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ABSTRACT

How laminar flow interacts with distributed roughness has yet to be described in a cohesive

fashion. To advance theoretical efforts, a preliminary model inspired by experimental results is

proposed here and evaluated. Significant evidence suggests distributed roughness fields generate a

‘shielding’ effect that reduces the impact of individual roughness elements on the flow. One way to

model shielding is to create an effective surface which reduces the apparent height of the roughness

elements. In this thesis, possible effective surfaces are coupled with different wall boundary condi-

tions. These are analyzed using triple-deck theory. The results are examined for their effectiveness

at reproducing results from a full distributed roughness configuration. Results from this effort have

discounted no-shear as a possible boundary condition. Furthermore, a simplified imposed-slip ve-

locity model demonstrates the strong dependence of the model’s success upon matching actual

in-plane velocity values where the effective surface replaces the control geometry.
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1. INTRODUCTION

Boundary layer transition is an important field of study in aerodynamics. Whether a boundary

layer is laminar or turbulent has a large impact on vehicle performance due to increases in both

surface drag and heating. These increases can happen suddenly when imperfections on an aerody-

namic body cause unexpected transition. Understanding how boundary layers are destabilized and

become turbulent enhances engineers’ ability to design for realistic flight conditions. Accurately

modeling real world scenarios, such as roughness present on a wing, requires in-depth research on

the various paths to transition.

Historical understanding of boundary layer transition mechanisms was limited to what was

described by linearized stability theory and what was not. Linear stability theory utilizes the Orr-

Sommerfeld equation, which considers how infinitesimal disturbances in a parallel flow grow or

decay. While powerful, the Orr-Sommerfeld equation is limited by the assumptions imposed dur-

ing its derivation. Larger perturbations of the undisturbed ‘basic state’ flow can bypass the mech-

anisms predicted by linear theory and cause early transition. The distinction between a linear

stability regime and a bypass regime was augmented by the introduction of the idea of transient

growth (Fig. 1.1). Transient growth analytically attributes the brief algebraic growth and sub-

sequent exponential decay of disturbance energy to the superposition of non-orthogonal, stable

modes [3]. The transition process is initiated by receptivity, which describes the process by which

disturbances that are present in the environment are introduced into the boundary layer. This is the

initial value portion of the transition problem.

A common environmental disturbance found on aerodynamic vehicles is surface roughness.

Surface roughness can be broken up into several different categories: 2D (spanwise invariant)

roughness such as steps between panels, isolated 3D discrete roughness elements (DREs), and

distributed 3D roughness. For 2D roughness and DREs, transition can be empirically captured

through a roughness-based Reynolds number Rekk = kU(k)/ν, where k is the roughness height

and U(k) is the undisturbed velocity at the height of the roughness [4]. However, for distributed
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Figure 1.1: Transition Roadmap (Reprinted from [1])

roughness, no good models or correlations exist.

Unlike distributed roughness, the transition mechanisms involving 2D and 3D isolated rough-

ness are somewhat well understood. The process begins with receptivity, where the roughness

elements set the amplitude of the disturbances introduced into the flow. The presence of 2D rough-

ness greatly amplifies the existing Tollmien-Schlichting (TS) waves through inflectional velocity

profiles in the separated region immediately downstream of the element. This can cause premature

transition [5]. DREs affect transition through a different mechanism. Close examination of the

vortex structure caused by a DRE reveals a horseshoe vortex wrapping around the DRE. As Rekk

exceeds 300, secondary hairpin vortices are shed from the unsteady shear layer immediately above

the separated region behind the roughness element [5]. These vortices move high-speed fluid into

the low-speed regions, and vice-versa, contributing to a ‘lift-up’ mechanism that increases dis-

turbance energy, even if the vortices themselves are stable. This growth in disturbance energy is

captured in the linear growth predicted by transient growth theory [6].

The mechanisms responsible for transition due to distributed 3D roughness elements are less

apparent. While many attempts have been made to find the connection between predictive models

for discrete roughness and distributed roughness, the two differ greatly because the boundary layer
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does not interact with single roughness elements in isolation when encountering a roughness field.

Evidence suggests that linear superposition of the effects of individual roughness features is not

possible; this is one of the fundamental challenges of distributed roughness.

Close examination of distributed roughness to further investigate other possible mechanisms

presents several difficulties for both experimentalists and computationalists. Examining flow very

near the roughness field requires unconventional experimental methods or prohibitively high com-

putational costs for direct numerical simulations. The overall problem is further complicated by

the large parameter space that is needed to fully characterize randomly rough surfaces. Develop-

ing a simpler computational model would aid in understanding how laminar flow interacts with

distributed roughness fields by identifying important parameters and simplifying calculations of

distributed roughness elements. A review of distributed roughness literature provides a possible

modeling method.

1.1 Background

An early theoretical attempt to explain premature transition due to distributed roughness was

made by Singh and Lumley [7]. They considered roughness that had small heights and slopes and

calculated the effect of the roughness on the mean flow. Their work indicated the existence of

an inflection point within the viscous region very near the wall. However, the outer profile was

deemed more stable than a smooth-wall flow due to the boundary layer’s higher curvature near

the critical layer. To explain experimental evidence that distributed roughness is destabilizing and

promotes transition, they argued there must be some wavenumbers that confer energy to the flow

at wavelengths which are destabilizing for the profile. This work became inspiration for several

other experiments that followed which searched for the predicted inflection point.

Leventhal and Reshotko [8] experimented on distributed roughness fields by measuring above

sheets of sandpaper roughness. Inspired by Singh and Lumley, their primary interest was investi-

gating if a mean profile change was responsible for the premature transition caused by distributed

roughness. The sheets of sandpaper had leading edge Rekk values of 23 and 192 for the fine and

coarse sandpaper, respectively. The fine sandpaper did not cause transition and the boundary lay-
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ers above the field were easily fit to a Blasius boundary layer profile. The first few measurements

above the coarser roughness could also be fit with a Blasius boundary layer if the no-slip surface

was adjusted to lie within the roughness heights. However, transition did occur at downstream

stations over the roughness field at a Rex much sooner than predicted by linear theory and in the

free-roughness tests. This indicates that different mechanisms were responsible for transition for

the fine- and course-sandpaper tests. Measurements of growing frequencies that lay below the

neutral curve were later identified as evidence of transient growth [3].

Pursuing an alternate explanation for distributed roughness effects, Kendall [9] examined the

impact of several types of roughness (discrete and distributed) on mean velocity profiles. By mea-

suring the velocity deficit in the wake behind various combinations of roughness elements, he

attempted to find support for the idea of linearly superposing roughness wakes to describe the ef-

fect of distributed roughness. These experiments were performed on roughness elements that were

small compared to the boundary layer thickness but had sufficiently large Rekk that they could

accelerate transition. He presented several important findings. First, he noted that the presence of

ordered distributed roughness surrounding a DRE reduced the velocity deficit measured aft of the

elements. He attributed this effect to the wakes of the distributed roughness sheltering the DRE.

Second, when measuring profiles directly above distributed roughness, he noted a displacement of

the fluid all along the field. When measuring above the ordered distributed roughness field, the

boundary layer could be represented by a Blasius profile shifted outwards. The shift was larger

than could be accounted for by the average volumetric presence of the distributed roughness. Fi-

nally, after calculating the stability of the mean boundary layer immediately behind the distributed

roughness field, it was shown to be more unstable to TS waves than a Blasius boundary layer,

however the profile quickly returned to a Blasius profile downstream of the field.

Tadjfar et al. [10] used laser anemometry to study flow near the wall around the same ordered

roughness array used by Kendall [9]. They were seeking evidence of more efficient momentum

transfer to explain the early transition. In their analysis, they describe the boundary layer as broken

into two regions: the outer portion of the boundary layer which did not change in relation to
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its position above the roughness array, and an inner portion of the profile that did change. In

their calculation of shape factor, they linearly extrapolated the inner portion of the profile, and

found that the boundary layer origin lay anywhere between 50-90% of the roughness height. They

saw repeatable momentum transfer patterns, likely due to the ordered nature of the distributed

roughness array they used. Tadjfar et al. state that there was no evidence found for TS instability

waves in their experiment.

