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ABSTRACT 
 

Pediatric high-grade glioma (pHGG) accounts for 3-15% of all primary pediatric central 

nervous system tumors and is the most aggressive pediatric brain tumor. The standard therapy 

for pHGG includes maximal safe tumor resection followed by radiation therapy and intensive 

chemotherapy using oral temozolomide (TMZ). Despite aggressive therapy, the prognosis is still 

poor and the five-year survival rate is dismal (< 5%). Thus, there is an urgent need to identify 

effective and efficient combination therapies for treatment of pHGG. 

The objective of this study is to develop an unbiased, target-based approach to the 

discovery of novel combination therapies for pHGG. We are using pHGG cell lines from patient-

derived orthotopic xenografts (PDOX) growing both as 3D neurospheres and 2D monolayers. 

The neurospheres are thought to represent predominantly cancer-based stem cells. For drug 

screening, we use 2-step strategy, first carrying out a single agent screen with a library of cancer-

related therapeutics. We use the single agent screen to identify classes of pharmacologic agents 

with growth inhibitory/cytotoxic activity against the PDOX pHGG cells. Combinations of 

prototypic agents from the major classes of active drugs are then tested for synergistic activity in 

the second stage of combinatorial screening studies. The first stage single agent screening 

studies, carried out with 1863 well-characterized cancer therapeutics, identified several classes of 

active compounds including HDAC inhibitors, proteasome inhibitors, HSP90 inhibitors, 

PI3K/mTOR/Akt inhibitors and cell cycle inhibitors as the most active classes. We selected a 

minimum of 2 representatives of each of these classes for combinatorial screens and discovered 

that combinations of proteasome inhibitors (CEP-18770, MLN 2238) and HDAC inhibitors 

(Panobinostat, JNJ-26481585) and also a Wee1 inhibitor (MK-1775) and combined Chk1 

inhibitors (AZD7762, MK-8776) exhibited the greatest synergistic lethality activity. Both of 
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these sets of combinations exhibited selective activity, inhibiting the viability of pHGG cells 

much more than normal astrocytes. Because of their profound synergistic activity and their 

targeted molecular activity, we focused subsequent mechanistic studies on the combination of 

Wee1 and Chk1 inhibitors. In pHGG cells, the combination of these two classes of drugs not 

only selectively suppressed cell growth in the pHGG tumor cells, but it also promoted genomic 

instability, induced the G2/M cell cycle arrest, slowed down the speed of DNA replication during 

DNA replication and caused mitotic catastrophe. These effects were selective for pHGG tumor 

cells and were not detected in normal astrocyte cells. In addition, Wee1 and Chk1 inhibitors had 

a selective effect on the down-regulation ATP production from mitochondrial respiration in 

tumor cells but not in astrocytes. In conclusion, these studies have identified the combination of 

Wee1 and Chk1 inhibitors as selective inducers of lethality in pediatric high-grade glioma cells 

by a mechanism that includes their combined effects on metabolic inhibition and the induction of 

mitotic catastrophe.  
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CHAPTER I  

INTRODUCTION 

 

Pediatric High-Grade Gliomas 

Pediatric high-grade gliomas (pHGG) account for 3-15% of primary central nervous 

system (CNS) tumors in children [1]. These tumors represent a devasting disease in children with 

dismal outcomes in terms of both morbidity and mortality. The average survival is less than two 

years and the five-year survival rate is less than 10% [2, 3]. Current standard of care treatment 

for pHGG [4] includes maximal safe tumor resection followed by radiotherapy and/or 

chemotherapy using oral Temozolomide (TMZ). Even though the available evidence supports 

the benefit of maximal surgical excision [5], the complications of applying radiotherapy to the 

developing brain and the relatively ineffective results obtained with various forms of 

chemotherapy make the treatment of pHGG in children both difficult and associated with 

multiple complications. In addition, relative resistance to chemotherapy also contributes to 

frequent treatment failures [6, 7]. Thus, there is an urgent need to identify improved 

chemotherapies for use in children with HGG. Although both basic and translational research has 

led to an improved understanding of the basic tumor biology of pHGG the success of the 

translating these findings into new effective targeted therapies has been relatively disappointing.  

Molecular Biology 

Based on the results of extensive laboratory research into the biology of pHGG, in 2016, 

the WHO developed an updated classification scheme for these tumors [8]. Adult glioblastoma 

(GBM) are now classified based on the Isocitrate Dehydrogenase (IDH) gene status (i.e. mutant 

or wild-type). However, pHGG, including pediatric GBMs, are different exhibiting a very low 
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incidence of IDH mutation, particularly in younger children [9, 10] so that the majority of pHGG 

are IDH wild-type.  

Compared to adult GBM, pHGG have a higher incidence of p53 mutation/overexpression 

and a much lower frequency of depletion of phosphatase and tensin homologue (PTEN) or 

epithelial growth factor receptor (EGFR). p53 mutations are particularly common in young 

children (<3 years) [10, 11]. Interestingly, even when there are no p53 mutations per se, pHGG 

may still exhibit overexpression of the p53 gene and/or protein. Some pHGG cases of pHGG, 

particularly in older children may exhibit ATRX mutations. This genotype is usually associated 

with a better prognosis [12].  Histone mutations (H3.3) have recently been identified as a 

common finding in pHGG patients [13-15]. These mutations include the H3F27M variant (lysine 

is replaced by methionine at 27 positions) that is unique to pHGG [14] as well mutations 

resulting in the replacement of glycine by valine or arginine at amino acid 34 of H3.3 nucleic 

acid (G34V/R). The H3K27M variant is associated with a poor prognosis whereas the outcome 

of G34V/R is relatively better [13].  

The methylation status of the O6-Methylguanine-DNA Methyltransferase (MGMT) 

promoter has prognostic significance in adult GBMs with inactivation of MGMT highly 

correlated with sensitivity to TMZ. Overexpression of MGMT has been reported in some pHGG 

[16] which may explain why the efficacy of TMZ in pHGG is much less than adult GBM.  

Vascular endothelial growth factor (VEGF) is commonly overexpressed in adult GBM so 

anti-VEGF (bevacizumab) therapy is frequently used in the treatment of adult GBMs. However, 

VEGF expression is relatively low in pHGG and anti-VEGF therapy has proved to be much less 

effective than in adult GBM [17]. Mutations of PDGFRA have also been recently reported in the 
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pHGG [18, 19] suggesting that anti-PDGFRA therapies with drugs such as imatinib may be 

possible treatments for some pHGG tumors. 

Strategies of Therapy 

Currently maximal surgical resection followed by radiotherapy and chemotherapy are the 

best treatment for adult GBMs [4, 20]. Maximal surgical excision is also beneficial in pHGG but 

the value of the resection is also dependent on the location of the tumor [21]. Midline 

supratentorial tumors, and brainstem tumors are often difficult to remove completely without 

causing major neurologic deficits.  

Radiotherapy (RT) is another therapeutic modality used frequently for the treatment of 

pHGG. Doses of 50-60 Gy over 5-6 weeks [22, 23], are used routinely in children more than 3 

years old. RT is not used before 3 years of age because of the potential for damage to the 

developing brain. However, recent advances in technology, involving accurate delineation of 

tumor margins by MRI, have made the use of RT in pHGG safer and more effective.  

Chemotherapy is also an important component in the comprehensive treatment of pHGG. 

Sposto et al. were the first to demonstrate the effectiveness of chemotherapy in pediatric GBM 

using an adjuvant regimen that included 8 cycles of PCV (procarbazine, CCNU, and vincristine) 

[24, 25]. This regimen resulted in a significant improvement in the outcome of pediatric GBM 

patients compared to RT alone. However, this result has been hard to reproduce in other studies 

possibly because the Sposto study included many patients with low grade gliomas. A landmark 

trial by Stupp et al showed that the addition of both concomitant and adjuvant TMZ improved 

the five-year survival in adult patients with GBMs [4]. This trial established the current standard-

of-care for the use of TMZ in adult GBM. However, this trial did not include any pediatric 

patients with pHGG. Most studies have suggested that TMZ does not improve survival figures in 
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pHGG patients. It has been suggested that the overexpression of MGMT in pHGG which may be 

one of the reasons why the efficacy of TMZ is not as good as in adult patients with GBM [26]. In 

conclusion, these studies demonstrated the uncertainty that exists on the routine of use of 

chemotherapy in patients with pHGG. 

Recent insights into the molecular biology of pHGG have led to interest in the evaluation 

of drugs directed specifically against these molecular targets. These include bevacizumab (anti-

VEGF), imatinib (anti-PDGFR), erlotinib and others [18, 27]. Many of these have advanced to 

Phase I/II clinical trials and none have met expectations. While the widespread failure of targeted 

agents to provide effective therapies for pHGG is not well understood. The lack of success could 

be due to the fact that the biological features of pHGG include not only genetic mutations but 

also epigenetic changes and the activation of biologic pathways that allow the tumors to easily 

escape from the effects of many mono-targeted therapies. 

Challenges of Chemotherapy in pHGG 

The difficulty in developing effective therapies for pHGG may be attributable to the 

complex biology of these brain tumors and also the fact that they are highly invasive, infiltrating 

the surrounding brain tissue and complicating complete excision or effective radiation. For this 

reason, recurrence is common [28]. In addition, chemotherapy drugs may fail to impact brain 

tumors because of their inability to cross the blood-brain-barrier (BBB). In addition, genetic 

mutations, epigenetic changes and the activation of multiple biologic pathways in brain tumors 

allows them to easily escape many forms of targeted therapies [29]. Upon regrowth and 

recurrence, the pHGG tumors often acquire new genetic abnormalities, making them resistant to 

treatments that might have previously worked. Moreover, there is considerable evidence that 

pHGG tumors contain cancer stem cells that contribute to resistance. These stem cells must be 
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eliminated to obtain a durable cure [30]. It is likely that different components of the tumor will 

need to be targeted, complicating the process of drug discovery for pediatric brain tumors. The 

presence of extensive intra- and inter-tumoral heterogeneity may be a major  reason for why the 

results of chemotherapy trials have been disappointing [31]. Like many other types of cancers, 

pHGG can be grouped into multiple subtypes based on their pattern of genetic mutation, 

epigenetic changes, patient age etc, a diversity that requires multiple strategies for effective 

therapy. For example, Histone 3 F3A mutations are the most frequent mutations in pHGG [13], 

but this mutation is only found in 36% of pHGG and it is rarely found in adult GBM. In addition, 

not all cells within a specific tumor carry the same mutations, and quite often patients’ tumors 

don’t carry even the most “frequent” mutations. Because of these complexities new treatment 

strategies of treatment are needed to create progress in the treatment of pediatric brain tumors.  

New Strategies for the Treatment of Pediatric Brain Tumors 

A number of new types drugs and therapeutic modalities including integrin inhibitors 

(cilengitide), EGFR inhibitors, novel antiangiogenic agents, histone deacetylase inhibitors and 

dendritic cell vaccines are currently being tested for potential improvements in the treatment of 

pHGG.  

It is generally accepted that single agent, targeted therapies will not be sufficient to 

provide effective therapy for pediatric brain tumors. Combination therapies will be necessary to 

overcome the multiple “escape” and resistance mechanisms that are common in pHGG. 

Combination therapies, especially those exhibiting synergistic lethality, may give better 

therapeutic index resulting in safer and less toxic therapies. There are many ways that 

combination therapies could be developed, combining new targeted drugs with traditional 

cytotoxic drugs, combinations of multiple targeted agents or combinations with various forms of 
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immunotherapy and many others. In addition, there are very novel therapies such as Novo-TTF, 

an FDA-approved low-intensity electromagnetic field therapy  approved for the treatment of 

recurrent GBM [32, 33].  

Conclusion 

At the moment pHGG is a rare but difficult-to-treat cancer. There are great hope that 

scientific and technological advances being made in the understanding of the complex biology of 

the disease will be translated into new targeted combination therapies that will improve the 

outcomes of this devastating disease.  

 

Use of Patient-Derived Orthotopic Xenograft Model System for Oncology Drug Discovery 

In the general field of oncology, recent advances basic research coupled with major 

advances in the technology of drug discovery research is resulting in new forms of therapy with 

much higher therapeutic efficiency and greater margins of safety. However, oncology drug 

discovery remains a challenging field of drug discovery research because of its high failure rates 

and large costs [34, 35]. Almost 95% of oncology drugs tested in Phase I clinical trials have failed 

[36]. It is thought that the incorporation of clinically relevant preclinical models such as Patient 

Derived Orthotopic Xenograft (PDOX) into drug discovery research may improve the probability 

of success of new drug discovery ventures. 

The Process of Generating PDOX Models  

The PDOX models are established by the implantation of cancerous tissue from a patient’s 

tumor directly into an immunodeficient mouse, providing a faithful replication of the original 

tumor. Several types of immunodeficient mice can be used to establish PDOX models: athymic 

nude mice, severely compromised immune deficient (SCID) mice, nonbese diabetic (NOD)-SCID 
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mice and recombination-activating gene 2 (Rag2)-knockout mice [37].  In addition, recently NSG 

(NOD SCID gamma) mice have emerged as the preferred hosts for PDOX establishment since 

they have a complete null mutation in the gene encoding the interleukin 2 receptor gamma chain. 

This mutation causes deficiency in multiple cytokine signaling pathway, resulting in dysfunctions 

of multiple components of innate immunity [38]. 

There are two different input materials for establishing PDOX models, either single-cell 

suspension and tissue fragments. The implanted tumor tissues are usually derived from surgical 

specimens obtained when a patient undergoes surgery. For the single-cell suspension, the tumor 

tissue is transported in tube filled with the culture media and then the tumor is digested to 

generate a single cell suspension. The tissue fragments have an advantage in that they retain cell-

cell interaction as well as some of the tissue architecture of original tumor, preserving 

components of the tumor microenvironment [39]. In orthotopic transplants, the tumor tissue is 

transplanted into the corresponding anatomical organ. Orthotopic models may be difficult to 

generate, depending on the organ being transplanted, but it has the advantage of mimicking the 

natural environment of primary tumor. In general, orthotopic transplants are thought to be among 

the best model systems even though sometimes cell viability is not good [40, 41]. 

After PDOX tumor is harvested, it can be cut into small pieces, washed and then placed in 

freezing media and stored in -80 ℃. These stock tumor fragments can be used later for re-

transplantation into other mice. For drug discovery studies, 3 generations of PDOX’s are often 

used. Care is taken to ensure that the PDOX has not diverged genetically or histologically from 

the origin tumor. The success rate of individual PDOX models is influenced by several factors 

including characteristics of the primary tumor, the process used for the generation of PDOX, the 

size and number of tissues implanted and the location of the implantation [42, 43].  
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Staining with the hematoxylin and eosin or important immunohistochemical markers are 

used to confirm that the gross of histology of the PDOX is conserved with respect to the original 

tumor. Whole genome sequencing, RNA sequencing and/or real time PCR are used to confirm 

that the expression of specific genes is preserved between the PDOX and the original tumor [43].  

Application of PDOX Models for Cancer Research 

Use of PDOX Models for Target Identification and Validation 

Better understanding of basic cancer biology and the emergence of new classes of targeted 

therapies have changed the landscape of cancer treatment and management. One of the keys to 

these successes has been identification and validation of molecular targets in cancer cells which 

distinguish the tumor tissue from normal tissues [44]. Advances in transcriptomics, genomics, 

functional genomics, proteomics, epigenomics and metabolomics have significantly expanded the 

scope of tumor target identification [45, 46]. Once a potential target is identified, it must be 

functionally validated using compounds, antibodies, RNA interference or other methods that 

inhibit or inactivate the target. Collections of large panels of tumor samples and PDOX’s are 

important resources the development of validated and clinically relevant targets [47]. 

