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ABSTRACT

Fatou–Bieberbach domains are a phenomenon specific to several complex variables. Techniques

for producing such domains are limited and fundamental questions about containment between

two Fatou–Bieberbach are still being raised. We show that given a countable collection of Runge

Fatou–Bieberbach domains with a ball in common and a common point omitted, there exists a

Runge Fatou–Bieberbach domain that contains the union. Additionally, we provide a new con-

struction for Fatou–Bieberbach domains modelled on the attracting basin, using right-side com-

position instead of the prototypical left-side composition. We use this construction to show that

there exists a strictly decreasing family of Fatou–Bieberbach domains whose intersection contains

a Fatou–Bieberbach domain. Additionally, we provide a generalized condition for constructing

attracting basins from a sequence of automorphisms.
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Even a blind squirrel finds a nut once in a while.

-Anonymous

iii



ACKNOWLEDGMENTS

I would like to thank my family for their continued support throughout my many years at Texas

A&M. I especially want to thank my 11-year-old twin sisters Faith and Grace for their very simple

questions about my work that have been quite inspiring. Special thanks to my father who has been

supportive and encouraging throughout this journey of ups and many downs.

I would like to thank my friends David Carroll and Sam Scholze for great mathematical discussions

while at Texas A&M and their continued support after graduating years before me.

I would like to thank my supervisor Harold Boas for his time, comments, and thorough proof-

reading.

I would like to thank the Math Department at Texas A&M University for their support. My journey

has been a long one and the administration has always endeavored to be helpful.

iv



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Harold Boas, Profes-

sor Emil Straube, and Professor Alexei Poltoratski of the Department of Mathematics and Professor

Christopher Menzel of the Department of Philosophy.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by a stipend from Texas A&M University.

v



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. BACKGROUND INFORMATION AND STATEMENT OF MAIN THEOREMS . . . . . . . . . 4

2.1 Fatou–Bieberbach Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Containment of Fatou–Bieberbach Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 A Construction: Reverse Semi-basin of Attraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. RESULTS AND PROOFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Generalization of Wold [1] Theorem 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.1 An Important Convergence Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 The Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 On Containment Between Fatou–Bieberbach Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 A New Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4. CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vi



1. INTRODUCTION

In the 1920’s Fatou and Bieberbach proved the existence of proper domains in C2 that are biholo-

morphic to C2. Today these domains are called Fatou–Bieberbach domains. These domains are

specific to Several Complex Variables: indeed it is easy to see using the Riemann mapping theorem

that there is no proper domain in C that is biholomorphic to C. Fatou and Bieberbach produced

examples by using a basin of attraction, that is, the domain {z ∈ Cn : limj→∞ F
j(z) = p} where

F is an automorphism that fixes point p and F j denotes F composed j times. It was proved by

Rudin and Rosay [2] in their seminal paper that if F is attracting at point p then the corresponding

basin of attraction is biholomorphic to Cn. Precisely, their theorem states:

Suppose that F ∈ Aut(Cn) fixes a point p ∈ Cn and that all eigenvalues λ1, . . . , λn of F ′(p) satisfy

|λi| < 1. Let Ω be the set of all z ∈ Cn for which limk→∞ F
k(z) = p, where F k = F ◦ F k−1,

F 1 = F . Then there exists a biholomorphic map Φ from Ω onto Cn.

(It should be noted that Reich [3] attempted to prove the above first and the ideas used seem to

have motivated Rudin and Rosay in their method of proof.) Later, Wold [1] proved a related result

for a sequence of automorphisms. Stated precisely, it says:

Let 0 < s < r < 1 such that r2 < s, let δ > 0, and let {Fj} ⊆ Autp(Cn) such that s||z − p|| ≤

||Fj(z)− p|| ≤ r||z − p|| for all z ∈ Bδ(p) and all j ∈ N. Then there exists a biholomorphic map

Φ : Ω→ Cn

where Ω = {z ∈ Cn : limj→∞ Fj ◦ · · · ◦ F1(z) = p}.

It is a long standing question whether or not “r2 < s” can be removed from the hypothesis. I

provide an interesting generalization to Wold’s [1] Theorem 4.
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In addition to this result, Wold [1] also proves that the union of nested increasing Runge Fatou–

Bieberbach domains is biholomorphic to Cn. It is a natural question whether or not the complemen-

tary idea is true. That is, is the interior of the intersection of decreasing nested Fatou–Bieberbach

domains a Fatou–Bieberbach domain? Dixon and Esterle [4] have shown (Corollary 7.12) that the

answer is no: it is possible for the intersection of decreasing nested Fatou–Bieberbach domains to

have empty interior. However, I have shown that if each Fatou–Bieberbach domain contains a com-

mon ball and the Fatou–Bieberbach domains can exhibit a certain growth property, then the interior

of the intersection of the decreasing nested Fatou–Bieberbach domains is a Fatou–Bieberbach do-

main!

The proof of this result uses a new construction of Fatou–Bieberbach domains. Fundamentally, the

idea of the construction is to consider an attracting basin of a sequence of holomorphic mappings,

but compose on the right hand side instead of the left hand side. We consider this new construction

to be of real consequence because of the limited number of techniques available to construct Fatou–

Bieberbach domains.

Constructing Fatou–Bieberbach domains that satisfy natural properties has been a notable part of

the research of Fatou–Bieberbach domains. In particular, there is interest in being able to specify

what a Fatou–Bieberbach domain can contain and simultaneously what its complement can con-

tain. For example, Rosay and Rudin [2] have shown: If K ⊆ Cn is compact and strictly convex

and E ⊆ Cn \ K is countable, then there is an injective holomorphic mapping F : Cn → Cn so

that E ⊆ F (Cn) ⊆ Cn \ K. We provide a result of this flavor, effectively showing that given a

countable collection of Runge Fatou–Bieberbach domains that contain a common ball and omit

a common point, there exists a Runge Fatou–Bieberbach domain that contains the union of the

collection of Runge Fatou–Bieberbach domains.

The plan of this dissertation is as follows: In Chapter 2, we provide background information

and context for the results herein as well as formal statements of these results. In Chapter 3, we

provide a convergence result for composing a sequence of holomorphic mappings. This will then

2



be used to provide a generalization for Theorem 4 in Wold [1]. Then we will show that given a

countable collection of Fatou–Bieberbach domains under some conditions, we can find a Runge

Fatou–Bieberbach domain that contains their union. In the second half of Chapter 3, we offer a

new construction of Fatou–Bieberbach domains and provide an application for this construction.

The Runge property will be used often throughout this dissertation. In fact, without this property

it is the author’s understanding that many of the related questions quickly become intractable. We

state several conjectures throughout related to (removing) the Runge property. In Chapter 4, we

provide concluding remarks.

3



2. BACKGROUND INFORMATION AND STATEMENT OF MAIN THEOREMS

2.1 Fatou–Bieberbach Domains

We start by supplying the basic definitions. Our first definition concerns the object of study

throughout this work.

Definition 1. We say that Ω ⊆ Cn is a Fatou–Bieberbach domain if Ω 6= Cn and Ω is biholomor-

phic to Cn.

Our second definition is for a property that will be used throughout this work.

Definition 2. A domain in Cn is said to be Runge if for each holomorphic function defined on it

and each compact set in it, there exists a sequence of polynomials that converges uniformly to the

holomorphic function on the compact set.

Next we define the basin of attraction. We will later see that under the right conditions it is biholo-

morphic to Cn. In fact, throughout the literature it is the typical way a Fatou–Bieberbach domain

is constructed.

Definition 3. Let F be an automorphism of Cn with fixed point p (i.e. F (p) = p). Then we define

the basin of attraction of F at p to be

{z ∈ Cn : lim
j→∞

F j(z) = p}

where F j = F ◦ F j−1, and F 1 = F .

Next we need a definition to describe when an automorphism will be attracting or repelling at point

p.

Definition 4. Let F be an automorphism of Cn that fixes point p. Then:

1. If each eigenvalue of matrix F ′(p) is less than 1 in modulus, we say that the fixed point p is

4



attracting.