Corke, Bar-Sever, and Morkovin [11] performed an experiment designed explicitly to observe

enhanced TS wave growth, using distributed roughness in regions where Reδ∗ > Reδ∗,crit. They

placed a large field of distributed roughness slightly recessed into the wall to prevent the lip of

the roughness from triggering 2D transition mechanisms. After extensive hot-wire measurements

and smoke-wire visualization tests, they concluded that the distributed roughness does enhance the

growth of TS waves, although no inflection point near the roughness was observed. They attributed

this growth the low-inertia fluid trapped in the roughness valleys having a higher susceptibility to

freestream disturbances. Interestingly, they could not correlate the initial onset of turbulent spots

with the spanwise position of the highest roughness peaks in the field.

More recently, Downs et al. [12] examined small patches of distributed roughness in the inter-

est of finding evidence of transient growth. The roughness field was examined at three different

Rekk configurations, with the lower two (Rekk = 164, 227) remaining laminar and the highest

(Rekk = 301) becoming turbulent. All cases exhibited evidence of transient growth in the distur-

bance energy. The transitional case did not exhibit evidence of transition due to TS waves, unlike

the Corke et al. experiment [11]. However, the type of distributed roughness may have impacted

this, as the roughness used by Downs et al. had a much smaller stream- and spanwise extent.

Drews [13] conducted a follow-up study to Downs et al. [12] using DNS and examined vortex

structures in the near field wake of the roughness. After matching the results found by Downs et al.,

Drews investigated some unusual geometry configurations. First, he replaced geometry with nega-

tive heights with a surface that allowed velocity slip at the y = 0 plane. When comparing the new

geometry with velocity measurements from the original velocity at the same height, he found there
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was negligible difference. Additionally, disturbance results downstream of the roughness matched

well with the original results. Simulating only the tallest roughness elements (removing the small-

est roughness peaks and all valleys) caused disturbance energy levels to increase as compared to

the full roughness geometry, with higher growth rates immediately downstream of the roughness.

This is surprising because a theory built on linear superposition of roughness effects would predict

the disturbance energies to decrease. Finally, he found that superposing different roughness to-

gether did not yield correct quantitative results, although qualitatively the results matched the total

roughness configuration.

An experiment by Kuester and White [14] looked into the reduction of disturbance energy more

closely, and provided more concrete measurements for distributed roughness’ effects on stability.

They measured a slight delay in transition location in the presence of distributed roughness. Addi-

tionally, they measured transient growth in the wake of the distributed roughness, and found that

when a discrete roughness element was placed in the field, the total disturbance energy measured

was less than the disturbance energy measured behind only the DRE. By decomposing the distur-

bance energy into different modes based on DRE spacing, they found that the first three modes

contained less energy. However, the shorter modes contained more energy due to the increased

receptivity of distributed roughness. They used this to suggest that the delay in transition location

could not be due solely to a displacement of the boundary layer, but also an interaction of the wakes

of the roughness elements.

McMillan et al. [15] performed a follow-up experiment using higher amplitude distributed

roughness. The Rekk value of the field (based on the highest peak) was 464, significantly higher

than the Downs et al. [12] and Kuester and White [14] experiments. They found that a DRE placed

among a distributed roughness field could attain an Rekk of 424 without causing transition, as

opposed to the commonly accepted critical value of 334 [4] (when the roughness height to diameter

ratio is taken into consideration [16]). This dramatic difference in predicted transition height for

the DRE indicates that a strong ‘shielding’ effect exists, where the presence of small amplitude

roughness appears to actually reduce the transitional effects of larger amplitude roughness.
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1.2 Thesis Objective

The experiments by Kendall [9], Drews [13], Kuester and White [14], and McMillan et al. [15]

all demonstrated some consequence of shielding. This counterintuitive effect has rendered even

empirical predictors of transition, such as Rekk, unreliable, and highlights researchers’ inadequate

understanding of distributed roughness effects. Continued experimental and computational efforts,

while valuable, are expensive and slow due to the problem’s large parameter space. The full

parameter space needs further exploration because, as shown in the literature review given above,

different types of distributed roughness cause transition via different mechanisms. Developing

an analytical model would hopefully capture the effects of distributed roughness and lend some

understanding to why roughness fields produce a shielding effect on discrete roughness elements.

An obvious first task for this effort is modeling the base flow using as simple of a method as

possible. While DNS methods can produce a base flow for roughness fields, the computational

cost is too great to be applied to a significant number of roughness fields. Fortunately, the same

experiments which demonstrate the shielding effect also present a possible simplifying process.

The experiments by Leventhal and Reshotko [8], Kendall [9], and Tadjfar et al. [10] all present

some measurements where a new effective origin was used, shifted away from the original, smooth

wall location. By shifting the boundary layer out from the original mean surface, DREs located

within the roughness field would have a reduced effect on the mean flow due to their smaller

apparent height, as evidenced in the McMillan et al. experiment [15]. This research examines how

an ‘effective’ surface could be used in modeling distributed roughness fields.

The goal of this research is to create a reduced-order, analytical model that describes how lami-

nar boundary layers interact with randomly distributed roughness fields. Several different boundary

conditions are examined and paired with different effective surfaces to modify 2D random rough-

ness strips. The different variations of the model presented in this thesis will be evaluated on their

performance with regards to three criteria. The model must

1. correctly predict boundary layer quantities above the effective surface, where the highest
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peaks in the roughness field remain exposed. The exposed geometry is presumably respon-

sible for eventual transition. Therefore, correctly modeling flow over it is of greater interest

in any future transition models.

2. be capable of handling arbitrary, rough, 3D surfaces. Many models only consider wavy walls

or similarly small-amplitude, periodic fields that don’t resemble real roughness such as that

found on a wing.

3. handle the analysis of any roughness patch with significantly less computational cost than a

DNS of the same field.

To meet the first goal, the quantitative success of the model is judged solely where the real

geometry lies exposed above the effective surface. To evaluate quantitative success, all models

will be tested and compared to the true geometry using triple-deck theory, which easily meets the

computational cost requirements of the third goal. However, the limitations placed on geometry

that is appropriate for triple-deck analysis makes it impossible to fully meet the second goal of

handling arbitrarily rough surfaces. The boundary conditions and surfaces are instead considered

for their applicability to a 3D scenario. Triple-deck is not advocated as an eve
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2. MODELING

The main objective of this thesis is to examine the performance of different boundary con-

ditions and effective surfaces for a model of 2D boundary layer flow over distributed roughness.

Given a specific configuration, the final model should replicate the ‘shielding’ phenomenon by

reducing the effect of large DREs set among small amplitude distributed roughness. To test the

effective surface choices, a large number of random, 2D roughness strips are created and analyzed

under numerous effective surface models.

2.1 Parameterization Of Roughness Geometry

Distributed roughness presents a challenging problem partly due to the large parameter space

that describes it. It is impossible to predict the exact shape of roughness in a real-world scenario.

Therefore this thesis considers the statistical description of the effective surface models’ perfor-

mance over a large number of random roughnesses. Following the method used by Kuester and

White, a 2D roughness strip with height distribution F (x) is created using a superposition of cosine

waves with randomly generated coefficients [14].

F (x) =
h

max(| F (x) |)

N−1∑
n=1

An cos(
2πnx

λdist
+ φn) (2.1)

The An coefficients are generated from a standard normal distribution with a mean of 0 and a

standard deviation of 1. The φn coefficients are selected from a uniformly random distribution

between 0 and π. The normalizing factor h/max(| F (x) |) is used to control the height of the

roughness to test the model on progressively steeper roughness.

The distributed roughness geometry is constrained to remain firmly within the bounds sug-

gested by classical triple-deck theory, which is used to evaluate the models and will be covered

in detail in chapter 3. The entire length of the distributed roughness was constrained to be O(1)

and the height limited to O(1) as well. The number of modes, N , was selected as 3 for this study.

A height limit was then enforced to avoid any separation bubbles. To maintain the validity of the
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Figure 2.1: Geometry Configurations.

triple-deck equations, it is critical to keep the separation region much smaller than the scale of the

roughness. To respect this limit safely, separation was completely avoided.

Admittedly, this 2D, small-scale roughness is far from the coarse roughness of past experi-

ments. However, in the context of the present model, it is useful for evaluating the success of

the various effective surfaces and boundary conditions. Future models will need to capture more

realistic random roughness.

2.2 Surface Modeling

To create effective surfaces as suggested by the literature (Leventhal and Reshotko [8], Tadjfar

et al. [10], Drews [13]) in a simple fashion, the amplitude of the cosine waves that form the real

geometry are reduced by a scaling factor (i.e. An/w). This gives control over the shape of the

effective surface through one parameter w, which allows the effective surface to move between the

bounds of matching the real geometry (w = 1) and a flat surface at y = 0 above any region of

negative geometry (w →∞). A range of configurations are shown in figure 2.1.