Established cancer cell lines are widely used for drug discovery research because they are 

readily available and easy to maintain. In contrast, samples derived directly from patients (tumor 

explants) are much closer to the tumor as it existed in the patient. However, one of the big 

limitations of primary tumor explants is the poor quality of the tissue and the limited life of the 

cells. Compared to the either established cell lines or primary tumor explants, PDOX models 

provide a practical solution by preserving the clinical characteristics of the original tumor and by 

providing enough tumor tissue and cells to permit target identification and validation and also for 

drug discovery screening studies [47]. 
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Use of PDOX Models for Drug and Biomarker Discovery Studies  

PDOX models are frequently  used in drug discovery research because multiple PDOX 

models of  breast cancer, non-small cell lung cancer (NSCLC), head and neck cancers and 

colorectal cancer have been shown to have drug response profiles that correlated with the 

responses observed in the clinic [43]. For example, in renal cell cancer, PDOX model respond to 

sirolimus and sunitinib, but not erlotinib, which matches the clinical data [48].  

Recently, the use of PDOX models as potential screening platforms for pre-clinical drug 

development has shown promise for the development of new drugs for the treatment of cancer. 

For example, in preclinical PDOX test, metformin failed to inhibit the growth of pancreatic 

cancers. When metformin was evaluated in the clinical trials, it showed no benefit when 

combined with standard therapies in both local and metastatic pancreatic cancer [49]. The use of 

PDOX models for preclinical testing may save time and resources required for clinical trials. 

For the discovery of biomarker, the concordance between the results obtained in PDOX 

models and clinical trials has helped in the discovery of new biomarker for drug efficacy and drug 

resistance. The relationship between drug efficacy or drug resistance and molecular 

characteristics can be easily studied using PDOX models. Similarly, PDOX models can be used 

for the comparisons of the proteomic or genetic profiles between sensitive and resistant models. 

These studies can be used to identify prognostic biomarkers for clinical studies [50, 51]. 

Use of PDOX Models for Precision Medicine 

Improved understanding of the relationship between cancer genotype and phenotype is 

leading to a new era of precision medicine in oncology research [52]. Precision medicine 

combines an individual patient’s characteristics such as the genomic profile of their tumor with 

the selection of targeted therapies or immunotherapies to maximize the effectiveness of the 
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treatment and to minimize the side effects [52]. Precision medicine is designed to group patients 

into sub-population based on the genomic profiling of their tumors and then to use specific 

strategies tailored to the vulnerabilities  of that subgroup of tumors [45].  In this context, PDOX 

models are very useful because they retain the genomic characteristics of the tumor from which 

they were derived. PDOX’s can be used for the identification and validation of the effectiveness 

and safety of therapies selected based on precision medicine. For example, it has been reported 

that integrated PDOX models can be used to identify the  individualized therapeutic 

vulnerabilities of pancreatic cancer [53]. In this study, exon sequencing of patient-derived tumors 

revealed multiple conserved genetic changes that were then used in PDOX models to identify the 

sensitivity of the tumors to single and combination drug therapies. Similar efforts have been used 

to apply the principles of personalized medicine to PDOX models derived from multiple different 

types of cancers [53]. 

The Limitations of PDOX Models  

Although PDOX models have the potential to improve preclinical and translational 

research and studies, their use is associated with several limitations. PDOX models require the 

use of severely immune-compromised mice. The lack of a functional immune system in these 

PDOX models limits their use in studies which required and intact immune response [37, 38]. For 

example, immunotherapies cannot be studied in conventional PDOX models established in 

immune-deficient mice. In addition, different tumor types and different tumor subtypes have 

varying take rates in terms of the success achieved in establishing them as xenografts [54, 55]. 

These differences can contribute to an imbalanced representation of tumor types/subtypes that is 

determined more by their take rate than their clinical incidence rate [55]. Moreover, compared to 
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established cell lines, PDOX models are much more difficult to manipulate genetically making it 

difficult to genetically modify the tumors or to introduce detection biomarkers [56].  

Conclusion 

In conclusion, PDOX models retain the characteristics of their tumor of origin as reflected 

in: 1) similar histopathological features as compared to the original tumors [29, 40]; 2) faithfully 

replication of the gene expression profiles of the source tumor [29, 57]; 3) maintenance of cancer 

stem cell pools in vivo [58, 59]; 4) preservation of most of the broad spectrum of gene mutations 

found in the source tumors.  PDOX models have particular value in pre-clinical studies for drug 

screening, biomarker development and precision medicine [40, 43].  

 

High Throughput Screening for Accelerating the Drug Discovery 

The process of developing a new drug and advancing it to the market is a very complex 

and slow process that can take more than 15 year and cost of more than $1 Billion [60]. 

Increasing the efficiency of both drug discovery and drug development, driving down the cost and 

bringing better drugs to market more quickly is greatly needed [61].  The widespread use of high 

throughput screen (HTS) to facilitate and accelerate the process of the new drug discovery is an 

important component of pharmaceutical drug discovery. In current best practices, HTS platforms 

are capable of testing 10,000 to 100,000 compounds per day [62, 63].  

Laboratory automation has been critical to the development of the HTS. The reduction in 

number of repetitive manual tasks has greatly decrease the potential for errors, saving time and 

allowing scientists to focus on the research rather than repetition. Currently  384-well and 1536-

well plates are  industry standards for HTS [64]. In addition, particularly when combined  

acoustic liquid handling technology [65] such as the Echo system from LabCyte are capable of 
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accurately dispending volumes as small as 2.5 nL, decreasing the volumes of compounds and 

reagents required and increasing the accuracy of the system by reducing the use of pipette tips.  

The quality of the experimental processes is particularly in programs with large data sets 

because proper data analysis requires high quality results. The quality of the data can be measured 

using several tools such as number of negative and positive controls, signal/noise ratios and Z 

factors [66]. However, the sensitivity of the assay must also be taken in to consideration when 

optimizing a specific assay. Optimizing a particular HTS screening system requires consideration 

of the time, cost and the experimental  processes [62].  

Examples of the Use of HTS in Drug Discovery 

Maraviroc (Selzentry/Celsentri; Pfizer) is an example of the use of the power of HTS to 

optimize the pharmacological and pharmacokinetic properties of a specific drug [67]. The project 

began with HTS in 1997 and Maraviroc was approved by the US Food and Drug Administration 

(FDA) in 2007. The compound library selected in this program was screened using a CC-

chemokine receptor 5 (CCR5, MIP1) radioligand binding assay which was used to identify 

agonist hits that had no cellular antiviral activity [68]. One of these weak agonist hits provided a 

lead that led to optimization of the structure of the agonist hit. The researchers then synthesized 

more than 4000 compounds that were assembled as a compound library they could be used to 

screen for antiviral activity due to antagonist activity of CCR5. The final drug candidate, 

Maraviroc, identified by this screen showed nanomolar efficacy in a clinical trial of antiviral 

activity with prolonged CCR5 receptor occupancy [68]. 

A significant advantage of HTS is its ability to identify compound that modulate 

biological activities such as cell viability, protein translocation and other phenotypic features 

without information on a specific mechanism of action or a specific molecular target [67]. For the 
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program to identify Hepatitis C inhibitors, researchers used HTS to first discover compounds that 

inhibited Hepatitis C virus replication [69]. After subsequent optimization the approach yielded 

clinically efficacious drug candidates. The selection of an optimized compounds required a series 

of minor chemical changes that resulted in improvements potency and therapeutic index [69, 70]. 

The integration of compound identification, hit assessment and lead optimization using HTS 

provides a reasonable path for the progression of chemical compound  into a clinically useful 

drug [67]. 

Other Benefits of HTS  

In many pharmaceutical and biotech companies, the technology of HTS screening 

laboratories is now integrated into downstream drug development processes [67].  Laboratories 

are now using low-volume assays to drive both structure and activity data generation (SAR) and 

high-throughput absorption, distribution, metabolism, excretion and toxicity screening [71, 72]. 

This drive for cost-effectiveness, parallel data generation and low-volume assays through the use 

of  HTS has allowed engineers and scientists to refine procedures and reduce the timelines for 

drug discovery and development [73].  Because phenotypic cellular assays are more 

physiologically relevant there is a growing trend to use them to perform hit identification and 

lead optimization [74, 75]. This is particularly true for the use of primary, tumor-derived human 

cells rather than established cancer cell lines in HTS screening studies.  

HTS technologies have also improved upstream drug discovery activities such as target 

identification and validation. In addition, many research technologies such as RNA interference 

screening, chemo-genomic and crystallography have benefited from the automation and 

microplate assay formats originally developed for HTS platforms [73, 76]. 

Conclusion 
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HTS has matured to become an important part of pharmaceutical research and a useful 

tool in expansion of biomedical knowledge. HTS has provided automation tools that are 

enhancing basic scientific research and increasing the quality of chemical compounds, 

improvements that are resulting in improved pharmaceutical products [62]. In summary, HTS is 

proving to be one of the most successful strategies in modern drug discovery research [62, 67]. 

 

Targeted Cancer Therapies 

Targeted cancer therapeutics are drugs or other substances that interfere with the activity 

of specific molecules that play important roles in cancer cell proliferation, metastasis, invasion 

and other properties of malignant cells. Targeted therapies differ from conventional 

chemotherapies are in several ways including: 1) targeted therapies impact specific molecular 

targets associated with cancer whereas the traditional chemotherapies act on the general 

properties of cancer cells such as their rapid rate of cell division (this effect may impact some 

types of normal cells as well); 2) targeted therapies are designed and selected to interact with 

their specific targets whereas traditional chemotherapies are selected to kill many different types 

of cancer cells; 3) many targeted therapies are cytostatic while most traditional chemotherapies 

are cytotoxic. Many targeted cancer therapies have already been approved by FDA for the 

treatment of specific types of cancer and many more are being tested in the both clinical trials 

and preclinical studies.  

The first step in the development of a new targeted therapy is the identification of a 

molecular target. This is often accomplished by the discovery of different levels of expression of 

a protein between cancer and normal cells. Differential expression is particularly significant if 

the protein is known to involved in cancer cell growth and / metastasis. For instance the human 
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epidermal growth factor receptor 2 (HER-2) [77] is expressed at high levels in some types of 

cancer. HER-2 targeted therapies such as trastuzumab are FDA approved for the treatment of 

HER-2 overexpressing breast and gastric cancers. Some targets are identified when it is 

determined that mutant or altered forms of the protein in cancer cells can cause cancer 

progression. For example, the protein BRAF is mutated in many melanomas [78]. Vemurafenib, 

a kinase inhibitor that targets BRAF mutated protein is approved for the treatment of metastatic 

melanomas that have altered BRAF protein. Chromosomal abnormalities in cancer cells can also 

serve as guides for the detection of molecular targets that can be targeted for therapy. These 

chromosomal abnormalities include gene fusions can drive cancer development. Many of these 

mutations caused fusion proteins can serve as potential targets for the targeted therapies. The 

targeted cancer therapeutic Imatinib mesylate targets the BCR-ABL fusion protein, an abnormal 

protein that is present in some leukemia cells and promotes leukemia cells growth [79, 80]. By 

targeting the BCR-ABL fusion protein, Imatinib is a very effective treatment for BCR-ABL 

positive leukemias. 

Both small molecules and monoclonal antibodies are used for targeted therapies. Small 

molecule compounds are most effective for the targeting of intracellular while monoclonal 

antibodies are most useful for targets on the cell surface [81]. Small molecule compounds are 

frequently identified by the high throughput screening studies. Large libraries of diverse 

chemicals are assembled and tested for their effects on cells with the goal of identifying active 

compounds “hits”. Monoclonal antibodies are generated by injecting the purified targeted 

proteins into the animals, causing the animals to produce the antibodies to those targeted 

proteins.  
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There are many different types of targeted therapies available for cancer treatment based 

on their function and biological the biological processes targeted. Examples include hormone 

therapies, gene expression modulators, signal transduction inhibitors, apoptosis inducers, 

angiogenesis inhibitors, immunotherapies and many others. Cancer vaccines and gene therapy 

are also considered targeted therapies because they are directed at specific properties or targets 

within the cancer cells.  

Targeted therapies do have some limitations including the fact that cancer cells often 

develop resistance to a specific form of targeted therapy [78, 82]. Cancer cells undergo frequent 

mutations that can result in the failure of the targeted therapy. In addition, the cancer cells can 

use alternative pathways to support tumor growth and progression. A third problem is that it is 

sometimes difficult to identify the “driver/survival critical mutations” that are critical for survival 

in a specific cancer [83]. Extensive intra- and inter-tumoral heterogeneity is another reason why 

targeted therapies  may be directed toward an non-critical target [31]. Another factor that can 

limit the effectiveness of targeted therapies can be the difficulty in developing inhibitory drugs 

for some classes of targets even though they have been found to be critical factors in the survival 

of a particular cancer [84]. For example, the Ras signaling protein is highly mutated in many 

different types of cancer, but to date no inhibitors of Ras protein have been developed in spite of 

many different types of drug discovery efforts. Finally, off-target activities may limit their 

usefulness as therapies for patients with cancer.  

To overcome the limitations to the development of effective targeted therapies such as 

the use of combination to overcome drug resistance. For example, targeting different parts of a 

particular cell signaling pathway that is altered in cancer may delay the development of 

resistance and disease progression [85]. Another benefit of using combination therapies is that 
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combination can exhibit synergistic lethality providing a wider therapeutic index for the therapy 

making it safer to use. Combination therapies could be limited to two targeted therapies, they can 

also combine a targeted therapy with a traditional chemotherapy drug. In the future there will be 

many new opportunities for new combination therapies based both on the rapid increase in the 

number of targeted therapies and the increased understanding of tumor biology that is coming 

from advances in genome wide sequencing, bioinformatics and system biology [47]. 

Cancer is a multifactorial and complicated disease. Multiple risk factors lead to the 

accumulation of molecular changes and mutations inside the cancer cell that contribute to the 

initiation of carcinogenesis. Targeted therapy are becoming increasingly useful because of their 

selectivity for cancer cells [81].  By focusing on the specific molecular changes which are unique 

to a particular cancer, targeted cancer therapies increase the therapeutic for many types of cancer. 

Multiple clinical trials of both FDA-approved and experimental targeted therapies are exploring 

this possibility for multiple types of cancer [86, 87].  

 

Rationale for this Dissertation 

Pediatric high-grade glioma (pHGG) accounts for 6-12% of all primary pediatric central 

nervous system tumors and is the most aggressive pediatric brain tumor [1]. Current standard-of-

care treatment consists of tumor resection followed by radiation and chemotherapy. This regimen 

has been shown to improve patient survival, but the average survival remains less than two years 

and the five-year survival rate is less than 10% [2, 3]. Resistance to chemotherapy is an 

important cause of treatment failure [6, 7]. There is an urgent need to identify new safe and 

effective therapies for use in children with HGG. 
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The goal of this project is to establish a preclinical rationale for clinical trials of new 

combinatorial targeted-therapies in children with HGG. The objective is to use an unbiased 

approach to discover new target-based novel combination therapies for pHGG. We hypothesize 

that a high throughput combinatorial screening paradigm in both cancer stem cells (as found in 

3D neurospheres) and monolayer cultures of tumor cells derived from patient-derived orthotopic 

xenograft (PDOX) models of pHGG will facilitate the discovery of novel synergistic drug 

combinations that are effective and selective for pHGG. Dr. Li, a leading expert in PDOX model 

establishment, has developed a large panel of PDOX mouse models of pHGG [88, 89]. These 

PDOX models replicate the histology, invasive growth properties, and gene expression profiles 

of the patients’ original tumors and also have maintained cancer stem cell pools during in vivo 

sub-transplantation. Our lab has expertise in high throughput screening technologies. We will 

screen combinations of FDA-approved and investigational drugs in specialized High Through 

Screening (HTS) assays that measures the concentration dependence of the combinatorial 

activity (synergy, additivity or antagonism) across a range of concentrations of both components 

of the combinatorial pair. With these two experimental platforms, we are now uniquely 

positioned to address the challenge of discovering effective combinatorial therapies for children 

with HGG.  

To test the hypothesis, we propose the following Specific Aims:  

Aim 1: Establish an Effective and Efficient Strategy to Discover Drug Combinations that Exhibit 

Synergistic Lethality Activity against Pediatric High-Grade Gliomas. 

• Select a mechanistically annotated set of compounds for profiling for single agent activity 

against a panel of pHGG PDOX cells. 
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• Conduct in vitro combinatorial screens of selected pairs of single-agent active 

compounds against 3D neurospheres and 2D monolayers from pHGG PDOX cell lines 

and normal cell types.  

