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ABSTRACT 

 

Effective and reliable fault detection and isolation (FDI) methods are essential for 

the efficient operation of industrial processes. This work has developed a data-driven 

algorithm called Enhanced Multi-Scale PCA (EMSPCA) to improve fault detection 

performance of the conventional MSPCA method. It also extends EMSPCA to isolation 

by utilizing a PCA reconstruction based approach to improve the fault isolation 

performance.   

A critical analysis presented in this work, shows that the conventional MSPCA 

detection rate is obstructed by its inaccurate predictions of detection thresholds. To 

address this issue, EMSPCA alters the way wavelet coefficients are processed in the 

training and testing data, such that, the predicted threshold is suitably tighter for smaller 

fault projections, which ensures a much better detection rate. A soft-thresholding 

technique is also implemented to ensure the false alarm rates remain low. Moreover, this 

research extends the EMSPCA method to account for isolation at multiple scales. Previous 

research has used contribution plot isolation approaches in the multiscale framework, but 

here, the reconstruction-based approach is employed. Reconstruction-based approaches 

suffer less from the smearing effect and can therefore achieve better isolation rates. 

Smearing occurs when one variable contaminates or “smears” another variable’s 

contribution or isolation index to the point of misdiagnosis. The work will investigate how 

the multiscale PCA framework can minimize the amount of smearing to produce optimal 

isolation performance. It will also offer a comparison between contribution plot and 
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reconstruction based isolation performances, and present the impact of decimated and 

undecimated wavelet transforms on detection and isolation performances.  

To obtain statistical and meaningful conclusions, a randomized synthetic linear 

model with an embedded shift-in-the-mean univariate fault is utilized. Monte Carlo 

simulations are used to evaluate the false alarm, detection rates, and isolation rates across 

all decomposition depths and a range of fault sizes. To further validate the algorithm and 

the FDI improvements it realizes, this work will utilize real data from a pilot distillation 

plant and two TEP units with a fabricated sensor fault embedded. These results will 

demonstrate the superior FDI performance of the EMSPCA reconstruction-based 

approach.  
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1. INTRODUCTION 

 

1.1. Overview 

Data analytics has gained a lot of interest in the field of process monitoring and 

control because of its ability to extract actionable information about the state of a process 

in real time [1]. Business leaders of big companies like BASF, Shell, and DOW are 

investing in Big Data technology, because they recognize the business value it can yield 

[2]. An estimated 20 billion dollars is lost every year by US petrochemical industries due 

to inadequate “abnormal situation management” [3], and this cost can be reduced by 

developing automated data-techniques that can accurately and reliably perform fault 

detection and isolation (FDI).  Effective FDI methods help prevent costly situations 

resulting from delayed detections or erroneous isolations, which will warrant a safe and 

efficient operation of chemical plants [4].  

The work will improve fault detection by modifying a well-established detection 

algorithm called, Multiscale Principal Component Analysis (MSPCA), and it will improve 

fault isolation by extending the developed algorithm to a reconstruction-based isolation 

approach.  

Data-driven FDI algorithms, unlike model-based or expert-knowledge based 

algorithms, use only historical process data to build models [5]. Many data-driven 

algorithms are based on Principal Component Analysis (PCA) because of its ability to 

capture the correlation structure of historical data in a single model. With this model, PCA 

projects data into a modeled subspace, called principal component subspace, and an un-
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modeled subspace, called residual subspace [6].  By computing various PCA detection 

and isolation indices, one can detect the fault and isolate the process variable that caused 

it.  PCA FDI performance is compromised when the data is nonlinear, dynamic, Gaussian, 

and/or does not contains a moderate level of noise. As a result, several extensions of PCA, 

such as, kernel PCA, multiscale PCA (MSPCA), and exponentially weighted PCA have 

been developed [7] [8] [9].  

The MSPCA formulation is highly effective in extracting information from 

process data that is nonlinear in nature and that consists of many contributing features 

such as noise, process dynamics, disturbances, etc. [8]. It utilizes the advantages of 

wavelet-based multiscale analysis to effectively separate stochastic and deterministic 

features and decorrelate auto-correlated signals, which improve the monitoring quality of 

PCA [10]. Several works have demonstrated the large improvements in MSPCA fault 

detection [11] [12] [13] [14] [15]. However, at times, the conventional way of carrying 

out MSPCA leads to unsuccessful detection even for linear data sets. One such example 

is illustrated by Zhang who highlights the inaccuracy of the coefficient selection step in 

the conventional MSPCA algorithm [16]. To the best of the author’s knowledge, no work 

has thoroughly investigated the robustness of the conventional MSPCA algorithm for 

linear data sets. Therefore, the first objective of this work is to investigate this issue and 

accordingly suggest an Enhanced MSPCA (EMPCA) algorithm for improved fault 

detection. This issue will be investigated and discussed in Section 2 of the thesis.  

MSPCA has been extended to improve fault isolation by works of Yoon and 

MacGregor in 2001 and Misra et. al. in 2004. Both of these methods rely on the complete 
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decomposition (CD) technique also known as contribution plots, and they illustrate how 

to diagnose the type of fault from its blueprint representation at multiple scales [5] [6]. 

However, the CD isolation method suffers from a phenomena called the “smearing effect” 

which can result in false isolations [18]. Another isolation technique called the 

reconstruction-based (RB) method, established in 2008, suffers less from smearing and is 

found to outperform the conventional CD method [19]. Alcala et al. extensively analyzes 

the smearing effect in both the CD and the RB methods and concludes that the RB 

approach can guarantee correct fault isolation for large enough faults while the CD method 

cannot [20]. Therefore, the second objective of this work is to improve EMSPCA-isolation 

by developing a new technique that utilizes the reconstruction based contribution method. 

This will be explored in Section 3 of the thesis.  

Furthermore, this work will explore the advantages of using the undecimated or 

stationary wavelet transform over the commonly used decimated wavelet transform in the 

overall FDI performance. The decimated wavelet transform reduces the number of 

samples by half at each subsequent coarser scale to remove redundancy, while the 

undecimated wavelet transform does not [21]. This work will illustrate how data 

redundancy could be an advantage for data-driven techniques that require large sets of 

data to build models.   

The remainder of this thesis is divided into five main sections: Section 2, which 

proposes the EMSPCA algorithm and investigates the detection performance; Section 3, 

which extends EMSPCA to RB isolation and investigates isolation performance; Section 

4, which presents TEP unit application; Section 5, which presents a pilot-plant application 
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of the proposed FDI algorithm; and finally Section 6, which concludes the findings of this 

work and proposes future directions. 

1.2. Research Contributions 

The main contribution of this work is the development of an EMSPCA FDI algorithm 

that improves fault detection and fault isolation. The individual research objectives are 

listed as follows: 

 Conduct an extensive analysis on the detection performance of the conventional 

MSPCA method to highlight the drawback in its threshold estimation.  

 Propose a novel EMSPCA method that improves threshold estimation and thereby 

improves detection performance.   

 Investigate the effects of fault size and decomposition depth on detection and 

isolation performance using Monte Carlo simulations of a simulated example.  

 Investigate the effects of using the decimated and undecimated multiscale wavelet 

transforms on both the detection and isolation performances.   

 Extend EMSPCA to reconstruction based isolation and compare it with EMSPCA 

contribution plot isolation.   

 Test the EMSPCA FDI algorithm on experimental data obtained from a pilot 

distillation plant.   

 Test the EMSPCA FDI algorithm on the stripper and separator TEP units. 
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2. IMPROVING FAULT DETECTION WITH EMSPCA 

 

2.1. Introduction  

Fault detection and isolation (FDI) are the process monitoring control tasks that 

ensure variables remain within their safe and normal limits. This section will address fault 

detection and the Enhanced Multi-Scale PCA (EMSPCA) algorithm will be introduced to 

improve the fault detection performance of the conventional MSPCA algorithm.  

MSPCA combines the feature extraction quality of wavelet analysis with the 

monitoring quality of PCA to improve detection quality[8]. It was originally developed by 

Bakshi in 1998, and  has proven to be highly effective for dynamic process data [10] [11] 

[12]. However, Zhang’s work highlights that MSPCA can lead to poor detection 

performance for even linear data [16]. This section will further investigate when and why 

poor detection occurs when using the conventional MSPCA method. Accordingly, the 

Enhanced MSPCA algorithm will be proposed to tackle the drawbacks identified with 

MSPCA which improve the overall detection performance. This section will also 

demonstrate the effect of using decimated and undecimated wavelet transforms on the 

detection rates.   

The upcoming subsections 2.2, 2.3, and 2.4 will provide a brief overview of PCA-

based fault detection, multiscale analysis, and the conventional MSPCA algorithm. 

Section 2.5 will present an extensive analysis of MSPCA detection performance and the 

motivation for EMSPCA, followed by Section 2.6, which will discuss the EMSPCA 

algorithm and the results. Section 3 will extend the developed algorithm to improve fault 
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isolation. Section 4 and 5 will test the proposed algorithm on two different applications, 

the TEP and the pilot distillation plant.  

2.2. PCA Detection  

PCA transforms the original process variables to a new set of variables called 

principal components (PC). The first PC is in the direction which captures the highest 

variability in the data, and every succeeding principal component captures the highest 

remaining variability. The principal components are orthogonal to each other and 

represent a new basis for the data [22]. 

PCA is oftentimes called a dimension reduction technique because of its ability to 

reduce the dimensionality of the data by removing the principal components which capture 

the lowest variability [8]. For example, consider Figure 1, which shows x-y data as red 

dots and their corresponding principle directions as blue arrows, labeled v1 and v2.  The 

first PC (v1), which captures the important variability, is used to model the data, while the 

second PC (v2), which captures the variations due to noise, is discarded as residuals.  
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PCA is a powerful technique when it comes to dealing with many variables (high 

dimensions) because it can capture the underlying correlations and removes the noise. A 

typical chemical process has a large set of variables that are correlated due to the physical 

laws governing them. This makes PCA highly valuable in extracting useful information 

and using it to detect and isolate faults in chemical processes [23].  