This method is easily extensible to 3D roughness formed in the same way (using sines and

cosines). Additionally, truly random geometry which is not initially formed using this method can
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be approximated using a Fourier transform to extract the wavelengths that form the geometry. The

more modes used, the better the approximation.

Wherever the true rough surface is exposed, the no-slip boundary condition is applied. Model

boundary conditions are imposed where the effective surface is above the real geometry. The three

different candidate boundary conditions are considered on the effective surface: no-shear, no-slip,

and ‘imposed-slip’, which are expanded upon below.

2.2.1 No-Shear

The first boundary condition considered is no-shear imposed along the effective surface (de-

noted as Y = F ∗(x)).
∂u

∂Y
|x,Y=F ∗(x) = 0 (2.2)

This is similar to an investigation by Drews using DNS [13] which covered the negative geom-

etry and allowed slip to occur at the new surface. This approach reflects others’ experimental

observations that negative geometry has much less of an impact on flow that positive geometry.

This seems to indicate that the fluid is largely unaffected by geometry below the effective surface,

which can be captured best by a no-shear condition. Above the local valleys, the fluid is allowed

to accelerate, unhindered by the typical no-slip conditions imposed by real surfaces. This model is

easily extensible to 3D roughness, as it is a uniform boundary condition imposed everywhere the

effective surface covers the real geometry.

2.2.2 No-Slip

The second boundary condition is a no-slip condition applied at the new effective surface. This

choice reflects the observation made by Leventhal and Reshotko that their experimental data could

be fit with a Blasius curve, which analytically requires a no-slip condition at the wall [8]. Finding

that curve shifted off of the geometric surface suggests that the correct boundary condition for the

current model remains as no-slip.

An existing model that examines 2D periodic roughness [17] seems to reinforce no-slip at the

effective surface when extrapolated to the limit of very steep, closely packed roughness. This
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model, created by Gaster, approximates the flow near sinusoidal roughness as pure Stokes flow,

but retains a Blasius boundary layer outer shape. This approach reveals zones of recirculation

that produce a raised effective surface. Gaster notes that the recirculation zone is highly depen-

dent on the roughness profiles; as the wavelength of the roughness decreases, the recirculation

zone approaches near-zero velocity. He conjectures that this trend would likely continue until

sandpaper-like roughness contained zones of static, trapped fluid over which the boundary layer

could ride, which is in agreement with what Leventhal and Reshotko observed. This static fluid

would therefore act as a no-slip boundary:

u(x, Y = F ∗(x)) = 0 (2.3)

This model is again easily extensible to 3D roughness. However, away from the limit of sandpaper

roughness, Gaster’s model seems to suggest a different boundary condition where a slip velocity

exists at the height of the effective surface, correlated to the geometry of the roughness.

2.2.3 Imposed-Slip

In response to the trends observed in Gaster’s model, the following boundary condition of

‘imposed-slip’ velocity is proposed, offering an intermediate alternative to the no-shear and no-

slip boundary conditions. Based on a DNS simulation by Drews [13], it seems important to match

the in-plane velocity at the height of the effective surface. In this simulation, which covered the

negative geometry with a new surface, a slip velocity was allowed. This slip velocity was very

close to the in-plane velocity measured from the control roughness configuration. Comparing

disturbance energies downstream showed that the simplified geometry case closely matched the

full roughness configuration. Therefore, a method for guessing the velocity at the height of the

effective surface is devised.

The first assumption made in creating the slip model is that the effective surface imposes no-

penetration, confining the fluid below it. Fluid moving along the effective surface will impart some

shear force to that trapped fluid, which influences the confined fluid’s recirculation. To model the
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Figure 2.2: Some characteristic values used to set the maximum slip velocity.

recirculation motion, the fluid below the surface is considered as a recirculation ‘bubble’, and

related back to Gaster’s model. Gaster noted that increasing the height of the roughness caused

larger recirculation areas with higher recirculation velocities, while narrower roughness valleys

caused slower recirculation velocities. This offers a method of guessing what slip velocity to

enforce, based on the geometry of the roughness.

To simplify the recirculation model, only the maximum recirculation velocity is guessed. Once

that velocity is modeled and enforced, the velocity along the rest of the surface is linearly ramped

back to a no-slip condition at the exposed geometry. Figure 2.2 shows some important geomet-

ric values used in defining the maximum recirculation velocity. The black and red surfaces show

the real and effective surfaces, respectively. Both are discretized in the computational model,

represented by the pink and green crosses along the real surface. The recirculation area is first

constrained to a convex, enclosed area (shown outlined in green). This area is defined by iden-

tifying the minimum point on the red effective surface, and only considering points on the real

surface that fall below that minimum (the green crosses). This exclusion of the upper regions in

the recirculation model is justified by assuming that because protruding regions are much narrower

than the identified region, they will not produce the maximum recirculation velocity.
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Next, the center of the green area is calculated (denoted by COA on figure 2.2). The COA

specifies the streamwise location of the assumed maximum recirculation velocity. Note that it does

not necessarily fall in the same location as the minimum height of the effective surface, although

it is usually close. The vertical distance from the real geometry to the effective surface, through

the centroid, is defined as H . This variable is intended to reflect how higher roughness causes

larger recirculation areas with higher recirculation velocities. A general shape of the recirculation

boundary layer was assumed, shown in figure 2.2. To approximate the recirculation velocity at the

surface, the top third of the boundary layer was assumed to be linear. A slope of λB = 0.332 was

chosen for simplicity.

To account for how narrower roughness valleys cause slower recirculation velocities, the effect

of H was offset by considering how the geometry of the green area was distributed. This was

calculated by considering the ratio of area moments of inertia about the centroid (Iyy/Ixx). As

the enclosed area becomes more oblong, the ratio adjusts the maximum slip velocity according

to Gaster’s observations. The resulting final slip velocity formula used for this model is given in

equation 2.4.

ur,max = λB(H/3)(Iyy/Ixx)
1/2. (2.4)

Figure 2.3 shows an example of slip velocities applied to an effective surface. It should be noted

that the performance of the model is dependent on the slip velocity prescribed. Here, only one

possibility is presented, although further optimization might present a better model. Additionally,

the presented recirculation model presents challenges for extension to 3D roughness. The 3D peaks

that are exposed will result in spanwise velocity, which would complicate any slip velocity model

imposed. However, it should be re-emphasized that the recirculation model is only intended to

guess at the velocity at the height of the effective surface. Later, in section 5, it will be determined

how much error was introduced by this model, and how this error is correlated to the effective

surface model results.
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Figure 2.3: Slip velocity applied over smoothed effective surface. Real geometry included for
reference on how recirculation geometry affects slip velocity.
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3. TRIPLE-DECK THEORY

In order to quantitatively evaluate effective surfaces as a model, the roughness geometry is

analyzed using triple-deck theory. This theory was born out of an important research question in

the 1960s concerning the upstream influence of downstream features evident in boundary layer

experiments. One example of particular concern was the appearance of small separation bubbles

upstream of a shockwave in a boundary layer. Boundary layer theory, as well as supersonic inviscid

theory, could not cope with this due to the inability of both theories to accommodate upstream

influence. Triple-deck asymptotic provided a means of describing this influence by examining a

short scaling region that produces a viscous-inviscid interaction.

Triple-deck theory can be derived using the method of matched asymptotic expansions, which

considers a Blasius boundary layer as the undisturbed basic state, then mathematically introducing

some perturbation. When the Navier-Stokes equations are expanded as an asymptotic series using

powers of the Reynolds number, close inspection reveals a set of significant scaling limits. By ap-

plying these scalings, three different scaling regimes, or ‘decks’ emerged. The original derivation

was done by Stewartson and Williams [18], Neiland [19] and Messiter [20], who all independently

arrived at the correct scalings necessary to describe the viscous-inviscid interaction caused by small

disturbances.

Triple-deck interactions (shown in 3.1, where ε8 = Re−1L ) happen on a streamwise length scale

of ε3. The decks are vertically scaled as follows: lower deck as ε5, middle deck as ε4, and upper

deck as ε3. The lower deck is governed by the incompressible boundary layer equations and is

characterized by rotational and viscous disturbances. A passive middle deck exists, still inside the

boundary layer, that transmits disturbance information between the upper and lower decks but does

not influence the disturbances. The characteristic perturbation in the middle deck is the bending

of streamlines, a ‘displacement’ effect, which is transferred without change to the outer deck.