Aim 2: Establish the Cellular and Molecular Mechanisms Responsible for the Synergistic 

Cytotoxic Activity of Selected Drug Combinations with Potential Application as Therapeutic 

Regimens for the Treatment of pHGG 

• Analyze the temporal and spatial effects of drug combinations on apoptosis and cell 

proliferation in PDOX cell lines 

• Examine alterations in the expression and/or activity of the targeted genes and pathways 

and establish the mechanisms of synergistic tumor cell killing 

 

 



 

20 
 

CHAPTER II  

DISCOVERY OF DRUG COMBINATIONS THAT EXHIBIT SYNERGISTIC LETHALITY 

ACTIVITY AGAINST PEDIATRIC HGG TUMOR CELLS 

 

Materials and Methods 

Reagents/Solutions 

DMEM/F12 medium (Life Technologies/Gibco), N2 supplement (Life Technologies/Gibco), 

B27 supplement (Life Technologies/Gibco), rhEGF (Life Technologies/Gibco) and rhFGF (Life 

Technologies/Gibco), FBS (Life Technologies/Gibco), glutamine (Life Technologies/Gibco), 

sodium pyruvate (Life Technologies/Gibco), Draq5 (Invitrogen, 65-0880-92), Trypsin 0.25% 

(Life Technologies/Gibco), 384-well plates (Corning), CellTiter-Glo Cell Viability Assay 

(Promega, G7573), DAPI (Invitrogen, D1306). 

Patient-Derived Xenografts Models and Tumor Cells Preparation 

Rag2/severe complex immune deficiency (SCID) mice, normally ages from 8 to 12 

weeks are used as the hosts for PDX implantation. Patient tumor cells from Texas Children’s 

Hospital were obtained and cultured in cancer stem cell medium (CSC medium, DMEM/F12 

supplemented with N27, B2, rhEGF and rhFGF), and were made into a single cell suspension 

followed by culturing in 37 °C for 6 hours. Tumor cells were then inoculated intracerebrally into 

Rag2/SCID mice at 2x105 cells per mouse via injection (Described in Figure1). The animals 

were maintained in the animal facilities at Texas Children’s Hospital. Mice are monitored daily 

until they developed signs of neurological deficit or became moribund, at which time they were 

euthanized. All experiments were performed in accordance with national guidelines and 
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regulations and with approval of the animal care and use committee at Texas Children’s Hospital 

and Baylor College of Medicine. 

 Tumor cells from PDOX mice were obtained, dissociated, purified and cultured in both 

CSC medium and normal medium (with FBS). By serial passaging, we established cell lines 

which could be cultured either as neurosphere cell lines or monolayer cell lines. 

All of these steps are standard in Dr. Xiao-Nan Li’s lab in Texas Children’s Hospital. 

 
Figure 1. Patient-Derived Orthotopic Xenograft Mouse Model.  
Rag2/severe complex SCID mice were used to establish PDX’s. Tumor cells were obtained from patients at the time 
of surgery. The cells were cultured in CSC medium and made into a single cell suspension. Tumor cells were 
inoculated into SCID mice (2x105 cells/mouse) via intracerebral injection. The cells from the PDOX tumors were 
obtained and cultured in both CSC medium and normal medium. Serial passaging established cell lines that could be 
propagated as either neurosphere or monolayer cell lines.  

Tumor Cell and Normal Cell Culture 

pHGG tumor cells were provided by Dr. Xiao-Nan Li’s lab, Texas Children’s Hospital. 

Neurosphere cells were maintained in DMEM/F12 medium supplemented with B27, N2, 25 
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ng/ml rhEGF, 25 ng/ml rhFGF, glutamine and sodium pyruvate. Monolayer cells were 

maintained in DMEM/F12 medium supplemented with 10% fetal bovine serum (FBS), glutamine 

and sodium pyruvate. A normal astrocyte cell line was purchased from NIH. The normal 

astrocyte cells were maintained in DMEM/F12 medium supplemented with 10% fetal bovine 

serum (FBS), glutamine and sodium pyruvate. Cells were cultured in 75 cm2 flasks or 25 cm2 

flasks in a 37 °C incubator with 5% CO2 and passaged as needed.  

Cell Staining and Imaging 

For neurosphere cells, single cells were made by pipetting 20 times and using 40 µm cell 

strainer to remove big clusters. Single stem-cell like cells were spun down 1200 rpm for 3 

minutes and the supernatant was removed. For monolayer cultures, cells were trypsinized by 

Trypsin 0.25% for 2 minutes and spun down 1200 rpm for 3 min and supernatant was removed. 

Both of these single cells were seeded into 384-well plate and we tested 5 different cell densities 

from 250 cells/well to 4000 cells/well to optimize spheroid formation and to establish the 

doubling time of cells in monolayer culture. Cells were exposed to drugs for 3 or 7 days. 

Neurosphere cells were stained overnight with Draq5 (Thermo Scientific™). Draq 5 is a far-red 

DNA stain used to stain both live and dead cells. For monolayer cells, cells were fixed with 4% 

paraformaldehyde (PFA) for 10 minutes, permeabilized with 0.5% Triton for 10 minutes and the 

nuclei were stained with DAPI for 5 minutes followed by washing with PBS and imaging. Cells 

were imaged using an InCell 6000 (GE Healthcare Life Science) with images acquired with 4x 

magnification and 1 field of view for each well. 

Cell Viability and Proliferation Assay 

Single cells were seeded into 384-well plate with a total volume of 50 µl and were tested 

at different cell densities from 250 to 4000 cells/well. Cells were cultured in the absence or 
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presence of drugs for 7 days. At the end of the treatment, the plates were spun and 35 µl medium 

per well was aspirated followed by the addition of 15 µl CellTiter-Glo (CTG). After 30 minutes 

incubation at room temperature, the luminescence of each well was measured on a plate reader. 

The doubling time was calculated from the value of luminescence or fluorescence at Day 0 and 

Day 7.  

Drug Selection 

The GCC Drug Library used for these studies includes 6685 unique FDA-approved and 

investigational drugs. Of the 6685 drugs available for screening, we selected a subset of 1863 

compounds that have well-established mechanisms of action and are clinically relevant for the 

potential treatment of patients with pediatric cancer. Forty-eight percent (48%) of the 1863 drugs 

or compounds are targeted kinase inhibitors, 11% are GPCR and G protein inhibitors, 8% are 

general enzymatic inhibitors, 4% are epigenetic regulators (Described in Figure 2). The 

collection represents a clinically relevant and a broad range drugs potentially useful for the 

treatment of cancer. We also cataloged the drugs based on their mechanism of action including 

the class, the formal target of the drug or the target with the highest affinity, the biological 

process of the targets and the associated pathway that the drug targeted. These annotations were 

used to identify clusters of drugs or compounds that affected the proliferation and viability of 

pediatric HGG cells.  
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Figure 2. Drugs Selected for High Throughput Single-Agent Screen. 
The pie chart indicates the percentage of class of the 1863 drugs used for the screens. 

Single-Agent High-Throughput Drug Screening 

For the primary single agent screens (Described in Figure 3), 3D neurosphere cells (2000 

cells/well) and 2D monolayer cells (1000 cells/well) from pHGG PDX tumors were plated in 50 

µl of culture medium in 384-well plates (Corning) using an Multidrop (Thermo). Plates were 

incubated for 24 hours to allow for neurosphere formation and the attachment of monolayer cells 

to the bottom of the wells. Drugs were transferred to the wells using a Tecan Freedom Evo 200 

and Echo liquid handler. After a 7-day incubation, the viable cell number in each well was 

determined using the CellTiter-Glo reagent (Promega), read in an automated plate reader 

(Synergy Neo2 hybrid multi-mode reader, BioTek). The fractional affected cells (fa) was 

calculated for each drug and each concentration compared to the DMSO control based on the 

effects on cell viability as measured by CellTiter-Glo. The fa was used in a nonlinear regression 

analysis using a 4-parameter logistic equation (GraphPad Prism). The dose-response curve was 

generated and the area-under-the-curve (AUC) for each drug was calculated. AUC values were 
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normalized and the normalized AUC was used to demonstrate the response of each cell line and 

each cell culture condition to the drugs being tested.  

 
Figure 3. High Throughput Drug Screening System.  
Tumor cells were maintained in a humidified incubator. Cells were plated as single cells in 50 µL medium for each 
well in a 384-well Plate. Plates were incubated for 24h to allow for neurosphere formation and monolayer 
attachment to the wells. Drugs were transferred and their effects on cell viability were measured at 7 days by using 
CellTiter-Glo (a measure of ATP). 

A subset of drugs were selected for combinatorial screening based on the following 

properties: 1)Pan-active compounds: Drugs with single agent activity as reflected in a 

normalized AUC ≥ 0.4 of 4 separate models; 2) 3D Neurosphere-selective compounds: drugs 

displaying cytotoxicity toward neurospheres (AUC ≥ 0.4) but with no effect on monolayers 

(AUC < 0.4) and 3) 2D Monolayer-selective compounds: drugs displaying cytotoxicity to 

monolayer cultures (AUC ≥ 0.4) but having no effect on neurospheres (AUC < 0.4) and  4) 

Clinically-relevant drugs: drugs with a well-established mechanism of action that are clinically 

relevant for the treatment of pediatric cancer (Described in Figure 5).  

The Z’-factors (Z prime) obtained from the activity of positive and negative controls 

were used to assess the quality of the assay. The Z’ factor is used to determine the reliability of 

an assay prior to additional quality-control experiments and subsequent screening studies. The 

closer the Z’-value is to 1, the better the quality of the assay. Z’-factors in the range of 0.5 to 1, 

are indicative of an excellent assay suitable for the collection of reliable results. The Z-factor is 
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determined from four parameters: the means (µ) and standard deviations (σ) of both the positive 

(p) and negative (n) controls (µp, σp, and µn, σn) and is defined as: 

 

In addition, the concentration-response of a reference compound is run in every screen to 

determine the stability of the assay over time. The Minimum Signal Ratio (MSR) is a statistical 

parameter that characterizes the reproducibility of potency estimates based on multiple 

concentration-response assays. The reference compound MSR can be used to document both 

between-run and within-run variability. The MSR is calculated as MSR = 102√2s, where the s is 

the standard deviation of the log10(IC50) values across runs or plates, based on one IC50 result 

per run/plate.  A between-run or within-run MSR < 3 criteria is considered to reflect a highly 

reproducible data set.  

Mechanism Annotated Pharmacological Tree  

To better visualize the response of cells to different clusters of drugs, we developed a 

representation, “pharmacological tree”, that orders the 1863 compounds based on their 

mechanisms of action and displays their activity against HGG cell lines. The classification of the 

1863 compounds was by features based on their pharmacologic class, their molecular target or 

their target with the highest affinity, the biologic process that they targeted and the signaling 

pathway that the drug effected (See Table 1). The distance between drug pairs was calculated 

based of the similarity in their features. The relationship between all 1836 compounds was then 

displayed in the form of a pharmacologic tree in which adjacent branches illustrate the most 

closely associated mechanisms of action. Each branch has multiple circles that represents the 

activity of one compound. The area of the circle represents the response of cells to the drug 
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(based on the normalized AUC). The larger the circle, the more active the compound in killing 

pHGG tumor cells (Described in Figure 4). This pharmacological tree allows one to visualize the 

patterns of cytotoxic activity based on the various pharmacologic mechanisms of action. 

Table 1. Examples of Classification of 1836 Compounds by Features. 

Compound Class Target Process Pathway association 

(-)-Blebbistatin General 
enzymatic 
inhibitor 

non-muscle myosin II 
ATPases 

ATPase 
 

(-)-Parthenolide Epigenetic 
regulator 

HDAC1 Nuclear protein 
deacetylation 

Reader-Writer-Eraser of 
K-ac 

(-)-Terreic acid Targeted 
kinase inhibitor 

BTK RTK Inhibitor PLC/PKC/DAG 

(+)-JQ1 Epigenetic 
regulator 

BRD4 Acetylated lysine 
reader 

Reader-Writer-Eraser of 
K-ac 

(+)-Matrine GPCR & G 
Protein 

Opiate receptor Opioid Receptor agonist 

(+)-Usniacin General 
enzymatic 
inhibitor 

TG synthesis Metabolic modifier Cholesterol metabolism 

10-
Deacetylbaccatin-

III 

Microtubule 
poisons 

Tubulin/micotubules Mitotic inhibitor Cell cycle mitotic 
progression 

10-DEBC 
hydrochloride 

Targeted 
kinase inhibitor 

Akt1 S/T kinase inhibitor PI3K/AKT/mTOR 

17-AAG 
(Tanespimycin) 

Proteotoxic 
agent 

HSP90 Protein folding and 
repair 

Cellular toxicity 

17-DMAG 
(Alvespimycin) 

HCl 

Proteotoxic 
agent 

HSP90 Protein folding and 
repair 

Cellular toxicity 

1-Hexadecanol others Fatty alcohol Metabolic modifier 

1L6 (Akt 
inhibitor) 

Targeted 
kinase inhibitor 

Akt S/T kinase inhibitor PI3K/AKT/mTOR 

1-Naphthyl PP1 Targeted 
kinase inhibitor 

SRC TK inhibitor 
 

20-
Hydroxyecdysone 

Targeted 
kinase inhibitor 

PEPCK Metabolic modifier 

24BPSAP 
(MMP2/MMP-9 

Inhibitor I) 

Migration 
inhibitors 

MMP Proteases Invasion~motility 

2-
Methoxyestradiol 

(2-MeOE2) 

Transcription 
factor 

modulation 

HIF-2 Oxygen rheostat Hypoxia 

2-Thiouracil Antihyperthyroid agent Endocrine and Hormone therapy 
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Table 1. Continued 

Compound Class Target Process Pathway association 

3-
Deazaneplanocin 

A (DZNeP) 

Epigenetic 
regulator 

S-
adenosylhomocystein

e hydrolase 

Histone 
Methylation writer 

Reader-Writer-Eraser of 
K-me 

3-Indolebutyric 
acid (IBA) 

Others 
 

Plant hormone 

3-Methyladenine Targeted 
kinase 

inhibitor 

Vps34 S/T kinase inhibitor PI3K/Akt/mTOR 

4-Phenylbutyrate Epigenetic 
regulator 

Pan-HDAC Nuclear/cytoplasmi
c protein 

deacetylation 

Reader-Writer-Eraser of 
K-ac 

5-hydroxymethyl 
Tolterodine (PNU 
200577, 5-HMT, 

5-HM) 

GPCR & G 
Protein 

mAChR Ion homeostasis Acetylcholine signaling 

5-
hydroxytryptopha

n (5-HTP) 

GPCR & G 
Protein 

5-HT Seratonin related 
signaling 

PI3K/AKT/mTOR~MAP
K 

5-Iodotubericidin GPCR & G 
Protein 

Adenosine receptor cAMP related 
signaling 

PI3K/AKT/mTOR~MAP
K 
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Figure 4. Visualization of the Pharmacological Tree of the 1836 Annotated Compounds.  
1863 compounds were classified based on their biological features including class, canonical target, pathway 
associated with target and cellular or systemic process effected. Gower distances were calculated using the drug 
annotations table. By using the distance to computer nodes and edges of a minimum spanning tree and enabling it 
into an interactive network object. Each branch indicates a different class of activity and each circle indicates a 
compound or drug. The area of each circle indicates the drug response (normalized AUC).  

High-Throughput Drug Combination Screening 

From the single-agent screens, we selected several diverse classes of active drugs based 

on their cytotoxic activity in HGG cells (Described in Figure 5). For primary combination 

screens, we used 6 doses by 6 doses matrix (started with 1µM and half log dilution) of drug 

concentrations for all pairs (245 pairs). These primary combination screens were carried out in 

2D monolayer cultures due to the stability of the system and less variability. Drug combinations 

to be tested included: 1) Pan-active compounds combined with Pan-active compounds (45 pairs); 

2) Pan-active compounds combined with 3D neurosphere-selective compounds (100 pairs); 3) 
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Pan-active compounds combined with 2D monolayer-selective compounds (100 pairs). 

