault-tolerant control

strategies have been introduced in the literature, which aims to minimize the process downtime

by storing pre-calculated control laws, the major challenge has remained to have a reliable and

robust FDI system which can provide accurate fault information and minimize the number of

false-alarms. Therefore, in order to minimize process time spent under abnormal condition while

increasing process reliability and resilience via accurate fault detection and diagnosis, we aim

to introduce a novel parametric fault-tolerant control strategy. The goal is to design a multi-

parametric model predictive controller for both normal and faulty operations, where the control

strategies are affine functions of the system states and the magnitude of the detected fault. The

premise is that integration of the proposed framework and parametric fault-tolerant control ensures

increased process resilience and eliminates process downtime by enabling rapid switches between

a priori mapped control action strategies.

1.3 Data Analytics for Improving Environmental Health Decision-Making

Environmental emergencies and disasters are inevitable in life, and the risks they thread to

health and the environment due to ensuing chemical contamination is evident. In order to reduce

these risks, the scientific community and stakeholders in policy and administration need high-

performance models and tools that can allow them to make rapid decisions to decrease the adverse

effects of chemical exposure during environmental emergencies. In fact, over the last decade both

academic and applied public health communities demand increase in post-disaster research activ-

ities (129) that can significantly mitigate the adverse effects caused by these events. Therefore, in

this section, characterization of environmental and health risks of unknown environmental contam-

inants through computational models/tools that use biomedical and chemical big data is addressed

and presented.
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1.3.1 Motivation and Background

Environmental emergencies and disasters (i.e. hurricanes, water-flooding) pose significant

challenges on human health and environment. The environmental mobilization of contaminants

by natural disasters cause chemical contamination (i.e. re-distribution of hazardous chemical sub-

stances) which increases the post-disaster chemical exposure risks. For instance, in 2005, hurricane

Katrina caused serious damage to land due to the wind, storm surge and levee breach. The break-

down of the sewage systems caused distribution of contaminants all over the city leaving New

Orleans residents in a toxic environment (130). Studies are still ongoing to identify exposed chem-

icals, understand their post-effect and accordingly develop effective solutions (131; 132; 133).

Frequent water flooding disasters happening in Colorado (in 2011, 2013, 2015) regularly mobilize

mine tailings and cause them to intermix with sediments, asphalt from roads, distributed oils, etc.

In 2015, because of the discharge of such complex chemical mixtures into the Colorado River, the

color of the river was turned into orange for about a 100 miles (134). More recently, hurricane Har-

vey hit Texas coasts in September 2017 and lead to potential environmental hazards resulting from

chemical plant explosions, flooding of San Jacinto River, a contaminated site, and toxic emissions

from a refinery located in the Manchester neighborhood (129). These examples, covering only a

very small fraction of the entire disaster cases, reveal the importance and need for post-disaster re-

search activities. Additionally, climate change and domestic economic shifts further exacerbate the

exposure levels, and elevate risks towards human health (134; 135). Therefore, precise and rapid

examination of the complexity of the hazardous chemical exposures is essential to identify the po-

tential adverse environment and health impacts, and subsequently to provide immediate solutions

and/or prevent further catastrophic events during environmental emergencies. The advances in sci-

ence and technology, computational power enable researchers to collect, generate and utilize large

amounts of biomedical, chemical and environmental data, which can be further used to develop

efficient tools and models to create a decision support system during environmental emergencies.

The rapid advent of high throughput and/or “omics” sequencing technologies yield major

amounts of high dimensional biomedical and analytical chemistry data, referred as “big” data.

Big data have enabled researchers to obtain overwhelming amount of information about genomic

profile (8), patient’s disease history (136), environmental monitoring (137), and chemical finger-
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printing (138), which creates great opportunity for solving challenges related to environmental

health. Therefore, an immediate and key question is how to use the advantage of the data abun-

dance and extract knowledge for generating useful models/tools that can be employed as decision

support systems. With the increase in today’s available computer power, big data analytics and

statistical tools can be of great assistance.

In order to support university-based multidisciplinary research on human health and environ-

mental issues related to hazardous substances and pollutants, the National Institute of Environ-

mental Health and Sciences (NIEHS) has established Superfund Research Program (SRP). The

ultimate goal is to decipher the relation between chemical exposure and disease. Specifically,

Texas A&M University Superfund Research Program (TAMU SRP) the aim is to develop compre-

hensive tools and models for addressing exposure to unknown chemical mixtures, and accordingly

design solutions for the community during environmental emergency-related contamination events

to mitigate the adverse effects on human health and the environment (TAMU Superfund Research

Center, 2018). Understanding the complexity of the hazardous chemical exposures is crucial,

and necessary in order to mitigate the adverse impacts on human and environmental health, espe-

cially during environmental emergency-related contamination events (i.e. hurricanes). However,

characterization of the potential risks from exposures to hazardous complex substances and mix-

tures is compounded by their inherent chemical complexity and variability in composition between

manufacturers or even batches. This complicates the detailed chemical characterization of these

substances, which in turn obfuscates their grouping for human and environmental health assess-

ment. Environmental health-based risk assessment of such substances, referred as unknown or

variable composition, complex reaction products, or biological materials (UVCBs), is one of the

most challenging tasks in regulatory toxicology (139). Products of petroleum refining are pro-

totypical UVCB (Unknown or Variable composition, Complex reaction products and Biological

materials) substances. UVCBs are some of the most challenging substances for the industry and

regulators because there are few established frameworks for how to evaluate UVCBs under cur-

rent chemical regulatory policy and ensuring that there is no underestimation of hazard to either

workers or the general users of the end-products (140). Indeed, the complexity of the chemical

composition of petroleum substances, in particular their multi-constituent nature and variability in

product composition based on the variability in crude oil stocks, poses unique challenges to the
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regulators and registrants of these substances.

Typically, the individual substances are grouped into product categories based on the simi-

larities in manufacturing processes, phys/chem properties (including refining history and boiling

point/carbon number ranges), and limited analytical chemical information (such as hydrocarbon

classes) (140; 141). However, such broad similarity parameters may not always be considered

sufficient and new approaches to facilitate grouping of UVCBs are needed. Indeed, recent de-

velopments in high-resolution and multi-dimensional analytical techniques have greatly improved

the depth of chemical characterization of complex substances (142; 143). Despite these advances,

full chemical characterization of complex substances, such as a petroleum UVCB substances, is

still largely unattainable (144). This presents a challenge for defining “sufficient similarity” for a

substance of interest in comparison to those substances that may have already been tested for their

potential human and ecological effects (145; 146).

A variety of analytical methods that can be used to rapidly profile chemical composition of en-

vironmental samples and UVCBs produce complex high-dimensional data sets (144; 147). Quan-

titative interpretation of these high-dimensional data has been an active area of statistics and a

number of algorithms have been applied to classify unknown samples, or to derive discriminating

data features (143; 148). For example, data integration, clustering and visualization techniques

using ion mobility-mass spectrometry (IM-MS) data of a subset of UVCBs was used to determine

the group-specific similarities (146). Comparative analyses have also been performed. For exam-

ple, de Carvalho Rocha et al. (2) utilized principal components analysis (MPCA), principal fac-

tors analysis (PARAFAC), and self-organizing map (SOM) analysis to differentiate among various

types of fuels via pattern recognition. Although SOM produces visually appealing grouping maps,

comparative assessment to determine the optimal grouping is a challenge (149; 150). Additional

pattern recognition analysis techniques (141; 151) have been explored to interpret the grouping in-

formation of complex substances; however, the outcomes or these methods are largely qualitative

in nature and rely on the subjective visual evaluation of the grouping outcomes rather than quan-

titative comparative metrics. To tackle this problem and delineate optimal grouping of complex

substances by evaluating different grouping structures via quantitative metrics and visual factors,

data-driven modeling and dimensionality techniques can be of immense help. In particular, data

analysis, modeling and dimensionality reduction techniques can provide immense guidance on ex-
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perimental design and decision-making by using biomedical and environmental high dimensional

data sets. Hence, as part of the Data Science Core of Texas A&M Superfund Research Program,

data analytics models/tools are needed to be designed and developed to group unknown envi-

ronmental contaminants and mixtures with known chemicals to facilitate read-across. Finding the

optimal grouping is of utmost importance for the development of novel broad-acting, high-capacity

sorbents, enterosorbents, where the aim is to implement them in diets to reduce the bioavailability

of the complex mixtures and substances.

1.3.2 Objectives

Detailed chemical characterization of a chemical mixture is challenging due to the variation

in chemical composition during environmental emergencies. To provide rapid solutions, grouping

an unknown chemical mixture to a group of well-studied, “known”, chemicals is critical. With

the aim of creating accurate and effective decision support tool for regulators, the first objective

is to design a framework that can optimally group unknown chemical mixtures with the known

chemicals by using multi-dimensional analytical chemistry and bioactivity profile data extracted

from complex substances. To do this, the aim is to develop a data-driven framework that includes

two separate workflows: (i) unsupervised data analysis workflow, (ii) supervised analysis work-

flow for building classification models based on manufacturing characteristics of complex sub-

stances. While the perspective of unsupervised analysis workflow is to understand the biological

and chemical fingerprint of complex substances, the idea of building classification models based

on manufacturing characteristics is built upon read-across hypothesis. This hypothesis advocates

that similar complex substances that are grouped together according to their phys/chem properties

may have similar effects. Hence, once an unknown chemical mixture is grouped into a cluster of

known chemicals, read-across between cluster members would bridge the gap between data-poor

and data-rich chemical substances.

Furthermore, finding the optimal grouping of complex substances and providing quantitative

and visual communication of the grouping results is of utmost importance and interest for environ-

mental health regulators and decision-makers. Therefore, the second objective is to bridge the gap

between the optimal grouping of complex substances and the quantitative evaluation and commu-

nication of the grouping outcomes. To do this, unsupervised grouping is performed via hierarchical
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clustering, where results can be demonstrated through dendrograms and grouping quality is eval-

uated against existing manufacturing classes using Fowlkes-Mallows index. Second, supervised

analysis workflow for classification of complex substances based on their manufacturing character-

istics is targeted to be evaluated based on accuracy and confusion matrices. Although the common

approach in the literature is qualitative assessment based on grouping visuals, the introduction of

quantitative metrics into the proposed framework are expected to improve comparative assessment

between different grouping structures, which can then immensely facilitate the interpretation of

results.

The overall premise of the proposed framework is to provide (i) optimal grouping of complex

substances, (ii) improved interpretation of the grouping results for decision-makers with the use of

visualization techniques and identification of the most informative features, and (iii) comparative

assessment of the grouping results by reporting quantitative metrics (i.e. Fowlkes-Mallows index

for clustering, and accuracy for classification analysis). The optimal grouping information of com-

plex substances via the proposed framework is expected to facilitate decision-making on sorbent

material design as well, which are aimed to be implemented in diets to reduce the bioavailability

of chemical mixtures during environmental emergencies.

1.4 Dissertation Objectives and Structure

The objectives of this dissertation are summarized below.

1. To develop a data-driven framework that enables simultaneous fault detection and diagnosis

in order to minimize the process runtime spent under faulty condition, and expedite the

corrective actions, thus to ensure high safety and profitability.

2. To extend the developed framework to enable simultaneous fault identification and diagnosis

in order to decrease the number of models used during online process monitoring.

3. To extensively test and validate the performance of the developed framework for both batch

and continuous processes.

4. To integrate major maintenance optimization strategies with the developed framework to

increase process efficiency and profit.
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5. To introduce a novel corrective maintenance strategy, parametric fault-tolerant control, to

eliminate process downtime, and maximize process reliability and profit by merging the

developed framework and multi-parametric model predictive controller design.

6. To establish a data-driven framework for grouping of unknown complex substances with the

known chemicals in order to enable read-across during environmental emergency-related

contamination events (i.e. hurricanes).

7. To advance the communication of the complex substance grouping results via quantitative

metrics and visual techniques.

Table 1.1 outlines the dissertation structure and maps the objectives listed above to the corre-

sponding dissertation chapters.

Table 1.1: Dissertation structure.

Objective Number Dissertation Chapter

1, 2 Chapter 2

3 Chapter 3 and Chapter 4

4, 5 Chapter 5

6, 7 Chapter 6
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2. SIMULTANEOUS FAULT DETECTION AND DIAGNOSIS (S-FDD) FRAMEWORK*

In this chapter, we present the s-FDD framework for simultaneous fault detection and diagno-

sis. The developed framework advances the data-driven process monitoring by producing highly

accurate fault detection models with optimal process variables, which are further used in the diag-

nosis of the detected fault. s-FDD is a data-driven framework which utilizes a custom nonlinear

(kernel-dependent) SVM-based feature selection algorithm. The methodology that enables simul-

taneous modeling and feature selection is derived from the sensitivity analysis of the dual SVM

objective and utilizes a greedy algorithm to rank features which guides fault diagnosis. There-

fore, the trained end-models use the optimal features, process variables, for fault detection, where

the selected features are used for instantaneous fault diagnosis. As a result, s-FDD framework

minimizes process time spent under faulty operation, and accordingly ensures high process safety

and profitability. Below, we provide background on Support Vector Machines in Section 2.1. The

details of the nonlinear SVM-based feature selection algorithm used in the development of the

s-FDD framework are presented in Section 2.2 (128). Then, Section 4.2 introduces the s-FDD

framework for simultaneous fault detection/identification and diagnosis during process monitoring

of chemical processes.

2.1 Support Vector Machines

Support Vector Machines (SVM) is a widely-used machine learning algorithm that has pro-

duced significantly successful results in extensive set of supervised learning problems (i.e clas-

sification, regression, and outlier detection) from various fields. Specifically, the main idea be-

hind SVM classification is to transform training data into a higher dimension via nonlinear Kernel

functions, where a linear hyperplane in the mapped space (nonlinear in the original domain) can

separate the data by class. SVMs are formulated as convex optimization problems which enable

them to be solved to global optimality. Therefore, with an appropriate nonlinear mapping to a

*Part of this chapter is reprinted with permission from “Big data approach to batch process monitoring: Simul-
taneous fault detection and diagnosis using nonlinear support vector machine-based feature selection” by Onel, M.
and Kieslich, C.A. and Pistikopoulos, E.N., 2018, AIChE Journal, Vol. 65, Issue 3, pp 992-1005, John Wiley Sons
[2018] by John Wiley and Sons and Copyright Clearance Center and “A nonlinear support vector machine-based fea-
ture selection approach for fault detection and diagnosis: Application to the Tennessee Eastman process” by Onel,
M. and Kieslich, C.A. and Guzman, Y.A. and Floudas, C.A. and Pistikopoulos, E.N., 2018, Computers & Chemical
Engineering, Vol. 116, pp 503-520, Elsevier [2019] by Elsevier and Copyright Clearance Center
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sufficiently high dimension, data from two classes can always be separated optimally (Figure 2.1).

Although training SVM models is computationally demanding, SVMs produce highly accurate

models due to their ability to resolve complex nonlinear decision boundaries with globally opti-

mum parameters. They are also less prone to most data-driven modeling pitfalls (e.g. over-fitting,

multicollinearity), which make them popular among myriad of research fields.

In this study, fault detection is formulated as a supervised learning problem (i.e. classification)

with l training instances correspond to batches, where xi ∈ Rn. Indices i, j = 1,2, . . . , l belong to

batches, whereas indices k,k′ = 1,2, . . . ,n correspond to input process data features (i.e. process

measurements at specific time points). To determine whether an ongoing batch is faulty or normal,

we utilize the C-parameterized SVM (C-SVM) classification formulation with nonlinear Kernel

functions. The basic C-SVM formulation with hinge loss, `2-norm penalty, and linear kernel (152;

153) is written as:

min
w,b,ξ

1
2
‖w‖2

2 +C
l

∑
i=1

ξi

s.t. yi(w · xi +b)≥ 1−ξi i = 1, . . . , l

ξi ≥ 0 i = 1, . . . , l

(2.1)

where w is the weight vector of features (process measurements). ξi are slack variables for each

instance (i.e. batch) i that are misclassified. C is a regularization parameter and controls the level

of training error to be introduced in the cost function for the sake of creating more generalizable

models. yi ∈ {−1,1} denotes the group label of batch i, as normal or faulty, respectively. Finally,

b represents the bias parameter. When model 2.1 is solved to global optimality, resulted opti-

mal solution (w∗,b∗,ξ∗) yields linear decision function (w∗,b∗,ξ∗) whose sign predicts the group

membership of the new batch x:

w∗ =
l

∑
i=1

α
∗
i yixi (2.2)

f (x) = w∗ · x+b∗ (2.3)

where αi are dual variables. Here, due to the nonlinear nature of batch process data, C-SVM
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with linear kernel may not provide accurate and robust solutions for batch process monitoring.

Therefore, we exploit nonlinear Kernel functions, K(xi,x j), within the C-SVM formulation which

provides us to train nonlinear decision functions in the input (original) space which implicitly map

the data to a different, possibly infinite dimensional feature space where a linear decision function

can separate the mapped data (154). This is also known as Kernel trick (Figure 2.1). Kernel

functions are introduced in the Lagrange dual formulation of model 1, which is written as:

max
α

l

∑
i=1

αi−
1
2

l

∑
i=1

l

∑
j=1

αiα jyiy jK(xi,x j)

s.t.
l

∑
i=1

αiyi = 0

αi ∈ [0,C] i = 1, . . . , l

(2.4)

The resulting linear decision function consisting the optimal dual solution α∗ becomes:

f (x) = w∗ ·φ(x)+b∗

=
l

∑
i=1

α
∗
i yiK(xi,x)+b∗

where φ(x) is the function providing Kernel-induced implicit mapping. Here, w∗ may no longer

belong to Rn and is possibly of infinite dimension.
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Figure 2.1: Nonlinear Kernel-induced implicit mapping to higher dimensional space in SVM mod-
eling.

The interested reader in the derivation of the Lagrange dual problem and resulting decision

functions can refer to the key references(153; 152; 154).

2.2 Nonlinear Feature Selection Algorithm Based on Support Vector Machines

We introduce the feature selection algorithm based on nonlinear Support Vector Machines

which is formulated to attain the most descriptive original process measurements (128). Elimi-

nation of redundant measurements is highly valuable for high-performance model development

for batch process monitoring. It significantly reduces probability of over-fitting in the built data-

driven models detecting faults, where the size of unfolded and time-evolving batch process data

grows significantly. Furthermore, performing dimensionality reduction while protecting the origi-

nal feature space is highly valuable for rigorous fault diagnosis, where the selected top descriptive

features yield the major causes of the detected fault. Below, we present brief theoretical back-

ground of the adopted feature selection algorithm which is based on nonlinear Support Vector

Machines.

In order to perform model-informed feature selection, we introduce binary variables z∈ {0,1}n

in the Lagrange dual formulation with nonlinear Kernel functions (model 2.4), where zk = 1 cor-

responds to the selection of feature k as being one of features in the optimal subset and zk = 0
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corresponds to the elimination of feature k. The resulting model becomes:

min
z

max
α

l

∑
i=1

αi−
1
2

l

∑
i=1

l

∑
j=1

αiα jyiy jK(xi ◦ z,x j ◦ z)

s.t.
l

∑
i=1

αiyi = 0

αi ∈ [0,C] i = 1, . . . , l

∑
k

zk = m

zk ∈ {0,1} k = 1, . . . ,n

(2.5)

where m represents the size of the optimally reduced subset of input features and operator ◦ is the

Hadamard product operator for component-wise multiplication.

Model 2.5 delineates the explicit formulation of the feature selection problem via nonlinear

Support Vector Machines, which results in a challenging bi-level problem. Solving model 2.5 to

global optimality is highly challenging and impractical in real-life applications (128), hence we

propose to utilize sensitivity of the objective function provided in model 2.5 with respect to zk at

(α∗;z), where zk is treated as a fixed parameter. In order to attain the first-order sensitivity of the

objective function of the model 2.5 at an optimal solution with respect to the parameter zk, which

is located in the objective function and constraints, we use the partial derivative of the Lagrange

function of the model 2.5 (155; 156; 157):

∂

∂zk

[
l

∑
i=1

α
∗
i −

1
2

l

∑
i=1

l

∑
j=1

α
∗
i α
∗
jyiy jK(xi ◦ z,x j ◦ z)

+λ

(
l

∑
i=1

α
∗
i yi

)
−

l

∑
i=1

µ(1)i α
∗
i +

l

∑
i=1

µ(2)i (α∗i −C)

]∣∣∣∣∣
z=z∗

= − 1
2

l

∑
i=1

l

∑
j=1

α
∗
i α
∗
jyiy j

∂K(xi ◦ z,x j ◦ z)
∂zk

∣∣∣∣
z=z∗

where λ ∈ R,µ(1),µ(2) ∈ [0,∞)n are Lagrange multipliers.

Lagrangian sensitivity allows us to guide the perturbations on element zk. The formulation

yields the perturbation criterion for feature k as follows:
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critk =−
1
2

l

∑
i=1

l

∑
j=1

α
∗
i α
∗
jyiy j

∂K(xi ◦ z,x j ◦ z)
∂zk

∣∣∣∣
z=1

(2.6)

kworst = argmax
k

critk (2.7)

Using the criterion given in model 2.6, we eliminate features one at a time (feature worsening

the model 2.5 objective the most, kworst) as we build nonlinear C-SVM models. This yields a

greedy reductive algorithm for model-informed feature ranking. The iterative procedure allows us

to perform simultaneous modeling and model-informed feature elimination via C-SVMs, where in

each iteration, the feature worsening the Lagrange function of model 2.5 the most is eliminated.

Here, one can also eliminate features in blocks (i.e as % of total features). The presented feature

selection algorithm based on nonlinear SVMs is summarized in Figure 2.2.

Figure 2.2: Greedy reductive algorithm for simultaneous modeling and model-informed feature
selection.

Of note, the algorithm provided here is equivalent to recursive feature elimination (RFE)-SVM

classification algorithm(158) when performing linear classification. The algorithm has been im-

plemented in C++/Python environment using the LibSVM library(159). The presented feature

selection algorithm has been applied in numerous fields including bioinformatics, energy, environ-

mental health. Specifically, we have achieved profoundly accurate predictions in HIV-1 co-receptor
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usage(160) and protein structure prediction(161). This dissertation presents the applications in en-

ergy and environmental health.

2.3 Simultaneous Fault Detection and Diagnosis (s-FDD) Framework

The feature selection algorithm based on nonlinear SVM presented in Section 2.2 allows simul-

taneous modeling and feature selection. This enables optimal data-driven modeling by selecting

the most descriptive features of the studied data set. The data-driven modeling applications are

becoming more prevalent everyday as the rwal-time data collection expedites. This increases the

importance of having efficient feature selection techniques that do not hinder the interpretation.

The Smart Manufacturing and Industry 4.0 initiatives have lead industry to adopt data-driven tech-

niques in numerous areas, where process monitoring is one of the major ones. Therefore, in this

dissertation, we have developed simultaneous fault detection and diagnosis (s-FDD) framework by

benefiting from the simultaneous modeling and feature selection algorithm presented in Section

2.2. The framework constitutes from four main steps: (i) data pre-processing, (ii) initial parameter

tuning, (iii) simultaneous modeling and feature selection to obtain feature ranking, and (iv) build-

ing the final model with the optimal feature subset. The details of each steps are provided in Section

2.3.1, where we construct binary classification models for fault detection. Section 2.3.2 describes

the extension of the framework for fault identification, where multi-class classification analysis is

performed. The applications of the s-FDD framework to the selected benchmark continuous and

batch processes are presented in Chapter 3 and 4.

2.3.1 Binary Classification for Fault Detection

For fault-specific model development, two-class classification models using C-SVM formula-

tion have been built, which require data from both normal and each faulty operation separately.

Although process data belongs to specific fault may not be readily available in industrial process,

fault-specific process data can be easily simulated with the dynamic model of the studied process.

2.3.1.1 Data Pre-processing

This is the initial step of each data-driven analysis. Data needs to be formatted, cleaned and

standardized prior to training in order to acquire accurate and robust models. Data pre-processing

steps of the s-FDD framework include (i) data formatting, (ii) missing data handling, (iii) outlier
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removal, (iv) attribute construction (optional), (v) data scaling, and (vi) a priori elimination of

redundant features (a.k.a. data reduction).

Data Formatting: The source of the input process data to the s-FDD framework can be ei-

ther historical industrial data or simulated process data. In either case, formatting of the data is

necessary and important. The input data to the classification analysis needs to be 2-dimensional

(2D), where the rows belong to the batch IDs for batch process monitoring, and operation IDs

for continuous process monitoring. The features can be solely process variable measurements (i.e.

continuous operations) or time-specific process variable measurements (i.e. batch/fed-batch opera-

tions). In particular, batch process data is 3D (i.e. batch X process variable measurements X time),

which needs to be further unfolded into 2D prior to modeling steps. Unfolding can be achieved via

three ways for a 3D process data. Specifically for batch process data, unfolding can be done via:

(i) batch-wise, where instances become the batch IDs and features are time-specific measurements,

(ii) measurement-wise, where instances become process variable IDs and features are time-specific

batch IDs, and finally (iii) time-wise, where instances become the sampling points and features are

batch-specific process variable measurements (162). In general, we prefer batch-wise unfolding

for batch process monitoring applications of the s-FDD framework for the sake of simplicity during

the online implementation of the models. When we train the classification models via batch-wise

unfolded 2D data, we inquire time-specific measurements of each batch operating during the online

phase to generate a binary answer for indicating the fault occurrence.

Missing Data Handling: Missing data can be handled via traditional (ad-hoc) and advanced

machine learning methods. Ad-hoc techniques are the easiest, fastest solutions for handling miss-

ing data, therefore they are widely used in literature (163). However; despite being fast, ad-hoc

techniques are claimed to induce biased results (164). Ad-hoc methodologies include (i) deletion

of the column or row of the missing data location (a.k.a column or row-wise deletion) and per-

forming analysis with the available data, (ii) replacement of missing data with zero or random

variable, and (iii) missing data imputation with column or row mean or median values. Due to the

ubiquitous nature of missing data in several different variables of datasets, we may have to exclude

substantial fraction of the original data set with deletion techniques. Thus, in order to avoid sacri-

ficing from the data set size and further lose any informative features for modeling, imputation or

replacement techniques are preferred over deletion techniques. Moreover, the advanced machine
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learning techniques for missing data imputation are becoming prevalent (165). One of the com-

mon techniques that fall under the advanced methods category is K-nearest neighbor (KNN) based

imputation (166), where pattern recognition analysis is performed on the data in order to fill the

missing data without hindering the existing data pattern. Within s-FDD framework, we propose

to adopt one of the advanced imputation techniques if data access is limited. If not, we suggest to

adopt row-wise deletion techniques, where row corresponds to batch or continuous operation ID.

Outlier Removal: Removing outliers is one of the data cleaning steps. In this dissertation, we

apply the s-FDD framework to the simulated process data sets which are free of outliers, therefore

we have not applied outlier removal analysis. However, outlier data points can be widely observed

in industrial historical data sets. In such cases, z-score threshold based techniques can be adopted

for outlier removal (167).

Attribute Construction: Attribute construction is the extraction of additional process descrip-

tors to include in the process data set in order to help the data mining process. Specifically, this

step may improve the classification model performance by including more features that can cap-

ture the nonlinear dynamics of the chemical processes. This step is mostly used in batch process

monitoring, where inherent non-stationarity and batch-to-batch variability further obfuscate the

data mining process.

Data Scaling: Process data sets are scaled via standard score (z-score) calculation as shown

below:

z =
X−µ

σ
(2.8)

where X is a data point from a selected attribute, and µ is the mean, and σ is the standard deviation

of that corresponding attribute (i.e. feature).

Data Reduction: Final pre-processing step of the s-FDD framework is to eliminate redundant

features that have less than 10−8 standard deviation.

2.3.1.2 Parameter Tuning

Within the s-FDD framework, we train C-SVM (two-class) classification models with the Gaus-

sian radial basis function (RBF) as the nonlinear Kernel function. This step is essential in order

to prevent any bias during modeling, and further improve the model performance. There are two
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parameters that we need to tune: (i) C (cost) parameter of C-SVM, and (ii) γ parameter of the

Gaussian Radial Basis kernel function. C parameter serves as a regularization parameter which

controls the trade-off between training and testing error. Low training error indicates higher model

complexity, thus low generalizability. This means that we have built a model that is too specific

to the training data set, however that model performs poorly for the unseen data. Whereas low

testing error comes with the lower model complexity, yet higher training error, thus less accurate

results. Therefore, we need to find a balance between model complexity and model generalization,

which can be achieved by tuning the C parameter. The second parameter that we tune is the γ of

the Gaussian RBF. This parameter can be interpreted as the inverse of the influence radius of the

samples selected as support vectors by the model ().

The default value for the Gaussian RBF kernel parameter, γ, is 1/n, where n is the number of

features, in LIBSVM (159). Therefore, we tune parameter γ̂ where the relation between γ̂ and γ is:

γ =
2γ̂

n
. (2.9)

Additionally, parameter Ĉ is tuned, where

C = 2Ĉ. (2.10)

The parameter tuning step is performed via grid search with the entire set of features of the

process data set. However, during the iterative feature selection algorithm, described in Section

2.2 of Chapter 2, we can tune γ̂ after every feature elimination step with the remaining feature

subset:

γ =
2γ̂

zT1
(2.11)

2.3.1.3 Feature Ranking and Modeling

Once the optimal parameters are obtained, next step is to produce the feature ranking by ap-

plying the simultaneous model-informed feature selection and modeling algorithm introduced in

Section 2.2. This procedure is iterative. Initially, we train a C-SVM model with the Gaussian RBF

kernel by using the complete set of process data set. This means that we use the entire features (pro-
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cess measurements during continuous process monitoring and time-specific process measurements

during batch process monitoring). Then, at each iteration, we eliminate the feature that yields the

lowest Lagrangian sensitivity of the dual objective function of the built C-SVM model (objective

function of model 2.5) with respect to the feature subset size. The criteria is given in Equation

2.6. We eliminate the features one by one until by training C-SVM model in each iteration with

the remaining set of features. This iterative procedure produces a feature ranking list. Note that

model training is performed via cross-validation, which means that for each fold we obtain an in-

dividual feature ranking list. For instance, when training is performed via 10-fold cross-validation,

we produce 10 individual feature ranking lists. They may not be necessarily highly different from

each other, yet exact lists are not obtained due to the randomness of the process data. Therefore, an

average feature ranking list is derived by examining the statistical distribution of the feature ranks

among the obtained feature rank lists. This is used as the final feature rank list in further steps.

