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 ABSTRACT 

 

Traffic injuries are one of the most severe public health problems. Fueled by the 

growing availability of traffic-related data sources, data-driven safety studies have been 

extensively utilized to model traffic risks and enhance driving safety. Among these data 

sources, mobile crowd sourced (MCS) data shows significant potential to advance 

current safety studies substantially; however, the implementation of MCS-based 

solutions is still underexplored. This dissertation explores the potential of MCS-based 

solutions for enhancing traffic safety. It contains four distinctive research works to re-

evaluate and capture traffic risks using MCS data. 

In the first study, I utilized crowdsourced Waze data to re-assess freeway traffic 

risks. Traditionally, police crash reports (PCR) have been used as the primary source of 

crash data in safety studies, which cannot capture the unreported risks (near-crashes and 

traffic incidents). This study provides a new procedure to capture unreported traffic risks 

by combining PCRs and Waze data. The results demonstrated that Waze could capture a 

broad range of unreported traffic risks and be potentially used as a surrogate safety 

measure in the absence of crash data.  

The second and third studies introduce MCS-based solutions for monitoring road 

surface conditions. Road surface roughness assessment is essential in road maintenance, 

which is also closely related to traffic safety. However, continuously monitoring road 

surface roughness with a high-efficient solution remains a challenging research question. 

In these two studies, we proposed new solutions to achieve large-scale monitoring of 
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road surface conditions and the detection of road anomalies using MCS data. The results 

demonstrated, by mining the MCS data, road surface conditions can be effectively 

assessed.  

The last study introduces an innovative approach to characterize hazardous 

driving scenes, in which drivers are prone to making driving mistakes. This study marks 

the first attempt to explore the correlation between driving error occurrence and 

geospatial features. In this study, mobile sensed driving errors were integrated with 

driving-related geospatial features to form “scenic tuples” to characterize the occurrence 

of each error. Through mining a long-term collection of scenic tuples, we can extract the 

individualized hazardous scenes, which has the potential to aid in reducing driving risks.   
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1. INTRODUCTION  

 

1.1. Background 

Traffic injuries are one of the most severe public health problems in the world 

(World Health Organization 2015). Driving behavior (what), as a crucial contributing 

factor, closely relates to road safety. Driving mistakes (such as speeding, drunken 

driving, and irregular overtaking) not only threaten driving safety but also put 

pedestrians at significant risk. Meanwhile, driving safety also relates to two other 

factors, when and where (J. D. Lee 2008; Jinfeng Zhao 2011; World Health Organization 

2015; Yao, Loo, and Yang 2016).  

Since 1976, numerous studies have been conducted to analyze traffic risks. 

Among these studies, GIS plays an important role, not only in managing and 

manipulating crash data but also in providing abundant spatiotemporal, data sources, 

methods, and theories for better understanding and facilitating traffic safety (Goodchild 

2015; Bham et al. 2017). Especially in the past decade, massive volumes of traffic-

related data sources were becoming available (e.g., traffic volume, road geometry, 

weather condition, etc.) These spatiotemporal data sources offer a great opportunity for 

road safety researchers to discover new insights into the crash distribution and model the 

traffic risk scenarios. Among all the emerging data sources, mobile crowdsourced data 

shows significant potential to advance current road safety analysis substantially. For 

example, as one of the most successful crowdsourcing mobile applications, Waze takes 

advantage of the crowdsourced traffic information to provide driving information 
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services in near real-time. With more than 110 million monthly active users reporting on 

traffic, Waze delivers an accurate representation of what’s happening on the road every 

day.  

Mobile sensing technology has advanced rapidly over the past few years (Li et al. 

2019; W. Xu et al. 2015; R. Chen, Chu, Liu, Chen, et al. 2014). Equipped with 

miniaturized sensors (e.g., accelerometer, gyroscope, GPS, camera), smartphones have 

become promising data acquisition and computing platforms, which could achieve a 

high-sampling rate with little or zero economic cost. Smartphones are ubiquitous today, 

which empower the citizens to sense their surroundings, generate data, and contribute 

their observations to achieve a continuous monitoring system in an unprecedented 

manner (Guo et al. 2016, 2014; Panichpapiboon and Leakkaw 2017). By leveraging the 

power of citizens and the rich sensing resources, mobile crowd sensing (MCS) has 

become a popular researching paradigm for large-scale sensing and monitoring in recent 

years. Mobile crowd sensed data sources are transforming our life, which has been 

proven extremely efficient and successfully deployed to solve real-world issues, such as 

noise monitoring, traffic density estimation, route planning, among others (Guo et al. 

2015; Zappatore, Longo, and Bochicchio 2016). Meanwhile, mobile sensing technology 

also shows great potential to sense the driving environment, synthesize real-time traffic 

information, even identify and alert aggressive driving behaviors (N. Silva et al. 2018; Li 

et al. 2019; Zappatore, Longo, and Bochicchio 2016). However, to date, the 

implementation of mobile crowdsourced data in road safety analysis is still at a 

preliminary stage. 
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1.2. Research Objectives  

This dissertation innovatively explores the utilization of mobile crowdsourced 

data in road safety analysis, which aims to re-think the traffic safety and characterize the 

hazardous driving context from three perspectives: traffic incident, road, and driver. In 

this dissertation, I focus on the implementation of mobile sensing solutions for achieving 

the following three research objectives: 

1) Re-evaluate traffic safety by comprehensively considering both official police-

reportable crashes and crowdsourced traffic incidents using Waze data. 

2) Estimate road surface conditions and identify road surface anomalies using 

mobile crowdsensing solutions. 

3) Depict individual-based hazardous driving scenes using GIS and mobile sensing.  

1.3. Overview of Substantive Sections  

This dissertation consists of four substantive sections. Each section represents a 

unique MSC-based research work written in the journal article format, which describes 

the implementation of mobile sensed data for solving traffic-safety-related problems. 

1.3.1. Section 2 Overview  

Section 2 explores the utilization of crowdsourced Waze data for recognizing 

unreported traffic risks and re-evaluate highway traffic safety (Research Objective 1).  

Identification of traffic crash hot spots is of great importance for improving 

roadway safety. Traditionally, police crash reports (PCR) have been used as the primary 

source of crash data in safety studies. However, using PCR as the sole source of 

information has several drawbacks. For example, some crashes, which do not cause 
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extensive property damage, are mostly underreported. Underreporting of crashes can 

significantly influence the effectiveness of data-driven safety analysis and prevent safety 

analysts from reaching statistically meaningful results. Crowdsourced traffic incident 

data such as Waze can add a new dimension to the traditional safety analysis by 

providing real-time crash and traffic incident data.  

In this section, we explore the potential of using crowdsourced Waze incident 

reports (WIRs) to identify high-risk road segments. The researchers use WIRs and PCRs 

from an I-35 corridor in North Texas to conduct the safety analysis. Results 

demonstrated that WIRs and PCRs are spatially correlated; however, their temporal 

distributions are significantly different. WIRs have a broader coverage with 60.24 

percent of road segments in our study site receiving more WIRs than PCRs. Moreover, 

by combining WIRs with PCRs, more high-risk road segments can be identified 

compared to the results generated from PCRs. 

1.3.2. Section 3 & 4 Overview 

Section 3 and Section 4 are together to investigate the implementation of mobile 

crowdsensing solutions for monitoring road surface conditions and detecting road 

surface anomalies (e.g., bumps and potholes) (Research Objective 2).  

 Road surface assessment (Section 3) and road anomaly detection (Section 4) are 

essential in road maintenance and management. Bumpy road surface and road anomalies 

can not only discomfort driving experience, but they also damage vehicle components, 

cause economic loss, even lead to car crashes. However, to date, continuously 
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monitoring road surface condition with a low-cost and high-efficient solution remains to 

be a challenging research question.  

To address this question, I have proposed some crowdsensing solutions to detect 

road anomalies and assess road surface roughness using mobile sensed data. The results 

demonstrated that mobile sensors (e.g., accelerometer) could effectively capture the 

vehicle vibrations caused by the unevenness of the road surface. Through analyzing 

these mobile sensors’ signals, we can successfully identify road anomalies and assess 

road surface roughness. However, a single user’s detection result can be influenced by 

various factors, such as vehicle models, phone models, driving skills, etc. Therefore, I 

implemented crowdsensing solutions to optimize the detection results by mining public 

contributed data. Results demonstrate that the proposed solution can accurately 

distinguish road surface qualities and successfully detect road anomalies with a high 

positioning accuracy (within 3.29 meters in average) and an acceptable size estimation 

error (with a mean error of 14 cm). 

1.3.3. Section 5 Overview  

Section 5 details an innovative research work, in which we integrate mobile 

sensed data with traditional data sources to depict individualized hazardous driving 

senses.  

Aggressive driving behaviors are significant contributors to driving risks; 

however, few studies have detected and integrated them into road safety analysis, 

especially into individual-based driving safety analysis. In this section, I proposed a 

novel approach to discovering the significant spatiotemporal similarities among 
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individual’s driving errors to answer a fundamental but underexplored road safety 

research question: when and where drivers are prone to making driving errors?  

In this research work, we integrated different types of driving-related data to 

depict individualized hazardous driving scenes. We first utilized mobile sensed data 

collected by smartphone built-in accelerometer and gyroscope to capture the “jerk 

energy” when performing aggressive driving behaviors. Our experiment demonstrated 

that different driving errors generate unique sensors’ data patterns, which can be, in turn, 

utilized to classify the detected driving errors. Meanwhile, by integrating the mobile 

sensed driving errors with road networks and driving trajectories, we depicted and 

characterized each driving error with some carefully selected spatiotemporal factors. 

Through an in-depth analysis of long-term collected driving errors, we not only can help 

drivers to identify their hazardous driving patterns (e.g., hazardous driving time periods, 

most visited roads, and driving error hotspots), but more, assist drivers with recognizing 

their dangerous driving habits and hazardous driving scenes.  
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2. RETHINKING HIGHWAY SAFETY ANALYSIS BY LEVERAGING 

CROWDSOURCED WAZE DATA* 

 

2.1. Introduction  

How dangerous can traffic crash be in our life? As one of the biggest public 

health concerns, traffic crashes cause nearly 1.3 million fatalities worldwide every year 

(World Health Organization 2018). In 2016, there was more than 7 million police-

reported traffic crashes in the U.S., leading to 34,439 deaths and 2.17 million traffic 

injuries (U.S. National Highway Traffic Safety Administration 2016). Meanwhile, 

roadway crashes are estimated to cost the economy as much as 277 billion dollars every 

year(U.S. National Highway Traffic Safety Administration 2016). Prior studies have 

demonstrated that traffic crashes are not randomly distributed along with roadway 

network. Crash frequency and severity may increase on some specific road segments 

(i.e., hotspots) due to various roadway, roadside, and operational characteristics of these 

locations. Therefore, effectively identifying crash hotspots has become essential for 

improving road safety, which requires immediate attention.  

Police crash report (PCR) is the most commonly used data source in the existing 

roadway safety studies. The police-reportable crashes are characterized as the crash 

which occurs on a public roadway and results in a fatality, injury, or property damage 

exceeding certain thresholds dollar value. For example, in Texas, this threshold is USD 

                                                 

* Under Review by Transportation Research Record: Journal of the Transportation Research Board.  
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1,000. Therefore, most of the near-crashes or traffic incidents are left unreported, which 

may significantly limit the effectiveness of using PCRs for identifying hotspots. 

Moreover, these officially recorded crashes can have a several-month time lag before 

they become public. Although using traffic cameras and sensors can help to obtain near 

real-time traffic incident data, it is not suitable for monitoring traffic conditions of the 

whole roadway network because of the high cost of monitoring traffic cameras. To date, 

the assessment of road safety using traffic incident data remains to be a challenging 

research question.   

In recent years, safety researchers and transportation agencies alike, have 

considered leveraging crowdsourced data in the roadway safety analysis. With the help 

of smartphones, a massive volume of traffic-related information can be contributed by 

the public, which offers us an excellent opportunity to understand the occurrence of 

crashes(Li and Goldberg 2018; Fire et al. 2012; T. H. Silva et al. 2013). Waze, as a 

leading crowdsourcing platform, collects enormous volumes of timely traffic 

information, which has proven tremendously helpful to the traffic engineers concerned 

with safety, operations, and planning (Waze 2019). By integrating PCRs with the 

crowdsourced Waze incident reports (WIRs), safety analysts are more likely to identify 

the high-risk hot spots more effectively. However, the relevant study is missing. 

Meanwhile, using crowdsourced data has some challenges. Different users may report on 

the same traffic event, which causes severe data redundancy. Therefore, effectively 

reducing data redundancy is crucial for utilizing Waze data, which needs to be further 

explored.   
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This study aims to investigate the potential of using the crowdsourced WIRs to 

better access traffic risks on freeways. The study attempts to address the following 

research questions:  

1) What are the spatiotemporal distribution characteristics of WIRs and PCRs?  

2) Can WIRs be used as a surrogate data source when PCRs are unavailable?  

3) Can the crash hotspots be better captured by integrating WIRs and PCRs?  

To address these questions, the researchers analyzed four weeks WIRs and PCRs 

obtained from the I-35 corridor in North Texas. The researchers collected a whole week 

data from four different months respectively: August, October, November, and 

December of 2016. First, the authors developed a new method to reduce data redundancy 

and obtain unique Waze incidents (unique WIRs). The researchers then matched the 

unique WIRs with the observed crashes and compared their spatial and temporal 

distributions. Besides, the researchers estimated predicted crashes through safety 

performance functions (SPFs) and crash modification factors (CMFs), to assess whether 

the WIR data can be used as a reliable surrogate of these safety measures (i.e., observed 

crash frequency and predicted crashes) for identifying high-risk locations.  

The remainder of this section is organized as follows: in Section 2.2, the 

researchers conduct the Literature Review. Section 2.3 discusses Data and 

Methodological Approaches, including redundancy elimination and data integration 

methods. In Section 2.4, the researchers present the Results of data analysis. The section 

ends with Discussion and Conclusion.  

 



 

10 

 

2.2. Literature Review 

 

Table 2.1 Summary List of Relevant Literature. 

Topics Publication Research Purpose Data 

Comparison 

Between Waze 

Data and Other 

Data Sources  

Goodall and 

Lee (2019) 

Evaluate the accuracy of 

crash & disabled vehicle 

Waze reports  

Traffic camera 

and Waze  

Amin-Naseri 

et al. (2018) 

Compare Waze with other 

official and unofficial data 

sources to evaluate its 

reliability and coverage 

Official and 

unofficial 

incident data 

sources 

Dos Santos, 

Davis, and 

Smarzaro 

(2016) 

Compare Waze report with 

the official incident report and 

their spatial distribution.  

Official 

incidents data   

Fire et al. 

(2012) 

Find the correlation between 

the number of Waze reports 

and the number of police 

reports  

Police reports 

and Waze  

Using Waze 

Data in 

Prediction 

Model  

Flynn, 

Gilmore, and 

Sudderth 

(2018) 

Investigate the relationship 

between Waze reports and 

official crash report  

Historical fatal 

crash count and 

traffic-related 

variables.   

Parnami et al. 

(2018) 

Estimate the time of travel 

from point A to point B using 

prior Waze data.  

Waze only  

Waze Data 

Characterization 

and 

Visualization 

T. H. Silva et 

al. (2013) 

Characterize Waze data (e.g., 

most common report, user 

participation pattern, etc.) 

Waze only  

Monge-Fallas 

et al. (2016) 

Visualize the most congested 

routes, traffic density, and 

users' travel speed using 

Waze data.  

Waze only  

Perez 

Espinosa et al. 

(2016) 

Identify heavy traffic zones 

based on Waze using 

clustering method.  

Waze only  

Perez et al. 

(2018) 

Identify Waze-intense areas 

and road segments using a 

clustering method.  

Waze only  
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To the best of the authors’ knowledge, the first study using Waze data in road 

safety analysis was conducted by Fire et al. (2012), in which the researchers used WIR 

to identify high-risk road intersections. Up to now, however, the Waze-related studies 

are still at a preliminary stage. Only a few studies have been published, which are mainly 

centered around three topics (Table 2.1): a) Waze data characterization and 

visualization; b) Waze data quality assessment; and c) Waze data implementation in 

prediction models. 

2.2.1. Related Work 

Exploring the spatial, temporal distribution of WIRs is an essential step in Waze 

studies. T. H. Silva et al. (2013) analyzed 162,212 geotagged WIRs collected from 

Twitter, using different statistical tools such as word clouds, heatmaps, cumulative 

distribution functions, etc. This study demonstrated the highly unequal frequency of 

Waze users’ participation, both spatially and temporally. More WIRs are submitted 

during rush hours in the urban area. Monge-Fallas et al. (2016) compared four different 

visualization tools for mapping traffic density using Waze. This study shows that 

Heatmap is the best among the four tools for visualizing WIRs in terms of usability, 

efficiency, and the ease of understanding. Some researchers treat the high mount of 

Waze reports as a reliable indicator of traffic risks. Perez et al. (2018)utilized K-means 

clustering to map the Waze-active areas. They performed Expectation Maximization to 

determine the number of clusters. These reports were further grouped based on their 

geolocations, timestamps, and subtypes using K-means. Finally, they identified high-risk 

road segments by overlapping these clusters with road networks. A similar study was 
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conducted by Perez Espinosa et al. (2016). In this study, the researchers identified heavy 

traffic zones using Waze traffic reports. 

 Studies have been conducted to compare Waze data with other official traffic 

datasets to evaluate its accuracy, response efficiency, and reliability. Goodall and Lee 

(2019) assessed the accuracy of WIRs and disabled vehicle records using video ground 

truth. This study utilized traffic camera videos to validate 40 Waze reported crashes. 

This study has approved that Waze data is a valuable supplementary data source for 

monitoring traffic incidents with a low false alarm rate of 5 percent. Thirty-three percent 

of the road incidents were first reported by Waze users, which can help the police 

department to make a faster response and potentially save lives. Amin-Naseri et al. 

(2018) evaluated the accuracy and efficiency of Waze data by comparing it with other 

three different traffic data sources. This comparison suggested that Waze is an 

invaluable data source for monitoring traffic incidents with broader coverage and faster 

reporting time. Meanwhile, it also states that Waze may not be reliable from midnight to 

6 a.m.  

Some studies have investigated the relationship between Waze reports and other 

traffic events (such as official crash statistics, travel time, etc.). Flynn, Gilmore, and 

Sudderth (2018) investigated the relationship between Waze reports and the PCRs. In 

this study, the researchers first converted Waze data points to the aggregated Waze grids. 

Then, they generated twenty spatial, temporal, and contextual features to estimate if 

there is an observed PCR in a specific space-time unit using Random Forest classifier. 

Parnami et al. (2018) created a low-cost traffic flow prediction model using Waze 
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estimated time of arrival (ETA). This study assumed that the ETA obtained from Waze 

could accurately represent the actual traffic. Based on this assumption, the researchers 

used Long-Short-Term-Memory (LSTM) networks to predict the traffic flow at a 5-

minute interval based on the previous 60 days of training data.  

2.2.2. Knowledge Gaps and Solutions 

Existing studies have proven that Waze is a reliable traffic data source for 

understanding traffic risk better. However, how to eliminate the redundant WIRs is still 

an unanswered question. The relationship between PCRs, WIRs, and estimated crashes 

through predictive models remains underexplored. This study proposes a new procedure 

to identify and eliminate duplicate WIRs. It also explores the correlations between 

WIRs, police-reportable crashes, and the predicted crashes. Meanwhile, the researchers 

innovatively conducted monthly hot spot analysis using different data sources to explore 

further if WIRs could aid in better capturing traffic risks. 

2.3. Data and Methodological Approaches 

Figure 2.1 illustrates the flow chart of the research methodology used in this 

study. 

The researchers utilized three data sources, including PCRs, WIRs, and roadway 

inventory shapefiles. The researchers first selected freeway crashes from PCRs and 

WIRs, by removing frontage road, and ramp exit and entrance crashes. Then, the 

duplicate WIRs were eliminated to identify unique Waze incident events (unique WIRs). 

A similar process was performed to match the unique WIRs with PCRs to create a 

merged dataset (PCRs + WIRs). Meanwhile, the researchers calculated the predicted 
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crash frequency using freeway SPFs and CMFs. Finally, the researchers created four 

safety datasets: WIRs, PCRs, merged dataset, and predicted crashes. 

 

 

Figure 2.1 Flow chart of research methodology. 
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To better explore the potential of WIRs in road safety analysis, three analyses 

were conducted, including:  

1) Spatiotemporal comparison analysis: characterize the spatiotemporal 

distributions of PCRs and WIRs. 

2) Correlation analysis: investigate the relationship between PCRs, WIRs, and 

predicted crashes to test further if WIRs could be used as a surrogate safety 

measure when PCRs are unavailable.  

3) Hot spot analysis:  

a. Calculate crash rates for each road segment using PCRs, unique WIRs, 

merged dataset, and predicted crashes respectively.  

b. Perform hot spot analysis (Getis-Ord Gi*) using different crash rates to 

identify high-risk road segments. This analysis aims to evaluate if WIRs 

could capture more traffic risks which are ignored by the conventional 

crash datasets (e.g., PCRs). 

2.3.1. Data Overview  

 This section explores the data sources and elements used in this study.  

2.3.1.1. Waze Incidents Reports (WIRs) Acquisition and Selection 

In 2014, Waze launched a two-way data exchange program—Connected Citizens 

Program (CCP). Program partners can receive real-time user-reported traffic data from a 

customized polygon (Figure 2.2) through CCP data portal. Waze formats the 

crowdsourced data as an XML/JSON file. Each data file has a “traffic alerts” section, 

which contains user-reported traffic events. Four main types of traffic events are 
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specified, including accident, jam, weather hazard, and road closure. In this study, WIRs 

refer to the Waze traffic accident alerts.  

 

 
Figure 2.2 Study site and Waze reports acquisition polygon. 

 

Waze generates a reliability score (0-10) for each reported traffic alert to indicate 

how reliable the report is. Because the current CCP does not support historical Waze 

data retrieval, the researchers carefully selected four weeks Waze data files from a 109 

miles-long corridor on Interstate 35 (I-35) in North Texas (Figure 2.2). 2,767 WIRs were 

collected from four weeks during August, October, November, December of 2016 – one 
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full week for each month; no holidays within the selected weeks. To extract the highly 

reliable WIRs, a selection procedure was implemented to filter out the unrelated and 

unreliable WIRs based on two criteria:  

• Criteria 1: reliability score > 5 AND street name = I-35 

• Criteria 2: reliability score > 5 AND road type = Freeways AND distance to I-

35< 60 meters (~200 feet).  

If a WIR could satisfy any one of the criteria, it would be counted as a reliable 

WIR. Through this procedure, 1,807 highly reliable WIRs were selected and then 

mapped to the nearest road segments identified from the roadway inventory shapefiles.  

2.3.1.2. Police Crash Reports (PCRs) Acquisition and Selection 

PCRs were collected from Texas Department of Transportation (TxDOT) Crash 

Records Information System (CRIS) (Texas DOT 2019a). Data for crashes deemed 

“TxDOT reportable” are characterized as the crash which occurs on a public roadway 

and results in a fatality, injury or a minimum of $1,000 in damage. It contains 

information collected in Texas Peace Officer’s Crash Report (CR-3), interpreted data 

based on CR-3 information, system-generated data based on CR-3 information, and 

roadway attribute data from Texas Inventory.  