2. If each eigenvalue of matrix F ′(p) is greater than 1 in modulus, we say that the fixed point p

is repelling.

This brings us to an important result by Rosay and Rudin:

Theorem 1. Suppose that F ∈ Aut(Cn) has an attracting fixed point at p. Let Ω be the basin of

attraction of F at p. Then there exists a biholomorphic map Φ from Ω onto Cn.

In their seminal paper, Rosay and Rudin used this theorem to produce many interesting examples

of Fatou–Bieberbach domains.

We now provide a generalized definition of basin of attraction.

Definition 5. Let {Fj} be a sequence of automorphisms of Cn each with fixed point p. Then we

define the basin of attraction of sequence Fj to be

{z ∈ Cn : lim
j→∞

Fj ◦ Fj−1 ◦ · · · ◦ F1(z) = p}.

Throughout this work, we will often abuse notation and write {Fj ◦ · · · ◦ F1 → p} instead of

{z ∈ Cn : limj→∞ Fj ◦ Fj−1 ◦ · · · ◦ F1(z) = p}.

Wold [1] Theorem 4 provides a semi-analogous result to the above Theorem by Rosay and Rudin,

it states:

Theorem 2. Wold [1] Theorem 4

Let {Fj} ⊆ Autp(Cn). Suppose that there are 0 < s < r < 1 and ε > 0 such that

s||z − p|| ≤ ||Fj(z)− p|| ≤ r||z − p|| on Bε(p) for all j ∈ N.

Further suppose that r2 < s. Then {Fj ◦ · · · ◦ F1 → p} is biholomorphic to Cn.

5



Here Bε(p) denotes the ball {z ∈ Cn : ||z − p|| < ε}.

One of our main results is a generalization to Wold’s result:

Theorem 3. Let {Fj} ⊆ Autp(Cn). Suppose that there are 0 < sj ≤ rj ≤ 1 and ε > 0 such that

sj||z − p|| ≤ ||Fj(z)− p|| ≤ rj||z − p|| on Bε(p) for all j ∈ N.

Further suppose infi{si} > 0 and
∑

i

√
(
r21
s1

) · · · ( r
2
i

si
) <∞.

Then {Fj ◦ · · · ◦ F1 → p} is biholomorphic to Cn and is Runge.

Here Autp(Cn) is the set of automorphisms on Cn that fix the point p ∈ Cn.

Notice that the hypothesis allows for the possibility that
r2j
sj
> 1 for infinitely many j. This is the

main distinction between this result and Wold’s.

Important Aside

An important result used in the proof of the above theorem that is not used in Wold’s proof follows.

Proposition 1. Let U ⊆ Cn be a nonempty set. Let Ui ⊆ Cn (i ∈ N) be connected open sets with

U ⊆ Ui for each i ∈ N and let fi : Ui+1 → Ui be holomorphic mappings.

Suppose
∑

i

√
||fi − id||U < ∞. Then the sequence f1 ◦ f2 ◦ · · · ◦ fj−1 ◦ fj converges uniformly

on compacta on U .

We believe this result to be interesting in its own right. Indeed, as far as the author is aware, there

are few results of this flavor.

However, an analogous result that is easier to prove appears in Esterle and Dixon [4] as Lemma

8.3:

Proposition 2. Let Fj be a sequence of holomorphic mappings from Cn into Cn. If∑
i ||I − Fi||Bm(0) < ∞ for each m ≥ 1, then the sequence F1 ◦ · · · ◦ Fj converges uniformly

6



on compact subsets of Cn to a mapping F : Cn → Cn.

Here || · ||Bm(0) is the sup norm on the ball Bm(0).

2.2 Containment of Fatou–Bieberbach Domains

Throughout the history of Fatou–Bieberbach domains there has been a desire to construction

Fatou–Bieberbach domains with given properties. For example, Rudin and Rosay have shown

precisely:

Theorem 4. If K ⊆ Cn is compact and strictly convex and E ⊆ Cn \K is countable, then there

is a injective holomorphic mapping F : Cn → Cn so that E ⊆ F (Cn) ⊆ Cn \K.

And as another example consider the following result by Globevnik [5]:

Theorem 5. Let Q ⊆ C be a bounded open set with boundary of class C1 whose complement

is connected. Let 0 < R < ∞ be such that Q ⊆ R∆. There are a domain Ω ⊆ C2 and a

volume-preserving biholomorphic map from Ω onto C2 such that

(i) Ω ⊆ {(z, w) : |z| < max{R, |w|}}

(ii) Ω ∩R(∆×∆) is a arbitrarily small C1-perturbation of Q×R∆.

Here ∆ denotes the unit disk in C.

One of our main results shows that Fatou–Bieberbach domains are in some sense “big.” Note: In

what follows, we use the term “countable” to mean countably infinite or finite.

Theorem 6. Let {Ωj} be a nonempty countable set of Runge Fatou–Bieberbach domains in Cn

such that ∪jΩj 6= Cn. Let K be a compact set that is polynomially convex. Suppose there exist

ε > 0 and p ∈ Cn such that Bε(p) ⊆ ∩jΩj and Bε(p) ⊆ K. Let {aj} be a countable set of

points in (∪jΩj)
c. Let {b1, . . . , bl} be a nonempty finite set of points in (∪jΩj)

c and suppose

{b1, . . . , bl} ∩ (∪j{aj} ∪ K) = ∅. Then there exists a Runge Fatou–Bieberbach domain Ω such

that ∪jΩj ⊆ Ω, ∪j{aj} ⊆ Ω, K ⊆ Ω, and {b1, . . . , bl} ⊆ Ωc.

7



2.3 A Construction: Reverse Semi-basin of Attraction

In this section, we provide the background information leading to a new type of construction for

Fatou–Bieberbach domains. Throughout the literature on Fatou–Bieberbach domains, the typical

construction uses the attracting basin construction. In fact, the author is aware of only a few

constructions of Fatou–Bieberbach domains that do not rely on constructing an attracting basin.

For instance see, Stensønes [6] and Weickert [7].

We now introduce the concepts necessary for a new construction of Fatou–Bieberbach domains.

Definition 6. Let Aj ⊆ Cn be a sequence of sets. We define

oliminfj→∞Aj = {z ∈ Cn| there exists m > 0, ε > 0 such that Bε(z) ⊆ ∩i≥mAi}.

Definition 7. Let Ui ⊆ Cn (i ∈ N) be connected open sets with Bε(p) ⊆ Ui for each i ∈ N and let

Fi : Ui+1 → Ui be biholomorphic mappings. We define the reverse semi-basin of attraction for a

ball Bε(p) to be

Ωp,ε
{Fj} = oliminfj→∞F

−1
j (Bε(p)) ∪ oliminfj→∞(Fj ◦ Fj+1)−1(Bε(p)) ∪ · · ·

= ∪∞i=0oliminfj→∞(F (j + i, j))−1(Bε(p))

where F (j + i, j) = Fj ◦ Fj+1 ◦ · · · ◦ Fj+i.

The reverse semi-basin of attraction should be viewed as semi-analogous to the attracting basin,

but with taking composition on the right side instead of the left.

Theorem 7. Let ε > 0. Let Ui ⊆ Cn (i ∈ N) be connected open sets with Bε(p) ⊆ Ui for each

i ∈ N and let Fi : Ui+1 → Ui be biholomorphic mappings. Let U1 = Cn. Suppose that there are

0 < sj ≤ rj < 1, and cj > 0 such that

sj||z − p|| ≤ ||Fj(z)− p|| ≤ rj||z − p|| on Bε(p) for all j ∈ N

8



and

||A−1
j (Fj(z)− p)− (z − p)|| ≤ cj||z − p||2 on Bε(p) for all j ∈ N.