The outer deck, which extends slightly into the freestream, is inviscid and irrotational and is what

enables upstream influence. The upper and lower deck are connected through a Hilbert integral
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which relates displacement and pressure in subsonic flow.

Figure 3.1: Triple-Deck Scalings. ε8 = Re−1L

Rigorous derivation of the triple-deck scalings requires a thorough examination of what scal-

ings present ‘significant’ or ‘distinguished’ limits. To simplify this process, Meyer [21] begins his

review of the triple-deck derivation by establishing four guiding physical conditions: 1) mass-flow

bound, 2) penetration, 3) localization, and 4) upstream condition. The first condition requires that

the displacement thickness remain on the order of Re−1/2L throughout the length of the interaction.

This condition is based upon the experimental observation that small separation bubbles are con-

fined to a thin region of recirculation that does not exceed, in terms of order of magnitude, that

of a regular boundary layer. The second condition is captured in Meyer’s use of the term ‘mild’

interaction: strong changes in velocity and pressure that occur in the beginning and ending of

separation bubbles requires these disturbances to be felt outside of the viscous region. However,

they are not so strong as to completely eliminate the boundary layer structure. The third condition,

localization, supposes that the previously mentioned changes occur over a region that shrinks to a

point when examining the entire body (i.e. as the vehicle-scale Reynolds number becomes very
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large). Finally, the upstream condition indicates that, at some large distance upstream of these

disturbances, the boundary layer will not be affected by the downstream disturbance and will be a

classical Blasius boundary layer.

Triple-deck theory provides a number of physical insights surrounding small separation bub-

bles. This ‘mild’ interaction between the viscous boundary layer and the inviscid outer deck can

not be mathematically captured by an inviscidly determined pressure gradient applied to Prandtl’s

boundary layer equations. Computational evidence of this fact resulted in what was termed ‘Gold-

stein’s singularity’, where upon approaching a separation bubble the computational solution would

blow up [22]. On scales relevant to triple-deck there exists what Veldman termed a ‘loss of hier-

archy’, where neither the pressure gradient nor a viscous displacement term is able to singularly

determine the flow [23]. Instead, both variables are necessary for a unique solution, ‘communicat-

ing’ through the decks and through an interaction principal. For subsonic flow, the elliptic outer

deck provides an upstream route that allows information to travel upstream.

Motivation for applying this theory stems from the desire to explore the physical mechanisms

in distributed roughness while maintaining computational inexpensiveness. Triple-deck theory not

only provides an inexpensive method for allowing upstream influence, but also neatly resolves

small separation bubbles that arise between the roughness elements. Additionally, the use of the

boundary layer equations allows the use of Prandtl’s transposition theorem [24], which transforms

the random roughness into a rectangular computational grid, further lessening computational com-

plexity.

A limiting factor in the use of triple-deck theory is the scale of the roughness field being ex-

amined. Violating the scalings used in the derivation of the triple-deck equations could imply that

previously neglected terms may be becoming leading order. Rothmayer and Smith provide a thor-

ough review of the different hump scalings and the resulting simplified equations [25]. Extensive

analysis, however, has shown some overlap with nearby scalings. Smith et al. examined some

discrepancies between past reviews of different hump scalings [26]. They showed that although

triple-deck is derived in a very specific scaling region, it provides a correct, first-order analysis over
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similar scaling regions. On scales longer than triple-deck but at a similar height, the bump does not

provoke separation but merely displaces the boundary layer. On shorter scales, as the length of the

bump decreases so too does the critical height that first provokes separations. Smith et al. shows

how triple-deck theory is a leading order or limiting solution for the more precisely scaled solution

for the shorter and longer humps, so long as the non-linear regions above the critical height are

avoided.

Not only does the critical height change, the driving feature of the flow changes as well [23].

On scales longer than triple-deck lengths the flow is driven by a pressure gradient, as in classical

boundary layer theory. On shorter scales the flow is driven by the displacement term. The non-

hierarchal approach of triple-deck allows the theory to approach the neighboring scalings without

difficulty.

Further exploration of triple-deck theory has shown its usefulness in applications that seem

far away from its intended limits. Tsao and Rothmayer use triple-deck theory to examine ice

accumulation on airfoil surfaces, which allows for distributed roughness like surfaces to form

[27]. In light of the above evidence, triple-deck theory has been used in this exploratory study

to examine different boundary conditions and effective surface heights. To respect the scaling

criteria, a distributed roughness strip that meets the scaling guidelines will be used. The method of

this strip’s creation is covered in chapter 2.

The following sections will present the full triple-deck equations. This thesis will not attempt

to prove a priori that any assumptions made and scalings assumed are correct. It will simply show

the scalings used to derive the triple-deck structure, and highlight some important physical and

mathematical aspects of the resulting equations. The full derivation for this problem was originally

done by Stewartson and Williams for supersonic flow [18]. Here, the equations are restricted to

2D subsonic flow.

Triple-deck theory makes an asymptotic approximation to the Navier-Stokes equations by as-

suming Re→∞, or ε→ 0. Appropriate scaling choices will reveal which terms are leading order

and which may be neglected in this limit. Each deck will use the non-dimensionalized variables
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given in equation 3.1 (a∗ denotes a dimensional variable, a∞ denotes a freestream value). Due to

the assumptions of incompressibility and constant temperature, ρ and µ are both set equal to unity.

u =
u∗

U∞
v =

v∗

U∞
p =

p∗ − p∗0
ρ∞U2

∞
ρ =

ρ∗

ρ∞
µ =

µ∗

µ∞
(3.1)

The streamwise length scale remains the same throughout the decks: X = ε−3x∗/L. Note that

this scaling leads to X being an O(1) variable. This will be true for all non-dimensionalized flow

and geometry variables; the ε terms will determine leading-order terms.

3.1 Middle Deck

Beginning with the middle deck, the normal variable will scale as η = ε−4y∗/L, the same

scaling as a Blasius boundary layer. Recall a physical assumption used is that even in the case of

small separation bubbles, the region of recirculation is confined to a small area and does not cause

a large change in boundary layer size. Assume that a disturbance (such as a roughness field) creates

a perturbation in the flow. Assuming some prior knowledge of the correct form of the equations,

the flow variables can be expanded in terms of ε to the series shown in 3.2 - 3.4.

u = UB(η) + εu1(X, η) + ε2u2(X, η) + ... (3.2)

v = ε2v1(X, η) + ε3v2(X, η) + ... (3.3)

p = ε2p1(X, η) + ε3p2(X, η) + ... (3.4)

Here, UB refers to the base flow, a Blasius flow, with all other terms being the perturbations to

that flow. Substituting these terms into continuity along with the scaling for X and η yields the

following:
∂u1
∂X

+ ε
∂u2
∂X

+
∂v1
∂η

+ ε
∂v2
∂η

= 0 (3.5)

Considering the limit of ε → 0, the first and third terms remain as leading-order terms, tending to

zero at the same rate as 1 (i.e. O(1)) while the second and fourth terms going to zero at the rate of

ε (i.e. O(ε)). Classical triple-deck theory is a first-order approximation and therefore neglets any
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higher-order terms. The analysis here shall only retain first-order terms as well.

Repeating the same procedure for the x and y-momentum equations (and additionally substi-

tuting Re∞,L = ε−8) reveals the governing equations for the middle deck:

UB
∂u1
∂X

+ v1
∂UB
∂η

= 0 (3.6)

∂p1
∂η

= 0 (3.7)

Equation 3.6 is locally inviscid even within the boundary layer. No viscous terms remain

significant in this approximation. This already indicates the need for an inner deck. Equation

3.7 indicates that the disturbance caused by the lower deck is not transmitted through a vertical

pressure gradient. The middle deck solution, equations 3.8 and 3.9, allows for a different variable

to be responsible for moving the disturbance out of the boundary layer.

u1 = A1(X)U ′B(η) (3.8)

v1 = −UB(η)A′1(X) (3.9)

It was mentioned above that the primary feature of the middle deck was the passive transfer

of information. This is shown here in the perturbation terms as A1(X) (hereafter refered to as the

displacement term, representing −δ(x)). The displacement term is related to how streamlines are

bent as they move around an obstacle. The middle deck has no influence on this value (shown by

A’s sole dependence on X), which allows computational analysis of triple-deck theory to concern

itself only with the lower and upper decks.