Next, we re-train C-SVM models via cross-validation, and eliminate features one by one based

on the feature rank list. This is done in order to determine the optimal feature subset via cross-

validation. The performance of the trained models are evaluated by examining: accuracy, fault

detection rate (a.k.a. recall), area under the curve (AUC), and false alarm rate. These are extracted

from the confusion matrix that yield the classification results. Specifically, a confusion matrix is

a n X n matrix, where n is the number of classes. It demonstrates the classified group of all data

samples (Figure 2.3).
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Figure 2.3: Machine learning metrics used for classifier model performance assessment.

Final step is to build the end C-SVM models with the optimal feature subset, and optimal

parameters for the online monitoring phase. The models are then used during the online operation

to check for fault occurrence. The decision functions generate binary answer, where +1 indicates

fault occurrence, and −1 indicates normal condition.

2.3.2 Multi-class Classification for Fault Identification

The question needs to be answered here is that what if the operators do not have knowledge on

the distinct faulty operation data, yet still need to detect faults within the process. Another question

awaiting to be answered is that what happens when there occurs multiple fault types in a process

and how can we diagnose them in an effective way. In order to answer these questions, we propose

to extend the s-FDD framework for fault identification.
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In such cases, one needs to (i) detect whether process is in a faulty condition or not, and (ii)

use the s-FDD framework presented in Section 2.3.1 to identify the fault type when a fault is

detected. When we have multiple fault types occuring in a process and further multiple normal

operation modes, we need to adopt multi-class classification analysis. Multi-class classification

can be performed via two ways: (i) one versus one, or (ii) one versus all (Figure 2.4). The first

one includes the binary model development for each combination of fault groups, which becomes

computationally significantly expensive as the number of the groups increases. On the other hand,

the later focuses on the generation of binary classification models to separate one group from the

rest at each step. The later approach proposes to build a cascaded approach with sequential two-

class classifiers. It is computationally more efficient since we can terminate the model building as

we detect the fault type along the hierarchy of separation. Thus, in this work, we are adopting the

later approach to decrease the computational expense.

Figure 2.4: Multi-class classification strategies.

In this work, we merge pattern recognition analysis with one versus all binary classification

analysis via s-FDD framework. Our goal is to create a decision-tree based classification scheme

while benefiting from the model-informed feature selection algorithm presented in Section 2.2.

Specifically, we use hierarchical clustering to understand the patterns among the operation data to
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characterize the operation conditions. Here, one can use different clustering algorithms (i.e. K-

means, hierarchical) to perform pattern recognition analysis. Note that the proposed classification

scheme monitors both normal and faulty operation data, where there may exist multiple operation

conditions within the normal operation, and multiple fault types under faulty operation. However,

the number of the normal operating conditions and the number of the fault types may not be known.

In this dissertation, we focus on the later one, which is also known as fault identification. We divide

the multi-class classification analysis via s-FDD framework for fault identification into two parts:

(i) offline phase, and (ii) online phase analysis (Figure 2.5).

2.3.2.1 Offline Phase: Determining the Hierarchy of Fault Types

During the offline phase, we (i) build two-class C-SVM models for fault detection, (ii) calculate

the mean process trajectories from the process data and cluster them via hierarchical clustering, and

finally (iii) build two-class C-SVM models for fault type groups based on the extracted hierarchy.

The first step is described in detail in Section 2.3.1, therefore skipped here. The rest of the main

steps of the offline phase tasks are summarized below.

2.3.2.1.1 Calculation of the Mean Process Trajectories for Hierarchical Clustering

In order to obtain a hierarchy of fault types, we need to summarize the process data observed

among different batch or continuous processes. Therefore, we need to calculate the mean pro-

cess trajectories, which we refer as the “characteristic snapshot” of the process, to understand the

characteristics of the operation. For continuous operation monitoring, we simply take the average

of the process variable measurements among the entire continuous operation IDs. For example,

let’s assume that we have 100 simulations of continuous operation with various fault types, where

we do not know the number of fault types. If we measure 15 process variables, this yields us a

process data set size of 100 X 15. The characteristic snapshot of this continuous process is the

average across the 100 simulations, which is a 15-dimensional vector. On the other hand, calcu-

lation of the characteristic snapshot for batch process monitoring slightly differs from the one for

continuous process monitoring. In batch processes, first we need to align the historical or simu-

lated batch process operations by adopting one among the dynamic time warping (168; 169; 170),

correlation optimized warping (171; 172), indicator variable (173) or curve registration techniques
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(174). Secondly, we need to unfold the 3D aligned batch process data into 2D via batch-wise

unfolding technique as described in the data pre-processing step of the Section 2.3.1. This yields

time-specific process variable measurements as the features. Then, we can take the average of

the obtained 2D batch process data to capture the characteristic snapshot of the batch process and

further use it for the hierarchical clustering analysis to investigate the fault type patterns.

Hierarchical Clustering: The extracted mean process trajectories are n-dimensional vectors,

where n is the number of features of the process data set. In order to use them for the hierarchical

clustering analysis, we initially calculate the Euclidean distance matrix, a square matrix that con-

tains the pair-wise Euclidean distances of the features. The obtained square matrices are then used

as the similarity matrix for the hierarchical clustering. We perform the clustering analysis by using

the “hclust” function of the “stats” package of R statistical software, where we adopt the Ward’s

method (175) for the linking the clusters. The obtained hierarchical tree demonstrates the structure

of fault types and is used during the binary classifier training for identification of the particular

fault type.

Two-class C-SVM Model Development for Fault Identification: Here, we build two-class C-

SVM models for separating distinct fault types from each other, where the label of the fault types

are guided by the hierarchical clustering analysis output. Specifically, we cut the hierarchical tree

into two in order to select two groups of fault types. Then, we train two-class C-SVM classifier

for separating the selected two fault groups from each other. The separated groups are further cut

into two and this is performed iteratively until we build a binary classifier for each pair of fault

groups. Here, the binary classifier building steps are identical with the s-FDD framework for fault

detection classifier building steps. By following this iterative tree-based classification scheme, we

extend the s-FDD framework for fault identification. The obtained classifiers are then implemented

for the online phase.

2.3.2.2 Online Phase: Fault Identification

During the online operation, we monitor the process by using the binary classifier decision

function built for fault detection. If this model produces a positive response, which indicates the

fault occurrence, we use the rest of the binary classifier decision functions in the order of the

hierarchical tree. This approach enables a grid search to reveal the fault type while the extracted

34



optimal set of features reveal its diagnosis.

Figure 2.5: Multi-class classification of process data with the s-FDD framework.
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3. S-FDD FRAMEWORK FOR CONTINUOUS PROCESS MONITORING*

In this chapter, we present the application of the s-FDD framework to process monitoring and

fault detection of continuous processes. Here, we extensively test the performance of the s-FDD

framework for (i) fault detection and diagnosis, and (ii) fault identification and diagnosis. Specifi-

cally, for the first one, we train fault-specific two-class C-SVM models to detect faulty operations,

while using the feature selection algorithm to improve the accuracy of the fault detection models

and perform fault diagnosis. For the latter one, we perform multi-class classification by training

sequential two-class C-SVM models for a hierarchy of faulty operations. We present results for

the Tennessee Eastman process as a case study and compare our approach to existing approaches

for fault detection, diagnosis and identification.

3.1 Tennessee Eastman Process: Model and Data Set

The Tennessee Eastman process (Figure 3.1), an extensively used benchmark case for com-

parative assessment of process monitoring algorithms, was designed by the Eastman Chemical

Company (176). Numerous data-driven fault detection and diagnosis methodologies tested with

the Tennessee Eastman process are available in the literature (20; 3; 4; 5). The process is based on

a real industrial process, in which the components, kinetics, and operating conditions have been

modified for proprietary reasons (20). There are five primary units in the process being: a reac-

tor, condenser, compressor, separator, and a stripper, where chemicals G and H are produced from

feedstocks A, C, D and E with byproduct F and inert compound B. The process contains 11 manip-

ulated and 41 measured variables. The detail for the process variables is provided in the Appendix

A.

Among several simulation designs, we adopt the one whose plant-wide control structure is

provided by Lyman and Georgakis (1). In this study, we use two sets of simulation data set based

on the Tennessee Eastman process with the 2nd control structure in Lyman and Georgakis. The

first simulation data set is adopted from Chiang and Braatz (20) which includes measurements

*Reprinted with permission from "A nonlinear support vector machine-based feature selection approach for fault
detection and diagnosis: Application to the Tennessee Eastman process by Onel, M. and Kieslich, C.A. and Pis-
tikopoulos, E.N., 2019, AIChE Journal, Vol. 65, Issue 3, pp 992-1005, John Wiley Sons [2019] by John Wiley and
Sons and Copyright Clearance Center

36



from normal and 21 distinct faulty operations (Table 3.1). It includes single set of simulation for

normal and 21 faulty operations separately (yielding 22 simulation data sets). The later is taken

from Rieth et. al (177) having measurements from normal and first 20 faults provided in Table 3.1.

It involves 500 set of simulations for normal and 20 faulty operations separately (yielding 10500

simulation data sets). In this work, we have randomly selected 2 out of 500 sets of simulations from

Rieth et. al data set which lead us to employ a twice size of Chiang et. al data for model building.

The aim in using two different simulation data sets with different size is to test the importance of

data size involved in model development for fault detection and diagnosis. Training and test sets

have been collected by running 25 and 48 hours of simulations respectively, where faults have been

introduced 1 and 8 hours into the simulation and each variable is sampled every 3 minutes. Thus

training sets consists of 500 samples, whereas test sets contain 960 samples per set of simulation.

Further information on the process and simulation can be found in other references (176; 20; 177).

Figure 3.1: Tennessee Eastman process flowsheet with the 2nd control structure in Lyman and
Georgakis (1).
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Table 3.1: Overview of faults and corresponding fault types in the Tennessee Eastman process data
set.

Fault No Fault Fault Type

1. A/C Feed Ratio Step

2. B Composition Step

3. D Feed Temperature Step

4. Reactor Cooling Water Inlet Temperature Step

5. Condenser Cooling Water Inlet Temperature Step

6. A Feed Loss Step

7. C Header Pressure Loss Step

8. A,B,C Feed Composition Random Variation

9. D Feed Temperature Random Variation

10. C Feed Temperature Random Variation

11. Reactor Cooling Water Inlet Temperature Random Variation

12. Condenser Cooling Water Inlet Temperature Random Variation

13. Reaction Kinetics Slow Drift

14. Reactor Cooling Water Valve Sticking

15. Condenser Cooling Water Valve Sticking

16. Unknown N/A

17. Unknown N/A

18. Unknown N/A

19. Unknown N/A

20. Unknown N/A

21. The Valve for Stream 4 Constant Position

3.2 Application of the s-FDD Framework

In this study, we are building SVM binary classifiers for 21 (20 for Rieth et. al) different faults

(fault-specific classifier) introduced in the process data. Thus, for each of the model building phase,

we combine data from normal and relevant faulty operation. The s-FDD framework consists of two
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phases: (i) Offline phase includes the formulation of the fault-specific models for fault detection

and diagnosis via signal process data where the optimization-backed feature selection algorithm

is used; (ii) Online phase monitors ongoing process in real-time by employing the fault-specific

models, raises alarm when faults occur and reports diagnosis of the detected fault simultaneously.

Furthermore, as presented in Section 2.3.2 of Chapter 2, we integrate hierarchical clustering

analysis and the s-FDD framework with multi-class classification for fault identification. Fault

identification is significant in the case of multiple fault occurrences in a process, where the number

of the occurring fault or fault types is unknown. In order to tackle this challenge, we build a

cascaded, decision tree based classification scheme via s-FDD framework. In the offline phase, we

build a two-class C-SVM model for fault detection, calculate the mean process trajectories from

the Chiang et. al process data and cluster them via hierarchical clustering, and finally train two-

class C-SVM models for fault type groups based on the extracted hierarchy from the clustering

dendrogram. Whereas in the online phase, we use the built classifiers in an order guided by the

hierarchical clustering dendrogram. Note that, here, the pairwise fault type groups are obtained

by cutting the tree into two iteratively. Common to each phases of both analysis, data needs to be

re-organized and/or processed a priori as described below.

3.2.1 Data Pre-processing

The common first step in data-driven modeling is the assessment of data quality. This is

achieved via several different data pre-processing techniques such as (i) data cleaning that involves

identification and removing outliers, smoothening the noisy data, and imputation of any missing

values, and (ii) data transformation that includes scaling and normalization of the data to give all

features equal weight, thus avoid bias during model development. In this study, we are using sim-

ulation based data set which is free of outliers or missing values, and solely involves Gaussian

white noise (20). Therefore, only normalization is performed on process data by calculating their

corresponding z-scores, by subtracting the mean of relevant measurements and then dividing into

the standard deviation of them, prior to the offline phase. In the online phase, where actual process

data is monitored in real time, both data cleaning and transformation steps are performed prior to

the use of the developed models.
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3.2.2 Offline Phase: Model Building for Fault Detection and Diagnosis

In this phase, we build fault-specific two-class C-SVM models by using simulation based pro-

cess signal data. Here, the initial step is to collect relevant faulty operation process data and

process data under normal operation. Next, we normalize the process data as described in Section

3.2.1 and construct balanced training and validation sets to be used in model building. Use of

imbalanced data sets may cause insufficient learning of one class than the other, thus may lead to

inaccurate models. Therefore, we initially create balanced training and validation sets via 100 runs

of 5-fold cross validation where each fold includes 480 (960) normal and 480 (960) faulty samples

for Chiang et. al data set (Rieth et. al). Next, we build binary fault-specific C-SVM classifier

models for each of the 21 (20) faults separately. Specifically, since we have 52 process variables in

Tennessee Eastman process, we build 52 C-SVM classifiers for each 21 (20) faults (one per each

feature subset). Finally, we select the end-model for each fault (fault-specific end-model) which

has the optimal feature subset yielding best model performance, for online implementation. The

performance metrics utilized throughout model building phase are provided in the Appendix A.

The iterative model building procedure, which consists of 3 main steps, is described below and

illustrated in Figure 3.2.
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Figure 3.2: Schematic representation of the offline phase - model building section. Gaussian Radial
Basis kernel is used for nonlinear C-SVM training. Iterative procedure is performed for each fault
separately.

3.2.2.1 Tuning C-SVM Hyperparameters with the Active Set of Features

Parameter tuning is essential and required for developing generalizable models that will be

implemented as a decision tool in online phase. In this work, we build C-SVM classification mod-

els by adopting one of the widely used nonlinear Kernel function, Gaussian radial basis function

(RBF) (Equation (4.1)).

K(xi,x j) = exp
(
−γ
∥∥xi− x j

∥∥2
)
, (3.1)

Hence, we have hyperparameters C and γ that are tuned by using training and validation data
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sets with the active set of features (whole feature set in the first iteration). During the selection of

hyperparameter γ, data density plays a critical role to prevent overfitting in the obtained decision

function. Thus, we tune parameter γ̂ where

γ =
2γ̂

n
. (3.2)

In each iteration of model building, where features are eliminated in a greedy reductive manner

(Section 2.2), γ̂ is updated with the available set of features as follows:

γ =
2γ̂

zT1
(3.3)

Additionally, we tune parameter Ĉ where C = 2Ĉ.

We perform a grid search to tune parameters Ĉ, and γ̂ for all value combinations between−10 :

10. In each iteration, we train and validate two-class C-SVM models using 500 training-validation

data set pairs that include the corresponding active set of features. Then, the hyperparameter

combination yielding the highest average testing AUC, accuracy, recall along with minimum false

alarm rate across the 500 data set pairs for each feature subset are chosen for further modeling

steps.

3.2.2.2 Training Fault-specific C-SVM Classifiers for Each Feature Subset

We adopt the selected hyperparameters from the previous step and build C-SVM classifiers

with Gaussian Radial Basis Function, where the class probabilities are smoothened by using me-

dian of probabilities with a window size of 3.

3.2.2.3 Feature Rank Criteria Calculation and Elimination of the Least Informative Feature

We obtain feature ranks by using Equation (2.6). Then, according to the criteria formulated as

in Equation (2.7), we eliminate the "worst", which is most redundant or least informative, feature

from the data set.

This iterative framework involving greedy reductive feature elimination leads us to have fault-

specific C-SVM models for each feature subset. Thus, we attain one C-SVM model per feature

subset per fault. This leads to 52 model generation for each fault classification, which renders 1092

(1040 for Rieth et.al data set) fault-specific classifiers. The final step of the offline phase is the
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selection of the fault-specific end-models. These are the fault-specific models that yield highest

model performance with the optimal feature subset. Specifically, these models produce highest

AUC along with minimum number of features, false alarm rate, false negative rate and latency

(fault detection time). In this work, we have picked 21 (20 for Rieth et. al data set) fault-specific

end-models among 1092 (1040) developed models.

3.2.3 Offline Phase: Model Building for Fault Identification

For fault identification, we first need to understand the characteristics of fault types. Here, we

assume that we do not have the prior information on the faults. Therefore, we gather all faulty

continuous operations under one major faulty process data set. The goal is to generate classifiers

that can be used in online process monitoring to identify the fault type and further diagnose it.

Below, we summarize the main steps for the calculation of the mean process trajectories from the

process data, hierarchical clustering analysis to obtain the pairwise fault type groups to separate

and the order of separation from the extracted hierarchy from the clustering dendrogram.

3.2.3.1 Building a Fault Detection Model for Normal Versus Faulty Process Identification

Here, the goal is to train a unique classifier for identifying the normal operation data from the

rest of the faulty data. Therefore, we merge entire faulty operation data into a single faulty data

set, then train a two-class C-SVM model that can accurately differentiate the normal operating

condition (NOC) process data from any type of faulty data. The procedure of this classifier training

is identical to the training of each two-class fault specific C-SVM model training as described in

Section 4.2.2. Therefore we omit the details of this step for the sake of brevity.

3.2.3.2 Hierarchical Clustering and Two-class C-SVM Model Development for Fault Identifica-

tion

We calculate the average of each faulty continuous process operations provided in the Chiang

et. al data set to extract the characteristics of each fault type. This has produced a 52-dimensional

vector per each faulty operation. Next, we calculate the pairwise Euclidean distance among 21

faulty operation and generate the input square distance matrix for the hierarchical clustering. We

have utilized the Ward’s method for the linkage technique within the hierarchical clustering. The

analysis is performed by using the “hclust” function of the “stats” package of R statistical software.
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The output of this analysis yields a clustering dendrogram which demonstrates the hierarchy of the

clusters. Next, we extract the pairwise fault groups (clusters) by cutting the clustering dendrogram

into two starting from the top. We cut the tree iteratively until we separate each fault from each

other. The order of the separated fault clusters determines the order of the two-class C-SVM

classifiers’ use during the online phase.

Once the hierarchy of fault separation is determined, we build two-class C-SVM models for

each pair-wise fault clusters. We follow the general steps of the s-FDD framework, which is

described in detail for developing the fault-specific end-models in Section 4.2.2. Here, instead

of separating individual faulty operations from the normal operation data, we collect process data

from each faulty operation clusters. By dividing the dendrogram into two groups iteratively, we

obtain 20 different levels of fault groupings. Therefore, we train 20 two-class C-SVM classifier that

separates one faulty operation from another. With this iterative tree-based classification scheme, we

are able to identify the ongoing faults in the process while reporting the optimal process variables

to diagnose the specific fault or fault groups. The 20 end-classifiers obtained at the end of this

stage are then implemented for the online phase.

3.2.4 Online Phase: Fault Detection, Identification and Diagnosis in Real Time

In this phase, 21 fault-specific end models that are chosen at the end of the offline phase are

implemented to monitor the online process data for fault detection and diagnosis. Here, we are us-

ing the test data sets obtained from the simulation of Tennessee Eastman process, which includes

160 normal and 800 faulty samples, to assess the performance of the selected models. The test

data sets are normalized with the mean and standard deviation obtained from the training sets (to

attain z-scores) before being sent into the end-models. In an industrial setting, the real time pro-

cess data needs to be pre-processed with cleaning and transformation (i.e. normalization) steps as

described in Section 3.2.1 before use of the implemented C-SVM models for fault detection and

diagnosis. Fault-specific end-models generate binary answer for detection of each fault indepen-

dently. Here we adopt an alarm policy to identify the fault occurrence. In compliance with the

studies of Mahadevan and Shah (3), and Russell et. al (69), fault occurrence is reported after we

observe 6 consecutive positive alarms within the system. Once a fault is detected from any of the

end-models, the developed framework simultaneously produces the root-cause analysis by solely
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checking the corresponding optimal set of features (process variables).

Additionally, we implement 21 classifiers for fault identification in online monitoring. These

are 21 hierarchy-level specific models that include 1 classifier for general fault detection, which

separates normal operation data from the rest of the 21 faulty operation data, and 20 fault or fault

group-specific classifiers for fault identification. Initial step is to use the fault detection classifier

to understand whether a fault is occurring in the process or not. If a fault is detected, then we start

testing the process data by using the 20 C-SVM decision functions in the order of the clustering tree

levels. We adopt the similar alarm policy, where we require 6 consecutive positive answer for the

identification of the fault or fault group. This cascaded procedure is similar to a branch-and-bound

technique, where arms of the tree levels can be fathomed if 6 consecutive alarms are raised for the

other arm of the tree. Therefore, it saves computational time and facilitates the interpretation of the

fault characteristics significantly. Furthermore, the selected optimal feature subset of the classifier

raising the alarm provides the diagnosis of the process abnormality. This is essential in order to

take further rapid actions to recover the process back to the nominal condition.

3.3 Results

Fault-specific C-SVM binary classifier models have been built by using the training data sets

created from the two different simulation data sets of different size. The adopted simulation data

sets, namely Chiang et. al and Rieth et. al data sets, include all of the 52 process variables but

differ in terms of the number of simulated continuous operations where the latter is the twice size

of the former one. The evaluation of the proposed framework for continuous processes is examined

via fault detection performance in Section 3.3.1, where increasing number of instances have been

observed to increase the model accuracy for the detection of distinct faults. Section 3.3.2 compares

the fault detection latency of the reported end-models with the ones in the literature. Furthermore,

diagnosis of the successfully detected faults is provided according to the most accurate C-SVM

model in Section 3.3.3. Finally, we adopt the Chiang et. al data set to demonstrate how to use the

s-FDD framework for fault identification in Section 3.3.4.

3.3.1 Fault Detection

In this section, we evaluate the performance of the chosen fault-specific end-models for fault

detection. The 21 (20 for Rieth et. al data set) end-models yield highest AUC along with minimum
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number of features, false alarm rate, false negative rate and latency (fault detection time). The

results are tabulated in Tables 3.2 and 3.4, respectively for Chiang et. al and Rieth et. al data sets.

As mentioned earlier, in compliance with the studies of Mahadevan and Shah (3), and Russell et. al

(69), we report fault occurrence at the end of 6 consecutive positive alarms within the system. This

policy is widely adopted in industry to minimize the number of false alarm rates, thus disruption

of the operator. Furthermore, in accordance with the same studies, the fault detection latency is

reported as the first time when the initial alarm is raised.

The end-models reported in Table 3.2 are obtained with the Chiang et. al data set, which

is smaller compared to Rieth et. al data. In particular, fault-specific models are trained with

480 normal and 480 faulty samples, and tested on 48 hour simulation data where each fault is

introduced at the end of 8th hour, which corresponds to having 160 normal and 800 faulty samples

sequentially.

An ideal model would give 100% AUC, accuracy, detection rate along with 0% false alarm

and negative rates. Among the introduced performance metrics (Appendix A), accuracy and fault

detection rate (recall) are the two common ones used for model performance evaluation in the

literature (45; 3). Yet, evaluation based on only these two metrics would be insufficient for a

thorough analysis. In this study, we inspect the model performance via collective evaluation of

AUC, fault detection rate, accuracy as well as false alarm rate and false negative rate. We believe

collective judgment of AUC, fault detection rate, accuracy along with false alarm rate and false

negative rate is essential and required since a model may simultaneously yield high accuracy, and

fault detection rate, but also high false alarm rates which would lead to misleading conclusions.

Such models would be very sensitive and frequently raise fault alarm, consequently making them

unreliable.
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Table 3.2: Performance results of the selected models developed with Chiang et. al data set.
Asterisks imply that the end-model is selected for online implementation.

Fault Subset Size
Feature
Optimal

AUC Accuracy Rate
Detection

Rate
Negative

False

Rate
Alarm
False

Latency (min)

1∗ 2 100.0 99.9 99.9 0.1 0.0 6

2∗ 5 99.5 98.1 97.8 2.3 0.0 57

3 13 62.0 67.8 72.1 27.9 53.8 3

4 1 100.0 100.0 100.0 0.0 0.0 3

5 4 100.0 99.9 99.9 0.1 0.0 6

6 2 100.0 100.0 100.0 0.0 0.0 3

7∗ 3 100.0 100.0 100.0 0.0 0.0 3

8 7 99.4 96.5 95.8 4.3 0.0 60

9 17 66.3 65.2 69.0 31.0 53.8 3

10∗ 14 90.2 83.3 85.8 14.3 28.8 12

11 29 84.9 86.8 96.6 3.4 62.5 3

12 9 99.9 95.7 100.0 0.0 25.6 3

13∗ 7 98.2 93.2 91.9 8.1 0.0 153

14 3 100.0 100.0 100.0 0.0 0.0 3

15 27 75.6 67.2 65.5 34.5 24.4 3

16 5 86.9 87.7 96.9 3.1 58.1 3

17 32 99.5 94.1 92.9 7.1 0.0 72

18 34 94.4 91.7 90.0 10.0 0.0 231

19 2 29.8 75.4 88.5 11.5 90.0 3

20 14 94.5 86.8 85.0 15.0 4.4 45

21∗ 1 99.7 100.0 100.0 0.0 0.6 3

As can be seen from the Table 3.2, fault-specific models perform well excluding Fault 3, 9, 11,

15, 16, and 19. Specifically, faults 3, 9 and 15 are the ones that could not be detected with the avail-

able algorithms in the literature. This is due to the absence of observable change in the process

47



variable behavior (mean and standard deviation) between their corresponding faulty and normal

operation (69). In other words, these faults could not be detected with the set of provided process

variables, however models can always be improved by considering additional process variable in-

formation. For instance, for fault 15, which is sticking condenser cooling water valve, additional

process variables such as position of the valve and/or condenser pressure would have been ex-

tremely helpful for the detection. Then, by using the presented simultaneous modeling and feature

selection algorithm (Section 2.2), we can obtain the optimal feature subset that would produce

the most accurate model to detect these faults. Particularly for faults 3, 9, and 15, although high

fault detection rate and accuracy have been obtained in particular models built for the detection,

high false alarm rates have also been recorded, whereas corresponding AUC metric has fluctu-

ated around 42.8%-64.51%, 42.51%-66.29%, and 42.08%-75.71%, respectively. Of note, 50% of

AUC indicates random assignment of the class label. Specifically, highest AUC received for fault

3, 64.51%, is recorded for the fault-specific model developed with 35 optimal features yielding

82.19% accuracy, 98.62% fault detection rate but with 100% false alarm rate. This means that the

model is very sensitive and raises alarm for fault detection frequently regardless of the operation

characteristics, which turns the model into an inaccurate tool. Similarly, for fault 9, highest AUC

yielding model is obtained with 17 features which produce 65.21% accuracy, 69.00% fault detec-

tion rate together with 53.75% false alarm rate; whereas for fault 15, highest AUC This shows that

AUC metric becomes significantly informative in data-driven model selection, especially when the

testing data set is unbalanced with the number of samples from two different classes. Moreover,

since unbalanced data set would be very common in continuous operation online data, we offer use

of AUC metric in the future fault detection studies, where problem is formulated as classification

problem, to attain a more complete picture of the results.

Moreover, Table 3.2 reveals that our proposed data-driven algorithm has achieved to detect

fault 21, regarding a fixed Stream 4 valve at the steady state position, successfully with an AUC of

99.7%, accuracy and detection rate of 100% with 0% false negative rate and 0.6% false alarm rate.

Here, we would like to highlight that this is one of the most challenging faults of the Tennessee

Eastman process simulation, where, to our knowledge, highest fault detection rate recorded in the

literature is 59.4% along with 26.1% false alarm rate via one-class Support Vector Machine algo-

rithm (4). Again, to have a detailed analysis of this model, we strongly suggest to evaluate AUC
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and false negative rate metrics as well. Here, we show that with the advances in C-SVM formu-

lation for feature selection, we achieve to detect fault 21 with high AUC, accuracy, detection rate

and minimum false negative and alarm rates by considering solely one feature, which is a manip-

ulated process variable - total feed flow rate of Stream 4. This also demonstrates the requirement

for feature elimination during model development. Consideration of any further process variable

in addition to 45th process variable, has deteriorated the model performance significantly. In other

words, other process variables become redundant to detect this fault.

The selection of end-models is a multi-objective task. The fault-specific end-models are the

ones producing the highest AUC with minimum number of features, false alarm and negative

rates, and latency (Table 3.2 and 3.4). Here, we also report alternative models demonstrating

similar performance to end-models but with lower number of features (process variables) (Table

3.3 and 3.5).

On the other hand, the end-models trained via Rieth et. al data set perform well for all faults

excluding only Fault 3, 9, 15. This shows that models can be improved with addition of more

simulation data. As the Big Data era has started playing significant role in industrial decision

making, today large amount of process data collection has been extremely facilitated. Therefore,

accessibility to further process data is assumed not to be an issue. As for the opposite scenario,

where historical process data is not available or not adequate, one can simulate more process data

with the dynamic model of a process to improve model performance with the proposed framework.

Here, we see that using larger data has improved fault detection model performances for faults 11,

16, 19, and 20. This is the result of the fact that the models have learned much better by being

trained with increased number of scenarios (i.e. simulations) for both normal and faulty operation.

Furthermore, we would like to highlight that the addition of new and more training data (scenarios)

also affects the learning pattern of the models and due to the nonlinear dynamics of the process,

this may lead to the selection of different feature sets with two different data sets used in this study.

Yet the key goal in data-driven modeling is to obtain generalizable models, and in this study we

ensure this by using 100 runs of 5-fold cross validation technique during model development.
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Table 3.3: Performance results of the selected alternative models developed with Chiang et. al
data set. Asterisks imply that the end-model is selected for online implementation.

Fault Subset Size
Feature
Optimal

AUC Accuracy Rate
Detection

Rate
Negative

False

Rate
Alarm
False

Latency (min)

8∗ 4 99.2 95.9 95.8 4.2 3.1 63

17∗ 27 99.1 93.4 92.1 7.9 0.0 75
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Table 3.4: Performance results of the selected models developed with Rieth et. al data set. Aster-
isks imply that the end-model is selected for online implementation.