Also assume supi{ri} < 1, infi{si} > 0, and supk(ck +
∑k−1

i=1 ci(
r2i+1

si+1
) · · · ( r

2
k

sk
)) < ∞. Further,

suppose there exists δ > 0 such that for each k ∈ N, there is a Bk <∞ such that

sup
z∈Bδ(p)
i∈N

||F−1
i+k ◦ · · · ◦ F

−1
i+1(z)|| < Bk.

Then there exists a domain FB, biholomorphic to Cn, such that

Ωp,ε
{Fj} ⊆ FB ⊆ lim sup

i
Ui \ ∪∞k=1 lim inf

i
(F1 ◦ F2 ◦ · · · ◦ Fi)−1(Cn \B 1

k
(p)).

Additionally, if each Ui is Runge, we may arrange that domain FB is Runge.

9



3. RESULTS AND PROOFS

3.1 Generalization of Wold [1] Theorem 4

Our first lemma provides estimates for inverse holomorphic mappings given estimates on the holo-

morphic mappings.

Lemma 1. Let {Fj} be a set of holomorphic mappings that are injective on Bε(p) ⊆ Cn, map into

Cn, and fix the point p. Suppose that there are 0 < sj ≤ rj <∞ and ε > 0 with infi{si} > 0 and

supi{ri} <∞ such that

sj||z − p|| ≤ ||Fj(z)− p|| ≤ rj||z − p|| on Bε(p) for all j ∈ N.

Then there exists an ε′ > 0 such that

1

rj
||z − p|| ≤ ||F−1

j (z)− p|| ≤ 1

sj
||z − p|| on Bε′(p) for all j ∈ N.

Proof. Without loss of generality suppose p = 0. The assertion is clear once we can show there is

an open ball about the origin in the set ∩iFi(Bε(0)).

Suppose, for sake of contradiction, that there is no open ball about the origin contained in the set

∩iFi(Bε(0)). Then we can find a sequence fj in {Fi : i ∈ N} such that B 1
j
(0) \ fj(Bε(0)) 6= ∅.

By Montel’s Theorem, there is a subsequence fjk that converges on Bε(0) to some holomorphic

mapping f . Further, we have infi{si} · ||z|| ≤ ||f(z)|| on Bε(0). Therefore Jf(0) is invertible.

Thus there is some small ball Bε′(0) ⊆ Bε(0) on which f is injective. Hence f(Bε′(0)) is open

and so contains some small ball Bδ(0). But fjk(z) → f(z) uniformly on Bε′(0), so for large k,

fjk(Bε′(0)) ⊇ B δ
2
(0) contradicting B 1

jk

(0) \ fjk(Bε(0)) 6= ∅.

Lemma 2. Let α, β > 0 and let Γ be a family of holomorphic mappings that are injective on

10



Bε(0), fix the origin, and satisfy α||z|| ≤ ||F (z)|| ≤ β||z|| for each F ∈ Γ and z ∈ Bε(0). Let

AF = JF (0). Then there exist C,C ′, ε′ > 0 such that for each F ∈ Γ,

||A−1
F F (z)− z|| ≤ C||z||2 for z ∈ Bε(0)

||F−1AF (z)− z|| ≤ C ′||z||2 for z ∈ Bε′(0)

Proof. By Lemma 1, there exists ε′′ > 0 such that

1

β
||z|| ≤ ||F−1(z)|| ≤ 1

α
||z||

on Bε′′(0). There exists ε′ > 0 such that Bε′(0) ⊆ A−1
F (Bε′′(0)) for each F ∈ Γ.

Using the hypothesis, we have for each F ∈ Γ,

||A−1
F F (z)− z|| ≤ ||A−1

F F (z)||+ ||z|| ≤ β

α
||z||+ ||z|| ≤ (

β

α
+ 1)ε

on Bε(0). Similarly, we have for each F ∈ Γ,

||F−1AF (z)− z|| ≤ ||F−1AF (z)||+ ||z|| ≤ β

α
||z||+ ||z|| ≤ (

β

α
+ 1)ε

on Bε′(0). The conclusion follows directly from the Schwarz lemma.

The following is a technical result that is needed for the convergence proposition below.

Lemma 3. Let ai > 0 (i ∈ N). Then the following are equivalent:

(i.)
∑

i

√
ai <∞

(ii.)
∑

i ai <∞ and there exists bi > 0 (i ∈ N) such that
∑

i bi <∞ and
∑

i
ai
bi
<∞

Proof. (i.) ⇒ (ii.) Assume
∑

i

√
ai < ∞. Clearly

∑
i ai < ∞. Letting bi =

√
ai, the assertion

11



follows.

(ii.) ⇒ (i.) Assume
∑

i ai < ∞ and that there exists bi > 0 (i ∈ N) such that
∑

i bi < ∞ and∑
i
ai
bi
<∞. Using the inequality, 2

√
xy ≤ x+ y for x, y ≥ 0, we see that

∑
i

2
√
ai ≤

∑
i

(
ai
bi

+ bi

)
=
∑
i

ai
bi

+
∑
i

bi <∞.

3.1.1 An Important Convergence Result

The following convergence result is necessary in the proof of Theorem 3 below. However, given

its precise bound it seems to be of interest on its own.

Proposition 3. Fix r > 0. Let Ui ⊆ Cn (i ∈ N) be connected open sets with {||z|| < r} ⊆ Ui for

each i ∈ N and let fi : Ui+1 → Ui be holomorphic mappings.

Suppose ∑
i

√
||fi − id||{||z||<r} <∞.

Then sequence f1 ◦ f2 ◦ · · · ◦ fj−1 ◦ fj converges uniformly on compacta on {||z|| < r}.

Proof. Notice that if ||fi − id||{||z||<r} = 0, then fi ≡ id by the identity theorem. So without

loss of generality assume ||fi − id||{||z||<r} > 0 for each i ∈ N. Let ε > 0 and ε < 1
2(r+2)

. By

Lemma 3, there exists a sequence εi > 0 such that
∑

i εi < ∞ and
∑

i

||fi−id||{||z||<r}
εi

< ∞. Next,

there exists an N ∈ N such that
∑

i≥N εi < ε and
∑

i≥N
||fi−id||{||z||<r}

εi
< ε. (Note that this means

εi > ||fi−id||{||z||<r} for i ≥ N .) It suffices to show that the sequence fN ◦fN+1◦· · ·◦fj converges

uniformly on {||z|| ≤ r − ε}.

We proceed with strong induction.
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Base Case (j = N ): Notice that for (z, w) ∈ {||z|| < r}2,

||fN(z)− fN(w)|| ≤ ||fN(z)||+ ||fN(w)|| ≤ (ε+ ||z||) + (ε+ ||w||) ≤ 2(ε+ r) ≤ 2(2 + r).

Now by the Schwarz Lemma, we have for (z, w) ∈ {||z|| < r}2,

||fN(z)− fN(w)|| ≤ 2(r + 2)

(r − ||w||)
||z − w||.

For sake of notation, we write Sk in place of {||z|| < r −
∑k

N+1 εp}.

Strong Induction Hypothesis: For (z, w) ∈ S2
j ,

||fN ◦ · · · ◦ fj(z)− fN ◦ · · · ◦ fj(w)|| ≤ 2(r + 2)

(r −
∑j

N+1 εp − ||w||)
||z − w||.

We prove this for j + 1. First observe that

||fN ◦ fN+1 ◦ · · · ◦ fj+1 − fN ||Sj+1
≤

j∑
i=N

||fN ◦ · · · ◦ fi+1 − fN ◦ · · · ◦ fi||Sj+1
(3.1)

≤
j∑

i=N

2(r + 2)

(r −
∑i

N+1 εp − ||id||Sj+1
)
||fi+1 − id||Sj+1

by the strong I.H.(†)

=

j∑
i=N

2(r + 2)

εi+1 + · · ·+ εj+1

||fi+1 − id||Sj+1

≤
j∑

i=N

2(r + 2)

εi+1

||fi+1 − id||Sj+1

< 2(r + 2)ε

< 1.

(†Note that since εi+1 > ||fi+1 − id||{||z||<r} we have that (fi+1(z), id(z)) ∈ S2
i for z ∈ Sj+1 ⊆
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Si+1.)