First, the researchers selected the crashes, which were reported during the same 

period of WIRs and within 60 meters (~200 ft) of I-35. This buffer was selected based 

on the roadbed width of the freeway. Then, a selection procedure was applied based on 

the attributes of PCRs to eliminate unrelated crash reports (e.g., frontage road or ramp 
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crashes). After filtering, 177 freeway crashes were identified, which occurred in the 

study site during the four-week study period:  

• Criteria: roadway part (on which crash occurred) = main/proper lane AND 

roadway system = Interstate AND whether a crash occurred at an interaction and 

ramp = No.  

2.3.1.3. Roadway Characteristics  

The researchers obtained roadway design elements and traffic volumes (annual 

average daily traffic-AADT) from TxDOT’s Roadway Inventory shapefiles (Texas DOT 

2019b). The corridor stretches for 109.956 miles and consists of 294 segments. 

Descriptive statistics of roadway characteristics are detailed in Table 2.2.   

 

Table 2.2 Descriptive Statistics of Road Inventory Data in Study Site. 

Roadway Design Elements Maximum Minimum Mean Std. Dev. 

Length (in miles) 4.136 0.001 0.374 0.530 

AADT 132,225 56,176 73,685.068 14,747.346 

Lane Width (in feet) 20 11 12.238 1.135 

Inside Shoulder Width (in 

feet) 

32 0 13.745 5.699 

Outside Shoulder Width (in 

feet) 

44 0 20.065 4.460 

% of Trucks in AADT 30.3 1.2 25.260 4.089 

Median Width (in feet) 50 3 28.432 9.076 

Typical Segment Types  

(Number of Segments) 

Urban 6-lane 82 Urban 4-lane 58 

Rural 6-lane 108 Rural 4-lane 46 

 

2.3.2. Data Processing and Integration  

This section explores the data processing and integration methods used in this 

study.  
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2.3.2.1. WIRs Redundancy Elimination and Matching with PCRs 

Since Waze users voluntarily contribute WIRs, different users may report the 

same incident, which generates a massive volume of redundant WIRs. Meanwhile, 

studies have proven that Waze can report on crashes from 20 minutes earlier to several 

hours later than PCRs with up to several miles positioning difference (Amin-Naseri et al. 

2018). Following the recommended matching thresholds in (Amin-Naseri et al. 2018)—

2.5-mile radius (spatial unit) and two hours of time lag (temporal unit), the researchers 

tested different combinations of spatial and temporal thresholds for merging duplicate 

WIRs and matching them with PCRs:  

• Spatial threshold range: from 0 – 3,500 meters (~2.5 miles) with 250 meters 

(~0.15 miles) increments 

• Temporal threshold range: from -20 (minutes earlier than PCRs) – 120 (minutes 

later than PCRs) with a 10-minute increments 

The researchers hypothesize that the number of matched WIRs should experience 

a significant increase when the increasing thresholds reach their optimal values. Hence, 

t-test was adopted to identify the significant increase to aid in determining the optimal 

thresholds. Please note that all the WIRs and PCRs were pre-processed through the 

selection procedure as mentioned above to make sure they report on the traffic 

information that had occurred on I-35 during the selected study period.  

Unique WIRs: The duplicate WIRs can be further identified and grouped using 

the selected spatial and temporal thresholds, which refers to different traffic incidents. 

To merge the duplicate WIRs, the researchers proposed a weighting method to 
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recalculate the location of each unique traffic incident based on the geolocations and 

reliability scores of the duplicate WIRs using Equations (2.1) - (2.2), as shown below: 

 

𝑥 =
∑ 𝑥𝑖𝑤𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 
(2.1.a) 

𝑦 =
∑ 𝑦𝑖𝑤𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

   (2.1.b) 

 

where, 𝑥, 𝑦 are the recalculated latitude and longitude of the unique incident, 𝑖 is the i-th 

duplicate WIRs, 𝑛 is the number of duplicate WIRs reporting on the same incident, 𝑤𝑖 is 

the weight signed to the i-th WIR using Equation 2.2, which depends on the generated 

reliability score for the i-th WIR:  

 

𝑤𝑖 =
𝑟𝑖

∑ 𝑟𝑖
𝑛
𝑖=1

   (2.2) 

 

Merged Dataset: After generating the unique WIRs, the same thresholds were 

utilized to match WIRs with PCRs. The matched WIRs were treated as redundant reports 

and removed. The rest of WIRs were combined with PCRs to form a new merged 

dataset, which covers both officially reported crashes and crowdsourced traffic incidents.   

2.3.2.2. Predictive Models for Crash Frequency Estimation 

To better evaluate the ability of WIRs for representing traffic risks, this study 

also compared WIRs with the predicted crashes calculated through the Highway Safety 

Manual’s (HSM) predictive methods (American Association of State Highway and 
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Transportation Officials 2010). According to this method, the predicted crashes are 

calculated as Equation 2.3: 

𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =  𝑁𝑆𝑃𝐹𝑥
× (𝐶𝑀𝐹1𝑥 × 𝐶𝑀𝐹2𝑥 × ⋯ 𝐶𝑀𝐹𝑛𝑥) × 𝐶𝑥  (2.3) 

where 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is the predicted crash frequency for a study site 𝑥, 𝑁𝑆𝑃𝐹𝑥
 is the 

predicted crash frequency based on a given base condition using SPF for study site 𝑥, 

𝐶𝑀𝐹𝑛𝑥 is the n-th CMF, and 𝐶𝑥 is the calibration factor for the jurisdiction of study site 

𝑥. 

In this study, the researchers used four SPFs developed by Bonneson and Pratt 

(2009) to estimate the base condition highway crashes on four facility types in Texas: 

urban four-lane freeways, rural four-lane freeways, urban six-lane freeways, and rural 

six-lane freeways. The researchers then used five CMFs to estimate the predicted 

crashes: lane width, outside shoulder width, inside shoulder width, median width (no 

barrier), and truck presence. Refer to (Bonneson and Pratt 2009) for a detailed 

explanation of how to calculate SPFs and CMFs. As mentioned above, this study focuses 

on freeway crashes. Therefore, all the frontage and ramp entrance and exit SPFs and 

CMFs were excluded.  

2.3.3. Data Analysis Methods 

This study conducted three types of data analyses to evaluate the performance of 

using WIRs in highway safety analysis. The researchers first performed spatiotemporal 

comparison analysis between PCRs and unique WIRs to assess the coverage of WIRs. 

Then, the researchers investigated the relationship between PCRs, unique WIRs, and 

predicted crashes to further explore if WIRs could be used as a surrogate data source 
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when PCRs are unavailable. Last, high-risk road segments were identified by performing 

hot spot analysis (Getis-Ord Gi*) on the crash rates of road segments. In this study, four 

crash rates were calculated for each road segment based on different data sources, 

including PCRs, unique WIRs, merged dataset, and predicted crashes.  

2.3.3.1. Crash Rate Calculation  

Crash risk is commonly defined as “the number of crashes compared to the level 

of exposure,” which can better represent the likelihood of crash occurrence for a road 

segment (The U.S. National Highway Safety Administration 2019). In this study, crash 

rate was calculated to indicate the “Risk-Level” of road segments.  Equation 2.4 was 

adapted from (The U.S. National Highway Safety Administration 2019) with: 

𝑅 =
𝐶 × 100,000,000

𝑇 × 𝑉 × 𝐿
 

(2.4) 

where 𝑅 represents the crash rate of a road segment defined as “crashes per 100 million 

vehicle-miles of driving”; 𝐶 is the number of crashes occurred along a road segment; 𝑇 

depicts time span (number of days); 𝑉 is Average Annual Daily Traffic (AADT) 

volumes; and L is road segment length in miles. 

In this study, four data sources including PCRs, unique WIRs, WIR-PCR, and 

predicted crashes were used to calculate different crash rates for each road segment.  

2.3.3.2. Hot Spot Analysis (Getis-Ord Gi*) 

The Getis-Ord Gi* statistic has been widely adopted to identify the significant 

spatial clusters of high values (hot spots) and low values (cold spots) (Songchitruksa and 

Zeng 2010; Esri 2016). It examines each sample within the context of its neighboring 

samples. The Gi* statistic is calculated using Equations (2.5) – (2.7) (Esri 2016): 
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(2.5) 

 

where, 

𝑋̅ =  
∑ 𝑥𝑗

𝑛
𝑗=1

𝑛
   

(2.6) 

𝑆 =  √
∑ 𝑥𝑗

2𝑛
𝑗=1

𝑛
− (𝑋̅)2     

(2.7) 

 

𝑛 represents the number of samples,  𝑥𝑗 is the value of j-th sample, and 𝑤𝑖,𝑗 indicates the 

spatial weight between two samples (𝑖, 𝑗).  

Gi * statistic generates a z-score and p-value for each feature. The statistically 

significant positive z-scores indicate hot spots—clusters of high values, the negative z-

scores refers to cold spots—clusters of low values. In this study, Gi* statistic was 

performed to identify hot spots of high-risk road segments—statistically significant 

clusters of high crash rates. By comparing the hot spots generated from different data 

sources, the researchers could further examine whether the WIRs could aid in better 

representing traffic risks.  

2.4. Results 

This section covers the redundancy elimination result of WIRs, the merged 

dataset by matching WIRs with PCRs. It details the results of three analyses, including 

spatiotemporal comparison analysis, correlation analysis, and hot spot analysis.  
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2.4.1. Result for WIRs Redundancy Elimination and Matching with PCRs 

The researcher used the “true” incident, i.e., the PCR as the starting point and 

tested different combinations of spatial and temporal thresholds to a) remove the 

redundant WIRs that correspond to the same PCR; and b) match unique WIRs with the 

PCRs. The researchers hypothesize that when spatial and temporal “distances” from the 

true incident (i.e., PCR) to the surrogate incident (i.e., WIR) reach their optimal value, 

the number of matched WIRs should experience a significant increase since more 

redundant WIRs can be captured. After the optimal threshold is attained, the number of 

matched WIRs should not be significantly different than the optimal number of matched 

WIRs.  

 

Figure 2.3 Number of matched WIRs when using different spatial and temporal 

thresholds. 
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Figure 2.3 illustrates the number of WIRs that are matched with PCRs when 

using each combination of spatial and temporal thresholds. As can be observed, 

regardless of the time interval, the number of unique WIRs are increasing consistently 

until the distance from the true incident (i.e., PCR) reaches 2,250 meters (~1.4 miles). 

After this distance, the number of WIRs matched with the PCR become steady. A new 

jump is observed at 2,500 meters, although it does not seem to be very significant. It is 

possible that this “second” jump in number of unique WIRs matching with the PCR refer 

to a secondary event that was related to the primary event. However, this hypothesis 

cannot be verified because, as indicated earlier, non-PDO traffic incidents are not 

reported by police. Hence, the researchers selected the 2,250 (or 1.4 miles) as the spatial 

threshold for identifying the redundant WIRs.  

To determine the best temporal threshold, the researchers used t-test to check the 

significant difference in the number of matched WIRs for different time intervals. 

Studies have found that Waze can report a crash from 20 minutes earlier to several hours 

later than the police-reported crash time (Amin-Naseri et al. 2018). Therefore, the 

researchers tested different temporal intervals to match WIRs with PCRs. These 

temporal intervals have the same start-timestamp (-20 minutes earlier than PCRs) and a 

different end-timestamp. The temporal thresholds 𝑡 in Figure 2.3 represents the end-

timestamps for each temporal matching interval. For example, 𝑡 = 10 represents a 30-

minute temporal matching interval—from 20 minutes earlier to 10 minutes later than 

PCR occurred. The researchers tested different temporal thresholds ranging from -10 
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minutes (i.e., 10 minutes earlier than PCRs) to 120 minutes (i.e., two hours after the 

PCR) in 10-minute increments.  

Figure 2.3 shows that the number of WIRs matched with a PCR remains the 

same when temporal threshold increases from -10 to 10, hence they are used as a 

baseline dataset (BD) to compare to the number of matched WIRs reported at higher 

time intervals. This dataset is denoted as BD = [𝑁𝑊𝐼𝑅,−10, 𝑁𝑊𝐼𝑅,0, 𝑁𝑊𝐼𝑅,10], where  

𝑁𝑊𝐼𝑅,𝑡 refers to the number of WIRs matched with the PCR with a  temporal matching 

interval, 𝑡 = −10 (from 20 minutes earlier to ten minutes earlier),  𝑡 = 0 (from the 20 

minute earlier to the same time as the PCR) and 𝑡 = 10 (from the 20 minute earlier to 10 

minutes later than the PCR). The comparison datasets (CDr) were then generated by 

adding 10-minute intervals to the baseline dataset and compared with BD using t-test to 

identify the significant difference between the number of baseline and comparison 

WIRs. For example, CD30  refers to: [𝑁𝑊𝐼𝑅,−10, 𝑁𝑊𝐼𝑅,0, 𝑁𝑊𝐼𝑅,10, 𝑁𝑊𝐼𝑅,20, 𝑁𝑊𝐼𝑅,30]).    

 

Table 2.3 T-Test Results Between Base Dataset and Comparison Datasets. 

Goodness of Fit 

Statistics 

CD20 CD30 CD40 CD50 CD60 CD70 

t Stat -1 -1.63299 -2.23607 -1.98248 -2.2088 -2.6295 

P(T<=t) one-tail 0.195501 0.088904 0.037793 0.047349 0.031454 0.015101 

t Critical one-tail 2.353363 2.131847 2.015048 1.94318 1.894579 1.859548 

P(T<=t) two-tail 0.391002 0.177808 0.075587 0.094698 0.062909 0.030201 

t Critical two-

tail 

3.182446 2.776445 2.570582 2.446912 2.364624 2.306004 
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The results of t-test (Table 2.3) show that after 70 minutes, the number of 

matched WIRs was observed to be significantly different than the previous results.  

As the results of these analyses, the researchers determined the optimal spatial 

and temporal thresholds for identifying the redundant WIRs as: 

• Spatial threshold: in a 2,250-meter radius. 

• Temporal thresholds: 90 minutes, (-20 to 70 minutes).  

By applying these thresholds, 1,807 WIRs were finally consolidated into 381 

unique WIRs. The location for each unique WIRs was recalculated using the proposed 

weighting method (Equations 2.1- 2.2).   

A similar process was conducted to match unique WIRs with PCRs. In this study, 

only 13 out of 177 PCRs (7.34%) were matched with the unique WIRs (13 out of 381). 

These results align with prior studies that found 7 to 13.4 percent of reported crashes can 

be matched with the Waze reports (Amin-Naseri et al. 2018; Dos Santos, Davis, and 

Smarzaro 2016). 

Finally, the researchers created a merged database by combining PCRs with un-

matched unique WIRs. This dataset contains 545 traffic incidents and crashes.  

2.4.2. Spatiotemporal Comparison Analysis  

The spatiotemporal distribution of PCRs and unique WIRs are plotted in Figure 

2.4. Figure 2.4 (a) and Figure 2.4 (b) represent the counts of PCRs and unique WIRs for 

each road segment. These two figures show a similar spatial data pattern, which implies 

that crash-intense road segments can potentially be captured using WIRs. Figure 2.4 (c) 

shows the differences between PCRs and WIRs. Among 109.96 miles of roadway 
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segments in this study, 66.24 miles road segments experienced more WIRs than PCRs, 

which means that WIRs have broader spatial coverage than PCRs.  

The temporal distribution of WIRs and PCRs are depicted in Figure 2.4 (d) and 

Figure 2.4 (e). These figures show that PCRs tend to occur during the daytime, while 

WIRs were more intensively reported at nighttime. However, the previous studies state 

that Waze is less reported during the midnight period, which conflicts with the 

researchers’ finding (Amin-Naseri et al. 2018).  This finding implies that the temporal 

pattern of WIRs may vary in different study areas.  

Figure 2.4 (f) shows the hourly comparison result, which indicates that more 

PCRs are recorded than WIRs from 8:00 to 14:00. From 18:00 to 5:00, more Waze 

reports incidents observed than officially reported crashes.  

2.4.3. Correlation Analysis  

This study investigated the relationship between PCRs, unique WIRs, and the 

estimated crashes through predictive models to statistically test if WIRs could be used as 

a surrogate data source or safety measures in absence of crash data. The correlation 

among these three datasets are detailed in Figure 2.5. This figure illustrates that PCRs 

are highly correlated with WIRs (0.63) than with predicted crashes (0.57). It also 

suggests that WIRs can better represent the predicted safety risk than PCRs (0.70 vs. 

0.57). 
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Figure 2.5 Correlations among PCRs, unique WIRs, and predicted crashes. 

 

The researchers also developed Ordinary Least Square (OLS) regression model 

to further investigate the relationship between the three safety measures: PCR, WIR and 

predicted crashes. Two regression models were constructed. One uses unique WIRs 

alone as independent variable (Equation 2.8), another uses both WIRs and predicted 

crashes as independent variables (Equation 2.9). The estimation results are shown in 

Table 3.4 and have the following functional forms:   

 

𝑁𝑃𝐶𝑅 = 0.144 + 0.354 × 𝑁𝑊𝐼𝑅 

 

(2.8) 
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𝑁𝑃𝐶𝑅 = 0.30 + 0.255 × 𝑁𝑊𝐼𝑅 + 0.123 × 𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (2.9) 

where 𝑁𝑃𝐶𝑅 is the calculated number of PCRs for a road segment, 𝑁𝑊𝐼𝑅 is the number of 

unique WIRs, and 𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is the predicted number of crashes using SPFs and CMFs. 

 

Table 2.4 Liner Regression Results for PCRs. 

Model Parameters 

 

Model 1 Model 2 

Estimate (St. D.) Estimate (St. D.) 

Intercept 0.144 (0.069) 0.030 (0.072) 

Unique WIRs  0.354*** (0.025) 0.255*** (0.035) 

Predicted Crashes  0.123*** (0.031) 

R-squared 0.402 0.434 

Adjusted R-squared 0.400 0.430 

No. observations 294 

Standard errors are included in parenthesis. 

*, **, *** represents significance at 90%, 95%, and 99% level based on p-value.  

 

The regression results indicate that the number of unique WIRs is a significant 

predictor for estimating crashes reported on each road segments. When taking both 

unique WIRs and predicted crashes as predictors, the performance of the model can be 

slightly improved with R-squared increased from 0.4 to 0.43.  

2.4.4. Hot Spot Analysis 

This study also assessed the performance of WIRs for identifying high-risk road 

segments. The researchers first calculated crash rates for each road segment using four 

different data sources, including PCRs, unique WIRs, merged dataset, and predicted 



 

32 

 

crashes. Then, Getis-Ord Gi* statistics were conducted based on different crash rates 

respectively to identify hot spots—high-valued road segments surrounded by high-

valued neighboring segments. Figure 2.6 illustrates the sample result of detected hot 

spots, which were generated using one-week unique WIRs collected from December 

2016.  

 

 

Figure 2.6 Sample results of detected hot spots. 
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This study compared hot spots detected from different data sources in different 

months to investigate if the distribution of hot spots varies from month to month. The 

researchers also examined the monthly results with the hot spots detected from four-

month datasets to identify constant hot spots. This study defines constant hot spots as a 

segment, or its neighboring segments (within ± 1mile) that 1) are determined as hot spots 

in more than two different months and 2) also need to be identified as hot spots in the 

four-month dataset.  

 

Table 2.5 Hot-Spot Detection and Comparison Results. 
Datasets August October November December Four-month 

PCRs 266, 278, 

318, 323, 

334, 337, 

341, 350, 

352, 354, 

355, 357, 

363 

266, 276, 298, 

299, 303, 306, 

308, 310, 317, 

327, 351, 356, 

358, 368  

291, 292, 303, 

306, 308, 318, 

333, 334, 343, 

351, 353, 358, 

363, 367 

266, 288, 303, 

306, 317, 332, 

334, 342 

266, 298, 303, 

317, 334, 342, 

358, 363 

WIRs 294, 318, 

319, 356, 

363, 364  

298, 299, 303, 

305, 307, 308, 

310, 315, 319, 

344, 350, 356, 

357, 366, 368 

291, 303, 315, 

318, 336, 344, 

357, 363, 368 

291, 299, 303, 

305, 306, 308, 

310, 318, 327, 

332, 350, 359  

284, 294, 303, 

307, 315, 317, 

319, 344, 356, 

357, 363, 364, 

368 

Merged 

dataset 

(WIR-

PCR) 

264, 266, 

294, 318, 

319, 337, 

352, 354, 

355, 356, 

363, 364, 

366, 367 

248, 298, 299, 

303, 307, 308, 

310, 315, 317, 

319, 336, 351, 

356, 357, 358, 

366, 368 

291, 292, 303, 

315, 317, 318, 

334, 344, 358, 

363, 368  

266, 291, 305, 

308, 327, 332, 

342, 334, 350, 

359,  

284, 294, 298, 

303, 315, 317, 

334, 336, 356, 

357, 358, 363, 

364, 368 

Predicted 

Crashes 

(2016) 

 

317, 363, 293, 317, 385 

• Numbers represent DFOs for road segments. 

• Underscore represents constant hot spots. 

• Bold text indicates hot spots matched with merged dataset hot spots.  
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Table 2.5 details the results of hot-spot detection using PCR, WIR, merged 

dataset and predicted crashes. The numbers listed in this table represent the integer part 

of distance from origin (DFO) for the detected high-risk road segments, which are easier 

for locating the identified hot spots. In this study, if any portion of a one-mile-segment 

was recognized as a hot spot, the researchers would count the entire one-mile-segment as 

high-risk road segment. Constant hot spots are highlighted with underscores. The 

matched segments are marked with bold text.  

This table shows that the hot spots may vary in different months; however, there 

are still some constant hot spots which may be considered as true high-risk segments. By 

combing PCRs with WIRs, more high-risk road segments can be detected, which could 

cover the results generated from PCRs, unique WIRs, and predicted crashes. 

2.5. Discussion and Conclusion 

As an emerging data source, Waze shows excellent potential to capture a broad 

range of unreported traffic risks. However, current Waze-related studies are still at a 

preliminary stage. How to better leverage Waze into road safety analysis is still an 

unanswered research question. This study is among the first to systemically evaluate the 

performance of Waze incident reports (WIRs) for capturing unreported near-crashes and 

traffic incidents. The researchers first proposed a new procedure to eliminate duplicate 

WIRs to extract unique WIRs. Meanwhile, these unique WIRs were further matched 

with police crash reports (PCRs) to form a new merged dataset, which covers both 

officially reported crashes, and crowdsourced incidents. This study also calculated the 

crash frequency of road segments based on the road inventory shapefile using the HSM 
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predictive methods. Three analyses were conducted to comprehensively assess the 

effectiveness of WIRs in road safety analysis. Through this study, the researchers finally 

answered the following three essential but underexplored research questions.  

Question 1: What are the spatiotemporal distribution characteristics of 

WIRs and PCRs?  