Quantitative indices of drug interaction (synergy, additivity or antagonism) were generated by 

independently varying the concentration of each of the components in the combination. The Bliss 

independence model for synergy will be applied to all combinations tested. A set of charts 

graphing relative synergy (excess killing) or antagonism (reduced killing) and a numerical 

synergy index will be used to define a synergistic interaction. In cases where the two drugs tested 

in combination are also effective as single agents, the expected Loewe additivity is calculated 

and the Over-Bliss value is calculated in the Bliss method. Over-Bliss value greater than 0 

indicates synergy while the value less than 0 indicates antagonism. An Over-Bliss value of 0.30 

or higher and a fa value of greater than 0.40 were used as the criteria for synergistic activity of a 

specific drug combination.  
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Figure 5. Overall Research Strategy for Selecting Drugs and Developing Synergistic Lethality.  
(a) A subset of 1863 drugs were selected from our GCC Library. The 1863 drugs were screened in 2 PDOX model 
(PI3Kmut and PI3Kwt) in 2 different cell culture. (b) We cataloged 4 levels of activity based on the responses to model 
systems: Pan-active, neurosphere selectively active, monolayer selectively active and others. And we selected 10 
most promising drugs for the first 3 levels. (c) Primary combination screening used a 6x6 matrix of drug 
concentrations for all pairs in monolayers due to the stability and less variables of monolayers. Quantitative indices 
of drug interaction (synergy, additivity or antagonism) will be generated based on independently varying 
concentration of each of the components. Pairs exhibiting additive or synergistic activity in the primary screen were 
validated using a second 10x10 matrix tailored to the specific pairs against both neurosphere and monolayer cell 
lines. 

Pairs exhibiting synergistic activity in the primary screen were validated using a 

secondary 10 doses by 10 doses matrix (4 times of IC50 and 2 times dilution for each drugs) with 

dose ranges tailored to the specific pairs. These secondary screens were run against all of the 

pHGG cell lines in both neurosphere and monolayer culture. The “excess over Bliss” was used as 

a measurement for synergistic activity. The same as the primary combinatorial screen, an over-
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Bliss value of 0.30 or higher and a fa value of greater than 0.40 were used as the criteria for 

synergistic activity of a specific drug combination.  

Cytotoxicity Screening 

Normal human astrocytes were used as a control to test for the selectivity of the cytotoxic 

activity of specific combinations. To address differences in apparent cytotoxic activity based on 

differences in the baseline proliferative rate of the cells, the normalized growth rate (GR) of both 

astrocytes and HGG cells were calculated by comparing to the ATP level at Day 0 and Day 7. 

The Hafner Formula for calculating the normalized GR is: 

 

The normalized GR value closer to 1 indicates that the cells grow like untreated cells, the 

value equal 0 indicates that the cell growth is 100% suppressed and the value closer to -1 

indicates the more cells were killed. At the same time the normalized GR was used in a nonlinear 

regression analysis using a 4-parameter logistic equation (GraphPad Prism) and the dose-

response curve of GR was made by GraphPad Prism (Described in Figure 6). By comparing the 

normalized GR value, we could determine the effect of the combinatorial pair on the 

proliferation of pHGG tumor cells and normal Astrocytes.  
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Figure 6.Dose Response Curve of Normalized Growth Rate.  
A dose response curve showing the growth of tissue to stimulation by an agonist. Low doses are insufficient to 
generate a response (GR value is 1), while the high doses generate a maximal response (GR value is -1). GR50 
indicates the concentration to suppress 50% of cell growth, LD50 indicates concentration to decrease the initial cell 
count by 50%. X axis indicates the concentration of drugs, the Y axis indicates the normalized Growth Rate value. 

Statistical Analyses 

Statistical analysis was performed using GraphPad Prism software. All data are presented 

as Means ± SEM unless stated otherwise. Comparisons between different groups were made 

using Student’s t test or ANOVA as appropriate. Dose-response curves were calculated using 

Prism and the AUC for each drug was calculated. P Values of 0.05 or lower were considered 

statistically significant for all experiments (*P<0.05; **P<0.01; ***P<0.001). The excess over-

Bliss was used as a measurement for a synergistic effect. The over-Bliss value of 0.30 or higher 

and fa value of 0.40 or higher were considered statistically significant for combinatorial screen.  

 

Results 

PDOX Model and High Throughput Screen  

To make sure the pHGG PDOX model established successfully, we examined the cerebra 

of PDOX GBM xenografted mice 10 weeks post tumor injection. As Figure 7a illustrates, there 

is a large intra-cerebral tumor located in the xenografted mouse brain compared to the normal 
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brain. Moreover, H&E staining showed histological features typical of GBM (Figure 7b, i and 

ii), and immunohistochemical staining using human-specific anti-mitochondrial antibodies 

showed human GBM cells infiltrating deeply into the mouse brains (Figure 7b, iii and iv).  

 
Figure 7. pHGG PDOX Model Systems.  
(a) A high intra-cerebral tumor 10 weeks after tumor injection. (b) H&E staining showing histological features of 
GBM (i, ii) and immune-histochemical staining using human-specific antibodies showing human GBM cell 
infiltrating into mouse normal brains (iii, iv).  

To screen for compounds that inhibit the survival of pHGG tumor cell lines, we chose 

two PDOX cell lines, R0315, a PI3Kmut cell line and 3752, a PI3Kwt cell line, cultured in both 3D 

neurosphere and 2D monolayer cultures. We optimized the high throughput screen system by i) 

testing an optimal cell density and duration of cell culture, ii) selecting the best endpoint assays 

for measuring cell viability, iii) identifying the best positive and negative controls for the high 
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throughput screening systems and the assessment of data quality control. To optimize cell 

density and the duration of cell cultures, cells were seeded into 384-well plates at 5 different cell 

densities ranging from 125 cells/well to 2000 cells/well to determine the time to confluence for 

2D monolayer cells and the size of the 3D spheroids. We selected a seeding density of 2000 

cells/well for 3D neurosphere cells allowing overnight spheroid formation (perimeter of spheroid 

is 60-100 µm, seen in Figure 8a) and then cultured for 7 days to achieve good-sized spheroids 

(perimeter of spheroid is 100-350 µm, seen in Figure 8a). For the 2D monolayer cells, a seeding 

density of 1000 cells/well was selected, the cells were then allowed to attach overnight and then 

cultured for 7 days to achieve 80% confluence (seen in Figure 8a). 

 

Figure 8. Cell Growth of pHGG Tumor Cells.  
(a) Cell growth of 2D monolayer cells and 3D neurosphere cells. Cells labeled with Draq5 (far red) 10 min prior 4x 
imaging for 2D monolayer cells and 18 hours for 3D neurosphere cells. (b) Time course of cell viability by 
CellTiter-Glo in different cell density and cell lines and doubling time of cell growth.  

Cell viability was measured using the CellTiter-Glo assay (CTG) which measures the 

ATP levels in living cells as the endpoint assay. The CTG cell viability assay is easy to be 
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performed and very sensitive specially for 3D neurospheres. We measured the time-course of 

cell viability by CTG at different cell plating densities and using different cell lines. We used the 

CTG value to calculate the doubling time of each cell density for each cell line. The results 

showed (Figure 8b) that for monolayer cultures, seeding 1000 cells/well for the R0315 and 3752 

cell lines, the doubling times were 2.34 days and 2.22 days respectively. Seeding the 

pHGG_R0315 and pHGG_3752 cell lines at 2000 cells/well in serum free medium resulted in 

doubling times 3.12 days and 3.49 days respectively. The doubling time for the two cell lines in 

both culture conditions are similar. For this reason, we selected 2000 cells/well for 3D 

neurosphere and 1000 cells/well for 2D monolayer as the optimal seeding densities. 

To identify the proper positive and negative controls for the screening assays, we tested 8 

cytotoxic compounds including Doxorubicin, Staurosporine, Dasatinib, Anisomycin, 17-AGG, 

Etoposide, Vincristine, Vorinostat. Staurosporine, a broad-spectrum protein kinase inhibitor 

showed the lowest IC50 for cytotoxic activity (3nM) compared to the control (DMSO) (Figure 

9a). The two pHGG cell lines were treated for 7 days with a wide dose range of test the efficacy 

of Staurosporine (Figure 9b). For subsequent screening studies, staurosporine was used as a 

positive control and DMSO 0.1% served as the negative control (Figure 9c). The values obtained 

with the positive and negative control were used to calculate the Z’-factor (Z prime) that 

assessed the quality of the assay. For the CTG cell viability assay Z’ factor was 0.86, a value that 

confirms that this assay is reliable enough to be used for additional quality-control experiments 

and subsequent screening studies. 
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Figure 9. Positive Control Selection for the High Throughput Screening Assays. 
(a) Dose response curves and IC50 determinations for a panel of cytotoxic compounds tested on pHGG R0315 3D 
tumor cells in neurosphere culture. Data are mean ± SEM. (b) Dose response curve of Staurosporine for both 
neurosphere and monolayer culture of pHGG R0315 cells. Data are mean ± SEM. (c) Negative control (DMSO) and 
positive control (Staurosporine) for high throughput screening assays. pHGG R0315 cells in neurosphere culture 
were labeled with Draq5 (far red) for 18h prior to imaging (4X). 

High Throughput Screen for Small Molecules that Inhibit the Growth and/or Survival of 

pHGG Tumor Cell Lines 

To screen for compounds that inhibit the growth and/or survival of pHGG tumor cell 

lines, we selected the pHGG R0315 cell line, which is a PI3Kmut cell line, and pHGG 3752 which 

is PI3Kwt cell line. Both lines were tested in both 3D neurosphere and 2D monolayer culture. A 

large panel of cancer-relevant drugs (1863 different agents) were screened for both anti-

proliferative and cytotoxic activity in both the pHGG cell lines. All compounds were tested at 

10, 1, 0.1 µM and cell viabilities were measure by ATP level as determined by the CellTiter-Glo 

assay. Dose response curves for each compound were calculated using the CTG values at 72h 

and the AUC was calculated. As shown in Figure 10a, using an AUC ≥ 0.7 as a criterion for 

compound activity, only 8.5% of the compounds tested were active. Using an AUC ≥ 0.4 of the 

tested compounds 17% were active compounds. In order to maximize the possibility of 

discovering classes of compounds showing synergistic activity, for future studies we used an 

AUC ≥ 0.4 as the cut-off value for an “active” compound or drug.  

We used the responses of both 2 PDOX model cell lines in both 3D neurosphere and 2D 
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monolayer culture conditions, to subdivide the panel of 1863 test drugs into 4 levels of cytotoxic 

activity: i) pan-active drugs defined as being active in both cell lines in both neuroshpere and 

monolayer culture, ii)  monolayer-selective drugs active only in cells grown in 2D monolayer 

culture, iii) neurosphere-selective drugs active only in cells grown in 3D neurosphere culture and 

iv) inactive drugs that represented  all other drugs that were either inactive or showed limited 

activity in a limited set of experimental models. In this initial single agent screen, there were 224 

(12%) pan-active drugs, 40 (2%) 2D monolayer-selective drugs, 17 (1%) 3D neurosphere-

selective drugs and 1582 (85%) inactive drugs (Figure 10c). The pharmacological trees (Figure 

10b) demonstrated a high degree of similarity in the response of the two different pHGG cell 

lines, independent of the culture conditions the panel of drugs tested. Five mechanistic clusters: 

i) genotoxic or cytotoxic drugs, ii) proteotoxic drugs, iii) a subset of targeted kinase inhibitors 

associated with the PI3K/mTOR pathway, iv) epigenetic regulators and v) checkpoint kinase 

inhibitors that interfered with mitosis represented the most active groups of compounds (Figure 

10b). Among the pan-active compounds (224 drugs) could be grouped into several diverse 

pharmacologic classes (Described in Figure 10d) including HSP90 inhibitors (11 HSP 90 

inhibitors representing 92% of the all the HSP 90 inhibitors tested),  proteasome inhibitors (5 

proteasome inhibitors representing 83% of all the proteasome inhibitors tested ), HDAC 

inhibitors (18 HDAC inhibitors representing 69% of the HDAC inhibitors tested ), 

PI3K/mTOR/Akt inhibitors (25 PI3K/mTOR/Akt inhibitors representing 32% of the 

PI3K/mTOR/Akt inhibitors tested) and cell cycle regulators (27 cell cycle regulators 

representing 57% of the cell cycle regulators tested).  
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Figure 10. High Throughput Single-Agent Screen of pHGG Cells.  
(a) Cell viability. Each column represents a single compound, Normalized AUC were calculated. The red columns 
indicate AUC is bigger than or equal to 0.4. (b) Effect of mechanistically annotated drugs on cell viability in PDOX 
pHGG_3752_3D neurosphere cells. Proteotoxic cluster, cytotoxic or genotoxic compounds, HDAC inhibitors, 
Mitotic or check point include the most active compounds. (c)Venn Diagram of the number of active drugs in the 2 
PDOX cell lines in monolayer and neurosphere cell culture condition. (d) The major pharmacologic classes of drugs 
with the highest representation in the set of pan-active drugs. 

Reproducibility of High Throughput Single-Agent Screens 

The values obtained with the positive (Staurosporine) and negative control (0.1% DMSO) 

were used to calculate the Z’-factor (Z prime), a measure of the quality of the assay. The Z 

primer values for all the 84 plates from 2 different cell lines cultured as both neurospheres and 

monolayers (21 plates for each cell line in each culture condition) were within the range of 0.5 to 

1 with most having Z’ prime factors of greater than 0.70 (Figure 11c and Table 2). These 

determinations indicate that the quality of the data is both consistent and reliable.  
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Figure 11. Assay Optimization and Reproducibility Analysis. 
(a)(b) Dose-response Curves of Staurosporine (positive control) in different assay plates from 2 sets of independent 
experiments in pHGG R0315 neurosphere cells (a) and pHGG 3752 monolayer cells (b). X axis indicates the 
concentration of Staurosporine, and Y axis indicates the fraction affect. Data are from 9 plates from Set1 and 12 
plates from Set2. The curves are Nonlin fit curves. (c) Z primer values for total 84 plates from 2 different cell lines 
cultured in both neurosphere and monolayer (21 plates for each cell line in each culture condition). Z primer 
between 0 and 0.5 indicates a marginal assay. Z primer between 0.5 and 1.0 indicates an excellent assay.  

In addition, the multiple dose-response curves for the positive control (Staurosporine) 

was used to estimate the reproducibility of the assay using the Minimum Signal Ratio (MSR). As 

is illustrated in Figure 11a-11b, the dose-response curves of Staurosporine from 21 plates from 2 

independent sets of data from 2 different cell lines demonstrated that the curves are highly 

reproducible with some evidence that the results obtained with monolayer cells are slightly 
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tighter compared to the neurosphere data. The observation indicated that the reproducibility of 

the monolayer assays is somewhat better than that of the neurosphere assays. The calculated 

MSR data (Table 2) demonstrated that most of the MSR data from monolayer assays are less 

than 3.0, which indicates the screen data are reproducible and stable. While the MSR data from 

the neurosphere assays were between 3.0-5.0. However, the Log (IC50) is close enough between 

the two assays to demonstrate that the results obtained can be trusted. The lower reproducibility 

of the neurosphere cultures compared to the monolayers may be due to the complex biological 

features of neurosphere cells, including the difficulty in accurately determining the number of 

cells in neurosphere, heterogeneity between the interior and surface of the neurospheres and 

other factors.  

Table 2. Assay Variability by Minimum Significant Ratio (MSR) and Z’ Primer. 