The upstream boundary conditions are satisfied by requiring the displacement term to go to

zero. It is assumed to not be identically zero in the region of interest (this would not present a

significant scaling limit). However, these equations cannot satisfy boundary conditions at η →∞

or at η → 0, therefore additional decks are required to intervene with new scales.
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3.2 Lower Deck

The lower deck intervenes below the middle deck to satisfy the no-slip condition as η → 0.

The normal variable is scaled as Ỹ = ε−5y∗/L. In this region, the perturbation is no longer small

compared to the base flow, which is assumed to be linear in the region close to the wall. The

following scaling is required to allow for a balance between the non-linear transport terms and the

friction forces:

u = εU(X, Ỹ ) + ε2ũ2(X, Ỹ ) + ... (3.10)

v = ε3V (X, Ỹ ) + ε4ṽ2(X, Ỹ ) + ... (3.11)

p = ε2P (X, Ỹ ) + ε3p̃3(X, Ỹ ) + ... (3.12)

After substitution into the Navier-Stokes equations, the lower deck governing equations are

revealed to be the boundary layer equations.

∂U

∂X
+
∂V

∂Ỹ
= 0 (3.13)

U
∂U

∂X
+ V

∂U

∂Ỹ
= −P ′(X) +

∂2U

∂Ỹ 2
(3.14)

∂P

∂Ỹ
= 0 (3.15)

All wall boundary conditions can be satisfied at this point. Equations 3.16 - 3.18 represents no

slip and no penetration, matching with upstream flow, and matching with middle deck, respectively.

U = V = 0 on Ỹ = hF (X) (3.16)

∂U

∂Ỹ
→ 1 as X → −∞ (3.17)

U → λ(Ỹ + Ã(X)) as Ỹ →∞ (3.18)
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However, the pressure gradient cannot be set a priori, or the Goldstein singularity will appear

in a computational solution. The outer deck, which has yet to be determined, will connect the

pressure gradient in the lower deck with the displacement transmitted through the decks.

3.3 Upper Deck

The upper deck, scaled as γ = ε−3y∗/L, extends up into the inviscid region. The expansions

chosen here are perturbations to the freestream flow (u = U∞ = 1):

u = 1 + ε2U2(X, γ) + ... (3.19)

v = ε2V2(X, γ) + ... (3.20)

p = ε2P2(X, γ) + ... (3.21)

After substitution, the upper deck governing equations are revealed to be inviscid, irrotational

equations, as expected.

∂U2

∂X
= −∂v

∂γ
(3.22)

∂U2

∂X
= − ∂p

∂X
(3.23)

∂V2
∂X

= −∂p
∂γ

(3.24)

The solution to these equations that correctly matches with the other decks can be found using

complex analysis.

P ′(x) =
−1

π
−
∫ ∞
−∞

A′′(ξ)dξ

x− ξ
(3.25)

The integral in equation 3.25 is a Hilbert Integral, where the integral is taken as the Cauchy

Principal Value integral, denoted with a slash through the integral sign.

The above description closes the mathematical description of a triple-deck interaction. The
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necessary equations for computationally simulating this interaction are contained below:

uX + ṽỸ = 0, (3.26)

uuX + ṽuỸ = −pX + uỸ Ỹ , (3.27)

p = − 1

π

∫ ∞
−∞

Ã′(ξ)dξ

ξ −X
, (3.28)

u(X, ỹ = hF (X)) = 0, (3.29)

u→ λỸ as X → −∞, (3.30)

u→ λ(Ỹ + Ã(X)) as Ỹ →∞ (3.31)
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4. COMPUTATIONAL METHODS

To simulate the triple-deck equations, the quasi-simultaneous method of Veldman is used [28].

The boundary layer equations (3.26 - 3.27) are coupled with the interaction equation (3.28) and

solved simultaneously at each streamwise node. Before solving these equations, the Prandtl trans-

position (4.1) [24] is applied to transform the random physical domain to a rectangular computa-

tional domain. Variables with a ∼ are untransformed variables.

Ỹ = Y + h, Ã = A− h, ṽ = v + uhx (4.1)

A is defined as the negative displacement variable, and h is the height of the geometry above the

mean surface. The boundary layer equations are unchanged by this transformation. The interaction

law and boundary conditions change to:

p(x) =
1

π

∫ ∞
∞

h′(ξ)− A′(ξ)
ξ − x

dξ, (4.2)

u(x, Y = 0) = 0, (4.3)

u→ λY as x→ −∞, (4.4)

u→ λ(Y + A) as Y →∞ (4.5)

To cluster points near the wall around the roughness, the Y coordinate is transformed into

the η space using η = Y/(1 + Y ). The computational domain is evenly divided into a cartesian

grid. Figure 4.1 shows the grid nomenclature and spacing along with the expansion location for

the discretized equations. The blue dot corresponds to the x-momentum equation. The red dot

corresponds to the continuity equation. The green dot corresponds to the interaction equation.

To solve the boundary layer equations, the streamwise velocity is split into two components:

the base shear flow, λY , and the perturbation quantity, û. X-momentum is discretized using finite
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Figure 4.1: Grid Nomenclature

difference representations expanded about the grid point (i+ 1, j), shown in equations 4.6 - 4.8.

∂a

∂x
=

3ai+1 − 4ai + ai−1
2∆x

, (4.6)

∂a

∂η
=
aj+1 − aj−1

2∆η
, (4.7)

∂2a

∂η2
=
aj+1 − 2aj + aj−1

∆η2
(4.8)

Note that the three-point backwards stencil for ∂/∂x, while unusual for implicit schemes ex-

panded about (i + 1, j), is necessary to prevent oscillations [29]. The convection terms required

linearization, which is performed using Newton’s method. Local iterations at each streamwise

node are necessary to converge the lagged variables. This generally takes 2-3 iterations. Continu-

ity is expanded about (i+ 1, j − 0.5), and is differenced as shown below:

3ui+1,j − 4ui,j + ui−1,j − 3ui+1,j−1 + 4ui,j−1 − ui−1,j−1
4∆x

+
vi+1,j − vi+1,j−1

∆η
= 0 (4.9)

The boundary layer equations are required to be solved in a coupled fashion to reduce oscil-

lations [29]. In addition, proper treatment of the loss of hierarchy between the lower deck and

upper deck requires the boundary layer equations be solved simultaneously with the interaction

law. Extensive treatment of this point is given by Veldman [23].

The discretization of the interaction law follows the example laid out by Sychev [30] (first
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proposed by Veldman [28]). First, the infinite bounds of the integral are exchanged for the finite

bounds of the computational domain. Convergence studies showed little effect to extending the

range of the computational domain. Next, the interaction law is expanded at (i + 0.5), shown in

equation 4.10. Note the constant vertical pressure gradient allows the same equation to be applied

at all vertical nodes on a single streamwise node.

p(xi) =
1

π

N−1∑
j=1

h′j+0.5 − A′j+0.5

ξj+0.5 − xj+0.5

∆ξ (4.10)

The derivatives h′ and A′ are discretized (again to second order) about the point (i + 0.5) as

follows:
∂a

∂x
=
ai+1 − ai

∆x
(4.11)

Equation 4.10 is rewritten to be only in terms of variables at the (i+1) station. The substitution

αij = 1/(π∆x((i − j)2 − 0.25)) is used, along with the outer boundary condition (eqn. 4.5) to

replace An+1
i+1 with ui+1,nY /λ.

pn+1
i+1 − αi+1,i+1(hi+1 −

ui+1,nY

λ
) =

i∑
j=2

αi+1,j(hj − An+1
j ) +

N−1∑
j=i+2

αi+1,j(hj − Anj ) (4.12)

Upstream of the (i + 1) station (the first summation), pressure and displacement terms are used

from the current iteration, while downstream (the second summation), the terms come from the

previous iteration.

Equation 4.12 is substituted into x-momentum and coupled with continuity. The equations

form a system of 2nY equations with 2nY unknowns. The matrix,M , is nearly banded with a band

width of 6 and an additional half-full last column resulting from the substitution of the interaction

equation into x-momentum (the ui+1,nY term). To solve this in a computationally efficient manner,

the Sherman-Morrison algorithm is used [31].

Two new vectors, u and v, are selected such thatM = (A+u⊗v), where A is a banded matrix.