Through the spatiotemporal comparison of PCRs and WIRs, the researchers 

found these two data sources shows a very similar spatial distribution. However, the 

temporal comparison shows a significant difference between them. In this study, PCRs 

were reported during daytime, while. WIRs were more intensively reported during 

nighttime. It is also worth noting that 60.24 percent of the road segments in the study site 

received more WIRs than PCRs. 27.1 percent received the same amount of WIRs and 

PCRs. It implies that unreported traffic incidents more intensively occurred on most of 

the road segments. These traffic incidents should be considered into road safety studies.  

Question 2: Can WIRs be used as a surrogate data source when PCRs are 

unavailable? 

By matching WIRs with PCRs, the researchers found that only 7.34 percent of 

the PCRs can be paired with WIRs, which aligns with prior studies—13.4 percent 

(Amin-Naseri et al. 2018) and 7 percent (Dos Santos, Davis, and Smarzaro 2016). 

Therefore, it can be concluded that WIRs and PCRs report on different traffic risks. 

Correlation analysis shows that PCRs are highly correlated with WIRs (0.63) than with 

predicted crashes (0.57). It also indicates that WIRs can better represent the predicted 

traffic risk than PCRs (0.70 vs. 0.57). The regression models suggest that both WIRs and 
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predicted crashes are significant predictors for estimating PCRs. However, using WIRs 

alone may not be capable enough, since the model performance is relatively unsatisfying 

with an R-squared of 0.4. Meanwhile, the similar spatial distributions of WIRs and PRCs 

suggest that Waze data might be able to identify crash-intense road segments when 

PCRs are unavailable. This finding has very significant implications for highway safety 

researchers and practitioners. It indicates that WIRs could be potentially used as a 

surrogate safety measure in absence of crash data (e.g., when evaluating the safety 

effectiveness of new safety treatments).  However, further research is required in order 

to confirm this very important finding.  

Question 3: Can the crash hotspots be better captured by integrating WIRs 

and PCRs?  

By comparing the hot spots generated from different months, the researchers 

found the detected high-risk road segments may vary in different months. However, it is 

worth noting that some hot spots can be persistent in different months, which are 

constant high-risk segments and should be given more attention.  This study has found 

that, by combining WIRs with PCRs, more high-risk road segments can be identified (14 

miles) comparing to the results generated from PCRs (8 miles), unique WIRs (13 miles), 

and predicted crashes (5 miles). Most of the hot spots detected from PCRs (75%), unique 

WIRs (77%), and predicted crashes (100%) could be identified from the merged data. 

Therefore, it can be concluded that integrating WIRs and PCRs can better capture traffic 

risks and discover more unidentified high-risk road segments.  
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This study shows that overall Waze is an invaluable source of data for safety 

researchers, which is tremendously useful for capturing unreported traffic incidents. 

However, there are still some gaps that were not adequately addressed by this study. 

Although the findings are promising, the researchers used Waze data only from an 

interstate corridor, which is generally assumed to experience more Waze reports. This 

gap may also affect some of the findings; for example, temporal and spatial threshold for 

consolidating the WIRs and matching them with PCRs may not be applicable to other 

facility types. The future research will focus on these areas. 
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3. TOWARD A MOBILE CROWDSENSING SYSTEM FOR ROAD SURFACE 

ASSESSMENT* 

 

3.1. Introduction 

Road surface roughness has been assessed as a significant factor in 

road maintenance, management, and construction. Road surface transient events, such as 

potholes and bumps, not only impact road quality but also affect driver safety, fuel 

consumption and road maintenance (Beuving et al. 2004; Vittorio et al. 2014). The 

World Bank has identified road roughness as a primary factor in the analysis of road 

quality vs. user cost. Many studies have demonstrated that the improvement of road 

surface conditions could directly promote fuel efficiency as well as driving safety 

(Beuving et al. 2004; Vittorio et al. 2014). 

Studies have been carried out on the road surface roughness assessment since the 

1950s. Several approaches, which require the use of costly and sophisticated vehicular 

instruments have been proposed and widely accepted, such as using laser profilometers 

to calculate the international roughness index (Paterson and Attoh-Okine 1992; 

Watanatada et al. 1987), computing deflection basin parameters by deflectometers (Kim 

2001; B. Xu, Ranjithan, and Kim 2002) or using ground penetrating radar to determine 

the conditions of the roads(Cao, Labuz, and Guzina 2011). However, these traditional 

                                                 

*Reprinted with permission from “Toward a Mobile Crowdsensing System for Road Surface Assessment” 

by Xiao Li and Daniel W. Goldberg, 2018. Computers, Environment and Urban Systems, 69, 51-62, 

Copyright 2018 by Elsevier. https://doi.org/10.1016/j.compenvurbsys.2017.12.005  
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assessment methods are labor-intensive and time-consuming requiring professional 

knowledge and high-end instrumentation. Most local governments and small 

municipalities cannot afford the high cost of these methods with a limited budget.  

New detection methods have been proposed over the past few years, which can 

achieve a higher road revisiting rate and lower equipment cost (Allouch et al. 2017; 

Astarita et al. 2012; Bhoraskar et al. 2012; Eriksson et al. 2008; Macias, Suarez, and 

Lloret 2013). These methods are used to monitor the ever-changing road surfaces by 

extracting the road surface anomalies and their corresponding locations. With various 

sensor technologies and the powerful computing capabilities, the use of smartphone 

sensing in research is proliferating. Smartphones equipped with a number of built-in 

sensors can be used to support various customized applications, which have been 

identified as promising platforms and can be used for mobile geospatial computing (R. 

Chen and Guinness 2014). Built-in smartphone accelerometers have been utilized to 

detect ground vehicle jitters caused by the non-flatness of the road surface (Bhoraskar et 

al. 2012; R. Chen and Guinness 2014). More importantly, by combining the 

accelerometer and GPS data obtained from a smartphone, the road roughness can be 

automatically geo-referenced (Aleadelat et al. 2017; Astarita et al. 2012; Das et al. 2010; 

Eriksson et al. 2008; Perttunen et al. 2011). 

3.1.1. Related Work  

Threshold techniques have been broadly used to extract road surface transient 

events. A real-time pothole detection system was designed by Mednis et al. (2011). Four 

different transient events detection techniques were compared in this study. The system 
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is designed mainly based on threshold technique. The overall accuracy can reach 90%. 

Harikrishnan and Gopi (2017) applied Gaussian Model on the Z-axis readings of built-in 

smartphone accelerometer for detecting and classifying bumps and potholes. The 

research hypothesis is that the Z-axis acceleration should fit on a Gaussian distribution. 

In this study, the vehicle vibration data was collected from a horizontally fixed 

smartphone and segmented into groups. A newly designed Max-Abs filter was applied 

on the segmented data for minimizing the small acceleration spikes and highlighting the 

abnormal events. Threshold technique was applied to classify the abnormal events as 

potholes and bumps. The accuracy of detection and classification of this method can up 

to be 100%.  

Several studies investigated the relationship between road surface roughness and 

accelerometer readings. Amador-Jiménez and Matout (2014) have proposed a low-cost 

solution for road surface evaluation using tablets’ built-in accelerometer. In this study, 

the Root Mean Square (RMS) of the Z-axis acceleration normalized by vehicle speed 

was confirmed as a proxy for the International Roughness Index (IRI), which can be 

used to examine the road quality. Aleadelat and Ksaibati (2017) tested the relationship 

between the Z-axis acceleration and the present serviceability index (PSI). PSI is a 

widely used index for assessing pavement condition. In this study, two smartphones 

were horizontally fixed on the vehicle’s dashboard. An Android app “AndroSensor” was 

used for data collection at two driving speeds: 40 mph and 50 mph. The result 

demonstrates that the Z-axis acceleration has a strong linear relationship with PSI.   
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Many different machine learning methods have also been employed for assessing 

road surface condition. Eriksson et al. (2008) proposed a signal processing and machine 

learning based approach to extract potholes from the readings of external GPS and 

accelerometer. 7 taxis were used in the test for data collection. Sensors were fixed at 

different positions inside the vehicle. The result demonstrated the pothole and other 

transient events can be effectively identified by the proposed method. Perttunen et al. 

(2011) proposed a solution to extract road surface anomalies (e.g. pothole, bumps) from 

acceleration data and GPS readings. Kalman filter was implemented to reduce the noise 

of GPS signal. A spectral analysis was performed on the acceleration signal to extract 

road features. Support Vector Machine (SVM) was used to predict three categories of 

transient events (i.e., speed bump, bump, and large pothole). Bhoraskar et al. (2012) 

designed a traffic monitoring system, which uses the detected braking events and vertical 

acceleration peaks to estimate the traffic congestion and examine potholes. To translate 

the acceleration from the frame of the portable device to the frame of the vehicle, a 3-

axis accelerometers re-orientation was carried out in the system. SVM and K-means 

Clustering were implemented to predict road surface condition (identified as “bumpy 

road” or “smooth road”) and optimize the assessment result of each road segment. Singh, 

Bansal, and Sofat (2017) proposed a new method to detect bumps and potholes using 

smartphone sensors. An Android app “Smart-Patrolling” was created and employed for 

data collection. Five filters (Speed, Virtual Re-Orientation, Filtering Z-axis, SMA and 

Band-Pass filter) and Dynamic Time Warping (DTM) techniques are applied. In this 

study, smartphones were fixed inside the vehicle at different places including front 
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dashboard pilot, font dashboard co-pilot, and back seat. The ground truth (unique 

patterns of accelerometer readings corresponding to these bumps and potholes) was 

collected during training phase and used as the template references. The accuracy of this 

method for detecting potholes and bumps is 88.66% and 88.89%. Allouch et al. (2017) 

implemented a machine learning method to estimate road surface condition. An Android 

app “Road Data Collector” is created for data. In the training phase, the real road quality 

was manually labeled as “Smooth” or “Potholed” using designed smartphone app. 

Different road segments’ features were extracted from the readings of accelerometer and 

gyroscope.  Correlation-based Feature Selection (CFS) approach was applied to the 

training dataset to optimize the feature selection. Three different machine learning 

methods (C4.5 Decision Tree, Support Vector Machines, and Naïve Bayes) were tested 

in this study. The result demonstrated that C4.5 classifier has the best performance with 

an overall accuracy of 98.6%.  

Utilizing a crowdsensing method to obtain road surface roughness data would be 

exceptionally beneficial, as it would allow the data to be frequently updated, resulting in 

more accurate result, and would involve a minimal cost for local governments. Some 

researchers have tried to design a crowdsensing system, which can continuously monitor 

the changes of road surface condition.  K. Chen et al. (2014) designed a system called 

CRSM, which has the potential to detect the potholes and assess the road surface quality 

effectively. This approach takes advantages of the crowd sensed data by utilizing 

specialized hardware modules (low-cost GPS receiver and accelerometer) mounted on 

the vehicles. A lightweight data mining approach was employed in this system with 100 
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taxis recruited for data collection. The accuracy of this system is about 90%. Lima et al. 

(2017) proposed a simple lightweight smartphone-based approach, which can recognize 

road quality as “Good”, “Normal”, “Bad”, and “Terrible”. This study makes use of 

threshold technique with a bunch of thresholds are set through the empirical tests to 

recognize road quality. This study performed a crowdsourcing solution. Crowd sensed 

results were simply averaged and then mapped using GoogleMaps API. 

A comparison of existing methods is detailed in Table 3.1, which reflects the 

following problems that need to be addressed:  

1) The repeatability of threshold-based methods is limited. Thresholds need to be 

adjusted and retested when applied under different conditions;  

2) Machine learning methods require an extensive training phase, which is time-

consuming and not suitable for the crowdsensing system;  

3) Most studies just focus on the transient events detection. A comprehensive road 

surface assessment is lacking;  

4) Very few studies utilize crowdsensing approaches, which just simply averages 

the crowd sensed data. An improved crowdsensing solution for assessing road 

surface condition need to be further explored. 
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Table 3.1 Comparison of Existing Methods.  
 Method Smartphone 

Sensors 

Roughness 

Assessment 

Pothole 

&Bump 

Detection 

Crowd-

sensing 

Accuracy 

(Mednis et al., 

2011) 

Threshold 

 (Z-Thresh, Z-Diff, 

STDEV, G-Zero) 

Accelerometer, 

GPS 

No Yes No TP = 90% 

(Pothole) 

(Harikrishnan 

& Gopi, 2017) 

Threshold, 

Gaussian Model, & 

A newly designed 

Max-Abs filter 

Accelerometer, 

GPS 

No Yes NO TP = 100% 

(Pothole) 

(Amador-

Jiménez & 

Matout, 2014) 

 

Threshold Tablet  

Accelerometer 

(Not phone 

sensors) 

Predict IRI 

using Z-axis 

Acceleration 

No No Produce a 

repeatable 

indicator of 

road 

condition 

(Aleadelat & 

Ksaibati, 

2017) 

Exponential 

Transformation & 

Simple Linear 

Model 

Accelerometer  Predict PSI 

using Z-axis 

Acceleration 

No No Z-

acceleration 

has a strong 

liner 

relationship 

with and can 

be used to 

predict PSI 

(Eriksson et 

al., 2008) 

Signal processing 

and machining 

learning-based 

approach 

External GPS, 

Accelerometer 

(Not phone 

sensors) 

No Yes No FP < 0.2% 

(Pothole) 

(Perttunen et 

al., 2011) 

Spectral Analysis & 

SVM 

Accelerometer, 

GPS 

No Yes No FPR = 3% 

FNR = 18% 

(Potholes) 

(Bhoraskar et 

al., 2012) 

K-means Clustering 

& SVM 

Accelerometer, 

GPS, 

Magnetometer 

 “Smooth” 

Or 

“Bumpy” 

Yes No FPR = 0% 

FNR = 10% 

(Potholes) 

(Singh et al., 

2017) 

DTM Accelerometer, 

GPS 

No Yes No TP (Pothole, 

Bump) = 

88.66%, 

88.89%. 

(Allouch et al., 

2017) 

Machine Learning 

(C4.5 Decision 

Tree, SVM, and 

Naïve Bayes) 

Accelerometer, 

Gyroscope 

“Smooth” 

 or  

“Potholed” 

Yes No Accuracy = 

98.6% 

(Pothole) 

(Chen et al. 

2013) 

Improved Gaussian 

Mixture Model; 

Threshold 

Hardware 

modules 

(Not phone 

sensors) 

“Good”, 

“Fair”, 

“Poor”, 

“Bad” 

Yes Average 

Crowd 

Sensed 

Results 

Accuracy = 

90% 

(Pothole);  

Can evaluate 

road 

roughness 

levels 

correctly 

(Lima et al., 

2016) 

Threshold Accelerometer, 

GPS 

 “Good”, 

“Normal”, 

“Bad”, 

“Terrible” 

Yes Average 

Crowd 

Sensed 

Results 

Not reported 
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3.1.2. Key Contributions 

This study presents a preliminary mobile crowdsensing system for road surface 

roughness detection, which includes a mobile data-collecting component and a web-

based data server component.  It takes advantages of previous studies but differs in 

following three aspects: 1) a detailed crowdsensing solution: An iOS app Crowdsense 

and an Android app AndroSensor are utilized in this study for data collection. This study 

provides a detailed result optimization by integrating crowd sensed data; 2) with 

comprehensive road condition assessment:  Instead of just focusing on the pothole or 

bump detection, a more comprehensive assessment of road conditions is introduced 

including an overall road condition estimation, IRI-proxy calculation, and transient 

events (bumps/potholes) detection; 3) a cloud-based data server: A low-cost, 

lightweight, cloud-based system framework, which takes advantages of free Google 

services, is developed in the study. Google Fusion Table is tested and innovatively 

applied in the model for data visualization. 

To verify the proposed solution, a preliminary model for crowdsensing road 

surface roughness is created, and a detailed experiment is designed and conducted in the 

city of College Station, Texas. 

3.2. Methodology  

This section discusses the research methodologies. First, the system architecture 

is introduced. The strategy of the proposed road surface assessment is elaborated upon.  

A detailed explanation of the mathematical algorithm, which is used for evaluating road 
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surface conditions and computing two assessment indexes, is also given in this section. 

The rest of this section covers the result optimization, visualization, and publication. 

3.2.1. System Architecture  

In this study, a crowdsensing approach was employed to assess road surface 

conditions. The whole system mainly includes two components: a mobile data-collecting 

component and a web-based data server component as shown in Figure 3.1. The mobile 

data-collecting component requires a user to run the mobile application AndroSensor in 

an Android smartphone or the mobile application Crowdsense in an iOS smartphone. 

Smartphones are used to collect the raw data in real-time including the GPS positions 

and the raw measurements of the accelerometer and upload the road surface conditions 

to a cloud-based data server.  The server periodically processes the road roughness 

information contributed from different crowdsourcers and integrates the detection results 

accordingly.  

 

 

Figure 3.1 System architecture. 
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Figure 3.2 The flow chart of real-time road surface assessment using smartphone. 

 

3.2.2. Real-Time Road Surface Condition Assessment 

The process of road surface assessment is described in Figure 3.2. It consists of 

four steps: data collection, data process, data integration and assessment indexes 

calculation. 

3.2.2.1. Accelerometer Reorientation  

Microelectromechanical systems (MEMS) accelerometers in smartphones have a 

high sampling rate and are sensitive to detect the jerks of a ground vehicle when 

transient events occur (i.e., hitting potholes or bumps) (Bhoraskar et al. 2012; R. Chen 

 



 

48 

 

and Guinness 2014). To distinguish between the acceleration anomaly caused by a 

transient event and vehicle regular acceleration/deceleration, it would be ideal to reorient 

smartphone accelerometer to make the smartphone axes align with the vehicle axes, 

which means the X- and Y-axes of the smartphone directly sense the vehicle’s horizontal 

acceleration/deceleration.  On the other hand, Z-axis acceleration, which is perpendicular 

to the vehicle, can be used to identify the acceleration anomaly caused by vehicle 

vibration. If the condition is satisfied, the accelerometer is called well-oriented, 

otherwise disoriented. Equations (3.1) - (3.4) are adapted from (Astarita et al. 2012), 

which can be used to perform accelerometer orientation achieved through the Euler 

Angles. 

 

𝛼 = tan−1(𝑎𝑦
′/𝑎𝑧

′)        𝛽 = tan−1(−𝑎𝑥
′/(√(𝑎𝑦

′)2 + (𝑎𝑧
′)2))                     (3.1) 

𝑎𝑥𝑟𝑒𝑜𝑟 = cos(𝛽) 𝑎𝑥
′ + sin(𝛽) sin(𝛼) 𝑎𝑦

′ + cos(𝛼) sin(𝛽) 𝑎𝑧
′                        (3.2) 

𝑎𝑦𝑟𝑒𝑜𝑟 = cos(𝛼) 𝑎𝑦
′ − sin(𝛼) 𝑎𝑧

′                                            (3.3) 

𝑎𝑧𝑟𝑒𝑜𝑟 = − sin(𝛽) 𝑎𝑥
′ + cos(𝛽) sin(𝛼) 𝑎𝑦

′ + cos(𝛽) cos(𝛼) 𝑎𝑧
′                   (3.4) 

 

𝑎𝑥
′, 𝑎𝑦

′, 𝑎𝑧
′are the three directions’ accelerations gathered from a disoriented 

accelerometer, 𝑎𝑥𝑟𝑒𝑜𝑟, 𝑎𝑦𝑟𝑒𝑜𝑟 , 𝑎𝑧𝑟𝑒𝑜𝑟  are the reoriented three-axes accelerations.  is the 

roll angle which shows a rotation around X-axis,  is the pitch angle which shows the 

rotation around Y-axis.  

Figure 3.3 illustrates the differences in orientation between a disoriented 

accelerometer which doesn’t match the measurements of the data and the well-oriented 
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accelerometer. After reorientation, the X-axis acceleration is roughly below zero, Y-axis 

is now at zero, and the Z-axis is now at negative one.  

 

 

Figure 3.3 A comparison between raw data and reoriented data following the 

reorientation using Euler Angles. 

 

3.2.2.2. Geotagging Data  

Accelerometers measure specific force, which is the acceleration relative to free-

fall. To extract acceleration signals generated by the road roughness, a high-pass filter as 

well as a low-pass filter applied to the Z-axis acceleration measurements.  The low-pass 

filter is used to extract the force of Earth gravity from the measured acceleration. Then 

the high-pass filter is applied to eliminate the contribution of the Earth gravity to obtain 
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a corrected acceleration. Equations (3.5) - (3.7) are adapted from (“Motion Sensors” 

n.d.), the low-pass filter is applied as: 

 

 

𝑌𝑛 = 𝛼 ∙ 𝑌𝑛−1 + (1 − 𝛼) ∙ 𝑋𝑛                                            (3.5) 

where,  

 𝛼 =
𝑡

𝑡+𝑑𝑇
 ,                                                      (3.6) 

 

 t is the current time tag, dT is the event delivery rate, Yn-1 is the filtered output of the last 

epoch, Yn is the current filtered output, and Xn is the current observation. 

Having applied the low-pass filter, the following high-pass filter is used to 

eliminate the Earth gravity: 

 

                     𝑍𝑛 = 𝑋𝑛 − 𝑌𝑛 = 𝛼 ∙ 𝑋𝑛 − 𝛼 ∙ 𝑌𝑛−1                                         (3.7) 

 

where Zn is the corrected acceleration.  

The output rate of the built-in GPS receiver (typically 1 Hz) is far lower than the 

built-in accelerometer (typically 100 Hz).  To geo-reference each accelerometer 

measurement, a linear interpolation scheme is applied, given the hypothesis that the 

ground vehicle moves with a constant speed between two adjacent GPS positions.  

To calculate the distance between two adjacent GPS positions, the original 

geodetic coordinates are transformed into ECEF (Earth-Centered, Earth-Fixed) 

coordinates, which are coordinates in a Cartesian coordinate system. Equations (3.8) - 

http://en.wikipedia.org/wiki/Cartesian_coordinate
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(3.11) are adapted from (Clynch 2006). Given the geodetic latitude φ, longitude λ, and 

ellipsoidal height h, where the radius of curvature in the prime vertical, N, is given by: 

  𝑁 =
𝑎

√1−𝑒2 sin2 𝜑
                                                              (3.8) 

 

where the semi-major axis a = 6378137, the first eccentricity e = 8.1819190842622 −𝑒2, 

then the ECEF coordinates xyz can be obtained with:  

 

             𝑥 = (𝑁 + ℎ) cos 𝜑 cos 𝜆                                              (3.9) 

        𝑦 = (𝑁 + ℎ) cos 𝜑 sin 𝜆                                            (3.10) 

                                          𝑧 = ([1 − 𝑒2]𝑁 + ℎ) sin 𝜑                                       (3.11) 

 

Due to the short time interval of one second between two GPS sample points, it 

is reasonable to assume that the velocities of the ECEF coordinate components are 

constant, therefore, we can apply the following equations to estimate the coordinates of 

accelerometer measurement sampled at time t: 

    

𝑥 = 𝑥0 +
(𝑡 − 𝑡0)(𝑥1 − 𝑥0)

𝑡1 − 𝑡0
 

𝑦 = 𝑦0 +
(𝑡 − 𝑡0)(𝑦1 − 𝑦0)

𝑡1 − 𝑡0
 

𝑧 = 𝑧0 +
(𝑡 − 𝑡0)(𝑧1 − 𝑧0)

𝑡1 − 𝑡0
  

                                   (3.12)

 
where (𝑥0, 𝑦0, 𝑧0) and (𝑥1, 𝑦1, 𝑧1) are the coordinates of two consecutive GPS locations 

sampled at time 𝑡0 and 𝑡1 , respectively. With the coordinate (𝑥, 𝑦, 𝑧), we can then geo-
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referencing each accelerometer measurement sampled on the roads. The distance S 

between accelerometer sampled point and the first GPS location (𝑥0, 𝑦0, 𝑧0) can then be 

estimated with: 

  𝑆 = √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2                       (3.13)

 

3.2.2.3. Two Road Surface Condition Assessment Indexes  

Several studies have verified that Z-axis acceleration gathered from smartphones 

can be used as an effective and reliable signal to estimate road surface condition 

(Amador-Jiménez and Matout 2014; Bhoraskar et al. 2012; Harikrishnan and Gopi 

2017). In this study, two assessment indexes are calculated from the geotagged Z-axis 

acceleration measurements including 1) IRI-proxy for each road segment, and 2) the 

number of transient events. The IRI-proxy is employed to depict the overall road quality. 