The PCA model is constructed using non-faulty historical process data that are 

assumed to contain all possible variabilities. Let 𝑿 ∈ ℝ𝑚×𝑛 be a data matrix with 

dimensions 𝑚 × 𝑛  (𝑚 variables and 𝑛 observations). Each variable is normalized to zero 

mean and unit standard deviation. The first step in PCA is to perform an eigen-

decomposition on the covariance matrix 𝑹, which gives [24],  

𝑹 ≡
𝑿 𝑿𝑻

𝑛−1
=  𝑷 𝜦  𝑷𝑻     (𝑚 × 𝑚). 

v2 v1 

Figure 1: Simple PCA visual. 
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The columns (𝒑𝑖) of the 𝑷 matrix are the orthogonal eigenvectors (or loading vectors) of 

the covariance matrix 𝑹, and the diagonal elements of the matrix 𝜦 are the corresponding 

eigenvalues (𝜆𝑖). Each 𝒑𝑖 represents a direction that captures some variation in the data, 

and the corresponding 𝜆𝑖 quantifies the amount of variation captured [25]. A key feature 

in PCA is determining the number of loading vectors to retain (𝑙). The retained loading 

vectors (or principal components- PC’s) capture the underlying variations in the data, 

while the discarded PC’s represent only the noise variations. An 𝑙 value that is too high or 

too low can jeopardize the accuracy of the model [6].  Consequently, there are several 

techniques for determining 𝑙 in literature; the Scree test [25], cross validation [26][27], 

and cumulative percent variance CPV [13] are among the most commonly used methods.  

The PCA process model 𝑪 is computed by [24],  

𝑪 = 𝑷̂𝑷̂𝑻, 

where 𝑷̂ are the retained loading vectors in an (𝑚 × 𝑙) matrix.  The PCA model 

decomposes the data matrix 𝑿, into modeled data, 𝑿̂, and unmodeled data (or residual 

data), 𝑿̃ [23], 

𝑿 =  𝑿̂ + 𝑿̃             𝑿 ∈ ℝ𝑚×𝑛, 

where,  

𝑿̂ = 𝑪𝑿 and 𝑿̃ = (𝑰 − 𝑪)𝑿 [24]. 

The matrices 𝑪 and 𝑰 − 𝑪 are transformations which project the data onto a principal 

component space (PCS) and a residual subspace (RS) as illustrated in Figure 2 adapted 

from [23]. The addition of the two, completes the measurement space.  
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Fault detection using the PCA model can be carried out using three fault detection indices 

that will be described next.  

2.2.1. PCA Detection Statistics  

There are three common fault detection indices associated with PCA: Q, T2, and, 

𝜑.  A detection statistic and a detection threshold, can be used to indicate how likely a 

fault has occurred. Usually, a detection statistic the crosses a threshold is highly likely to 

be faulty and so is flagged as a fault. For a single sample, and of the PCA detection 

statistics can be computed by the general equation [28],  

𝑖𝑛𝑑𝑒𝑥(𝒙) = 𝒙𝑇𝑴𝒙 = ‖𝑴𝟏/𝟐𝒙‖
2
 

where 𝑴 can represent any of the fault detection statistics summarized in Table 1 [29].  

 

 

Table 1: General M index for fault detection [29] 

index 𝑆𝑃𝐸/𝑄  𝑇2 𝜑 

M 𝑰 − 𝑪 𝑷̂𝜦̂−𝟏𝑷̂𝑻 
𝚽 =

 𝑷̂𝜦̂−𝟏𝑷̂𝑻

𝜏2
+

𝑪̃

𝛿2
 

 

Figure 2:  The principal component projections (adapted from [23]). 

𝒙෥ 

𝒙ෝ 

𝒙 
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The Q statistic detects the faults which appear in the residual subspace, and the 𝑇2  

statistic detects the faults which appear in the principal component subspace [23]. The 

combined index (𝜑) combines the effects of both the Q and the 𝑇2 statistics, thus, 

providing a complete measure of variability in the entire space. This work will utilize the 

Q statistic in its analysis because the residual space can capture a wide range of abnormal 

conditions that cause a disruption in the correlation structure of the data. The Q statistic’s 

sensitivity towards the correlation structure is advantageous because relatively small faults 

can be captured [30].  

2.2.1.1. Q Statistic  

The 𝑄 statistic is often called the square prediction error (SPE) and is defined by 

[31],  

𝑄(𝒙) = 𝒙𝑇𝑴𝒙 = 𝒙𝑇(𝑰 − 𝑪)𝒙 = ‖(𝑰 − 𝑪)
𝟏

𝟐𝒙‖
2

= ‖𝒙 − 𝒙ෝ‖2 = ‖𝒙෥‖2. 

It represents the sum of squared errors between the original data (𝒙) and the modeled data 

(𝒙ෝ).  

The confidence limit (𝛿2) for the 𝑆𝑃𝐸 was originally developed by Jackson and 

Mudholker under the assumption that the residuals follow a normal distribution [32]. By 

a second order moment approximation, the confidence limit is calculated by [29],  

𝛿2 =
𝜃2

𝜃1
 𝜒𝛼

2 (
𝜃1

2

𝜃2
) 

where α is the confidence limit, 𝜃1 = ∑ 𝜆𝑖
𝑚
𝑖=𝑙+1 , 𝜃2 = ∑ 𝜆𝑖

2𝑚
𝑖=𝑙+1 , and 𝜆𝑖 are the 

eigenvalues. The detection limit can also be obtained empirically for residuals that do not 

follow a normal distribution. When 𝑄(𝒙) ≥  𝛿2, an error is flagged, which indicates that 
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there occurred a breakdown in the correlation structure among variables due to a potential 

fault [29]. The Q statistic captures a large variety of faults, and it will be used in all the 

analysis/results presented in this work.   

2.2.1.2. T2 Statistic 

The 𝑇2 statistic measures the variations of the scores and was originally developed  

by Hoteling 1933 [33]. The 𝑇2 index at any time sample is computed by [29],  

𝑇2(𝒙) = 𝒙𝑇𝑴𝒙 = 𝒙𝑇𝑷̂𝜦̂−𝟏𝑷̂𝑻𝒙 = ‖(𝑷̂𝜦̂−𝟏𝑷̂𝑻)
𝟏/𝟐

𝒙‖
2

 

where 𝑷̂ is the retained principal components and 𝜦̂ is the diagonal matrix of the 

eigenvalues associated with them. The index represents the sum of the squared scores. 

When the 𝑇2  index exceeds a certain control limit (𝑇2(𝒙) ≥ 𝜏2), an error is flagged.  

The 𝑇2  statistic control limit can be computed empirically from data representing 

normal operation (i.e., the training data). However, it can also be computed statistically 

by a chi-distribution, 𝜏2 = 𝜒𝛼
2(𝑙) with a confidence level α, or by an F-distribution, 𝜏2 =

(𝑛2−1)𝛼

𝑛(𝑛−1)
𝐹𝛼(𝑙, 𝑛 − 𝑙), where 𝑙 and 𝑛 − 𝑙 degrees of freedom of the F-distribution [29] [34]. 

The 𝑇2 helps identify another kind of abnormal condition where the operating variability 

is out of range. Since the 𝑇2 index flags an error when there is a change of variance, it 

requires a relatively large fault to be noticed [29]. 

2.2.1.3. 𝝋 Statistic  

The combined index 𝜑, was proposed by Yue and Qin, and it is a combination of 

the 𝑇2 and 𝑄 statistic and it is computed by [35],  

𝜑(𝒙) = 𝒙𝑇𝑴𝒙 = 𝒙𝑇𝚽𝒙 = ‖𝚽𝟏/𝟐𝒙‖
2
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where,  

𝚽 =
(𝐈 − 𝐂)

𝛿2
+

𝑷̂𝜦̂−𝟏𝑷̂𝑻

𝜏2
. 

The statistical control limit is obtained by [35],  

𝜁2 =
(

1
𝜏4 +

𝜃2

𝛿4)

(
1
𝜏2 +

𝜃1

𝛿2)
  𝜒𝛼

2 (
(
1
𝜏2 +

𝜃1

𝛿2)
2

(
1
𝜏4 +

𝜃2

𝛿4)
) 

where 𝜏2 and 𝛿2 are the confidence limit for the  𝑇2 and Q statistics, 𝜃1 = ∑ 𝜆𝑖
𝑚
𝑖=𝑙+1 , 𝜃2 =

∑ 𝜆𝑖
2𝑚

𝑖=𝑙+1 , and 𝜆𝑖 are the eigenvalues. When an error is flagged, the combined index can 

indicate a fault which caused an abnormal variation within the scores and/or a breakdown 

of the correlation structure.  

2.2.2. Detectability Conditions 

The detectability conditions are a set of conditions, which when satisfied, 

guarantee a fault detectable (i.e. the statistic will cross the limit). This section will 

demonstrate the detectability conditions for the Q statistic specifically as it will be used 

throughout this work. Assume a data sample is divided into the non-faulty and the faulty 

components as follows, 

𝒙 = 𝒙∗ + 𝑓𝝃𝒊, 

where 𝒙∗ is the non-faulty component, and 𝑓𝝃𝒊 represents the faulty component’s 

magnitude and direction. The residual projection of the above equation yields,  

𝒙෥ = 𝒙෥∗ + 𝑓𝝃̃𝒊 

It is necessary that a fault direction exists in the residual space, i.e.  𝝃̃𝒊 ≠ 𝟎 , otherwise no 

fault can be observed and detection cannot occur. 
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  To guarantee fault detection, the magnitude of the fault projection should satisfy a 

minimum in order to exceed the detection threshold. This is illustrated by normalizing the 

fault direction, 𝝃̃𝒊 = ‖𝝃̃𝒊‖𝝃̃𝒊
𝒐, and re-writing the above equation as,  

𝒙෥ = 𝒙෥∗ + 𝑓‖𝝃̃𝒊‖𝝃̃𝒊
𝒐 = 𝒙෥∗ + 𝑓𝝃̃𝒊

𝒐, 

where the term, 𝑓 represents the fault magnitude projected in the residual space. A fault is 

guaranteed detectable when this orthogonal distance is larger than the diameter of the 

confidence region (2𝛿) [6],  

|𝑓| > 2𝛿. 

This was a result of derivation provided by [6]. This suggests the importance of 

considering the “fault projection” rather than the actual fault size for Q statistic detection. 

2.3. Multiscale Analysis  

PCA detection performs well under the assumptions of independent Gaussian 

noise at moderate levels [36]. Multiscale analysis will help address violations in these 

assumptions by enabling effective feature extraction and decorrelation of autocorrelated 

signals, which improve the overall detection performance.  