Now since ||fN ◦ fN+1 ◦ · · · ◦ fj+1 − fN ||Sj+1
< 1, we have

||fN ◦ fN+1 ◦ · · · ◦ fj+1||Sj+1
< 1 + ||fN ||Sj+1

< 1 + ||id||Sj+1
+ ε

≤ r + 2.

Thus, for (z, w) ∈ S2
j+1,

||fN ◦ · · · ◦ fj+1(z)− fN ◦ · · · ◦ fj+1(w)|| ≤ ||fN ◦ · · · ◦ fj+1(z)||+ ||fN ◦ · · · ◦ fj+1(w)||

≤ ||fN ◦ · · · ◦ fj+1||Sj+1
+ ||fN ◦ · · · ◦ fj+1||Sj+1

< 2(r + 2)

Now, with the aid of the Schwarz Lemma, we have that for (z, w) ∈ Sj+1
2,

||fN ◦ · · · ◦ fj+1(z)− fN ◦ · · · ◦ fj+1(w)|| ≤ 2(r + 2)

(r −
∑j+1

N+1 εp − ||w||)
||z − w||.

This completes the induction.

Notice that in the course of the induction we have shown from (3.1) that

∞∑
i=N

||fN ◦ · · · ◦ fi+1 − fN ◦ · · · ◦ fi||{||z||≤r−ε} ≤ 1

since
∑∞

N+1 εk < ε. Thus sequence fN ◦ fN+1 ◦ · · · ◦ fj converges uniformly on {||z|| ≤ r − ε}.

We are now ready to prove Proposition 1.
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Proof. Let K be a compact set in U . Since K is compact there exist finitely many balls Bε1(p1),

. . . , Bεk(pk) such that K ⊆ ∪ki=1Bεi(pi) and ∪ki=1B2εi(pi) ⊆ U . Now by applying Proposition 3 it

is straightforward to see that for given i ∈ {1, . . . , k}, sequence f1 ◦ · · · ◦ fj converges uniformly

on compacta on B2εi(pi). Thus, for given i ∈ {1, . . . , k}, f1 ◦ · · · ◦ fj converges uniformly on

Bεi(pi). Therefore f1 ◦ · · · ◦ fj converges uniformly on K ⊆ ∪ki=1Bεi(pi).

Lemma 4. Let Ui be Runge domains in Cn. Let U be a domain in Cn. Let fi : Cn → Ui ⊆ Cn be a

sequence of biholomorphic mappings that converges (uniformly on compacta) to a biholomorphic

mapping f : Cn → U ⊆ Cn. Then U is Runge.

Proof. Let K be a compact in U and g be a holomorphic function defined on U . We show that g

can be approximated by polynomials on K. Notice that (g ◦ f) ◦ f−1
i →i→∞ g uniformly on K.

Thus for some (large) N ∈ N, (g ◦ f) ◦ f−1
N approximates g. Of course g ◦ f can be approximated

by polynomials on f−1(K) and f−1
N can be approximated by polynomials on K.

3.1.2 The Proof

We are now ready to prove Theorem 3. Throughout, we will use the notation F (j) to mean

Fj ◦ · · · ◦ F1. Analogously, we will use the notation A(j) and A−1(j).

Proof. First let us note that since
∑

i

√
(
r21
s1

) · · · ( r
2
i

si
) <∞ we have

∏
i
r2i
si

= 0, and so
∏

i ri = 0.

Without loss of generality it suffices to prove the assertion for p = 0. First we remark that the

attracting basin {Fj ◦ · · · ◦ F1 → 0} is a connected open set. Notice that since
∏

i ri = 0 and

supi{ri} ≤ 1, {Fj ◦ · · · ◦ F1 → 0} = ∪iF (i)−1(Bε(0)) and ∪iF (i)−1(Bε(0)) is the union of

connected open sets each containing the origin.

Define automorphisms Φj = A(j)−1F (j) and Ψj = F (j)−1A(j). Clearly Φj ◦ Ψj = idCn and

Ψj ◦ Φj = idCn for each j ∈ N. We show that sequence Φj converges on {Fj ◦ · · · ◦ F1 → 0} and

that sequence Ψj converges on Cn.
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Let C,C ′, ε′ be as in Lemma 2 for Γ = {Fi : i ∈ N}, α = infi{si}, and β = supi{ri}.

LetK be a compact in {Fj ◦· · ·◦F1 → 0}. Then there exists an l ∈ N such that F (l)(K) ⊆ Bε(0).

Now notice that for j > l:

||Φj+1(z)− Φj(z)|| ≤ ||A(j)−1(A−1
j+1Fj+1(F (j)(z))− F (j)(z))||

≤ s−1
1 · · · s−1

j · C||F (j)(z)||2 by Lemma 2

≤ s−1
1 · · · s−1

j · C · r2
j r

2
j−1 · · · r2

l+1 · ε2

≤ Cε2s−1
1 · · · s−1

l

(
r2
l+1

sl+1

)
· · ·
(
r2
j

sj

)
for z ∈ K.

Since
∑

i(
r21
s1

) · · · ( r
2
i

si
) < ∞, Φj converges uniformly on K. Thus Φj converges uniformly on

compacta to a holomorphic map Φ : {Fj ◦ · · · ◦ F1 → 0} → Cn.

Now we show sequence Ψj converges on Cn. Let K ′ be a compact in Cn. Since
∏

i ri = 0, there

exists an l ∈ N such that Al · · ·A1(K ′) ⊆ Bε′(0). We show that sequence Fl · · ·F1ΨjA
−1
1 · · ·A−1

l

= F−1
l+1 · · ·F

−1
j Aj · · ·Al+1 converges as j →∞. We see

Fl · · ·F1ΨjA
−1
1 · · ·A−1

l = F−1
l+1 · · ·F

−1
j Aj · · ·Al+1

= F−1
l+1 · · ·F

−1
j−1GjAj−1 · · ·Al+1

= F−1
l+1 · · ·F

−1
j−1Aj−1 · · ·Al+1Hj

= F−1
l+1Al+1Hl+2 · · ·Hj−1Hj

= Hl+1 · · ·Hj

where we define automorphisms Gi := F−1
i Ai and Hi := (Ai−1 · · ·Al+1)−1GiAi−1 · · ·Al+1. Now

notice Gi(z) = z + gi(z) where ||gi(z)|| ≤ C ′||z||2 on Bε′(0) by Lemma 2 and
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Hi(z) = z + hi(z) where hi = (Ai−1 · · ·Al+1)−1giAi−1 · · ·Al+1 so

||hi(z)|| ≤ C ′||(Ai−1 · · ·Al+1)−1||||Ai−1 · · ·Al+1||2||z||2 ≤ C ′
(
r2
l+1

sl+1

)
· · ·
(
r2
i−1

si−1

)
||z||2

on Bε′(0). Since ||Hi(z)− z|| ≤ C ′(
r2l+1

sl+1
) · · · ( r

2
i−1

si−1
)||z||2 on Bε′(0) it follows by Proposition 1 that

sequence H1 · · ·Hj converges uniformly on compacta on Bε′(0). Thus sequence Ψj converges

uniformly on K ′. Thus Ψj → Ψ for some holomorphic mapping Ψ : Cn → Cn.

Finally, we will show that Φ : {Fj ◦ · · · ◦ F1 → 0} → Cn is bijective by using Theorem 5.2 in

Dixon and Esterle [4]. To this end, we see that if z /∈ {Fj ◦ · · · ◦ F1 → 0} then the sequence

Φj(z) diverges: if z /∈ {Fj ◦ · · · ◦ F1 → 0} = ∪iF (i)−1(Bε(0)), then |F (j)(z)| ≥ ε for each j so

||Φj(z)|| = ||A(j)−1F (j)(z)|| ≥ ( 1
r1

) · · · ( 1
rj

)ε→j→∞ ∞. Thus {Fj ◦ · · · ◦ F1 → 0} is the largest

connected open set on which sequence Φj converges uniformly on compacta. Of course, Cn is the

largest connected open set on which sequence Ψj converges uniformly on compacta. Also note that

id = JΦj(0) → JΦ(0) = id, thus Φ is nondegenerate. Therefore by Theorem 5.2 in Dixon and

Esterle [4], Φ is injective. Similarly, Ψ is nondegenerate and thus by Theorem 5.2, image(Ψ) ⊆

{Fj ◦ · · · ◦F1 → 0}. Hence Cn = image(Φ ◦Ψ) = Φ(image(Ψ)) ⊂ Φ({Fj ◦ · · · ◦F1 → 0}). Thus

Φ is surjective.