A transient event occurs when root mean square (RMS) of the Z-axis acceleration 

exceeds the preset threshold and meets specific criterion that is discussed later. RMS is a 

statistical measure of the magnitude of a varying quantity. It is especially useful when 

the function alternates between positive and negative values, e.g., sinusoids. Calculating 

RMS of Z-axis acceleration can effectively wipe off data noise from signals, smooth the 

raw data, and highlight the pattern of the vehicle vibration.  

IRI-proxy:  The International Roughness Index (IRI), which is generally 

measured by special instruments, is the roughness index commonly used to examine the 

road surface condition (Sayers and Karamihas 1998). Since 1986, IRI has been 

worldwide used as the most common index for examining and evaluating road systems. 

file://///geoggrad.geog.tamu.edu/gradhomes/wiki/Statistics
file://///geoggrad.geog.tamu.edu/gradhomes/wiki/Magnitude_(mathematics)
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Some studies indicate that there is a close correlation between IRI and the speed-

normalized Z-axis acceleration. Equation 3.14 is generated based on (Amador-Jiménez 

and Matout 2014). A proxy for IRI (IRI-proxy) can be calculated by multiplying the 

speed-normalized RMS by 100. 

For each road segment, its IRI-proxy can be calculated with: 

𝐼𝑅𝐼𝑝𝑟𝑜𝑥𝑦 =
𝑛∙𝑅

∑ 𝑉𝑖
𝑛
𝑖=1

∙ 100                                                    (3.14) 

where n is the numbers of measurements gathered from a 50-meter road segment, R is 

the RMS of this road segment, 𝑉𝑖 is the real-time speed of the vehicle at the location of 

the i-th acceleration measurement. Based on the IRI-proxy, the road roughness condition 

is classified into 4 levels. These four road condition indexes are summarized in Table 3.2 

(Douangphachanh and Oneyama 2013). 

 

Table 3.2 Four Levels of Road Surface Condition Based on IRI-proxy. 

Road Surface Condition IRI-proxy 

Excellent/Good 0 ≤ IRI < 4 

Fair 4≤ IRI <7 

Poor 7≤ IRI <10 

Bad/Failed IRI ≥ 10 

 

These indexes are generated from the road roughness condition bands used in 

Lao Road Management System, which contains 6 road condition indexes: 1) Excellent 

(0≤ IRI <2), 2) Good (2≤ IRI <4), 3) Fair (4≤ IRI <7), Poor (7≤ IRI <10), 5) Bad (10≤ 

IRI <18), and Failed (IRI ≥ 18) (Douangphachanh and Oneyama 2013). 
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Transient Event: Transient events detection is to identify and locate potential 

potholes/bumps on the road surface (Tan et al. 2014). The vehicle vibration on rough 

road segments is greater than that on the smooth segments, so transient events are 

typically represented as events with large amplitude and short wavelength in a RMS 

curve. Many transient events detection methods have been proposed such as Z-PEAK, 

Z-DIFF, Z-STDEV et al. (Mednis et al. 2011).  Based on the existing methods, an 

improved method was proposed in this study. Figure 3.4 shows the workflow of the 

proposed transient event detection. It mainly consists of four steps as follows: 

 

 

Figure 3.4 Workflow of transient event identification. 
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Figure 3.5 Illustration of transient event identification along a RMS curve. 

 

1) Detect the initial point of the transient event: The search is performed along the 

RMS curve as shown in Figure 3.5. When an RMS value of greater than a preset 

threshold (through the empirical test, 2 m/s2 is set as the threshold value) is 

detected, an initial point is identified;  

2) Detect the drop-off point: The searching is continued from the initial point until a 

point with an RMS value of less than half of RMS value of the initial point. If 

such a point in the RMS curve occurs, a drop-off point is then identified;  

3) Transient event validation: If the distance between the initial point and the drop-

off point is less than 1 meter, a transient event is detected. The threshold value 1 

meter is selected based on the assumption that the pothole size should be smaller 

than 1 meter.  
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4) Repeat steps 1-3 from the current point in the RMS curve. 

To remove the anomalous transient events, two pothole filters are adapted from 

(Eriksson et al. 2008) and applied as follows: 

1) The speed filter: reject the transient event with zero or very low speed. A 

threshold of 5 km/h is set to verify each new event. 

2) Z-axis acceleration filter: the events, whose Z-axis acceleration is lower than the 

threshold of 2 m/s2, will be removed. 

3.2.3. Result Optimization by Integrating Crowd Sensed Data 

As each road condition assessment is performed based on the wheel trajectory, 

which cannot cover the entire pavement, a slight difference exists in the results from 

different users. This is mainly caused by different driving attempts although the driving 

routes and vehicles were the same. The detection of the transient events purely relies on 

where the tire meets the road. For example, a driver may tend to avoid a pothole while 

another driver may just hit it. Besides, the road surface is a slow, dynamic changing 

surface. After a long-term use, road surface quality will become worse with more new 

potholes. Therefore, it is beneficial to take advantages of a crowdsensing solution, which 

integrates contributions from the public and provides a better assessment of the entire 

pavement. In this study, a cloud storage service is employed to synergy the contributions 

from multiple crowdsourcers and publish the integrated results.  

Result Optimization: Two data files, one for storing the RMS and IRI-proxy, 

while the other for transient events, are automatically outputted.  The newly submitted 



 

57 

 

data files are processed on the server to optimize and update the crowd sensed road 

surface conditions.  

 

 

Figure 3.6 The process of data synergy from multiple crowdsourcers. 

 

In this study, the dataset RIRI－proxy = {R1, R2, · · ·, Rn} represents a set of 

IRI-proxy values for each 50-meter road segment. For the same road segment, each 

newly submitted dataset would be merged to the existing dataset as shown in Figure 3.6. 

A weighting scheme based on the distance between newly submitted points and 

their nearest existing points is proposed. For each existing point, its IRI-proxy is 

recalculated based on newly submitted data with:  

𝑢𝑖(𝑥) =
𝑤𝑖(𝑥) ∙ 𝑢𝑖 + 𝑢0(𝑥)

𝑤𝑖(𝑥) + 1
                                         (3.15) 

where,   

       𝑤𝑖(𝑥) = 1 −
𝑑(𝑥, 𝑥𝑖)

𝑑
                                            (3.16) 
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 𝑢0(𝑥)  is the original IRI-proxy value at an existing point, 𝑢𝑖(𝑥) is the 

recalculated IRI-proxy value at an existing point, d is the distance tolerance (50 meters, 

in this study), 𝑑 (𝑥,  𝑥𝑖) is the distance between a newly reported point  𝑥𝑖 and its nearest 

existing point x, 𝑢𝑖 is the IRI-proxy value of the newly submitted point, and 𝑤𝑖(𝑥) is the 

weight signed to the IRI-proxy value at the newly submitted point. 

Numerous studies indicate that the positioning accuracies of the smartphone GPS 

receivers ranged from 5 to 10 meters (Zandbergen and Barbeau 2011; Zandbergen 

2009). Therefore, the positioning error of detected potholes can be as large as 10 meters. 

For this reason, all potholes within a circle with a radius of 10 meters are considered as 

one pothole. Thus,  

1) If the distance between the newly detected pothole to its nearest existing pothole 

is less than 10 meters, the position of the existing pothole will be recalculated as 

the average of these two positions; 

2) If the distance between these two potholes is longer than 10 meters, the newly 

detected pothole will be considered as a new pothole and added to the database.  

Furthermore, the server also counts the number of reports for each potential 

pothole. If a potential pothole has been detected and reported by three different 

crowdsourcers, then it will be published. In this way, the accuracy of the crowd sensed 

results can be improved.  

3.2.4. A Cloud-based Framework for Data Visualization and Sharing 

In this study, a lightweight, cloud-based framework, which takes advantages of 

free Google services, is developed in the study. Cloud storage services have been widely 
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used by consumers, business and governments to host, manage and collaborate on a huge 

amount of information. As one of the most popular customer clouds, Google Drive 

offers users a cost-effective ability to access, host, collaborate on, and disseminate files. 

Each user is given 15GB of free storage. Google Drive supports users to share their files 

or folders with individuals and with groups so that they can view, manage and comment 

on it. In this study, the administrator builds connections with all crowdsourcers using 

Google Drive and authorizes them to submit data to our server.  

A Cloud Mapping Method - Google Fusion Table is used to map the potholes 

and road surface conditions in this study. Google Fusion Table is an experimental data 

visualization web application that allows users to gather, manage, collaborate on, 

visualize, and publish data tables online. Google Fusion Table provides a simple and 

effective approach, which is accessible to inexperienced users and empowers these users 

to develop their database-driven web-based application (Shen 2012). It allows users to 

map various kinds of features in minutes including points, lines, polygons, customer 

addresses, and countries. The newly generated map will appear with several small red 

placemarks based on the location data.  

3.3. Experiments and Results  

This section covers a brief introduction about the field tests, data analysis, and 

result integration and visualization. 

3.3.1. Field Tests 

To verify the proposed solution, some driving tests were carried out on a road 

segment of about 50km containing different levels of surface roughness in College 
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Station, Texas. Test data was collected from five different drivers who drove routes for 

15 days. The iOS app Crowdsense, was installed on 3 iOS phones (i.e., two iPhone 6, 

one iPhone 7), and the Android app AndroSensor was installed on 2 Android phones 

(i.e., Moto X Pure). All these phones are equipped with a high-sensitivity built-in 3-axis 

accelerometer and a GPS receiver. Each smartphone was fixed in the car using 

smartphone holder. The GPS and Z-axis accelerometer data from the smartphones were 

collected. The smartphones measured acceleration data with an output rate of 100 Hz 

while generating GPS position information at 1 Hz. In this test, the cars were driven 

normally, with a maximum speed of approximately 70 km/h. Even at maximum speed, 

the smartphones could log 5 or 6 acceleration measurements per meter, which enabled 

analysis of the road surface roughness with a high spatial resolution. To protect user 

privacy seriously, all sensed data were completely anonymized. Users’ explicit 

permission is required prior to enabling the sensors. 

3.3.2. Result Evaluation 

Figure 3.7 shows the result of a 5-kilometer road segment. In this figure, the 

upper subplot shows the raw data, the middle subplot shows RMS of Z-axis acceleration, 

the lower subplot shows IRI-proxy for every 50-m traveled along the horizontal plane is 

calculated to indicate the road surface roughness.  
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Figure 3.7 The raw data, RMS of raw data, and IRI-proxy of a 5-kilometer road 

segment. 

 

Table 3.3 Description of Three Typical Road Segments. 
 Road Name Length 

(meter) 

Road Surface 

Description 

Overall 

Condition 

Data Acquisition 

Time 

Segment A Luther Street West, 

College Station, TX 

1071 Smooth concrete road 

surface 

Good 08/26/2017 

4:20 pm 

Segment B Marion Pugh Drive, 

College Station, TX 

1093 Fair good gravel road with 

some tars on the surface 

Moderate 08/26/2017 

4:45 pm 

Segment C Welsh Avenue, 

College Station, TX 

1630 Bumpy gravel road 

surface with several 

potholes  

Bad 08/26/2017 

5:10 pm 

 

Good: Luther Street West  

Bad: Welsh Avenue 

Moderate:  Marion Pugh Drive 
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Three typical road segments (A, B, C) are selected from the testing routes to 

verify the proposed assessment strategy. A detailed description of these road segments is 

listed in Table 3.3.  An iPhone 6 smartphone was used to run Crowdsense for data 

collection. This smartphone was fixed in the cabin of a 2009 Toyota Corolla. 

 

Table 3.4 The Comparison of Three Typical Road Segments. 

 Segment A Segment B Segment C 

RMS of Z-

acceleratio

n 

0.4347 m/s2 0.9258 m/s2 2.8826 m/s2 

IRI-proxy 2.5734 7.2624 11.6374 

Quality 

Assessment 
Good Poor Bad 

RMS 

   

IRI 

   

Road 

Image 
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Statistical results of mean RMS values, IRI-proxy, and road surface images of 

three road segments (i.e., A, B and C) are presented in Table 3.4. Segment A, which has 

the highest road quality, was labeled “Good”. The mean IRI-proxy of Segment A is 

2.5734, the mean value of RMS is 0.4347 𝑚/𝑠2. Segment B, which has a medium-level 

of road quality, was labeled “Poor” based on the calculated IRI-proxy 7.2624, and with 

the mean value of RMS is 0.9258𝑚/𝑠2. Segment C, which has the worst road quality, 

was labeled “Bad”. The mean IRI-proxy of Segment C is 11.6374, with the mean value 

of RMS is 2.8826𝑚/𝑠2.  

 

Table 3.5 The Comparison of Three Different Smartphone Models. 

 Moto X Pure iPhone 6 iPhone 7 
Standard 

Deviation 

RMS 

mean m/s2 
0.3435 0.3384 0.3291 0.0075 

IRI-proxy 

mean 
10.8241 10.8187 10.4341 0.2236 

Estimated 

Road 

Surface 

Condition 

   

Data Acqui- 

sition Time: 

10/13/2017 

8:20 AM 

 

Location: 

George 

Bush Drive, 
College 

Station, Tx. 

 

Table 3.5 shows the statistical results of three smartphone models (i.e., Moto X 

Pure, iPhone 6, iPhone7) under test to illustrate the repeatability by using different 

smartphones. These three smartphones were fixed on the same car (i.e., 2009 Toyota 

Corolla) for testing the same road segment (i.e., George Bush Drive, College Station, 

TX). The differences of the mean RMS and mean IRI-proxy of the above smartphone 
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models are small. The IRI-proxy maps generated based on different phones are all very 

similar, which indicates that the proposed approach is suitable for different phone 

models. 

 

 

Figure 3.8 Three driving speed (low, medium, high) with their corresponding Z-

axis acceleration gathered from the same road segment. 

 

Studies have demonstrated Z-axis acceleration is influenced by the driving speed 

(Lima et al., 2017). To test the relationship between the driving speed with Z-axis 

acceleration, Road segment A was tested three times at different driving speeds: low 

(30-40 km/h), medium (40-50 km/h), high (50-60 km/h). Figure 3.8 shows three 

different driving speeds and their corresponding Z-axis acceleration. This figure 
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indicates that the high driving speed will increase the vibration of Z-axis acceleration. 

The IRI-proxy was calculated three times based on the datasets gathered with different 

driving speed detailed in Table 3.6. The table indicates that these three tests’ results are 

similar, just one 50-meter “Good” road segment was mislabeled as “Fair”. It indicates 

that the proposed speed-normalized method could handle the data difference which is 

caused by the different driving speed. 

 

Table 3.6 The Comparison of IRI-proxy Calculated with Different Driving Speeds. 

 

 

 

 

 

 

 

 

 

To verify the accuracy of proposed crowdsensing solution for the pothole 

detection, a road test was carried out in Texas A&M University Parking Lot 50, where 

contains a lot of distinguishable potholes. The test was repeated 10 times by a tester with 

different smartphones for data collection. Four pothole detection methods: Z-PEAK, Z-

DIFF, Z-STEDV and the method we proposed are respectively utilized to extract and 

IRI-Proxy (Low) IRI-Proxy (Medium) IRI-Proxy(High) 

1.809354497 1.949075566 1.901084422 

2.713605347 1.862560789 2.596207585 

2.946428568 1.701830928 2.624650091 

2.302405857 2.547429886 2.142437912 

2.032438854 1.7268601 2.829025458 

2.786624122 2.115270482 4.136784105 

2.576768388 2.136877558 3.278992175 

2.763603782 1.897341655 3.417223982 

1.809354497 1.949075566 1.901084422 



 

66 

 

label potholes. The true pothole number is 28, which were manually counted prior to the 

test. Half-meter-accuracy positions of these 28 potholes were geotagged by using a 

hand-held GPS.  

 

 

Figure 3.9 True pothole distribution and four pothole detection methods' results 

from 5 laps (red dot: true pothole; blue dot: detected pothole; light blue buffer: 

positioning error tolerance). 

 

The performance of Z-PEAK, Z-DIFF, Z-STEDV and the proposed 

crowdsensing solution was evaluated by comparing the truth reference with their results 

from five laps and the results from ten laps from two respects: 1) coverage rate 

(#correctly detected potholes / #true pothole); 2) false positive rate (#mislabel potholes / 
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#detected potholes). Figure 3.9 shows the true potholes distribution (red dots) and 4 

different methods’ pothole detection results from five laps (blue dots). The positioning 

error tolerance is set as 5 meters (light blue buffer) in this figure, which means the 

detected pothole with a distance less than 5 meters from the nearest true pothole, is 

judged as a correct detection.  

 

Table 3.7 The Performance of Four Pothole Detection Methods. 

 

 

 

 

 

 

 

 

 

Table 3.7 details the false positive rates and the coverage rates of these four 

methods gathered from five laps and ten laps. Two positioning error tolerances (5 meters 

False Positive Rate 

Positioning Error 

Tolerance 
5 Meters 10 Meters 

Number of Laps 5 10 5 10 

Z-PEAK 22.22% 17.38% 11.76% 5.88% 

Z-DIFF 57.14% 50% 16.66% 10.58% 

Z-STEDV 35.29% 23.59% 16.66% 11.11% 

IMPROVED 27.27% 16.67% 6.73% 6.14% 

Coverage Rate 

Positioning Error 

Tolerance 
5 Meters 10 Meters 

Number of Laps 5 10 5 10 

Z-PEAK 25.92% 37.03% 40.74% 62.06% 

Z-DIFF 37.04% 51.85% 66.67% 81.84% 

Z-STEDV 59.25% 74.07% 77.78% 85.18% 

IMPROVED 62.96% 88.89% 88.89% 92.59% 
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and 10 meters) are respectively adapted for the detection performance evaluation. The 

test indicates that Z-Peak has a high accuracy for pothole detection. However, the 

coverage rate of Z-Peak method is the lowest. Another two pothole detection algorithms 

(Z-DIFF and Z-STEDV) which are low in detection accuracy and coverage rate 

compared to the improved algorithm. The improved algorithm does a better job of 

properly detecting potholes by integrating crowd sensed data, increasing the coverage 

rate and lowering the false positive rate of the pothole detection. 

Battery consumption is an important issue for crowdsensing. In this study, 

battery consumption of different phones (i.e., Moto X Pure, iPhone 6, and iPhone 7) was 

also tested as shown in Figure 3.10. The sampling rate of accelerometers was set to 100 

Hz and GPS receivers were enabled for all three phones. The result shows that the 

battery of Android-based Moto X Pure can offer 8 - 9 hours of data collection. iPhone 6 

and iPhone 7 can support more than 12 hours’ data collection. To date, several studies 

(Abdesslem, Phillips, and Henderson 2009; Constandache et al. 2009; Peng et al. 2017; 

J. Wang et al. 2017; Zhuang, Kim, and Singh 2010) have been carried out, which can 

effectively minimize the energy consumption of built-in smartphone sensors. In the 

future study, a more energy-efficient crowdsensing system will be built by taking 

advantages of the former studies, choosing more appropriate sampling rate of sensors, 

and optimizing algorithms. 
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Figure 3.10 Battery consumption test. 

 

As mentioned above, the contribution from crowdsourcers were mapped using 

Google Fusion Table. Three maps, as shown in Figure 3.11, were generated from the 15-

day detection data to depict road surface condition. Figure 3.11-A presents pothole 

distribution. The pothole density map was obtained by enabling the heat map layer as 

shown in Figure 3.11-B. Meanwhile, Figure 3.11-C shows the overall road roughness 

map based on IRI-proxy, in which each point was colored based on its IRI-proxy. In this 

map, “Good” in yellow, “Fair” in Green, “Poor” in purple, and “Bad” in red. These three 

maps give the public a clear view of the most up-to-date road surface condition for some 

road segments in College Station, Texas. 
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Figure 3.11 Road surface roughness maps (A: potholes distribution map, B: 

potholes density map, C: IRI-proxy map). 

 

3.4. Discussion and Conclusion 

In the study, a labor-saving and low-cost crowdsensing system for road surface 

condition assessment was introduced, and it has verified the feasibility of using built-in 

smartphone sensors for road surface condition assessment in terms of two detection 

indexes: IRI-proxy and the number of the transient events. In order to examine the 

proposed solution, test data were collected from five users driving routes around College 

Station, Texas. The drivers drove 50 km road segments with different surface roughness 

levels. The field tests demonstrated that the built-in smartphone sensors can effectively 

assess road quality and detect the transient events. The overall road surface condition 
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can be accurately judged and labeled by the IRI-proxy and the transient events can be 

efficiently identified. By implementing a crowdsensing solution, the road surface 

condition can be constantly monitored. Meanwhile, the most up-to-date and more 

accurate assessment results were achieved by mining crowd sensed data. What’s more, 

the Google Fusion Table can offer powerful access for data management and 

visualization. 

However, it has shown that using different devices in different driving attempts 

can generate different assessment results, even though they were carried out on the same 

routes. It is mainly because ground vehicles always move in a line-scan rather than area-

scan pattern. Due to the limited accuracy of the built-in smartphone GPS receiver, a 

high-accuracy positioning result cannot be guaranteed. “How accurate are smartphone 

GPS receivers?” is the most often asked question related to crowdsensing. The 

positioning accuracy of smartphones has been significantly enhanced over the past 

decade. Zandbergen (2009) examined the positioning accuracy of the 3G iPhone - the 

first mobile device which integrates three different positioning technologies. The result 

indicates an average positioning accuracy is 8 meters. In Zandbergen and Barbeau 

(2011), the result shows the positioning accuracy of smartphones has been improved to 

5-8 meters, which is sufficient for most location-based services. R. Chen et al. (2014) 

proposed a novel “DGNSS-C” algorithm which can enhance the positioning accuracy of 

smartphones by 30% - 40% (2-3 meters). (Pesyna, Heath, and Humphreys 2014) created 

a “centimeter-accurate” mobile system by combining the GPS recordings with a 

smartphone-quality Global Navigation Satellite System antenna. The latest news 
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published on IEEE SPECTRUM (Moore 2018) said Broadcom Limited (a global 

semiconductor leader) designed a more accurate GPS chip (BCM47755), which enables 

30-centimeter positioning accuracy and 50% less battery drains for the next generation 

of smartphones releasing in 2018. 