Fault Subset Size
Feature
Optimal

AUC Accuracy Rate
Detection

Rate
Negative

False

Rate
Alarm
False

Latency (min)

1 18 100.0 99.8 99.8 0.3 0.0 15

2 10 99.7 99.2 99.1 0.9 0.0 24

3 10 50.2 17.0 0.4 99.6 0.0 2442

4∗ 1 100.0 100.0 100.0 0.0 0.0 3

5 14 100.0 100.0 100.0 0.0 0.0 3

6∗ 2 100.0 100.0 100.0 0.0 0.0 3

7 4 100.0 100.0 100.0 0.0 0.0 3

8 12 99.0 94.5 93.4 6.6 0.0 54

9 2 54.3 55.1 55.9 44.1 49.4 15

10 15 87.9 80.1 77.6 22.4 7.5 72

11∗ 2 99.8 95.9 95.1 4.9 0.0 18

12∗ 5 99.9 99.4 99.3 0.7 0.0 15

13 8 95.5 87.3 84.8 15.2 0.0 90

14∗ 2 100.0 100.0 100.0 0.0 0.0 3

15 16 56.0 17.6 1.1 98.9 0.0 1635

16∗ 2 96.7 88.3 87.4 12.6 7.2 9

17 28 96.9 92.9 91.5 8.5 0.0 210

18 5 98.6 96.1 95.3 4.7 0.0 75

19 10 100.0 99.6 99.6 0.4 0.0 18

20 14 97.1 92.7 91.2 8.8 0.0 99

Next, we compare the obtained end-models with Chiang et. al and Rieth et. al data sets pro-

vided in Tables 3.2 and 3.4 as well as the alternative models given in Tables 3.3 and 3.5. We select

the simplest end-models for the online decision making. According to the scientific interpretation

of the Occam’s razor philosophy, if one has two competing theories that would yield the same
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predictions, the simpler one is the better (178). By following this principle, we select the fault-

specific end-models (for faults 1-20) with lower number of features if they demonstrate similar

performance between the two data sets. The selected "simple" end-models are marked with aster-

isks. This also facilitates relevant sample data collection, and analysis due to decreased number of

sample collection and analysis.

Table 3.5: Performance results of the selected alternative models developed with Rieth et. al data
set. Asterisks imply that the end-model is selected for online implementation.

Fault Subset Size
Feature
Optimal

AUC Accuracy Rate
Detection

Rate
Negative

False

Rate
Alarm
False

Latency (min)

5∗ 3 100.0 99.9 99.9 0.1 0.0 6

18∗ 2 98.2 95.3 94.3 5.7 0.0 105

19∗ 3 99.7 99.2 99.0 1.0 0.0 9

20∗ 13 97.2 92.1 90.5 9.5 0.0 102

Finally, we pick our fault-specific models yielding highest fault detection rate among the devel-

oped 1092 and 1040 fault-specific models from two simulation data sets, and compare our results

with the available data-driven methods performed on the Tennessee Eastman process data (3; 4; 5).

These methodologies are based on well-known and widely used algorithms, where in some of them

only normal operating data is used (3; 4) and in the others normal and faulty operation data is uti-

lized simultaneously (5). Table 3.6 shows that our proposed framework produces better results than

the other methods, however we need to highlight that the models producing highest detection rate

do not necessarily produce the most reliable models for all faults. As mentioned earlier, a model

can produce high fault detection rate but also high false alarm rate. In fact, this is the case for faults

8, 10, 11, 13, 16, 17, 19, and 20 reported in Table 3.6. For these faults, although we achieve high

fault detection rates as reported in Table 3.6, we observe false alarm rate of 68.1%, 91.2%, 100.0%,

83.8%, 81.9%, 100.0%, and 97.5%, respectively. Therefore, we strongly suggest to evaluate all

metrics described in Appendix A in order to make a fair comparison between models. Specifically,
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the end-models reported in this study are selected based on AUC, which considers fault detection

rate and false alarm rate, false negative rate and latency (fault detection time).

Table 3.6: Comparison of fault detection rate between the fault-specific models producing highest
fault detection rate of this study and the models reported in the literature (3; 4; 5). Best results of
Xiao et. al is adopted.

Ref. Mahadevan & Shah, 2009 2016
Xiao et. al,

2014
Yin et. al,

Study
This

Fault PCA-T 2 PCA-Q DPCA-T 2 DPCA-Q SVM
1-class

SVM
1-class

SVM
2-class

SVM
2-class

1 99.2 99.8 99.4 99.5 99.8 99.5 99.5 99.9

2 98.0 98.6 98.1 98.5 98.6 98.3 98.1 99.1

4 4.4 96.2 6.1 100.0 99.6 47.4 99.9 100.0

5 22.5 25.4 24.2 25.2 100.0 45.2 90.8 100.0

6 98.9 100.0 98.7 100.0 100.0 99.2 60.1 100.0

7 91.5 100.0 84.1 100.0 100.0 70.1 98.9 100.0

8 96.6 97.6 97.2 97.5 97.9 97.4 96.0 100.0

10 33.4 34.1 42.0 33.5 87.6 68.0 81.0 99.4

11 20.6 64.4 19.9 80.7 69.8 65.8 80.2 100.0

12 97.1 97.5 99.0 97.6 99.9 98.8 97.8 100.0

13 94.0 95.5 95.1 95.1 95.5 95.0 92.5 100.0

14 84.2 100.0 93.9 100.0 100.0 93.9 91.0 100.0

16 16.6 24.5 21.7 29.2 89.8 73.1 89.4 100.0

17 74.1 89.2 76.0 94.7 95.3 75.2 81.6 98.2

18 88.7 89.9 88.9 90.0 90.0 89.3 89.5 95.3

19 0.4 12.7 0.7 24.7 83.9 43.6 85.9 100.0

20 29.9 45.0 35.6 51.0 90.0 69.0 80.5 100.0

21 26.4 43.0 35.6 44.2 52.8 59.4 - 100.0
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3.3.2 Fault Detection Latency

The average latency among the reported faults, all faults excluding Faults 3,9, and 15, has

been stated as 306.19, 145.58, 263.12, 151.00, and 98.50 min for PCA-T 2, PCA-Q, DPCA-T 2,

DPCA-Q, and 1-class SVM (3), respectively whereas the latency information is not provided in

Yin et. al (45). In this work, we report significantly lower fault detection latency along with

higher detection accuracy as reported in Tables 3.2 and 3.4. When we exclude Faults 3, 9, and

15, faults that cannot be detectable from the available process variable data accurately, the average

fault detection latency among the remaining 18 (17) faults of Chiang et. al (Rieth et. al) data

set is 37.50 (42.00) min. Moreover, the average fault detection latency for the selected "simple"

end-models for online implementation that are marked with asterisks is 35.83 min. This reveals

the power of the proposed framework for rapid and precise fault detection and diagnosis.

3.3.3 Fault Diagnosis

Here, we present the root cause diagnosis of the detected faults by using the chosen end-models

for online implementation (the models with asterisks). Below, we discuss the obtained diagnosis

results for the selected faults 3.7. The diagnosis with the end-models reported in Tables 3.2 and 3.4

is provided in the Appendix A. Of note, we may observe distinct feature sets for different types of

faults but related with the same unit in the process (e.g. Faults 5 and 12 in Table A7 in Appendix

A). This is mainly because of the fact that varying fault types realize themselves in distinct ways

due to the nonlinear dynamics of the process, which leads to the selection of different process

variables as key ones for fault diagnosis.

3.3.3.1 Fault 1 - Sudden Decrease in A/C Feed Ratio (Stream 4)

Fault 1 occurs due to a step change in the A/C feed ratio which also changes B composition

constant at Stream 4. The chosen end-model (Table 3.2) is able to detect this fault by monitoring

process variables 16, and 44, that are stripper pressure on Stream 5 and A feed flow rate, respec-

tively. Here, sudden increase in C flow rate causes an increase in the stripper pressure, which is

a measured process variable. To compensate this sudden effect and maintain the B composition

constant on Stream 4, the flow controller increases the feed flow rate of A. This, in turn, reverses

the stripper pressure to the original operating range, however, the raise in the A feed flow rate

carries the operation to a new steady-state which can be clearly observed in Figure 3.3.
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Figure 3.3: Fault 1 diagnosis - plot of the root cause variables.

3.3.3.2 Fault 4 - Step Change in Reactor Cooling Water Inlet Temperature

The end-model selected for detection of this fault is given in Table 3.4. By monitoring the

manipulated process variable 51, we are able to detect this fault with 100.0% accuracy along with

0% false negative and alarm rates in 3 min. To decrease the elevated reactor cooling water inlet

temperature, the controller increases the condenser cooling water flow rate (Figure 3.4). Therefore

monitoring of this process variable provides valuable insights for the identification of this fault.
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Table 3.7: Diagnosis from the selected end-models (marked with asterisks in Tables 3.2, 3.3, 3.4,
and 3.5) via Occam’s Razor principle. Faults 3, 9, and 15 are excluded.

Fault Subset Size
Optimal Feature

Selected Process Variables

1 2 16, 44

2 5 7, 16, 10, 47, 13

4 1 51

5 3 52, 11, 17

6 2 44, 1

7 3 45, 7, 13

8 4 39, 44, 16, 20

10 14 41, 39, 38, 37, 40, 50, 19, 18, 20, 7, 13, 16, 31, 29

11 2 9, 51

12 5 16, 38, 35, 25, 11

13 7 39, 40, 18, 7, 38, 23, 3

14 2 51, 9

16 2 19, 50

17 27
38, 39, 40, 41, 21, 37, 19, 20, 33, 27, 34, 30, 1, 11, 25, 28,

24, 23, 35, 36, 26, 10, 3, 2, 22, 14, 48

18 2 22, 8

19 3 13, 16, 46

20 13 38, 39, 41, 16, 52, 17, 18, 30, 35, 29, 40, 13, 7

21 1 45
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Figure 3.4: Fault 4 diagnosis - plot of the root cause variables.

3.3.3.3 Fault 5 - Step Change in Condenser Cooling Water Inlet Temperature

Fault 5 is generated with a step change in the condenser cooling water inlet temperature in the

simulations. We are able diagnose this fault by monitoring process variables 52, 11, and 17, which

are agitator speed (manipulated variable), product separation temperature (measured variable), and

stripper underflow (measured variable), respectively. Because of the temperature increase in the

cooling water, the cooling performance of the condenser decreases. In order to compensate this

adverse effect, the flow controller increases the flow rate of the condenser cooling water by in-

creasing the agitator speed (process variable 52). The step change in cooling water temperature

also affects the product separation temperature, and accordingly stripper flow rate. We have plotted

the selected process variables, that provide the most informative set of samples to detect this fault,

and clearly seen the distinction between normal and faulty operation (Figure 3.5). By monitoring

these 3 process variables, the fault-specific model reported for fault 5 in Table 3.5 is able to detect

the fault with 99.9% accuracy with 0.0% false alarm rate and 0.1% false negative rate in 6 min.
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Figure 3.5: Fault 5 diagnosis - plot of the root cause variables.

3.3.3.4 Fault 7 - C Header Pressure Loss

The selected end-model, given in Table 3.2, detects this fault with 100.0% accuracy with 0%

false alarm and false negative rates in 3 min. The diagnosis of this fault is obtained from process

variables 45, 7, and 13, which are manipulated process variable - total feed flow rate on Stream 4,

measured process variables reactor pressure and product separation pressure, respectively. Here,

to compensate the decreased C header pressure, total feed flow rate is increased via the adjustment

of the flow valve on Stream 4, which in turn affects the reactor pressure and product separation

pressure within the process. Therefore monitoring these three key process variables has enabled

accurate detection of the fault 7.

3.3.3.5 Fault 14 - Sticking Reactor Cooling Water Valve

We detect this fault by using the end-model provided in Table 3.4, where we achieve 100.0%

accuracy with 0% false alarm and false negative rates in 3 min. The analysis reveals that process

variables 51 (manipulated), and 9 (measured) are the two key process variables to identify this

fault. Here, if the reactor cooling water temperature is elevated, thus there occurs a lost cooling
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effect on the reactor, we observe a direct temperature increase in the reactor (measured process

variable 9). The controller then tries to decrease the elevated reactor temperature by increasing

the condenser cooling water flow rate (manipulated process variable 51). On the other hand, if the

reactor cooling water temperature decreases due to the sticking valve, creating increased cooling

effect on the reactor, we notice a decline in the reactor temperature, where the controller would

decrease the condenser cooling water flow rate for balance (Figure 3.6). Moreover, we are able to

achieve same model performance by observing an additional process variables along with process

variables 51, and 9, whereas the model with less number of process variables was favored due to

the simplicity. The 3rd ranked key process variable is the measured process variable 21, reactor

cooling water outlet temperature, which is directly affected with the sticking reactor cooling water

valve. When we consider this 3rd ranked key process variable, and visualize the sampling data, the

distinction between normal and faulty operation becomes more evident (Figure 3.7).
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Figure 3.6: Fault 14 diagnosis - plot of the root cause variables.
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Figure 3.7: Fault 14 diagnosis with top 3 key process variables.

3.3.3.6 Fault 19 - Unknown

The cause of this fault is not provided in Downs and Vogel (176) However, we observe the clear

distinction between normal and faulty operation with the optimal set of diagnosed process variables

(Figure 3.8). These are measured process variables 13, and 16, as well as a manipulated process

variable 46, which are product separation pressure, stripper pressure, and compressor recycle valve,

respectively.
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3.3.4 Fault Identification

By benefiting from hierarchical clustering analysis and the s-FDD framework, we build level-

specific classifiers which are used as the decision functions during th online operation. The first

level classifier is used for fault detection. Therefore the pairwise classes to separate are “normal

operating condition (NOC)” and “faulty”. Then, we use the rest of the classifiers to search for

the fault occurring in the system. This search is achieved by building a decision-tree type of

classification scheme. Particularly, when we detect a fault, and use the second classifier (C-SVM

end-model for the level 2), the answer we get directs us to the specific part of the hierarchical tree

for further separation. Therefore, we do not need to move further in the arm, thus can be fathomed.

When we consider all faults during the clustering analysis, we obtain a 21-level hierarchy

where we identify normal and 21 distinct faults. The hierarchy of separation is extracted from

the clustering dendrogram (Figure 3.9). The fault classes separated at each level are provided in

Table 3.8 along with the corresponding accuracy of the 21 end-models. Here, we observe that we

achieve high fault detection rate and accuracy at each level of the separation. Note that, although

the detection rate is high in the first level for identifying the fault occurrence, the accuracy is

accuracy is slightly lower. This ise due to the inclusion of process data from faults 3,9, and 15
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which are defined as challenging faults to detect, wherein observable change in the process variable

behavior is lacking. Yet, this can be further improved with the addition of additional process

variable information or extracting informational process descriptors. In order to avoid the adverse

impact of these three specific faults, we perform an additional analysis. Here, we exclude faults 3,9,

and 15 during the hierarchical analysis and build C-SVM models by using the s-FDD framework

for the remaining faults. The accuracy of these models are tabulated in Table 3.9, where we also

provide the classes of separation at each level.
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Figure 3.9: Hierarchical clustering dendrogram of faults.
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Table 3.8: Performance results of the end-models for fault identification developed with Chiang
et. al data set. (F: Fault).

Level Subset Size
Feature
Optimal

Rate
Detection

Accuracy Class 1 Class 2

1 50 92.00 79.07 Normal Faulty

2 47 92.13 95.76 F6, F18 Rest

3 2 100.00 100.00 F6 F18

4 20 99.65 99.53 F2 Rest

5 30 98.64 98.88 F1, F13 Rest

6 13 99.96 99.98 F1 F13

7 27 98.14 98.68 F7, F12 Rest

8 52 83.91 82.48 F20, F21 Rest

9 2 100.00 100.00 F7 F12

10 12 98.14 98.89 F20 F21

11 30 99.80 99.90 F5 Rest

12 18 94.64 94.55 F4, F17 Rest

13 14 94.78 95.06 F11 Rest

14 9 97.72 86.99 F8, F10, F14, F15 F3, F9, F16, F19

15 20 97.00 98.49 F8 F10, F14, F15

16 2 100.00 100.00 F17 F4

17 4 99.72 73.04 F14, F15 F10

18 10 98.07 94.01 F9 F3, F16, F19

19 10 96.51 97.23 F16 F3, F19

20 18 94.28 96.36 F19 F3

21 5 100.00 99.66 F15 F14
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Table 3.9: Performance results of the end-models for fault identification developed with Chiang
et. al data set - excluding F3, F9, and F15 (F:Fault).

Level Subset Size
Feature
Optimal

Rate
Detection

Accuracy Class 1 Class 2

1 23 98.14 86.22 Normal Faulty

2 44 92.22 95.70 F6, F18 Rest

3 2 100.00 100.00 F6 F18

4 21 99.54 99.45 F2 Rest

5 26 98.36 98.81 F1, F13 Rest

6 13 99.98 99.99 F1 F13

7 32 98.20 98.68 F7, F12 Rest

8 14 94.86 90.88 F20, F21 Rest

9 2 100.00 100.00 F7 F12

10 12 98.12 98.85 F20 F21

11 52 99.81 99.90 F5 Rest

12 6 86.38 86.40 F11 Rest

13 8 95.15 95.03 F17 Rest

14 10 95.76 97.21 F8, F10 F4, F14, F16, F19

15 14 97.65 98.70 F8 F10

16 4 99.93 99.96 F4 F14, F16, F19

17 13 99.34 99.67 F14 F16, F19

18 12 99.12 98.29 F16 F19

The exclusion of the three challenging faults has improved the fault detection rate and accuracy

in the first level of the separation hierarchy. Specifically, the fault detection rate is increased from

%92.00 to %98.14, where the accuracy is increased from %79.07 to %86.22. This is significant

in order to accurately detect the fault in the monitored system and initiate the fault identification

process. The major advantage of this cascaded classification analysis is that its computational

efficiency, such that when a fault is identified, the search can be terminated. This enables rapid
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fault identification. Furthermore, the optimal feature subset of the final classifier reveals the fault

diagnosis simultaneously. In other words, once the fault is identified, operators do not need to

further perform analysis to diagnose the fault. Once the fault is identified, we provide its diagnosis

instantaneously. A representative diagnosis is shown for the level-3 separation, where we identify

between fault 6 and 18 (Figure 3.10).

Figure 3.10: Diagnosis from level-3: Separating Fault 6 and 18.

3.4 Conclusions

Dimensionality reduction is a key task in most data-driven applications, in areas such as multi-

scale systems engineering, where vast amounts of data must be reduced to an essential subset that is

used to provide actionable insights. Process monitoring, specifically fault detection and diagnosis,

is one of the major fields in process systems engineering that benefits the advances in data-driven

modeling and dimensionality reduction techniques with the increased availability of process data.

In this work, we present theoretical advances in the feature selection algorithm based on nonlin-

ear Support Vector Machines, describe a data-driven framework for fault detection and diagnosis

66



in continuous processes, and finally apply it to the Tennessee Eastman benchmark process. The

presented feature selection algorithm is based on nonlinear Kernel-dependent SVM feature rank

criteria, which is derived from the sensitivity analysis of the dual C-SVM objective function. This

enables simultaneous modeling and feature elimination which paves the way for simultaneous fault

detection and diagnosis, where feature ranking guides fault diagnosis. Thus, once the implemented

fault detection models detect a fault within the process, they are able to instantly report the diag-

nosed process variables. Moreover, by adopting feature selection techniques which list the most

informative features in the original space rather than feature extraction (i.e. PCA, PLS) where fea-

tures become linear combination of the original features in a transformed space, loss of information

is highly minimized and interpretation of the results become more convenient.

In this work, we have demonstrated the application of the s-FDD framework for (i) fault de-

tection and diagnosis, and (ii) fault identification and diagnosis, respectively. For fault detection,

we have developed 1092 and 1040 fault-specific C-SVM binary classifier models for 52 feature

subsets of the 21 and 20 faults simulated in Chiang et. al and Rieth et. al data sets, respectively.

The fault-specific end models that yield highest Area Under the ROC Curve (AUC) along with

minimum number of features, false alarm rate, false negative rate and latency (fault detection time)

are selected for online implementation. For the cases where we have observed similar model per-

formances for the detection of a fault, we have followed the Occam’s razor principle and selected

the one that provides diagnosis with minimum process variables, for simplicity. The achieved re-

sults with the presented framework are highly promising. Specifically, excluding the faults 3, 9,

and 15, the models that we report in this study outperforms the available ones in the literature not

only in terms of detection accuracy but also detection latency. The detection latency is attained as

low as 35.83 min for the 18 faults (excluding fault 3,9, and 15) analyzed with our framework. Of

note, faults 3, 9, and 15 are the ones that are not accurately detected neither in this work nor pre-

vious studies. This is due to the fact that available process variable set does not provide a distinct

observable change between normal and corresponding faulty operation. However, we also note

that consideration of further process variables for certain faults, specifically faults 3, 9, and 15,

can highly improve the model performances. Furthermore, for distinct set of faults (i.e. faults 11,

16, 19, and 20), we have benefited from the larger simulation data set (Rieth et. al) where added

samples have contributed the learning of the developed models.
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On the other hand for fault identification, we have developed two-class C-SVM classifiers by

following a similar approach, yet this time classifiers are utilized for a cascaded search of fault

identification. We have calculated the average process trajectories of each operation data and used

them in hierarchical clustering analysis to attain the hierarchy of fault class separations. This

yields 21 level-specific model development, where the initial model is for fault detection with

the detection rate of %92.00 and accuracy of %79.07. The fault detection model performance is

significantly improved when we exclude the faults 3,9 and 15 (i.e. %98.14 fault detection rate

with %86.22 accuracy). This study demonstrates an application of the s-FDD framework for fault

identification. Lastly, we highlight the importance of utilizing additional evaluation metrics (i.e.

Area Under the ROC Curve (AUC), accuracy, false alarm rate, and false negative rate) for detailed

model performance assessment for all analysis. Commonly used metric in the previous studies is

fault detection rate. However, one can end up with a model producing high fault detection rates

along with high false alarm and false negative rates, meaning that the model would become very

sensitive, thus unreliable. Therefore, collective interpretation of these metrics is critical to avoid

such unstable models that would obfuscate the decision-making process.
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4. S-FDD FRAMEWORK FOR BATCH PROCESS MONITORING*

Although batch reactor processes are prevalent in chemicals, food, and pharmaceutical indus-

try, most of the data-driven fault detection and diagnosis frameworks presented in the literature

focus on continuous processes. Data-driven batch process monitoring is a challenging task due

to the challenging characteristics of batch process data citeVanImpe2015,Wang2017 such as (i)

involvement of a considerable number of interconnected variables, (ii) inherent non-stationarity,

(iii) finite duration, (iv) nonlinear response, and (v) batch-to-batch variability. Moreover, as the

process structure becomes more complicated with the changes/enhancements in process technolo-

gies, process data becomes even higher in dimension with the addition of further process variables,

which further obstructs and complicates the monitoring. Thus, understanding the nonlinear rela-

tionship among process variables is becoming more difficult and the need for novel data-driven

fault detection and diagnosis frameworks that can meet this demand is growing significantly. In

this chapter, application of s-FDD framework is presented for batch process monitoring, where

semi-batch penicillin production process is utilized (179) as a benchmark.

4.1 Batch Process Benchmark Model and Data Set

The batch process data is adopted from an extensive simulation dataset(180) based on peni-

cillin production, PenSim benchmark model(179), where the model is expanded with sensor noise

(Table 4.1). The process operates in two modes. It starts in the batch mode with high substrate

(glucose) concentrations that stimulates biomass growth. Then it switches to fed-batch mode with

the depletion of glucose where penicillin production is triggered by biomass due to low glucose

content in the bioreactor (179). pH and temperature of the process is monitored via closed-loop

PID controllers, where aeration rate, agitator power, feed rate, feed temperature, hot and cold water

temperatures are in open loop. Schematic diagram of the fed-batch penicillin production is given

in Figure 4.1.

*Reprinted with permission from “Big data approach to batch process monitoring: Simultaneous fault detection
and diagnosis using nonlinear support vector machine-based feature selection” by Onel, M. and Kieslich, C.A. and
Guzman, Y.A. and Floudas, C.A. and Pistikopoulos, E.N., 2018, Computers & Chemical Engineering, Vol. 116, pp
503-520, Elsevier [2018] by Elsevier and Copyright Clearance Center
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Figure 4.1: Fed-batch penicillin production flow diagram.
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Table 4.1: List of online measurements

Online Measured Variables Measurement Noise (σ)

1. Fermentation volume [m3] 0.002

2. Dissolved O2 concentration [mg/L] 0.004

3. Dissolved CO2 concentration [mg/L] 0.12

4. Reactor temperature [K] 0.1

5. pH [-] 0.02

6. Feed rate [L/h] 1%

7. Feed temperature [K] 0.1

8. Agitator power [W] 1%

9. Cooling/heating medium flow rate [L/h] 1%

10. Heating medium temperature [K] 0.1

11. Hot/cold switch [–] –

12. Base flow rate [mL/h] 1%

13. Acid flow rate [mL/h] 1%

In this work, we use the aligned, base case simulation data introduced in Van Impe et. al where

the initial fermenter volume, biomass concentration, and substrate concentration are independently

sampled from normal distributions providing batch-to-batch variability(180). The alignment is

done by bringing all simulated batches to equal length via indicator variables as described in Birol

et. al (179). The data set includes 400 normal and between 1000-2000 batches per 15 different

simulated process faults yielding 22,200 faulty batches in total. Table 4.2 tabulates 15 different

fault types and corresponding number of batches simulated for each of them.
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Table 4.2: Overview of faults and corresponding number of batches in the data set

Fault No of Batches

1. Sudden change in feed substrate concentration 2000

2. Change in coolant temperature 2000

3. Agitator power drop 1600

4. Aearation rate drop 1600

5. Gradual change of feed rate 1200

6. Gradual dissolved oxygen sensor drift 2000

7. Feed temperature change 1600

8. pH sensor drift 1600

9. Non-functional pH control 1200

10. Reduced pH control 1200

11. Reactor temperature sensor bias 1200

12. Reactor temperature sensor drift 1600

13. Reduced temperature control 1200

14. Reduced temperature control - maximal flow not impacted 1200

15. Contamination 1000

We have considered 13 process variables (5 state and 8 manipulated) that can be measured

online (Table 4.1). In this work, we use cumulative acid/base flows [mL] instead of instantaneous

flow rates as they are suggested to be relatively more informative (180). Each batch is completed

in about 460 h where the sensors are sampled in every 0.02 h. When aligned, this corresponds to

a total batch length of 1201 samples which results in 3-dimensional (3D) batch process dataset of

size 1400-2400 batch x 13 variable x 1201 sample.

4.2 Application of the s-FDD Framework

The proposed framework consists of two phases: (i) Offline phase includes the formulation of

the fault and time-specific models for fault detection and diagnosis via historical signal process

data where the novel optimization-backed feature selection algorithm is used; (ii) Online phase

72



monitors ongoing batches in real-time by using the fault and time-specific models. Prior to both

phases, data needs to be re-organized and/or processed.

4.2.1 Data Pre-processing

Here, we (i) divide the time horizon into intervals of fixed size which we refer as sample bins,

(ii) unfold 3-dimensional batch process data into 2-dimension via batch-wise unfolding (162), (iii)

incorporate additional informative features (feature extraction) from sample bins, (iv) normalize

the obtained 2-dimensional data, and (v) eliminate the features having less than 10−8 standard

deviation, respectively.

4.2.1.1 Creating Sample Bins

Batch process data is 3 dimensional. For each batch at each specific time point, it includes a

process variable measurement. This initial step of data pre-processing slightly differs for offline

and online phase.

In the offline phase, the motivation is to produce an online fault detection and diagnosis deci-

sion support tool for end-users, therefore we need to develop time-specific models for each fault.

To do this, first, we partition the time horizon into intervals of fixed size and group the process

variable measurements of batches at particular time periods. We refer these time periods as sample

bins. Next, we train models for fault detection and diagnosis for each sample bin to obtain time-

specific models. Here, the size of sample bins is a user-defined parameter. Selection of smaller bin

size implicitly increases the number of checks on an ongoing batch, thus accelerates the detection

of possible fault occurrences, yet increasing the number of models to be developed. In this study,

we have selected the sample bin size as 10 which has resulted in total of 120 sample bins spanning

the entire time horizon.

In the online phase, data is continuously collected. In order to analyze the incoming 3-

dimensional data with the developed time-specific models, we need to gather the batch process

measurements from the relevant time points and form the sample bins for further analysis.

4.2.1.2 Unfolding 3D Batch Process Data Into 2D

In order to train models with 3-dimensional batch process data, we need to unfold it into a

2-dimensional matrix via one of the three possible ways: (i) batches, (ii) process variable mea-
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surements, or (iii) time points. In this work, we adopt batch-wise unfolding approach(162). The

batch-wise data unfolding yields batches as the incidents (rows), and process variables at specific

time points as the features (columns) of the 2-dimensional dataset. Of note, while we are unfold-

ing the 3-dimensional data in each sample bin, we solely include the relevant (observed) process

variable measurements. This data re-configuration enables inspection of batches in regular peri-

ods via time-specific models that use historical and most recent process signal data to determine

whether the batch is performing well or not while the batch is still ongoing. The illustration of data

structure pre-processing, that involves Step 1 and 2, is shown in Figure 4.2.

4.2.1.3 Extracting Additional Features

In order to improve the data-driven modeling accuracy, we extract and incorporate additional

features that can characterize process behavior of each batch at each sample bin. In this study, in

addition to the historical and most recent process variable measurements, we have utilized slope,

standard deviation, and mean of 13 process variables (referred as process behavior features) within

each sample bin. The case-specific addition of the features is given in Section 4.3. Here, we would

like to highlight that the end-users of the presented framework will be allowed to include/exclude

any type of process behavior features during the model development phase. In case of highly

noisy plant data, one can always smoothen the data by using filters (i.e Kalman filter), and extract

features from the filtered data to further use in the model building phase.

4.2.1.4 Data Normalization and Reduction

Finally, we normalize the re-configured and extended 2-dimensional matrix within each sample

bin and perform a priori dimension reduction by eliminating the features (process variable mea-

surements at specific time points and extracted features describing process behavior) with less than

10−8 standard deviation.
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Figure 4.2: Data pre-processing: Unfolding the batch process data and formation of sample bins.

4.2.2 Offline Phase: Model Building

In offline phase, we build fault and time-specific nonlinear Support Vector Machine classifi-

cation models by using historical and/or simulation-based batch process signal data. Particularly,

we train and test 15 separate C-SVM models per sample bin for detection and diagnosis of 15

distinct faults. To do this, we (i) select the pre-processed data of faulty and normal batches that

have been observed within the selected time period (i.e. sample bin), (ii) create balanced training

and test sets with 20 runs of 5-fold cross-validation, (iii) tune the hyperparameters C and γ of the

(C-SVM) classification models, (iv) perform simultaneous feature selection and model building
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via nonlinear Support Vector Machines, and (v) test model accuracies to determine the end-model

to be implemented in the online phase, respectively.