Finally, applying the Lemma 4 to Ψj , we conclude Ψ(Cn) = {Fj ◦ · · · ◦ F1 → 0} is Runge.

As remarked earlier, the main distinction between the above Theorem and Wold [1] Theorem 4, is

that it is now possible that r
2
i

si
< 1 for infinitely many i.

3.2 On Containment Between Fatou–Bieberbach Domains

The following is a minor generalization of Lemma 1.2 from Rosay and Rudin [2].

Lemma 5. Suppose that ε > 0 and that

(i.) a1, . . . , am1 are points in a compact convex set K ⊆ Cn
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(ii.) b1, . . . , bm2 are points in Cn \K

(iii.) p and q are points in a hyperplane Π ⊆ Cn (of complex dimension n − 1) which does not

intersect K ∪ {b1, . . . , bm2}.

Then there is an automorphism (in particular, a shear) τ which moves p to q, fixes every ai, fixes

every bi, and moves no point of K by as much as ε.

Proof. See the corresponding proof of Lemma 1.2 in Rosay and Rudin [2] and notice that polyno-

mial g can additionally be chosen so that g(Λbi) = 0 (1 ≤ i ≤ m2).

Analogous to Corollary 1.3 from Rosay and Rudin [2], we have:

Lemma 6. If properties (i) and (ii) of Lemma 5 hold, and p, q are points in Cn\(K∪{b1, . . . , bm2}),

then some automorphism (in particular, some composition of two shears) moves p to q, fixes every

ai, fixes every bi, and moves no point of K by as much as ε.

Proof. There exist hyperplanes Π′ and Π′′, through p and q, respectively, which do not intersect

K ∪ {b1, . . . , bm2} and which are not parallel. Choose w ∈ Π′ ∩ Π′′ and apply Lemma 5 twice,

moving p to w and then w to q.

Lemma 7. (Pushing-Points Lemma) Suppose that ε > 0 and that

(i.) a1, . . . , am1 are points in a compact convex set K ⊆ Cn

(ii.) p1, . . . , pm2 , q1, . . . , qm2 are distinct points in Cn \K

Then there exists an automorphism (in particular, a composition of 2 ·m2 shears) which moves pi

to qi for each i ∈ {1, . . . ,m2}, fixes every ai, and moves no point of K by as much as ε > 0.

Proof. Use the previous lemma m2 times: let φi denote a composition of two shears such that

φi(qk) = qk for k < i, φi(pi) = qi, and φi(pk) = pk for k > i. Take φm2 ◦ φm2−1 ◦ · · · ◦ φ1.
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A variation of the above lemma appears in Forstnerič’s book [8, Corollary 4.12.7].

Lemma 8. Let U1, U2 ⊆ Cn be nonempty connected open sets and let f : U1 → U2 be a biholo-

morphic mapping. Suppose that U2 is Runge and suppose that V ⊆ U1 is a nonempty connected

open set that is Runge. Then f(V ) is Runge.

Proof. Let g : f(V ) → Cn be holomorphic. Write g = (g ◦ f) ◦ f−1. Of course, g ◦ f can be

approximated by polynomials on V and f−1 can be approximated by polynomials on U2.

We are now ready to prove Theorem 6.

Proof. For simplicity we will assume sets {Ωj} and {aj} are countably infinite, the other cases are

similar. Without loss of generality assume p = 0. And let Bε(0) ⊆ K1
j ⊆ K2

j ⊆ · · · be a compact

exhaustion of Ωj . To prove the assertion, we will construct an attracting basin and apply Theorem

3 (or Theorem 4 from [1]). By Dixon and Esterle [4] Corollary 5.3, the Fatou–Bieberbach domain

that we obtain is Runge. As the sequence of automorphisms to be applied is rather complicated, we

describe the automorphisms to be applied in stages where the set of functions in stage j is applied

after stage j − 1. We denote the composition of all automorphisms in stage j by Sj . Sj will have

the following properties:

(a) S1(K) ⊆ Bε(0)

(b) Sj(Sj−1 ◦ · · · ◦ S1(aj)) ∈ Bε(0)

(c) Sj|{b1,...,bl} = id|{b1,...,bl}

(d) for j > 1, Sj(Sj−1 ◦ · · · ◦ S1(∪ji=1K
j
i )) ⊆ Bε(0)

Each automorphism in the composition of Sj will satisfy the hypothesis of Wold [1] Theorem 4.

Thus, it is clear that Ω, the attracting basin that is constructed from the automorphisms is equal

to {z ∈ Cn : limi→∞ Si ◦ · · · ◦ S1(z) = 0}. Noting this, together with the above properties
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ensure that the constructed Fatou–Bieberbach domain satisfies the properties of the conclusion of

the assertion. In particular, since each Sj fixes {b1, . . . , bl}, {b1, . . . , bl} ⊆ Ωc.

Stage 1: Let r ∈ (0, 1) be small enough such that rK ⊆ Bε(0). Let δ ∈ (0, 1) be small enough that

(r + δ)2 < r − δ and r + δ < 1. Now, applying Corollary 4.12.4 from Forstnerič [8] and then the

above point-pushing lemma it is straightforward to see that, there exists φ1 ∈ Aut0(Cn) such that

(r − δ)||z|| ≤ ||φ1(z)|| ≤ (r + δ)||z||

on Bε(0), φ1(K) ⊆ Bε(0), and φ1|{b1,...,bl} = id|{b1,...,bl}. [To see this, apply Corollary 4.12.4 from

Forstnerič [8] to get automorphism τ1 such that

τ1 ≈ rI

on K and

τ1 ≈ I

on {b1, . . . , bl}. By a translation, we can assume without loss of generality τ1(0) = 0. By the

Schwarz lemma,

(r − ε′)||z|| ≤ ||τ1(z)|| ≤ (r + ε′)||z||

onBε(0). Now by the point-pushing lemma there is an automorphism τ2 such that τ2 ≈ I onBε(0),

τ2(0) = 0, and τ2 ◦ τ1|{b1,...,bl} = id|{b1,...,bl}. By the Schwarz lemma,

(1− ε′′)||z|| ≤ ||τ2(z)|| ≤ (1 + ε′′)||z||

on Bε(0). Thus

(1− ε′′)(r − ε′)||z|| ≤ ||τ2 ◦ τ1(z)|| ≤ (1 + ε′′)(r + ε′)||z||
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on Bε(0) and τ2 ◦ τ1(K) ⊆ Bε(0). Take φ1 = τ2 ◦ τ1. ]

Now we work on satisfying property (b). Using Forstnerič-Rosay [9] Theorem 2.3 and then the

above point-pushing lemma it is straightforward to see that, there exists ρ1 ∈ Aut0(Cn) such that

(r − δ)||z|| ≤ ||ρ1(z)|| ≤ (r + δ)||z||

onBε(0), ρ1◦φ1(a1) ∈ Bε(0), and ρ1◦φ1|{b1,...,bl} = id|{b1, . . . , bl}. [To see this, apply Forstnerič-

Rosay [9] Theorem 2.3 to get automorphism τ1 such that

τ1 ≈ rI

on Bε(0), τ1(φ1(a1)) ∈ Bε(0) \Brε(0), and

τ1 ≈ I

on {b1, . . . , bl}. Without loss of generality we can assume τ1(0) = 0. By the Schwarz lemma,

(r − ε′)||z|| ≤ ||τ1(z)|| ≤ (r + ε′)||z||

onBε(0). Now by the point-pushing lemma there is an automorphism τ2 such that τ2 ≈ I onBε(0),

τ2(0) = 0, τ2(τ1(φ1(a1))) = τ1(φ1(a1)), and τ2 ◦ τ1|{b1,...,bl} = id|{b1,...,bl}. By the Schwarz lemma,

(1− ε′′)||z|| ≤ ||τ2(z)|| ≤ (1 + ε′′)||z||

on Bε(0). Thus

(1− ε′′)(r − ε′)||z|| ≤ ||τ2 ◦ τ1(z)|| ≤ (1 + ε′′)(r + ε′)||z||

on Bε(0) and τ2 ◦ τ1(φ1(a1)) ∈ Bε(0). Take ρ1 = τ2 ◦ τ1. ]
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Thus S1 := ρ1 ◦ φ1 satisfies properties (a), (b), and (c) (and (d) vacuously.)