With the rapid development of the modern smartphone technologies and the 

increasing number of public crowdsensing smartphone participants, the proposed 

solution is promising for providing accurate real-time road surface roughness 

information and offering comprehensive and timely road service information to road 

maintenance works as well as drivers.  
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4. EMBRACING CROWDSENSING: AN ENHANCED MOBILE SENSING 

SOLUTION FOR ROAD ANOMALY DETECTION* 

 

4.1. Introduction  

 “No one knows how many potholes are out there, but we all agree there are a ton 

of them.” The U.S. Federal Highway Administration (FHWA) estimates that about 52% 

of the U.S. highways are in a miserable condition (Bruce 2001). A newly released 

report—Repair Priorities 2019 shows that the percentage of “poor condition” roads in 

the U.S. has rapidly increased from 14% to 20% between 2009 and 2017 (Bellis, 

Osborne, and Davis 2019). The category of “poor condition” road is defined by FHWA, 

which contains excessive road anomalies, such as potholes, bumps, and ruts. Road 

anomalies can not only discomfort driving experience, but they also damage vehicle 

components, cause economic loss, even lead to car crashes. The American Automobile 

Association estimates that pothole damage costs three billion U.S. dollars in vehicle 

repairs nationwide annually (AAA 2016). Meanwhile, approximately one-third of traffic 

fatalities occur on poor-condition roads each year (“The Pothole Facts” 2019). 

Therefore, effectively detecting road anomalies has become a fundamental social need, 

which requires immediate attention.   

                                                 

*Reprinted with permission from “Embracing Crowdsensing: An Enhanced Mobile Sensing Solution for 

Road Anomaly Detection” by Xiao Li, Da Huo, Daniel W. Goldberg, Tianxing Chu, Zhengcong Yin, and 

Tracy Hammond, 2018. ISPRS International Journal of Geo-Information, Copyright 2019 by Xiao Li. 

https://doi.org/10.3390/ijgi8090412  

 

https://doi.org/10.3390/ijgi8090412
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Traditional road anomaly detections were conducted through three main types of 

approaches, including 3D laser scanning, vision-based image processing, and vehicular 

vibration-based analysis (Sattar, Li, and Chapman 2018). However, implementing these 

approaches requires costly and sophisticated instruments (e.g., profilometer, 3D laser 

scanner), which also consumes extensive time, workforce, and expertise. It is worth 

noting that road surface conditions can vary day by day. Existing potholes can grow 

larger, driven by heavy traffics. How to continuously monitor road anomalies with a 

low-cost and high-efficient solution remains to be a challenging question. 

Mobile sensing technology has developed rapidly over the past few years (Li et 

al. 2019; W. Xu et al. 2015; R. Chen, Chu, Liu, Chen, et al. 2014). Equipped with 

various sensors, smartphones have become promising data acquisition and computing 

platforms, which could achieve a high-sampling rate with little or zero economic cost. 

Recent studies attempt to investigate the ability of mobile sensors in road anomaly 

detection. Studies have proven that smartphone accelerometers can effectively capture 

the vehicle vibrations caused by the unevenness of the road surface (Astarita et al. 2012; 

Li and Goldberg 2018; Li, Chen, and Chu 2014). Through analyzing these mobile 

sensors’ signals, we can potentially identify road anomalies.  

4.1.1. Related Studies  

Different studies have been conducted to identify road anomalies (e.g., potholes 

and bumps) using smartphone sensors. Among the available mobile sensors, 

accelerometers are most sensitive for capturing vehicle jerks when hitting bumps and 

potholes. Various methods have been implemented to analyze acceleration signals, 
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which can be broadly classified into two categories: 1) threshold-based methods and 2) 

machine learning methods. In recent studies, some researchers start to adopt signal 

processing techniques, such as wavelet transforms, to analyze mobile sensed signals. 

Meanwhile, implementing crowdsensing solutions has become a promising research 

direction, which shows a significant potential to obtain more reliable detect results by 

synthesizing public contributed data.   

Threshold-based methods detect road anomalies through extracting extreme 

values from acceleration signals. Astarita et al. (2012) explored the effectiveness of 

built-in smartphone accelerometers for detecting speed bumps and potholes using 

threshold-based method. In this study, the extreme peak values along the curve of z-axis 

acceleration were treated as direct indicators for identifying bumps and potholes. Three 

filters were utilized to eliminate data noise and enhance the peak signals. The result 

demonstrated that speed bumps could be successfully identified by the extreme peak 

values of filtered z-axis acceleration with an accuracy of 90%. However, this method 

was less useful for locating potholes with a detection rate of around 65%. Mednis et al. 

(2011) compared different threshold-based methods for identifying road anomalies from 

acceleration signals. A dedicated accelerometer was installed on a vehicle to sense its 

vibration. The authors found a specific data pattern while hitting potholes—acceleration 

readings near to be 0 m/s2 for all three axes. Therefore, they created a G-ZERO 

algorithm and compared with the other three methods, including Z-THRESH, Z-DIFF, 

and STDEW(Z). The results demonstrated this new method achieve 90% accuracy for 

detecting road anomalies. Rishiwal and Khan (2016) proposed a simple threshold-based 
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solution to measure the severity of bumps and potholes. Continuous series of z-axis 

acceleration were collected to represent vehicle vibrations when driving along a road. A 

set of thresholds were generated through empirical tests to examine z-axis acceleration, 

which could extract road anomalies and label their severity levels (1 to 3) with an 

accuracy of 93.75%. Zang et al. (2018) attempted to use bicycle-mounted smartphones 

to measure the conditions of pedestrian and bicycle lanes. This study also implemented a 

threshold-based method to extract significant spikes from the curve of vertical 

acceleration. These spikes were recognized as road anomalies. The authors validated 

their result with ten ground truth sample and achieved 100% detection accuracy.  

Machine learning methods have also been intensively utilized in road anomaly 

detections. Kalim, Jeong, and Ilyas (2016) created a new mobile app called CRATER to 

identify potholes and speed bumps through machine learning methods. In this study, the 

authors also used the built-in accelerometer to capture the vehicle shocks and vibrations 

while driving. A set of features (e.g., mean, maximum, minimum speed, etc.) were 

generated from the collected signals. Five classifiers were compared, including naïve 

Bayes, support vector machine (SVM), decision tables, decision tree, and supervised 

clustering. The results demonstrated that SVM did the best among the five methods, 

which could successfully identify potholes and speed bumps with accuracy rates of 90% 

and 95%. Meanwhile, this paper also attempted to obtain more reliable results by 

leveraging crowdsourced data. The potholes had to be reported by more than five 

different users before publishing on the web map. Celaya-Padilla et al. (2018) utilized a 

different machine learning approach to check the existence of speed bumps. The authors 
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first installed some hardware sensors (e.g., three-axis accelerometer and gyroscope) on a 

vehicle to measure vehicle vibration. The collected data series were split into two-second 

subsets. Each subset was manually labeled as with or without a speed bump. Then, seven 

statistical features (e.g., mean, variation, skewness, etc.) were generated from each axis 

of the two sensors’ measurements for each subset. These features were selected through 

a multivariate feature section strategy supported by genetic algorithms. Finally, the 

selected features were fed to logistic regression models to identify whether a speed bump 

exists in each subset. This study achieved a detection accuracy of 97.14%. A similar 

study was conducted by Silva et al. (2018). The authors used random forest classifier to 

detect road anomalies from mobile sensed data. Fifty statistical features were generated 

from each subset of the collected data series. Each subset contained 125 continuous 

three-axis accelerometer measurements. Through applying feature selection procedure, 

twenty-five features were selected and used in the classification model. This method 

achieved a 77.23% - 93.91% accuracy for distinguishing road with and without 

anomalies in different experimental settings.  

Wavelet analysis has a superior ability for analyzing continuous changing 

signals, which shows a great potential to aid in interpreting mobile sensed data. Wei, 

Fwa, and Zhe (2005) calculated wavelet statistics using an official roughness dataset to 

characterize road surface roughness. Results demonstrated that the obtained wavelet 

statistics showed a high correlation with officially measured roughness indexes. Recent 

studies attempted to use wavelet transforms to recognize bumps and potholes from 

mobile sensed data series. For example, Bello-Salau et al. (2018) were the first to 
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integrate wavelet transform (WT) into road anomaly detection. In this study, the authors 

combined a discrete WT model with the scale-space filtering algorithm to denoise the 

vehicle vibration signals collected from a dedicated accelerometer—NI myRIO-1950. 

Then, a fixed threshold was used to extract abnormal values from the denoised signals to 

identify the road anomalies (e.g., bumps and potholes). This study achieved relatively 

high accuracy for detecting bumps (96%) and potholes (94%). Silveira Rodrigues et al. 

(2019) conducted a similar study to evaluate the effectiveness of a different discrete 

WT—Haar wavelet transform (HWT) for detecting potholes. In this study, the authors 

first created an Android-based mobile app to collect data from the built-in smartphone 

accelerometer. Then, HWT was applied to the z-axis accelerations in different 

decomposition levels to generate wavelet coefficients, which could highlight the 

abnormal variations when hitting potholes. Thresholds were generated based on the 

mean value and the standard deviation of the calculated wavelet coefficients. These 

thresholds were used to label the collected signals as potholes, intermediate 

irregularities, and acceptable perturbations. However, the authors only used two 

manually collected potholes to validate their result, which was not statistically sufficient.  

Implementing crowdsensing solutions would be exceptionally beneficial in road 

anomaly detection, as it allows continuous monitoring of road surface conditions by 

leveraging public contributed data with little or even zero economic cost. Xiao Li and 

Goldberg (2018) proposed a crowdsensing solution to assess road surface conditions. 

The authors first used an improved threshold-based method to detect potholes. Then, the 

crowd sensed potholes within a 10-meter radius were aggregated into one pothole 
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through a simple averaging procedure. Sabir, Memon, and Shaikh (2019) conducted a 

similar study to enhance the accuracy of the detected road anomalies. In this study, the 

public reported potholes within a 5-meter radius were clustered to eliminate duplicated 

reports. Meanwhile, road anomalies had to be reported by different users before final 

confirmed. This study could successfully detect 90% of speed breakers and 85% of 

potholes.  

4.1.2. Knowledge Gaps  

Although existing studies have proven efficient to identify road anomalies using 

mobile sensed data, they also expose some knowledge gaps which need to be addressed, 

including: 

1) Existing detection methods have apparent limitations. Threshold-based 

methods need extensive empirical studies to obtain high-reliable thresholds. 

However, these thresholds mostly need to be adjusted even re-tested when 

applied in different locations, which, in turn, significantly limits the repeatability 

of threshold-based methods.  Machine learning methods usually require an 

extensive model training process based on a vast amount of labeled data, which 

is laborious and time-consuming. Utilizing wavelet transform (WT) can be more 

efficient to analyze mobile sensed data; however, integrating WT into road 

anomaly detection is still at a preliminary stage. To date, only a few studies 

reported on the utilization of discrete WT. The implementation of continuous 

wavelet transform (CWT) is still underexplored.    
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2) Pothole size estimation is lacking. Most existing studies focus only on 

identifying and locating potholes; however, few studies investigate how to 

estimate potholes’ size using mobile sensed data. The damages caused by 

potholes vary by their sizes. Patching a pothole can cost about $35 to $50 U.S. 

dollars. Therefore, accurate and timely pothole size estimation is of great 

importance, which can help local governments allocate budget to fix hazardous 

potholes wisely. 

3) Prior crowdsourcing solutions are too simple to synthesize crowd sensed 

results efficiently. How to leverage crowd sensed data to achieve a better road 

anomaly detection is still an underexplored question. Currently, only a few 

studies attempted to address this question with some simple crowdsensing 

strategies (e.g., average the crowd sensed data). However, these studies cannot 

effectively integrate public contributions to optimize detection result.  

4.1.3. Solution and New Contributions  

To fill above-referenced knowledge gaps, we propose an enhanced crowdsensing 

approach to detect road anomalies. In this study, we first create an Android-based mobile 

app—PotholeAnalyzor to acquire mobile sensors’ data, including three-axis 

accelerometer and GPS. We then use wavelet analysis to identify road surface anomalies 

(such as bumps and potholes) and measure their sizes based on the mobile sensed data. 

Finally, we innovatively synthesize crowd sensed results through a spatial clustering 

method—Hierarchical Density-Based Spatial Clustering of Applications with Noise 

(HDBSCAN) to optimize the detection results. 
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Compared with prior studies, this study makes three new contributions for road 

anomaly detection, including:   

1) Implement a new method. To the best of our knowledge, this study marks the 

first attempt to test the performance of CWT in road anomaly detection. 

2) Provide a solution for pothole size estimation. Pothole size estimation plays an 

important role in road surface management; however, it is not considered in prior 

studies. This study uses an innovative wavelet-based approach to extract size 

information for road surface anomalies, which is a new solution to an existing 

problem. 

3) Put forward an enhanced crowdsensing approach. There are some drawbacks 

associated with the crowd sensed data, such as data inaccuracy and redundancy. 

This study is among the first to investigate how to optimize road anomaly 

detection results by spatially clustering crowd sensed data.  

4.2. Methods 

In this study, we propose an enhanced crowdsensing approach to detect road 

anomalies by taking advantage of CWT and spatial clustering methods. The detection 

process goes through three main stages as shown in Figure 4.1, including 1) mobile 

sensors’ data acquisition and preprocessing, 2) road anomaly detection and size 

estimation, and 3) result optimization by clustering crowd sensed data.  

This section details the data and methods used in each processing stage, 

respectively. We first create an Android-based mobile app—PotholeAnalyzor to acquire 

research data from two smartphone sensors (e.g., GPS and accelerometer). Next, the 
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mobile collected raw data is preprocessed to clean, transform, and organize datasets 

before conducting analysis. Then, we make the first attempt to use CWT to analyze 

mobile sensed signals for identifying road anomalies and estimating their sizes. Finally, 

the detected bumps and potholes are confirmed and optimized by clustering crowd 

sensed results.  

 

 

Figure 4.1 Research workflow. 
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4.2.1. Data Acquisition and Preprocessing 

Studies have proven that smartphone accelerometer works well for capturing 

irregular vehicle vibrations when hitting potholes or bumps. By integrating with GPS 

data, we can geotag these abnormal acceleration signals, which can aid in identifying 

and locating road anomalies. In this study, we first create an Android-based mobile 

app—PotholeAnalyzor to collect data from smartphone accelerometer and GPS. The 

collected raw accelerometer’s data is preprocessed through three steps: 1) data 

reorientation, 2) data smoothing, and 3) geotagging accelerometer’s measurements using 

GPS data.    

4.2.1.1. Mobile Sensor Data Collection  

To obtain the mobile sensors’ data, we create an Android-based mobile app— 

PotholeAnalyzor using Android application program interfaces (APIs). PotholeAnalyzor 

can record real-time sensed accelerometer measurements, timestamps, and GPS 

coordinates. Please note that smartphones must be fixed on the vehicle using smartphone 

holders during data collection, which can avoid some noises caused by devices sliding.  

Accelerometer measures both the real acceleration force and earth gravity. To 

eliminate the influence of earth gravity, Android provides a linear acceleration sensor, 

which isolates and removes the force of gravity from accelerometer measurements using 

a low-pass filter and a high-pass filter. Refer to (“Motion Sensors” n.d.; Li and Goldberg 

2018) for a detailed explanation.   

This study analyzes linear accelerometer measurements to detect road anomalies. 

The sampling rate of the accelerometer is set to 100 Hz while GPS is set to 1 Hz. Figure 
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4.2 shows the app’s user interface, which contains a dynamic chart showing the z-axis 

acceleration and a Google Maps visualizer tracking the driving path using GPS. There 

are some similar iOS-based apps such as CrowdSensor that can be installed on iPhones.   

  

 

Figure 4.2 The user interface of PotholeAnalyzor. 

 

4.2.1.2. Data Reorientation  

Smartphone accelerometer can measure movement in three axes. To ensure the 

effectiveness of mobile sensed acceleration for capturing vehicle jerks while hitting 

potholes, data reorientation needs to be implemented to align the accelerometer’s axes 
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with the vehicle’s axes—x-axis and y-axis of the accelerometer should be used to 

measure the horizontal movement of the vehicle; z-axis should be perpendicular to the 

vehicle and senses its vertical vibration, which are directly caused by road anomalies 

(Sattar, Li, and Chapman 2018). Euler Angles have been widely proven effective for 

reorienting accelerometers. In this study, we reorient the accelerometer measurements 

through Euler Angles as follows (Astarita et al. 2012; Johnson and Trivedi 2011):  

𝛼 = tan−1 (
𝑎𝑦

𝑎𝑧
) , 𝛽 = tan−1 (

−𝑎𝑥

√𝑎𝑦
2 + 𝑎𝑧

2
), (4.1) 

𝑎𝑥
′ = cos 𝛽× 𝑎𝑥 + sin 𝛽 × sin 𝛼 × 𝑎𝑦 + cos 𝛼 × sin 𝛽 × 𝑎𝑧 , (4.2) 

𝑎𝑦
′ = cos 𝛼× 𝑎𝑦 − sin 𝛼× 𝑎𝑧 , (4.3) 

𝑎𝑧
′ = − sin 𝛽 𝑎𝑥 + cos 𝛽× sin 𝛼 × 𝑎𝑦 + cos 𝛽 × cos 𝛼× 𝑎𝑧 , (4.4) 

where 𝛼 and 𝛽 are two Euler Angles, roll and pitch, 𝑎𝑥, 𝑎𝑦, 𝑎𝑧are the raw accelerometer 

measurements along three axis, and 𝑎𝑥
′ , 𝑎𝑦

′ , 𝑎𝑧
′  are the reoriented three-axis accelerations.  

4.2.1.3. Data Smoothing 

Removing data noise is an essential step in signal analysis. Mobile sensed 

measurements inevitably contain noises. In this study, we implement a high-pass filter to 

wipe off noises and enhance signal patterns, which is conducted as: 

y𝑖 = 𝜃 × 𝑦𝑖−1 + 𝜃 × (𝑥𝑖 − 𝑥𝑖−1), 𝑖 ∈ [1, 𝑛 − 1], (4.5) 

𝜃 =
𝑡

𝑡 + 𝑑𝑇
, (4.6) 
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where 𝑥𝑖 is the ith raw sample data, 𝑦𝑖 is the ith smoothed data, 𝑡 is the current time tag, 

𝑑𝑇 is the event delivery rate, 𝑛 is the number of samples, which refers to the number of 

z-axis accelerometer measurements in this study.  

Figure 4.3 shows the comparison between raw data and processed data, which 

indicates noises can be efficiently eliminated with an enhanced data pattern after 

filtering.    

 

 

Figure 4.3 Comparison between raw data and processed data. 

 

4.2.1.4. Geotagging  

The sampling rates of GPS (1 Hz) and accelerometer (100 Hz) are quite different. 

To identify the locations of road anomalies, we need to geotag each accelerometer 

measurement by leveraging GPS readings. In this study, we adopt a scheme proposed in 
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(Li et al. 2019) to integrate these two sensors’ data. First, the original GPS readings 

(latitude, longitude, height) are transformed into earth-centered earth-fixed (ECEF) 

coordinates (x, y, z). Then, we find two temporal-nearest GPS readings for each 

accelerometer measurement by matching their timestamps. Last, the accelerometer 

measurement can be geotagged through a linear interpolation scheme based on its 

temporal distance to its two nearest GPS points.  

𝑥 = 𝑥0 +
(𝑡 − 𝑡0)(𝑥1 − 𝑥0)

(𝑡1 − 𝑡0)
, 

 𝑦 = 𝑦0 +
(𝑡 − 𝑡0)(𝑦1 − 𝑦0)

(𝑡1 − 𝑡0)
, 

 𝑧 = 𝑧0 +
(𝑡 − 𝑡0)(𝑧1 − 𝑧0)

(𝑡1 − 𝑡0)
 

(4.7) 

where (𝑥, 𝑦, 𝑧) is the calculated ECEF coordinates for the accelerometer measurement 

with a timestamp 𝑡,(𝑥0, 𝑦0, 𝑧0) and (𝑥1, 𝑦1, 𝑧1) are two consecutive GPS readings with 

timestamps 𝑡0 and 𝑡1, which are temporally nearest GPS points to the acceleration 

measurement.  

4.2.2. Road Anomaly Detection and Size Estimation 

From a digital signal perspective, each piece of accelerometer recording is a sum 

of multiple signals with varying frequencies and amplitudes. Therefore, spectral analysis 

can be very useful in decomposing this type of data and identifying unique frequency 

components that are indicative of surface roughness or irregular locations. Fourier 

analysis and wavelet analysis are the two most popular frequency-based approaches. The 

use of Fourier analysis in road surface roughness characterization (Sayers, Gillespie, and 
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Queiroz 1986; Hayhoe 2009), however, suffers from a major limitation which is the lack 

of association between the spatial domain and the frequency domain, such that locating a 

certain spectral anomaly on the distance profile is difficult with Fourier analysis. 

Wavelet analysis, on the other hand, is a superior option because it does not only reveal 

the frequency components of the road profile but also identify where a certain spectral 

anomaly exists in the spatial domain. Previous applications of wavelet analysis in this 

field have yielded satisfactory results in road roughness assessment and the detection of 

surface irregularities, e.g., (Wei, Fwa, and Zhe 2005). In this study, we extend this 

application and discuss the use of wavelet analysis in pothole detection and pothole size 

estimation. 

4.2.2.1. Continuous Wavelet Transform 

We detect potholes and estimate their sizes by performing the continuous wavelet 

transform on the preprocessed data. We chose CWT over the discrete wavelet transform 

(DWT) because CWT results are easier to interpret given that CWT operates at every 

scale (frequency) and the shifting of the wavelet function is continuous. The one-

dimensional CWT is defined as (Daubechies 1992): 

𝐶(𝑎, 𝜏) =  ∫ 𝑓(𝑥)
1

𝑎
𝜓∗  (

𝑥 − 𝜏

𝑎
) 𝑑𝑥

∞

−∞

, (4.8) 

where 𝐶 is the output wavelet coefficient, 𝑓(𝑥) is the preprocessed input signal as a 

function of location 𝑥, 𝑎 is the scale parameter (inversely related to spatial frequency), 𝜏 

is position parameter and 𝜓∗ is the complex conjugate of the mother-wavelet function 

that is chosen based on the feature of interest. 
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In this study, we use order 3 Daubechies wavelet (DB3) as the mother-wavelet 

(Figure 4.4) which is recommended by (Wei, Fwa, and Zhe 2005). There is a 

correspondence between wavelet scales and frequency, such that a smaller scale 

corresponds to a compressed wavelet, which is high in frequency, while larger scales 

correspond to a stretched wavelet, representing lower frequency. As defined in Equation 

4.8, a wavelet coefficient is a function of both wavelet scale and position. Scale controls 

the compression or stretching of the wavelet and position controls the shifting of the 

wavelet function. For each scale (corresponds to a certain degree of wavelet compression 

or stretching), the wavelet examines every location on the input signal by continuously 

moving along the distance axis. Therefore, the final output is a two-dimensional matrix 

in scale (frequency)-location space, which is then converted to a matrix of percentage of 

energy (the sum of all elements in the matrix equals to 1). 