The main advantage behind wavelet-based multiscale analysis is the ability to view 

a function or a signal at multiple scales that are localized in both time and frequency. This 

analysis is useful for real process data which contain multiple features (such as process 

dynamics and measurement noise) that appear more prominently in specific scales. Some 

of the multiscale representation algorithms -the decimated and undecimated wavelet 

transforms- are described in this Section. 
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2.3.1. Decimated Wavelet Transforms  

A decimated wavelet transform (DWT) is the projection of a signal onto a set of 

orthonormal basis functions, called the wavelet and scaling functions [37]. Well-known 

examples of wavelet functions include the Haar, Daubechies, Coiflet, and Symlet 

functions [38]. This work will use the wavelet Haar for its simplicity and the effectiveness 

of using other wavelets may be considered for future work. All wavelet functions are 

defined with a set of dilations and translations as shown by [8],  

𝜓𝑠𝑘(𝑡) =
1

√𝑠
𝜓 (

𝑡 − 𝑘

𝑠
), 

where s is the dilation parameter that determines the scale, and k is the translation 

parameter that determines the shift in time [8]. The scaling and translation parameters are 

manipulated to facilitate the multiresolution wavelet analysis. For practical purposes, 

when dealing with discrete signals, the wavelet and scaling functions can be discretized 

dyadically with the dilation parameter as 𝑠 = 2𝑗  [8],  

𝜓𝑗𝑘(𝑡) =
1

√2𝑗
𝜓 (

𝑡 − 2𝑗𝑘

2𝑗
), 

Each wavelet function has a corresponding orthonormal scaling function with a similar 

formula,  

𝜑𝑗𝑘(𝑡) =
1

√2𝑗
𝜑 (

𝑡 − 2𝑗𝑘

2𝑗
). 

The DWT can be implemented by convoluting a signal with filter bank structure 

with low pass and high pass filters, which are derived from the scaling and wavelet 

functions respectively [37]. Thus a wavelet decomposition uses, a high pass filter, with 
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impulse response 𝑔 derived from the wavelet functions 𝜓(𝑡), and a low pass filter, with 

impulse response ℎ derived from the scaling function 𝜑(𝑡) [39]. An algorithm for 

implementing the DWT was first developed by Mallat in 1989 [40]. His algorithm relies 

on the application of the filters ℎ and 𝑔 and the down-samplers (↓2), over and over on the 

approximate scale output as illustrated in Figure 3. This figure is an edited version of a 

figure found in [41].  

 

 

 

 

 

 

 

 

 

 

 

 

The DWT algorithm illustrated in Figure 3 shows, that given a time-domain signal, 

𝑎𝑗−1, a coarser approximation of the signal, called the first scaled (or approximate) signal, 

a1, can be computed by convoluting the signal with the low pass filter h. The difference 

between the time-domain signal and the first scaled signal can be computed by 

convoluting the time-domain signal with the high pass filter, g, and is called the first detail 

signal. This process can be repeated using the first scaled signal to get the second scaled 

and detail signals, a2 and b2, respectively. Refer to Figure 4 for the visual illustration. 

𝑔 ↓2 

ℎ ↓2 

𝑎𝑗−1 𝑔 ↓2 

ℎ ↓2 

𝑎𝑗 

 
𝑔 ↓2 

ℎ ↓2 

𝑎𝑗+1 

𝑏𝑗 

𝑏𝑗+1 

Figure 3: Schematic diagram of the decimated wavelet transform (adapted [41]). 
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 Repeating this process J times, the signal can be represented as the sum of all 

detail signals at all scales and the last scaled signal as follows: 

𝑥(𝑡) = ∑ 𝑎𝐽𝑘𝜑𝐽𝑘(𝑡)

𝑁2−𝐽

𝑘=1

+ ∑ ∑ 𝑏𝑗𝑘𝜓𝑗𝑘(𝑡)

𝐾

𝑘=1

𝐽

𝑗=1

    

where 𝑎𝐽𝐾 and 𝑏𝑗𝑘  are the approximate and detail coefficients corresponding to the scaling 

𝜑𝑗𝑘(𝑡) and wavelet 𝜓𝑗𝑘(𝑡) functions; 𝐽 represents the decomposition depth ranging 

between 1 and log2(𝑁), where 𝑁 is the signal length; and 𝐾 is the translation parameter 

ranging from 1 to 𝑁2−𝑗. This equation shows how a signal can be decomposed into 

multiple scales and likewise how it can be reconstructed back to the time domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The DWT can also be computed using matrix multiplication by multiplying a 

signal x (represented as (𝑁 × 1) column vector) by a matrix W as follows [38],  

𝒙  

𝒂𝟏 

 

𝒂𝟐 

 

𝒂𝟑 

 

𝒃𝟏 

 

𝒃𝟐 

  

𝒃𝟑 

 

Figure 4: Decimated wavelet decomposition of a signal at multiple scales. 
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𝑥𝑤 = 𝑾𝑥 

where, 𝑥𝑤 (𝑁 × 1) contains the final approximate scale coefficients and all the detailed 

coefficients, and 𝑾 is the (𝑁 × 𝑁) filter matrix. The filter matrix (W) has the high pass 

and low pass filter coefficients  organized in a specific way depending on the size of the 

time-domain signal (𝑁) and the decomposition depth (𝐽) [8][14]. When decomposing to 

the maximum possible depth (i.e. 𝐽 = log2(𝑁) ), 𝑾 takes the following form,  

𝑾 =

[
 
 
 
 
 
 
 
 
 
 
 

ℎ𝐽,1 ℎ𝐽,2 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ℎ𝐽,𝑁

𝑔𝐽,1 𝑔𝐽,2 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝑔𝐽,𝑁

𝑔𝐽−1,1 𝑔𝐽−1,2 ⋯ ⋯ 𝑔
𝐽−1,

𝑁
2

0 0 ⋯ ⋯ 0

0 0 ⋯ ⋯ 0 𝑔
𝐽−1,

𝑁
2
+1

𝑔
𝐽−1,

𝑁
2
+2

⋯ ⋯ 𝑔𝐽−1,𝑁

⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

𝑔1,1 𝑔1,2 0 0 ⋯ ⋯ ⋯ ⋯ ⋯ 0
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
0 0 ⋯ ⋯ ⋯ 0 𝑔1,𝑁−3 𝑔1,𝑁−2 0 0

0 0 ⋯ ⋯ ⋯ ⋯ ⋯ 0 𝑔1,𝑁−1 𝑔1,𝑁 ]
 
 
 
 
 
 
 
 
 
 
 

 

where ℎ𝑗.𝑛 and 𝑔𝑗,𝑛 are the filter coefficients with subscripts j and n representing the scale 

and sample number.  

Some of the significant issues that arise from down-sampling include: 1) the 

number of samples is halved at every ensuing scale, which is an issue if large data sets are 

needed , and 2) it makes the DWT time-variant, i.e., the location of a feature in time will 

affect its representation at multiple scales. These issues are resolved by the stationary 

wavelet transform, which is discussed in the next section. 

2.3.2. Undecimated Wavelet Transform 

The main difference between the DWT and the undecimated (or stationary) 

wavelet transform (UWT) is that UWT does not involve down-sampling, and thus, the 
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same number of samples is maintained at every scale. This can be an advantage for data-

driven techniques that require large data sets for statistical inference [41]. Secondly, the 

time-variant concern is no longer applicable in stationary wavelet transform.  UWT can 

be implemented using application of low pass and high pass filters as shown in Figure 5, 

which is an adaptation from the a figure in [41]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As Figure 5 indicates, the UWT does not down-sample the scaled or detail signals, 

instead, it up-samples the low pass and high pass filters at every subsequent coarser scale. 

This allows the lengths of the scaled and detail signals to maintain the same at all scales 

(see Figure 6). Note that UWT can also be performed for a signal represented by 

multiplying a vector x with a matrix 𝑾𝒖 (of size (𝐽 + 1)𝑁 × 𝑁), which gives a vector of 

size (𝐽 + 1)𝑁 × 1, containing the scaled signal and all detail signals. The SWT of a signal 

is illustrated in Figure 6. 

 

Figure 5: Schematic diagram of the undecimated wavelet transform (adapted [41]). 
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The decimated and the undecimated wavelet decompositions involve transforming 

the data into different scales, which sets up the framework for MSPCA. To reconstruct the 

decomposed signals back to the time domain, all detail scales and only the final 

approximate scale are required. Therefore, only those scales will be involved in the 

MSPCA algorithm. The next section will describe the conventional MSPCA algorithm 

which integrates PCA at every scales.  

2.4. MSPCA Detection Algorithm   

The conventional MSPCA algorithm was originally published in 1998 by Bakshi [8], and 

its steps are summarized in the flow chart below.  

 

Figure 6: Decimated (left) and undecimated (right) wavelet decompositions. 
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As shown in Figure 7, the first step is to standardize the data to unit variance and 

zero mean. Then, the decimated wavelet transform is used to decompose the training and 

testing data to a depth d, which produces d detail scales and one approximate scale. For 

every scale derived from the training data, a PCA model and a detection threshold or limit 

is determined and stored to be used in every scale derived from the testing data. The PCA 

Training Data 

Standardize data. 

Perform decimated wavelet 

decomposition to a depth d. 

For every scale, compute PCA model, 

detection statistic, and detection limit. 

Apply detection criteria: select entire 

scale if at least one limit violation 

exists. 

Reconstruct data with only the 

selected scales. 

Compute the PCA model and detection 

limit for the reconstructed data. 

Testing Data 

Standardize data. 

Perform decimated wavelet 

decomposition to a depth d    

For every scale, use PCA model to 

compute the detection statistic. 

Apply detection criteria: select only 

the coefficients that violate the limit. 

Reconstruct data with only the 

selected coefficients. 

Use PCA model to compute the 

detection statistic. 

 

PCA model  

& limit 

Declare fault No fault 

PCA model  

Detection limit Limit 

violation

? 

Figure 7: Conventional MSPCA algorithm in a flowchart. 
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models are used to compute the detection statistics for every scale. Then, a detection 

criteria is used to process the training and testing signals; in the training data, when one 

detection violation occurs (i.e., the detection statistic crosses the threshold), the entire 

scale is retained for reconstruction. However, in the testing data, only the coefficients that 

violate the limit are retained for reconstruction.   

The selected scales/coefficients are reconstructed back to the time domain with the 

inverse decimated wavelet transform. The reconstructed training data is used to compute 

a new PCA model and a new detection limit that are applied to the testing data to detect 

faults in real time. In the upcoming sections, the MSPCA algorithm, will be implemented 

and analyzed. The conducted analysis will motivate the development of the modified 

version called enhanced MSPCA (EMSPCA). 

2.5. Motivating Example  

This section investigates the detection performance of the MSPCA algorithm for a 

linear data set with a univariate bias fault. Detection performance is evaluated by detection 

and false alarm rates. A randomized synthetic model and Monte Carlo simulations are 

used to obtain meaningful and un-bias conclusions. Through which, a histogram 

distribution of the detection rates and the relationship between detection threshold values 

and fault projections will be analyzed. This analysis will explain the drawbacks of the 

conventional MSPCA method which will motivate enhancing its performance by 

modifications in the algorithm. 