Stage j (for j ≥ 2): Let l1 ∈ N such that rl1(Sj−1◦· · ·◦S1)(Kj
1) ⊆ Bε(0). Since {b1, . . . , bl}∩Ω1 =

∅, we have {b1, . . . , bl}∩Sj−1◦· · ·◦S1(Ω1) = ∅. Now since {b1, . . . , bl}∩Sj−1◦· · ·◦S1(Ω1) = ∅

and Sj−1 ◦ · · · ◦ S1(Ω1) is Runge, by Wold [1] Lemma 4, there exists φ1 ∈ Aut(Cn) such that

φ1 ≈ id on Sj−1 ◦ · · · ◦ S1(Kj
1) and φ1({b1, . . . , bj}) ⊆ B( 1

r
)l1ε(0)c. Without loss of generality we

can assume φ1(0) = 0. By Forstnerič-Rosay [9] Theorem 2.3 and then the above point-pushing

lemma it is straightforward to see that, there exists ψ1 ∈ Aut0(Cn) such that

(r − δ)||z|| ≤ ||ψ1(z)|| ≤ (r + δ)||z||

on Bε(0) and ψ1 ◦ (rI) ◦ · · · ◦ (rI)︸ ︷︷ ︸
l1−1

◦(rφ1) = id|{b1,...,bl}.

Notice that ψ1 ◦ (rI) ◦ · · · ◦ (rI)︸ ︷︷ ︸
l1−1

◦(rφ1) satisfies property (c) and

ψ1◦(rI) ◦ · · · ◦ (rI)︸ ︷︷ ︸
l1−1

◦(rφ1)◦Sj−1◦· · ·◦S1(Kj
1) ⊆ Bε(0). We can do the same forKj

2 , K
j
3 , . . . , K

j
j .

This gives

T := ψj ◦ (rI) ◦ · · · ◦ (rI)︸ ︷︷ ︸
lj−1

◦(rφj) ◦ ψj−1 ◦ · · · ◦ ψ1 ◦ (rI) ◦ · · · ◦ (rI)︸ ︷︷ ︸
l1−1

◦(rφ1)

which satisfies properties (c) and (d).

Now we work on satisfying property (b). Using Forstnerič-Rosay [9] Theorem 2.3 and then the

above point-pushing lemma it is straightforward to see that, there exists ρj ∈ Aut0(Cn) such that

(r − δ)||z|| ≤ ||ρj(z)|| ≤ (r + δ)||z||
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on Bε(0), ρj ◦ T (aj) ∈ Bε(0), and ρj ◦ T |{b1,...,bl} = id|{b1, . . . , bl}. Thus

Sj := ρj ◦ ψj ◦ (rI) ◦ · · · ◦ (rI)︸ ︷︷ ︸
lj−1

◦(rφj) ◦ ψj−1 ◦ · · · ◦ ψ1 ◦ (rI) ◦ · · · ◦ (rI)︸ ︷︷ ︸
l1−1

◦(rφ1)

satisfies properties (a) (vacuously), (b) and (c) and (d).

We conjecture that if the word “Runge” is removed from Theorem 6 that the statement remains

true:

Conjecture 1. Let {Ωj} be a nonempty countable set of Fatou–Bieberbach domains in Cn such

that ∪jΩj 6= Cn. Let K be compact set that is polynomially convex. Suppose there exist ε > 0

and p ∈ Cn such that Bε(p) ⊆ ∩jΩj and Bε(p) ⊆ K. Let {aj} be a countable set in (∪jΩj)
c. Let

{b1, . . . , bl} be a nonempty finite set in (∪jΩj)
c and suppose {b1, . . . , bl} ∩ (∪j{aj} ∩ K) = ∅.

Then there exists a Fatou–Bieberbach domain Ω such that ∪jΩj ⊆ Ω, ∪j{aj} ⊆ Ω, K ⊆ Ω, and

{b1, . . . , bl} ⊆ Ωc.

Of course, Theorem 6 above shows that given a Runge Fatou–Bieberbach domain we can find a

strictly larger Runge Fatou–Bieberbach domain that contains it. We now record some properties

for containment in the other direction.

Lemma 9. Let U1, U2 ⊆ Cn be nonempty connected open sets and let f : U1 → U2 be a biholo-

morphic mapping. Suppose that U1 is Runge and suppose that V ⊆ U1 is a nonempty connected

open set that is non-Runge. Then f(V ) is non-Runge.

Proof. If f(V ) is Runge, then by Lemma 8, V = f−1(f(V )) is Runge, a contradiction.

Corollary 1. Every Runge Fatou–Bieberbach domain contains a proper Runge Fatou–Bieberbach

domain.

Proof. Let Ω be a Runge Fatou–Bieberbach domain. Let F : Cn → Ω be a biholomorphic map-

ping. Clearly F (Ω) is biholomorphic to Cn, F ◦ F (Cn) = F (Ω) ( Ω, and by Lemma 8, F (Ω) is
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Runge.

Corollary 2. Every Runge Fatou–Bieberbach domain contains a (proper) non-Runge

Fatou–Bieberbach domain.

Proof. It was shown in Wold [10] that a non-Runge Fatou–Bieberbach exists in Cn, say Ω′. Let Ω

be an arbitrary Runge Fatou–Bieberbach domain in Cn and let F : Cn → Ω be a biholomorphic

mapping. Then F (Ω′) ( Ω is a Fatou–Bieberbach domain and is non-Runge by the above lemma.

Corollary 3. Every non-Runge Fatou–Bieberbach domain contains a proper non-Runge Fatou–

Bieberbach domain.

Proof. Let Ω′ be a non-Runge Fatou–Bieberbach domain and let F : Cn → Ω′ be a biholomorphic

mapping. Consider the Fatou–Bieberbach domain F (Ω′). Of course F (Ω′) ( Ω′. If F (Ω′) is

non-Runge then we are done, so suppose F (Ω′) is Runge. Then by Corollary 1, F (Ω′) contains a

proper non-Runge Fatou–Bieberbach domain.

Rather surprisingly, asking whether a non-Runge Fatou–Bieberbach domains contains a Runge

Fatou–Bieberbach domain seems to be a hard question.

Conjecture 2. Every non-Runge Fatou–Bieberbach domain contains a (proper) Runge Fatou–

Bieberbach domain.

3.3 A New Construction

The following is a technical lemma needed in the upcoming proof.

Lemma 10. Let Ui ⊆ Cn (i ∈ N) be connected open sets with Bε(p) ⊆ Ui for each i ∈ N and

let Fi : Ui+1 → Ui be biholomorphic mappings. Suppose 0 < rj < 1 and ε > 0 such that

supi{ri} < 1 and ||Fj(z)− p|| ≤ rj||z − p|| on Bε(p). Then Ωp,ε
{Fj} is a nonempty connected open

set and Ωp,ε
{Fj} = Ωp,ε′

{Fj} for each ε′ ∈ (0, ε).
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Proof. The hypothesis implies that

oliminfj→∞(F (j + i, j))−1(Bε(p)) ⊆ oliminfj→∞(F (j + i+ 1, j))−1(Bε(p))

and so Ωp,ε
{Fj} is the union of nested connected open sets, and is therefore connected.