4.2.2.1 Collecting Pre-processed Batch Process Data

In the first step of the offline model building, we retrieve the pre-processed 2-dimensional

process data of faulty and normal batches that have been observed within the time period of the

selected sample bin (Figure 4.3).

4.2.2.2 Generating Train and Test Data Sets

In order to have accurate and robust models, we need to balance the number of batches that

belong to different class labels. In other words, we need to have equal amount of faulty and

normal batches in training and test sets. Therefore, the next step in offline model building phase

is to determine the number of faulty and normal batches within the observed sample bin period

separately, include the limiting number of batches of one class label, and randomly select the same

number of batches from the pool of batches with the other class label that have been observed

within the specified time period. Then, we perform 5-fold cross-validation with 20 runs to create

training-testing datasets in order to minimize generalization error and avoid over-fitting. This

results in 100 training-testing dataset pair generation.

4.2.2.3 Tuning Hyperparameters for C-SVM Models

Next, we tune the hyperparameters C and γ of the C-SVM (two-class) classification models by

using Gaussian radial basis function (RBF),

K(xi,x j) = exp
(
−γ
∥∥xi− x j

∥∥2
)
, (4.1)

as the nonlinear Kernel function. The appropriate selection of hyperparameters is necessary for the

sake of generalization error minimization. The density of the data is a critical factor in the selection

of hyperparameter γ to avoid over-fitting in the resulted separating decision function model (cite).

The default value for RBF kernel hyperparameter, γ, used by LIBSVM is 1/n, where n is the

number of features. Therefore, we tune parameter γ̂ where

γ =
2γ̂

n
. (4.2)
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Similarly, we tune parameter Ĉ, where the relation between Ĉ and C is:

C = 2Ĉ. (4.3)

According to the described iterative feature selection algorithm in Section 2.2, γ̂ can be updated

in each iteration with the available set of features:

γ =
2γ̂

zT1
(4.4)

In this work, tuning is performed for parameters Ĉ, and γ̂ via a grid search for all value com-

binations between −10 : 10. We train and test models using all features of 100 training-testing

dataset pairs with every combination of Ĉ and γ̂ parameters. Here, instead of repeating grid search

for hyperparameters tuning after each iteration of feature elimination, which would be ideal but

inefficient, we perform tuning at first iteration where we include the whole set of features. Then,

the hyperparameters with the highest average testing accuracy are chosen for the next steps.

4.2.2.4 Simultaneous Model-informed Feature Selection and Classification

The tuned hyperparameters are incorporated into simultaneous model-informed feature selec-

tion and classification algorithm via C-SVMs which is described in Section 2.2. Here, we itera-

tively build C-SVM binary classification models with Gaussian radial basis function (RBF) kernel

starting from the complete set of features until we are left with the last feature in the data set.

In each iteration, we eliminate features based on the Lagrangian sensitivity of the dual objective

function of the built C-SVM model (objective function of model 2.5) with respect to the feature

subset size. This iterative procedure is performed with each of the 100 training and testing data set

pairs which creates 100 feature rankings for each fault class at each sample bin. Subsequently, one

average feature ranking list is created for each fault and sample bin combination according to the

statistical distribution of the feature ranks across 100 individual ranking lists.

4.2.2.5 Building C-SVM Models with Average Feature Rank Lists

At this stage, we train C-SVM classification models with Gaussian RBF kernel with the same

100 training and testing datasets by using the fault and time-specific average feature ranking lists.

Starting from the entire feature set and eliminating one feature at a time according to the average

77



fault and time specific feature rank list, we train C-SVM classification model with each of the 100

test sets for each feature subsets. Thus, we obtain one fault and time-specific C-SVM model per

each feature subset. The model performances are then evaluated via several metrics for each test

set, and averaged for each feature subset. These metrics are fault detection rate, accuracy, area

under the receiver operator curve (AUC), and false alarm rate.

4.2.2.6 Choosing the End-models for Online Phase

In the last stage of the offline phase, we determine the end-models. Among all developed

fault and time-specific C-SVM models for each feature subset, the ones yielding the highest fault

detection rate are selected. These are referred as the end-models. The end-models, that have the

optimal feature subset for maximum fault detection rate, are aimed to be further implemented in

the online phase.

The overall framework of offline phase is summarized in Figure 4.3.

4.2.3 Online Phase: Fault Detection and Diagnosis in Real Time

In this phase, we implement the fault and time specific end-models to create a decision sup-

port tool for online fault detection and diagnosis. These are selected binary classifiers, the opti-

mal decision functions, which will evaluate the incoming pre-processed online batch process data

and produce a binary answer for fault occurrence. The fault and time-specific classifier models

inherently include the optimal set of features, which are the most informative process measure-

ments/characteristics, to diagnose the detected fault at the time period of interest. Therefore, the

end-models are able to provide instantaneous rank-ordered root-cause analysis when a fault occurs,

which enables them to be employed for an online simultaneous fault detection and diagnosis tool.

The end-user can further interpret and link the rank-ordered fault diagnosis to corrective actions

to reverse the fault. The schematic representation of the implementation of the models for online

phase is shown in Figure 4.4.

78



Figure 4.3: Offline phase of the proposed simultaneous fault detection and diagnosis framework.
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Figure 4.4: Online phase implementation for simultaneous fault detection and diagnosis.

4.3 Case Studies

We have performed three sets of experiments to test the performance of the proposed data-

driven framework: (i) one-step rolling time horizon analysis, where fault detection and diagnosis

models are built for each individual sample bin; (ii) two-step rolling time horizon analysis, in

which models are developed for every two sliding sample bins; and (iii) evolving time analysis,

where we build models by using both available data within the selected sample bin and set of

informative features from all previous sample bins. Below we describe each of the analysis, and

provide corresponding results. The performance of the developed models is assessed via (i) fault

detection rate, (ii) accuracy, (iii) false alarm rate, and (iv) Area Under the Receiver Operating

Characteristic (ROC) Curve, (AUC). The ideal models would have perfect Area Under the ROC

curve, accuracy, as well as fault detection rate being 1 with minimum False Alarm Rate (ideally,

0).

4.3.1 One-Step Rolling Time Horizon Approach

Here, we inspect the status of a given batch with a total of 1800 fault and time-specific end-

models, for 15 different faults (Table 4.2) at each of the 120 sample bins. We only consider
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the process data within each selected sample bin time period, and exclude any information from

previous sample bins. Since, batch monitoring is performed within each sample bin individually,

we refer this approach as one-step rolling time horizon approach.

Initial step in the one-step rolling time horizon approach is to gather the pre-processed data

sets relevant to each sample bin. Here, the features of the data sets include the process variable

measurements as well as slope, standard deviation and mean of each 13 process variables within

each sample bin of size 10. This results in 169 features per bin, where 130 of them belong to

actual measurements and 39 characterizes the process behavior. On the other hand, the number of

instances, which is the number of normal and faulty batches, varies along the time horizon. In each

sample bin, we include only the normal and faulty batch data that have been observed between the

time period of the selected sample bin. In particular, we have 400 normal and 1000-2000 faulty

batches per fault (Table 4.2). When building models with one-step rolling time horizon approach,

we select the faulty batches among the batches where the fault has already been introduced before

the initial time point of the selected sample bin. Then, as mentioned in Section 4.2.2, we form

balanced training and testing datasets including equal amount of normal and faulty batches for

each model development. We have less faulty batches in the beginning of the process operation,

therefore the dataset used to train a model for an early time period is smaller compared to later. In

other words, the data set size changes as we move along the time horizon due to the change in the

number of batches with varying fault onset time.

We have demonstrated 3 faults with varying level of difficulty in detection at the selected sam-

ple bins to evaluate the performance of the one-step rolling time horizon approach (Table 4.3).

Fault 7 (change in feed temperature) is reported to be the easiest fault to detect due to presence

of feed temperature measurements in the batch process data set. Fault 8 (pH sensor drift) poses

moderate difficulty to be detected, whereas Fault 15 (contamination) is defined as one of the most

challenging faults of the adopted dataset (180). Table 4.3 reports the selected fault and time spe-

cific models (end-models) with their corresponding optimal feature subset size, fault detection

rate, model accuracy, AUC, and false alarm rate. When a fault is detected with these models, the

corresponding optimal feature subset reveals the explicit process measurements (and/or features

describing process behavior) for diagnosis of the detected fault. For particular models, that are

marked with asterisks, we have provided a second alternative model, where we are able to attain
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almost equivalent fault detection rate with significantly lower optimal feature subset size (Table

4.3). This consequently facilitates the isolation and correction of the detected fault by ensuing op-

timal sensor placement (i.e. sensor network design). Furthermore, obtaining the maximum model

performance with minimum number of features is favorable in terms of computational efficiency

and simplicity. Figure 4.5 shows an example for such cases through Fault 8 at Sample Bin 12.

The models built via one-step rolling time horizon approach reveals perfect detection rate,

accuracy for Fault 7 with zero false alarm rate and small optimal feature subset size. As the

detection difficulty increases (from Fault 7 to Fault 15), we observe that the early time-specific

models (prior to Sample bin 20) have shown relatively high false alarm rates. This may stem from

the relatively low number of faulty batches in the early periods of the process simulation, and can

be overcome by simulating additional batches with earlier fault onset time. On the other hand,

the performance of the models of the later sample bins improve with the inclusion of more batch

data. False alarm rates immediately become ideal by approaching to 0 later in the batch process

regardless of the difficulty level of the fault detection.

Another observation is that the increase in the fault complexity is reflected with an increase in

the average feature subset size across the all time-specific models of each fault.

Figure 4.6 depicts the fault detection rate of all fault and time-specific models built for each

feature subset. Among them, the end-model is the one yielding the highest fault detection rate,

highlighted with a red line, where corresponding feature subset size, model accuracy and false

alarm rate are reported. As mentioned before, the results with asterisks imply the existence of an

alternative model with almost equivalent fault detection rate with considerably lower feature subset

size, which are listed in Table 4.3.
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Table 4.3: One-step rolling time horizon analysis: Selected model performances for Fault 7 (easy),
8 (moderate), and 15 (challenging).

Fault Bin
Sample

Rate
Detection

Fault

Subset Size
Feature
Optimal

Accuracy Rate
Alarm
False

AUC

Change
Temperature

Feed

Fault-7

20 0.98 1 0.99 0.00 1.00

40 0.98 1 0.99 0.00 0.99

60 1.00 3 1.00 0.00 1.00

80 1.00 3 1.00 0.00 1.00

100∗ 1.00 3 1.00 0.00 1.00

100 1.00 1 1.00 0.00 1.00

120∗ 1.00 9 1.00 0.00 1.00

120 1.00 1 1.00 0.00 1.00

Drift
pH Sensor

Fault-8

20 0.70 16 0.77 0.15 0.84

40∗ 0.94 9 0.97 0.00 0.99

40 0.94 2 0.97 0.00 0.99

60∗ 0.96 4 0.98 0.00 1.00

60 0.96 2 0.98 0.00 1.00

80∗ 0.95 34 0.97 0.00 0.99

80 0.95 2 0.97 0.00 0.99

100∗ 0.96 27 0.98 0.00 1.00

100 0.96 25 0.98 0.00 1.00

120∗ 0.97 28 0.98 0.00 1.00

120 0.97 6 0.98 0.00 1.00

Contamination

Fault-15

20 0.74 99 0.61 0.53 0.65

40∗ 0.81 31 0.88 0.04 0.94

40 0.81 28 0.88 0.04 0.94

60∗ 0.97 43 0.98 0.01 0.99

60 0.97 29 0.98 0.01 0.99

80∗ 0.98 68 0.99 0.00 1.00

80 0.98 10 0.99 0.00 1.00

100∗ 0.98 56 0.99 0.00 1.00
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Table 4.3 – Continued

Fault Bin
Sample

Rate
Detection

Fault

Subset Size
Feature
Optimal

Accuracy Rate
Alarm
False

AUC

100 0.98 35 0.99 0.00 1.00

120∗ 1.00 10 1.00 0.00 1.00

120 1.00 8 1.00 0.00 1.00

Figure 4.5: Selecting the optimal feature subset for detection and diagnosis of Fault 8 at Sample
Bin 120. (FDR: Fault Detection Rate, Acc: Accuracy, FAR: False Alarm Rate)
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Figure 4.6: One-step rolling time horizon analysis: Detection rates of 3 faults with increasing level
of difficulty in detection; Fault 7,8, and 15 respectively. The optimal number of features, detection
accuracy and false alarm rate are provided at the highest detection rate. The results with asterisks
indicate the existence of an alternative model producing almost equivalent performance with less
features. Alternative models are provided in Table 4.3.

4.3.2 Multi-Step Rolling Time Horizon Approach

In this approach, we monitor a given batch with a total of 1785 fault and time-specific end-

models throughout the process. The models examine for 15 separate faults at every two successive

sample bins in a sliding manner which corresponds to 119 checks. In addition to the process vari-

able measurements of the later sample bin, we consider set of features from the former sample bin

that characterize process behavior. In this case, we have exploited data of one previous sample bin
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in addition to the selected sample bin for each time-specific model development. This has enabled

us to analyze the 3-dimensional batch process data via two-step rolling time horizon approach.

Particularly, this approach can be extended with addition of further previous sample bins, therefore

we call it as multi-step rolling time horizon approach.

In this case, similar to one-step rolling time horizon approach, initial step is to arrange two-

step sample bins and collect the pre-processed data sets. We have two-fold feature subsets in this

approach, one set identifying the former sample bin, and later defining the recent process progress.

The former feature subset contains solely the process behavior characterizing features; slope, stan-

dard deviation and mean of 13 process variable measurements within that previous sample bin,

resulting in 39 features. The later feature subset consists of the process measurements as well

as slope, standard deviation and mean of each 13 process variables within the latest sample bin,

resulting in an additional 169 features per bin. As a result, we incorporate 208 features in each

time-specific model development with two-step rolling time horizon approach. Here, similar to the

one-step rolling time horizon approach, the number of batches involved during model development

changes according to time due to the variation in fault onset time.

Table 4.4 tabulates the selected fault and time specific models (end-models) with the corre-

sponding performance. Similarly, the alternative model results are listed in Table 4.4.

Similar to the previous approach, we observe that fault detection rates improve with time for

all faults, and the optimal feature subset size increases as the faults become more challenging to

detect. Finally, we notice a significant improvement in the fault detection rate of Fault 15 time-

specific models after Sample Bins 18-20 compared to the models obtained via one-step rolling

time horizon approach, which indicates that the added features have helped models to gain more

insight to detect this challenging fault.

Figure 4.7 demonstrates the fault detection rate of the entire fault and time specific models built

for each feature subset. The end-models are shown with red-dashed lines.

86



Table 4.4: Two-step rolling time horizon analysis: Selected model performances for Fault 7 (easy),
8 (moderate), and 15 (challenging).

Fault Bin
Sample

Rate
Detection

Fault

Subset Size
Feature
Optimal

Accuracy Rate
Alarm
False

AUC

Change
Temperature

Feed

Fault-7

19−20∗ 0.83 21 0.92 0.00 1.00

19-20 0.83 10 0.91 0.00 1.00

39-40 1.00 1 1.00 0.00 1.00

59-60 1.00 1 1.00 0.00 1.00

79−80∗ 1.00 2 1.00 0.00 1.00

79-80 1.00 1 1.00 0.00 1.00

99−100∗ 1.00 6 1.00 0.00 1.00

99-100 1.00 1 1.00 0.00 1.00

119-120 0.75 1 0.88 0.00 1.00

Drift
pH Sensor

Fault-8

19−20∗ 0.83 52 0.85 0.13 0.93

19-20 0.83 49 0.85 0.12 0.93

39-40 0.98 4 0.99 0.00 1.00

59−60∗ 0.97 3 0.99 0.00 1.00

59-60 0.97 2 0.98 0.00 1.00

79−80∗ 0.98 32 0.99 0.00 1.00

79-80 0.98 9 0.99 0.00 1.00

99−100∗ 0.98 66 0.99 0.00 1.00

99-100 0.98 3 0.99 0.00 1.00

119−120∗ 0.99 70 1.00 0.00 1.00

119-120 0.99 1 0.99 0.00 1.00

Contamination

Fault-15

19−20∗ 0.57 204 0.58 0.41 0.61

19-20 0.57 201 0.58 0.41 0.61

39-40 0.94 58 0.96 0.02 0.99

59−60∗ 0.99 57 1.00 0.00 1.00

59-60 0.99 18 0.99 0.01 1.00

79−80∗ 0.99 72 1.00 0.00 1.00

79-80 0.99 42 0.99 0.00 1.00
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Table 4.4 – Continued

Fault Bin
Sample

Rate
Detection

Fault

Subset Size
Feature
Optimal

Accuracy Rate
Alarm
False

AUC

99−100∗ 1.00 77 1.00 0.00 1.00

99-100 1.00 5 1.00 0.00 1.00

119−120∗ 1.00 145 1.00 0.00 1.00

119-120 1.00 8 1.00 0.00 1.00
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Figure 4.7: Two-step rolling time horizon analysis: Detection rates of Fault 7,8, and 15. The
optimal number of features, detection accuracy and false alarm rate are provided at the highest
detection rate. The results with asterisks indicate the existence of an alternative model producing
almost equivalent performance with less features. Alternative models are provided in Table 4.4.

4.3.3 Evolving Time Horizon Approach

As a third and final case study, we adopt evolving time horizon based approach, where we build

models by making use of the entire historical process data until the last time point of the selected

sample bin for analysis. Here, we monitor a given batch with a total of 1800 fault and time-specific

end-models where the given batch is scanned for 15 different faults (Table 4.2) at each of the 120

sample bins. We train models by exploiting the entire historical batch process data at each sample
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bin, therefore we refer this approach as evolving time horizon approach.

This approach is equivalent to the multi-step rolling time horizon approach, when one incorpo-

rates the process behavior features from the entire previous sample bins, instead of only one. This

corresponds to the collection of slope, standard deviation and mean of 13 process variable measure-

ments from all previous and the most recent sample bins as well as the actual process measurements

observed within the latest sample bin. Consequently, the data set size grows significantly as we

move along the time horizon, where the number of features range between ∼ 170−4400.

Table 4.5 exhibits the chosen fault and time specific models for the online phase (end-models)

obtained via evolving time horizon based analysis. Compared to the other time horizon approaches,

the fault detection rates attained with this approach for Fault 8 and 15 either remain same or

slightly improve. On the other hand, the model performances for Fault 7 time-specific models

significantly deteriorate. This may be an indicator of the increased noise level in the data. In other

words, aggregation of the entire historic process data has possibly elevated the amount of redundant

features, consequently deteriorated the performance of the models for Fault 7 (the easiest fault to

detect). Another remarkable observation is the significant increase in the optimal feature subset

sizes for Fault 7 and 15, which makes the evolving time horizon approach not preferable compared

to the other two approaches.

Figure 4.8 shows the fault detection rate of all fault and time specific models built for each

feature subset. The end-models are highlighted with red dashed lines.
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Table 4.5: Evolving time horizon analysis: Selected model performances for Fault 7 (easy), 8
(moderate), and 15 (challenging).

Fault Bin
Sample

Rate
Detection

Fault

Subset Size
Feature
Optimal

Accuracy Rate
Alarm
False

AUC

Change
Temperature

Feed

Fault-7

20 0.80 143 0.89 0.02 0.97

40∗ 0.81 407 0.88 0.05 0.95

40 0.81 406 0.88 0.04 0.95

60∗ 0.77 348 0.87 0.02 0.95

60 0.77 320 0.87 0.03 0.95

80∗ 0.79 401 0.88 0.04 0.95

80 0.79 233 0.88 0.03 0.94

100 0.80 721 0.87 0.06 0.94

120∗ 0.83 433 0.90 0.03 0.96

120 0.83 427 0.89 0.04 0.96

Drift
pH Sensor

Fault-8

20 0.79 93 0.83 0.12 0.91

40∗ 0.90 20 0.95 0.00 0.99

40 0.90 12 0.95 0.00 0.99

60∗ 0.96 89 0.98 0.00 1.00

60 0.96 82 0.98 0.00 1.00

80∗ 0.97 87 0.99 0.00 1.00

80 0.97 4 0.98 0.00 0.99

100∗ 0.98 13 0.99 0.00 0.99

100 0.98 7 0.99 0.00 0.99

120∗ 1.00 17 1.00 0.00 1.00

120 1.00 5 1.00 0.00 1.00

Contamination

Fault-15

20 0.66 1 0.50 1.00 1.00

40∗ 0.92 226 0.95 0.02 0.99

40 0.92 172 0.95 0.02 0.99

60∗ 0.99 523 0.99 0.00 1.00

60 0.99 268 0.99 0.00 1.00

80∗ 0.99 496 1.00 0.00 1.00
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Table 4.5 – Continued

Fault Bin
Sample

Rate
Detection

Fault

Subset Size
Feature
Optimal

Accuracy Rate
Alarm
False

AUC

80 0.99 323 0.99 0.00 1.00

100∗ 0.99 684 0.99 0.00 1.00

100 0.99 84 0.99 0.00 1.00

120∗ 1.00 193 1.00 0.00 1.00

120 1.00 55 1.00 0.00 1.00
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Figure 4.8: Evolving time horizon analysis: Detection rates of Fault 7,8, and 15. The optimal
number of features, detection accuracy and false alarm rate are provided at the highest detection
rate. The results with asterisks indicate the existence of an alternative model producing almost
equivalent performance with less features. Alternative models are provided in Table 4.5.

4.3.4 Comparison

Here, we compare the performance of the fault and time-specific models built via three distinct

time horizon approaches through Fault 7,8, and 15 (three faults with varying level of difficulty to

detect). Figure 4.9 depicts the variation of fault detection rate with respect to time (i.e. sample bin)

for one-step rolling, two-step rolling, and evolving time horizon approaches. The fault detection

rate versus time plots for all faults are provided in Figure 4.10.
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Figure 4.9: Comparison of the fault detection rates for Fault 7,8, and 15 along the batch process
with respect to one-step rolling, two-step Rolling, and evolving time horizon approaches.

As one can notice, performance of different time horizon approaches are not consistent across

the all faults; they are fault-specific. However, it is evident that as the detection difficulty level

increases, two-step rolling and evolving time horizon analysis performs better than the other ap-

proach, which prevails the increasing significance of historical data usage for more challenging

faults.

One major observation is the relatively low fault detection rate and accuracy in early time

models among all time horizon approaches. This is mainly due to the faulty batch data scarcity in

early time models (until sample bin 30), which implies low number of simulated batches with fault

in early periods of the process due to varying fault onset times. Such scarcity affects the number

of batches included during the model development in the offline phase. In early time models, the

number of faulty batches is limiting case. However, the situation is reversed as we move along

the time horizon where the number of simulated batches, in which fault has been introduced by

then, exceed the number of simulated batches under normal conditions. In order to be consistent

during model development and learn both class equally, we equate the number of normal and faulty

batches before we train our fault detection and diagnosis models. This leads us to use of datasets

with varying sizes along the process for different time-specific models. The size of the adopted

dataset changes in two ways: (i) number of batches involved, and (ii) number of extracted features.

The afore-mentioned fluctuation in the number of simulated faulty batches along the simulation

alters the dataset dimension by changing the number of batches involved. On the other hand,

the number of features changes with the adopted time horizon approach. Particularly, the smallest
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dataset used for model development belongs to the first sample bin of one-step rolling time horizon

analysis (Sample Bin 2), where we train our fault-specific models with 12 faulty and 400 normal

batches, and 142 features (after eliminating the ones with less than 10−8 standard deviation among

169 features). Whereas the largest dataset is observed at the final sample bin of the evolving time

horizon approach, where we have 2000 faulty and 400 normal batches, and 4381 features.

Another possible reason for relatively lower performance of the models in early time of the

process is the change in the operation mode. The process begins in a batch mode and switches to

fed-batch mode once the substrate (i.e. glucose) concentration is nearly depleted. Since we have

no flows into the bioreactor, thus no information of feed flow rate in batch mode as we do in fed-

batch mode, the number of features contributing model development during that period decreases.

This may have also caused the decrease in model performance in early time of the process.

During the detection of a moderate fault, Fault 8, we observe that all three time horizon ap-

proaches perform similar in early time models, where two-step rolling time horizon technique

becomes superior in later stages. Whereas for the detection of a challenging fault, Fault 15, evolv-

ing time horizon approach competes with two-step rolling time horizon, and indeed dominates it in

early time models in terms of the fault detection rate. Yet, for the sake of computational efficiency

and simplicity, selection of the end-models via two-step rolling time horizon approach would be

favorable over the end-models assessed by the evolving time horizon approach. Regardless of the

fault and the time horizon approach, fault detection rates of early time models need to be improved

and this can be achieved with further set of simulations where faults can be introduced earlier.
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Figure 4.10: Comparison of the fault detection rates along the batch process with respect to one-
step Rolling, two-step Rolling, and evolving time horizon approaches.
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Finally, we present a comparative analysis for fault diagnosis through Fault 8. The diagnosis is

provided for the Sample Bin 40, 80, and 120 models formed via one-step rolling (4.11), two-step

rolling (4.12), and evolving (4.13) time horizon approaches. The color codes represent the Sample

Bin index in Figures 4.6, 4.7, and 4.8, where cyan, green and blue represents Sample Bin 40, 80,

and 120 models, respectively. Of note, for the cases where we have superior alternative models, we

have adopted their optimal feature subset for fault diagnosis. The explicit list of features (process

measurements and/or process behavior describing features) for fault diagnosis with the three time

horizon approaches are given in Tables 4.6,4.7,and 4.8, respectively.

Figure 4.11: Diagnosis of Fault 8 (pH sensor drift) with one-step rolling time horizon based ap-
proach at selected sample bins. The color codes indicate the sample bin index which is compatible
with the Figure 4.6.
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Figure 4.12: Diagnosis of Fault 8 (pH sensor drift) with two-step rolling time horizon based ap-
proach at selected sample bins. The color codes indicate the sample bin index which is compatible
with the Figure 4.7.
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Figure 4.13: Diagnosis of Fault 8 (pH sensor drift) with evolving time horizon based approach at
selected sample bins. The color codes indicate the sample bin index which is compatible with the
Figure 4.8.

4.4 Conclusions

In this work, we have presented the application of a feature selection algorithm based on nonlin-

ear Support Vector Machine formulations and applied it for fault detection and diagnosis in batch

processes. The proposed framework can easily be implemented as an online decision support tool.

We have performed 3 sets of experiment to assess the performance of the proposed framework:

(i) one-step rolling time horizon basis analysis, (ii) two-step rolling time horizon basis analysis,

and (iii) evolving time horizon analysis, in which we change the amount of historical data incor-

poration during the offline (model development) phase. The results show that the selection of time

horizon approach is specific to fault characteristics; whereas, for moderate and challenging faults,

two-step rolling or evolving time horizon based analysis is favorable. Specifically, evolving time

horizon based analysis has degraded the detection rates of Fault 7, which is a fault reported to be

the easiest to detect. This shows that the inclusion of additional historical process information dur-

ing model development does not necessarily improve accuracy of the fault detection models. On
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Table 4.6: Diagnosis of Fault 8 at Sample Bin 40 via one-step rolling, two-step rolling, and evolv-
ing time horizon based analysis.

Approach
Sample Bin 40

Rank
Feature

Type
Feature

Time Point
Corresponding

Name
Feature

Time Horizon
One-step Rolling 1 HPB 391-400 Slope of Cumulative Acid Flow Rate

2 HPB 391-400 Standard deviation in Cumulative Acid Flow Rate

Time Horizon
Two-step Rolling

1 HPB 381-390 Slope of Cumulative Acid Flow Rate
2 HPB 381-390 Standard deviation in Cumulative Acid Flow Rate
3 HPB 381-390 Mean of Cumulative Acid Flow Rate
4 CPV 400 Dissolved CO2 Concentration

Time Horizon
Evolving

1 HPB 51-60 Mean of pH
2 HPB 31-40 Mean of pH
3 HPB 61-70 Mean of pH
4 HPB 71-80 Slope of Cumulative Acid Flow Rate
5 HPB 71-80 Standard deviation in Cumulative Acid Flow Rate
6 HPB 141-150 Mean of Cumulative Acid Flow Rate
7 HPB 151-160 Mean of Cumulative Acid Flow Rate
8 HPB 81-90 Slope of Cumulative Acid Flow Rate
9 HPB 161-170 Mean of Cumulative Acid Flow Rate
10 HPB 171-180 Mean of Cumulative Acid Flow Rate
11 HPB 131-140 Mean of Cumulative Acid Flow Rate
12 HPB 61-70 Slope of Cumulative Acid Flow Rate

Table 4.7: Diagnosis of Fault 8 at Sample Bin 80 via one-step rolling, two-step rolling, and evolv-
ing time horizon based analysis.

Approach
Sample Bin 80

Rank
Feature

Type
Feature

Time Point
Corresponding

Name
Feature

Time Horizon
One-step Rolling 1 HPB 791-800 Mean of pH

2 HPV 794 Hot/cold Switch

Time Horizon
Two-step Rolling

1 HPB 781-790 Mean of pH
2 HPB 791-800 Mean of pH
3 HPV 787 Hot/cold Switch
4 HPV 787 Feed Rate
5 HPV 788 Fermentation Volume
6 HPV 788 Dissolved O2 Concentration
7 HPV 788 pH
8 HPV 787 Cumulative Base Flow Rate
9 HPV 787 Cooling/heating Medium Flow Rate

Time Horizon
Evolving

1 HPB 300-310 Standard deviation in Cumulative Acid Flow Rate
2 HPB 300-310 Slope of Cumulative Acid Flow Rate
3 HPB 290-300 Standard deviation in Cumulative Acid Flow Rate
4 HPB 290-300 Slope of Cumulative Acid Flow Rate
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Table 4.8: Diagnosis of Fault 8 at Sample Bin 120 via one-step rolling, two-step rolling, and
evolving time horizon based analysis.