 Cell line_Data Set MSR Z Primer Log (IC50) 

Within-Run R0315_Neurosphere_Set1 4.44 0.72 ± 0.06 -7.92 ± 0.05 

 R0315_Neurosphere_Set2 3.25 0.73 ± 0.06 -7.86 ± 0.03 

 R0315_Monolayer_Set1 2.91 0.75 ± 0.10 -7.55± 0.03 

 R0315_Monolayer_Set2 3.03 0.68± 0.09 -7.54 ± 0.03 

 3752_Neurosphere_Set1 3.67 0.75 ± 0.05 -7.74 ± 0.04 

 3752_Neurosphere_Set2 4.85 0.79 ± 0.05 -7.78± 0.06 
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Table 2. Continued 

 Cell line_Data Set MSR Z Primer Log (IC50) 

 3752_Monolayer_Set1 2.78 0.74 ± 0.04 -7.58 ± 0.02 

 3752_Monolayer_Set2 2.40 0.77 ± 0.08 -7.56 ± 0.02 

Between-Run R0315_Neurosphere 4.49 0.73 ± 0.06 -7.89 ± 0.05 

 R0315_Monolayer 2.92 0.71 ± 0.10 -7.54 ± 0.03 

 3752_Neurosphere 4.68 0.77 ± 0.06 -7.76 ± 0.06 

 3752_Monolayer 2.63 0.75 ± 0.07 -7.56 ± 0.02 

 

Identification of Drug Combinations Exhibiting Synergistic Effect in Killing pHGG Tumor 

Cell lines  

The single agent screen identified 224 drugs that were classified as “pan-active drugs, 

meaning they exhibited cytotoxic activity against both pHGG cell lines independent of whether 

they were cultured in monolayer of neurosphere culture conditions. Since these pan-active drugs 

fell in to 5 major pharmacologic classes, we selected 2 prototypic representatives from each of 

these 5 classes and tested them in pairwise combination for synergistic activity. These 

combinatorial screens were structured as 6 doses by 6 doses combination screens carried out with 

45 pairs of compounds in pHGG 3752 cells grown in monolayer culture. By using the Bliss 

Independence Model, we set a threshold of the Over-Bliss value > 0.3 as indicating synergy and 
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if associated with a fa value > 0.4 as reflecting “synergistic lethality”. Among these 45 

combinatorial pairs tested in the primary screen, 14 pairs exhibited synergistic cytotoxic activity 

in the 3752cell line monolayer cells. This value of synergistic activity reflects 31% of the 

compounds tested. As is illustrated in Figure 12a, the synergistic combinations were not 

randomly distributed but were grouped into three specific mechanistic classes including:  i) 

HDAC inhibitors with HSP90 inhibitors, ii) HDAC inhibitors with proteasome inhibitors, iii) 

HDAC inhibitors with PI3K/mTOR inhibitors. The combinations of classes on pan-active 

compounds was much more likely than other combinations of drugs to result in synergistic lethal 

activity. For instance, only 17% of the combinations of drugs in which one component was a 

pan-active component and the other was selectively active in monolayer cells showed any 

evidence of synergistic activity. No evidence of synergy was detected in any of the combinations 

of pan-active compounds with compounds that were selectively active in pHGG cells grown in 

neurosphere culture conditions. 

We carried out secondary combinatorial screens of all combinations found to exhibit 

synergistic activity in the primary combinatorial screening assays based on the criteria of Over-

Bliss greater than 0.3 and the fa greater than 0.4. These secondary combinatorial screens the 

activity of 10 by 10 doses combinations for each of the active components was tested in both 

R0315 and 3752 pHGG cell lines cultured as both neurospehere and monolayer cultures. We 

again used the criteria for “synergistic lethality” as an Over-Bliss value of > 0.3 and a fa value > 

0.4. The results of these secondary screens confirmed only 9% of pan-active drugs combinations 

showed “Synergistic Lethality”. Among the combinations of drugs showing the most frequent 

synergistic lethality activity, combinations of HDAC inhibitors (Panobinostat, JNJ-26481585) 

and proteasome inhibitors (CEP-18770, MLN 2238) exhibited the most frequent synergistic 
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activity (seen Figure 12a). Comparison of the dose response curves of the proteasome inhibitor 

CEP-18770 and HDAC inhibitor JNJ-26481585 alone and in combination (Figure 12b) shows 

that the addition of the HDAC inhibitor to the proteasome inhibitor results in a half-log left-shift 

of the IC50 compared to the IC50 of the proteasome inhibitor only. These results demonstrate that 

combinations of proteasome inhibitors and HDAC inhibitors synergize to inhibit the growth of 

pHGG tumor cells. 

 

Figure 12. Combinatorial Screens of Combinations of Classes of Pan-Active Compounds in the Inhibition of 
Growth of pHGG Cells.  
(a) Combinatorial matrix of the activity 45 pairs of pan-active compounds combines with pan-active compounds. 
Two representatives of each of 5 pharmacologic classes of pan-active compounds were combined and tested for 
cytotoxic activity against pHGG cells in monolayer culture. Quantitative indices of drug interaction (synergy, 
additivity or antagonism) were calculated based on the Bliss independence model. Dark orange squares indicate 
significant synergistic activity. Light orange square indicates significant synergistic activity that was selective for 
the cell line or culture condition tested. Grey squares reflect no evidence of synergy.  (b) Dose response curves for 
the combination of a proteasome inhibitor with or without the addition of an HDAC inhibitor. Data are mean ± 
SEM. 

Secondary screens of the combinations of drugs that included a representative of the 

classes of pan-active compounds and compounds selective for activity in monolayer (as opposed 
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to neurosphere) that showed synergistic activity in the pHGG 3752 monolayer assays (the 17% 

active pairs) demonstrated that none of these combinations showed synergistic activity in both 

pHGG cell lines and either monolayer or neurosphere culture conditions. All of the synergistic 

combinatorial pairs were selective for a particular cell type or a particular culture condition (Seen 

in Figure 13). 

 

Figure 13. Combinatorial Screen of Pan-Active Compounds Combined with Representative Drugs from 
Classes of Compounds Exhibiting Selective Activity for pHGG Cells Grown in Monolayer Culture.  
Combinatorial matrix of synergistic activity of 100 pairs of pan-active compounds combined with representatives of 
the pharmacologic classes of compounds selectively active in pHGG cells grown in monolayer culture. Quantitative 
indices of drug interaction (synergy, additivity or antagonism) were generated based on the Bliss independence 
model. Dark orange square indicates significant synergistic activity in 2 different cell lines in both neurosphere and 
monolayer cultures. Light orange square indicates significant synergistic activity in only some of the cell lines 
screened. Grey squares reflect no evidence of synergy. 
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Although the combination of HDAC and proteasomal inhibitors produced significant 

synergistic cytotoxic activity in pHGG cells we chose not to pursue a detailed investigation of 

the mechanism of this synergistic effect because both agents inhibit multiple cell regulatory 

pathways complicating the development of a clear understanding of their mechanism of action. 

We chose therefore to review our combinatorial screening results with the goal of identifying 

synergistic combinations of targeted agents with well-defined mechanisms of action that might 

provide insides into the molecular mechanisms that accounted for their synergistic activity. One 

of the most promising pharmacologic classes that had been identified in our initial single agent 

screening studies was the class of inhibitors that targeted cell cycle activity. Studies by a 

colleague, Dr. Lei Guo, who was also searching for synergistic combinations of drugs that 

targeted pediatric brain cancers, in his case ependymomas, had also suggested that the class of 

cell cycle inhibitors exhibited synergistic activity in PDOX cells from patients with 

ependymoma. To explore this interaction in the context of pHGG cells, we examined the activity 

of the Wee1 inhibitor MK-1775 and Chk1 inhibitors (AZD7762 and MK-8776) in both RO315 

and 3752 cells in both monolayer and neurosphere culture. The combinatorial screens were 

carried out with 10 concentrations (2-fold dilutions) of each compound ranging from 1 µM to 2 

nM. Cells were cultured for 7 days and survival was assessed using the Cell-Titer Go assay. For 

the monolayer cultures, both the cell count and ATP level were assessed. For the neurospheres, 

ATP levels were measured using CellTiter-Glo. As shown in the Figure 14, combinations of the 

two inhibitors produced a much greater reduction in cell number compared to DMSO control) 

than either of the drugs alone. As shown in the Figure 15, both the combinations of MK 1775 

with AZD 7762 and MK 1775 with MK 8776 exhibited strong synergy in suppressing the 

survival of pHGG neurosphere cells. For example, MK 1775 alone had an IC50 of 1 uM, whereas 
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the addition of 62 nM AZD7762 lowered the IC50 to 33 nM. Similarly, the addition of 125 nM 

MK8776 resulted in the lowering of the IC50 of MK 1775 from 1 uM to 100 nM. Put all together, 

the combination of Wee1i and Chk1i exhibits significantly synergistic effect on suppressing the 

tumor growth in pHGG cells in both neurosphere and monolayer culture conditions. The studies 

on the synergistic effects of dual inhibition of Wee1 and Chk1 were reported in acute myeloid 

leukemia, lung cancer, prostate cancer and ovarian cancer [90-93] but not in the pediatric high-

grade gliomas. This raise up the question that how this synergistic effect happened in pHGG. 

The next step for us was to identify the mechanism of action of combinations of Wee1 inhibitors 

and Chk1 inhibitors with the goal of understanding the molecular basis for their synergistic 

cytotoxic activity in pHGG cells.  

 

Figure 14. Combinatorial Activity of Combination of a Wee1 Inhibitor and Chk1 Inhibitors for pHGG R0315 
Cells in Monolayer Culture.  
(a-b) Representative images (a) and cell count (b) by nuclear staining after 7 days treatment of DMSO, MK 1775 
(Wee1 inhibitor), AZD 7762 (Chk1 inhibitor), MK 8776 (Chk1 inhibitor), combination of MK 1775 and AZD 7762, 
combination of MK 1775 and MK 8776 in R0315 2D monolayer cells. Cells were fixed with 4% PFA and nuclei 
were stained with DAPI. Data are mean ± SEM. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. 
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Figure 15. Combinatorial Activity of Combination of a Wee1 Inhibitor and Chk1 Inhibitors for pHGG R0315 
Cells in Neurosphere Culture. 
(a) Dose Response Curves showing the response to Wee1 inhibitor (MK 1775) combining with different 
concentrations of Chk1 inhibitors (AZD 7762, MK-8776). The black curves indicated the dose response of single 
Wee1 inhibitor treatment and the green curves indicated the dose response of single Chk1 inhibitor treatment. The 
blue, pink and orange curves indicate the response of combining Wee1 inhibitor with different concentration of 
Chk1 inhibitors. X axis indicates drug concentration and Y axis indicated the drug response (fa). Data are mean ± 
SEM. (b) Surface chart showing the combinatorial activities of a Wee1 inhibitor combining with 2 Chk1 inhibitors. 
X and Y axis indicates 10 drug concentrations of drugs used in the specific drug combination, and Z axis is the 
Calculated Over-Bliss value which indicated the combinatorial activities. The darker the orange is, the more 
synergistic effect of the combination with specific concentrations of each drug has.  

Cytotoxicity of Drug Combinatorial Pairs in Normal Astrocyte Cell line 

To determine whether the synergistic cytotoxic activity of Chk1/Wee1 combinations was 

selective for pHGG cells or was a general property of both normal and malignant neuronal cells, 

we compared the effect of combinations of the Wee1 and chk1 inhibitors on the viability of the 

two pHGG cell lines and two normal human astrocyte cell lines by calculating the normalized 

Growth Rate for each cell line. As seen in Figure 16, the combination of Wee1 inhibitor MK 

1775 and the two Chk1 inhibitors inhibited the growth of normal astrocytes at concentrations 
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much higher than those required to inhibit pHGG tumor cells. For example, the IC50 for the 

inhibition of growth of normal astrocytes by the combination of MK 1775 and 31nM AZD 7762 

is 494 nM whereas the IC50 for pHGG cells tumor is 100 nM. The IC50 for the inhibition of 

astrocyte growth by MK-1775 and 250 nM MK-8776 is 200 nM, while the IC50 pHGG cells is 

about 60 nM. Concentrations of the enzyme inhibitors that inhibited tumor cell survival by 50% 

had no effect on astrocytes. For example, 63 nM MK 1775 combined with 31 nM AZD7762 

inhibited tumor cell survival by 75% but it had no effect on Astrocyte (the GR value is 1, see 

Figure 16a, 16c) or 63 nM MK 1775 combined with 250 nM MK 8776 inhibited tumor cell 

survival by 68% but had no effect on Astrocyte (the GR value is 1, see Figure 16b, 16c). These 

results demonstrate that the combination of Wee1 and Chk1 inhibitors selectively inhibit survival 

of pHGG tumor cells when compared to normal astrocytes. 

Figure 16. Cytotoxic Effect of a Wee1 Inhibitor and Chk1 Inhibitors on the Normal Astrocyte Cells and 
pHGG Tumor Cells. 
 (a) (b) Dose Response Curves of normalized Growth rate for a Wee1 inhibitor (MK-1775) combined with Chk1 
inhibitors (AZD 7762, MK-8776) in both pHGG tumor cells and normal Astrocyte cells. Error bars show mean ± 
SEM, n ≥ 3 independent experiments. (b) Bar chart summarizing the Normalized Growth Rate of combination of a 
Wee1 inhibitor MK 1775 (63 nM) and Chk1 inhibitor AZD 7762 (31 nM) and Combination of MK 1775 (63 nM) 
and Chk1 inhibitor MK 8776 (250 nM) in both normal Astrocyte cell line and pHGG 3752 neurosphere cell line. 
Error bars show mean ± SEM, n ≥ 3 independent experiments; *, P < 0.05; **, P < 0.01; ***, P < 0.001. 

Discussion 

Despite aggressive multimodal therapy, the prognosis for pediatric patient with high 
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grade gliomas [2, 3] remains extremely poor. In this study, we developed a strategy to identify 

more effective therapies for this disease which is using the power of high-throughput targeted 

combinatorial drug screening, to evaluate the combinatorial activity of large numbers of 

combinations of therapeutically useful drugs. It is likely that combination therapies that exhibit 

synergistic lethality may give a wider therapeutic index making them less toxic and safer to use. 

Although high-throughput screening has been used to search for new therapies for other cancers  

[45, 84], the approach has not been used extensively for pHGG. By using our PDOX models, we 

have been able to identify drug combinations that exhibit synergistic lethality and that may 

provide the basis for the development of new therapies for this extremely aggressive disease.  

There are some studies in the literature that have used established cell lines and 

monolayer cell lines to search for new combinatorial therapies. The model system we have used 

for our studies take advantage of the availability of patient derived orthotopic xenograft cells that 

replicate the histology and gene expression profiles of the patients’ original tumors. These 

PDOX models also have maintained the pools of cancer stem cells during their in vivo 

propagation. By using this model, which includes subsets of tumor cells we anticipate being able 

to identify drugs that would be effective against a large population of tumor cells. Using these 

PDOX models and high throughput screening technologies, we found 224 active compounds that 

significantly reduced survival of pHGG cells in both neurosphere and monolayer culture. Based 

on the pharmacologic classification of the active drugs we observed that the two independent 

tumor cell models that we used exhibited very specific drug response profiles. This observation 

suggests that the pattern of response to the drugs is not associated with specific gene mutations 

or aberrations since the two pHGG cell lines are derived from genetically distinct tumors. 

Furthermore the 224 pan-active compounds identified by the single agent screen could be 
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grouped into 5 mechanistically-annotated pharmacologic clusters. The clusters identified by the 

screening studies, proteasome inhibitors, HDAC inhibitors, cell cycle regulators, HSP 90 

inhibitors and PI3K/mTOR pathway inhibitors include many drugs that are active in many other 

cancers. Many of them are currently in clinical trials for a wide range of cancers and other 

diseases [74, 94-100]. HDAC inhibitor for example not only act on and modify histones, but also 

are involved in many other cellular processes including tumor progression, cell cycle control, 

apoptosis, angiogenesis and cell invasion [95]. Thus, HDAC inhibitors exert multiple cellular 

effects and their mechanism of action can include cell cycle arrest, the activation of apoptotic 

pathways, the initiation of DNA damage and repair, the generation of reactive oxygen species 

(ROS), angiogenesis and proteotoxicity. Some HDAC inhibitors such as Vorinostat (SAHA, 

Zolina) was FDA approved in 2006 for use in combination with temozolomide and radiotherapy 

for treating patients with newly diagnosed glioblastoma multiforme (GBM). 