Here, u consists of the pressure terms and v is a unit vector ej , where j = 2nY − 1. After solving
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Figure 4.2: Error Convergence

Ay = b and Az = u, the final solution simplifies to:

x = y − (
yj

1 + zj
)z (4.13)

Beginning far upstream, a Blasius solution is assumed (û = 0 everywhere). Marching down-

stream, the above algorithm is invoked at every streamwise station, iterating to properly converge

the linearized terms. Once the solution falls below a specific convergence criteria (error < 10−5),

the solution proceeds to the next streamwise node. Since all downstream nodes use pressure and

displacement values from the previous iteration, global iterations are required. Due to the quasi-

simultaneous nature of this scheme, the global iteration are over-relaxed according to equation

4.14, using ω = 1.5.

A(n+ 1) = (1− ω)A(n) + ωA(n+ 1) (4.14)

The solution was assumed to be converged when the displacement error fell below 10−4. Figure

4.2 shows how the error of the displacement, pressure, and wall shear stress changed.

Several studies were performed to ensure the solutions were properly converged. The ones

shown below were performed while analyzing the geometry from Smith [32]. The step size studies
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Figure 4.3: X Step Size Study

are shown in figures 4.3 and 4.4. The values displayed in the legend indicate the slope of the fitted

line on a log-log scale.

It is interesting to note that, despite consistent second-order differencing, all global variables

show first-order convergence behavior in x. One possible explanation for this is the peculiar dif-

ferencing scheme required to evaluate the Cauchy integral for the interaction law. No further

investigation of this point was made. The step study in η performed slightly better than first-order

behavior.

A few studies were performed to select the domain bounds. While holding step size constant,

the x domain was expanded from 30 to 60 in increments of 10. When comparing relative error

between the domain changes, the largest effect was seen in the pressure variable. However, the

change between the two smallest domains was less than a percent. Changing between domain

sizes of 50 to 60 resulted in 0.1% change in pressure. The changes in displacement and shear

stress were negligible compared to this. Changing η bounds had a similar result. Shear stress

changes were negligible, however displacement and pressure errors did not fall below 1% until the

η bound was moved to the max value of 0.98.
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Figure 4.4: η Step Size Study

Final parameters selected to examine the roughness were:

Parameter Value

x Domain Size 40

η Domain Size 0.95

nX 1501

nY 500

To verify the current code produces the correct solution, it was compared against two canon-

ical roughness cases. As a note on the comparisons to be shown, most historical literature made

a simplification by taking λ = 1. To correctly compare between the two codes, the following

transformations must be put in place for geometry and output variables [33]. A variable such as x̂

has been transformed such that λ = 1.

x = λ−5/4x̂, y = λ−3/4ŷ, u = λ1/4û, (4.15)

v = λ3/4v̂, A = λ−3/4Â, p = λ1/2p̂ (4.16)
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Figure 4.5: Code Validation for linear hump. h = 0.1. The values shown are normalized. As-
suming λ = 1, P ∗ = p/h, τ ∗ = (τw − 1)/h. Reference data is from Napolitano and Werle
[2]

The first case is the linear bump first examined analytically by Smith in 1973 [32], and later

numerically by Napolitano and Werle [2]. Its geometry is given by equation 4.17, where θ =

0.8272.

ĥF (x̂) = ĥ
x̂(1− θx̂)

θ
(4.17)

Shown in figure 4.5 is a comparison between data taken from Napolitano and Werle and data

produced by the current code. The comparison between the two codes is convincing.

To further test the code, the quartic hump studied by Sykes [34] was analyzed. The geometry

is given by:

ĥF (x̂) = ĥ(1− x̂2)2 (4.18)

Using a value of 3 for ĥ guarantees a separation bubble on the leeward side of the bump. Shown

in figure 4.6 is the comparison between between the two codes.

There is a small discrepancy in the shear stress values in the area of recirculation. This can be

explained by the difference in models used in those areas. Sykes used an approximation known

as FLARE, where u∂u/∂x is set to zero in the interest of numerical stability [35]. The same

31



-4 -3 -2 -1 0 1 2 3 4

θX

-2

-1

0

1

2

3

4

P
∗,

τ
∗

Pressure - Normalized

Pressure - Reference

Wall Shear Stress - Normalized

Wall Shear Stress - Reference

Figure 4.6: Code Validation for quartic hump. h = 0.1. The values shown are normalized.
Assuming λ = 1, P ∗ = p/h, τ ∗ = (τw − 1)/h.

approximation in the current code resulted in severe oscillations where there should have been a

smooth separation bubble. Veldman also noted the lack of use of FLARE in his paper [28].

The two cases shown are considered proof that the current code gives reliable results for ge-

ometry within the scope of triple-deck theory.
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5. RESULTS

The primary concern of this thesis is matching shear stress results over exposed geometry using

an ‘effective surface’ model. Here, the model consists of reducing the depth of negative geometry,

and coupling the new surface with a trial boundary condition to offset the change. To evaluate how

well the modeled effective surfaces match control geometry, several parameters are examined.

First, the RMS error is computed using equation 5.1, where τR refers to shear stress computed

for the control geometry, and τM refers to shear stress computed for the modeled geometry and

effective surface combination.

ERMS =

√∑N
i=1(τR(x)− τM(x))2

N
(5.1)

RMS error quantifies the average difference between the modeled shear stress and the control shear

stress. This parameter captures both undershoot and overshoot errors. To separate the influence of

the two types of error, the RMS overshoot error is calculated using equation 5.2.

ORMS =

√∑N
i=1(max(τM(x)− τR(x), 0))2

N
(5.2)

Overshoot error is indicative of modeled geometry being more severe than in reality; this may

lead to falsely indicating transition would occur. Finally, the maximum overshoot magnitude and

location is computed, for similar reasons.

All calculations are only performed where the real geometry lies exposed over the effective

surface. This is done because a stability analysis would be adversely affected by the largest ele-

ments, which are likely to cause transition. All calculations are normalized by the range of shear

stress measured over the exposed control geometry. This enables comparisons on overall model

performance between different geometry heights.

A total of 100 random geometries are created for analysis. For each geometry, four effective
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Figure 5.1: RMS error for no-shear (normalized by the range of shear stress measured in the control
configuration)

surface heights are tested, with ω (smoothing) values of 1.5, 3, 10, and 1000. An example of the

difference between the effective surfaces is shown in figure 2.1. Each effective surface is tested

using the three different boundary conditions. The mean values for RMS error and overshoot,

along with the mean maximum overshoot, are presented for the same group of 100 geometries.

5.1 No-Shear Effective Surface Boundary Conditions

The following results examine geometries where no-shear is applied at the effective surface.

The relative RMS error produced by no-shear is up to two orders of magnitude larger than the error

produced by any other modeled configuration. However, the spread in these results is relatively

small; standard deviations are roughly 15 − 20% of the mean error. Figure 5.1 shows how the

normalized mean RMS error changes as the height of the roughness increases. As the geometries

become taller, the relative error produced by a specific effective surface decreases. Improvement in

relative error (shown as solid lines in figure 5.2), is at first large (∼ 70% as h climbs in increments

of 0.1). However, this improvement gradually slows down to roughly 18%.

Unnormalized values (shown as dashed lines in figure 5.2) reveal most of the improvement

34



Figure 5.2: Percent improvement in RMS error for no-shear, effective surface height held constant.
Solid lines are normalized, dashed lines are unnormalized.

in error stems from the increase in the range of the shear stress values. Removing this effect

shows improvement is steady at∼ 1%. All trends are similar regardless of effective surface height,

although the difference in value increases as the height of the geometry increases. When comparing

results between effective surfaces at the same geometry height, the difference between the two

bounding surfaces (ω = 1.5 and 1000) is very small at first (0.3%) but increases to 8% for the

steepest roughness. Relative to the other boundary conditions, this is still very small. All of the

error produced by the no-shear model is overshoot error (a representative example is show in figure

5.4). Figure 5.3 shows the RMS overshoot, which matches the total RMS error. No further ORMS

figures will be shown.

Trends are similar for maximum overshoot. The maximum overshoot always occurs at the first

node located on the exposed geometry. This is due to the sudden switch from no-shear back to no-

slip, when the velocity at the wall has increased over the effective surface. The fluid near the wall

is suddenly stopped, which causes a streamwise and normal gradient. As the geometries become

taller, the maximum overshoot decreases (shown in figure 5.5). Figure 5.6 shows the improvement
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Figure 5.3: RMS overshoot for no-shear (normalized by the range of shear stress measured in the
control configuration)
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Figure 5.4: Example of no-shear results.
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Figure 5.5: Maximum overshoot for no-shear (normalized by the range of shear stress measured
in the control configuration)

in maximum overshoot as the height increases. The improvement is smaller as the roughness

becomes steeper. As mentioned before, this was partly due to the fact that the range in shear stress

increased. Neglecting this change in base shear stress showed the maximum overshoot decreased

∼ 1%. The similarity between these results and the ERMS results is due to the large effect outliers

have on calculating an RMS value.