Approach
Sample Bin 120

Rank
Feature

Type
Feature

Time Point
Corresponding

Name
Feature

Time Horizon
One-step Rolling

1 HPB 1190-1200 Mean of pH
2 HPV 1194 Feed Rate
3 HPV 1194 Cooling/heating Medium Flow Rate
4 HPV 1194 Hot/cold Switch
5 HPV 1194 Dissolved O2 Concentration
6 HPV 1194 Heating Medium Temperature

Time Horizon
Two-step Rolling 1 HPB 1191-1200 Mean of

pH

Time Horizon
Evolving

1 HPB 300-310 Standard deviation in Cumulative Acid Flow Rate
2 HPB 300-310 Slope of Cumulative Acid Flow Rate
3 HPB 290-300 Standard deviation in Cumulative Acid Flow Rate
4 HPB 290-300 Slope of Cumulative Acid Flow Rate
5 HPB 280-290 Standard deviation in Cumulative Acid Flow Rate

the contrary, the additional features may become redundant and increase the amount of noisy data,

which subsequently deteriorate the model performance. Furthermore, even evolving time horizon

based analysis have produced slightly better performance for Fault 15, one of the most challenging

faults to detect, at specific sample bins, the increase in the optimal feature (process measurement)

subset size may render them unfavorable for the sake of simplicity. Nevertheless, one can select

and implement the fault and time-specific models from any of the three time horizon approaches

that yields the highest fault detection rate with optimal number of features for simultaneous fault

detection and diagnosis.

The major contribution of the proposed framework is the establishment of accurate and simul-

taneous fault detection and diagnosis in batch processes by virtue of a feature selection algorithm

based on nonlinear SVM formulation backed by global optimization theory. Most of the existing

prevalent data-driven methods for fault detection are based on feature extraction techniques which

do not explicitly reveal the explicit process variables for fault diagnosis. With the proposed frame-

work, we produce fault and time specific end-models which enable not only accurate detection

of the faults but also simultaneously provide diagnosis of the detected fault by listing the most

informative process measurements. The implementation of the end-models as an online decision

support tool can (i) enable early intervention to the process to reverse the detected fault, (ii) signif-

icantly reduce the number of sensor measurements to diagnose the detected fault, and (iii) possibly
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guide for the optimal sensor placement (i.e sensor network design). This subsequently may in-

crease process efficiency, safety, and profitability, which is the ultimate goal of the modern process

industry.

Finally, in this work, we have focused on training 2-class models where one can access histor-

ical and/or simulation-based process data. In future work, we aim to extend the presented frame-

work by developing one-class and multi-class classification techniques with SVM formulations for

simultaneous fault detection, and diagnosis. Specifically, one-class classification techniques with

SVM formulations with the presented feature selection algorithm is expected to handle cases where

the historical industry data is unbalanced with normal and faulty cases, and process simulations

are computationally expensive.
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5. INTEGRATING MAINTENANCE OPTIMIZATION AND CONTROL WITH S-FDD

FRAMEWORK

Once a fault is detected and diagnosed in a process, operators need to decide on ensuing actions

rapidly to maintain a safe and profitable operation. To do this, the common practice in industry is

to adopt several different maintenance strategies to delay if possible prevent the upcoming failures,

as well as to react to recover the process from faulty operation. With the emergence of Industry

4.0 (12) and Smart Manufacturing (89) initiatives, mechanization and automation in industry has

become prevalent, which consequently has reduced the number of production personnel and has

increased the capital employed in production equipment and civil structures (90). This has resulted

in an increase in the fraction of employees working in maintenance area along with an increase in

the fraction of maintenance spending on the total operational costs. Today, the numbers show

that maintenance spending can be the second largest part of the operational budget following after

energy costs (90). Knowing the significance and prevalence of use of maintenance strategies in

industry, the goal for this section of the dissertation is to study different maintenance strategies

(i.e corrective and preventive) using a benchmark chemical process and then integrate them to

simultaneous fault detection and diagnosis framework (s-FDD framework). The premise is that

with the integration of corrective and preventive maintenance strategies to s-FDD framework one

can maximize the profit by minimizing the time spent under faulty operation.

Faults occur when a change/disturbance occurs in a system and system cannot reverse it by

itself via existing controllers. Whereas failure is defined as the inability of the process or the equip-

ment to perform its required functions within the specified performance requirements to counteract

these disturbances. Failures may occur due to several different reasons. In general, they are clas-

sified under two categories: (i) process-based, and (ii) mechanical-based failures (Figure 5.1).

Process-based failures occur when a disturbance changes the process dynamics of an operation,

where the existing control scheme understanding the old process dynamics cannot handle it any-

more. On the other hand, mechanical-based failures generally occur due to equipment age or wear,

where the failure probability of equipment increases over time (i.e. batch cycles in batch/semi-

batch processes). In order to tackle the two different classes of failures, one may need to adopt
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different maintenance strategies (88).

Figure 5.1: Different maintenance strategies for different failure types.

5.1 Corrective Maintenance Strategies

Corrective maintenance includes the actions toward failed equipment or highly disturbed sys-

tem in order to restore the operation to its nominal condition. As discussed in Section 1.2 of Chap-

ter 1, corrective maintenance strategies can be categorized into two groups based on the extrem-

ity of the process abnormality: (i) “run-to-failure” reactive category, where complete equipment

failure occurs, and (ii) corrective category, where only individual/minor faults (high disturbances

where controller cannot handle) occur but the system does not fail immediately. The first one is

the most extreme case, where the only solution to recover the process is to repair or replace the

failed equipment (i.e. renewal of a sensor, replacement of a malfunctioning equipment etc.). The

source of such failures are mechanical. To handle these types of failures, we incorporate reactive

maintenance strategies, where we repair the failed equipment within the s-FDD framework.

Moreover, another source of operation failures are process-based. This is the case where sig-

nificant change in process conditions arise and controllers cannot continue to operate to keep the

process in nominal condition. If this type of failure cannot be reversed on time, it may further affect
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the units of the system and cause equipment failures. Therefore corrective maintenance strategies

are required to be applied to recover the process. These strategies describe the actions that are taken

toward the process-based failures which change the process dynamics and lead existing controllers

inoperable. One of the common actions taken for performing corrective maintenance is re-tuning

of the existing controllers within the system, while the process continues to operate under faulty

condition. Here, the pitfall is the process time spent under faulty operation which prevents the

process to achieve its goals, therefore can be referred as process downtime. Therefore, in order to

prevent process downtime, our main goal is to (i) design and implement a multi-parametric Model

Predictive Controller (mp-MPC) (181) via PAROC framework(182) to have an offline, a priori,

map of optimal fault-aware actions to a chemical process under normal as well as faulty opera-

tion, (ii) integrate the designed mp-MPC with s-FDD framework, where s-FDD framework will

provide process information to the mp-MPC, which in turn makes mp-MPC to switch between

normal and faulty operation. This corrective maintenance strategy formulates a novel “parametric

fault-tolerant control” concept which is described in detail in Section 5.3. In the first part of this

chapter, we integrate reactive and preventive maintenance strategies to the s-FDD framework to

assess the economic impact of each element on the profit.

5.2 Preventive Maintenance Strategies

Preventive maintenance strategies are the maintenance strategies that are scheduled within the

process in order to delay and if possible completely prevent any possible failures occurring due

to equipment (mechanical-based failures). The activities under this maintenance strategy include

inspection and replacement of process equipment (87). Here, the idea is by performing regular in-

spections and preventive tasks, one may sustain the failure probability as low as possible depending

on the age and usage of the equipment.

In this section, the goal is to implement maintenance strategies into chemical processes while

monitoring them via s-FDD framework for early detection and diagnosis of the faults. The hypoth-

esis is that integrated s-FDD framework with corrective and preventive maintenance tasks would

perform superior than using either the s-FDD framework or maintenance tasks alone. To test this

hypothesis, penicillin benchmark process, a semi-batch process, is used. Particular to batch pro-

cesses, the premise is that (i) in the intra-batch time scale, s-FDD will detect and diagnose faults
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early, and (ii) in the inter-batch time scale, preventive maintenance scheduling will delay fault oc-

currence within the process. The ultimate goal is the maximization of profit by minimizing process

downtime due to mechanical-based failures.

Testing of the proposed hypothesis is done by considering a previously introduced faulty

batch process data (Section 4.1). Fault 3 - agitator power drop (Table 4.2), which occurs due

to mechanical-based failure, is adopted, and 4 different scenarios are considered as shown in Table

5.1. Failure rates are assumed to increase linearly and based on Weibull distribution (87). In order

to show a proof of the proposed concept, the following question is postulated: In how many batch

cycles, we can obtain 100 successful batches? Here, batches are running sequentially, therefore

the optimal preventive maintenance frequency is calculated by minimizing the expected cost as

shown in Equation 5.1 and 5.2 for linear and Weibull distribution based failure rate increase. The

parameter/variable definitions used in Equations 5.1 and 5.2 are given in Table 5.2, and adopted

parameter values are tabulated in Table 5.3, respectively.

Table 5.1: 4 considered scenarios for the proof of concept

Scenario Use of s-FDD Scheduling Preventive Maintenance Repairing Failed Equipment

1 NO NO YES

2 YES NO YES

3 NO YES YES

4 YES YES YES

min
x

∑
x
i=1Cop(1− fi)+Cm−R(1− fi)

x

s.t. fi = fi−1 + fbase

fi ≤ 0.5

(5.1)
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min
x

∑
x
i=1Cop(1− fi)+Cm−R(1− fi)

x

s.t. fi = 1− e−(
i
b )

a

fi ≤ 0.5

(5.2)

Table 5.2: Parameter and variable definitions used in Equation 5.1

Parameter/Variable Definition

fi Failure Rate of the Equipment during Batch Cycle i

Cm Preventive Maintenance Cost

Cop Operating Cost per Batch

R Revenue from each Successful Batch

x Optimal Preventive Maintenance Pattern

fbase Base Failure Rate

a Shape parameter of Weibull distribution

b Scale parameter of Weibull distribution
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Table 5.3: Adopted parameters from Peters et. al (6)

Parameter Value

Production Scale 30 tonnes/batch

Revenue 12,000,000 $/year

Operating Cost 1,000,000 $/year

Repair Cost 1,000,000 $/year

Preventive Maintenance Cost 500,000 $/year

Target Batch Number 100

Base Failure Rate ( fi) 0.05

a 3

b 120

Fault Detection & Diagnosis Policy 2 Sequential Alarm Raise

By solving the Equation 5.1, the optimal preventive maintenance frequency is obtained as 2.

Whereas by solving the Equation 5.1, the optimal preventive maintenance frequency is obtained as

6.This means that, at every 6 batch cycles, a preventive maintenance task is performed for optimal

operation under given conditions where failure rate increase follows a Weibull distribution where k

is 3 and α is 120 (Figure 5.2, where x is 6 in this case). This information is used for the 4 different

considered scenarios as shown in Figure 5.3.

Figure 5.2: Scheduling scheme of preventive maintenance.
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Figure 5.3: Understanding the effect of maintenance task integration to the s-FDD Framework.

The obtained results have validated the proposed hypothesis. The results that are obtained

with Weibull distributed failure rates show that the process downtime is minimized by 9.17%

between the two extreme cases: (i) the one where s-FDD is not used and preventive maintenance

tasks are not scheduled, and (ii) the one wherein integrated s-FDD framework and preventive

maintenance scheduling approach is adopted 5.4. This number increases to 43.23% when the

failure rate is assumed to increase linearly. The profit increase between these two extreme cases is

observed as 120.68% and 9.05% for failure rates that are assumed to increase linearly and based

on the specified Weibull distribution, respectively. If one compares the scenarios 1 and 2, where

preventive maintenance tasks are not scheduled in both scenarios but s-FDD is used in the latter
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one, a 50.02% (linear failure rate model) and 6% (Weibull distributed failure rate model) profit

increase are still observed with the use of s-FDD framework. Finally, if scenarios 3 and 4 are

compared, where preventive maintenance tasks are scheduled in both scenarios but s-FDD is used

only in scenario 4, a 2.5% (linear failure rate model) and 1.99% (Weibull distributed failure rate

model) profit increase are obtained.

Table 5.4: Results for the proof of concept - Failure Rate from Weibull Distribution

Scenario Use of s-FDD
Preventive Maintenance

Scheduling
Failed Equipment

Repairing Cycles Profit($)

1 NO NO YES 192 700,000,000

2 YES NO YES 192 741,966,101

3 NO YES YES 109 748,500,000

4 YES YES YES 109 763,381,355

Table 5.5: Results for the proof of concept - Linear Increase in Failure Rate

Scenario Use of s-FDD
Preventive Maintenance

Scheduling
Failed Equipment

Repairing Cycles Profit($)

1 NO NO YES 192 340,000,000

2 YES NO YES 192 510,101,694

3 NO YES YES 109 732,000,000

4 YES YES YES 109 750,305,080
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5.3 Integrating Multi-Parametric Model Predictive Control with s-FDD Framework: Para-

metric Fault-Tolerant Control Systems Design

In the second part of this chapter, we integrate multi-parametric model predictive control

and the s-FDD framework to introduce a novel corrective maintenance strategy, parametric fault-

tolerant control (FTC) systems design. By using multi-parametric programming, we are able to

establish the control actions for the faulty state explicitly and generate a priori, offline, map to be

implemented in the online phase. This is an active fault-tolerant control strategy, where we need

to use online fault detection and identification (FDI) mechanism to monitor the process and get

information on faults for further fault accommodation. In order to have a precise representation of

the process condition for detecting any abnormalities, we need to have accurate and robust (i) fault

detection and diagnosis scheme, and (ii) fault direction and magnitude estimation scheme, known

as fault reconstruction mechanism. These two schemes collect required information on the process

condition and pass them to the fault-tolerant mp-MPC in order to draw the necessary corrective

actions to return the process to the nominal stage. Therefore, the accuracy of these two schemes

play a significant role in the reliability of the proposed active FTC strategy.

Below, we present the parametric fault-tolerant control framework as a novel corrective main-

tenance strategy. The framework consists of three main steps: (i) offline design of fault-tolerant

multi-parametric model predictive controller (mp-MPC) by using PAROC framework (182), (ii)

offline design of an accurate fault detection and reconstruction mechanism by using the s-FDD

framework, and (iii) implementation for online monitoring.

5.4 Parametric Fault-Tolerant Control Framework

The first step in building parametric fault-tolerant mp-MPC system is data acquisition. This can

be achieved via either historical operation data or process data simulations based on the dynamic

model of the system, which is often readily available in industrial applications. For the offline

design of the fault-tolerant mp-MPC, we only need normal operation data. We collect both normal

and faulty operation data for building fault detection and diagnosis models by using two-class

classification models developed by following the s-FDD framework. Similarly, we use both normal

and faulty operation data during fault magnitude regressor development.

In this work, we adopt fed-batch penicillin production process introduced in Chapter 4. We
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simulate process data for fed-batch penicillin production by using the RAYMOND simulation

package (183). We produce 25 simulations for each fault magnitude and onset combinations in

addition to the 200 simulations of normal operating condition (NOC) by using the RAYMOND

software. Of note, fault direction is defined as measuredvalue− realvalue within the RAYMOND

simulator. In this work, a nominal feed rate of 0.06 L/h is chosen for the fed-batch phase of

the simulations. A batch is terminated after a total of 30 L of substrate have been added. This

corresponds to a total batch duration of approximately 549 h. The initial fermenter volume V0,

biomass concentration Cx,0, and substrate concentration Cs,0 are all independently sampled from

normal distributions with mean µ and standard deviation σ. Values are limited to µ±2.5σ in order

to avoid outliers in the initial conditions. Measurements are collected from 20 process variables,

where white noise is included into each of them 5.6. Sensors are sampled every 0.2 h which has

generated an average of 2745 sample points per batch.

In particular, we control the reactor temperature via fault-tolerant mp-MPC by manipulating

water flow rate. We have studied two distinct fault types: (i) sensor fault, which introduces a bias

in reactor temperature measurements, and (ii) actuator fault, which creates bias in water flow rate.
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Table 5.6: List of process variables

Variable Name Initial condition Measurement Noise (σ) Type

1. Substrate concentration [mg/L] 17.5±1 0.01 State variable

2. Dissolved O2 concentration [mg/L] 1.1601 0.004 State variable

3. Biomass concentration [g/L] 0.1250±0.030 0.5 State variable

4. Pencillin concentration [g/L] 0 0.02 State variable

5. Fermentation volume [m3] 102.5±5 0.002 State variable

6. Dissolved CO2 concentration [mg/L] 0.4487 0.12 State variable

7. pH [-] 5 0.02 State variable

8. Reactor temperature [K] 298 0.01 State variable (controlled)

9. Reaction heat [cal] 0 – State variable

10. Feed rate [L/h] – 0.01 Input variable

11. Aeration rate [L/h] – 0.01 Input variable

12. Agitator power [W] – 0.01 Input variable

13. Feed temperature [K] – 0.1 Input variable

14. Water flow rate [L/h] – 0.01 Input variable (manipulated)

15. Hot/cold switch [–] – – Input variable

16. Base flow rate [mL/h] – 0.01 Input variable

17. Acid flow rate [mL/h] – 0.01 Input variable

18. Feed substrate concentration [mg/L] – – Input variable

19. Cooling medium temperature [K] – 0.1 Input variable

20. Heating medium temperature [K] – 0.05 Input variable

5.4.1 Offline Fault-Tolerant mp-MPC Design via PAROC Framework

In this work, we build fault-tolerant mp-MPC by using the PARametric Optimization and Con-

trol (PAROC) framework (182) (Figure 5.4), which provides a systematic methodology to design

advanced model-based controllers via multiparametric programming. The PAROC framework

presents an extensive environment for the design of chemical processes, building controllers, and

performing parameter estimation based on high-fidelity models while benefiting from the most re-

cent advances in the field of multiparametric programming. Numerous applications of the PAROC

framework are demonstrated in the literature for the integration of (i) process design and control

(184; 185; 186), (ii) process scheduling and control (187), and (iii) process design, control, and
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scheduling (188).

Figure 5.4: The PAROC framework.

The initial step of the PAROC framework is high fidelity modeling and analysis in order to

acquire a mathematical model that can describe the system of interest accurately. However, of-

ten times the derived mathematical models are high-dimensional with large number of variables

and/or complex in nature posing a significant challenge during their optimization in terms of com-

putational expense. This further hinders their direct use of these models for the development of

model-based strategies, and necessitates model approximation or reduction steps prior to the con-

troller design. The reduced model is then used to build a model predictive control (MPC) scheme,

and solved via multi-parametric programming to obtain mp-MPC, which produces the offline map

of optimal control actions under both normal and faulty operations. Here, the fault-tolerant control

scheme is achieved by introducing the mismatch (fault) information as an additional dimension

during the mp-MPC design. Final step is “closed-loop validation”, where we implement the ex-
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tracted offline map of fault-tolerant control actions to the original mathematical model of the pro-

cess to observe the closed-loop behavior of the system. The PAROC framework has been applied

to numerous fields sucessfully (188; 187; 186; 185; 184).The details of each step are provided

below.

5.4.1.1 High Fidelity Dynamic Modeling

A detailed and accurate representation of the system dynamics based on first principle dynam-

ics and empirical correlations is used to simulate the open loop characteristics of the fed-batch

penicillin production process. In this work, we employ the differential algebraic model (DAE)

model presented by Birol et al. (2002) (179), as generalized below.

ẋ = f (x,u) (5.3)

where x are the states of the system, u are the manipulated variables given in Table 5.6, and f is a

generic function.

5.4.1.2 Model Approximation

The detailed model represented by Eq. 5.3 features complex and highly nonlinear dynamics

among the manipulated variables and the observed outputs, rendering it inappropriate to develop

advanced parametric controllers. Therefore, we develop an affine approximate model that accu-

rately represents the high fidelity dynamics by model reduction or subspace identification tech-

niques. In this work, we use MATLAB System Identification Toolbox to capture the dynamics of

Eq. 5.3 by the discrete time state space model, given by the equation below.

xt+1 = Axt +But +Cdt

ŷt = Dxt +Eut +Fdt

(5.4)

where subscript t denotes the discretized time step, and ŷ is the output prediction. The state space

matrices are developed based on the simulated process outputs y under randomized input profiles

for u and d. Note that the identified states x do not represent the real system states.

Acquiring satisfactory closed-loop performance relies heavily on developing accurate approx-

imate models. Katz et al. (2018) (189) investigated the effects of approximating the high fidelity
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models by simpler models in the context of multiparametric programming, and introduced novel

error metrics to evaluate open and closed-loop performances. In this work, we use the open and

closed loop metrics introduced in Katz et. al to increase the confidence of the developed approx-

imate models. The details are omitted here for brevity and to focus on the fault-tolerant explicit

control scheme.

5.4.1.3 Designing the MP-MPC

The offline control strategy is designed to (i) track the output set points determined prior to the

operation, (ii) acquire smooth control actions to maintain the longevity of the processing equip-

ment. Therefore, the objective function of the control problem is formulated is given by the fol-

lowing equation.

N

∑
t=1
‖yt− ysp

t ‖2
QR +

M

∑
t=0
‖∆ut−θ

a‖2
R1 (5.5)

where N is the prediction horizon, M is the control horizon, θa is the magnitude of the fault acting

on the corresponding actuator, ‖·‖ψ denotes weighted vector norm with a weight matrix ψ, QR

and R1 are the corresponding weight matrices, and the superscript sp denotes the set point. Hence,

the quadratic objective function is minimized only if the process outputs track the designated set

points ysp, and the consecutive control actions are smooth in the existence of faulty actuators θa.

The developed objective function is subjected to the approximated process model, given by

Eq. 5.4. However, using an approximate model to achieve closed-loop control creates a mismatch

between the real process outputs, y, and the predicted output values, ŷ. We address this mismatch

by including Eq. 5.6 in the mp-MPC formulation.

e = yt− ŷt , t = 0 (5.6)

where the error term e denotes the mismatch magnitude between the real and predicted output

values at the time of measurement, t = 0. The error term is carried over the entire prediction

horizon, as given by the equation below.

yt = ŷt + e−θ
s,∀t ∈ {1,2, ...,N} (5.7)
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Note that apart from the mismatch term, we also incorporate a sensor bias term θs to account

for the sensor faults in the mp-MPC. The path constraints are formulated as box constraints for the

process variables to maintain certain product specifications, as presented by the equation shown

below.

x≤ xt ≤ x

y≤ yt ≤ y

u≤ ut ≤ u

∆u≤ ∆ut−θ
a ≤ ∆u

(5.8)

Lastly, we define the set of parameters in the control problem as following:

θ := [xT
t=0,u

T
t=−1,y

T
t=0,(y

sp
t )T ,dT

t=0,θ
a,θs]T (5.9)

where θ is the vector of parameters. Therefore, we postulate the explicit control strategy described

by Eq. 5.10.

ut(θ) = argmin Equation 5.5

s.t. Equations 5.4, 5.6-5.9
(5.10)

Note that the control strategy formulated by Eq. 5.10 is a multiparametric optimization problem

with a quadratic objective function and a set of linear constraints. This class of problems can be

solved exactly by using the Parametric OPtimization (POP) toolbox (190), and the solution to

these problems are expressed as a single piece-wise affine function of the parameters. Therefore,

the explicit control law is derived as given by the equation below.

ut(θ) = Kiθ+ ri,∀t ∈ {1,2, ...,M},∀θ ∈CRi

CRi := {θ ∈Θ |CRA
i θ≤CRb

i }
(5.11)

where CR denotes a polyhedral partition of the feasible parameter space, and Θ is a closed and

bounded set.

Remark 1. Equation 5.11 explicitly maps the exact optimal control actions for any parameter

realization in Θ, if a feasible solution exists. Therefore, inclusion of the monitored faults as pa-
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rameters in the explicit control law identifies the range of recovery in the existence of faulty sensors

and/or actuators prior to the operation.

5.4.1.4 Closed-loop Validation

The proposed control problem is developed based on an approximate model, described in Step

2. Therefore, the closed-loop strategy should be validated against the high-fidelity model by ob-

serving the set point tracking performance and path constraint violation by exhaustive simulations

under numerous uncertainty scenarios. Note that due to the explicit nature of the closed-loop strat-

egy, the control law can be embedded in the high-fidelity model exactly. Therefore, the closed-loop

profiles can be simulated without the necessity of solving any online optimization problems.

In the case of insufficient or poor closed-loop performance, one can (i) adjust the weight ma-

trices QR and R1 in the objective function given by Eq. 5.5, (ii) develop a new approximate model

using a different technique, or (iii) develop multiple discrete time state space models that are used

to govern different operating regions.

5.4.2 Offline Fault Detection and Reconstruction Mechanism Development

The fault detection and reconstruction mechanism is responsible from two main tasks: (i) pre-

cise and rapid fault detection and diagnosis, and (ii) accurate fault direction and magnitude esti-

mation (a.k.a fault reconstruction). We follow the main steps of the s-FDD framework ((Section

2.2 of Chapter 2) ) to build fault and time-specific classification models for fault detection and

diagnosis. Additionally, in order to predict the magnitude of the detected fault, we develop re-

gression models by adopting Random Forest algorithm (191). Specifically, we regress the water

flow rate measurements for the actuator fault, and reactor temperature measurements for the sensor

fault. The modeling procedure for both analysis is summarized in 3 main steps. The initial step is

data pre-processing which includes targeted data collection, unfolding of 3-dimensional (3D) batch

process data into 2D, extracting additional process descriptors when necessary, and data scaling,

respectively. This is followed by parameter tuning, and model building steps.

5.4.2.1 Data Pre-processing

Data pre-processing steps are necessary prior to model building in order to prevent bias and

improve the performance of the model. Generally, data pre-processing comprises of data format-

ting, scaling and cleaning steps, where data cleaning includes both outlier removal and missing
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data handling. Below, we describe these three main pillars of data pre-processing in four steps.

Step-1.1 to 1.3 describe data formatting, where we collect targeted process data, unfold the 3D

data into 2D, and extract further features when necessary to enrich the data set. We address data

scaling and cleaning steps in Step-1.4.

Targeted Data Collection: We are building (i) fault and time specific two-class C-SVM classi-

fication models for fault detection and diagnosis, and (ii) regression models for fault magnitude

estimation after fault onset time. Therefore we need to gather process data around the fault onset

time for both modeling. In this work, we have selected four different fault onset times, 100, 200,

300, and 400 h, where we introduce two different faults in various magnitudes. The details on the

fault types and their magnitude are provided in Section 5.5. In each batch, we consider the time

periods that encompass the fault onset time and 10 h (50 sensor samples) afterwards.

During fault detection classifier building, we extract process data by following a sliding win-

dow approach. At each sensor sample, we collect historical data in 10 h blocks. For instance, to

build a classifier around 100 h, we consider the time period of 100−110 h of a batch. Next, start-

ing from the fault onset time 100 h until 110th h, we obtain process data in 10 h blocks: At hour

100, we collect data from 90−100th h. Similarly at next sensor sample time, 100.2 h, we collect

data from 90.2−100.2 h. We obtain the process data iteratively until the end of the considered

time period, 110 h. The schematic representation of the targeted data collection is presented in

Figure 5.5, wherein the gray boxes mark the fault onset time classification models are built. Blue

line indicates the first, red line indicates the last 10 h data block extracted from the 90-110 h time

period for 100 h fault detection classifier.. Each data collection from the selected window adds a

new instance in the data set. This approach yields a 3-dimensional (3D) data with size of 2500 X

20 X 50. The first dimension of the data set is obtained with 50 sliding window iterations in 50

batches (25 faulty and 25 normal operating). Furthermore, we observe 20 process variables that

includes both state and manipulated variables 5.6 in 50 sensor sample periods (i.e. 100− 110 h

for 100 h classifier building). The data set size is consistent for each fault and time-specific fault

detection model building.

On the other hand, during fault magnitude regression development, we consider solely the

process variables and do not extract any further process descriptors. Here, we collect 10 h block

for actuator fault, and 1 h for sensor fault magnitude estimation model development. We also
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combine all faulty operation data with varying fault magnitudes. Specifically, we have simulated

6 distinct fault magnitudes for sensor, and 8 for actuator faults. For each magnitude, we have

simulated 25 batches. This yields 150 faulty batches with sensor fault, and 200 faulty batches with

actuator fault. Next, we include equal amount of normal operating batches to our data sets. Thus,

the size of the obtained data set is 300 X 20 X 5 for regression model development for sensor fault

magnitude estimation. Whereas the data set size for regression model development for actuator

fault magnitude estimation becomes 400 X 20 X 50. Here, the first dimension belongs to total

number of batches (with equal number of faulty and normal operating batches), second dimension

is the 20 process variable measurements, and the last dimension indicates the 10 h (50 sensor

sample) block, and 1 h (5 sensor sample) block examined after the fault onset time of actuator, and

sensor faults, respectively.

Figure 5.5: Schematic representation of targeted data collection for fault detection and diagnosis
classifier development.

Unfolding 3D Batch Process Data into 2D: The collected 3D data needs to be unfolded into 2D

prior to model building steps. The 3D data set can be unfolded in three ways by placing one

out of three dimensions as rows, and grouping the other two dimensions as columns. In this

work, we perform batch-wise unfolding for classification and measurement-wise unfolding for

regression analysis (162). In bath-wise unfolding, batches are the instances which are provided in

the rows of the 2D data set. Whereas in measurement-wise unfolding, we keep the process variable
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measurements as the features and place them to the columns of the 2D data set for regression

analysis. The features that constitute the columns of the 2D data sets are time-specific process

variable measurements for classification, and time-specific-batch ID for regression models. After

the unfolding step, the data set size becomes 2500 X 1000 for classification analysis. On the other

hand, the unfolded data set size becomes 20000 X 20 for actuator fault, and 1500 X 20 for sensor

fault magnitude estimation.

Extracting Additional Features: This step is optional. We apply this step only during classification

analysis. The aim of this step is to enrich the data set by including additional process descriptors to

capture the process nonlinearity, which can then improve classification model performances. To do

this, we calculate the (i) mean, (ii) standard deviation, and (iii) slope of 20 process measurements

within each sliding time window and incorporate them into the unfolded data set. This increases

the classification data set sizes to 2500 X 1060.

Data Normalization and Reduction: Final data-preprocessing step is scaling of the re-configured

data set and a priori dimensionality reduction to remove redundant features. This procedure is

common to both classification and regression analysis. Each column of the 2D data set is scaled

by z-score calculation, where mean of the column is extracted from each value and then divided

into the standard deviation of the column. Redundant features, where the standard deviation is less

than 10−8, are removed in order to decrease the computational cost during offline model building

phase.

5.4.2.2 Parameter Tuning

We are training (i) C-SVM (two-class) classification models by using the Gaussian radial basis

function (RBF) as the nonlinear Kernel function for fault detection and diagnosis, and (ii) regres-

sion models via Random Forest algorithm for fault magnitude estimation after fault detection.

Additionally, we have trained C-SVR models by using the introduced feature selection algorithm

in Onel et al (192) and Onel et al (193) as described in Chapter 2. Table5.8 tabulates the results

for actuator and Table 5.7 for sensor fault. Here, we prefer to keep the entire process variables

instead of selecting a subset among them since the ratio of the number of features to the number

of instances is significantly low. The results provided in Tables 5.8 and 5.7 validate this reasoning,

where dimensionality reduction does not necessarily improve the model R2s. Therefore, we use
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the entire process variables that remain after the data pre-processing steps, and benefit the bagging

technique of the Random Forest algorithm during model training to build accurate regressors.