 

 



 

22 

 

2.5.1. Process Model and Simulation Conditions 

The process model used to analyze the performance of the MSPCA algorithm has 

the following form,  

[
 
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6]
 
 
 
 
 

= [𝑀] [

𝑡1
𝑡2
𝑡3

] + 𝑛𝑜𝑖𝑠𝑒 

where, 𝑥1, 𝑥2, … 𝑥6 represent process variables that are functions of, 𝑡1~1𝑁(0,1), 

𝑡2~0.8𝑁(0,1), and 𝑡3~0.6𝑁(0,1). Zero-mean measurement noise that follows the 

distribution, 𝑛𝑜𝑖𝑠𝑒~0.2𝑁(0,1), is added to all variables, and M is a 6 × 3 matrix where 

its elements are generated from a 𝑁(0.2, 1) distribution. Note that the model changes in 

every Monte Carlo run, to ensure that the results are not bias towards a single model 

structure. Some of the important conditions that are used in the analysis are listed below: 

 Theoretical limits with 99% and 98% confidence levels are used, the first is used 

for detail signal thresholding, and the latter for the reconstructed signal detection. 

The confidence level values are recommended by the original MSPCA work[8]. 

 The number of retained principal components is 3.  

 At every iteration the fault location is randomized and the process model is 

generated randomly.  

 The number of Monte Carlo realizations is 3000.  

2.5.2. Simulations Results  

The performance of the MSPCA is evaluated by two metrics: the detection rate 

and false alarm rate. The detection rate (DR) is an indication of how well a method can 

correctly identify the presence of a fault and it is defined by, 𝐷𝑅 =
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𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑢𝑙𝑡𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100. The false alarm rate (FAR) is an indication of a 

type 1 error, that is, when a sample is falsely indicated as a fault when it is not, and it is 

defined by, 𝐹𝐴𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝒅𝒆𝒕𝒆𝒄𝒕𝒆𝒅 𝒏𝒐𝒏𝒇𝒂𝒖𝒍𝒕𝒚 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛𝑓𝑎𝑢𝑙𝑡𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100. 

The DR and FAR as functions of the decomposition depths used in the MSPCA 

technique are plotted in the Figure 8.  

 

 

 

 

 

 

As can be seen from Figure 8, the MSPCA method suffers from a low DR (that averages 

around 63%) but at the same time has a favorable FAR (that averages around 0.2%). To 

further analyze the low DR, a histogram plot showing the distribution for a decomposition 

depth of 4 was generated as shown in Figure 9. 

Figure 8: MSPCA detection performance across 9 decomposition depths. 
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As can be seen from Figure 9, the detection completely fails (i.e. a DR below 20%) 

for a substantial number of cases (Monte Carlo realizations). Hence, the high count of 

unsuccessful detection is a major drawback of the conventional MSPCA method.  

As stated earlier, a fault is guaranteed detectable when the condition, |𝑓| > 2𝛿, is met 

(where 𝑓 is the fault projection and 𝛿 is the square-root of the threshold value). Hence, 

successful detection is determined by an interplay of two factors: (1) how well the fault is 

projected onto the residual space, and (2) how high/low the threshold value is computed 

to be. To illustrate this important interaction between fault projection and threshold value, 

please refer to the two extreme situations presented below, both which represent an 

unsuccessful detection.  

1. An unsuccessful detection caused by a relatively large threshold value (even 

though the fault projection onto the residual space is “good”) as shown in Figure 

10.  

 

Figure 9: MSPCA DR histogram distribution for depth 4. 
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2. An unsuccessful detection caused by a “bad” (i.e., small) fault projection onto the 

residual space as shown in Figure 11.  

 

 

 

 

 

 

 

 

 

 

 

 

It is important to note here, that, how well the data are projected onto the residual 

space is a direct consequence of the PCA model which is built from the training data. The 

extreme cases, i.e. a 0% detection rate, that results from poorly projected faults, allude to 

an issue of the data (or the model) itself, which does not concern the scope of this work. 

Testing Q-statistic Training Q-statistic 

Training Q-statistic Testing Q-statistic 

Figure 10: Unsuccessful detection due to high threshold. 

Figure 11: Unsuccessful detection due to poor fault projection. 
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However, sometimes the fault is “detectable” due to a good (or large) enough 

projection onto the residual space, but the conventional method will still not detect it. 

Figure 10 illustrates such a scenario. To further explore and identify those specific cases, 

please refer to Figure 12 that shows a plot of the residual fault projection versus the 

threshold value. The red crosses symbolize a DR less than 50% and the black crosses 

symbolize a DR greater than 50%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The clear separation between the black and red marks in Figure 12 suggests that 

high threshold values are a key reason why the conventional method has a large count of 

unsuccessful detections. Figure 12 also accurately illustrates that detection is always bad 

for small fault projections on the residual space (specifically in the range 0 to 0.2). The 

Figure 12: Analysis of the relationship between threshold value and fault 

projection for a successful detection. 
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higher the fault projection, the more leeway MSPCA has with respect to the range of 

acceptable threshold values that give a high detection rate, as indicated by the gradually 

increasing black area.  

Therefore, the conventional method performs most reliably for larger fault 

projections where the detection threshold can easily capture the fault. This work will tackle 

this issue by developing a more robust method that can successfully determine suitable 

thresholds for a wider range of fault projections. To do so, the developed technique will 

address the mismatch between the way the training and testing data are processed, 

specifically the selection rules which determines the wavelet coefficients that are selected 

for reconstruction. This will enable tighter detection thresholds that will lead to a higher 

DR. Furthermore, to maintain a low FAR, an additional soft-thresholding step will be 

used.  

2.6. Enhanced MSPCA (EMSPCA) Algorithm 

This section presents an enhanced MSPCA method that uses a different set of wavelet 

selection rules from those used in the conventional MSPCA method. The new way of 

processing wavelet coefficients will naturally yield a tighter and more adaptable threshold, 

which will improve the DR. It will also utilize soft-thresholding to reduce the FARs.  The 

main steps in the EMPSCA algorithm are the same as the ones illustrated in Figure 7. First, 

the data is standardized to zero mean and unit variance. Then, wavelet transforms 

decompose the training and testing data into several scales. The training data is used to 

generate the PCA models and the detection thresholds to be utilized in detect significant 

features in the testing data at each scale. Afterwards, the detection criteria or the selection 
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rules will be implemented to select certain coefficients/scales for reconstruction, as 

described next.  

2.6.1. Selection Rules in EMSPCA 

The EMSPCA selection rules, unlike MSPCA, are not based on whether the scale is 

training or testing, rather, it is based on whether the scale is an approximate or a detail. 

The detail scales are the high frequency components and the approximate scale is the low 

frequency (slow changing) component of the decomposed process data. The new set of 

rules applied to both training and testing are:  

1. Keep only the coefficients that violate the limits in the detail signals at each 

scale. 

2. Always keep the entire approximate signal. 

To further improve the detection results, soft-thresholding is applied on the detail signals 

of the testing data at each scale as will be described next. 

2.6.2. Soft-Thresholding in EMSPCA 

Soft-thresholding is sometimes called “wavelet shrinkage” because the values of the 

signals are being shrunk towards zero by subtracting the value of the threshold. In 

EMSPCA, it will be applied using the details signals as follows,  

1. The Q statistic samples that don’t cross the detection threshold are set to zero.  

2. The Q samples that cross the detection threshold are subtracted by the threshold 

value, and a new “soft-thresholded” Q statistic is generated.   

3. The detection threshold is applied again on the soft-thresholded Q statistic and 

those samples that cross the limit are those selected for wavelet reconstruction.  
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Effectively, this is the same as using twice the threshold value. This step is critical for 

reducing the FAR in the testing data. The selected wavelet coefficients are reconstructed 

back to the time domain, where PCA fault detection is applied again.  

2.6.3. Effect of Decomposition Depth and Fault Size on DR 

A Monte Carlo simulation using 3000 realizations was used to evaluate the DR 

and FAR for MSPCA, EMSPCA, and EMSPCA-ST (with soft-thresholding). Figure 13 

shows comparisons of the DR and FAR for the different techniques across nine wavelet 

decompositions depths using a fixed fault size of 1 sigma.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: DR and FAR across 9 decomposition depths for MSPCA, 

EMSPCA, and EMSPCA-ST. 



 

30 

 

As illustrated in Figure 13, the EMSPCA method shows a large improvement in 

DR (about 25% higher than the conventional MSPCA) but suffers from a high FAR that 

reach up to 8% at large depths. This is due to the tight detection limits resulting from the 

new selection rules. However, when soft thresholding was used (EMSPCA-ST), the FAR 

was effectively reduced by more than two-fold while maintaining the high DR. The 

selection of the appropriate depth will therefore depend on the FAR tolerance; if FAR 

must be low (~ 0%), a depth of 5 can be used to achieve the highest DR for the required 

FAR.   

A similar Monte Carlo simulation was used to evaluate the DR and FAR for 

MSPCA, EMSPCA, and EMSPCA-ST, but for varying fault sizes and a fixed depth of 4.  
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Figure 14 shows that EMSPCA significantly improves detection rate for fault magnitudes 

less than 3 sigma. It also shows that implementing soft thresholding nicely fixes the issue 

of the high FAR.  For brevity, EMSPCA will be used to refer to the technique that uses 

soft thresholding for the remainder of this paper. To further analyze the improvements 

achieved by the developed EMSPCA algorithm over the conventional MSPCA algorithm, 

please refer to Figure 15 and Figure 16 which highlight the robustness of the enhanced 

technique. 

 

Figure 14: DR and FAR for different fault sizes for MSPCA, EMSPCA, 

and EMSPCA-ST. 
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Figure 15 shows how the EMSPCA method significantly reduces the number of 

unsuccessful detections. Figure 16 shows that EMSPCA can determine more suitable 

threshold values (indicated by the increase in black markers), over a wider range of fault 

projections onto the residual space. This analysis shows that the developed EMSPCA 

method is more robust than the MSPCA for linear data sets with univariate faults.   

 

 

Figure 15: DR histogram distributions for MSPCA and EMSPCA for a depth of 4. 

Figure 16: Analysis of the relationship between threshold value and fault 

projection for MSPCA and EMSPCA. 
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2.6.4. Effect of Wavelet Decomposition Transform on DR 

The decimated wavelet transform involves down-sampling while the undecimated 

wavelet transform does not. Thus, in the undecimated wavelet transform, the same number 

of samples is retained at every scale. The EMSPCA is implmeted using both wavelet 

transform methods: decimated and undecimated, and the DR and FAR are compared over 

all decomposition depths as shown in Figure 17.  

 

 

 

 

 

 

Figure 17: DR and FAR for decimated and undecimated EMSPCA. 
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Figure 17 shows that detection rate is improved by about 5% on average, and FAR 

is also improved (by being reduced) 1% on average when using the undecimated 

EMSPCA. This highlights the advantage of data redundancy of the undecimated wavelet 

transform for more effective fault detection.   

 Section 2 shows how EMSPCA significantly improves detection performance as 

it generates more accurate threshold values for the smaller range of fault projections. 