By doing the combinatorial screen of these different strategies of combination, we found 

the multifunctional compounds combining multifunction compounds are more frequently having 

synergistic effect on inhibiting the cell survival of pHGG tumor cells. For example, combination 

of Proteasome inhibitors and HDAC inhibitors gave a significant synergistic effect on inhibiting 

the survival of pHGG tumor cells. Recent studies have demonstrated that the HDAC inhibitors 

induce synergistic levels of apoptosis when given in combination with the proteasome inhibitor 

like bortezomib induce synergistic levels of apoptosis. Clinical trials to evaluate the effect of this 

combination is ongoing [101]. Since both proteasome inhibitor and HDAC inhibitors impact 

similar pathways such as ER stress and apoptosis, they both induce ROS production and can 

inhibit angiogenesis. Since these cellular processes play a very important role in the survival, 

maintenance and metabolism of pediatric HGG, the combined effects of both proteasome and 
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HDAC inhibitors could be a target for treatment strategies. However, it remains to be established 

how toxic these combinations may be to normal cells.  

Another combination that exhibited synergistic activity was the combination of an HDAC 

inhibitor combined with PI3K pathway inhibitor. HDAC and PI3K antagonists have been shown 

to cooperate to inhibit the growth of MYC-driven medulloblastoma (MB) [98]. The HDAC 

inhibitor induces expression of FOXO1, and the PI3K/AKT signaling pathway regulates the 

nuclear location of FOXO1, so PI3K pathways inhibitors synergized with HDAC inhibitors to 

activate FOXO1 and to inhibit the growth of MYC-driven MB [98]. The combination of HDAC 

and PI3K inhibitors could represent a new avenue for the treatment of pHGG. 

In our studies, the combination of pan-active compounds had the highest frequency of 

exhibiting synergistic lethality. Using this strategy, we expanded our combinatorial screen and 

found that Wee1 inhibitor and Chk1 inhibitors showed a selectively synergistic effect on 

inhibiting survival of pHGG tumor cell lines. Wee1 and Chk1 are key regulators of the damage 

surveillance pathways that maintain genome integrity [102, 103]. They are also involved in cell 

cycle regulation and DNA damage repair. The combined inhibition of Wee1 and Chk1 has been 

reported to synergistically enhance therapeutic activity in melanoma, leukemia, lung, prostate 

and ovarian cancers [90, 91, 104-106]. The combination of inhibition of Wee1 and Chk1 was 

surprisingly selective, impacting cancer cells to a much greater degree than normal cells. 

Concentrations of the Wee1 inhibitor and the Chk1 inhibitors have effect on pHGG tumor cells 

didn’t affect the cell growth in normal Astrocyte. Thus, the combination of Wee1 and Chk1 

could be a potential treatment for pHGG. 

Due to the difficulties in the studying mechanisms responsible for synergistic effect of 

two multifunctional drugs (HDACi and Proteasome inhibitor) whereas Wee1 and Chk1 
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inhibitors are targeted therapies, the next step in our studies will be to focus on studying the 

mechanism of action of combinations of Wee1 inhibitors and Chk1 inhibitors with the goal of 

understanding the molecular basis for their synergistic cytotoxic activity in pHGG cells.  
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CHAPTER III  

WEE1 AND CHK1 ANTAGONISTS COOPERATE TO INDUCE SYNERGISTIC 

LETHALITY IN PEDIATRIC HIGH-GRADE GLIOMA PDOX CELL LINES 

 

Introduction   

Maintenance of genome integrity is essential for preventing the development of diseases 

related to genomic instability such as cancer. One of the major threats to genome integrity is 

DNA damage [102, 107]. To counteract the threats posed by DNA damage, mammalian cells 

have developed a complex network of DNA damage surveillance pathways that maintain 

genome integrity. Wee1 and Chk1 are two enzymes that play a key role as regulators of DNA 

damage surveillance pathways. Chk1 regulates the activity of the S phase and G2 checkpoints 

[108, 109] of the cell cycle as well as replication initiation and the stability of the replication fork 

[110-112].  Chk1 also controls the mitotic entry in normal circumstances cells and plays an 

important role in the function of the mitotic spindle checkpoint [113]. Wee1 has an essential role 

in regulating the normal cell cycle especially in regulating the G2/M transition [114]. Wee1 is a 

protein kinase that is involved in checkpoint regulation in response to DNA damage and/or 

replication stress. It arrests cell cycle progression in S and G2 phase by adding an inhibitory 

phosphorylation (Tyr15) to cyclin-dependent kinases CDK2 and CDK1, respectively [114, 115]. 

The biological processes regulated by Wee1 and Chk1 kinases are highly dependent on the 

activity of CDK’s.  

Blocking S and G2 DNA damage checkpoints represent a promising antitumor 

therapeutic strategy. Due to aberrant p53 signaling, which abrogates the G1 checkpoint, many 

cancer cells demonstrate an increased dependence on S and G2 DNA damage checkpoints. Even 
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in p53 wild type cells, the inhibition of Chk1 or Wee1 induces high levels of replication stress 

due to unscheduled initiation of DNA replication an effect that can contribute cell death. Indeed, 

potent inhibitors of Chk1, Wee1 which are key component of the S and G2 checkpoints, are 

under clinical evaluation. Not only much greater effect has been seen when combining the Wee1 

or Chk1 inhibitors with DNA damage agents, HSP90 inhibitors and or other cell cycle regulatory 

proteins [103, 116-118], but also the combination of Wee1 and Chk1 inhibition showed 

significant synergistic effect on some cancer cell lines [117, 119]. Strong rationale exists for 

combined therapy with Wee1 and Chk1 inhibitors. Wee1 is overexpressed and associated with 

patient outcomes in many cancer types, including ovarian, glioblastoma and breast cancer. Chk1 

has also found to be overexpressed in a variety of human tumors including breast, colon, liver, 

gastric, some subtype of neuroblastoma, etc. Some research demonstrated enhanced activation of 

Chk1 may contribute to therapy resistance including cancer stem cells from glioblastoma, 

prostate and lung NSCLC to chemotherapy or radiotherapy as well as other anticancer therapies, 

for instance, HDAC inhibitors. At the same time, both of the Wee1i and Chk1i can abrogate G2 

arrest, causing cells with unrepaired DNA damage to enter into mitosis and undergo mitotic 

catastrophe. Wee1i and Chk1i have demonstrated antitumor activity in a number of preclinical 

models including acute myeloid leukemia, lung cancer, prostate cancer and ovarian cancer [90-

93]. However, there is no information available to date on the expression of Wee1 and Chk1 in 

pediatric high-grade gliomas and the efficacy of combination of Wee1i and Chk1i in pHGG 

remains to be fully elucidated.  

In our study we have investigated the cytotoxic activity in pHGG cell lines (in monolayer 

or neurosphere culture) achieved by combining a Wee1 inhibitor (MK 1775) with Chk1 

inhibitors (AZD7762 or MK-8776). We found that combinations of the two classes of inhibitors 
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had much greater cytotoxic activity than either agent alone. The goal of the studies described in 

this Chapter is to identify the underlying molecular mechanisms that contribute to this selective 

and synergistic activity. Since inhibitors of both Wee1 and Chk1 play important roles in 

promoting DNA damage, regulating cell cycle progression, and the initiation and stability of 

replication fork our studies investigated these aspects including cell cycle profile, DNA damage 

and replication fork stability. 

 

Materials and Methods 

Reagents/Solutions 

Propidium iodide (Thermo Fisher Scientific, P1304MP), IdU (Sigma-Aldrich, I7125), CIdU 

(Sigma-Aldrich, C6891), ProLong Gold anti-fade reagent (Thermo Fisher Scientific, Invitrogen, 

P36935), SDS (Sigma-Aldrich, 436143), Tris-HCl (Promega, H5121), EDTA (Sigma-Aldrich, 

1233508), Seahorse XF Real-Time ATP Rate Assay Kit (Agilent, 103592-100). 

Antibodies 

p-Histone H2A.X (Ser139) antibody conjugated with Alexa Fluor-488 (Cell Signaling, #9719), 

Mouse anti-BrdU (BD Biosciences,347580), Rat-anti-BrdU (Abcam 6326), Alexa-488 anti-rat 

antibody, Alexa-594 anti-mouse antibody, phospho-Histone H3 (Ser-10) antibody (Cy5 

conjugate, Millopore 16-218), cleaved caspase-3 (BD Bioscience, 559565), Alexa Flour 555 

conjugated anti-rabbit (Molecular Probe, Life Technologies). 

Cell Culture and Treatment 

As described in Material and Methods in the Chapter II.  

Cell Staining, Imaging, and Viability Assay 

As described in Material and Methods in the Chapter II.  
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Cell Viability Assay 

As described in Material and Methods in the Chapter II.  

DNA Damage Marker Stain 

Cells were collected by centrifugation and the supernatant was aspirated. The cells were 

resuspended in 0.5 ml-1 ml PBS and formaldehyde was added to obtain a final concentration of 

4%. Cells were fixed for 15 minutes at room temperature and then washed with PBS. Cells were 

permeabilized by the addition of ice cold 90% methanol for 20 min. Permeabilized cells were 

stained with a 1:200 dilution of phosphor-Histone H2A.X (Ser139) antibody conjugated with 

Alexa Fluor-488 (Cell Signaling, #9719) for 1h in 37°C, followed by washing in PBS. Cells 

were resuspended in PBS and analyzed by flow cytometry with gates created to exclude non-

specific staining. Statistical analyses were performed using FlowJo and Prism 6 (GraphPad) 

software. 

Cell Cycle Profile 

For neurosphere cells, single cells were made by pipetting 20 times and using 40 µm cell 

strainer to remove big clusters. Single stem-cell like cells were spun down 1200 rpm for 3 

minutes and the supernatant was removed. For monolayer cultures, cells were trypsinized by 

Trypsin 0.25% for 2 minutes and spun down 1200 rpm for 3 min and supernatant was removed. 

Single cells were fixed in cold 70% ethanol for at least 30min followed by washing with PBS 

twice and staining with propidium iodide (Thermo Fisher Scientific, P1304MP)/RNase for 20 

minutes at room temperature. Cell cycle analysis was performed on a BD FACS Canto flow 

cytometer with gates created to exclude cellular debris and cell doublets. The results were 

quantified as the average of at least three independent experiments ± SEM per time point. 

Statistical analyses were performed using FlowJo and Prism 6 (GraphPad) software. 
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DNA Fiber Assay 

Cells were plated and treated with DMSO, MK 1775, AZD 7762, MK 8776, a 

combination of MK 1775 and AZD 7762 or a combination of MK 1775 and MK 8776 for 72h. 

After the treatment, cells were labeled with IdU (5-Iodo-2′-deoxyuridine, 25 µM, Sigma-Aldrich, 

I7125) for 30 min, washed 3 times with PBS, labeled with CIdU (5-Chloro-2′-deoxyuridine, 250 

µM, Sigma-Aldrich, C6891) for an additional 30 minutes, and then washed with PBS 3 times. 

DNA fibers were spread as described in Figure 17. Briefly, cells were diluted 1:5 with unlabeled 

cells, and 2.5 µl of the cells suspended in PBS (cell density: ∼106 cell/ml) was spotted onto a 

glass slide. After briefly drying at room temperature for 4 minutes, 7.5 µl of spreading buffer 

(0.5% SDS, 200 mM Tris-HCl pH 7.4, 50 mM EDTA) was dropped on the cells and incubated 

for 6 min. Slides were tilted (∼15°) to spread lysed cells across the slide. Slides were air dried, 

fixed in methanol: acetic acid (3:1) for 15 min, and then stored at 4°C overnight before staining. 

IdU and CldU tracks were detected using Mouse anti-BrdU (BD Biosciences,347580) (1:25) and 

Rat-anti-BrdU (Abcam 6326) (1:200) for 1hr in room temperature, followed by Alexa-488 anti-

rat antibody (1:200) and Alexa-594 anti-mouse antibody (1:200) for 1hr at room temperature 

followed by mounting with ProLong Gold anti-fade reagent (Thermo Fisher Scientific, 

Invitrogen, P36935). Fibers were imaged at 60x oil with DeltaVision Elite (Deconvolution 

microscope). Imaging analysis and DNA fiber length measured by ImageJ. At least 500 fibers for 

each treatment were analyzed. Statistical analyses were performed using a two-tailed Mann-

Whitney test with Prism 6 (GraphPad) software. 
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Figure 17. DNA Fiber Assay. 
(a) Schematic overview of the protocol (see text for details). (b) Representative kinds of DNA fibers identified by 
using the protocol. The images showed marked replication structures: ongoing replication; origin of replication fired 
during first pulse of labelling; origin of replication fired during second pulse of labelling; replication merging; 
stalled fork or termination during first pulse. 

Metabolic Extracellular Flux Analysis 

The Seahorse XF96 Analyzer (Seahorse Bioscience, Agilent) was used to measure 

oxygen consumption rate (OCR), extracellular acidification rate (ECAR) and proton efflux rate 

(PER) in pHGG tumor cells. Cells were plated at 1.5 × 104/well in 80 µL culture medium in 96-

well plates and treated with DMSO, MK 1775, AZD 7762, MK 88776, a combination of MK 

1775 and AZD 7765 or a combination of MK 1775 and MK 8776 for 16 hours. For a 

typical bioenergetic profile, we used oligomycin to block ATP synthase; and then combination of 

rotenone and antimycin-A to detect non-mitochondrial metabolic activity. Before the 

measurement, cells were incubated for 1 hour with XF Assay Medium (Seahorse Bioscience) 

plus glucose, L-glutamine and sodium pyruvate. During the assay, we injected the following at 

the final concentrations in the injection ports: 1.5 µM oligomycin, 0.5 µM for both rotenone and 

antimycin A. OCR, ECAR and PER were calculated by plotting the O2 tension of media as a 

function of time (pmol/min) and lactic acid production (measured by acidification) as a function 
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time (pmol/min), All data was normalized by the cell number measured in each individual well. 

Based on the alteration of OCR, ECAR and PER, the analyzer software calculated the rate of 

mitochondrial respiration and glycolysis. The results were quantified as the average of 4-6 

wells ± SEM per time point in at least three independent experiments.  

Immunofluorescence Assay for Mitotic Catastrophe cells 

pHGG monolayer cells were seeded in 384-well plates and were treated with DMSO, the 

Wee1 inhibitor MK 1775 (63 nM), the Chk1 inhibitors AZD 7762 (31 nM), MK 8776 (250 nM) 

or the combinations of the Wee1 inhibitor and Chk1 inhibitors for 3 days. After treatment, cells 

were fixed with 4% PFA, incubated with 0.5% Triton X-100 for 10 minutes followed by washing 

with ice-cold PBS and blocking in PBS + 5% BSA + 2% FBS + 0.1% Triton X for 60 minutes at 

room temperature. Cells were stained with specific antibodies against phospho-Histone H3 (Ser-

10) (1:200, clone 3H10, Cy5 conjugate, Millipore 16-218), g-H2AX (Ser-139) (1:200, Alexa 

Flour 488 conjugate, clone 20E2, Cell Signaling #9719) and cleaved caspase-3 (1:500, BD 

Bioscience, 559565) at 4°C overnight followed by incubation with Alexa Flour 555-conjugated 

anti-rabbit (1:500, Molecular Probe, Life Technologies) antibodies for 2 hours at room 

temperature. Cell nuclei were counterstained with DAPI. Cells were imaged on ImageXpress 

Micro Confocal High Content System. MetaXpress® PowerCore™ software was used for image 

analysis for analyzing the intensity of these 3 different channels of single cells in each well. For 

quantification, all the cells in 384-well plates were counted in 7 independent wells. We set a 

threshold of the intensity of FITC channel > 800 as indicating g-H2AX positive cells, a threshold 

of the intensity of Cy5 channel > 600 as indicating pHH3 positive cells and intensity of 

TexasRed channel > 550 as indicating cleaved-caspase 3 positive cells. By using these 

thresholds, triple positive cells indicated the mitotic catastrophe cells. The results were quantified 
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as the average of 7 wells ± SEM. Statistical analyses were performed using a two-tailed Mann-

Whitney test with Prism 6 (GraphPad) software.  