Table 5.7: SVR model performances for the sensor fault.

Fault Onset Time R2 Number of Features

100 h 0.806 16

100 h 0.775 15

100 h 0.776 14

100 h 0.777 13

100 h 0.777 12

100 h 0.778 11

100 h 0.779 10

100 h 0.780 9

100 h 0.781 8

100 h 0.783 7

100 h 0.784 6

100 h 0.787 5

100 h 0.788 4

100 h 0.777 3

100 h 0.765 2

100 h 0.714 1

200 h 0.842 16

200 h 0.799 15

200 h 0.801 14

200 h 0.802 13

200 h 0.804 12

200 h 0.806 11

200 h 0.809 10

200 h 0.811 9

200 h 0.812 8
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Table 5.7 – Continued

Fault Onset Time R2 Number of Features

200 h 0.814 7

200 h 0.816 6

200 h 0.817 5

200 h 0.818 4

200 h 0.818 3

200 h 0.815 2

200 h 0.792 1

300 h 0.850 16

300 h 0.846 15

300 h 0.847 14

300 h 0.848 13

300 h 0.849 12

300 h 0.850 11

300 h 0.852 10

300 h 0.853 9

300 h 0.854 8

300 h 0.854 7

300 h 0.790 6

300 h 0.793 5

300 h 0.797 4

300 h 0.798 3

300 h 0.795 2

300 h 0.795 1

400 h 0.852 16

400 h 0.852 15

400 h 0.853 14

400 h 0.854 13

400 h 0.855 12
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Table 5.7 – Continued

Fault Onset Time R2 Number of Features

400 h 0.856 11

400 h 0.853 10

400 h 0.854 9

400 h 0.855 8

400 h 0.856 7

400 h 0.795 6

400 h 0.798 5

400 h 0.799 4

400 h 0.803 3

400 h 0.801 2

400 h 0.799 1

Table 5.8: SVR model performances for the actuator fault.

Fault Onset Time R2 Number of Features

100 h 0.999 1 to 16

200 h 0.999 4 to 16

200 h 0.998 1 to 3

300 h 0.999 2 to 16

300 h 0.998 1

400 h 0.999 3 to 16

400 h 0.998 1 to 2

Regardless of the analysis, parameter tuning is required to achieve the optimal model perfor-

mance:

Parameter Tuning for C-SVM Models: Here, we have two parameters to tune: (i) C (cost) parameter

of C-SVM, and (ii) γ parameter of the Gaussian Radial Basis kernel function. While the first

124



parameter acts as a regularization parameter that controls the trade-off between low training error

and low test error. In other words, this parameter regulates the balance between model complexity

and model generalization. Lower the training error, higher the model complexity and lower the

model generalizability. On the other hand, lower the testing error, lower the model complexity and

higher model generalizability but with higher training error. Finding an optimal balance is crucial

to develop an accurate classifier. Furthermore, the γ parameter determines the complexity of the

Gaussian RBF kernel and affects the radius of influence of the samples selected as support vectors

by the model.

In LIBSVM, the default value for RBF kernel parameter, γ, is 1/n, where n is the number of

features. Thus, we tune parameter γ̂ where

γ =
2γ̂

n
. (5.12)

Moreover, we tune parameter Ĉ, where the relation between Ĉ and C is:

C = 2Ĉ. (5.13)

According to the described iterative feature selection algorithm in our previous papers (192;

193) and in Section 2.2 of Chapter 2, γ̂ can be re-tuned after each feature elimination step with the

available set of features:

γ =
2γ̂

zT1
(5.14)

We have performed the parameter tuning via grid search and 10-fold cross-validation. In par-

ticular, we have used the values between −1 : 1 for Ĉ, and −10 : 10 for γ̂. We have performed the

parameter tuning once in the beginning where we have the entire features in the data set. Although

repeating grid search for parameters tuning after each feature elimination would be ideal, we avoid

the computational cost since the attained model performance has been observed to be satisfactory.

If one obtains a poor-performing model, tuning can be repeated with each available feature subsets.

Finally, the parameters that produce the highest average testing accuracy are chosen for the next

steps. The optimal parameters for the fault-and-time specific C-SVM models are provided in Table

5.9.

125



Table 5.9: Optimal C and γ parameters of the C-SVM classifiers.

Fault Type Fault Onset Time Optimal Ĉ Optimal γ̂

Actuator 100 h 1 0

Actuator 200 h 1 0

Actuator 300 h 1 0

Actuator 400 h 1 0

Sensor 100 h 1 -2

Sensor 200 h -1 0

Sensor 300 h 1 -2

Sensor 400 h 1 -2

Parameter Tuning for Random Forest Regression Models: In regression analysis, we have one

parameter to tune, which is the number of features that can be used in training of each decision

trees of the random forest model, mtry. This is performed via grid search among the total number

of features until 1 while training Random Forest models via 10-fold cross-validation. The optimal

mtry parameters are obtained by using the “trainControl” function of the “caret” package of the

R statistical software. The optimal mtry values for each time-specific regressors are provided in

Table 5.10.
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Table 5.10: Optimal mtry parameters of the Random Forest regressors.

Fault Type Fault Onset Time Optimal mtry

Actuator 100 h 12

Actuator 200 h 11

Actuator 300 h 11

Actuator 400 h 11

Sensor 100 h 16

Sensor 200 h 16

Sensor 300 h 12

Sensor 400 h 14

5.4.2.3 Model Building

Here, we address the model building steps separately for classification and regression analysis.

We follow the s-FDD framework (192; 193) to build the C-SVM classifiers for fault detection

and diagnosis. The application of the framework and data-specific details are provided in Step

3.1. Furthermore, we describe the model building steps for regression analysis via Random Forest

algorithm in Step 3.2.

5.4.2.3.1 Training C-SVM Models

The overall procedure for fault detection model development is summarized in Figure 5.6.
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Figure 5.6: Algorithmic solution procedure for simultaneous Support Vector Machine-based fea-
ture selection and modeling.

Step-1. Feature Ranking via C-SVM Modeling:

The tuned parameters are incorporated into simultaneous model-informed feature selection and

classification algorithm via C-SVMs (128; 192; 193). C-SVM binary classification models with

Gaussian radial basis function (RBF) kernel are trained iteratively with each feature subset as

features are eliminated one by one. Features are eliminated based on the Lagrangian sensitivity of

the dual objective function of the built C-SVM model with respect to the feature subset size at each

iteration. This iterative process is performed with each of the 10 train-test data set pairs which

produces 10 separate feature ranking lists. Next, we create an average feature rank list based on

the statistical distribution of the feature ranks among the 10 ranking lists.

Step-2. Developing C-SVM Models for each Feature Subset:

Here, we re-build C-SVM models by using the optimal parameters determined in Step 2 and

10-fold cross validation, where we use the average feature rank list to guide the iterative feature

elimination process. We start with the whole set of features and eliminate them one by one based

on this final ranking list. This process produces 10 C-SVM classifiers for each feature subset due to

the 10-fold cross-validation. The performance of each model is assessed via accuracy, area under
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the curve (AUC), fault detection rate, and false alarm rate. We average the performance of 10

classifiers and obtain one C-SVM model performance per feature subset. At the end of this step,

we tabulate the performance of C-SVM models with each feature subset. Specifically, in this work,

we have generated 1060 C-SVM models.

Step-3. Choosing the C-SVM Model with Optimal Feature Subset:

This step determines the final C-SVM models to be implemented in the online phase for pro-

cess monitoring. Here, we select the classifier that has provided the highest model accuracy and

area under the curve with minimum number of features among the 1060 C-SVM models produced

in Step 4. The selected feature subset is used in analyzing the root-cause of the detected fault.

Therefore, selecting minimum number of features is significant in order to facilitate the interpreta-

tion of the fault diagnosis. The performance of the selected fault-and-time specific C-SVM models

are tabulated in Table 5.11.

Table 5.11: C-SVM model performances. (FDR: Fault Detection Rate, FAR: False Alarm Rate)

Fault Type Fault Onset Time Accuracy (%) AUC FDR FAR (%) Optimal Feature Subset Size

Actuator 100 h 98.29 99.84 97.35 0.77 30

Actuator 200 h 98.34 99.86 97.55 0.87 35

Actuator 300 h 98.37 99.83 97.52 0.77 32

Actuator 400 h 98.77 99.05 98.29 0.75 45

Sensor 100 h 94.92 97.34 89.85 0.00 33

Sensor 200 h 98.84 99.21 97.68 0.00 59

Sensor 300 h 98.03 99.39 96.06 0.00 45

Sensor 400 h 99.00 99.38 98.00 0.00 7

5.4.2.3.2 Training Random Forest Models

By using the optimal mtry parameters, we train Random Forest models with 500 decision

trees. Training is performed via the “randomForest” function of the “randomForest” package of

R statistical software. The performance of the fault-and-time specific Random Forest models are
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tabulated in Table 5.12.

Table 5.12: Random Forest regressor performances (RMSE: Root Mean Square)

Fault Type Fault Onset Time R2 RMSE

Actuator 100 h 0.999 0.179

Actuator 200 h 0.999 0.262

Actuator 300 h 0.999 0.248

Actuator 400 h 0.999 0.260

Sensor 100 h 0.964 0.202

Sensor 200 h 0.911 0.321

Sensor 300 h 0.985 0.129

Sensor 400 h 0.973 0.176

5.4.3 Closed-loop Validation and Online Implementation

Prior to the online implementation, we have implemented the developed fault-tolerant mp-

MPC, and fault detection and reconstruction mechanism to the RAYMOND simulator separately

in order to validate their individual performance. The performance of fault-tolerant mp-MPC is

assessed by providing the fault onset time and magnitude information to the controller. We have

observed that the controller adapts to the faulty condition once it is provided with accurate in-

formation on the fault type, onset time and magnitude. The accuracy of the fault detection and

reconstruction mechanism is also tested and validated separately, where we have simulated a pro-

cess with known fault onset and magnitude without incorporating any fault-tolerant control actions

during the simulation. Finally, we integrate the fault-tolerant mp-MPC, and fault detection and

reconstruction mechanism within the RAYMOND simulator simultaneously.

5.5 Results

In this work, we control reactor temperature by manipulating water flow rate during penicillin

production. We build fault-tolerant control scheme that can tolerate for both actuator and sen-
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sor fault. We introduce sensor bias in water flow rate measurements for actuator fault, whereas

we introduce sensor bias in reactor temperature measurements to induce sensor fault. Numer-

ous fault magnitudes and onset time are simulated for each fault type. Particularly, we select

−2.5,−2.0,−1.5,+1.5,+2.0,+2.5, and−2.0,−1.5,−1.0,−0.5,+0.5,+1.0,+1.5,+2.0 for actu-

ator and sensor fault magnitudes during the simulations, respectively. We have developed highly

accurate fault and time-specific fault detection models and regression models for fault magnitude

estimation (Table 5.11 and 5.12) and implemented them for the fault detection and reconstruction

mechanism of the established parametric fault-tolerant control system.

Figure 5.7 provides a comparison of the open and closed (via fault-tolerant mp-MPC) loop

simulation, which signifies the importance of having an accurate control actions on the reactor

temperature by manipulating the water flow rate. The mp-MPC yields an offline, a priori, map of

optimal control actions for the process. Figure 5.8 deliniates the distinct control laws for various

magnitudes of sensor and actuator faults at the fixed parameters. The major advantage of the

built fault-tolerant system is to gain a priori knowledge on the control actions for different fault

magnitudes of actuator and sensor fault separately, as well as for different combinations of the two

distinct fault types simultaneously. This map further draws the limits of the fault tolerance for

each fault types. These limits indicate specific fault magnitudes for each fault type until where the

designed fault-tolerant mp-MPC can recover the process back to the normal condition.

131



Figure 5.7: Simulated reactor temperature (controlled) and water flow rate (manipulated) profiles
in open and closed loop (via mp-MPC).

Figure 5.8: A demonstration of the offline map of the fault-tolerant mpMPC strategy projected to
the actuator and sensor fault magnitudes at an arbitrary time in a closed-loop simulation. Each
color contains a different explicit control law as a function of the parameters. The parameters θ1
denotes the identified state, θ2 is the normalized process output (reacture temperature), θ4 is the
output (reacture temperature) set point, and θ6 denotes the previous control action.
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From the beginning, we monitor the process with the fault tolerant mp-MPC and acquire infor-

mation on the existence of any fault within the system from the fault detection classifier models.

In this work, the adopted alarm policy is the generation of 3 consecutive alarms. In other words,

we conclude on the fault existence when we obtain 3 consecutive positive response from the fault

detection classifiers. Once the fault is detected, we initiate to regress the magnitude and direction

of the fault. The random forest models use the online process variable measurements to estimate

the amount of deviation from the reactor temperature of the normal operating condition. Here,

early detection of the faults is crucial to initiate the fault estimation process. If the fault detection

latency is high, that is when fault is detected late during the operation, the controller may not be

able to return the process back to the normal condition. The reason can be two-fold: (i) the validity

of the regressor may expire, thus accuracy of the fault estimation deteriorates, and (ii) there may

be significant damage on the process which is irreparable. Table 5.13 presents the average fault de-

tection latency of each fault and time specific classifier among the entire simulations with varying

fault magnitudes.

Table 5.13: Average fault detection latency of the fault&time-specific C-SVM models.

Fault Type Fault Onset Time Average Latency (h)

Actuator 100 h 0.5

Actuator 200 h 1.5

Actuator 300 h 0.04

Actuator 400 h 0.16

Sensor 100 h 0.38

Sensor 200 h 1.27

Sensor 300 h 0.64

Sensor 400 h 6.17

Achieving low latency with the fault and time-specific C-SVM models indicates early fault

detection. When we compare the two different fault types, the average latency is lower for the
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actuator fault models. The main reason for this can be the fact that changes in water flow rate may

affect the other process variables in a more definite way. This may lead to sudden changes not only

in one but numerous process variables, thus facilitates the fault detection. Furthermore, the process

nonlinearity affects the detection latency in distinct ways for different fault types. Specifically, we

observe that we detect the actuator fault more rapidly in the later stages of the batch process,

namely 300 h and 400 h models. On the other hand, the separation in the average latency is not

that clear among the sensor fault detection models. Here, the high latency can be linked to the

low number of process variables used in the fault magnitude estimator models, which may not be

adequate to capture the process behavior in the specific process time.

We are building fault and time-specific regression models for fault magnitude estimation.

Therefore, it is crucial to assess the accuracy of the fault reconstruction performance after the fault

onset time. During the online operation, we use the regressors that are trained around the simulated

fault onset time. As the operation progresses after the fault onset time, where the process is kept

under normal condition thanks to the fault-tolerant mp-MPC, the regressor model continues to use

the online process data at every new sampling point. However, as the sampling time moves away

from the fault onset time, the process data characteristics can significantly change, which renders

the regressor inaccurate for fault estimation. Fault estimation may not be performed as accurate

as it is done near the fault onset time, which hinders the controller’s learning about the process

condition. This, in turn, may lead to insufficient control actions to recover the process back to the

normal condition. Note that the extended validity of the regressor accuracy heavily depends on the

amount of deviation of the process data characteristics. As a result, it is significant and necessary

to assess the time-sensitivity of the fault estimators and identify when we need new models for

accurate fault reconstruction. Furthermore, the limit of each regressor determines the targeted data

collection location for the next regression model training.

Tables 5.14 and 5.15 tabulate the extent of the validity of the time-speicifc fault detection clas-

sifiers and magnitude estimation regressors for two set of thresholds around the reactor temperature

set point being ± 0.5 and ± 0.75 K. The complete set of reactor temperature and water flow rate

profiles with ± 0.5 K threshold on the set point for each time-specific models are provided in the

Appendix B. In particular, we assess the extent of the validity of each time-specific model until

the next time-specific model territory (i.e. 100th h models are tested until 200th h etc.). The re-
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sults for the actuator fault case show that the models that are built at 200th and 300th h have been

sucessfully provided necessary control actions until the target process time being 300th and 400th

h respectively. Similarly, models built at 400th h have enabled satisfactory control actions until the

end of the operation. The results for the models built for 100th show that the models are valid on

average for the next 73.5 h and 75.4 h for ± 0.5 and 0.75 K thresholds around the reacture temper-

ature set point, respectively. This highlights that we need to have additional models for accurate

fault detection and magnitude estimation between 100th−200th h of the batch operation.

On the other hand, for the sensor fault case, we note that the models built for 200th and 400th

h are not valid for an extended process time when negative fault magnitudes are observed. On

average, the models are valid for another 1.3 and 1.5 h after fault is introduced in 200 and 400 h,

respectively when the reactor temperature deviation threshold is set to 0.5 K. When we increase

the threshold to 0.75 K around the set point, we observe that the models built at 200th can maintain

a smooth operation for its entire targeted operation range, which is the next 100 h, because the

latency in fault detection has caused a deviation that is higher than 0.5 but lower than 0.75 K.

However this does not apply to the models for 400th h. The threshold increase does not extend

the validity of 400th h models since the maximum deviation observed is as high as 2.1 K (Figure

A49). The reason behind the limited model validity for the two time-specific models at 200 and

400 h is due to the high fault detection latency. In other words, by the time we detect the fault

occuring at 200th and 400th h, the deviation from the reactor temperature set point already exceeds

the predetermined thresholds (Figure A33 - Figure A36 for 200th models and Figure A49 - Figure

A52 for 400th models). Ttherefore, required control actions are not provided by the controller as

it has not been notified with the existence and magnitude of the fault. In order to overcome this

problem, fault detection latency is required to be improved. This can be achieved by increasing the

frequency of the fault detection classifiers between 200 and 400 h of the batch operation.
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Table 5.14: Extent of time-specific fault detection and magnitude estimation model validity for
actuator fault

Fault Onset Time (h) Fault Magnitude Validity Limit for 0.5 K threshold (h) Validity Limit for 0.75 K threshold (h)

100 -2.5 143.2 146.6

100 -2 147.3 150.7

100 -1.5 151.2 155.0

100 1.5 199.4 200.0

100 2 200.0 200.0

100 2.5 200.0 200.0

200 -2.5 200.0 200.0

200 -2 300.0 300.0

200 -1.5 300.0 300.0

200 1.5 300.0 300.0

200 2 300.0 300.0

200 2.5 300.0 300.0

300 -2.5 400.0 400.0

300 -2 400.0 400.0

300 -1.5 400.0 400.0

300 1.5 400.0 400.0

300 2 400.0 400.0

300 2.5 400.0 400.0

400 -2.5 Through the end Through the end

400 -2 Through the end Through the end

400 -1.5 Through the end Through the end

400 1.5 Through the end Through the end

400 2 Through the end Through the end

400 2.5 Through the end Through the end
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Table 5.15: Extent of time-specific fault detection and magnitude estimation model validity for
sensor fault

Fault Onset Time (h) Fault Magnitude Validity Limit for 0.5 K threshold (h) Validity Limit for 0.75 K threshold (h)

100 -2.0 187.9 200.0

100 -1.5 187.4 200.0

100 -1.0 187.2 200.0

100 -0.5 187.2 200.0

100 0.5 187.6 200.0

100 1.0 187.6 200.0

100 1.5 187.6 200.0

100 2.0 187.4 200.0

200 -2.0 201.3 300.0

200 -1.5 201.3 300.0

200 -1.0 201.3 300.0

200 -0.5 201.3 300.0

200 0.5 300.0 300.0

200 1.0 300.0 300.0

200 1.5 300.0 300.0

200 2.0 300.0 300.0

300 -2.0 358.1 358.1

300 -1.5 356.4 356.4

300 -1.0 359.9 359.9

300 -0.5 358.0 358.0

300 0.5 369.9 369.9

300 1.0 360.5 360.5

300 1.5 360.4 360.4

300 2.0 363.1 363.1

400 -2.0 401.4 401.4

400 -1.5 401.4 401.4

400 -1.0 401.4 401.4

400 -0.5 401.5 401.5

400 0.5 Through the end Through the end

400 1.0 Through the end Through the end

400 1.5 Through the end Through the end

400 2.0 Through the end Through the end
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In order to provide a comparison between the two fault types, we provide the reactor tem-

perature and water flow rate profiles for 100 h models. Particularly, we display the profiles of

the simulations where we introduce actuator fault with −2.5 and +2.5 fault magnitude in Figures

5.9 and 5.10, respectively. Additionally, Figures 5.11 and 5.12 demonstrate the profiles of the

simulations where we introduce sensor fault with −2 and +2 fault magnitude. The profiles with

actuator fault show that once the regressor model validity expires with the altering dynamics of

the batch process, the correction in the faulty water flow rate disrupts and deteriorates. This leads

to a significant increase in the reactor temperature that leads to a possible system failure. On the

other hand, the early capture of the sensor fault leads to rapid and necessary changes in the water

flow rate which enables fast process recovery back to the normal condition. Of note, in order to

ensure smooth control actions, one needs to switch to the next valid model once the validity of the

previous model expires. This is necessary in order to capture dynamic process characteristics and

detect any possible faults. The presented simulation profiles with actuator and sensor faults prove

that the designed fault-tolerant mp-MPC provides smooth control actions succesfully.
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Figure 5.9: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 100 h, Fault Magnitude: -2.5.
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Figure 5.10: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 100 h, Fault Magnitude: +2.5.
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Figure 5.11: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 100 h, Fault Magnitude: -2.0.
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Figure 5.12: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 100 h, Fault Magnitude: +2.0.

Finally, we perform a sensitivity analysis with the time-specific fault detection and magnitude

estimation models built at 100th and 200th h in order to determine the perimeter of the model effec-

tiveness. To this end, we use the time-specific models for ± 30 h perimeter of their corresponding

process time. Particularly, the C-SVM model for fault detection and random forest model for the

fault magnitude estimation are utilized for every 5 h fault onsets between 70th and 130th h with

the models built at 100th h and between 170th and 230th h with the models built at 200th h (Figure
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5.13). We adopt the± 0.5 K threshold around the reactor temperature set point and only utilize the

extreme negative and positive fault magnitudes simulated in this work (-2.5 and +2.5 for actuator

and -2 and +2 for sensor fault) for the analysis. The results reveal that actuator fault models have

more limited range compared to sensor fault models. In particular, the models built at 100th have

successfully been used between 90− 100th h of the batch operation. The validity range for the

models built at 200th reaches to 15 and 20 h for negative and positive fault magnitudes, respec-

tively. On the other hand, the analysis yield that the models built at 100th and 200th h for sensor

fault have been able to perform required control actions for the analyzed 30 h perimeter except the

analysis performed with negative fault magnitude with models built at 200th h. This is again due

to the fact that by the time fault is detected the raise in the reactor temperature exceeds the allowed

region (Figure A33). When the deviation threshold is raised to ± 0.75 K, the time-specific models

are shown to be valid for the entire analyzed 30 h perimeter (Figure 5.14). This analysis is signifi-

cant to elucidate the effectiveness limit of the time-specific models which is required to determine

the model switching frequency during online monitoring. Overall, the results demonstrate the need

for additional models during 100-200 h of the operation if a strict deviation threshold (i.e. 0.5 K)

is preferred during the operation. Yet for 0.75 K devaition threshold, the presented time-specific

models have successfully provided satisfactory control actions under faulty condition.
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Figure 5.13: Sensitivity analysis of time-specific models built at 100th and 200th h for actuator and
sensor faults. The set point deviation threshold is ± 0.5 K. The green bars highlight that the model
is satisfactorily valid. The red bars belong to limited time model validity cases. Note that once a
red bar is assigned, the further hours are automatically assigned with red.
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Figure 5.14: Sensitivity analysis of time-specific models built at 100th and 200th h for actuator
and sensor faults. The set point deviation threshold is ± 0.75 K. The green bars highlight that the
model is satisfactorily valid. The red bars belong to limited time model validity cases. Note that
once a red bar is assigned, the further hours are automatically assigned with red.
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5.6 Conclusions

As the effect of smart manufacturing revolution propagates and influences the vision of numer-

ous industrial operations, development of fault-tolerant control system becomes one of the major

factors in achieving high process resilience. Traditional corrective maintenance strategies include

controller re-tuning which leads to longer process downtime that may adverse the end-product

quality and cause higher operation cost. This work proposes a novel parametric fault-tolerant con-

trol framework that enables rapid and accurate switches within the offline map of control actions

to eliminate process downtime, and maximize process reliability. This further enables attaining

higher product quality which leads to higher profit from the operation.

In this work, we present a novel active fault-tolerant strategy and corrective maintenance strat-

egy which benefits from multi-parametric programming and machine learning-based process mon-

itoring. Particularly, we have designed multi-parametric model predictive controller by following

the PAROC framework (182) and the s-FDD framework (Chapter 2). The s-FDD framework is

used to formulate the fault detection and reconstruction mechanism of the fault-tolerant system,

where the built classifiers provide the information on fault existence and regressors yield the fault

magnitude and direction estimation. The trained C-SVM models with the optimal feature subset

further enables the rapid diagnosis of the detected of fault. The average accuracy of the classifiers

is %98.44, and %97.70 for the actuator and sensor faults, respectively. Moreover, the average

R2 of the trained regressors is 0.999 and 0.958 for the actuator and sensor faults, respectively.

The presented approach formulates as a novel active fault-tolerant strategy in which an accurate

and robust fault detection and reconstruction mechanism is ensured via the s-FDD framework and

multi-parametric MPC enables rapid switches between fault-tolerant control actions. Finally, we

note that the design of the fault-tolerant mp-MPC can further enable the handling of simultaneous

faults as it includes the deviation in both process variables (i.e. reactor temperature and water flow

rate) as additional parameters.
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6. GROUPING OF COMPLEX SUBSTANCES FOR FACILITATED DECISION-MAKING

IN ENVIRONMENTAL HEALTH REGULATIONS

Climate change has become one of the major risk factors for chemical contamination events.

Therefore, precise and rapid examination of the complexity of the hazardous chemical exposures

is essential to identify the potential adverse health impacts, and subsequently to provide immediate

solutions and/or prevent further catastrophic events. At Texas A&M Superfund Research Program

(TAMU SRP), we aim to develop comprehensive tools and models for addressing exposure to

unknown chemical mixtures, and accordingly design solutions for the community during environ-

mental emergency-related contamination events (TAMU Superfund Research Center, 2017). In

this work, we present two applications where data analysis, modeling and dimensionality reduc-

tion techniques guide experimental design and decision-making in biomedical and environmental

areas.

Under TAMU SRP, we aim to design a framework for optimal grouping of unknown chemi-

cal mixtures based on their multi-dimensional analytical chemistry and bioactivity profiles. De-

tailed characterization of the chemical composition of complex substances, such as products of

petroleum refining and environmental mixtures, is an unmet need in both exposure assessment and

manufacturing. The inherent complexity and variability in the composition of complex substances

obfuscate the choices for their detailed analytical characterization; however, it has been postulated

that evaluation of the degree of similarity among substances, rather than their exact chemical com-

position, is a sensible path towards decision-making. Grouping of sufficiently similar complex

substances is a challenge that can be addressed by more informative analytical methods and by

streamlined data analysis and visualization that enable communication of the complex data.

In this work, we develop a framework to optimally group complex substances based on their

analytical features. The framework includes both unsupervised and supervised analyses. Two

datasets of complex oil-derived substances were used. First dataset is from gas chromatography-

mass spectrometry (GC-MS) analysis of 20 Standard Reference Materials representing crude oils

and oil refining products. Second dataset constitutes of 15 samples of various gas oils that have

been analyzed using three analytical techniques: GC-MS, GC×GC-flame ionization detection
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(FID), and ion mobility spectrometry-mass spectrometry (IM-MS). We have tested hierarchical

clustering using the Pearson correlation as a similarity metric for unsupervised analysis, and

built classification models using the Random Forest algorithm for supervised analysis. We also

tested the effects of dimensionality reduction for the input data sets by selecting the most informa-

tive features. We present quantitative comparative assessment of clustering-based groupings via

Fowlkes–Mallows index, and report classification model accuracies in predicting the group of an

unknown complex substance. We demonstrate the effect of (i) different grouping methodologies,

(ii) data size, and (iii) dimensionality reduction on the grouping quality, and (iv) different analytical

techniques on the characterization of the complex substances. While the complexity and variabil-

ity in chemical composition are an inherent nature of complex substances, this work demonstrates

how the choices of the data analysis and visualization methods can impact the communication of

their characteristics to delineate sufficient similarity.

The optimal grouping information is then expected to be used in determination of optimal en-

terosobent material design for different group of complex substances. The environmental chemical

contaminants can easily get mobilized, subsequently contaminate soil, and threaten the safety of

the municipal water and food supply during environmental emergencies. In order to minimize the

adverse health effects of chemical exposures, Texas A&M Superfund Research Program aims to

identify and develop novel broad-acting, high-capacity sorbents, enterosorbents, which can be im-

plemented in diets to reduce the bioavailability of chemical mixtures. Therefore, it is essential to

interpret the optimal grouping information of complex substances so that the optimal enterosorbent

material design can be selected for further mitigation of adverse environmental health impacts.

6.1 Materials and Methods

6.1.1 Materials

In this study, we use two different sets of benchmark analytical chemistry data of: (i) 3 repli-

cates of 20 Standard Reference Materials (SRM) 6.1, and (ii) several recent examples of UVCBs,

which are supplied by the European Petroleum Refiners Association AISBL, Concawe division

(Brussels, Belgium) and thus referred to as Concawe samples from thereon 6.2. Specifically, SRMs

are petroleum-related Certified Reference Materials and provided by the National Institute of Stan-

dards and Technology (NIST) (2). In contrast, Concawe samples are obtained from three separate
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refinement processes, and categorized as straight run gas oils (SRGOs), other gas oils (OGOs),

and vacuum and hydro-treated gas oils (VHGOs). Polycyclic-aromatic hydrocarbon (PAH), sat-

urated hydrocarbon, and crude oil standards were provided by the Texas A&M Geochemical and

Environmental Research Group (GERG) (College Station, TX).

Table 6.1: Standard Reference Materials (SRM) samples from de Carvalho Rocha, Schantz (2).