EMSPCA showed more reliable and accurate detection results. Furthermore, soft-

thresholding the detail testing signals is a crucial step that significantly reduces the FAR. 

In the next section, EMSPCA will be extended to isolation to complete the FDI algorithm.  
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3. IMPROVING FAULT ISOLATION WITH EMSPCA 

 

3.1. Introduction  

Isolating the cause of a fault is just as important as detecting its presence for 

effective process monitoring. The previous section introduced EMSPCA to improve 

detection performance of conventional MSPCA. EMSPCA uses a different set of selection 

rules that can more accurately compute thresholds which result in better detection rates. 

The objective of this section is to extend EMSPCA to reconstructed-based isolation to 

improve isolation performance.   

A multiscale framework has been utilized for isolation in 2001 and 2004 for a 

particular technique called complete decomposition (CD) also known as contribution plots 

[11][17]. The CD method is a popular PCA isolation technique that looks at individual 

variable contributions towards a detection index [14]. However, it suffers from smearing, 

which hinders correct isolation. Smearing occurs when variable contributions contaminate 

one another to the point where erroneous isolations occur [18].  Another isolation 

technique called the reconstruction-based (RB) method, which was established in 2008, is 

more robust towards smearing and can therefore outperform the conventional CD method 

in many cases [19]. Alcala et al. extensively analyzes the smearing effect in both the CD 

and the RB methods and concludes that the RB approach can guarantee fault isolation for 

large enough faults while the CD method cannot [20].  

Therefore in this work, the reconstruction-based isolation approach will be integrated 

into EMSPCA algorithm for improved isolation performance. EMSPCA can provide 
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favorable detection rates, while the reconstruction isolation method is less susceptible to 

smearing. Additionally, this work will also compare the effect decimated and undecimated 

wavelet decompositions on the isolation rates.  

The upcoming subsection 3.2 presents an introduction to PCA-based fault isolation. 

Subsection 3.3 will describe the proposed FDI algorithm based on EMSPCA. Subsection 

3.4 will illustrate the performance of the developed FDI method using synthetic data. 

Section 4 and 5 will demonstrate the algorithm with real-data applications, namely, the 

TEP stripper and separator units and the pilot-plant lab data.  

3.2. PCA Isolation  

This section will only discuss the background related to PCA isolation. For an 

introduction to PCA and PCA detection, refer to Section 2.2. Fault isolation is the 

identification of the variable(s) causing a fault. This section will discuss the two main 

categories of PCA isolation methods: the general decomposition contributions (GD) 

(which is the general form of contribution plots), and the reconstruction-based methods 

[29].  However, there exists several fault isolation methods in literature (not within the 

scope of this work), and a review paper by Alcala et al. provides a good summary and an 

extensive analysis of the existing techniques [29]. 

Since detection precedes isolation, all the isolation contributions depend on the 

detection index used (Q, T2 or 𝜑). The isolation techniques will be discussed in their broad 

and general forms however they are implemented with respect to only the SPE or Q 

statistic in the Results of this work.   
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3.2.1. General Decomposition Method 

The general decomposition contribution for a single variable 𝑖 and a single 

measurement sample 𝒙 is computed by the following equation [29],  

𝐺𝐷𝑖
𝑖𝑛𝑑𝑒𝑥 = 𝒙𝑻𝑴1−𝛽𝜉𝑖𝜉𝑖

𝑇𝑴𝛽𝒙      0 ≤ 𝛽 ≥ 1 

where 𝛽 is an arbitrary parameter between 0 and 1, 𝜉𝑖 is called a direction vector with 

dimensions 𝑚 × 1, and it is 𝑖th column of the 𝑚 × 𝑚  identity matrix, and e subscript 

𝑖𝑛𝑑𝑒𝑥 in 𝐺𝐷𝑖
𝑖𝑛𝑑𝑒𝑥 can indicate Q when 𝑴 = 𝑪̃, T2 when 𝑴 =  𝑷̂𝜦̂−𝟏𝑷̂𝑻, or 𝜑 when 𝑴 =

 𝑷̂𝜦̂−𝟏𝑷̂𝑻

𝜏2 +
𝑪̃

𝛿2 [29].  

For 𝛽 = 0 or 𝛽 = 1, a method called the partial decomposition contribution (PD) 

is obtained.  The PD index was developed for the 𝑇2 statistic by Nomikos. It has the 

following general form [29],  

𝑃𝐷𝑖
𝑖𝑛𝑑𝑒𝑥 = 𝒙𝑻𝑴𝜉𝑖𝜉𝑖

𝑇𝒙. 

This PD approach is not preferred for isolation because of the asymmetry in its form which 

does not guarantee a positive semidefinite matrix (even though 𝑴 and 𝜉𝑖𝜉𝑖
𝑇 are both 

positive semidefinite). Consequently, counter-intuitive negative contribution values can 

be computed [29].    

For 𝛽 = 1/2, the formula reduces to a known method for fault diagnosis called 

contribution plots. It is also called complete decomposition contribution (CD), and the 

contribution of variable 𝑖 has the following equation [29],  

𝐶𝐷𝑖
𝑖𝑛𝑑𝑒𝑥 = 𝒙𝑻𝑴1/2𝜉𝑖𝜉𝑖

𝑇𝑴1/2𝒙 = (𝜉𝑖
𝑇𝑴

1
2𝒙)

𝟐

. 
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The CD was originally developed for the Q statistic by Miller et al. [42], and was 

later implemented for the 𝑇2 and for the combined index ϕ [43][29]. As the name suggests, 

the CD decomposes a particular index into its contributing components, such that the sum 

of all variable contributions yields the value of the detection statistic itself. The application 

of contribution plots for statistical process control (SPC) was introduced by MacGergor 

et al. (1996) for batch processes [44][45]. It has been successfully implemented in many 

industrial applications since then, and to name a few, Wang et al. (2004) identified faulty 

sensors in air handling units using SPE contributions [46], and Xiao et al. (2015) used 

both 𝑇2 and SPE contributions to identify faults that occur in the rolling production of 

seamless tube process [47].  Due to its wide use and popularity, this work will consider 

the CD contributions or contribution plots as a basis and benchmark for comparison. 

3.2.2. Reconstruction Based Method  

The reconstruction methods is a category which involves PCA reconstruction (not 

to be confused with wavelet reconstruction). PCA reconstruction is the estimation of a 

variable using the PCA model and the other remaining variables (omitting the variable 

being estimated) under the objective of minimizing the error. Ideally, when the correct 

variable is reconstructed, the sample which used to contain a fault becomes fault free as 

illustrated by [6], 

𝒙𝒓𝒊 = 𝒙 − 𝑓𝝃𝒊, 

where, 𝒙𝒓𝒊 represents the reconstructed sample, 𝒙 is the testing data faulty sample, and 𝑓𝝃𝒊 

is the fault component, represented as a direction (𝝃𝒊) and a fault magnitude (𝑓). This 

interpretation works well in the case of univariate faults, however for multivariate faults, 
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one must reconsider the term 𝑓𝝃𝒊 which assumes that multiple variables are impacted by 

the same fault magnitude which is rarely the case [19]. Irrespective, the reconstruction-

based isolation methods are centered on the idea that each variable reconstruction will 

result in new estimates of the 𝑇2,𝑄 or 𝜑 statistic [6]. The variable reconstruction which 

significantly lowers the detection statistic value (from its value before reconstruction) will 

have a higher fault isolation index, which signals the variable causing the fault.  

Therefore, isolation accuracy is impacted by how well the PCA model can be used 

to reconstruct the values of each variable. Dunia et. al. introduced a parameter called the 

unreconstructed variance (URV) to measure the “goodness of reconstruction”, and showed 

that a variable is unreconstructable when 𝑐 𝑖𝑖 = 1 and 𝝃̃𝒊 = 𝟎 , and poor reconstruction 

occurs when 𝑐𝑖𝑖 → 1 and 𝝃̃𝒊 → 𝟎 [48].  

There are three similar and complimentary fault identification indices discussed: 

(1) reconstruction-based contributions (RB) , (2) sensor validity index (SVI) also called 

fault identification index (FII), and (3) angle based contribution (ABC) [29]. All three 

approaches are presented in their general forms which can accommodate any detection 

statistic with the choice of 𝑴. The detection index for the reconstructed sample is 

computed by [29],  

𝑖𝑛𝑑𝑒𝑥(𝒙𝒓𝒊) = 𝒙𝑟𝑖𝑇𝑴𝒙𝑟𝑖 = ‖𝑴
𝟏

𝟐𝒙𝑟𝑖‖
2

= ‖𝑴
𝟏

𝟐(𝒙 − 𝑓𝝃𝒊)‖
2

= ‖𝑴
𝟏

𝟐𝒙‖
2

− ‖𝑴
𝟏

𝟐𝑓𝝃𝒊‖
2

, 

which simplifies to,  

𝑖𝑛𝑑𝑒𝑥(𝒙𝒓𝒊) = 𝑖𝑛𝑑𝑒𝑥(𝒙) − ‖𝑴
𝟏
𝟐𝑓𝝃𝒊‖

2
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The term ‖𝑴
𝟏

𝟐𝑓𝝃𝒊‖
2

 represents the reconstructed-based contribution (𝑅𝐵𝑖
𝑖𝑛𝑑𝑒𝑥) for a 

variable 𝑖 where the 𝑖𝑛𝑑𝑒𝑥 is based on a detection statistic used. An isolation index can 

be based on the Q, T2 and 𝜑, where 𝑴 must equal 𝑪̃,  𝑷̂𝜦̂−𝟏𝑷̂𝑻, or 
 𝑷̂𝜦̂−𝟏𝑷̂𝑻

𝜏2
+

𝑪̃

𝛿2
.  The  RB 

contribution was established by Alcala et al. (2009) for all detection indices (𝑇2,𝑄 and 𝜑) 

[49]. 

Rearranging the above equation, we obtain,  

𝑅𝐵𝑖
𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥(𝒙) −  𝑖𝑛𝑑𝑒𝑥(𝒙𝒓𝒊), 

where the 𝑅𝐵𝑖
𝑖𝑛𝑑𝑒𝑥 represents the difference between the detection statistic before and 

after reconstruction. Dividing the above equation by 𝑖𝑛𝑑𝑒𝑥(𝒙) to obtain [29],  

𝑅𝐵𝑖
𝑖𝑛𝑑𝑒𝑥

𝑖𝑛𝑑𝑒𝑥(𝒙)
= 1 −

𝑖𝑛𝑑𝑒𝑥(𝒙𝒓𝒊)

𝑖𝑛𝑑𝑒𝑥(𝒙)
 

where the term 
𝑅𝐵𝑖

𝑖𝑛𝑑𝑒𝑥

𝑖𝑛𝑑𝑒𝑥(𝒙)
 represents the angle-based contribution (ABC) and 

𝑖𝑛𝑑𝑒𝑥(𝒙𝒓𝒊)

𝑖𝑛𝑑𝑒𝑥(𝒙)
 

represents the sensor validity index (SVI) or the fault isolation index (FII). Furthermore, 

both these indices are complimentary (𝐴𝐵𝐶 = 1 − 𝑆𝑉𝐼) [28]. The sensor validity index 

(SVI), was initially developed by Dunia et al. in 1996 for the Q detection statistic [48]. In 

1998 it was termed the fault identification index (FII) for more general faults (not just 

sensor faults) [6]. ABC is a scaled version of the 𝑅𝐵, initially used by Raich et al. in 1996 

for both the Q  and T2 statistics [50].  