 

 

Figure 4.4 The order 3 Daubechies wavelet (DB3). 
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CWT produces high wavelet coefficient values at scales where the oscillation in 

the wavelet correlates best with the signal feature. With a proper choice of mother-

wavelet that approximates the target signal (in this case, our target signal is the 

accelerometer recording when hitting a pothole), the wavelet coefficient image will 

highlight the target location at the right scale (Figure 4.5). 

 

 

Figure 4.5 Wavelet analysis results. 

 

4.2.2.2. Pothole Size Estimation 

CWT generates a high value response when the wavelet shifts to a pothole 

location (Figure 4.5). 
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The raw wavelet coefficient images, however, do not come with a meaningful 

scale that corresponds to pothole size and usually capture irrelevant information such as 

random road noise and the vibration of the engine. Therefore, we further process the 

wavelet coefficient images with these following steps:  

1) Convert the unitless wavelet scales to physical scales in meters using the 

algorithm provided by MATLAB Wavelet Toolbox (Misiti et al. 2015). 

2) Multiply the scale axis by a scaling factor, which relates the converted wavelet 

scales to the sizes of target. This scaling factor is determined by field 

experiments at a test site and is kept as a constant unless the data acquisition 

platform is changed (in this study, we get a value of 0.3 for generic vehicles 

including sedan and SUV). 

3) Clean the wavelet coefficient images by thresholding (only keep values that are 

greater than N times of overall average, and in this case, we use N = 18). 

4) Apply 2-D Gaussian filter to remove noise and combine detections that 

correspond to the same pothole. Then the center of each highlighted zone is 

considered as the center of a detected pothole. 

5) Get the size estimation for each detected pothole (highlighted zones on the 

wavelet coefficient image). 

The final result contains two pieces of information: pothole location (step 4) and 

pothole size (step 5). It is necessary to state that the choice of scaling factor and 

threshold value may subject to change in other data acquisition settings, because the 

signals can be influenced by the coupling between road and vehicle. For example, the 
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data acquired by a pickup truck with a large tire and harder suspension may require a 

different set of processing parameters. Also note that since mobile device mainly 

measures vehicle vibrations along driving path, we only estimate the maximum driving-

dimensional length of road anomalies in this study. Here, the driving-dimension of 

anomalies is parallel to the road driving direction, as illustrated in Figure 4.6. 

 

 
Figure 4.6 Illustration of the measuring dimension for road anomalies. 

 

4.2.3. Result Optimization by Clustering Crowd Sensed Data 

Using smartphone sensors to detect vehicle jerks is a high-efficient solution to 

identify road anomalies; however, it also has some significant drawbacks. For example, 

the detection result purely depends on if the vehicle kicks up road anomalies. But vehicle 
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wheels only run over a smart portion of pavement surface, which significantly limits the 

detection coverage. Meanwhile, a single user’s detection result can be influenced by 

various factors, such as vehicle models, phone models, driving skills, etc. Therefore, in 

this study, we implement a crowdsensing solution to optimize the detection results by 

mining public contributed data. We hypothesize that the significant similarities among 

crowd sensed data could be used to obtain more reliable detection results than single 

user’s results. 

In this study, we innovatively implement spatial clustering methods to group 

crowd sensed results into clusters based on their similarities. Then, each cluster’s 

member points are further synthesized to form a unique point using weighting schemes, 

which represents a confirmed road anomaly.      

4.2.3.1. Density-Based Clustering  

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) has 

been extensively utilized to analyze spatial patterns, which can effectively identify 

concentrated points (clusters) and discrete points (noises) (Esri 2019; Ester et al. 1996). 

Implementing DBSCAN requires two parameters, including 1) minimum points to form 

a cluster (Cmin) and 2) search distance (d) to define neighbors. The clustering procedure 

can classify data points into three classes, including (Ester et al. 1996): 

• Core point—a point which has at least Cmin neighbors—points within the d 

distance to the tested point are counted as its neighbors. 

• Border point—a point which is counted as a neighbor to core points but doesn’t 

have sufficient its own neighbors (less than Cmin). 
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• Noise point—a point which is neither a core point nor a border point. 

The clustering procedure of DBSCAN contains the following main steps:   

1) Choose a random sample point from the dataset as a starting point (p). 

2) Identify the neighbors of p using a customized search distance. 

3) If p was a core point, it would be marked as visited, a cluster would be formed 

with the core point and all its connected points. Connected points include p’s 

neighbors and all reachable points (within a d radius) of its neighbors.  

4) If p was not a core point, DBSCAN would retrieve an unvisited point from the 

dataset as a new starting point and repeat the process.   

5) The process will end until all points are marked as visited or all points are 

assigned to a cluster.  

Hierarchical DBSCAN (HDBSCAN) is an enhanced density-based clustering 

method proposed by Campello et al in 2013 (Campello, Moulavi, and Sander 2013). 

This method integrates DBSCAN with hierarchical clustering algorithm, which 

significantly extends the ability of DBSCAN to identify clusters of varying densities. As 

one of the most data-driven clustering methods, HDBSCAN only has one required 

parameter Cmin. One prominent advantage of HDBSCAN is that it can generate 

probability scores for the sample points. The probability score indicates the likelihood of 

a point to be involved in a cluster. Refer to (“How HDBSCAN Works” n.d.) for a 

detailed explanation of HDBSCAN.  

In this study, we implement HDBSCAN to group the crowd sensed road 

anomalies. Each identified cluster is recognized as a unique road anomaly. Meanwhile, 
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this process can also aid in filtering out low-quality public detected results though a 

simple procedure—points labeled as noises or with low probability scores are eliminated 

from the clustering result.   

4.2.3.2. Weighting Schemes 

After removing the low-quality crowd sensed data, we utilize two weighting 

schemes to synthesize each cluster’s members into one data point. First, we calculate the 

weighted median center for each cluster to represent the locations of final determined 

anomalies. Median center is the location which minimizes the distance to all features in a 

group. Median center is less influenced by outliers than the mean center, which is a more 

reliable measure of central tendency (J. Lee and Wong 2001). Mathematically, median 

center needs to satisfy the following objective function (J. Lee and Wong 2001):  

  

Min ∑ 𝑤𝑖√(𝑥𝑖 − 𝑢)2 + (𝑦𝑖 − 𝑣)2

𝑛

𝑖=1

, (4.9) 

where 𝑥𝑖 and 𝑦𝑖 are coordinates of the ith point, 𝑢 and 𝑣 are coordinates of weighted 

median center,  𝑤𝑖 is the weight of the ith point, which refers to the probability score in 

this study, and 𝑛 is number of points. 

Meanwhile, a weighted average scheme is used to optimize the size estimation 

result for each cluster.   

    

𝑆𝑜𝑝𝑡 =
∑ 𝑠𝑖𝑤𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

, (4.10) 
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where 𝑛 is number of points in a cluster, 𝑠𝑖 the estimated size of the ith point, 𝑤𝑖 is the 

weight of the ith point, which refers to the probability score in this study, and 𝑆𝑜𝑝𝑡 is the 

recalculated size for each cluster.  

Through these two weighting schemes, we can effectively leverage crowd sensed 

data to obtain an optimized detection result.  

4.3. Experiments and Results  

This section details our experiments, data analyses, and result validation. 

4.3.1. Experiment Settings  

To verify the effectiveness of our method, we manually collected 24 road 

anomalies from two parking lots at Texas A&M University. These anomalies were 

positioned through a high-accuracy hand-held GPS. Meanwhile, we carefully measured 

each pothole’s driving-dimensional length using a ruler to form a ground-truth dataset. 

Figure 4.7 illustrates the spatial distribution of the obtained ground truth data.  

 

 

Figure 4.7 Study sites: (a) parking lot 1; (b) parking lot 2. 
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Table 4.1 Experiment Settings. 

 Lot 1 Lot2 

Data acquisition time  02/24/2019 2:10 pm 06/01/2019 11:10 am 

Road anomalies 12 potholes 8 potholes and 4 bumps 

Vehicles models 
2009 Toyota Corolla &  

2009 Toyota RVA4 

2009 Toyota Corolla &  

2009 Toyota RVA4 

Phone models and apps 

Moto X Pure: 

PotholeAnalyzor 

iPhone 8: CrowdSense 

Moto X Pure: 

PotholeAnalyzor 

iPhone 8: CrowdSense 

Sensors sampling rates 
Accelerometer: 100Hz 

GPS: 1Hz 

Accelerometer: 100Hz 

GPS: 1Hz 

Driving tests 

2 drivers. 

Driver 1: test 3 times using 

Moto X Pure. 

Driver2: test 2 times using 

iPhone 8. 

2 drivers. 

Driver 1: test 3 times using 

Moto X Pure. 

Driver2: test 2 times using 

iPhone 8. 

Ground Truth 

Acquisition  

Manually collected with 

GARMIN GPSMAP 78 

and ruler. 

Manually collected with 

GARMIN GPSMAP 78 

and ruler. 

 

Table 4.1 shows our experiment settings. In this study, we tested each parking lot 

five times by two different drivers, with approximately 30 km/h driving speed. One 

driver drove a 2009 Toyota Corolla with a Moto X Pure phone running our 

PotholeAnalyzor to detect each parking lot three times. Another driver drove a 2009 

Toyota RVA4 with an iPhone 8 running a similar iOS app CrowdSensor to detect each 

parking lot twice. Drivers’ explicit permission was required before collecting sensors’ 

data. The sampling rates of accelerometers for both phones were set to 100 Hz. GPS was 

set to 1 Hz. Through increasing the variability of the experiment (such as drivers, 
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phones, vehicles, etc.), we were able to effectively assess the performance of our method 

for processing crowd sensed data. 

4.3.2. Wavelet Analysis Results  

After data collection, we first eliminated the noise of Z-axis acceleration data and 

geotagged each data point using GPS readings. Then, we analyzed the processed Z-axis 

acceleration series to identify road anomalies and measure their sizes.  

As illustrated in Figure 4.5, the upper subplot shows the input signals—

preprocessed Z-axis acceleration. Then, we performed CWT on the signals to calculate 

its similarity with mother wavelet at continuous scales, as shown in the middle subplot. 

The lower subplot shows the filtered high wavelet coefficients, which indicates the high 

possibility that an anomaly exists with a specific size. The red circles indicate the 

location and size of ground truth points. Results demonstrated that wavelet analysis can 

efficiently identify, locate, and measure abnormal signals caused by hitting road 

anomalies.    

4.3.3. Optimized Detection Results by Mining Crowd Sensed Data 

After obtaining detection results from each driving test, we implemented 

HDBSCAN to group the ten times detection results (five times for each study sites) 

based on their similarities, which can aid in eliminating low-quality public contributed 

data and enhancing detection accuracy. 
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Figure 4.8 Crowd sensed data integration results: (a) and (b) are detection results 

of five driving tests for two study sites; (c) and (d) show the clustering results after 

eliminating low-quality contributed points; (e) and (f) are the optimized detection 

results by synthesizing each clusters’ member points.  
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Figure 4.8a and Figure 4.8b illustrate detection results obtained from five driving 

tests for both study sites. These two subplots show that some detected anomalies are 

concentrated around ground truth points; however, there are some detected points with a 

relatively far distance to ground truth points. It implies that the detection results obtained 

from one single driving test is not reliable.  

To optimize our results, we first implemented HDBSCAN on the five times 

detection results to form clusters. HDBSCAN can automatically group sample points 

into clusters or noises based on their spatial density patterns. Meanwhile, it also 

generates a probability score for each point, indicating its likelihood of being involved in 

a cluster. In this study, clustering noises and cluster member points with low probability 

scores (less than 0.5) were regarded as low-quality contributed points and eliminated 

from the detection results. Figure 4.8c and Figure 4.8d show the clustering results for 

both study sites after eliminating low-quality contributed points. Through this procedure, 

some points with a far distance to the cluster centers can be successfully removed. 

Finally, we calculated the weighted median center for each cluster to synthesize multiple 

contributed points into one point, which represents the optimized location of a detected 

road anomaly. Figure 4.8e and Figure 4.8f show that the optimized detection results 

(yellow dots) can perfectly match with ground truth points (red dots). Meanwhile, we 

also used a weighted average scheme based on cluster probability scores to recalculate 

the driving-dimensional size for each final confirmed road anomaly.      
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4.3.4. Result Evaluation  

To better evaluate the performance of this enhanced crowdsensing solution in 

road anomaly detection, we compared our method with a widely utilized threshold-based 

method—Z-THRESH (Method 1) (Mednis et al. 2011) and a preliminary crowdsensing 

approach proposed by Li et al. (Method 2).  

• Method 1: Z-axis accelerometer measurements exceeding 0.4g m/s2 are counted 

as road anomalies. 

• Method 2: An improved threshold-based detection method integrated with a 

simple crowdsensing strategy—anomalies need to be reported by more than three 

users before finally confirmed. The location for the confirmed anomaly is 

calculated by averaging all the contributed points.   

Since Method 1 does not mention how the crowd sensed data was synthesized, 

we integrated the same crowdsensing strategy used in Method 2 to Method 1 for fusing 

five driving tests’ results. In this study, we compared these two methods with our 

enhanced solution in terms of detection efficiency and position accuracy. 

The detection efficiency is evaluated from three perspectives:  

1) Precision: Correctly detected anomalies (NCDA) / Total detected anomalies.  

2) Recall: Detected ground truth points (NDGT)/ Total ground truth points. 

3) Detection Redundancy: (NCDA - NDGT) / (NCDA) 

In this study, the detected anomalies within a 10-meter radius to any ground truth 

points are counted as correctly detected anomalies. For each ground truth point, if it can 

match with any detected anomalies within a 10-meter radius, it would be counted as 
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detected ground truth points. Please note each ground truth point may be matched with 

more than one detected anomaly; therefore, we also checked detection redundancy for 

each method. 

Meanwhile, we calculated the distance between detected anomalies to their 

corresponding ground truth points to compare the positioning accuracy while performing 

different methods.   

Table 4.2 represents the comparison results among these three methods. The 

results demonstrate that the proposed enhanced crowdsensing solution achieved the 

highest precision value (94.44%), which is far superior to the other two methods 

(43.90% and 64.71%). Our approach also achieved the same recall value compared to 

Method 2. Moreover, by applying spatial clustering methods, we can dramatically 

synthesize crowd sensed points into high-reliable detection results with no redundant 

detected anomalies and higher positioning accuracy.  

 

Table 4.2 Performance Comparison Among Three Methods. 

 Method 1 Method 2 Our Method 

Detection 

Efficiency 

Precision 43.90% 64.71% 94.44% 

Recall 66.67% 70.83% 70.83% 

Detection 

Redundancy 

11.11% 22.22% 00.00% 

Positioning 

Accuracy 

(meter) 

Min 0.60 0.73 0.58 

Mean 3.47 4.07 3.29 

Max 9.88 7.27 6.21 

STEDV 2.58 2.41 1.56 
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Figure 4.9 Result evaluation for anomaly size estimation. 

 

More importantly, this study added a new dimension to road anomaly detections 

to estimate the driving-dimensional size for each road anomalies. In this study, we used 

two methods to synthesize the size estimation results of cluster member points into one 

final result. One is to average all member points’ estimation values. Another is to 

calculate the weighted mean based on the cluster probability scores of each member 

point. Figure 4.9 shows the size estimation results by implementing these two methods. 

The centerline of the box represents the mean value of estimation errors. The box upper 

and lower bounds represent the mean plus and minus standard deviation, respectively. 

This figure indicates that our method can effectively estimate the driving-dimensional 

size for road anomalies with an acceptable detection error. Meanwhile, the weighted 
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mean shows a lower mean error and a smaller standard deviation in Figure 4.9. It 

indicates that using the weighted average scheme can better synthesize crowd sensed 

than calculating the average. 

4.4. Discussion and Conclusion  

Road anomaly detection is of great importance in road maintenance and 

management. Continuously monitoring road anomalies with a low-cost and high-

efficiency solution is a fundamental social need; however, it remains to be a complicated 

and unsolved research task.  

In this study, we proposed an enhanced crowdsensing approach to detect road 

anomalies and measure their sizes using smartphone sensors. Different from existing 

studies, we made the first attempt to utilize continuous wavelet transform to analyze 

mobile sensors’ measurements. Results demonstrated that wavelet analysis outperforms 

conventional threshold-based methods, which can more effectively identify abnormal 

vehicle vibrations when hitting road anomalies through analyzing mobile sensed data. 

Meanwhile, it can also estimate the driving-dimensional size of bumps and potholes 

based on the calculated wavelet coefficients. Moreover, we innovatively utilized a 

spatial clustering method to synthesize crowd sensed results based on their spatial 

density patterns. Experiments demonstrated that this enhanced crowdsensing solution 

could accurately detect road anomalies (94.44%) with a high positioning accuracy 

(within 3.29 meters in average) and an acceptable size estimation error (with a mean 

error of 14 cm). 
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The proposed solution is efficient to detect road anomalies; however, there are 

still some limitations to be addressed in future work, including: 

1) Propose a new anomaly size estimation solution. In this study, we only 

estimate the driving-dimensional size of road anomalies. In fact, the depth of 

potholes is also a critical factor for assessing pothole damages. In future work, 

we will propose a better solution to measure road anomaly size.  

2) Improve the performance of crowdsensing solution. Using spatial clustering 

methods can efficiently eliminate low-quality contributed data points and 

optimize detection results. However, the density-based clustering method may 

mis-cluster two neighboring potholes into the same group, which could influence 

the detection accuracy. In future work, we will further investigate how to 

synthesize crowd sensed data with further improved accuracy.  

3) Put forward a real-time road anomaly detection system. Drivers can sense 

road surface using smartphones at real-time. With a certain number of reliable 

data contributors, we can potentially update road detection results on a daily, or 

even hourly basis. In future work, we will put forward a real-time road anomaly 

monitoring system by leveraging mobile crowd sensed data.  

Leveraging crowd sensed data to detect road anomalies could substantially 

improve the effectiveness of traditional road monitoring systems. It can continuously 

monitor road surface condition with little additional economic cost. It is worth noting 

that some technical barriers exist, which limits the implementation of crowdsensing 

solutions at the current stage. For example, mobile crowdsensing is significantly 
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constrained by smartphone hardware. Low-quality mobile sensors’ data may lead to 

unreliable detection results. Collecting mobile sensors’ data at a high sampling rate can 

drain phone battery in several hours, or even faster. However, fueled by the rapid 

development of mobile sensing technique, this proposed solution remains to be 

promising and more efficient in the foreseeable future. 

 

 

 

 



 

107 

 

5. ENHANCING DRIVING SAFETY: DISCOVERING INDIVIDUALIZED 

HAZARDOUS DRIVING SCENES USING GIS AND MOBILE SENSING* 

 

5.1. Introduction 

Can driving safety be improved? This has been a frequently asked question for 

over decades in the automobile industry and academia. Road traffic collisions have been 

socially acknowledged as an extremely severe threat to public health. According to the 

World Health Organization’s statistics, vehicle crashes represent the leading cause of 

death among young adults (15-59 years) and the eighth cause of death globally (World 

Health Organization 2018). The U.S. National Highway Traffic Safety Administration 

estimates that ninety-four percent of U.S. traffic collisions are caused by human error 

such as speeding, sharp turns, and hard brake (The U.S. National Highway Safety 

Administration 2015). Accordingly, detecting and geo-analyzing driving mistakes can be 

an extremely promising solution to enhance traffic safety and require immediate 

attention.  

Aggressive driving behaviors have been shown to have a significant positive 

correlation with traffic collisions, which exposes both the driver and other road users to 

potential collision risks (Nataanen and Summala 1976; World Health Organization 2018; 

J. D. Lee 2008; Xi et al. 2016). To better assess one’s driving behavior, in-vehicle 

                                                 

*Reprinted with permission from “Enhancing Driving Safety: Discovering Individualized Hazardous 

Driving Scenes Using GIS and Mobile Sensing” by Xiao Li, Daniel W. Goldberg, Tianxing Chu, and 

Andong Ma, 2019. Transactions in GIS, 23, 538-557, Copyright 2019 by John Wiley and Sons. 

https://doi.org/10.1111/tgis.12540 
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sensing techniques have been widely adopted to collect and analyze various driving-

related data (Boyce and Geller 2002; Jensen, Wagner, and Alexander 2011; Toledo, 

Musicant, and Lotan 2008). However, these in-vehicle sensing platforms are typically 

very costly and only commercially available, which directly limits their applicability to 

the public. Driving behavior recognition and assessment has begun to take hold in the 

research community thanks to the rapid development of mobile sensing in the past 

several years. The sensor-rich smartphones have become promising data collection and 

geo-computing platforms allowing us to achieve driving behavior profiling with limited 

user cost (Macias, Suarez, and Lloret 2013; R. Chen, Chu, Liu, Chen, et al. 2014; Li and 

Goldberg 2018). Since 2000, researchers have investigated the detection of dangerous 

driving behaviors using mobile-sensed data (Fazeen et al. 2012; Bergasa et al. 2014; 

Johnson and Trivedi 2011). 

It is worth noting that the assessment of driving safety is a spatially complex and 

temporally dynamic process, which is also impacted by numerous behavioral factors. As 

early as 1996, Kim and Levine (1996) identified that the integration of driver behaviors 

and spatial characteristics as the key to understanding traffic collisions better. However, 

to date, the study of individual-based driving safety analysis has been limited, and the 

correlation between driving error occurrence and geospatial features are still 

underexplored. In this study, we innovatively integrate driving errors with driving-

related geospatial features to discover hazardous driving scenes that characterize when 

and where drivers are prone to producing more driving errors.  
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5.1.1. Related Work 

Numerous studies have been conducted to address traffic collisions related 

concerns such as: identifying collision concentrations, looking for significant 

contributing factors, predicting collision likelihood at a specific location. Among these 

studies, Geographic Information Science (GIS) plays an essential role not only in 

managing and manipulating traffic collision data but also in providing abundant 

spatiotemporal methods and theories for better understanding and facilitating traffic 

safety (Goodchild 1992). Since the 1990s, GIS-aided methods have begun to be utilized 

for analyzing traffic collisions because of the rapid spread and advancement of GIS 

techniques. Since then, GIS enabled traffic safety analysis has transitioned from storing 

and visualizing traffic collision points to modeling traffic risk scenarios (Levine, Kim, 

and Nitz 1995; Zhang and Virrantaus 2010; Plug, Xia, and Caulfield 2011; Harirforoush 

and Bellalite 2016; Anderson 2009; Yao, Loo, and Yang 2016). However, these existing 

geographic studies mainly focus on regional traffic safety analysis. The most influential 

component in traffic safety, driving behavior, is excluded from most of these geographic 

studies. 

Driving behavior, as a crucial contributing factor, closely relates to road safety. 

Irregular driving behaviors such as speeding, drunken driving, and irregular overtaking 

not only threaten driving safety but also put pedestrians at significant risk (T. Chen, 

Zhang, and Xu 2016; J. D. Lee 2008; Manepalli and Bham 2013; Nataanen and 

Summala 1976). However, most prior studies did not take driving behavioral factors into 

account due to data acquisition difficulties. With the emergence of various sensor-rich 
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mobile devices, a growing number of studies have begun to focus on the detection of 

erratic driving behaviors extracted from mobile-sensed data (Johnson and Trivedi 2011; 

Castignani et al. 2015; Júnior et al. 2017). 