SRM 2722 Crude Oil Crude Oil Crude Oil (Heavy-Sweet) petro203; petro204; petro205

SRM 2721 Crude Oil Crude Oil Crude Oil (Light-Sour) petro274; petro275; petro276

SRM 2779 Crude Oil Crude Oil Gulf of Mexico Crude Oil petro270; petro271; petro272

SRM 1615 Heavy Refinery Product Gas Oil Gas Oil petro207; petro208; petro209

SRM 1848 Heavy Refinery Product Motor Oil Motor Oil Additive petro218; petro219; petro220

SRM 2770 Heavy Refinery Product RFO S in Residual Fuel Oil petro234; petro235; petro236

SRM 1623c Heavy Refinery Product RFO S in Residual Fuel Oil petro238; petro239; petro240

SRM 1620c Heavy Refinery Product RFO S in Residual Fuel Oil petro278; petro279; petro280

SRM 2773 Light Refinery Product Biodiesel Biodiesel (Animal-based) petro230; petro231; petro232

SRM 2772 Light Refinery Product Biodiesel Biodiesel (Soy-based) petro266; petro267; petro268

SRM 2723b Light Refinery Product Diesel Low S Diesel petro226; petro227; petro228

SRM 1624d Light Refinery Product Diesel Sulfur in Diesel petro214; petro215; petro216

SRM 2771 Light Refinery Product Diesel Zero S Diesel petro222; petro223; petro224

Gasoline Light Refinery Product Gasoline 87 Octane Gasoline petro258; petro259; petro260

SRM 2299 Light Refinery Product Gasoline S in gasoline petro210; petro211; petro212

JP8 Light Refinery Product Jet Fuel Jet Fuel petro246; petro247; petro248

JP5 Light Refinery Product Jet Fuel Jet Fuel petro250; petro251; petro252

Jet Fuel A Light Refinery Product Jet Fuel Jet Fuel petro254; petro255; petro256

SRM 1617b Light Refinery Product Kerosene S in Kerosene (High Level) petro242; petro243; petro244

SRM 1616b Light Refinery Product Kerosene S in Kerosene (Low Level) petro262; petro263; petro264
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Table 6.2: Concawe samples.

Sample ID Manufacturing Class CAS RN CAS Name

CON07 OGO 64742-46-7 Distillates (petroleum), hydrotreated middle

CON09 OGO 64742-80-9 Distillates (petroleum), hydro-desulfurized middle

CON01 SRGO 64741-43-1 Gas oils (petroleum), straight-run

CON05 SRGO 64741-43-1 Gas oils (petroleum), straight-run

CON02 SRGO 68814-87-9 Distillates (petroleum), full-range straight-run middle

CON03 SRGO 68814-87-9 Distillates (petroleum), full-range straight-run middle

CON04 SRGO 68915-96-8 Distillates (petroleum), heavy straight-run

CON12 VHGO 64741-49-7 Condensates (petroleum), vacuum tower

CON13 VHGO 64741-58-8 Gas oils (petroleum), light vacuum

CON14 VHGO 64741-77-1 Distillates (petroleum), light hydrocracked

CON15 VHGO 64742-87-6 Gas oils (petroleum), hydrodesulfurized light vacuum

CON16 VHGO 68334-30-5 Fuels, diesel

CON17 VHGO 68476-30-2 Fuel oil, no. 2

CON18 VHGO 68476-31-3 Fuel oil, no. 4

CON20 VHGO 92045-24-4 Gas oils (petroleum), hydrotreated light vacuum

6.1.2 Chemical Fingerprinting and Experimental Data Processing

The analytical chemistry profile of SRMs is derived via Gas Chromatography-Mass Spectrom-

etry (GC-MS) (2), whereas the chemical fingerprint of Concawe substances is assessed with 3 dif-

ferent analytical chemistry techniques: (i) comprehensive two-dimensional gas chromatography

with flame ionization detector (GCxGC-FID), (ii) GC-MS, and (iii) Ion Mobility Mass Spectrom-

etry (IM-MS). The detailed experimental procedure is provided in Ferguson (194).

Table 6.3: List of selected analytes from the GC-MS data of SRM samples for grouping analysis.

Selected Analytes Quantitation Ion

Decalin 138

C1-decalins 152

C2-decalins 166

C3-decalins 180
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Table 6.3 – Continued

Selected Analytes Quantitation Ion

Naphthalene 128

C1-naphthalenes 142

C2-naphthalenes 156

C3-naphthalenes 170

C4-naphthalenes 184

Benzothiophene 134

C1-benzothiophenes 148

C2-benzothiophenes 162

C3-benzothiophenes 176

Biphenyl 154

Acenaphthylene 152

Acenaphthene 154

Dibenzofuran 168

Fluorene 166

C1-fluorenes 180

C2-fluorenes 194

C3-fluorenes 208

Dibenzothiophene 184

C1-dibenzothiophenes 198

C2-dibenzothiophenes 212

C3-dibenzothiophenes 226

C4-dibenzothiophenes 240

Phenanthrene 178

Anthracene 178

C1-phenanthrene/anthracenes 192

C2-phenanthrene/anthracenes 206

C3-phenanthrene/anthracenes 220

C4-phenanthrene/anthracenes 234
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Table 6.3 – Continued

Selected Analytes Quantitation Ion

Naphthobenzothiophene 234

C1-naphthobenzothiophenes 248

C2-naphthobenzothiophenes 262

C3-naphthobenzothiophenes 276

Fluoranthene 202

Pyrene 202

C1-fluoranthene/pyrenes 216

C2-fluoranthene/pyrenes 230

C3-fluoranthene/pyrenes 244

Benz(a)anthracene 228

Chrysene 228

C1-chrysenes/benzo(a)anthracenes 242

C2-chrysenes/benzo(a)anthracenes 256

C3-chrysenes/benzo(a)anthracenes 270

C4-chrysenes/benzo(a)anthracenes 284

Benzo(b)fluoranthene 252

Benzo(k)fluoranthene 252

Benzo(e)pyrene 252

Benzo(a)pyrene 252

Indeno(1,2,3-cd)pyrene 276

Dibenzo(a,h)anthracene 278

Benzo(g,h,i)perylene 276

Perylene 252

The adopted GC-MS data from de Carvalho Rocha, Schantz (2) is a three-dimensional array,

which consists of 23,248 elution times, and the 301 masses in the mass spectra for 60 Standard

Reference Materials (triplicate runs of 20 samples). In order to reduce the computational com-
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plexity of the grouping analysis and the noise in the GC-MS data, we have selected 55 out of 301

m/z values (i.e. analytes) that correspond to Polycyclic Aromatic Hydrocarbons (PAHs) 6.3 and

summed over the entire elution time dimension. This yields a two-dimensional (60 X 55) array,

which is then used for grouping analysis.

Raw GCxGC-FID, GC-MS, and IM-MS data files are imported into PetroOrg software (195),

where quantitative features are extracted. Analyzed abundance values are normalized relative to the

total abundance detected for each sample. Compounds are organized by their molecular class and

carbon number range, producing a two dimensional data matrix for each sample (194). Detected

compounds vary across instruments due to the diversity of utilized analytical methods and their

capabilities of the instrument such as resolution and sensitivity. In particular, GC-MS has analyzed

8 separate molecular classes, that is comprised of n-alkanes and polycyclic aromatic compounds,

across carbon number ranges of 4 to 34+, producing a total of 248 compositional data points.

GCxGC-FID has analyzed 10 separate molecular classes, producing 310 compositional data points.

IM-MS has analyzed 13 molecular classes, producing 403 compositional data points. Notably,

IM-MS’s ionization method, atmospheric photo ionization (APPI), has expanded aromatic and

heteroatom detection capability, but significantly reduced the n-alkane profile compared to the

other instruments (146).

6.1.3 Data Analysis and Visualization Framework

We use two analysis workflows for grouping complex substances (Figure 6.2). In the unsuper-

vised analysis, complex substances are grouped based on the similarity between the characteristics

(i.e. analytical chemistry profiles) of the samples (complex substances) without prior knowledge

of sample labels or categories. To evaluate the outcome of such grouping, we include a quan-

titative metric into the unsupervised analysis workflow to compare the outcome to a previously

reported categorization of the samples (i.e. manufacturing classes). The details of the proposed

unsupervised analysis workflow is described below. In the supervised analysis, known catego-

rizations/classes of the samples are used to build classification models, which can then be used to

predict the class for an unknown substance. This idea is based on the read-across, where similar

complex substances that are grouped together according to their physical/chemical properties may

have similar effects (140). Independent of which workflow (unsupervised or supervised analy-
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sis), the initial common step is data pre-processing, which is crucial to obtain robust and reliable

grouping models.

6.1.3.1 Data Pre-processing

Data pre-processing steps include (i) data formatting, (ii) missing data handling, and (iii) data

cleaning and scaling. Following these steps ensure data quality in order to build robust and reliable

models. The application of these steps to each specific data sets is provided below.

Unfolding three-dimensional data sets into two-dimensional arrays: This step is required when

we have unprocessed, three-dimensional, analytical chemistry data (I x J x K). Unfolding can be

performed three-ways by selecting one of the three dimensions as row values and merging the other

two dimension as columns (i.e. (I x JK), or (J x IK) or (K x IJ)). The GC-MS data of SRMs, after

the experimental data processing step described in Section 2.2, is already two-dimensional, hence

unfolding is not performed. Therefore, we only perform this step on the raw GCxGC-FID, GC-

MS, and IM-MS data sets from Concawe samples. In particular, row values belong to the complex

substances, and columns are the analytical features (measurements), which are the combination

of carbon number and molecular class composition. This yields an array size of 15 X 310 for

GCxGC-FID, 15 X 248 for GC-MS, and 15 X 403 for IM-MS data sets of the Concawe samples.

Missing data handling: The two-dimensional analytical chemistry data sets are then examined

to detect any missing points. The traditional missing data handling methods include replacement of

the specific point or complete deletion of the corresponding column/row of the missing data point.

Particularly, the missing values can be replaced with (i) zeros, (ii) mean of column or row values, or

(iii) median of column or row values. There are also advanced missing data handling methods that

impute the missing values using machine learning techniques such as K-nearest neighbor (KNN)

(196). Of note, when the data set is small, replacement methods are preferred over deletion meth-

ods. In this study, the missing data points within analytical chemistry profiles indicate undetected

chemical composition for specific molecular class. Therefore, we have replaced the corresponding

missing fields with zeros.

Data cleaning (removing outliers): The data sets are cleaned by removing the columns (carbon

number – molecular class compositions) if their standard deviations is 0 prior to each data set

column-wise scaling step. The threshold is raised 0.05 due to the smaller sample size of Concawe
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data set. This reduces the number of features in GCxGC-FID (from 310 to 192), GC-MS (from

248 to 62), and IM-MS data (from 403 to 68) of Concawe samples. This step does not eliminate

any measurements from 60 x 55 array of SRM samples.

Scaling of data sets: Final step prior to data analysis is the scaling of the data sets. The

clean two-dimensional arrays are scaled by using row-wise min-max scaling, where each row

corresponds to a new sample and each column is a new analytical feature. Each row value is scaled

by subtracting the minimum value of that row and then dividing it to the range of the corresponding

row. Row-wise scaling is not performed on Concawe data sets, where the data was already pre-

processed within PetroOrg software (195) and row-wise scaled. Prior to the classification analysis,

we have also performed column-wise min-max scaling on the row-wise scaled data arrays. This

additional scaling step is required and crucial in order to ensure that each measurement is equally

contributing during classification model training and prevent any implicit bias towards a carbon

number-molecular class measurement.

6.1.3.2 Unsupervised Analysis Workflow

Unsupervised analysis examines the patterns of data to draw conclusions for the grouping

structure of the samples without the reference categorization information. The two most preva-

lent unsupervised analysis techniques used in the literature are the clustering analysis (197), and

the Self-Organizing Maps (SOM) (198), where the former is utilized in the proposed unsuper-

vised analysis workflow (Figure 6.2 - left). The detailed step-by-step description of this workflow

is given below. The R Markdown documentation of this analysis through SRM samples is also

provided (199).

Similarity calculation for the clustering analysis: The first step in clustering analysis is to

calculate a similarity or dissimilarity matrix. The dimensions of this matrix is pp, where p is the

number of samples. In this work, we calculate the Pearson correlation of analytical chemistry data

to understand the similarity patterns between the samples of complex substances. Other correlation

metrics include Kendall’s τ or Spearman’s ρ rank correlation coefficients (200), which can also be

used in this analysis as an alternative to Pearson correlation.

Dimensionality reduction via Singular Value Decomposition: In this work, we use SVD to

perform dimensionality reduction prior to clustering analysis in order to obtain grouping results
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from reduced data sets. Singular Value Decomposition (SVD) is a matrix factorization tech-

nique that decomposes a matrix X into the product of three matrices, X =UDV T , in such a

way that U and V are orthonormal and D is a diagonal matrix with positive real elements (i.e.

D = diag(d1, . . . ,dk,0, . . . ,0),d1, . . . ,dk > 0, k = rank(D) = rank(X)) (201; 202). SVD is typi-

cally used as a dimensionality reduction methodology and identifies a lower rank matrix B with

rank k that best approximates X, where k = rank(B)≤ rank(X). Hence, SVD allows us to identify

the best k-dimensional subspace with respect to the number of points of an p×n data matrix with

p-points and n-dimensions, while sustaining the variance of the original data matrix.

In this step, we use the original data sets of SRM and Concawe samples and perform a different

scaling other than the row-wise min-max scaling described in the step 4 of data-preprocessing

procedure, which is required for the SVD analysis. First, the not-scaled SRM and Concawe data

sets are scaled and centered in a row-wise fashion, using the mean and the standard deviation

of each row (i.e. z-score normalization). The scaled and centered data is later decomposed using

SVD into its singular values (provided as the diagonal matrix D) and singular vectors (left and right

singular vectors are given by U and V , respectively). Here, the goal is to reduce the dimensionality

of the original analytical data sets while retaining the observed variance. In this work, we have used

a variance threshold of 85% to select the number of singular values and vectors for dimensionality

reduction. The reduced data is then used as an input to the similarity calculation as described

above. SVD is performed on the original analytical chemistry data sets via R statistical software’s

svd function of the base package.

Under the unsupervised workflow, we generate two sets of grouping results: one with the

original data sets, and one with reduced data sets, where the goal is to understand the effect of

dimensionality reduction on the grouping quality. Original results are obtained by following steps

1 and 3 to 5, whereas reduced set of results are generated by following all steps.

Hierarchical clustering: In this work, we adopt hierarchical clustering, where we obtain the fi-

nal grouping information of the samples, as well as the grouping hierarchy. The grouping hierarchy

is then visually represented by trees known as “dendrograms”. Specifically, we adopt the average

linkage technique during hierarchical clustering, which is the most commonly used linkage tech-

nique. Average linkage merges the clusters of samples based on the average distance between two

clusters. Other linkage techniques include Ward’s method and complete linkage, which can also be
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used in this analysis as an alternative to average linkage. This analysis is performed in R statistical

software by using the hclust function of the stats package.

Quantification of grouping quality via the Fowlkes-Mallows index: Quantitative comparative

assessment of clustering results (i.e. grouping dendrograms) is achieved with the incorporation

of the Fowlkes-Mallows index (203). Here, we compare the clustering structures based on the

analytical chemistry profiles with the known manufacturing-based categorization of the complex

substances. F-M index measures the similarity between two hierarchical clustering structures by

cutting both dendrograms into specified number of clusters, and counting the number of matching

entries in each cluster. We create two sets of hierarchical clustering dendrograms for both the

Concawe and SRM samples. First dendrogram is generated by calculating the Euclidean distance

between the indices of a reference categorization. Second is by using the row-wise correlation

matrices of the Concawe and SRM samples. Next, the dendrograms are cut into the known number

of manufacturing classes (i.e. 3 for Concawe, and 3, 9, or 16 for SRM samples) to assess the

number of the common complex substances in the obtained clusters. This number is then used to

calculate the F-M index.

F-M index is the geometric mean of precision and recall, two machine learning metrics that are

widely used in data-driven modeling (197). It is mathematically expressed in the equation shown

below.

FM =

√
T P

T P+FP
× T P

T P+FN
(6.1)

where T P is True Positive, FP is False Positive, and FN is False Negative. TP indicates the number

of complex substances that are grouped under category A in terms of manufacturing category and

are also grouped under category A in terms of analytical chemistry profile. In contrast, FP and FN

yield the number of complex substances that are grouped differently. F-M index varies between 0

and 1, where 0 indicates the absence of any similarity, and 1 indicates the identicalness between

clustering structures (i.e. 100% similarity between reference categorization and clustering results).

More details on the F-M index and other metrics for clustering comparison can be found in Wagner

& Wagner (204). The F-M index is calculated via the FM_index_R function of the dendextend

package in R statistical software.
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Null Fowlkes-Mallows index calculation for statistical significance: To test the statistical sig-

nificance of the grouping results, we also calculate the F-M index under null hypothesis of no re-

lation between two clustering dendrograms. In this work, null F-M index calculation is performed

by shuffling the group labels of samples using 1000 permutations. Next, the probability value

(p-value) of the original, non-permuted, results with respect to 1000 permutations is calculated to

quantify the statistical significance (p− value≤ 0.05). The null F-M index calculation with 1000

permutations of the group labels is performed via the Bk_permutations of the dendextend package

in R statistical software.

6.1.3.3 Supervised Analysis Workflow

Supervised learning problems are classified under two major categories depending on the na-

ture of the predicted output: (i) regression, where the models are built to predict a continuous

output, and (ii) classification problems, where the predicted output is discrete, such as finding the

optimal group of an unknown sample. Both type of learning problems are ubiquitously used in

various engineering and sciences (36; 161; 160; 192; 193; 205). Here, we are interested in clas-

sification type of problems, where predictive models are trained and validated by using a data set

with known manufacturing-based categorization. Among the wide range of methodologies used

for classification problems, the most prevalent and popular algorithms include logistic regression

(206), and Naïve Bayes algorithm for linear classifiers. Decision Trees, Random Forest (191), Sup-

port Vector Machines (152; 154), and deep learning algorithms are popular examples of nonlinear

classifiers. In this work, we adopt the Random Forest algorithm, which is an advanced ensemble

learning technique that can derive nonlinear relationships among data samples to build predictive

classifiers for grouping complex substances. The models are evaluated by their classification ac-

curacy, and the results are visualized via ToxPi representation (207) for enhanced interpretation

(Figure 6.2 - right). The steps of the proposed supervised analysis workflow are provided below

and applied to both Concawe and SRM data sets. The documentation of the analysis through SRM

samples is created using R Markdown (199).

Parameter tuning for classification models: Parameter tuning is the initial step in classification

analysis to maximize the model performance regardless of the selected algorithm. In Random

Forest algorithm, the number of analytical features is tuned via grid search using the trainControl
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function of the caret package in R statistical software, where each model training is performed

using leave-one-out cross validation with 500 decision trees.

Modeling Random Forest classifier and ranking the analytical features: The final Random

Forest classifier is then built on the whole data set with 500 decision trees, where each tree is mod-

eled by using the optimal number of analytical features. In addition, the ranking of the analytical

features is obtained by calculating the mean decrease in classification accuracy among the 500

decision trees. This analysis is done via the randomForest function of the randomForest package.

Quantitative and visual communication of the results: In order to evaluate the classification

model accuracy, initial step is to extract the confusion matrix of the model. Confusion matrix

reports the number of true and false predicted samples for each class, defined as a c× c matrix,

where c is the number of classes. Next, the classification accuracy is calculated, which is the

percentage of true predicted number of samples from all classes with respect to the total number of

samples. In this work, the classification accuracy serves as the quantitative metric for evaluating

the grouping of complex substances.

In addition to the quantification of the classification models, we produce Toxicological Prior-

itization Index (ToxPi) profiles of complex substances by using the ranked analytical feature list

from the classification analysis (207; 208; 209). By integrating multiple data sources into overall,

weight-of-evidence Toxicological Priority Index (ToxPi) score, and transforming them into clear

visual rankings, ToxPi provides an effective way for visual communication of high-dimensional

data sets. Particularly in this work, we integrate top 10 most informative chromatographic features

that are extracted during classification modeling step, to obtain the ToxPi visualization of complex

substances.

6.2 Results and Discussion

6.2.1 Quantifying the Unsupervised Analysis

A recent study (2) has shown that GC-MS combined with unsupervised chemometric analysis

can be used to differentiate among complex substances and mixtures. The authors have concluded

that the SOM non-linear method proved to be effective in generating a separation model; however,

the model is more difficult to interpret than the linear models such as MPCA and PARAFAC.

The unified distance matrix of the SOM analysis of the 20 SRMs 6.1 from de Carvalho Rocha,
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Schantz (2) is shown in Figure 6.1. It is clear that the replicates of the same samples are clustering

well (15 of 20 samples have all 3 replicates in close proximity to each other) in the SOM analysis

(Figure 6.1). However, it is less obvious that the SOM analysis can discriminate among the broader

categories of samples (3 classes: crude oils, heavy and light refinery products; 9 classes: crude oils,

residual fuel oils, gas oil, motor oil, biodiesels, diesels, gasolines, kerosenes and jet fuels). Only

jet fuels and gasoline samples of light refinery products are clustered close to each other (Figure

6.1).

Figure 6.1: SOM recreated from de Carvalho Rocha, Schantz (2).
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Figure 6.2: Data processing and visualization workflow.

We have used the same data as in de Carvalho Rocha, Schantz (2) to perform unsupervised clus-

tering analysis of the samples (Figure 6.3). The results show that all replicates of 20 substances

are clustered tightly, which indicates high reproducibility of the analytical data from GC-MS anal-

ysis of these complex substances. However, when 3 or 9 manufacturing classes are considered,

the samples are not clustered as tightly as they do in the16 manufacturing classes. For 9 class

grouping, replicate samples of gas oils, biodiesels, and motor oils are grouped together in distinct

clusters. In 3 class grouping results, only crude oil samples are grouped under one of the three

clusters. Although, most of the light refinery products (one gasoline, three diesel, two jet fuels,

and two kerosene samples) are clustered together in one of the three groups, one gasoline and two

biodiesel samples fall into separate clusters (Figure 6.3).
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Figure 6.3: Dendrograms for the SRM samples clustering from the reduced data set into 3, 9 and
16 categories.
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Next, we aim to quantitatively compare the outcomes of SOM and clustering analyses to the

known class identity of these samples. We use the Fowlkes-Mallows index to provide a quantitative

metric for such comparisons (203). Although there is no direct method to assess the grouping

quality using the SOM analysis, we have extracted the x and y coordinates of each SRM sample

on the SOM map (Figure 6.1) and used the Euclidean distance-based similarity matrix to attain

a Fowlkes-Mallows index for the SOM-based grouping analysis. The Fowlkes-Mallows index is

also used to assess the effect of dimensionality reduction on the outcomes of clustering analyses.

Figure 6.4: Fowlkes-Mallows index for the outcomes of clustering of SRM samples.

* indicates that the results are statistically significant.

Figure 6.4 displays the Fowlkes-Mallows indices for SOM-based analysis (called “benchmark”

in the figure legend), as well as the full data set of 55 GC-MS features and a reduced set of 7 fea-

tures after SVD. The p-values of each class are also reported which summarizes the statistical

significance of the results (Figure 6.4). The p-values obtained for 3-class grouping are higher than

0.05 for the SOM-based and original data set of SRM samples, which make these results statis-

tically insignificant. The subtle differences that differentiate these materials into 16 categories

present themselves as noise when grouped under 3 categories. Hence, the random permutation of

these samples lead to higher F-M indices by chance. In contrast, the p-values for 3-class grouping
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with the reduced data sets are lower than 0.05. This indicates that dimensionality reduction elimi-

nates the redundant analytical features from the data sets which further reduces the noise, leading

to statistically significant results with improved F-M index.

Based on 9 and 16-class groupings of SRMs, one can clearly observe that hierarchical clus-

tering outperforms SOM analysis. The F-M index increases from 0.33 to 0.44, and 0.42 to 0.57

for 9 and 16-class groupings, respectively. Although the dimensionality reduction does not further

increase the F-M index for 9 and 16 class groupings, it also does not hinder the grouping quality

and provides equally good results with lower number features (7 out of 55).

6.2.2 Importance of Data Sample Size During the Supervised Analysis

Here, we benefit from the read-across hypothesis of “complex substances that group similarly

based on manufacturing may impact the environmental health similarly” and move from unsuper-

vised to supervised analysis. To this end, we are building classification models using analytical

chemistry profiles of samples. For each of the 20 SRM substances, GC-MS was run three times,

which has triplicated the final GC-MS data set size in terms of the number of samples. Thus, an

interesting question that we can examine is that how many sample replicates would be adequate to

develop data-driven models that can precisely differentiate class patterns.

Figures 6.5 and 6.6 demonstrate the confusion matrices obtained from the trained Random For-

est classifiers. These matrices report known (“true”) and predicted (through the trained Random

Forest classifier) classes for each SRM sample. The results show that we achieve 100% classifica-

tion accuracy when we use all replicates provided in Table 6.1 and Figure 6.5. The classification

accuracy decreases to 65%, 35%, and 15% for 3, 9, and 16-class groupings if we only use 1 out

3 replicates (Table 6.1, Figure 6.6). The main reason for this is that the number of samples per

group decreases as the number of classes increases. In particular, 14 out of 16 classes are repre-

sented with only a single sample during model training for the 16-class predictions (Figure 6.6C).

Similarly, 5 out 9 classes are represented with only a single sample during model training for the 9-

class predictions (Figure 6.6B). This decrease in the amount of information per class makes model

learning significantly challenging (Table 6.4). Hence, we can conclude that single sample per class

does not provide adequate information to capture the individual class characteristics. Moreover,

the high-dimensional nature of the GC-MS data with 55 features further hinders the classification
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accuracy of SRM materials when using only one sample per category. Yet, the prediction accura-

cies of the classifiers for each analysis are higher than the random prediction proving that they are

statistical significant. This is validated through p-value calculations by using the original and 1000

random permutation grouping results (6.4). The confusion matrices generated from the average

of 1000 permutations of SRM samples are provided in Figures 6.7 and 6.8 for 3 and 1 replicates,

respectively.
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Figure 6.5: Confusion matrices for SRM sample classification with 3 replicates.

(A) 3-class, (B) 9-class, and (C) 16-class grouping.
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Figure 6.6: Confusion matrices for SRM sample classification with 1 replicate.

(A) 3-class, (B) 9-class, and (C) 16-class grouping.

Similar trend is observed with Concawe samples, where we build classification models using

only 1 replicate of each sample (Table 6.5, Figure 6.9). The results demonstrate that classification

model accuracies for the Concawe samples are not satisfactory, where the only statistically sig-

nificant result is obtained from IM-MS data with 60% classification accuracy. Therefore, in order

to build an accurate classification model, we need higher number of experimental replicates for

each particular complex substance to capture and learn the nonlinear characteristics of their chem-
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ical complexity. Although clustering can group the samples accurately independent of the sample

size, given that measurements are significantly distinct from each other, data sample size is essen-

tial during the classification model building. Nonetheless, each experimental replicate leads to an

additional cost and requires extra time, and resources. Thus, minimizing the number of sample

replicates while achieving accurate predictive classifiers is of utmost importance. In this work, we

have observed that, given high quality analytical chemistry data, 3 replicates suffice to build accu-

rate and robust classifiers. It is important to note that the sample size is critical during the model

training phase, where the models benefit from higher number of samples. However, this is not the

case for the testing phase where a single experiment is sufficient to predict its class information of

an unknown complex substance.
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Figure 6.7: Average confusion matrices of 1000 permutations for SRM sample classification.

(A) 3-class grouping, (B) 9-class grouping, and (C) 16-class grouping with 3 replicates.
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Figure 6.8: Average confusion matrices of 1000 permutations for SRM sample classification.

(A) 3-class grouping, (B) 9-class grouping, and (C) 16-class grouping with 1 replicate.
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Figure 6.9: Original and average confusion matrices of 1000 permutations for Concawe sample
classification.

(A) GC-MS, (B) GCxGC-FID, and (C) IM-MS data.

6.2.3 Facilitation of Data Interpretation via ToxPi Representation

In addition to developing highly accurate classifier models to predict group/class information

of an unknown complex substance, we also report the top 10 most informative features that dis-

tinctively identify the class patterns of SRM materials (Table 6.6). These informative features help

us to facilitate the visual communication of the findings via ToxPi visualization as shown in Figure

6.10.

The ToxPi profiles of SRM samples successfully demonstrate the distinct nature of gas/motor
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oils, biodiesels, and crude oils (with the exception of SRM 2722) with respect to the rest of

SRMs. Specifically for crude oils, all of the top 10 chromatographic feature help to identify

crude oils among SRMs. Whereas for gas/motor oils, the profiles reveal the importance of C2-

napthobenzothiophenes for further identification between them. Moreover, the ToxPi profiles

show that C3-phenanthrene/anthracenes, C2-naphthobenzothiophenes, and benzothiophene mea-

surements are the characteristics of biodiesel samples and can differentiate them from the rest of

the SRMs. We also observe the high similarity among a subgroup of light refinery products that

includes jet fuels, kerosenes and gasolines, where the weight of benzothiophene remains to be the

unique characteristic among all of them. This proves that the GC-MS data could not provide clear

distinction among these substances. Finally, we note the major difference between diesel samples.

Unlike the other two diesel samples, SRM 2723b and SRM 2771, most of the top 10 selected

analytical features are significant for identifying SRM 1624d. In particular, dibenzothiophene,

C1-dibenzothiophenes and C4-naphthalenes are the distinct measurements that differentiate SRM

1624d from the rest of the SRMs the most. Furthermore, the PCA of the extracted ToxPi scores

helps us to depict the distinction between the complex substances by using the most informative

analytical feature information (Figure 6.11).
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Figure 6.10: ToxPi visualization of SRM samples using top 10 most informative chromatographic
features.
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Figure 6.11: PCA of ToxPi scores.
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6.2.4 Comparison of GCxGC-FID, GC-MS, and IM-MS Techniques via Fowlkes-Mallows

Index

In addition to quantifying the grouping quality and class information, it is imperative to in-

vestigate the appropriate analytical chemistry technique that produces the optimal grouping for

substances with complex chemistries. The majority of regulatory and standardized chemical com-

positional analysis protocols utilize GC-MS as the instrument of choice to fingerprint UVCB sub-

stances. Generally, a GC-MS instrument employs a capillary column, heated by an oven at a

predetermined temperature gradient in order to separate compounds by boiling point and polarity.

The eluting compounds are then ionized and analyzed by a detector. Since molecules of specific

molecular classes maintain distinct mass ion fracture patterns, a GC-MS is able to differentiate ion

signals from multiple compounds. However, the column peak capacity of a GC-MS can become

overloaded, causing a baseline hump termed as an unresolved complex mixture (UCM). In such

cases, the column no longer has the resolving power to separate all the compounds within the sam-

ple, which is typically observed in petroleum substance analysis, since an individual petroleum

substance contains more than 10,000 different chemical compounds. This may limit the amount

of molecules that can be effectively differentiated by the instrument, and hinder a robust chemical

fingerprint production.