The improvement in maximum overshoot as heights increase is somewhat puzzling at first.

However, triple-deck theory over a standard bump on a flat plate reveals a dip in shear stress prior

to the start of the hump. The larger the bump, the more extreme this reduction in gradient can

be, sometimes leading to separation in front of the bump. Hence, as the geometry increases, the

shear stress would fall more dramatically in front of the bump. This standard dip in shear stress is

masked here partly because the geometry is continuous amidst the distributed roughness strip. It is

also partly masked by the large spike caused by the return to the no-slip condition.

The large spike in shear stress that is persistent in this model results in a poor match with the

control, although the model is consistent regardless of effective surface height.
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Figure 5.6: Percent improvement in maximum overshoot for no-shear, effective surface height held
constant. Solid lines are normalized, dashed lines are unnormalized.

5.2 No-Slip Effective Surface Boundary Conditions

The following results examine geometries where no-slip was applied at the effective surface.

No-slip never overestimates shear stress for any modeled geometry. A representative example of

no-slip applied to a distributed roughness patch is shown in figure 5.7. Therefore, only the RMS

error will be presented here. Figure 5.8 shows how the normalized error decreases as the height of

the geometry increases. No-slip is also fairly consistent in its results; standard deviation is roughly

18 − 20% of the mean ERMS . However, there is a large difference in results when comparing

between different effective surface heights.

The percent difference in RMS error between the bounding effective surfaces is extreme for the

no-slip case (∼ 99% − 109%). This large dependence on effective surface height is unsurprising;

without changing the boundary condition, the change in height cannot be offset. The increase in

percent difference as the height of the geometry is increased is explained by the effective surface

methodology. By using ω as a smoothing factor, only the relative difference in effective surface

heights is constant. As the roughness gets steeper, the absolute difference between the effective
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Figure 5.7: Example of no-slip results.

Figure 5.8: RMS error for no-slip (normalized by the range of shear stress measured in the control
configuration)
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Figure 5.9: Percent improvement in RMS error for no-slip, effective surface height held constant.
Solid lines are normalized, dashed lines are unnormalized.

surface and the real geometry increases.

Holding ω constant as the heights increased resulted in a steady improvement of relative error

(shown as solid lines in figure 5.9). The model got better for all effective surfaces, although there is

a difference in how fast they improved. However, unnormalized results (shown as dashed lines in

figure 5.9) show this improvement is only relative to how fast the range of shear stress is increasing.

Without the normalizing factor, there is a large deterioration in results, particularly at low heights.

Removing the effect of the increase in shear stress range shows the absolute undershoot error

increases (shown in figure 5.10). No-slip is the only case where trends completely reverse absent

a normalizing factor. At the heights simulated, there is no way to match the control values without

an offsetting boundary condition.

While no-slip performed better than no-shear in terms of RMS error, the large dependence on

effective surface height is undesirable. Additionally, although the model improved relative to the

the range in shear stress, increasing the height of the roughness made the absolute error worse.

40



Figure 5.10: RMS error for no-slip (unnormalized)

5.3 Imposed-Slip Effective Surface Boundary Conditions

The following results examine geometries where an imposed slip velocity is applied at the

effective surface. The order of magnitude of ERMS for imposed-slip is comparable to no-slip,

although results vary more. Imposed-slip initially shows large improvement as the height of the

geometries increased, although this slows or reverses at the taller geometries. Additionally, this

model gave a large spread of results among the 100 geometries tested; standard deviations ranged

from 30 − 70% of the mean values. Figure 5.11 shows how the normalized RMS error changes

as the height of the roughness increases. All effective surfaces improve until a height of 0.4, after

which the relative error increases for all but the lowest effective surface. A similar trend is shown

in the unnormalized data in figure 5.12, where all effective surfaces begin to worsen at some point.
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Figure 5.11: RMS error for imposed-slip (normalized by the range of shear stress measured in the
control configuration)

Figure 5.12: RMS error for imposed-slip (unnormalized)

The impact of effective surface selection is dependent on the height of the roughness. At lower
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Figure 5.13: Percent improvement in RMS error for imposed-slip, effective surface height held
constant. Solid lines are normalized, dashed lines are unnormalized.

heights, influence is small (∼ 20% − 50% difference between ω = 1.5, 1000), however as the

height of the geometry increases, the impact of surface choice grows quickly (up to ∼ 120%).

Holding ω constant and increasing geometry height (figure 5.13) again emphasizes a trend reversal

at h = 0.4. The change in error appears to stabilize near a small percent change (either positive

or negative) as the roughness gets larger. This stabilization is certainly a result of the balance of

terms used to determine the maximum slip velocity, which will be discussed later.

Moving to RMS overshoot, figure 5.14 shows how as the height of the roughness increases, the

mean overshoot continually decreases. The lowest effective surface shows the slowest improve-

ment in overshoot error (shown in figure 5.15), being outperformed at steep geometries by higher

effective surfaces. This slow decrease in overshoot error explains why the reversal in ERMS trends

is delayed to a higher geometry height. For all other effective surfaces past a height of h = 0.4,

the majority of error is undershoot error, which increases with the height of the roughness. The

model, which begins at low heights over-predicting shear stress on exposed segments of geometry,

switches at higher heights to under-predicting shear stress. It is apparent that the rate of change in
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Figure 5.14: RMS overshoot for imposed-slip (normalized by the range of shear stress measured
in the control configuration)

guessed ur,max is not correctly matched to the needed rate of change in this model.

Trends are very similar for maximum overshoot (figures 5.16 and 5.17), although there is no

consistent location for maximum overshoot as in the no-shear models. Figure 5.18, an example

of a close match to control results, demonstrates this fact. Linearly ramping the slip velocity back

to the no-slip condition is beneficial for avoiding the large spike in shear stress. However, some

configurations did still show this effect.
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Figure 5.15: Percent improvement in RMS overshoot for imposed-slip, effective surface height
held constant. Solid lines are normalized, dashed lines are unnormalized.

Figure 5.16: Maximum overshoot for imposed-slip (normalized by the range of shear stress mea-
sured in the control configuration)
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Figure 5.17: Percent improvement in maximum overshoot for imposed-slip, effective surface
height held constant. Solid lines are normalized, dashed lines are unnormalized.
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Figure 5.18: Example of imposed-slip results.

In section 2, it was described how a previous DNS [13] seems to indicate the importance of
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matching in-plane velocity when an effective surface in imposed. The following measurements

will quantify how closely the recirculation model described the in-plane velocity. Three heights

(h = 0.1, 0.3, 0.5) were selected to output full velocity data for the control roughness configura-

tions. These heights were selected in particular because they bound the trend reversal seen in the

statistical data. To extract the in-plane velocity, the coordinates for the effective surface heights

were used to define a line to interpolate full velocity data along. Figure 5.19 illustrates this: the

contours represent velocity magnitudes calculated when simulating the control roughness config-

uration. The black line represents an effective surface geometry. Both u and v are interpolated

along this line, then the velocity vector is projected onto the effective surface. This gives the

correct control in-plane velocity.

Figure 5.19: Example showing how true in-plane velocity was extracted from the control data.

The maximum velocity error was then defined as the absolute difference between the maxi-
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Figure 5.20: Correlation between error in in-plane velocity and the maximum absolute overshoot
in shear stress.

mum true in-plane velocity, and the maximum recirculation velocity prescribed by the imposed-

slip model. This velocity error is compared against the shear stress error measured only on the

following exposed roughness peak. Plotting these two values reveals a correlation shown in figure

5.20. Overestimating slip velocity clearly resulted in overshoot error. Once the model began im-

posing a lower maximum slip velocity than actually would appear at that effective surface height,

the model began to undershoot the shear stress upon return to the no-slip condition at the exposed

geometry.
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Figure 5.21: Correlation between error in in-plane velocity and the absolute RMS error.

Figure 5.21 shows a v-shape channeling towards zero slip velocity error; ERMS left of the dip is

primarily the result of overshoot error, while right of the dip it is primarily the result of undershoot

error. There is a noticeable offset between the v-shapes for ω = 1.5, 1000. The explanation for

this offset most likely lies on the difference in geometry shape. Recall that the pressure gradient

is simultaneously determined with all other flow variables, and also that it is a global quantity.