Threshold techniques have been extensively used in driving errors detection. 

Chakravarty et al. (2013) created a mobile application (app) called MobiDriveScore to 

assess driving risk based on mobile-sensed data. 3-axis accelerometer and GPS data 

were utilized to capture and calculate the “jerk” energy caused by erratic driving 

behaviors such as hard cornering, stop, or acceleration. By comparing jerk energy with a 

preset threshold, these driving errors could be successfully detected. A similar study 

conducted by Zeeman and Booysen (2013) identified reckless driving patterns also 

through GPS and accelerometer. Different from (Chakravarty et al. 2013), driving events 

in this study were first pre-classified into urban driving and highway driving. Then 

operating speed and acceleration were considered to model jerk energy for each class. 

Threshold techniques were utilized to assess the acceleration peaks to determine if the 

peak value exceeded a “safe-driving” range. 

Several studies have investigated the capability of Dynamic Time Warping 

(DTW) for driving behavior detection. Eren et al. (2012) proposed a cost-efficient and 

user-friendly system to estimate the driving behavior using smartphones. In this study, 

the built-in smartphone accelerometer and gyroscope were used to collect driving 

information. A smoothing algorithm was applied to remove noise in the data. An end-

point detection algorithm was performed on the smoothed data to identify dangerous 

driving events. The DTW was then adopted to compare the detected event with the 
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training event. After the above process, a driving behavior was labeled as “safe” or 

“unsafe” using a Bayesian Classifier. Johnson and Trivedi (2011) created a similar 

mobile system called MIROAR to recognize aggressive driving events. This study 

integrated Endpoint Detection and DTW and applied them on sensor-fused data. Their 

results demonstrated that performing DTW on the integration of y-axis acceleration, x-

axis gyroscope, and pitch could accurately detect aggressive driving events. 

Machine Learning Analysis has also been tested for assessing driving behaviors 

(Hong, Margines, and Dey 2014; Meiring and Myburgh 2015; Júnior et al. 2017). Júnior 

et al. (2017) attempted to identify the best combinations of mobile sensors and machine 

learning algorithms (MLAs) to recognize aggressive driving behaviors. In this study, the 

researchers tested four different MLAs including Artificial Neural Networks, Random 

Forrest, Bayesian Network, and Support Vector Machine. 3-axis accelerometer, 

gyroscope, and magnetometer were used for data collection. Mobile-sensed data was 

transformed and used to generate attribute vector data sets for characterizing the driving 

behaviors over a sliding window. The attribute vectors were then used to train, test, and 

evaluate the performance of these four MLAs. The results demonstrated that 

accelerometer and gyroscope were the best combinations, and Random Forrest 

outperformed the other three MALs for driving behavior detection. 

5.1.2. Knowledge Gaps  

Through a careful study of the relevant literature, the following knowledge gaps 

were identified:  

1) The conventional geographical studies have been built based upon the aggregated 
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data (e.g., average daily traffic volume, annual number of crashes, road network 

length, etc.) to examine a relatively macro-level geographic unit (e.g., counties, 

census tract, etc.). The individual-based traffic safety analysis remained lacking.  

2) Most driving behavior detection has been conducted by employing threshold 

techniques or machine learning methods. However, the widespread use of 

threshold-based methods has been limited due to replication difficulties. Machine 

learning methods, on the other hand, usually require an extensive training process 

based on a massive volume of labeled data, which has been found laborious to 

collect and less efficient.  

3) Studies have been carried out for understanding driving risk from different 

perspectives including road, driver, and environment. However, to date, there are 

still no solutions that can estimate driving risk by comprehensively synthesizing 

these different types of data. 

5.1.3. Key Contributions  

To address these gaps, we propose a new approach to discover individualized 

hazardous driving scenes by integrating driving errors with other spatiotemporal features 

(i.e., when, where, and what). In this study, an enhanced driving error detection method 

is created by using built-in smartphone sensors. The spatiotemporal distribution of 

dangerous driving behaviors is first characterized. Then, mobile-sensed driving errors 

are integrated with road networks and trajectory features (e.g., start point, end point, trip 

purpose, etc.), which can help track dangerous driving habits and depict individualized 

hazardous driving scenes.   
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Compared with previous studies, our contributions to enhancing driving safety 

are threefold: 

1) Integrating different types of driving-related data to address traffic risks: 

Studies have demonstrated that driving behaviors significantly influence traffic 

safety; however, most of the prior studies did not consider them due to driving 

errors acquisition difficulties. This study innovatively integrates the driving 

errors detected from mobile sensed data with the road network and driving 

trajectories to achieve a more comprehensive road safety analysis.  

2) Proposing a new driving error detection method: Different from conventional 

in-vehicle sensing platforms, this study explores the flexibility of using 

smartphone sensors to detect aggressive driving behaviors.  A new multi-feature-

fusion framework for driving errors detection is proposed, which can 

successfully capture the abnormal signals from the mobile sensed data and 

classify them into different types when performing aggressive driving behaviors.  

3) Conducting individual-based traffic safety analysis: To the best of our 

knowledge, this study is among the first that focuses on individualized traffic 

safety analysis—depicting individualized hazardous driving scenes. Hazardous 

driving scenes refer to some combinations of factors which negatively influence 

an individual’s driving performance and may vary across different drivers. 

Extracting individualized hazardous driving scenes can aid drivers better in 

understanding their driving errors and avoiding potential driving risks. 
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5.2. Methods  

In this study, we develop an innovative approach to discover individualized 

hazardous driving scenes using GIS and mobile sensing techniques. The research 

progresses through three main stages including 1) driving error detection, 2) driving error 

scenic tuple construction, and 3) individualized hazardous driving scenes extraction. 

Through this workflow, we aim to effectively map driving errors and extract error-prone 

driving scenes to individual drivers, as illustrated in Figure 5.1. Three types of data sources 

are utilized in this study including smartphone sensors’ data (3-axis accelerometer and 

gyroscope), driving trajectories generated from the smartphone GPS, and road network. 

In this section, we discuss the methods and data used in these three main stages 

sequentially. First, a new multi-feature-fusion framework for driving errors detection 

using smartphone accelerometer and gyroscope measurements is introduced.  Then we 

illustrate a new approach - scenic tuple construction for representing the occurrence of 

driving mistakes. The detected driving errors are integrated with the road network and 

driving trajectory, which can aid in representing and characterizing the occurrence of each 

driving error. Lastly, a detailed explanation of hazardous driving scenes extraction is 

described. Two clustering methods, i.e., K-modes clustering and Hierarchical Clustering 

on Principal Components (HCPC) are utilized to investigate the significant similarities 

among an individual’s driving errors through an in-depth analysis of a long-term collection 

of error scenic tuples. 
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Figure 5.1 Research workflow. 

 

5.2.1. Driving Error Detection 

First, we put forward a multi-feature-fusion framework to extract driving errors 

from mobile-sensed data. Figure 5.2 illustrates the detection process which contains three 

steps: mobile sensors’ data sampling and smoothing, data process (performing multi-

feature-fusion framework on smoothed data), and data combination.  
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Figure 5.2 The flow chart of driving error detection. 

 

5.2.1.1. Mobile Sensors’ Data Sampling and Smoothing 

In this study, we identify six types of aggressive driving behaviors including hard 

brake, fast acceleration, sharp left-turn, sharp right-turn, aggressive left-lane-change, and 

aggressive right-lane-change using smartphone GPS and sensors. Studies have 

demonstrated that aggressive driving behaviors (e.g., hard brake, sharp turn, fast 

acceleration, etc.) generate “jerk energy”, which can be sensed and measured by mobile 

sensors, especially by the 3-axis accelerometer and gyroscope sensors with a high 
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sampling rate (50Hz-100Hz). In this study, these two smartphone sensors are utilized to 

capture vehicle jerks caused by driving errors. A smartphone is horizontally placed in a 

vehicle with its axes aligned with the vehicle’s axes in the current version, which will be 

improved to achieve a constraint-free smartphone placement in future work. The 

accelerometer measures the vehicle’s acceleration (m/s2) in a 3-axis frame, which can 

effectively capture the “jerk energy”. The gyroscope detects the vehicle’s rotation (°/s) 

and aids in inferring turning events and lane changes (Hong, Margines, and Dey 2014; 

Meiring and Myburgh 2015; Júnior et al. 2017). The smartphone built-in GPS data is 

adopted to record driving trajectories and geotag detected driving mistakes, which is 

detailed in Sec 5.2.1.3. To better analyze the mobile-sensed data, a high-pass filter 

(Equations 5.1-5.2) is applied on each sensor’s raw data to eliminate noise and highlight 

abnormal signals, as shown in Figure 5.3.  

 

 
Figure 5.3 The comparison between raw data and filtered data. 
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𝑦[𝑖] = 𝛼 ∗ 𝑦[𝑖 − 1] + 𝛼 ∗ (𝑥[𝑖] − 𝑥[𝑖 − 1]),    𝑖 ∈ [1, 𝑛 − 1]            (5.1) 

where 

𝛼 =  
𝑡

𝑡+𝑑𝑇
                                                        (5.2) 

x[i] represents the ith sample data, y[i] represents the ith filtered data, t represents the 

current time tag, and dT is the event delivery rate.  

5.2.1.2. The Multi-Feature-Fusion Framework for Driving Error Detection 

Figure 5.4 shows the sensor output from built-in smartphone accelerometer and 

gyroscope when performing the pre-selected driving errors described above. This figure 

illustrates that the “jerk energy” caused by aggressive driving behaviors can be 

represented as sequential peak values on the sensor’s data curve making it distinct from 

other regular driving events. Further, different driving errors generate unique data 

patterns, which can be captured by the accelerometer and gyroscope. In this study, we 

quantitatively examine the mobile sensed data collected from the 3-axis accelerometer 

and gyroscope from four perspectives to characterize the unique abnormal signals 

generated by different aggressive driving behaviors: 

1) Abnormal session: An abnormal session is defined as a session of accelerometer 

readings, which contains more than five sequential peaks (greater than 0.38g 

m/s2) per second. Through empirical tests and the results of the prior work 

described above, 0.38g m/s2 is used as the threshold peak value to separate 

driving errors from normal driving behaviors (Zeeman and Booysen 2013; 

Chakravarty et al. 2013; Júnior et al. 2017). 

2) The mean value of Z-axis gyroscope (mean Z-gyro) readings: The Z-axis 
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readings of gyroscope directly reflects a vehicle’s rotation caused by performing 

turn or lane change. Empirical tests show that sharp left-turns and aggressive left-

lane-changes generate positive values for mean Z-gyro. Sharp right-turns and 

aggressive right-lane-changes generate negative values. 

3) The duration of driving errors: The duration of lane-change is significantly 

shorter than other driving events (< 1.5 s).  

4) The variation tendency of X-axis acceleration: The X-axis of the accelerometer 

aligns with a vehicle’s X-axis and directly senses the acceleration of driving. The 

varying tendency can aid in differentiating accelerating and braking.  
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Figure 5.4 Samples of abnormal signals caused by driving errors gathered from 3-axis accelerometer and gyroscope (a: 

sharp left-turn, b: sharp right-turn, c: aggressive left-lane-change, d: aggressive right-lane-change, e: fast acceleration, 

and f: hard brake). 
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Table 5.1 summarizes the features of aggressive driving behaviors extracted from 

the mobile-sensed data. By analyzing and combining these features, a multi-feature-

fusion framework is created for labeling the types of aggressive driving behavior. 

 

Table 5.1 Features in Mobile-Sensed Data Pattern for Six Types of Aggressive 

Driving Behaviors. 

Driving 

Errors 

Descriptions of features for sensors’ data pattern 

Sharp left-

turn 

Abnormal sessions can exist in all three axes of accelerometer; The 

mean value of Z-axis reading of gyroscope are much greater than 

other event (positive value).   

Sharp right-

turn 

Abnormal sessions can exist in all three axes of accelerometer; The 

mean value of Z-axis reading of gyroscope are much smaller than 

other event (negative value).   

Aggressive  

left-lane-

change  

Abnormal sessions can exist in all three axes of accelerometer; The 

mean value of Z-axis reading of gyroscope are positive, but much 

smaller than sharp-left turn. The behavior duration is usually less 

than 1.5 s.  

Aggressive  

right-lane-

change 

Abnormal sessions can exist in all three axes of accelerometer; The 

mean value of Z-axis reading of gyroscope are positive, but much 

smaller than sharp-left turn. The behavior duration is usually less 

than 1.5 s. 

Fast 

acceleration  

Abnormal sessions with an increasing tendency can be detected from 

X-axis of accelerometer; The mean value of Z-axis reading of 

gyroscope is close to zero.  

Hard brake  Abnormal sessions with decreasing tendency can be detected from X-

axis of accelerometer; The mean value of Z-axis reading of 

gyroscope is close to zero. 

 

Figure 5.5 illustrates our approach for detecting aggressive driving behaviors, 

which proceeds through the following steps:   

1) Detect potential driving errors: Analyze accelerometer data to identify the 

abnormal sessions; 
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2) Check mean Z-gyro: For each abnormal session, check its corresponding mean 

Z-gyro. If the value is in [-0.1, 0.1], it means that no apparent rotational motion is 

detected. The abnormal session is pre-labeled as speed-event (brake and 

accelerate). Otherwise, it is pre-labeled as a left-rotation-event (left turn and left-

lane-change) or a right-rotation event (right turn and right-lane-change) by 

checking if the mean Z-gyro is positive or negative;  

3) Calculate error duration: For the left- and right-rotation-event, we furtherly 

calculate its time duration. If the duration is less than 1.5 s and its mean Z-gyro is 

smaller than 0.3, this error is labeled as lane-change. Otherwise, it is treated as 

turn event.  

4) Examine changing tendency: For the speed-event, we furtherly examine the 

changing trend of its X-axis acceleration. An increasing tendency represents fast 

acceleration. Decreasing implies hard brake.  

 

 

Figure 5.5 The multi-feature-fusion framework for aggressive driving behaviors 

detection. 
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5.2.1.3. Geotagging Data 

Last, we calculate the geolocation for each detected driving error using GPS 

readings. The output rate of the GPS receiver is typically 1Hz, which is far lower than 

the motion sensors (which can often by up to 100 Hz). By matching timestamps, we can 

find two consecutive GPS sample points with the nearest timestamps for each detected 

driving error. To calculate the driving error’s geolocation, first, the original geodetic 

coordinates (latitude, longitude, ellipsoidal height) are converted into Earth-Centered, 

Earth-Fixed coordinates (x, y, z) through the method provided in (Li and Goldberg 

2018). Then, the coordinates of the driving error are calculated by applying a linear 

interpolation scheme as in Equations (5.3) - (5.5): 

𝑥 = 𝑥0 +
(𝑡−𝑡0)(𝑥1−𝑥0)

(𝑡1−𝑡0)
                                                        (5.3) 

𝑦 = 𝑦0 +
(𝑡−𝑡0)(𝑦1−𝑦0)

(𝑡1−𝑡0)
                                                        (5.4) 

𝑧 = 𝑧0 +
(𝑡−𝑡0)(𝑧1−𝑧0)

(𝑡1−𝑡0)
                                                         (5.5) 

where (x, y, z) are the calculated coordinates for the detected driving error, t is the error’s 

timestamp, (x0, y0, z0) and (x1, y1, z1) are two consecutive GPS points collected at time t0 

and t1.  

5.2.2. Scenic Tuples Construction for Driving Errors  

In the second stage of this study, we investigate the spatiotemporal distribution of 

dangerous driving behaviors. The detected driving trajectories generated from the 
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smartphone GPS readings and the detected driving errors are mapped and geo-

statistically analyzed to extract several individualized driving patterns including 1) 

driving error hotspots, 2) hazardous time periods, and 3) most visited road segments. 

Studies have demonstrated that traffic collisions are not randomly distributed, 

and factors exist that cause them to occur more frequently in some places than others 

(Effati et al. 2012; Vorko-Jović, Kern, and Biloglav 2006). Burdett, Starkey, and 

Charlton (2017) stated that driving close to home poses a significantly higher risk to 

road crashes which might be influenced by drivers’ complacency when driving on 

familiar road segments. Road category, distance to road intersections, and driving in rush 

hours also constitute significantly contributing factors to traffic collisions (Beshah and 

Hill 2010; Steenberghen et al. 2004). In this study, we also attempt to investigate if 

factors exist to trigger more driving errors to drivers. Through a careful study of prior 

literature, we carefully select seven factors, which have been proven contributing to 

driving risks, to characterize the occurrence of each driving error as listed in Table 5.2. 

A “Scenic Tuple” is built by integrating these factors to characterize and depict when, 

where, and what a driving error occurs. 

Figure 5.6 illustrates the procedure of scenic tuple construction. In this study, 

each scenic tuple contains seven components including timestamp (C1), near home (C2), 

near intersections (C3), road category (C4), start point of trip (C5), end point of trip 

(C6), trip purpose (C7). These are generated from three data sources: 1) detected driving 

errors, 2) road network, and 3) driving trajectory. Driving errors are detected with 

timestamps from the mobile sensor data by utilizing the proposed multi-feature-fusion 
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framework. Driving trajectories are generated from GPS readings. We project the 

detected driving errors to their nearest road segments and mapped them with the road 

network and driving trajectories using ArcGIS Pro. Through spatial joining these data 

layers, we can append the attributes of driving errors with more road- and driving-related 

information.  A detailed description of scenic tuple components is listed in Table 5.2. 

 

Table 5.2 Description of Scenic Tuple Components. 
Components Description Values Data Source 

C1: 

Timestamp 

Time periods in 

which the driving 

errors occur. 

Each two-hour session is considered as 

one period. Twelve time periods in total 

(e.g. 8:00-10:00; 10:00-12:00 etc.) 

Driving errors  

C2: Near 

Home  

Whether or not a 

driving error 

occurred within 100 

meters to home? 

Y or N  Detected 

errors + 

apartments 

shapefile 

C3: Near 

Intersection  

Whether or not a 

driving error 

occurred within 3 

meters to a road 

intersection? 

Y or N  Driving errors 

+ road 

network 

shapefile 

C4: Road 

Type 

Classification of road 

network.  

Twelve types of road including: Major 

Arterial, Major Collector, Minor 

Arterial, Minor Collector, Private Street, 

Local Street, Freeway, Alley, Campus 

Road, Access Easement, and Public 

Access. 

Road network 

shapefile 

 

C5: Start 

Point 

Start point of a 

driving trajectory 

which contains 

driving errors. 

Home, School/Workplace, Restaurant, 

Shop, Residential Area, Hospital, 

Church, and Others. 

Driving errors 

+ trajectories 

C6: End 

Point 

End point of a 

driving trajectory 

which contains 

driving errors. 

Home, School/Workplace, Restaurant, 

Shop, Residential Area, and Others. 

Driving errors 

+ trajectories 

C7: Trip 

Purpose 

The purpose of a 

driving in which 

driving errors exist 

Go home, Go to school/work, Go 

shopping, Go eating, Visiting (e.g., 

friends’ home, church, hospital etc.), 

and Others.  

Manually 

record  

Note: Driving errors and trajectories are detected using smartphone sensors; apartment shapefiles 

and road network shapefiles are downloaded from City of College Station – GIS Open Data Files. 
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Figure 5.6 Illustration of scenic tuple construction for driving errors.



 

127 

 

5.2.3. Hazardous Driving Scenes Extraction  

In our last step, we attempt to characterize hazardous driving scenes for 

individual drivers based on the seven factors used in scenic tuples. Hazardous driving 

scenes refer to some combinations of factors which negatively influence an individual’s 

driving performance and may vary across different drivers. Studies have demonstrated 

that crashes do not occur randomly. Instead, in some specific driving scenes, drivers are 

prone to making more driving errors, therefore leading to potential traffic collisions. In 

this study, we investigate the significant similarities among individual’s driving errors 

through an in-depth analysis of a long-term collection of error scenic tuples. Different 

from the spatiotemporal clusters of driving errors (e.g., driving error hotspots, hazardous 

time periods), clustering driving errors based on the selected scenic tuple factors can aid 

drivers in better understanding what specific driving scenes are more likely for them to 

make mistakes and how to avoid the potentially hazardous driving conditions.  

Cluster analysis has been extensively utilized to divide samples into different 

homogeneous subgroups to facilitate discovering significant similarities and patterns 

from each subset (Kumar and Toshniwal 2016; Shikhar et al. 2016; Chaturvedi et al. 

2001). All scenic tuple components are categorical data, therefore two clustering 

methods that are proven to be useful for dealing with categorical data are adopted to 

identify the significant clusters of error scenic tuples including: 1) K-modes clustering, 

and 2) Hierarchical Clustering on Principal Components (HCPC).   

5.2.3.1. K-modes Clustering 

K-modes clustering, as an enhanced version of K-means clustering, can more 
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effectively group similar samples into “K” number of clusters, especially for processing 

categorical data (Huang 1997; Chaturvedi et al. 2001; Jain 2010). The procedure of K-

modes clustering contains the following main steps (Huang 1997; Kumar and Toshniwal 

2015):  

1) Initialize “K” number of cluster centers (aka modes). 

2) Calculate the dissimilarity between sample points to each cluster centers. The 

dissimilarity can be calculated through Equations (5.6) – (5.8).  

3) Assign sample points to the cluster whose dissimilarity is minimum.  

4) Reset the center for the cluster and repeat from step 2 until the center remains the 

same as the previous center.   

The dissimilarity between two categorical objectives X and Y can be calculated as 

follows: 

𝑋 = [𝑋1, 𝑋2, … 𝑋𝑛] , 𝑌 = [𝑌1, 𝑌2, … 𝑌𝑛]                                      (5.6) 

𝐷(𝑋, 𝑌) = ∑ 𝛿(𝑋𝑖, 𝑌𝑖)𝑛
𝑖=1                                                    (5.7) 

Where, 

𝛿(𝑋𝑖, 𝑌𝑖)  =  {
0,   𝑋𝑖 = 𝑌𝑖

1,   𝑋𝑖 ≠ 𝑌𝑖
                                                 (5.8) 

In Equations (5.6) – (5.8), X and Y represent two objectives containing n categorical 

attributes. Xi and Yi are the ith categorical attributes in X and Y. The dissimilarity D (X, 
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Y) is calculated by counting the number of different categorical attribute between X and 

Y.  

5.2.3.2. Hierchical Clustering on Principal Components (HCPC) 

The HCPC is a hybrid method which combines Hierarchical Clustering (HC) 

with Multiple Correspondence Analysis (MCA) (Husson et al. 2010). HC has been 

broadly used to form clusters sequentially in a tree structure. The objects with the 

highest similarity are grouped firstly. Then the groups are further merged based on the 

maximum similarity among them. With the decrease of the similarity, all clusters are 

finally forced into a single group (Odong et al. 2013; Murtagh and Legendre 2014). 

MCA is an extension of principal component analysis, which is designed for processing 

categorical dataset. In HCPC’s procedure, first, MCA is applied to transform categorical 

objects into numerical variables (aka principal components) and reduce data dimensions. 

Then, the HC is performed on the selected principal components using Ward’s criterion. 