 

Results 

The Combination of a Wee1 Inhibitor and Chk1 Inhibitors Promoted DNA Damage During 

DNA Replication in High-Grade Glioma PDOX Cells 

The accumulation of DNA damage is a common consequence of loss of Wee1 or Chk1 

activity. In order to measure the effect of inhibitors of both Wee1 and Chk1 on DNA damage we 

used a biochemical marker, the phosphorylation of the histone variant H2A.X on serine-139, to 

quantitate the extent of damaged DNA in inhibitor-treated cells. We treated the both neurosphere 

and monolayer cultures of pHGG PDOX cells with MK 1775, AZD 7762, MK 8776, or a 

combination of MK 1775 and AZD 7762, or a combination of MK 1775 and MK 8776 for 12h, 

24h, 48h and 72h. Cells were then stained with an antibody to phosphorylated histone variant 

H2A.X and the extent of antibody binding, a marker for DNA damage was quantitated by flow 

cytometry. Quantitative analysis of DNA damage using flow cytometry demonstrated a 

significant increase in the g-H2A-postive cell population following combined Wee1 inhibitor and 

Chk1 inhibitor treatment compared to either DMSO (control) or treatment with the individual 

inhibitors alone (Figure18). For example, in neurosphere cells (Figure 18 a, 18d), the average of 

g-H2AX-postive cell population in the cells treated with the combination of MK1775 and AZD 

7762 was 18.47% while that in control DMSO group was only 1.13%. The averages of g-H2AX-

postive cell populations in the single treatment groups, MK 1775, AZD 7762 or MK 8776 were 

2.46%, 3.14%, 1.28% respectively, a set of values not significantly different from control. These 

results showed that the combination of MK 1775 and AZD 7762 corporately promoted 
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significant DNA damage for pHGG tumor cells. Similar results were obtained when the Wee1 

inhibitor was combined with a second Chk1 inhibitor (MK 8776). Comparison of the results 

obtained with neurosphere and monolayer cultures demonstrated that the effect on DNA damage 

occurred earlier in the neurosphere cultures (24h) than in cells growing in monolayer culture 

(72h) (Figure 18b, 18e).  

To test whether the effect of the combination of Wee1 and Chk1 inhibitors on DNA 

damage in pHGG cells was selective for the tumor cells, we compared the activity of the 

inhibitors in normal astrocytes with their activity in pHGG cells. Comparison of the results 

obtained with the pHGG cells (Figure 18a, b, d, e) with that obtained with normal astrocytes 

(Figure 18c, f) demonstrated a much greater effect of the combinations of inhibitors on the tumor 

cells compared to the normal cells. While the optimal concentration of both inhibitors increased 

the indices of DNA damage by 16-fold, compared to control DMSO in tumor cells, the same 

concentrations of drugs increased damage in the normal astrocytes by less than 2-fold (a 

statistically non-significant effect). While the effect of the combinations on damage to the tumor 

cells was clearly synergistic, it was at best additive in the normal astrocytes.  
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Figure 18. Effect of Combinations of a Wee1 Inhibitor and Chk1 Inhibitors on DNA Damage in pHGG 
Tumor Cells and Normal Astrocyte Cells. 
(a-c) Representative flow cytometric plots showing the total percentage of g-H2AX-postive cells after treatment of 
DMSO, combination of MK 1775 (63 nM) and AZD 7762 (31 nM), MK 8776 (250 nM) in (a) pHGG neurosphere 
cells (24h), (b) monolayer cells (72h) and (c) normal Astrocyte cells (72h). After treatment, the cells were incubated 
with g-H2AX -Alexa Flour-488 for 1 hour and then stained with 1ug/ml PI. After gating on single cells via PI-width 
and area parameters cells were gated for g-H2AX positive cells against DNA content. X axis indicates the intensity 
of channel of with Alexa Flour-488. Y axis indicates FSC-H used for identify single cells based on the cell size. (d-
f) Bar chart summarizing the percentage of total g-H2AX-postive cells after treatment of DMSO, combination of 
MK 1775 (63 nM) and AZD 7762 (31 nM), MK 8776 (250 nM) in (d) pHGG neurosphere cells (24h), (e) monolayer 
cells (72h, middle) and (f) normal Astrocyte cells (72h, bottom). Error bars show mean ± SEM, n ≥ 3 independent 
experiments; *, P < 0.05; **, P < 0.01; ***, P < 0.001. 

The Combination of Wee1 and Chk1 Inhibitors Induced G2/M Arrest in High-Grade Glioma 

PDOX Cells 

To examine the effects of combinations of Wee1 and Chk1 inhibitors on the distribution 

of cell cycle phases in pHGG cells, we used flow cytometry to quantitate the distribution of 

pHGG R0315 cells in neurosphere and monolayer cultures following treatment with the 

checkpoint inhibitors alone or in combination. Both neurosphere and monolayer cultures were 



 

64 
 

treated with the Wee1 inhibitor MK 1775 (63 nM), the Chk1 inhibitors AZD 7762 (31 nM) or 

MK 8776 (250 nM), or a combination of MK 1775 and AZD 7762, or a combination of MK 

1775 and MK 8776 for 12, 24, 48, 72h. The results we obtained (Figure 19) clearly demonstrate 

that combined Wee1/Chk1 inhibition promotes mitotic entry decreasing the fraction of cells in 

the G1 phase of the cell cycle and increasing the fraction of cells in G2/M phase. The fraction of 

cells in the S phase was not changed significantly. For example, after 24 hours of treatment with 

the combination of MK 1775 and AZD 7762, the average of fraction of cells in G1 was lowered 

from 33.6% (DMSO control) to 8.4%, and the average of fraction of cells in G2/M was increased 

from 14.1% (DMSO control) to 22.8% (Figure 19a, 19d). This effect on mitotic entry developed 

early after exposure to the drug combination, being detectable within 24 hours of the addition of 

the drugs and persisting until at least 72h. The results obtained with monolayer cells, was similar 

to the results obtained with neurospheres (Fig 19b, 19e). Treatment of cells with the combination 

of inhibitors increased mitotic entry. For instance, treatment of cells with the combination of MK 

1775 and AZD 7762 for 72hrs lowered the average of fraction of the cells in G1 phase from 

40.8% (DMSO control) to 18.3% and increased the cells in G2/M phase from 14.3% (DMSO 

control) to 25.4%. It is noteworthy that the effect of the combination treatment on the 

monolayers was delayed with respect to the neurospheres. As shown in the time course study, the 

effect of the combination treatment of cell cycle was not detected until 48 hours after the 

addition of the drug and then persisted until at least 72h after the initiation of the treatment.  

In contrast, to the tumor cell lines, treatment of normal astrocytes with either the 

individual checkpoint inhibitors or the combinations had no effect on their cell cycle (Figure 19c, 

19f). This difference in cell cycle dynamics mirrors the fact the combination of inhibitors has no 
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effect on normal cell proliferation while significantly inhibiting the proliferation of the pHGG 

tumor cells.  

 

 

Figure 19. Effect Wee1 and Chk1 Inhibitors on Cell Cycle Profile of pHGG PDOX Tumor Cells and Normal 
Astrocyte Cells. 
(a-c) Representative flow cytometric plots showing cell cycle profiles after treatment of DMSO, combination of MK 
1775 (63 nM) and AZD 7762 (31 nM), MK 8776 (250 nM) in (a) pHGG neurosphere cells (24h), (b) monolayer 
cells (72h) and (c) normal Astrocyte cells (72h). After treatment, the cells were stained with 1ug/ml PI for 30 min. 
Cell cycle analysis calculated G1, S Phase and G2/M from a PI-area histogram. (c-f) Bar chart summarizing 
quantitation of cell cycle after treatment of DMSO, combination of MK 1775 (63 nM) and AZD 7762 (31 nM), MK 
8776 (250 nM) in (d) pHGG neurosphere cells (24h), (e) monolayer cells (72h) and (f) normal Astrocyte cells (72h). 
Error bars show mean ± SEM, n ≥ 3 independent experiments; *, P < 0.05; **, P < 0.01; ***, P < 0.001. 

Effect of Combined Wee1 and Chk1 Inhibitors on the Replication Speed and Replication Fork 

Stability During DNA Replication in High-Grade Glioma PDOX Cells 

To evaluate the effect of combinations of the Wee1 inhibitor MK1775 and Chk1 

inhibitors AZD 7762 and MK 8776 on genomic integrity during DNA replication, we performed 

a DNA fiber assay. This assay uses sequential pulse labelling of replicating DNA with IdU and 
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CIdU to estimate the replication fork velocity and the frequency of replication fork initiation. 

pHGG cells in both monolayer and neurosphere cultures were treated with 0.1% DMSO, 63nM 

MK 1775, 31 nM AZD 7762, 250 nM MK 8776, or a combination of MK 1775 and AZD 7762, 

or a combination of MK 1775 and MK 8776 for 72h. At the end of the incubation, cells were 

pulse labelled sequentially with IdU and CIdU under conditions described in detail in the 

Methods section. After pulse labelling, cells were lysed, DNA fibers were spread onto a glass 

slide and labelled with fluorescent antibodies specific for either IdU or CldU (under conditions 

described in detail in the Methods section). Inspection of the isolated stained DNA fibers using 

fluorescent imaging allows for the calculation of replication fork velocities (1 µm roughly 

corresponds to 2.59 kb). The longer both labeled tracts are, the faster of the replications rate. 

Slower replication, which may be due to slower DNA polymerization or increased fork stalling, 

is reflected in shorter tracts. The results from this study (Figure 20) demonstrated that both the 

IdU and CldU - labeled tracts (red and green respectively in the combination group) were much 

shorter than the comparable tracks in the DMSO controls. Quantitation of the length of the 

labelled tracks (in Figure 20b) in the combination-treated cells showed that length of green tracts 

(CldU) were 3.88 ± 3.93 µm and 5.63 ± 4.28 µm separately in both checkpoint inhibitor 

combination groups compared to 11.84 ± 4.21µm (P < 0.0001) in the DMSO control. 

Quantitation of the speed of the replication forks (in Figure 20c) in DMSO control group was 

1.02 ± 0.36 kb/min, while the replication rates in the combination groups were 0.44 ± 0.34 and 

0.49 ± 0.37 kb/min (both of the p value vs DMSO < 0.0001). Cells treated with the two Chk1 

inhibitors, AZD 7762 and MK 8776, as single agents had median lengths of the labelled DNA 

tracks that were comparable to the DMSO controls (9.61± 5.05, 8.25 ± 5.14 µm respectively). 

The replications rates for the Chk1 inhibitor-treated cells were also similar to controls (0.83± 
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0.44, 0.71± 0.44 kb/min respectively). The Wee1 inhibitor MK 1775 caused shorter fiber length 

(5.92 ± 3.72 µm) and a slower speed of replication (0.51± 0.32 kb/min) than the two Chk1 

inhibitors or the DMSO control (P value <0.0001). The effect of Wee1 inhibitor was similar to 

the effect of the combination treatment. The results obtained demonstrate that the combination of 

the Wee1 and Chk1 inhibitors slowed the replication speed during the DNA replication and 

suggest that the Wee1 inhibitor plays a dominant role in this effect. The reduction in the DNA 

replication rate is likely to contribute to the ability of combinations of Wee1 and Chk1 inhibitors 

to synergistically suppress the growth of pHGG tumor cells.  

Table 3. Effect of Treatment of Wee1i and Chk1is on the Replication Forks in pHGG 

PDOX Monolayer Cells. 

Treatment Fiber Length 

(Green, µm) 

Replication Fork Speed 

(kb/min) 

DMSO 11.84 ± 4.21 1.02 ± 0.36 

Wee1i_MK 1775 5.92 ± 3.72 0.51 ± 0.32 

Chk1i_AZD 7762 9.61± 5.05 0.83 ± 0.44 

Chk1i_MK 8776 8.25± 5.14 0.71 ± 0.44 

MK 1775 & AZD 7762 3.88 ± 3.93 0.44 ± 0.34 

MK 1775 & MK 8776 5.63 ± 4.28 0.49 ± 0.37 
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Figure 20. Effect of Combination of Wee1i and Chk1i is on the Replication Forks in pHGG PDOX Monolayer 
Cells. 
(a) Representative immunofluorescent images showing the replication forks at 72 hours following treatment with 
DMSO, Wee1 inhibitor MK 1775 (63 nM), Chk1 inhibitor AZD 7762 (31 nM) and MK 8776 (250 nM), 
combination of MK 1775 AZD 7762 and combination of MK 1775 and MK 8776 in monolayer culture condition. 
Scale bar, 10µm. (b) Frequency distribution of fiber length of IdU and CIdU. The shift of curves of IdU and CIdU to 
the left in monolayer culture condition upon combination of Wee1i and Chk1is. (c) Bar chart summarizing 
quantitation of replication fork speed after treatment of DMSO, combination of MK 1775 (63 nM) and AZD 7762 
(31 nM), combination of MK 1775 (63 nM) and MK 8776 (250 nM). Median replication fork speed (kb/min) is 
indicated. Data are median ± SEM, *, P < 0.05; **, P < 0.01; ***, P < 0.001. ****, P < 0.0001. 

In addition to providing information on the speed of DNA replication, DNA fiber 

analysis also provides information initiation of DNA replication forks (origin of firing) and the 



 

69 
 

stability of replication forks. Comparison of the DNA fibers from the inhibitor combination-

treated cells compared to DMSO controls reveals many fewer pulse labelled fibers (Figure 20a). 

This result indicates a decrease in extent of the initiation of DNA replication during the pulse-

labelling interval. In addition, there were many more replications forks visible in the 

combination-treated cells compared to controls, with an increase in the number of green only 

tracts (origins that fired during the second labeling periods) indicative of an increase in the 

number of replication forks that initiated during the second labeling periods and an increase in 

the number of red only tracts (origins that fired during the first labeling periods but terminated) 

indicative of an increase in the number of replication forks that terminated. Taken together, the 

results of the DNA fiber assays showed that the combination of Wee1 inhibitor and Chk1 

inhibitors caused a slowing replication speed and an increase in replication forks instability.  

 

The Combination of a Wee1 Inhibitor and Chk1 Inhibitor Induced Mitotic Catastrophe in 

pHGG Tumor Cells 

Mitotic catastrophe is induced when cells enter into mitosis in the presence of damaged 

DNA. The resulting disruption in the replicative machinery results in the induction of apoptosis. 

Since our previous studies have demonstrated the combined effect of a Wee1and Chk1 inhibitor 

is to both stimulate mitotic entry and increase DNA damage in the pHGG tumor cells, we 

hypothesized that mitotic catastrophe might result. If this is the case then the induction of mitotic 

catastrophe could be the underlying mechanism leading to the death in pHGG cells in induced by 

combined Wee1/Chk1 inhibition.  

To address this possibility, we investigated the distribution of genotoxic lesions, caused 

by combined Wee1 inhibitor and Chk1 inhibitors in pHGG tumor cells. Both monolayer and 
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neurosphere cultures were treated with DMSO, MK 1775 (63 nM), AZD 7762 (31 nM), MK 

8776 (250 nM) or a combination of MK 1775 and AZD 7762, or a combination of MK 1775 and 

MK 8776 for 0,12, 24, 48 and 72h. These Wee1/Chk1 abrogation in the pHGG tumor cells lead 

to the accumulation of mitotic cells carrying DNA lesions, as evidenced by the appearance of a 

substantial g-H2A-postive cell populations in G2/M phase after 24h for the 3D neurosphere cells 

(Described in Figure21a, b) and 72h for the 2D monolayer cells (Described in Figure21a, c). The 

combination of MK 1775 and AZD 7762 significantly increased of g-H2A-postive cell 

populations in G2/M phase to 20.85 ± 2.47 vs DMSO 1.04 ± 0.71 (P value is 0.0024) after 24 

hours in neurosphere culture and 13.13 ± 1.42 vs DMSO 0.25 ± 0.04 (P value is 0.0049) after 72 

hours in monolayer culture. Similarly, the combination of MK 1775 and MK 8776 also induced 

significant increase of g-H2A-postive cell populations in G2/M phase to 20.55 ± 5.16 vs DMSO 

1.04 ± 0.71 (P value was 0.016) after 24 hours in neurosphere culture and 13.86 ± 2.72 vs 

DMSO 0.25 ± 0.04 (P value was 0.030). While none of the single treatments of MK 1775, AZD 

7762 and MK 8776 change the g-H2A-postive cell populations in G2/M phase (Figure 21b, 21c). 