This work will use the reconstruction based (RB) contribution because of the 

statistical simplicity that comes with its definition as a difference between detection 

indices, rather than the ratios [51]. Since the detection is restricted to the Q statistic only, 
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the RB contribution equation, written in terms of, the sample vector 𝒙, residual model 𝑪̃, 

and the fault direction 𝜉𝑖
𝑇, is as follows [20],  

𝑅𝐵𝑖
𝑄 =

(𝜉𝑖
𝑇𝑪̃𝒙)

2

𝑐̃𝑖𝑖
. 

3.2.3. Smearing Effect  

The CD and RB fault isolation indices suffer from a phenomena called the 

smearing effect. The smearing effect is when a fault in variable j can impact the fault 

isolation indices of the other variables, and when the impact is sufficiently large, such that 

the contribution of a non-faulty variable 𝑖 is greater than the contribution of the faulty 

variable 𝑗, it will lead to misdiagnosis [20].  The CD and RB equations for a system of 4 

variables, is illustrated below to highlight the naturally occurring phenomena. As can be 

seen, the index for variable 1 is computed from the values of the other 4 variables. The 

severity of smearing is determined by the relative magnitudes of the coefficients. 

𝐶𝐷1
𝑆𝑃𝐸 = (𝒄𝟏̃𝒙)𝟐 = ([𝑐̃11 𝑐̃12 𝑐̃13 𝑐̃14] [

𝑥1

𝑥2

𝑥3

𝑥4

])

2

 

𝑅𝐵1
𝑆𝑃𝐸 =

(𝒄𝟏̃ 𝒙)2

𝑐̃11
= ([𝑐̃11 𝑐̃12 𝑐̃13 𝑐̃14] [

𝑥1

𝑥2

𝑥3

𝑥4

])

2

∗
1

𝑐̃11
 

Smearing will always be an issue because PCA involves projecting data into 

dimensions of lower rank, introducing interdependencies between variables, which 

unavoidably causes smearing [52]. Yoon and MacGregor apply contribution plots to a 

CSTR reactor model where the smearing effect led to a misdiagnosis [18]. A work by 
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Alcala et al. in 2011 examined smearing in both the contribution plot (or CD) and the 

reconstruction based contribution (RB) methods, and concluded, that RB can guarantee 

fault diagnosis for large enough faults (despite smearing effects) while the traditional 

contribution plot cannot [20]. This suggests that RB isolation approach is less prone to 

smearing failure than the CD approach, which motivates the idea of developing a 

multiscale fault isolation algorithm based on the RB approach. 

3.2.4. Control Limits for Isolation  

Even when there is no fault, the contributions of each variable towards a detection 

index varies because of smearing. Therefore, a single control limit cannot be used to 

identify whether or not a variable is faulty [53]. Previous works have proposed the 

following limits, specific to an individual variable, for the CD and RB indices computed 

from fault-free data [28],  

𝐶𝐷𝛾𝑖
2 = 𝜉𝑖

𝑇𝑺𝑪̃𝜉𝑖𝜒𝛼
2(1) 

𝑅𝐵𝛾𝑖
2 =

𝜉𝑖
𝑇𝑪̃𝑺𝑪̃𝜉𝑖

𝜉𝑖
𝑇𝑪̃𝜉𝑖

𝜒𝛼
2(1) 

Due to the effects of smearing, it is safer to base fault diagnosis on the relative magnitudes 

of the contributions. Therefore, for unidimensional faults, the faulty variable is identified 

by the largest fault isolation contribution, and several works have used this criteria [19] 

[11] [54] [55].  

As indicated earlier, this work aims at developing a full FDI algorithm which 

integrates the EMSPCA fault detection algorithm with a new multiscale reconstruction 
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based fault isolation approach. The developed enhanced multiscale PCA fault detection 

and isolation (EMSPCA FDI) algorithm is described next.   

3.3. EMSPCA Isolation Algorithm  

The EMSPCA fault detection algorithm is a modified version of the conventional 

MSPCA algorithm. For a description of the MSPCA algorithm refer to section 2.4. 

EMSPCA was developed to improve the accuracy of fault detection; it provides higher 

detection rates than the conventional method due to the modified set of rules or criteria for 

selecting the significant wavelet coefficients used in its implementation.  

As in MSPCA, EMSPCA starts with training data to build the PCA models and the set 

of normal-operating limits to be used for the testing data as follows:  

For the Training Data: 

1. Standardize the data to zero mean and unit variance.  

2. Decompose the data at multiple scales using wavelet decomposition (DWT or 

UWT). 

3. Determine and store the PCA models and detection thresholds for every scale.  

4. Select the detail and approximate coefficients using the detection criteria, which 

involves computing the Q statistic for the details and selecting only the samples 

which cross the Q-threshold, and selecting all the approximate coefficients with 

no consideration towards the Q statistic.  

5. Reconstruct the selected coefficients back to the time domain.   

6. Determine the PCA model and detection threshold for the time domain 

reconstructed signal.   

The key difference between EMSPCA and MSPCA is in step 4 which revolves around 

the detection criteria that is used to determine which coefficients are reconstructed back 

to the time domain. Unlike EMSPCA, which applies different selection rules to the detail 
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and approximate scales, the conventional MSPCA applies the same rule on both the detail 

and approximate scales. MSPCA states that if at least one sample crosses the threshold in 

the training scales, retain the entire scale for reconstruction. While EMSPCA, always 

keeps the approximate scale and only retains coefficients that cross the threshold of the 

detail scales. The testing data algorithm is illustrated in Figure 18, and described by steps 

afterwards. 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the Testing Data: 

1. Preprocess the data; standardize with the mean and variance of training data.    

2. Decompose the data at multiple scales using wavelet decomposition WD (DWT or 

UWT). 

3. Use the PCA models to compute the detection statistic for the detail signals.  

4. Apply soft thresholding on the detection statistic of the details. Soft thresholding 

involves shrinking the Q statistic towards zero by the value of the threshold itself, 

Figure 18: Complete EMSPCA-detection and isolation algorithm diagram. 
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which effectively reduces the amount of samples that cross the detection Q 

threshold.  

5. Apply the detection criteria to determine the selected coefficient for 

reconstruction. The detection criteria is the same one that was described previously 

in step 4 of the Training Data Algorithm.  

6. Reconstruct the selected coefficients back to the time domain (WR).   

7. Carry out fault detection using the reconstructed time domain data. 

MSPCA isolation occurs only when a fault is detected (i.e., the detection limit is crossed). 

So in the event of a fault steps 8 through 11 are carried out,  

8. Compute the isolation indices at every scale for the selected coefficients from the 

detection criteria.    

9. Select the coefficient corresponding to the faulty variable (i.e., the variable with 

the largest isolation contribution).   

10. Reconstruct the selected coefficients to the time domain.  

11. Carry out RB fault isolation using the reconstructed time domain data.  

The key difference between EMSPCA and MSPCA for the testing data algorithm lies 

in step 4 and 5. Soft thresholding (step 4) is a new addition to the algorithm that was made 

to reduce false alarms. Furthermore, the EMSPCA detection criteria excludes the 

approximate signal from being subjected to detection thresholding, while in MSPCA, the 

approximate signal is not.  

The novelty of this algorithm lies in its extension to isolation. As can be seen, both 

detection and isolation criteria’s are used for selecting the significant detail coefficients; 

the detection criteria helps select the significant features for fault detection and the 

isolation criteria further removes features that would hinder fault isolation. The process of 
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selecting the significant coefficients from every detailed scale is methodically illustrated 

in Figure 19.   

 

 

 

 

 

 

 

 

 

 

 

 

In the upcoming section, the EMSPCA algorithm, will be implemented with 

synthetic data to evaluate its isolation performance. The performance of the different 

isolation techniques RB and CD will be compared and the improvements made to 

traditional PCA isolation will be demonstrated.  

3.4. Illustrative Example: Synthetic Data  

This section will use a synthetic model to evaluate the fault isolation performance 

of the proposed EMSPCA FDI algorithm. The fault detection performance has previously 

been studied in section 2.6. The fault isolation performance is evaluated by the fault 

isolation rate (FIR), which is defined as,  𝐹𝐼𝑅 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100 [56].  

Compute detection 

statistic (𝑄(𝒙)𝑗).  
𝑄(𝒙)𝑗 ≥  𝛿𝑗

2 ? 

Remove sample (all 

variables) 

Compute isolation 

index for violating 

sample. 

Select coefficient for 

the highest 

contributing variable. 

No 

Yes 

Figure 19: Detection and isolation criteria for selecting significant coefficients. 
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The process model used in this example has a total of 6 dependent variables that 

are a function of 3 independent variables as shown below,   

[
 
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6]
 
 
 
 
 

= [𝑀] [

𝑡1
𝑡2
𝑡3

] + 𝑛𝑜𝑖𝑠𝑒 

where 𝑡1~1𝑁(0,1),  𝑡2~0.8𝑁(0,1), 𝑡3~0.6𝑁(0,1), 𝑛𝑜𝑖𝑠𝑒~0.2𝑁(0,1), and M is a 6 × 3 

matrix and its elements are randomly generated from a 𝑁(0.2, 1) distribution. In all cases 

studied in this Section, a Monte Carlo simulation using 3000 realizations is performed to 

achieve statistical meaningful results. Furthermore, to eliminate the effect of the choice of 

faulty variable and fault location, a fault is introduced to a random variable and at a random 

location in each realization. Two data sets are generated; a training data set (fault free) and 

a testing data set with a bias fault that spans 200 samples. 