Clearly Ωp,ε′

{Fj} ⊆ Ωp,ε
{Fj}. For the other direction, note that there is an l ∈ N such that ε′ >

(sup{rj})lε. Thus

Fi ◦ Fi+1 ◦ · · · ◦ Fi+l−1(Bε(p)) ⊆ Bε′(p)

for each i ∈ N. Hence(Fi ◦ Fi+1 ◦ · · · ◦ Fi+l−1)−1(Bε′(p)) ⊇ Bε(p) for each i ∈ N. It follows that

Ωp,ε′

{Fj} ⊇ Ωp,ε
{Fj}

We now prove Theorem 7.

Proof. Without loss of generality assume p = 0.

Using the hypothesis and Lemma 1, we see

||F−1
j Aj−z|| = ||(A−1

j Fj−I)(F−1
j Aj)(z)|| ≤ cj||F−1

j Ajz||2 ≤ cj
1

s2
j

r2
j ||z||2 ≤ cj

[supi{ri}]2

[infi{si}]2
||z||2

on Bε′′(0) for some small ε′′ > 0.

Thus by shrinking ε, allowed by the above lemma, we can without loss of generality assume that

||F−1
j Aj − z|| ≤ Dcj||z||2

on Bε(0) where D := [supi{ri}]2
[infi{si}]2 > 0.

Define biholomorphic mappings Φj : Uj+1 → Cn by Φj = A−1
j · · ·A−1

1 F1 · · ·Fj and Ψj : Cn →
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Uj+1 by Ψj = F−1
j · · ·F−1

1 A1 · · ·Aj. (Note that Ψj is everywhere defined since U1 = Cn.) We

show that there is a subsequence of Φj that converges on Ωp,ε
{Fj} and diverges on

∪∞k=1 lim infi(F1 ◦ F2 ◦ · · · ◦ Fi)−1(Cn \ B 1
k
(0)). We also show that there is a subsequence of

Ψj that converges on Cn.

First we show Φj is uniformly bounded on Bε(0). We write A−1
i Fi = z + fi(z) where ||fi(z)|| ≤

ci||z||2 on Bε(0). Then

Φj = A−1
j · · ·A−1

1 F1 · · ·Fj

= A−1
j · · ·A−1

2 (I + f1)F2 · · ·Fj

= A−1
j · · ·A−1

2 F2 · · ·Fj + A−1
j · · ·A−1

2 f1F2 · · ·Fj
...

= z + fj +

j−1∑
i=1

A−1
j · · ·A−1

i+1fiFi+1 · · ·Fj.

Thus for z ∈ Bε(0),

||Φj(z)|| ≤ ||z||+ ||fj(z)||+
j−1∑
i=1

||A−1
j · · ·A−1

i+1fiFi+1 · · ·Fj||

≤ ε+ cj||z||2 +

j−1∑
i=1

ci(
r2
i+1

si+1

) · · · (
r2
j

sj
)||z||2

= ε+ (cj +

j−1∑
i=1

ci(
r2
i+1

si+1

) · · · (
r2
j

sj
))||z||2

< M for some M > 0.

Next we show Φj is locally uniformly bounded on Ω0,ε
{Fj}. Let K ⊆ Ω0,ε

{Fj} be a compact. By

compactness there is an l ∈ N such that K ⊆ oliminfi→∞(F (i + l, i + 1))−1(Bε(0)). Thus, for j
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sufficiently large we have

||Φj+l(z)|| = ||A−1
j+l · · ·A

−1
j+1(A−1

j · · ·A−1
1 F1 · · ·Fj)Fj+1 · · ·Fj+l(z)||

≤ 1

sj+l
· · · 1

sj+1

· sup
w∈Bε(0)

||A−1
j · · ·A−1

1 F1 · · ·Fj(w)||

<
1

sj+l
· · · 1

sj+1

M

≤
(

1

infi{si}

)l
M.

This shows that Φj is locally uniformly bounded on Ω0,ε
{Fj}. Therefore by Montel’s Theorem there

is a subsequence Φj(j′) that converges uniformly on compacta on Ω0,ε
{Fj}.

Define dj = Dcj. Choose α > 0 such that
√
α < ε and

√
α < δ and

[1 + supk(dk +
∑k−1

i=1 di(
r2i+1

si+1
) · · · ( r

2
k

sk
))]α <

√
α. We show Ψj is uniformly bounded on Bα(0).

We write F−1
i Ai = z + f̃i(z) where ||f̃i(z)|| ≤ di||z||2 on Bε(0). Then

Ψj = F−1
j · · ·F−1

1 A1 · · ·Aj

= F−1
j · · ·F−1

2 (F−1
1 A1)A2 · · ·Aj

= F−1
j · · ·F−1

2 A2 · · ·AjH1

= Hj · · ·H2H1

where Hi = (Ai+1 · · ·Aj)−1(F−1
i Ai)(Ai+1 · · ·Aj). Now notice

||Hi(z)|| = ||z + (Ai+1 · · ·Aj)−1f̃i(Ai+1 · · ·Aj)||

≤ ||z||+ di(
r2
i+1

si+1

) · · · (
r2
j

sj
)||z||2 on Bε(0).

27



So for z ∈ Bα(0),

||Ψj(z)|| = ||Hj · · ·H1(z)||

≤ sup ||Hj · · ·H2((α + d1(
r2

2

s2

) · · · (
r2
j

sj
)α)B1(0))||

≤ sup ||Hj · · ·H3((α + d1(
r2

2

s2

) · · · (
r2
j

sj
)α + d2(

r2
3

s3

) · · · (
r2
j

sj
)α)B1(0))|| by our choice of α

...

≤ [1 + dj +

j−1∑
i=1

di(
r2
i+1

si+1

) · · · (
r2
j

sj
)]α

≤
√
α < δ.

Next we show Ψj is locally uniformly bounded on Cn. Let K ′ ⊆ Cn be a compact. By compact-

ness, there exists an l′ ∈ N such that (supi{ri})l
′
K ′ ⊆ Bα(0). Thus, we have for z ∈ K ′,

||Ψj+l′(z)|| = ||F−1
j+l′ · · ·F

−1
j+1(F−1

j · · ·F−1
1 A1 · · ·Aj)Aj+1 · · ·Aj+l′(z)||

≤ sup ||F−1
j+l′ · · ·F

−1
j+1(F−1

j · · ·F−1
1 A1 · · ·Aj)(Bα(0))||

≤ sup ||F−1
j+l′ · · ·F

−1
j+1(Bδ(0))|| < Bl′ .

This shows Ψj is locally uniformly bounded on Cn. Therefore by Montel’s Theorem there is a

subsequence Ψj(j′(j′′)) that converges uniformly on compacta on Cn.

Of course, Φj(j′(j′′)) converges uniformly on compacta on Ω0,ε
{Fj}. Let FB denote the connected

component containing 0 of the largest open set where Φj(j′(j′′)) converges uniformly on compacta.

Obviously, Cn is the largest open set on which Ψj(j′(j′′)) converges uniformly on compacta. By

Dixon and Esterle [4] Theorem 5.2, it follows that FB is biholomorphic to Cn and that FB ⊆

lim supi Ui .

If each Ui is Runge, then applying Lemma 8 to Ψj(j′(j′′)), we conclude that FB is Runge.
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We have shown that Ω0,ε
{Fj} ⊆ FB. It remains to show that

FB ⊆ lim supUi \ ∪∞k=1 lim infi(F1 ◦ F2 ◦ · · · ◦ Fi)−1(Cn \ B 1
k
(0)). It suffices to show that

Φj(j′(j′′)) diverges on ∪∞k=1 lim infi(F1 ◦ F2 ◦ · · · ◦ Fi)−1(Cn \ B 1
k
(0)). If z ∈ ∪∞k=1 lim infi(F1 ◦

F2 ◦ · · · ◦ Fi)−1(Cn \B 1
k
(0)), then z ∈ lim infi(F1 ◦ F2 ◦ · · · ◦ Fi)−1(Cn \B 1

k
(0)) for some k; so

for large j, ||Φj(z)|| = ||A−1
j · · ·A−1

1 F1 · · ·Fj(z)|| ≥ ( 1
rj

) · · · ( 1
r1

) 1
k
→j→∞ ∞.