Lastly, clusters are generated by cutting the hierarchical tree.  Studies have demonstrated 

that HCPC can yield a more robust clustering result by excluding the last principal 

components. Refer to (Murtagh and Legendre 2014) for a detailed explanation of HCPC.  

In this study, we implement both methods (K-Modes and HCPC) to group similar 

scenic tuples into clusters. By spatially interpreting the significant clusters, we can 

discover individualized hazardous driving scenes. 

5.3. Experiments and Results 

This section details the experiments, data analysis, and results. First, we tested 

our proposed driving error detection method on a high-quality open dataset to evaluate 



 

130 

 

its performance for detecting aggressive driving errors. Then, we conducted a one-month 

long driving test in College Station, TX to record a tester’s daily driving dynamics. 

Through an in-depth spatiotemporal analysis of the detected driving errors, we identified 

the spatial and temporal concentrations of driving errors for the test driver. More 

importantly, by constructing and clustering the error scenic tuples, we successfully 

extracted three hazardous driving scenes for the test driver.   

5.3.1. The Validation of Proposed Driving Errors Detection 

To verify the feasibility and effectiveness of the proposed driving error detection 

framework, we tested it on a high-quality open dataset of driving errors created by 

Ferreira Júnior and utilized in many similar studies (Júnior et al. 2017; Carvalho et al. 

2017). This dataset contains smartphone sensor measurements captured while 

performing seven different types of driving events. An Android-based Motorola XT1058 

phone was fixed on a 2011 Honda Civic for sensing driving errors. The smartphone was 

not moved during the data collection. The sampling rate of the mobile sensors varied 

between 50Hz to 100 Hz.  Sixty-nine driving events including fifty-five aggressive 

driving events and fourteen regular driving events, as listed in Table 5.3, were collected 

from four driving trips. Each driving test took about thirteen minutes in average and was 

performed on dry, paved, asphalt road.  These driving events were executed by two 

drivers – each has more than fifteen years of driving experience.  The start and end 

timestamps of the driving events were manually recorded for result validation.  
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Table 5.3 The Number of Samples for Seven Types of Driving Events. 

Driving Event Type Number of driving events 

Hard brake 12 

Fast acceleration 12 

Sharp left-turn 11 

Sharp right-turn 11 

Aggressive left-lane-change 4 

Aggressive right-lane-change 5 

Regular driving event 14 

Total 69 

 

We executed the proposed behavior detection framework on the open dataset. 

The result demonstrated that the proposed framework could effectively separate 

aggressive driving events and regulars driving events with an accuracy of 92.75% 

(64/69), as shown in Table 5.4. It implies that “jerk energy” is a tightly associated with 

aggressive driving behaviors. The same dataset was also tested by other studies. (Júnior 

et al. 2017; Carvalho et al. 2017) built and evaluated different machine learning models 

to find the best performing model for detecting each type of driving events; however, 

their study couldn’t provide a single model to classify different driving events. 

Compared with those studies, our approach achieved a relatively high detection accuracy 

and outperformed these studies in terms of the ease of implement and high-efficiency 

(no need for extensive model training).  
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Table 5.4 Confusion Matrix for the Classification of Aggressive Driving and 

Regular Driving. 

Number of Irregular Driving Events: 55 

Number of Regular Driving Events: 14 

Classified Events 

Irregular Driving Regular Driving  

Actual Events Irregular Driving 50 5 

Regular Driving 0 14 

 

Table 5.5 Confusion Matrix for Driving Event Detection. 

Number of 

Events: 69 

Classified Events 

1 2 3 4 5 6 7 

Actual 

Events 

1 10 1 0 0 0 0 1 

2 1 9 0 0 0 0 2 

3 0 0 9 0 2 0 0 

4 0 0 0 10 0 0 1 

5 0 0 1 0 3 0 0 

6 0 0 0 1 0 3 1 

7 0 0 0 0 0 0 14 

1-hard brake, 2-fast acceleration, 3-sharp left-turn, 4-sharp right-turn, 5-

aggressive left-lane-change, 6-aggressive right-lane-change, 7-regular driving 

event 

 

Table 5.5 lists the detailed evaluation results, in which the diagonal cells contain 

the number of correctly classified driving events, while the remainder of cells shows the 

number of misclassified results.  The results indicated that our approach achieved a high 

success rate (≥75%) for identifying the type of each aggressive event except for the case 

of “aggressive right-lane-change,” which may be caused by 1) the limited samples of 
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aggressive right-lane-change, and 2) the high similarity between a lane-change event and 

a turn event. 

5.3.2. Spatiotemporal Analysis of Hazardous Driving Patterns 

After verifying the accuracy of the proposed driving error detection method with 

the open dataset, we carried out a one-month long driving test in College Station, TX to 

record a tester’s daily driving dynamics for investigating and discovering the hazardous 

driving patterns for the test driver. To achieve a comparable data collection, we carefully 

followed the experiment settings of the open dataset.  The data of the one-month long 

driving test were collected through an Android app AndroSensor using an Android-based 

Moto X Pure. The phone was securely taped in the cabin of a 2009 Toyota Corolla. Two 

motion sensors (3-axis accelerometer and gyroscope) and the GPS receiver were utilized 

to sense driving behaviors and track driving trajectories.  The output rate of the motion 

sensors was set to 80Hz, while the GPS generated sample points at 1Hz.
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Figure 5.7 Detected driving errors and trajectories (a: spatial distribution of driving errors, b: temporal distribution of 

driving errors, c: most-visited roads and driving mistake hotspots). 
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By analyzing the mobile-sensed data, fifty-one driving errors were detected 

including thirty hard bake, six fast acceleration, two sharp left-turn, ten sharp right-turn, 

and three aggressive left-lane-change as shown in Figure 5.7a. It is worth noting that 

86% of the driving errors occurred close to road intersections. These results suggest that 

the test driver needed to improve driving ability when crossing road intersections. Figure 

5.7b shows the temporal distribution of the detected aggressive driving behaviors. Three 

hazarded driving periods (i.e., 8AM-10AM, 10AM-12PM, 6PM-8PM) were identified, 

which contain a predominance of driving errors. By combing the driving errors with 

driving trajectories, the driving error hotspots and most visited road segments could be 

detected. As Figure 5.7c shows, three significant driving error hotspots were detected, 

and the most visited road segments were highlighted, which can help the drivers to avoid 

error-prone driving zones.   

5.3.3. Extracting Hazardous Driving Scenes from Scenic Tuples 

To understand the occurrence of aggressive driving events more fully, we first 

built a driving error scenic tuple for each detected driving event, as shown in Table 5.6. 

Fifty-one driving error scenic tuples were constructed by integrating detected errors, 

driving trajectories, and road network data for the one-month long driving test.  

Next, we applied two clustering methods (i.e., K-modes clustering and HCPC) on 

the scenic tuples to extract the significant similarities among the detected driving errors. 

HCPC can consecutively group the most similar objects in a tree structure. One main 

advantage of HCPC is it can automatically determine the optimal number of clusters 

based on the loss of inertia (a higher relative loss indicates a better clustering result). By 
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performing HCPC, the scenic tuples were grouped into six clusters (three significant 

clusters and three weak ones) as illustrated in Figure 5.8, the top-right histogram shows 

the loss of inertia with an increasing number of clusters.  

 

Table 5.6 Samples of Constructed Scenic Tuples for Driving Errors. 
OBJECTID Timestamp Near 

Intersection 

Near 

Home 

RoadType Startpoint Endpoint TripPurpose 

1 8_10 N N MAJORA Home Church School 

2 8_10 Y N MAJORA Home Church School 

3 18_20 Y N MAJORA School Res_Area Visiting 

4 18_20 Y N MAJORA School Res_Area Visiting 

5 18_20 Y N MAJORA School Res_Area Visiting 

… 

 

 
Figure 5.8 Hierarchical clustering tree generated by HCPC. 
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In addition, K-modes clustering was conducted to assign scenic tuples into 

different clusters. Applying K-modes clustering requires the specification of K (the 

number of clusters), which significantly impacts the clustering results. The “cost” of K-

modes clustering is widely used to examine the model’s performance— “cost” is defined 

as the sum of dissimilarities between each sample point to its closest centroid. A good 

clustering model typically yields a low-cost value with a small K. In this study, we 

calculated the cost of 10 different models (K = 1, 2, 3, ……, 10).  Figure 5.9 illustrates 

the decreasing tendency of cost value with an increasing number of K.  Based on this 

figure, we selected the model with three clusters since no noticeable improvement was 

observed following this value. 

 

 

Figure 5.9 The cost values for ten different K-modes models (K = 1, 2, 3, ......, 10). 
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The results of K-modes clustering and HCPC are detailed in Table 5.7 indicating 

that K-modes’ result has a very high similarity with the significant clusters generated by 

HCPC. Through the consolidation of the results obtained from these two methods, three 

clusters (hazardous driving scenes) were selected. 

 

Table 5.7 The Result Comparison Between K-modes Clustering and HCPC. 

 Scenic Tuples’ ID 

K-modes HCPC 

Cluster 1 6, 8, 9, 13, 20, 22, 26, 27, 31, 32, 

33, 35, 36, 37, 39, 40, 41, 45, 46, 

49, 50 

13, 20, 26, 27, 31, 32, 33, 35, 36, 

39, 40, 41, 45, 46, 49, 50 

Cluster 2 3, 4, 5, 7, 18, 19, 21, 28, 29 3, 4, 5, 18, 19, 21, 28, 29 

Cluster 3 1, 2, 10, 11, 12, 14, 15, 16, 17, 23, 

24, 25, 30, 34, 38, 42, 43, 44, 47, 

48, 51 

1, 2, 11, 12, 14, 15, 16, 17, 23, 

24, 25, 30, 34, 38, 42, 44, 47, 48, 

51 

The following IDs are in weak clusters (4, 5&6) detected by HCPC: 6, 7, 8, 9, 10, 22, 

37, 43 

 

Table 5.8 The Clusters' Centroids Generated by K-modes. 
Cluster Timestamp Near 

Intersection 

Near 

Home 

Road 

Type 

Start 

point 

End 

point 

Trip 

Purpose 

1 22_24 Y N MAJORA School Home Home 

2 18_20 Y N MAJORA School Res_Area Visiting 

3 10_12 Y N Campus Home School School 

 

Table 5.8 lists the centroid for each identified cluster. By interpreting and 

characterizing these centroids, three hazardous driving scenes were depicted as:   
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• Scene 1: During midnight (22:00-24:00), when driving back home from school, 

the driver was observed to be prone to making driving errors at the intersections 

of major arterial roads.  

• Scene 2: During evening rush hours (18:00-20:00), when driving from school to 

visit a friend, the driver was again observed to be prone to making driving errors 

at intersections of major arterial roads.  

• Scene 3: During 10:00-12:00, when driving from home to school, the driver was 

observed to be prone to making driving errors at the intersections of campus 

roads. 

5.4. Discussion and Conclusion  

Aggressive driving behaviors are significant contributors to driving risks; 

however, few studies have detected and integrated them into road safety analysis, 

especially into individual-based driving safety analysis. In this study, we put forward a 

novel approach to discover the significant spatiotemporal similarities among individual’s 

driving errors to answer a fundamental but underexplored road safety research question: 

when and where drivers are more prone to making driving errors? To the best of our 

knowledge, this is the first study to integrate different types of driving-related data to 

assess driving risks—depicting individualized hazardous driving scenes. 

We utilized mobile sensed data collected by smartphone built-in accelerometer 

and gyroscope to capture the “jerk energy” when performing aggressive driving 

behaviors. Our experiment demonstrated that different driving errors generate unique 

sensors’ data pattern, which can be, in turn, utilized to classify the detected driving 
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errors. Meanwhile, by integrating the mobile sensed driving errors with road networks 

and driving trajectories, we depicted and characterized each driving error with seven 

carefully selected spatiotemporal factors. Through an in-depth analysis of long-term 

collected driving errors, we not only can help drivers to identify their hazardous driving 

patterns (e.g., hazardous driving time periods, most visited roads, and driving error 

hotspots), but more, assist drivers with recognizing their dangerous driving habits and 

hazardous driving scenes.  

The proposed approach was validated on a high-quality open dataset for driving 

errors. The result demonstrated our proposed behavior detection framework could 

effectively identify six types of driving errors (e.g., hard brake, fast acceleration, sharp 

left-turn, sharp right-turn, aggressive left-lane-change, and aggressive right-lane-change) 

using mobile sensed data with an accuracy rate of 84.05%. It outperforms prior studies 

tested on the same dataset in terms of accuracy and efficacy. In addition, a one-month 

long driving test was carried out in College Station, TX. Fifty-one driving errors were 

accurately identified through the driving test. By integrating the mobile sensed driving 

errors, road networks, and driving trajectories, we successfully identified hazardous 

driving time periods; mapped the most visited roads and driving error hotspots; and 

extracted three typical hazardous driving scenes from the test driver’s one-month driving 

dynamics. The integration of driver behaviors with associated spatiotemporal 

characteristics paves the way for us to better understand and characterize potential traffic 

risks. This study can be of great benefit to drivers, allowing them to assess their driving 

performance, correct their driving errors and, avoid potential traffic risks. 
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With the rapid development of GIS and mobile sensing technologies, the 

proposed solution is promising for providing personalized driving-risk analysis and 

offering customized safe-driving assistance for drivers. However, to achieve a deeper 

understanding of driving risks, the proposed approach could be further improved in the 

following ways:  

1) The adoption of a better driving error detection method. This study mainly 

focuses on the detection of six types of driving errors using a multi-feature-

fusion framework. These features are generated through empirical tests for 

obvious driving errors, which can maximize the accuracy of detection. However, 

other driving errors which do not manifest these features may not be detected. An 

advanced detection framework covering more driving error types needs to be 

proposed and evaluated. It should be noted that until the present, there have not 

been universal standards to characterize or quantity driving mistakes. In prior 

studies, driving errors are identified by comparing empirical thresholds, matching 

of template driving events, or human judgment.  A unified standard for assessing 

driving behaviors needs to be generated.  

2) More scenic tuple components can be included. In this study, each driving 

error scenic tuple contains seven components. These components are primarily 

generated from driving trajectories and road network. However, driving error 

occurrence can be influenced by various factors. Studies have proved that driving 

risks are strongly correlated with weather conditions, traffic volume, road surface 

condition, etc. Theofilatos and Yannis (2014) reported that taking use of real-
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time data sources (e.g., weather conditions, traffic volume) could capture more 

short-term effects, yielding a better understanding of traffic risk. Nowadays, 

massive amounts of traffic-related data sources are becoming available (e.g., 

real-time traffic volume, real-time weather conditions), offering a great 

opportunity for road safety researchers to discover insights into driving risk 

detection. In future studies, we will integrate additional traffic-related data 

sources to more comprehensively present and analyze driving error occurrences;  

3) A longer period of data collection is suggested. In this study, the driving test 

only captures the one-month of driving data. Although this is enough for 

extracting some driving patterns, we believe a more reliable hazardous driving 

scenes extraction can be achieved by mining longer-term datasets.   
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6. CONCLUSION* 

 

6.1. Summary 

Mobile sensing technology has advanced rapidly over the past few years (Li et al. 

2019; W. Xu et al. 2015; R. Chen, Chu, Liu, Chen, et al. 2014). Equipped with 

miniaturized sensors (e.g., accelerometer, gyroscope, GPS, camera), smartphones have 

become promising data acquisition and computing platforms, which could achieve a 

high-sampling rate with little or zero economic cost. Smartphones are ubiquitous today, 

which empower the citizens to sense their surroundings, generate data, and contribute 

their observations to achieve a continuous monitoring system in an unprecedented 

manner (Guo et al. 2016, 2014; Panichpapiboon and Leakkaw 2017). By leveraging the 

power of citizens and the rich sensing resources, mobile crowd sensing has become a 

popular researching paradigm for large-scale sensing and monitoring.  

This study innovatively explored the possible implementations of MCS-based 

approaches for solving traffic-safety-related issues. Four distinctive research works were 

conducted to enhance road safety from three perspectives: 1) capture unreported traffic 

risks; 2) identify bumpy road segments and detect road anomalies; and 3) discover 

individualized hazardous driving scenes, in which drivers are prone to making driving 

mistakes. 

                                                 

*Part of this section is reprinted with permission from “Embracing Crowdsensing: An Enhanced Mobile 

Sensing Solution for Road Anomaly Detection” by Xiao Li, Da Huo, Daniel W. Goldberg, Tianxing Chu, 

Zhengcong Yin, and Tracy Hammond, 2018. ISPRS International Journal of Geo-Information, Copyright 

2019 by Xiao Li. https://doi.org/10.3390/ijgi8090412  

 

https://doi.org/10.3390/ijgi8090412
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In Section 2, we created a new research scheme to utilize mobile crowdsourced 

Waze incident reports (WIR) to capture unreported traffic risks (near-crashes and traffic 

incidents). The researchers analyzed four weeks WIRs and PCRs obtained from the I-35 

corridor in North Texas. The researchers collected a whole week data from four different 

months: August, October, November, December of 2016. First, the authors developed a 

new method to reduce data redundancy and obtain unique Waze incidents (unique 

WIRs). The researchers then matched the unique WIRs with the observed crashes and 

compared their spatial and temporal distributions. Besides, the researchers estimated 

predicted crashes through safety performance functions (SPFs) and crash modification 

factors (CMFs), to assess whether the WIR data can be used as a reliable surrogate of 

these safety measures (i.e., observed crash frequency and predicted crashes) for 

identifying high-risk locations. This study shows that Waze is an invaluable source of 

data for safety researchers, which is tremendously useful for capturing unreported traffic 

incidents. Meanwhile, WIRs and PCRs are spatially correlated, which implies that WIRs 

could be potentially used as a surrogate safety measure in the absence of crash data. 

Moreover, by combining WIRs with PCRs, more high-risk road segments can be 

identified compared to the results generated from PCRs. 

In Section 3 and Section 4, we proposed crowdsensing solutions to assess road 

surface conditions and detect road anomalies. Section 3 presents a novel crowdsensing-

based system for road surface assessment using smartphones. The built-in GPS and 

accelerometer in smartphones are utilized to compute two assessment indexes that aid in 

determining the road quality. Filed tests demonstrated that the smartphone accelerometer 
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could successfully capture irregular vehicle vibrations while driving on the bumpy road 

segments. The overall road surface condition can be accurately judged and labeled by 

mining mobile sensed data. By implementing a crowdsensing solution, the road surface 

conditions can be continuously monitored. In Section 4, we proposed an enhanced 

mobile crowdsensing solution by implementing wavelet analysis and spatial clustering 

methods. This study further addressed two unanswered research questions: 1) it 

effectively estimated the size of road anomalies using a wavelet-based approach; 2) it 

successfully optimized road anomaly detection results by spatial clustering mobile 

crowd sensed detection results.  

In Section 5, we proposed a novel approach to discovering the significant 

spatiotemporal similarities among individual’s driving errors to answer a fundamental but 

underexplored road safety research question: when and where drivers are more prone to 

making driving errors? This study utilized mobile sensed data collected by smartphone 

built-in accelerometer and gyroscope to capture the “jerk energy” when performing 

aggressive driving behaviors. Our experiment demonstrated that different driving errors 

generate unique sensors’ data patterns, which can be, in turn, utilized to classify the 

detected driving errors. Meanwhile, by integrating the mobile sensed driving errors with 

road networks and driving trajectories, we depicted and characterized each driving error 

with seven carefully selected spatiotemporal factors. Through an in-depth analysis of long-

term collected driving errors, we not only can help drivers to identify their hazardous 

driving patterns, but more, assist drivers with recognizing their dangerous driving habits 

and hazardous driving scenes.  
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This dissertation demonstrated that the mobile crowd sensed data is an invaluable 

source for safety researchers to rethink road safety studies. Leveraging crowdsourced data 

can substantially advance traditional road safety analysis. It can effectively capture 

unreported traffic risks, continuously monitor road surface conditions with few economic 

costs, and assist drivers in recognizing their dangerous driving habits and hazardous 

driving scenes. 

6.2. Limitations and Future Work 

Although mobile crowdsensing solution shows great potential for solving various 

large-scale monitoring tasks and can substantially improve the current road safety 

studies, there are still some barriers exist, which limits the implementation of 

crowdsensing solutions at the current stage. 

1) Crowdsourced data may have severe inaccuracy and redundancy issues. Since the 

public voluntarily contributes their data, many people may report the same event, 

which could generate a massive volume of redundant data. Meanwhile, 

inaccurate information may also be reported because of the crowdsourcers’ 

mistakes.  

2) Mobile crowdsensing is significantly constrained by smartphone hardware. Low-

quality mobile sensors’ data may lead to unreliable detection results. Collecting 

mobile sensors’ data at a high sampling rate can drain phone battery in several 

hours, or even faster. 

3) The success of crowdsensing solution heavily relies on the constant contribution 

of high-quality crowd sensed data. However, how to recruit a group of reliable 
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crowdsourcers to ensure the effectiveness of crowd sensed result is still an 

unanswered question.  

To overcome these limitations, a comprehensive crowdsensing-quality-control 

strategy should be proposed and formalized in future work, which could further 

eliminate the low-quality crowd sensed data (e.g., data collected using low-quality 

sensors or devices, data collected while driving at high speed). Meanwhile, we could 

further optimize the mobile-based analyzing algorithm, reduce computing load, and 

choose a more appropriate sensor sampling rate instead of using 100 Hz, which may 

potentially extend the smartphone battery life. Meanwhile, future work should focus 

more attention on how to take full advantage of mobile sensed data. For example, we can 

test different spatial clustering methods, compare their performances, and further form a 

formalized crowdsensing strategy to synthesize crowd sensed data with further improved 

accuracy. More importantly, the future works need to be built based on the reliable 

crowd data sources, for example, we could recruit vehicles from local governments (e.g., 

garbage truck, police vehicles) to put forward a real-time road anomaly monitoring 

system, which could continuously monitor road surface conditions with high accuracy. 

6.3. Next-Generation Approach—Crowd Vehicular Sensing 

It is worth noting that, to make autonomous vehicles a reality, vehicular sensing 

techniques are undergoing an unprecedented revolution, which also shows great 

potential for facilitating the implementation of crowdsensing solutions for assessing road 

qualities. Nowadays, each commercial vehicle is equipped with approximately 4,000 

sensors (Massaro et al. 2017; Fugiglando et al. 2019). These sensors empower vehicles 
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to collect thousands of signals through the controller area network (CAN) bus 

technology, which could monitor the vehicle and its surrounding environment in real-

time. These vehicular sensors have a higher sampling rate and a better data quality than 

that of a smartphone, which facilitates achieving a more precise detection result than 

smartphone sensors.  

Meanwhile, light detection and ranging (LiDAR) provides a compelling sensing 

ability to autonomous vehicles (Schwarz 2010; H. Wang et al. 2017). The vehicular 

LiDAR can simultaneously scan and generate high-resolution 3-D representations of the 

immediate vicinity, which could help us identify road anomalies and bumpy road 

segments more effectively.  

Therefore, we believe, the vehicular crowdsensing system could be the next-

generation approach for large-scale sensing and monitoring with higher data quality, 

faster data transmission, and better precision. This proposed solution remains to be 

promising and efficient in the foreseeable future. 
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