Referring back to equation 4.2, it is evident that the pressure is reliant on the derivative of the

geometry. Obviously, there is a large difference between the derivatives for ω = 1.5 and 1000, and

again between the effective surfaces and the real geometry. Although the slip velocity attempts to

offset the change in geometry, the displacement term is usually an order of magnitude smaller that

the geometry derivative, and so there remains an error.

To investigate more about why ERMS trends reversed when they did, the comparison was

broken up based on the height of the roughness (shown in figure 5.22). These results explain why

the h = 0.3 case general performed the best; the ur,max was nearest the actual in-plane velocity.

The simplified model chosen for max velocity resulted in the closest match to the actual velocity at

that effective surface height. For the lowest effective surface, the shape of the enclosed area does

not change rapidly as the height of the roughness is increased, therefore the modeled maximum slip
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Figure 5.22: Correlation between error in in-plane velocity and the maximum absolute overshoot.

velocity cannot change rapidly either. This explains the slow improvement of the lowest effective

surface, as well as the tighter data.

Despite the difficulty in exactly matching the pressure due to the change in geometry, the

imposed-slip model performs well, even using the simplistic model prescribed here. The modeled

maximum slip velocity is primarily balanced between two characteristics of the enclosed, ‘recir-

culating’ airspace: the depth of the enclosed area and the relative distribution of the enclosed area

(modeled via Iyy/Ixx). The exchange between overshoot and undershoot error indicates the bal-

ance between these two terms is not yet perfect and resulted in a large spread of results. However,

these results demonstrate that imposed-slip has the ability to closely model distributed roughness

using an effective surface.

5.4 Shielding Effect

The model created using an effective surface must not only match distributed roughness re-

sults, it should replicate shielding, where small amplitude roughness reduced the effect of larger

elements. As a small proof of concept, the shielding effect is tested using the imposed-slip model
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Figure 5.23: Correlation between error in in-plane velocity and the absolute RMS error.

built for this thesis. A large, 2D ‘DRE’ is placed among the roughness, using Smith’s original

geometry shifted to the center of the distributed roughness patch [32].

F (x)DRE = hD(x2 − 0.25) (5.3)

Distributed roughness is placed around the DRE in the usual manner (shown in figure 5.24). An

effective surface is then applied to the distributed roughness. The DRE-only case is run as a control

configuration, and the modeled shear stress from the DRE with distributed roughness is compared

against those results. The shear stress results are shown in figure 5.25 from the control (DRE only)

configuration, and the modeled distributed roughness, along with the ‘true’ distributed roughness

case without an effective surface applied.

There are two indicators that transition would be less likely in such a scenario. First, the

maximum shear stress, which occurs for both cases slightly in front of the top of the bump, is

less in the presence of distributed roughness. Second, the large drop in shear stress following the

bump, which for large bumps can lead to separation behind the element, is significantly reduced

by the roughness. Both of these improvements can be tied to the presence of small pieces of
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Figure 5.24: Geometry for ‘shielding’ configuration
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distributed roughness immediately in front and behind the DRE, reducing the apparent height of

the roughness.

While these results are promising, they are unsurprising. The distributed roughness both ahead

and behind the DRE easily modifies the apparent height of the roughness. However, experimen-

tally, a field of roughness can lessen the effect of a DRE even when the geometry in the immediate

vicinity may not actually affect the height of the DRE (offset the geometric surface from the y = 0

plane). However, these results are encouraging that the effective surface model may be able to

capture the shielding effect.
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6. CONCLUSIONS

The evaluation of the effective surface models considers the ability to predict the wall shear

stress for a large range in roughness configurations. The influence of effective surface shape,

although more apparent in some boundary conditions than others, always affected results. This,

as mentioned in the context of the imposed-slip model, was due to the dependance of pressure

on geometry slope. The boundary conditions presented here are intended to offset this geometry

change. The results of this study provide evidence on why certain boundary conditions performed

better than others.

The first boundary condition, no-shear, was the inspiration for this study. Judging by past ex-

periments that showed negligible effect from negative geometry, we hypothesized that fluid below

the effective surface has very little effect on the boundary layer. To capture this notion, a no-shear

condition was enforced at the effective surface boundary. Results conclusively showed this could

not replicate control results. Enforcing no-shear allows fluid near the wall to accelerate to large

speeds very close to the roughness. This, in effect, allows higher momentum fluid to move closer

to the roughness peaks, exacerbating their effect on the flow. The dramatic spike in shear stress

upon return to no-slip at exposed geometry is indicative of a large streamwise gradient enforced on

fluid particles at the wall. This gradient propagates in the normal direction, causing large normal

gradients to form as well. Additionally, the fluid does not fully recover before returning to a no-

shear condition over another effective surface. Consequently, all error is overshoot error, contrary

to the other two conditions. The results of this study conclusively show that no-shear is not the

correct boundary condition to enforce on an effective surface.

The next boundary condition, no-slip, is inspired by experiments that consider sandpaper-like

roughness. Sandpaper-like roughness is characterized by completely random, tightly packed, sharp

elements. Measurements over these surfaces by a number of investigators have shown how the

measured boundary layer profiles are similar to a Blasius boundary layer profile, displaced outward

from the geometric surface. Implementing this condition over the roughness presented in this
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study shows the error only decreases relative to the growth in range of shear stress. Admittedly,

the roughness presented in this study, due to the geometry restrictions of triple-deck theory, is not

similar to sandpaper roughness.

A strong argument for why the no-slip condition may exist for more extreme roughness is

the possibility of pockets of trapped, static fluid forming between roughness peaks. In this study,

height restrictions were intentionally created to suppress any separation bubbles. Without those

pockets of fluid, raising the effective surface away from the geometry but maintaining a no-slip

condition simulated less severe geometry. The results of this study cannot guide hypotheses about

the success of no-slip conditions for extreme geometry, because the parameter space examined

here is too shallow. However, it is conclusive that no-slip has limited usefulness for more mild

roughness, indicating this boundary condition cannot encompass the full parameter space.

The final boundary condition presented, imposed-slip, shows mixed results. While, on average,

only one of the effective surfaces continually performed the best overall in terms of RMS error in

wall shear stress results, the large spread in results did allow some control geometric configurations

to be near perfectly matched by the imposed-slip model. Undoubtedly, the slip velocity model pre-

scribed had a large impact on the trends shown by this study. Closer investigation into local results

reveals a strong dependence on the accuracy of the prescribed umax. Models which showed large

success in the RMS error results very nearly matched the actual umax the flow would experience at

the location of the effective surface.

A very similar result was presented by Drews [13] where the valleys were replaced by a slip

surface at y = 0. Velocity results from this DNS study closely matched the in-plane velocity results

from the full DNS case. Velocity perturbations downstream of the reduced roughness case closely

matched the velocity perturbations from the full roughness case. These results, in conjunction with

the results presented here, suggest an important parameter to match over the effective surface is

the velocity magnitude.

These results also shed more light on the other two boundary conditions. While certainly a large

portion of the no-shear model’s spike in wall shear stress resulted from the sudden imposition of
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no-slip, the fact that the shear stress continued to overshoot over the rest of the exposed geometry

resembles the cases of the imposed-slip model that dramatically over-predicted the umax velocity.

Similarly, the no-slip model dramatically under-predicts the umax velocity and so under-predicts

shear stress continually.

As a reminder of this study’s overall motivation, the goal is to create a reduced-order distributed

roughness model to allow for easier, less expensive studies of roughness, as well as insight into

how laminar flow interacts with distributed roughness. Three goals for the final model were laid

out. It would:

1. correctly predict boundary layer quantities above the effective surface, where the highest

peaks in the roughness field remain exposed.

2. be capable of handling arbitrary, rough, 3D surfaces.

3. handle the analysis of any roughness patch with significantly less computational cost than a

DNS of the same field.

While the triple-deck model used for this study clearly completed item 3 above, it is not a ten-

able option for extreme geometry roughness, due to the strict scaling limitations on the roughness.

This restricts the model presented here from succeeding at item 2 listed above. Future studies

should explore different simulation options.

The main focus of this study addressed the first topic. A change in geometry, coupled with a

new boundary condition over the effective surfaces, was examined for its ability to replicate wall

shear stress over 2D exposed geometry, evaluated using a triple-deck model. The results of this

study suggest pursuing an imposed-slip model, refined to better reflect velocity trends in the areas

where an effective surface would be applied. This presents a clear path for future research, where

detailed investigation into the velocity contained among the distributed roughness could be closely

examined.
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