3.4.1. Effect of Fault Size on FIR  

The section examines how fault size impacts the fault isolation rate (FIR) using 

the synthetic model. The performances of the multiscale isolation methods, EMSPCA-RB 

and EMSCPA-CD will be assessed and compared to their traditional PCA counterparts, 

PCA-RB and PCA-CD. A Monte Carlo simulation of 3000 realizations is utilized to obtain 

meaningful conclusions, and the results are shown in Figure 20 for all aforementioned 

isolation methods. In all multiscale simulations, a decomposition depth of 4 is used 

because it was found to provide good detection rates in Section 2.6.   
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It has been reported by several researchers that the PCA-RB isolation method 

outperforms the PCA-CD isolation method, which is clearly demonstrated by the dotted 

lines in Figure 6 [57]. This is because the PCA-RB method is less impacted by smearing 

[52]. For large-enough faults (5.5 sigma) the PCA-RB isolation rate reaches almost 100%, 

while the PCA-CD isolation rate plateaus at below 80%. This result is in agreement with 

Alcala et al. work which states that for a large enough fault, the RB method can guarantee 

correct isolation while CD cannot [28].  

Figure 20 also shows that there is a significant improvement in the fault isolation 

rates obtained by the EMSPCA techniques compared to their traditional PCA counterparts, 

specifically for smaller fault sizes. This is due to the ability of multiscale representation 

to separate deterministic and stochastic features (noise) in the data and thus reducing the 

Figure 20: Effect of fault size on RB and CD FIR for PCA and EMSPCA. 

(multiple of sigma) 
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effect of noise on fault isolation. It is important to note that noise can also smear into 

variables’ contributions used to isolate fault, and hence can affect the accuracy of 

isolation. That’s why the advantages of the multiscale techniques are more notable for 

small faults, where the relative contribution of noise is higher. Furthermore, the EMSPCA-

RB isolation method outperforms all other methods; even for a small fault of 0.5 sigma, it 

is able to correctly isolate it 93% of the time, compared to the traditional PCA method at 

55% and the MSPCA-CD method at 78%.    

As indicated earlier, the fault isolation results presented earlier were generated 

using a fixed decomposition depth of 4. In the next section, the effect of different 

decomposition depths on the isolation rate will be assessed.  

3.4.2. Effect of Decomposition Depth on FIR  

The EMSPCA algorithm can be implemented with any decomposition depth 

between 1 and log2 (number of samples). This section examines the effect of 

decomposition depth on the fault isolation rate. The results were generated using the 

synthetic model with a fixed fault size of 1 sigma and a Monto Carlo simulation of 3000 

runs. Furthermore, the effect of decimation, i.e., utilizing the DWT or UWT in each 

isolation scheme, will also be observed. Figure 21 presents the isolation performance for 

the decimated and undecimated EMSPCA algorithm for the RB and CD based techniques.  
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As anticipated from the previous discussion, the RB based isolation outperforms 

the CD based methods due to higher robustness to smearing. Figure 21 indicates this 

information regardless of the decomposition depth, RB is about 15-20% more accurate in 

isoalting the fault. Secondly, all assessed fault isolation methods (including the decimated 

and undecimated schemes) show a similar graphical pattern: the FIR increases to a peak 

and then decreases. Starting at depth 1, increasing the depth improves the FIR because 

valuable feature-extraction is obtained by representing the data at multiple scales. 

However, once the signal reaches the optimal FIR, increasing the depth will reduces the 

Figure 21: FIR across 9 decomposition depths at a fixed fault of 1 

sigma for decimated and undecimated wavelet transforms. 
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FIR because decomposing the data to very coarse scales start eliminating important 

features in the data.   

Furthermore, the undecimated EMSPCA-RB isolation rate in Figure 21 

consistently outperforms the decimated EMSPCA-RB isolation rate by a margin of about 

2%. This is because more data is available at each in the undecimated approach (compared 

to the smaller data sizes at coarser scales in the decimated approach), which provides more 

data to construct more accurate models and more accurate statistics. However, the impact 

of decimation on the EMSPCA-CD approach is less evident. This suggests that CD 

methods are not impacted by the mode of decomposition as much as they are by the 

smearing phenomena.   
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4. TENNESSEE EASTMAN PROCESS APPLICATION 

 

The Tennessee Eastman Process (TEP) is a well-known benchmark process used 

by the research community to evaluate process control and monitoring methods with 

simulated process faults [13].  

4.1. Description of Process  

The TEP contains 5 major units: a reactor, condenser, stripper, separator and a 

compressor. There are 4 reactants (A, C, D, and E), 1 inert (B), 2 desired products (G, H), 

and a byproduct (F) [58]. The process flow diagram is shown in Figure 22, modified from 

[58]. Pure A, D and E are mixed with the recycle stream that is fed into the reactor. The 

products leaving the reactor are cooled with a condenser and enter a vapor liquid separator. 

The overhead products of the separator are recycled back to the reactor, while the bottoms 

are further purified in the stripper. There is a total of 4 different control strategies based 

on a single-input single-output PID controllers that have been developed for the TEP [59]. 
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 There is a total of 41 measured variables and 12 manipulated variables, all of which 

are tabulated in Table 2 [58].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: TEP process flow diagram (adapted [58]). 
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Table 2: TEP measured and manipulated variables [58]. 

# Measured Variable # Measured Variable  # Manipulated Variable 

1 A Feed (stream 1) 22 Sep Cooling Water Outlet 

Temperature 

1 D Feed (stream 2) 

2 B Feed (stream 2) 23 Composition A (stream 6) 2 E Feed  (stream 3)  

3 E Feed (stream 3) 24 Composition B (stream 6) 3 A Feed (stream 1) 

4 Total Feed (stream 4) 25 Composition C (stream 6) 4 Total Feed (stream 4) 

5 Recycle Flow (stream 

8) 

26 Composition D (stream 6) 5 Compressor Recycle 

Valve 

6 Reactor Feed Rate  27 Composition E (stream 6) 6 Purge Valve 

7 Reactor Pressure 28 Composition F (stream 6) 7 Sep Pot Liquid Flow (st 

10) 

8 Reactor Level  29 Composition A (stream 9) 8 Stripper Liquid Product 

Flow (st 11) 

9 Reactor Temperature  30 Composition B (stream 9) 9 Stripper Steam Valve 

10 Purge Rate (stream 9) 31 Composition C (stream 9) 10 Reactor Cooling W Flow 

11 Product Sep Temp 32 Composition D (stream 9) 11 Condenser Cooling W 

Flow 

12 Product Sep Level  33 Composition E (stream 9)   

13 Product Sep Pressure 34 Composition F (stream 9)   

14 Product Sep Underflow 35 Composition G (stream 9)   

15 Stripper Level  36 Composition H (stream 9)   

16 Stripper Pressure 37 Composition D (stream 

11) 

  

17 Stripper Underflow 38 Composition E (stream 

11) 

  

18 Stripper Temperature 39 Composition F (stream 

11) 

  

19 Stripper Steam Flow 40 Composition G (stream 

11) 

  

20 Compressor Work  41 Composition H (stream 

11) 

  

21 Reactor Cooling Water 

Outlet Temp 

    

 

 

 

 

The TEP data was acquired from the online open source simulator [60]. For the 

purpose of this work, individual units in the TEP will be monitored independently because 

correlation among variables is stronger with fewer numbers and when the variables are 
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within a close proximity of each other. The two units monitored in this section are the 

stripper and the separator units.  

4.2. FDI Performance I: Separator Unit 

The function of the separator in the TEP is to remove the vapor, which contains 

unreacted raw material, from the liquid, which contains most of the TEP products. A 

labeled diagram of the monitored variables of the separator unit is shown in Figure 23 

alongside Table 3 with the variable descriptions.  

 

 

 

Table 3: TEP separator variables. 

 

 

 

 

 

 

 

 

 

 

For this study, a confidence level of 98% was used for thresholding of the detail 

signals, and a 95% confidence level was used for detection in the reconstructed time 

domain signal. A decomposition depth of 4 and a CPV of 90% are used. A step fault of 

size 1.4 sigma is introduced to variable 1 (the purge flowrate) from sample 200 to 500. 

Figure 24 presents the plots for the training and testing data sets. 

# Separator Variables 

1 Purge Rate (stream 9) 

2 Product Sep Temp 

3 Product Sep Level  

4 Product Sep Pressure 

5 Compressor Recycle Valve 

6 Purge Valve 

1 5 
6 

2 

3 4 

Figure 23: TEP separator unit. 
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4.2.1. Fault Detection Results  

The fault detection performance is evaluated with 5 different methods: traditional 

PCA, decimated MSPCA, undecimated MSPCA, decimated EMSPCA, and undecimated 

EMSPCA. Table 4 presents the FAR, DR, and the number of PCs used to build the model 

for this example.  

 

 

 

Table 4: Separator fault detection results. 

 

 

 

Table 4 shows the superior detection performance of the EMSPCA algorithm with 

detection rates greater than 95%. It also shows the case where the conventional MSPCA 

 Training Data Testing Data  

Case # of PCs DR FAR 

PCA 4 55.482 6.3624 

MSPCA -dec 4 39.203 2.213 

MSPCA -und 4 21.595 1.1065 

EMSPCA -dec 3 95.681 3.3195 

EMSPCA -und 3 100 2.4896 

Figure 24: Training and testing data for TEP separator. 
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algorithm performs worse than the traditional PCA method. For a visual representation of 

the tabulated results, refer to Figure 25.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen in Figure 25, MSPCA fails to correctly capture the fault projection 

with the computed threshold, while the EMPSCA method could. Therefore, this example 

illustrates the advantages of the new thresholding/selection rules of EMSPCA, which 

produce more accurate detection thresholds and a better overall performance.  

Furthermore, the fault abruptly falls below the threshold in the testing data of the 

MSPCA method. This is a result of the final approximate signal being subjected to PCA 

Training Testing  

Figure 25: TEP separator testing and training Q-statistic.  
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thresholding by the MSPCA selection rules. When the fault is relatively small, some or 

many samples in the approximate signal will not be selected for reconstruction, which 

affects the quality of the detection performance as exemplified by Figure 25 and the results 

in Table 4.  However, in EMPCA the approximate signal is not subjected to any criteria 

and it is always retained, thus, the abrupt dips in the faulty region are not observed.   

Additionally, the undecimated EMPCA algorithm has a slightly better detection 

performance than that of the decimated EMSPCA. This is due to the desired redundancy 

in the MS coefficients, which enable a more accurate representation of the changes that 

occur in a signal.   

4.2.2. Fault Isolation Results 

Two isolation techniques, the RB and CD method, are tested and compared for the 

EMSPCA and the traditional PCA methods. Table 5 summarizes the results. 

 

 

 

Table 5: FIR results for TEP separator. 

 FIR % 

Method RB CD 

PCA 47.305 37.725 

EMSPCA (dec) 61.111 33.333 

EMSPCA (und) 89.226 82.155 

 

 

 

The undecimated EMSPCA method has an RB and CD isolation rate that is 

roughly 43% and 45% better than the traditional PCA RB and CD isolation rates. 