However, in recent years, instrument resolution power and sensitivity has increased, allowing

for more detailed characterization of complex substances. The incorporation of two gas chro-

matography columns with different selectivity (GCxGC-FID) increases the peak capacity of the

instrument and allows for improved separation of molecules that form a UCM under GC-MS anal-

ysis. Moreover, ion mobility mass spectrometry (IM-MS) incorporates unique ionization methods,

electron spray (ESI) or atmospheric photo ionization (APPI), along with separation techniques

based on size, shape, and charge of the ionized molecule. This further increases analytical sensitiv-

ity and enables improved chemical fingerprinting. Although these two techniques further enhance

the ability to characterize complex substances like petroleum products, their application is still

novel and not widely studied within the scientific, regulatory, or industrial communities (2; 210).

Despite the technological advances that are introduced by GCxGC-FID, and IM-MS techniques

over GC-MS, there is no evidence examining any potential improvements on complex substance
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grouping. Therefore, we utilize the Fowlkes-Mallows index to provide comparative assessment

between these three analytical chemistry techniques using the Concawe samples.

Figure 6.12 demonstrates that GCxGC-FID and GC-MS yield statistically insignificant F-M

indices due to the limited number of sample size. IM-MS is the only one yielding statistically

significant results, only after dimensionality reduction, which provides the most useful informa-

tion to reveal the class differences among the Concawe samples. Their corresponding clustering

dendrograms are provided in Figure 6.13. Specifically, the F-M index of the grouping of Concawe

samples with 8 features generated via the IM-MS technique is 0.49. Although we cannot draw

specific conclusions among GCxGC-FID and GC-MS, we can report that IM-MS performs supe-

rior than the other two techniques in terms of capturing the chemical characteristics of complex

substances.

Figure 6.12: F-M index for the outcomes of clustering of Concawe samples analyzed using 3
different techniques.

* indicates that the results are statistically significant.
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Figure 6.13: Dendrograms for Concawe samples clustering from the reduced data set analyzed
using 3 different techniques.

6.3 Conclusions

In this study, we establish a data-driven framework for optimal grouping complex chemical

substances based on their chemical characteristics, and providing quantitative and visual evalua-

tion to facilitate the interpretation of the complex chemical nature of substances/mixtures. The

designed framework consists of two analysis workflows with two different perspectives. In unsu-

pervised analysis workflow, we examine the grouping of the complex substances by using their
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chemical fingerprints derived from various analytical techniques, and quantitatively compare the

grouping hierarchy to a reference categorization through F-M index. Whereas, in supervised anal-

ysis workflow, we benefit from the “read-across” hypothesis, that is similar complex substances

that are grouped together based on their chemical structure (i.e. manufacturing category) are prone

to behave similarly in terms of environmental health risk assessment. Hence, we can train highly

accurate classification models by using the available information on categorization of known com-

plex substances. The generated models can then be used to predict the environmental health impact

of future unknown complex substances. The common highlight of both workflows is on the quan-

titative metrics, which immensely facilitates the comparative assessment of different parameters,

such as distinct analytical techniques, data set sizes, or different number of categorization of sam-

ples to elucidate the optimal grouping of complex substances. Additionally, we incorporate the

ToxPi representation of complex substances with the most informative analytical features to fur-

ther deliver insights from the developed data-driven classification models.

Our results have shown that in order to assess the statistical significance of grouping results,

it is highly important to permute category labels of complex substances and to calculate p-value

for the obtained results regardless of the selected workflow. In addition, the dimensionality reduc-

tion plays a key role in reducing the noise in the extracted high-dimensional analytical chemistry

profiles. Dimensionality reduction allows similar or higher grouping quality with significantly re-

duced number of measurements. The selection of the most informative features further improves

data interpretation significantly through advanced data visualization techniques, such as the ToxPi

representation. This further facilitates communication of the complex substance characteristics

with regulatory decision-makers.
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7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this dissertation, we have developed novel data-driven frameworks by advancing big data

analytics to solve challenging problems in process systems engineering. We have established the

s-FDD framework for simultaneous fault detection and diagnosis and extended it to enable si-

multaneous fault identification and diagnosis. The framework is based on developing nonlinear

SVM models while performing model-informed feature selection. The iterative model building

enables to find the optimal model that yields the highest testing accuracy with the smallest set of

informative features. As the dimensionality of the process data grows with the expedited data col-

lection technologies, the importance of dimensionality reduction techniques during model building

becomes more evident. Furthermore, the algorithm that the s-FDD framework follows enables si-

multaneous modeling and model-informed feature selection, where we are able to provide the ex-

plicit process variable measurements for fault diagnosis. While the most of the process monitoring

methodologies use feature extraction techniques for dimensionality reduction. These analysis pro-

vides integrated features which obfuscate the interpretation of analysis (fault diagnosis in process

monitoring). When the top n informative features are derived from the feature extraction based

techniques, we actually need to acquire/collect information from > n features. This is due to the

fact that the selected n features are described as the linear combination of > n features. The s-FDD

framework and its extension to fault identification is presented in Chapter 2. By implementing hi-

erarchical clustering analysis prior to the s-FDD framework, we have proposed a hierarchy-based

classification scheme for fault identification. This is particularly important for industrial operations

where one does not need to check/monitor the process with multiple models simultaneously, in-

stead uses a hierarchy of models for identifying the problem. Chapter 3 and Chapter 4 demonstrate

the application of the s-FDD framework on continuous and batch processes, respectively. Specif-

ically, we have adopted the popular Tennessee Eastman process, which is a benchmark process

used in numerous process monitoring applications in the literature, for continuous operation moni-

toring. The comparison between the s-FDD framework and the other available process monitoring

algorithms/frameworks in the literature clearly proves the major advantage of using the s-FDD
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framework, where one achieves highly accurate two-class C-SVM classifiers for fault detection.

Moreover, we have utilized another benchmark process for batch process monitoring application,

which is penicillin production via fed-batch process. Here, we have investigated three different

time horizon approaches during model building: (i) one-step rolling time horizon basis analysis,

(ii) two-step rolling time horizon basis analysis, and (iii) evolving time horizon analysis, in which

we alter the amount of historical data usage during model training in the offline phase. Although

the optimal time horizon approach is observed to be fault-specific, the two-step rolling time horizon

based analysis is preferred, where we are able to include sufficient historical process data during

the data-driven modeling without introducing noise.

The Industry 4.0 and Smart Manufacturing evolutions have raised the automation level in in-

dustry which subsequently reduced the number of personnel in manufacturing operations and in-

creased the capital employed in production equipment and civil structures. Hence, adopting main-

tenance strategies during industrial operations have become prevalent and crucial for a reliable

operation. Due to this prevalent use of maintenance strategies, we have examined an operation

wherein maintenance strategies are adopted and the process is monitored by the s-FDD frame-

work. Chapter 5 presents a proof-of-concept analysis, where the integrated use of corrective (i.e.

“run-to-failure” reactive) and preventive maintenance strategies with the s-FDD framework can

lower the process downtime significantly, and maximize the profit. Furthermore, a novel correc-

tive maintenance strategy is formulated by integrating multi-parametric model predictive control

and the s-FDD framework and presented the “parametric fault-tolerant control” concept in Chap-

ter 5. Specifically, we have designed a fault-tolerant multi-parametric model predictive controller,

and built accurate and robust fault detection and reconstruction mechanism for passing precise

information of the process conditions to the controller during online monitoring. Similarly, we

have benefited from the s-FDD framework to build the optimal data-driven models with high ac-

curacy and low number of features. The parametric fault-tolerant control concept is tested on the

fed-batch operation of penicillin production. The developed time-specific models have provided

accurate process condition information (i.e. fault existence, fault type, magnitude and direction) to

the mp-MPC, which accordingly enables the rapid changes in the control actions if necessary dur-

ing the operation. The presented work in Section 5.3 in Chapter 5 is an active fault-tolerant control

strategy that can provide an adaptive approach for smart operation in process systems engineering.
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Finally, the advances in data-driven modeling analysis presented in previous chapters are uti-

lized to tackle challenges in environmental health field under the Texas A&M Superfund Research

Program. Chapter 6 introduces a framework to optimally group unknown complex substances,

that are contaminated during environmental emergencies (i.e. hurricane, flooding etc.), with the

groups of substances with known environmental health impact. This grouping technique with a

known class of substances is known as read-across, where the chemical/biological effects of the

unknown chemical mixtures/complex substances are examined through similarity analysis. This

work uses the analytical chemistry data of complex substances, and provides an extensive compar-

ative analysis between different data-driven techniques for optimal group identification during the

environmental emergency-related contamination events.

Overall, the presented work in this dissertation provides accurate decision support tools in var-

ious areas of process systems engineering. As the data collection is significantly expedited in real

time with the technological advancements, accurate data-driven decision making is becoming a ma-

jor need in both in academy and industry. With the presented novel data-driven frameworks/tools in

this dissertation, we aim to meet this need, where we enable accurate data-driven decision making

in the areas of process monitoring, and environmental health analytics.

7.2 Key Contributions

The key contributions of the dissertation are summarized below.

1. A novel data-driven process monitoring framework (s-FDD framework), which achieves

highly accurate fault detection/identification models with optimal process descriptors, has

been developed and validated for both continuous and batch chemical operations. The results

show that s-FDD framework outsmarts the existing statistical process monitoring techniques

in the literature in terms of accurate fault detection rate. The selected optimal feature set

guides the fault diagnosis, thus enables simultaneous fault detection and diagnosis. This fur-

ther minimizes the process runtime spent under faulty condition, and ensures rapid process

recovery for sustaining process safety and profitability (Chapter 2, Chapter 3, and Chapter

4).

2. A novel corrective maintenance optimization strategy is introduced by establishing para-

metric fault-tolerant control systems design framework. This is a novel active fault-tolerant
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strategy that can eliminate the process downtime by enabling rapid switches between a priori

mapped control actions. By merging multi-parametric model predictive control design and

the s-FDD framework capabilities, the presented strategy proposes an adaptive approach for

smart operation (Chapter 5).

3. A data-driven framework is established for grouping of unknown complex substances with

the known chemicals during environmental emergency-related emergencies. The commu-

nication of the grouping results is significantly facilitated via quantitative metrics and vi-

sualization techniques. The presented work bridges the gap between optimal grouping of

complex substances and the quantitative evaluation and communication of the grouping out-

comes, which is essential for regulatory decision-making in the environmental health area

(Chapter 6).

7.3 Future Work

By using the presented modeling and model-informed feature selection algorithm based on

nonlinear SVMs, we can tackle numerous challenging problems in process systems engineering

where high-dimensionality of the data set hinders accurate data-driven model generation. The two

challenging and interesting problems in process monitoring, which can significantly benefit from

the presented algorithm with advanced regression analysis, are online product quality monitor-

ing and prediction of end-product quality. Under smart manufacturing initiatives, product quality

monitoring has become a popular research area. In order to save operation cost and time, building

an accurate and reliable tool for product quality prediction is of utmost importance. Moreover,

we can adopt one-class SVM algorithms to build fault detection and diagnosis models. In this

case, only normal operation data, which is ubiquitous in historical databases of industries rather

than faulty operation data, is required to train the data-driven models. Finally, the proposed active

fault tolerant control strategy based on multi-parametric programming and the s-FDD framework,

which uses the nonlinear SVM based modeling and model-informed feature selection algorithm,

can be further improved by incorporating fault identification and diagnosis model building. In this

work, we have built fault-specific classifiers for fault detection within the presented parametric

FTC strategy. This requires to monitor the ongoing chemical process for faults with distinct mod-

els. We have also presented the fault identification scheme, which performs hierarchy-based fault
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detection via the s-FDD framework. Therefore, integration of the presented fault identification

scheme within the presented parametric FTC design framework is proposed in order to increase

the process efficiency by lowering the number of checks, thus improving the efficiency. This also

improves the interpretation of the decision-support tool and renders it more user-friendly. Below,

we provide brief details on how to perform the proposed tasks with the algorithms used within this

work.

7.3.1 Improving the s-FDD Framework via Integrating One-class Classification Techniques

Often time, the industry has large amounts of historical process data, yet lacks the faulty oper-

ation data or the size of the faulty operation data is significantly smaller with respect to the normal

operation data. Although, this problem can be achieved by simulating faulty operation data and

use both of them to build two-class fault detection and diagnosis models via the s-FDD frame-

work, performing additional simulations for faulty process data generation can be expensive in

some industrial processes. In order to address this issue, one can adopt one-class classification

techniques via SVM algorithms and perform simultaneous modeling and model-informed feature

selection as described in Section 2.2 in Chapter 2 to build fault detection and diagnosis models.

Specifically, one can train one-class SVM models to separate normal operation from any other

faulty operation data. The model learns the range of the normal operation data and treats the any

other process data as outliers (i.e. faulty data). The models generate binary answers, where +1

indicates the operation is normal, meaning that the online analyzed process data falls within the

range of the previously learned normal operation data set. On the other hand, the model generates

−1 to signify the operator that there is an ongoing abnormality. When an abnormality is detected,

the optimal feature subset of the trained one-class SVM model is able to produce the diagnosis, so

that operators can further focus on the selected process variables and act to recover the process.

One-class based analysis techniques can be incorporated within the s-FDD framework to further

improve its decision support where faulty operation data is not readily available and expensive or

impossible to simulate.
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7.3.2 Online Monitoring of the Product Quality and Predicting the Batch End-product

Quality

Meeting the demand of high product quality is becoming challenging with increasing process

structure complexity, which increases the number of controlled variables. Hence, development of

data-driven tools for predicting online product and end-product quality is essential and necessary.

Here, the idea is to quantify the quality of the product by analyzing the ongoing process data.

Monitoring product quality with data-driven models requires the use of advanced regression anal-

ysis. However, building regression models without selecting an informative feature subset yields

inaccurate results. As the size of the process data grows, building regression models with the most

informative process descriptors has become crucial. Therefore, as a future work, we propose to

build C or ν-parameterized Support Vector Regression (C- or ν-SVR) models with optimal fea-

ture subset by using the simultaneous modeling and feature selection algorithm based on nonlinear

SVMs (Section 2.2 in Chapter 2). The procedure is similar to the fault-specific classifier modeling

for fault detection and diagnosis via the s-FDD framework. The built regressors can then be used

for monitoring the product quality online and predicting the end-product quality. Furthermore, the

extracted features during simultaneous C- or ν-SVR modeling and model-informed feature selec-

tion would reveal the key informative process descriptors for tracking the product quality. Thus,

if the monitored product quality approximates or falls below the pre-determined quality threshold,

the selected optimal feature subset of the regressor would significantly facilitate the interpretation

of the problem source.

7.3.3 Improving the Multi-parametric Fault-Tolerant Control Strategy with Fault Identifi-

cation

In this dissertation, we have presented the application of the nonlinear SVM based simultane-

ous modeling and feature selection algorithm for building fault detection/identification and diag-

nosis models. We have established the s-FDD framework, where we build two-class fault-specific

C-SVM classifiers for fault detection and diagnosis. Moreover, by formulating a hierarchy-based

fault detection and diagnosis scheme, we extend the use of the s-FDD framework for fault iden-

tification. Additionally, we have developed the “parametric fault-tolerant control” strategies by

integrating the multi-parametric model predictive controller design with the s-FDD framework.
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In particular, we have used fault-specific classifiers for fault detection within the fault detection

and reconstruction mechanism. Here, we propose to adopt fault identification scheme via s-FDD

framework in order to improve the efficiency of fault detection among various faults. This requires

the development of fault detection classifiers at each level of the separation hierarchy as described

in Section 2.3.2 of Chapter 2. However, note that, this does not change the regressor develop-

ment scheme, where we still need to train fault-specific regressors to estimate the fault magnitude.

Furthermore, each additional fault needs to be considered as an additional parameter within the

mp-MPC design. The advantage and premise of incorporating fault identification within the para-

metric FTC framework is rapid identification of the fault in a cascaded manner, where we do not

check for each fault with separate models. This is especially important when the number of faults,

considered during the parametric fault-tolerant system development, increase.
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APPENDIX A

APPLICATION OF THE S-FDD FRAMEWORK FOR CONTINUOUS PROCESS

MONITORING

A.1 Tennessee Eastman Process Reactions and Process Variables

The reactions occurring in the reactor are as follows:

A(g)+C(g)+D(g) −→ G(l)

A(g)+C(g)+E(g) −→ H(l)

A(g)+E(g) −→ F(l)

3D(g) −→ 2F(l)

(A.1)

The process contains 11 manipulated (Table A2) and 41 measured (Table A1) variables.
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Table A1: Measured variables in the Tennessee Eastman process.

Variable No Description Measurement Type

1 Feed A (Stream 1) Process

2 Feed D (Stream 2) Process

3 Feed E (Stream 3) Process

4 Total Feed (Stream 4) Process

5 Recycle Flow (Stream 8) Process

6 Reactor Feed Rate (Stream 6) Process

7 Reactor Pressure Process

8 Reactor Level Process

9 Reactor Temperature Process

10 Purge Rate (Stream 9) Process

11 Product Separator Temperature Process

12 Product Separator Level Process

13 Product Separator Pressure Process

14 Product Separator Underflow Process

15 Stripper Level Process

16 Stripper Pressure Process

17 Stripper Underflow (Stream 11) Process

18 Stripper Temperature Process

19 Stripper Steam Flow Process

20 Compressor Work Process

21 Reactor Cooling Water Outlet Temperature Process

22 Separator Cooling Water Outlet Temperature Process

23 Component A (Stream 6) Composition

24 Component B (Stream 6) Composition

25 Component C (Stream 6) Composition

26 Component D (Stream 6) Composition

27 Component E (Stream 6) Composition

28 Component F (Stream 6) Composition

29 Component A (Stream 9) Composition

30 Component B (Stream 9) Composition

31 Component C (Stream 9) Composition

32 Component D (Stream 9) Composition

33 Component E (Stream 9) Composition

34 Component F (Stream 9) Composition

35 Component G (Stream 9) Composition

36 Component H (Stream 9) Composition

37 Component D (Stream 11) Composition

38 Component E (Stream 11) Composition

39 Component F (Stream 11) Composition

40 Component G (Stream 11) Composition

41 Component H (Stream 11) Composition
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Table A2: Manipulated variables in the Tennessee Eastman process.

Variable No Description

42 D Feed Flow (Stream 2)

43 E Feed Flow (Stream 3)

44 A Feed Flow (Stream 1)

45 Total Feed Flow (Stream 4)

46 Compressor Recycle Valve

47 Purge Valve (Stream 9)

48 Separator Pot Liquid Flow (Stream 10)

49 Stripper Liquid Product Flow

50 Stripper Steam Valve

51 Reactor Cooling Water Flow

52 Condenser Cooling Water Flow

A.2 Performance Metric Terminology and Formulations

The model performances are assessed with 5 metrics: (i) area under the curve (AUC), (ii) fault

detection rate, or recall, (iii) accuracy, (iv) false alarm rate, and (v) false negative rate. These met-

rics are derivations achieved from the confusion (a.k.a error) matrix, which is a two-dimensional

contingency table used to evaluate performance of a classifier model in statistics and machine

learning. Below, we provide terminology and formulation of the 5 metrics adopted in this disser-

tation.

Confusion matrix is a two-dimensional matrix containing the number of correct and false clas-

sification of instances for a binary classification problem. The elements of the matrix are True

Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN). In terms of

process monitoring, these numbers indicate:

True Positives (TP): Predicting faulty operation as faulty.

True Negatives (TN): Predicting fault-free (normal) operation as normal.

False Positives (FP): Predicting normal operation as faulty.

False Negatives (FN): Predicting faulty operation as normal.
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Accordingly,

Positive (P): T P+FN

Negative (N): T N+FP

Accuracy is the percentage of correctly classified instances among all instances, which is cal-

culated as follows:

Accuracy =
T P+T N

P+N
.

Accuracy is the most effective metric in the cases where class distribution is somewhat bal-

anced. Recall (also referred as detection rate) is a measure of completeness.

Recall =
T P

T P+FN
.

In this work, misclassification of the instances are assessed via false alarm rate (FAR) and false

negative rate (FNR):

FAR =
FP

FP+T N
.

FNR =
FN

FN +T P
.

In the case of imbalanced data sets, collective evaluation of two metrics, namely recall and

specificity, gains importance where

Speci f icity =
T N

T N +FP
.

Receiver Operating Characteristics (ROC) curve is the plot illustrating the classifier perfor-

mance based on recall and specificity at varying classification thresholds. Particularly, the curve

demonstrates true positive rate (recall) versus false positive rate (1-Speci f icity) for all possible

classification thresholds and area under this curve (a.k.a Area Under the Curve (AUC)) is a single

metric derived from this advanced performance assessment.
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A.3 C-SVM Model Parameters

Table A3: SVM hyperparameters for the models reported in Table 3.2.

Fault Subset Size
Feature
Optimal

Ĉ γ̂

1 2 6 0

2 5 2 -4

3 13 0 3

4 1 -8 -1

5 4 10 -6

6 2 -9 0

7 3 -8 0

8 7 3 4

9 17 2 2

10 14 6 4

11 29 5 3

12 9 10 7

13 7 10 3

14 3 -8 3

15 27 1 2

16 5 4 2

17 32 10 -5

18 34 10 -4

19 2 9 10

20 14 8 3

21 1 0 9
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Table A4: SVM hyperparameters for the models reported in Table 3.4.

Fault Subset Size
Feature
Optimal

Ĉ γ̂

1 18 3 0

2 10 9 -3

3 10 9 7

4 1 -8 1

5 14 0 -1

6 2 -10 0

7 4 -1 5

8 12 4 1

9 2 1 4

10 15 10 -2

11 2 9 -2

12 5 4 4

13 8 5 1

14 2 -5 8

15 16 0 5

16 2 2 3

17 28 10 -5

18 5 9 0

19 10 10 -3

20 14 10 -3
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Table A5: SVM hyperparameters for the models reported in Table 3.3.

Fault Subset Size
Feature
Optimal

Ĉ γ̂

8 4 5 4

17 27 10 -5

Table A6: C-SVM hyperparameters for the models reported in Table 3.5.

Fault Subset Size
Feature
Optimal

Ĉ γ̂

5 3 9 -7

18 2 9 1

19 3 10 -2

20 13 10 -3

A.4 Fault Diagnosis

The diagnosis of the entire faults of the Chaing et. al and Rieth et. al data sets are provided

below. Note that Faults 3, 9, and 15 are excluded due to poor model performance. Asterisks imply

the existence of alternative models.
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Table A7: Diagnosis from the Table 3.2 end-models developed with Chiang et. al data set.

Fault Subset Size
Feature
Optimal

Selected Process Variables

1 2 16, 44

2 5 7, 16, 10, 47, 13

3 13 24, 28, 29, 26, 33, 31, 50, 25, 30, 27, 35, 18, 1

4 1 51

5 4 4, 11, 52, 17

6 2 44, 1

7 3 45, 7, 13

8 7 39, 44, 16, 20, 7, 23, 46

9 17 39, 41, 38, 40, 37, 50, 18, 19, 7, 13, 16, 20, 31, 33, 29, 35, 28

10 14 41, 39, 38, 37, 40, 50, 19, 18, 20, 7, 13, 16, 31, 29

11 29
24, 29, 26, 30, 31, 32, 35, 50, 25, 33, 34, 23, 27, 18,

7, 16, 20, 38, 10, 19, 13, 37, 39, 44, 1, 41, 51, 47, 9

12 9 7, 16, 50, 18, 13, 19, 20, 38, 33

13 7 39, 40, 18, 7, 38, 23, 3

14 3 9, 51, 21

15 27
39, 41, 37, 40, 38, 50, 18, 19, 20, 7, 13, 16, 1, 44,

25, 31, 23, 33, 29, 36, 35, 34, 24, 30, 27, 47, 10

16 5 50, 19, 18, 20, 13

17 32
38, 39, 40, 41, 21, 37, 19, 20, 33, 27, 34, 30, 1, 11, 25, 28,

24, 23, 35, 36, 26, 10, 3, 2, 22, 14, 48, 47, 32, 42, 8, 49

18 34
39, 40, 37, 41, 14, 49, 17, 48, 5, 52, 15, 12, 3, 9, 2, 32, 10,

26, 28, 24, 6, 11, 36, 20, 50, 22, 44, 13, 34, 1, 7, 8, 25, 18

19 2 32, 31

20 14 41, 39, 40, 37, 50, 18, 46, 13, 19, 7, 16, 11, 33, 27

21 1 45
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Table A8: Diagnosis from the Table 3.4 end-models developed with Rieth et. al data set.

Fault Subset Size
Feature
Optimal

Selected Process Variables

1 18
44, 16, 41, 4, 1, 11, 18, 21, 22, 20,

7, 51, 46, 38, 33, 13, 23, 24

2 10 38, 41, 10, 25, 16, 21, 7, 20, 47, 30

3 10 47, 51, 38, 16, 50, 18, 19, 21, 20, 13

4 1 51

5 14 52, 11, 17, 4, 18, 19, 46, 50, 20, 16, 44, 38, 29, 22

6 2 44, 1

7 4 19, 18, 50, 45

8 12 39, 41, 37, 16, 20, 44, 7, 46, 1, 27, 29, 40

9 2 51, 13

10 15 41, 38, 39, 37, 18, 19, 40, 25, 31, 29, 26, 23, 1, 50, 16

11 2 9, 51

12 5 16, 38, 35, 25, 11

13 8 41, 39, 7, 37, 40, 16, 32, 21

14 2 51, 9

15 16 22, 7, 13, 18, 50, 19, 11, 16, 38, 35, 20, 9, 21, 46, 4, 29

16 2 19, 50

17 28
35, 24, 38, 28, 18, 20, 19, 21, 46, 26, 36, 42, 37, 25,

29, 30, 39, 41, 40, 44, 32, 34, 22, 8, 10, 27, 31, 23

18 5 22, 8, 20, 11, 31

19 10 13, 16, 46, 50, 19, 5, 7, 20, 38, 6

20 14 38, 39, 41, 16, 52, 17, 18, 30, 35, 29, 40, 13, 7, 47
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APPENDIX B

PARAMETRIC FAULT-TOLERANT CONTROL SYSTEMS DESIGN

B.1 Actuator Fault: Bias in Water Flow Rate

This section includes the complete set of reactor temperature and water flow rate profiles with

± 0.5 K threshold on the set point for each time-specific models for the actuator fault case.
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Figure A1: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 100 h, Fault Magnitude: +2.0.
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Figure A2: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 100 h, Fault Magnitude: +1.5.
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Figure A3: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 100 h, Fault Magnitude: -1.5.
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Figure A4: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 100 h, Fault Magnitude: -2.0.
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Figure A5: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 200 h, Fault Magnitude: +2.5.
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Figure A6: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 200 h, Fault Magnitude: +2.0.
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Figure A7: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 200 h, Fault Magnitude: +1.5.
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Figure A8: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 200 h, Fault Magnitude: -1.5.
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Figure A9: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 200 h, Fault Magnitude: -2.0.
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Figure A10: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 200 h, Fault Magnitude: -2.5.
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Figure A11: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 300 h, Fault Magnitude: +2.5.
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Figure A12: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 300 h, Fault Magnitude: +2.0.
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Figure A13: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 300 h, Fault Magnitude: +1.5.
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Figure A14: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 300 h, Fault Magnitude: -1.5.
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Figure A15: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 300 h, Fault Magnitude: -2.0.
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Figure A16: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 300 h, Fault Magnitude: -2.5.
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Figure A17: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 400 h, Fault Magnitude: +2.5.
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Figure A18: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 400 h, Fault Magnitude: +2.0.
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Figure A19: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 400 h, Fault Magnitude: +1.5.
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Figure A20: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 400 h, Fault Magnitude: -1.5.
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Figure A21: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 400 h, Fault Magnitude: -2.0.
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Figure A22: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 400 h, Fault Magnitude: -2.5.

B.2 Sensor Fault: Bias in Reactor Temperature

This section includes the complete set of reactor temperature and water flow rate profiles with

± 0.5 K threshold on the set point for each time-specific models for the sensor fault case.
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Figure A23: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 100 h, Fault Magnitude: +1.5.
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Figure A24: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 100 h, Fault Magnitude: +1.0.
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Figure A25: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 100 h, Fault Magnitude: +0.5.
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Figure A26: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 100 h, Fault Magnitude: -1.5.
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Figure A27: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 100 h, Fault Magnitude: -1.0.
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Figure A28: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 100 h, Fault Magnitude: -0.5.
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Figure A29: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 200 h, Fault Magnitude: +2.0.

Set point is 298 K
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Figure A30: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 200 h, Fault Magnitude: +1.5.
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Figure A31: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 200 h, Fault Magnitude: +1.0.
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Figure A32: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 200 h, Fault Magnitude: +0.5.
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Figure A33: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 200 h, Fault Magnitude: -2.0.
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Figure A34: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 200 h, Fault Magnitude: -1.5.
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Figure A35: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 200 h, Fault Magnitude: -1.0.
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Figure A36: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 200 h, Fault Magnitude: -0.5.
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Figure A37: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 300 h, Fault Magnitude: +2.0.

Set point is 298 K
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Figure A38: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 300 h, Fault Magnitude: +1.5.
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Figure A39: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 300 h, Fault Magnitude: +1.0.
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Figure A40: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 300 h, Fault Magnitude: +0.5.
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Figure A41: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 300 h, Fault Magnitude: -2.0.
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Figure A42: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 300 h, Fault Magnitude: -1.5.

259



200 250 300 350 400 450
294

296

298

300

302

R
ea

ct
u

re
 T

em
p

er
at

u
re

(K
)

Limit:359.88 h

Real value
Measured value

200 250 300 350 400 450
Hour

0

20

40

60

80

100

120

W
at

er
 F

lo
w

 R
at

e 
(L

/h
)

Real value
Measured value

Figure A43: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 300 h, Fault Magnitude: -1.0.
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Figure A44: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 300 h, Fault Magnitude: -0.5.
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Figure A45: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 400 h, Fault Magnitude: +2.0.

Set point is 298 K
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Figure A46: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 400 h, Fault Magnitude: +1.5.
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Figure A47: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 400 h, Fault Magnitude: +1.0.

264



300 350 400 450 500 550
294

296

298

300

302

R
ea

ct
u

re
 T

em
p

er
at

u
re

(K
) Real value

Measured value

300 350 400 450 500 550
Hour

0

20

40

60

80

100

120

W
at

er
 F

lo
w

 R
at

e 
(L

/h
)

Real value
Measured value

Figure A48: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 400 h, Fault Magnitude: +0.5.
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Figure A49: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 400 h, Fault Magnitude: -2.0.
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Figure A50: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 400 h, Fault Magnitude: -1.5.
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Figure A51: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 400 h, Fault Magnitude: -1.0.
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Figure A52: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 400 h, Fault Magnitude: -0.5.
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