Because the reverse semi-basin of attraction is defined in terms of oliminf, it is possible that there

are points that are in the “basin” infinitely often, but not eventually. In order to specify the semi-

basin of attraction as much as possible, and include some points that are infinitely often in the

“basin” we introduce the following notion:

Definition 8. Let Ui ⊆ Cn (i ∈ N) be connected open sets with Bε(p) ⊆ Ui for each i ∈ N and let

Fi : Ui+1 → Ui be biholomorphic mappings. Let {nj} be a strictly increasing sequence of positive

integers. We define the reverse semi-basin of attraction for a ball Bε(p) with respect to {nj} to be

{nj}Ω
p,ε
{Fj} = oliminfj→∞F

−1
nj

(Bε(p)) ∪ oliminfj→∞(Fnj−1 ◦ Fnj)−1(Bε(p)) ∪ · · ·

= ∪∞i=0oliminfj→∞(F (nj, nj − i))−1(Bε(p))

where F (nj, nj − i) = Fnj−i ◦ Fnj−i+1 ◦ · · · ◦ Fnj .

Note we use the convention that Fj is the identity when j ≤ 0.

The lemma below is a mild generalization of Lemma 10 with a near identical proof.

Lemma 11. Let Ui ⊆ Cn (i ∈ N) be connected open sets with Bε(p) ⊆ Ui for each i ∈ N and let

Fi : Ui+1 → Ui be biholomorphic mappings. Let {nj} be a strictly increasing sequence of positive

integers. Suppose 0 < rj < 1 and ε > 0 such that supi{ri} < 1 and ||Fj(z) − p|| ≤ rj||z − p||

on Bε(p). Then {nj}Ω
p,ε
{Fj} is a nonempty connected open set and {nj}Ω

p,ε
{Fj} = {nj}Ω

p,ε′

{Fj} for each

ε′ ∈ (0, ε).
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Theorem 8. Let Ui ⊆ Cn (i ∈ N) be connected open sets with Bε(p) ⊆ Ui for each i ∈ N and

let Fi : Ui+1 → Ui be biholomorphic mappings. Let U1 = Cn. Let {nj} be a strictly increasing

sequence of positive integers. Suppose that there are 0 < sj ≤ rj < 1, cj > 0, and ε > 0 such that

sj||z − p|| ≤ ||Fj(z)− p|| ≤ rj||z − p|| on Bε(p) for all j ∈ N

and

||A−1
j (Fj(z)− p)− (z − p)|| ≤ cj||z − p||2 on Bε(p) for all j ∈ N.

Also assume supi{ri} < 1, infi{si} > 0, and supk(ck +
∑k−1

i=1 ci(
r2i+1

si+1
) · · · ( r

2
k

sk
)) < ∞. Further,

suppose there exists δ > 0 such that for each k ∈ N, there is a Bk <∞ such that

sup
z∈Bδ(p)
i∈N

||F−1
ni
◦ · · · ◦ F−1

ni−(k−1)(z)|| < Bk.

Then there exists a domain FB that is biholomorphic to Cn such that

{nj}Ω
p,ε
{Fj} ⊆ FB ⊆ lim sup

i
Uni \ ∪∞k=1 lim inf

i
(F1 ◦ F2 ◦ · · · ◦ Fni)−1(Cn \B 1

k
(p)).

Additionally, if each Ui is Runge, we may arrange that domain FB is Runge.

Proof. The proof is analogous to the one above, replacing Ψj by Ψnj and Φj by Φnj .

Corollary 4. Let Ui ⊆ Cn (i ∈ N) be connected open sets with Bε(p) ⊆ Ui for each i ∈ N and

let Fi : Ui+1 → Ui be biholomorphic mappings. Let U1 = Cn and {nj} be a strictly increasing

sequence of positive integers. Assume 0 < s ≤ r < 1 with r2 < s, and ε > 0 such that

s||z− p|| ≤ ||Fj(z)− p|| ≤ r||z− p|| on Bε(p) for all j ∈ N. Also suppose there exists δ > 0 such

that for each k ∈ N, there is a Bk <∞ such that

sup
z∈Bδ(p)
i∈N

||F−1
ni
◦ · · · ◦ F−1

ni−(k−1)(z)|| < Bk. (3.2)
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Then there exists a domain FB that is biholomorphic to Cn such that

{nj}Ω
p,ε
{Fj} ⊆ FB ⊆ lim sup

i
Uni \ ∪∞k=1 lim inf

i
(F1 ◦ F2 ◦ · · · ◦ Fni)−1(Cn \B 1

k
(p)).

Additionally, if each Ui is Runge, we may arrange that domain FB is Runge.

Proof. Apply Lemma 2 to Theorem 8.

Theorem 9. For each Runge Fatou–Bieberbach domain Ω1, there exist Runge Fatou–Bieberbach

domains Ω,Ω2,Ω3,Ω4, . . . ⊆ Cn such that Ω1 ) Ω2 ) · · · and Ω ⊆ ∩iΩi.

Proof. Let Ω1 be a Runge Fatou–Bieberbach domain in Cn. Let p ∈ Ω1. Without loss of generality

assume p = 0. There exists ε > 0 such that Bε(0) ⊆ Ω1. Let δ > 0 be small enough so that

(1
2

+ δ)2 < (1
2
− δ). Now since Ω1 is Runge, there exists a biholomorphic map f : Ω1 → Cn such

that

(
1

2
− δ)||z|| < ||f(z)|| < (

1

2
+ δ)||z||

on Bε(0). [To see this, notice that since Ω1 is Runge, there exists a biholomorphic map φ : Ω1 →

Cn such that φ is close to the identity map id on Bε(0), and without loss of generality φ(0) = 0.

(See for instance the proof of Wold [1] Lemma 4.) Let f := 1
2
φ.] For each i ∈ N, let Ωi :=

f−1 ◦ · · · ◦ f−1︸ ︷︷ ︸
i

(Cn). Clearly, each Ωi is Runge. Notice by construction that Ω1 ) Ω2 ) Ω3 ) · · · .

Now let Fi = f |Ωi and ni = i for each i ∈ N. Note that (3.2) from Corollary 4 is satisfied since for

fixed k, F−1
j+k ◦ · · · ◦F

−1
j+1(Bε(0)) is the same for every j. Now apply Corollary 4. By construction,

lim supi Ωi ⊆ ∩iΩi.

Conjecture 3. For each non-Runge Fatou–Bieberbach domain Ω1, there exist non-Runge Fatou–

Bieberbach domains Ω2,Ω3, . . . ⊆ Cn and a Fatou–Bieberbach domain Ω such that Ω1 ) Ω2 )

· · · and Ω ⊆ ∩iΩi.
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Conjecture 4. Suppose Ω1 ⊇ Ω2 ⊇ Ω3 ⊇ · · · are (non-Runge) Fatou–Bieberbach domains such

that Bε(p) ⊆ ∩iΩi for some p ∈ Cn and ε > 0. Then int(∩iΩi) is a Fatou–Bieberbach domain.
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4. CONCLUSION

In conclusion, we have demonstrated the importance of the Runge property in a number of results.

We have shown that given a Runge Fatou–Bieberbach domain there exists one strictly larger such

that infinitely many points can be prescribed to be included in the domain. We have given a precise

convergence result for composition of maps on the right-hand side. We have generalized Wold

[1] Theorem 4. And we have given a new type of contruction for Fatou–Bieberbach domains and

demonstrated its usefulness. And we hope that the conjectures provided herein will inspire future

research.
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