Furthermore, the RB isolation method is consistently better than the CD method because 

it is more robust towards smearing. To illustrate the smearing effect visually, a point was 
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plotted to mark the “identified” faulty variable (y-axis) at every sample (x-axis) in Figure 

X.  The faulty variable that was correctly detected and isolated is in black while the other 

points are in blue. The faulty region is highlighted in purple.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

From Figure 26, one can see how smearing of the fault is a major issue for the PCA 

method using both RB and CD techniques and less so for the EMSPA methods. The 

smearing is mostly reduce by the undecimated EMSPCA method. 

 

 

 

RB isolation CD isolation 

Figure 26: TEP separator RB and CD isolation results. 
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4.3. FDI Performance II: Stripper Unit 

The function of the stripper is to further purify the liquid coming from the 

separator.  A labeled diagram of the monitored variables of the stripper unit is shown in 

Figure 27.  

 

 

 

Table 6: TEP stripper variables. 

 

 

 

 

 

 

 

 

 

 

The same parameters (decomposition depth of 4 and a CPV of 90%) and 

confidence levels (98% and 95%) of the previous test were also utilized for this example. 

However for this study, a lower step fault of size 0.8 sigma is introduced to variable 5 (the 

stripper steam flowrate) from samples 200 to 500. Figure 28 presents the plots for the 

training and testing data sets.  

 

 

 

 

 

# Stripper Variables 

1 Stripper Level  

2 Stripper Pressure 

3 Stripper Underflow 

4 Stripper Temperature 

5 Stripper Steam Flow 

6 Stripper Steam Valve 

2 
5 

6 

3 

4 

1 

Figure 27: TEP stripper unit. 
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4.3.1. Fault Detection Results  

The fault detection performance is evaluated with traditional PCA, decimated 

MSPCA, undecimated MSPCA, decimated EMSPCA, and undecimated EMSPCA. Table 

7 presents the FAR, DR, and the number of PCs used to build the model in this simulation.  

 

 

 

Table 7: TEP stripper fault detection results. 

 

 

 

 

 

 

 

 

 

As can be seen from Table 7, EMSPCA consistently outperforms MSPCA. For the 

decimated case, EMSPCA performs about 13% better in detection rate, and for the 

undecimated case, EMSPCA performs about 16% better in detection rate. The traditional 

 Training Data Testing Data  

Case # of PCs DR % FAR % 

PCA 4 98.007 6.9156 

MSPCA -dec 4 58.472 0.13831 

MSPCA -und 4 82.392 0 

EMSPCA -dec 2 71.761 2.213 

EMSPCA -und 2 98.671 1.6598 

Figure 28: Training and testing data for TEP stripper unit. 
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PCA has a DR of 98%, which is about same as the DR for the undecimated EMSPCA, 

however, PCA suffers from a relatively high FAR of about 7% when compared to 1.7% 

of EMSPCA. This indicates the de-noising advantage brought about by multiscale 

analysis.  The Q statistics for the training and testing data are illustrated in Figure 29.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen from Figure 29, the fault appears clearly in the Q statistic for all 

the methods, however, the decimated and undecimated MSPCA testing data plots have 

regions where the fault radically falls below the threshold. This trend was also noticed in 

the previous application and is due to the thresholding of the approximate signal. 

Training Testing  

Figure 29: TEP stripper testing and training Q-statistic. 
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Furthermore, applying the undecimated wavelet transform improves the performance of 

MSPCA and EMSPCA.  

4.3.2. Fault Isolation Results 

The RB and CD isolation techniques are tested and compared for the traditional 

PCA and EMSPCA methods. The results are summarized in Table 8 and illustrated in 

Figure 30.  

 

 

 

Table 8: FIR results for TEP stripper. 

 FIR % 

Method RB CD 

PCA 94.595 97.97 

EMSPCA (dec) 100 85.185 

EMSPCA (und) 100 100 
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As seen in Table 8, the RB FIR for PCA is improved by both the decimated and 

the undecimated EMSPCA method. However, the CD FIR for PCA is worse when using 

decimated EMSPCA and better when using undecimated MSPCA. This drop in FIR 

performance when using EMSPCA can be due to multiple reasons including the lower DR 

and the lower number of PC that was used to build the model.  From Figure 30, it is 

observed how smearing is reduced significantly with the undecimated EMSPCA method.   

RB isolation CD isolation 

Figure 30: TEP stripper RB and CD isolation results. 
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5. PACKED-BED PILOT PLANT APPLICATION 

 

This section will validate the proposed FDI algorithm with a real example where 

no priori assumptions are made with the data. Temperature data is obtained from a packed-

bed (PB) pilot plant in Texas A&M Qatar, Chemical Engineering Department. The packed 

column is 6 inches in diameter, 20 feet tall, with a Koch-Sulzer structured packing. The 

pilot plant also contains a total condenser, forced circulation reboiler, 4 pumps, and 5 heat 

exchangers. A DeltaV DCS with 7 different control loops is used to control the column. 

A process flow diagram of the pilot plant is shown in Figure 31, modified from Texas 

A&M’s CHEN 433 Lab Manual [61]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

PB Column 

Reflux 

Accumulator 

Feed Tank 

Reboiler 

Bottoms 

Receiver 

Figure 31: Packed bed pilot plant process flow diagram (adapted [61]). 



 

66 

 

A total of 12 temperature variables are used in this analysis, where 4 temperature 

sensors are located along the PB column, and the remaining sensors measure the 

temperatures at: the column top, the distillate product, bottom product, cooling water inlet, 

cooling water outlet, solvent temperature, and 2 feed inlets. The fault was arbitrarily 

chosen to be added to variable 1 (inlet feed temperature) from sample 500 to 800. The 

original data and the faulty data are illustrated in Figure 32.   

 

 

 

 

 

 

 

 

 

 

 

 

For this study, a CPV of 95% was used to determine the number of PCs, a 

decomposition depth of 3 is used, the theoretical limit of 99% was used to threshold the 

detail signals, and a 95% empirical limit was used for the reconstructed time domain 

signal.  

5.1. Pilot Plant Detection Results 

The detection results for the traditional PCA, conventional MSPCA, and Enhanced 

MSPCA are illustrated in Figure 33 and summarized in Table 9.  

Figure 32: Training (left) and testing data (left) for pilot plant. 
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Table 9: Pilot plant application detection results. 

Method  #PCs DR % FAR % 

PCA 1 73.754 3.3195 

MSPCA (dec) 1 13.621 1.5214 

MSPCA (und)  1 26.578 2.3513 

EMSPCA (dec) 1 84.718 3.0429 

EMSPCA (und) 1 92.027 2.7663 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 33: Pilot plant Q-statistic detection results. 

Training Testing 
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In this example, the conventional MSPCA method has a poor detection 

performance with 13.6% and 26.6% DRs. MSPCA discards the approximate signal in the 

training data (as per the selection criteria) which leads to a bad PCA model that fails to 

project the testing data onto the residual subspace where the Q statistic is able to detect 

the fault (see the testing data Q statistic for MSPCA in Figure 33).On the other hand, Table 

9 indicates that the undecimated and decimated EMSPCA approaches have a significantly 

better DR when compared to traditional PCA (despite comparable FARs).   

5.2. Pilot Plant Isolation Results  

The isolation results for the Pilot Plant temperature data are summarized in Table 

10.  

 

 

 

Table 10: Pilot plant isolation results. 

Method  FIR-RB % FIR-CD % 

PCA 95.0 95.0 

EMSPCA (dec) 98.0 98.0 

EMSPCA (und) 98.9 98.9 

 

 

 

           As indicated in Table 10, the undecimated EMSPCA has the best RB and CD 

isolation performance with a 98.9% FIR. It is about 4% better than the traditional PCA 

method. This improvement is due to multiscale’s ability to separate stochastic and 

deterministic features which reduce the smearing that causes incorrect isolations. The 

undecimated EMSPCA is about 1% better that the decimated EMSPCA, which suggests 

that the mode of decomposition does not impact the FIR as much as it does DR.  
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 When comparing the RB and CD isolation approaches, it is apparent that both 

perform equally for all listed methods in the table, even though the RB approach is 

theoretically expected to perform better. This is because, in this specific example, only 1 

principal component was used to build the PCA model. Consequently, smearing becomes 

less of an issue, as each variable is equally projected onto the residual subspace (i.e. all 

variables are weighted by a similar c coefficient value). Regardless, the EMSPCA 

algorithm demonstrates better isolation performance for both approaches (RB and CD) for 

data from a real process application. Figure 34 below illustrates the isolation results, where 

the faulty variable which was correctly detected and isolated is in black while the other 

points are in blue. The faulty region is patched in purple. 

 

 

 

 

 

 

RB isolation CD isolation 

Figure 34: Pilot plant RB and CD isolation results.  
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6. CONCLUSION 

 

6.1. Conclusion  

This work proposes a fault detection and isolation algorithm that uses EMSPCA 

and recommends the reconstruction-based approach to improve detection and isolation 

performance. The EMSPCA algorithm modifies the coefficient selection rules 

implemented by conventional MSPCA to improve the detection rate, and utilizes soft-

thresholding of testing details to reduce the false alarm rate. The Monte Carlo simulations 

indicated that EMSPCA is able to generate more dependable detection limits for a wider 

range of fault projections. As a result, EMSPCA consistently outperformed the 

conventional MSPCA algorithm in terms of detection performance, for small and 

moderate fault sizes and across most depths. The EMSPCA’s superior detection 

performance was also successfully validated by the pilot plant and TEP applications.  

Moreover, the results highlight how EMSPCA reduces the effects of smearing on 

the isolation rate for both reconstruction based (RB) and complete decomposition (CD) 

isolation methods. EMSPCA isolation was generally a lot better than PCA isolation for 

both the synthetic and real data applications. Largest improvements in isolation rate was 

shown for relatively small faults where noise smearing had the largest interference. The 

Monte Carlo simulations also demonstrate that the reconstruction-based isolation 

performed significantly better than complete decomposition isolation across all the fault 

sizes; Reconstruction based methods reached 100% FIR for a large enough fault while the 

contribution plots plateaued at a value less than 100%. However, when the RB and CD 



 

71 

 

methods were tested on the TEP stripper unit and the packed bed pilot plant data, they 

were found to perform the same. Finally, it was consistently evident that the undecimated 

wavelet transform provides valuable data redundancy which improve detection and 

isolation performances when compared with the decimated wavelet transform.  

 

6.2. Future Directions  

For future directions it is recommended to,  

 Test multivariable faults, process faults, and different types of sensor faults (i.e. 

precision degradation and drifting).  

 Use MS analysis with nonlinear data detection isolation techniques (i.e. kernel 

PCA).  

 Test the reliability of the proposed algorithm for different confidence levels and 

for different detection statistics (𝑇2 and 𝜑).   
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