Thus, these Wee1/Chk1 dual inhibition in the pHGG tumor cells result in the accumulation of 

mitotic cells carrying DNA damage.  
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Figure 21. Effect of Wee1 and Chk1 Antagonist on Mitotic Cells in pHGG Tumor Cells. 
(a) Representative flow cytometric plots showing the DNA damage cell populations in G2/M phase after 
treatment of DMSO, combination of MK 1775 (63 nM) and AZD 7762 (31 nM), MK 8776 (250 nM) in (top) pHGG 
neurosphere cells (24h), (bottom) monolayer cells (72h). (b-c) Bar chart summarizing quantitation of the DNA 
damage cell populations in G2/M phase after treatment indicated in (b) neurosphere cells (24h) and (c) monolayer 
cells (72h). Error bars show mean ± SEM, n ≥ 3 independent experiments; *, P < 0.05; **, P < 0.01; ***, P < 0.001. 

To prove that the pHGG cells exposed to dual Wee1/Chk1 inhibition indeed undergo 

mitotic catastrophe, we stained the 2D monolayer cells with antibodies against pHH3, gH2AX, 

and cleaved caspase-3, a marker of apoptosis. Triple-positive cells were scored as undergoing 

mitotic catastrophe. As we see in the bar graph (Figure 22), the DMSO, mono-Wee1 inhibitor 

and mono-Chk1 inhibitors, the population of cells undergoing mitotic catastrophe were similar 

which were about 3% while that of the combination of Wee1 and Chk1 inhibitors were about 12-

13% which is 4 times as the DMSO and single treatments. Together, our data suggest that the 

cell death in pHGG tumors results from mitotic catastrophe. 
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Figure 22. Effect of Wee1 and Chk1 Antagonist on Mitotic Catastrophe in pHGG Monolayer Cells. 
(a) Representative images of pHGG 2D monolayer cells treated with DMSO and combination of Wee1 and Chk1 
dual inhibition for 72 hours. (b) Quantification of mitotic catastrophe cell populations following treatment of 
DMSO, MK 1775 (63 nM), AZD 7762 (31 nM), MK 8776 (250 nM), combination of MK 1775 and AZD 7762, 
combination of MK 1775 and MK 8776 for 72 hours in monolayer cells. Data are Mean ± SEM. *, P < 0.05; **, P < 
0.01; ***, P < 0.001. 

Effect of Wee1 and Chk1 Inhibitors on ATP Metabolism in High-Grade Glioma PDOX Cells 

One of the potential mechanisms to account for the slowing of the replication speed 

during the DNA replication in cells treated with combinations on checkpoint inhibitors could be 

a lowering of the endogenous levels of ATP. To address this question, we measured the effect on 

cellular ATP levels of 72 hours exposure of pHGG cells (in monolayer culture) to either the 

individual inhibitors alone or in combination (Figure 23a, 23b). The cellular content of ATP as 

measured by CellTiter-Glo and was normalized to total cell number, as determined by the 

counting of DAPI stained nuclei. The results of this experiment, Figure 23 showed that both the 

Wee1 and Chk1 inhibitors alone induced a modest but significant decrease in intracellular ATP 

content but the combination treatment resulted in a much greater (30%-50%) decrease in cellular 

ATP levels.  
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Figure 23. Effect Wee1 and Chk1 Inhibitors on ATP Levels in pHGG PDOX Monolayer Cells. 
(a) Representative nuclei staining images of nuclei stain after 72 hours treatment following treatment with DMSO, 
Wee1 inhibitor MK 1775 (63 nM), Chk1 inhibitor AZD 7762 (31 nM) and MK 8776 (250 nM), combination of MK 
1775 AZD 7762, combination of MK 1775 and MK 8776 in monolayer culture condition. (b) Bar chart summarizing 
quantitation of ATP level normalized to the cell count after treatment of DMSO, combination of MK 1775 (63 nM) 
and AZD 7762 (31 nM), combination of MK 1775 (63 nM) and MK 8776 (250 nM). Data are Mean ± SEM, n ≥ 3 
independent experiments; *, P < 0.05; **, P < 0.01; ***, P < 0.001. ****, P < 0.0001. 

To establish the optimal treatment time to detect metabolic changes in ATP levels in 

pHGG cells we carried out a series of time course studies that measure ATP (by CTG assay) in 

cells treated with the checkpoint inhibitors alone or in combination and some standard 

chemotherapy (doxorubicin and temozolomide) or apoptosis-inducing drugs (staurosporine). The 

results obtained (Figure 24) showed that after 12 hours of treatment with a combination of Wee1 

inhibitor and Chk1 inhibitors, the ATP levels started to decline while the single agent treatment 
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with Wee1 inhibitor and the two Chk1 inhibitors did not (as compared to the DMSO control) In 

addition, at 12hrs the cell number was not significantly reduced compared to the control group. 

Based on these results, we selected 16 hours as the optimal treatment time for subsequent 

metabolic profiling (Seahorse) studies.  

 

Figure 24. Time Course for the Effect of Wee1 and Chk1 Inhibitors and Chemotherapy Drugs on the ATP 
Level in pHGG PDOX Cells. 
Time course of ATP level of 0,12,24,36,48 and 72 hours following treatment with DMSO, Wee1 inhibitor MK 1775 
(63 nM), Chk1 inhibitor AZD 7762 (31 nM), combination of MK 1775 AZD 7762, Doxorubicin (1 µM) and 
Staurosporine (100 nM) in both neurosphere (left) and monolayer (right) culture conditions. Data are mean ± SEM; 
n ≥ 3 replicates.  

We used a Seahorse XF Analyzer to obtain quantitative information on the Oxygen 

Consumption Rate (OCR – a measure of mitochondrial metabolism) and the Extracellular 

Acidification Rate (ECAR - a measure of glycolytic activity) of pHGG cells treated with 

checkpoint inhibitors either alone or in combination. Cells were plated and treated with drugs (or 

a DMSO control) for 16 hours and the basal metabolic rate and its components were measured 

by serial injections of metabolic inhibitors such as Oligomycin (1.5 µM), Rotenone (0.5 µM) and 

Antimycin A (0.5 µM). Alterations of OCR and ECAR in response to drug treatment and 

metabolic inhibitors were measured by Seahorse and the metabolic parameters were calculated. 

The results of these studies (Figure 25b) showed that neither the individual checkpoint inhibitors 
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or the combinations of inhibitors had any effect on the ECAR. However, analysis of the OCR 

curves (Figure 25a) showed exposure of the cells to the one of Chk1 inhibitors AZD 7762 

decreased the OCR significantly compared to the DMSO control in the basal line, the average of 

OCR value was dropped to 27.5 pmol/min compared to the DMSO control of 34.8 pmol/min (P 

value was 0.039). While the other Chk1 inhibitor MK 8776, the average of OCR value was 28.6 

pmol/min but showed no significant change compared to DMSO-treatment. The Wee1 inhibitor 

MK1775 also had a minimal and non-significant effect of OCR compared to DMSO control. The 

combination of each of the Chk1 inhibitors with the Wee1 inhibitor showed significantly reduce 

on the OCR value (P value were 0.018 and 0.021 respectively) while the combination of MK 

1775 and AZD 7762 was no more effective than the Chk1 inhibitor AZD 7762 alone (P value 

was 0.46) in the basal line. These results demonstrate that the two Chk1 inhibitors specially AZD 

7762 reduce the OCR to a significantly greater extent than the Wee1 inhibitor MK 1775. 

By comparing basal OCR with the OCR following the abolition of all mitochondrial 

metabolism by Oligomycin it is possible to calculate the rate of mitochondrial ATP production in 

the basal state. Comparison of the effect of the effect of the checkpoint inhibitors on ATP 

production from glycolysis and mitochondrial metabolism (Figure 25d) reveals that ATP 

production from glycolysis doesn’t change after the treatment with the inhibitors either alone or 

in combination whereas ATP production from mitochondrial respiration (Figure 25d) is 

significantly suppressed by the combinations of the Chk1 and Wee1 inhibitors (P value were 

0.014 and 0.017). Moreover, one of the Chk1 inhibitors used, AZD 7762 also showed the effect 

of reducing ATP production from mitochondrial respiration (P value was 0.032) while the other 

Chk1 inhibitor MK 8776 (P value was 0.18) and Wee1 inhibitor alone MK 1775 (P value was 

0.18) show no-significant effect on that. Comparing AZD 7762 (Chk1 inhibitor) alone with the 2 
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combinatorial pairs, the effect of decreasing ATP production from mitochondrial respiration had 

no significant difference (P values were 0.46, 0.26 respectively). Our data suggest that the 

combination of Wee1 inhibitor and Chk1 inhibitor showed inhibitory effects of on mitochondrial 

energy production. However, the inhibitory effects of the combination of MK 1775 and Chk1 

inhibitor AZD 7762 on mitochondrial energy production is due to the activity of the Chk1 

inhibitor AZD 7762. While effects of the other pair MK 1775 and MK 8776 on the energy 

production is due to additivity or minimal synergistic effect. The Chk1 inhibitor may play a 

dominant role in this inhibitory effect on ATP production.  

 

 
Figure 25. Effect of Wee1 and Chk1 Inhibitors on Mitochondrial and Glycolytic ATP Production in pHGG 
Monolayer Cells.  
(a-b) Metabolic profile of normalized OCR(a) and normalized ECAR(b) after 17 hours treatment with DMSO, Wee1 
inhibitor MK 1775 (63 nM), Chk1 inhibitor AZD 7762 (31 nM) and MK 8776 (250 nM), combination of MK 1775 
AZD 7762, combination of MK 1775 and MK 8776 in monolayer culture condition by Seahorse ATP rate assay. n ≥ 
3-6 replicates from 3 independent experiments. (c) A comparison of ATP rates from mitochondrial respiration and 
glycolysis after treated in (a) are indicated. Data are mean ± SEM. n ≥ 3-6 replicates from 3 independent 
experiments. (d) A comparison of ATP production from mitochondrial respiration and glycolysis after treatment are 
indicated. n ≥ 3-6 replicates from 3 independent experiments. Data are mean ± SEM. *, P < 0.05; **, P < 0.01. 
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Discussion 

In the previous chapter, we demonstrated that the combination of a Wee1 inhibitor 

and Chk1 inhibitors have selective synergistic effect on decreasing cell viability in pHGG 

tumor cells in both of monolayer and neurosphere cultures. To further understand the 

molecular mechanisms involved how these mechanism-annotated combination pairs effect on 

the cell viability of the pHGG tumor cells, we have in the present study combined a Wee1 

inhibitor MK 1775 with Chk1 inhibitors AZD 7762 and MK 8776. Our hypothesis is that 

simultaneous inhibition of two cell cycle control proteins will introduce a high degree of 

DNA damage incompatible with cell viability. The combination of these 2 inhibitors leads to 

an increased anti- tumor effect both in 2D monolayer and 3D neurosphere culture conditions. 

Furthermore, our studies showed that co-treatment synergistically decreased viability, along 

with DNA damage, premature mitosis, slower replication speed and mitotic catastrophe. 

Moreover, the combination of Wee1 and Chk1 also have effect on the metabolic changes 

which is reduction of ATP production from mitochondrial respiration. Our results provide a 

rationale for testing the Wee1/Chk1 inhibition as a strategy for the pHGG tumors. 

Combinations of MK1775 and AZD 7762 as well as MK1775 and MK 8776 led to a 

synergistic reduction of viability in our studies of pHGG tumor cells in both neurosphere and 

monolayer cultures but the synergistic effect was not present in normal cells. The reason for 

this selective effect could be different levels of replicative stress between cancer cells and 

astrocyte cells (Figure 26). Cancer cells are highly proliferative cells indicating that the 

replicative stress inside the cancer cells may be much higher compared to the relative slow 

proliferative activity normal cells. The DNA damage caused by the combination of Wee1 and 

Chk1 inhibition in astrocytes was much less than in the tumor cells. There may still be some 
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degree of genomic protection threshold because of the moderate replication stress and limited 

DNA damage caused by the combination. In the normal astrocytes there is very limited DNA 

damage, no cell cycle changes, no mitotic catastrophe and no cell death. The tumor cells on 

the other hand have high replication stress that is increased after the inhibition of Wee1 and 

chk1, resulting in massive DNA damage, forced G2/M phase entry and the induction of 

mitotic catastrophe and tumor cell death. This could be one of the explanations for why 

combined Wee1/Chk1 inhibition was much more cytotoxic than single agent treatment and 

had such a selective anti-tumor effect on the pHGG tumor cells. 

 

 

Figure 26. Different Endogenous Replicative Stress in Normal Cells and Tumor Cells. 
All forms of DNA require DNA surveillance pathways protection. The DNA surveillance pathways provide a safe 
dynamic range to support multiple reactions involving DNA production and conditions of low to moderate 
replication stress (RS) in normal situation. Different perturbations that can induce large quantities of DNA damage 
in the cell (orange), and may cause RC (replicative catastrophe) in human cells (above the dashed line). 

  
In addition, we found that the combination of Wee1i and Chk1i could reduce the ATP 
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production from mitochondrial respiration selectively in pHGG tumor cells. Tumor cells have 

a high energy demand in order to support the critical cell processes such as cell growth, 

proliferation, migration and invasion. Some studies have shown that multiple catabolic 

pathways are used for energy production within glioma cells and these pathways are critical 

for supporting cellular function [122]. In addition, other studies have demonstrated that 

inhibition of the metabolic pathways critical for the support of DNA replication may lead to 

increased replication stress and synergy with checkpoint kinase inhibitors such as Chk1 

inhibitors [123]. Altered metabolic activity could be one of the mechanisms responsible for 

the selectively synergistic activity of the Wee1/Chk1 combination. The targeting of tumor 

cell metabolism could be a novel strategy for the treatment of pHGG tumors. 

In conclusion, our data provide a strong rationale for the evaluation of checkpoint 

abrogation through the use of Wee1 and Chk1 inhibitors as a basis for the development of 

new therapies for pHGG tumors. 
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CHAPTER IV  

SUMMARY AND DISCUSSION 

 

Pediatric high-grade glioma (pHGG) is one of the most aggressive brain tumors in 

children [124]. The goal of this study has been to establish a preclinical rationale for clinical 

trials of novel combinatorial targeted therapies for pHGG. We developed the target-based 

novel combination therapies for pHGG to provide a rationale for the evaluation of new 

combinatorial therapies in children with HGG. In this study, we developed a high throughput 

combinatorial screening paradigm in both cancer stem cell (based on 3D neutrosphere) and 

monolayer cultures of tumor cells generated from patient-derived orthotopic xenograft 

(PDOX) model to identify the novel synergistic drugs combinations that were most effective 

and selective for pHGG. 

In the first part of this study, we implemented a high throughput screening strategy 

using 1863 mechanism-annotated cancer relevant drugs and compounds to identify the most 

active drugs which exhibit cytotoxicity in pHGG tumor cells. Instead of just selecting the 

most cytotoxic drugs for pHGG tumor cells as the basis for combinatorial screening, we 

developed a method using a “pharmacological relationship tree” to identify the most effective 

mechanism-annotated drug classes. The single agent screen result in the demonstration that 

HDAC inhibitors, proteasome inhibitors, HSP90 inhibitors, PI3K/mTOR inhibitors and cell 

cycle regulators were the five most active pharmacologic classes. 

By combining Pan-active compounds with Pan-active compounds, we found that 

combinations of a Wee1 inhibitor (MK-1775) combined Chk1 inhibitors (AZD7762, MK-

8776) or an HDAC inhibitors (Panobinostat, JNJ-26481585) combined with Proteasome 
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inhibitors (CEP-18770, MLN 2238) exhibited the strongest synergistic lethality in pHGG 

tumor cells. By using the high throughput combinatorial screening paradigm in both cancer 

stem cell (based on 3D neurosphere) and monolayer cultures of tumor cells generated from 

patient derived orthotopic xenograft (PDOX) model, we were successfully in identifying 

novel combinations with potential to serve as the basis for new therapies for children with 

HGG. 

During the single agent screening studies, we found that even for cells with different 

genotypes, such as R0315 which is PI3Kmut and 3752 which is PI3Kwt, there was a 

remarkably similar response of the tumor cells to drugs tested. The five most active drug 

classes are HDAC inhibitors, proteasome inhibitors, HSP90 inhibitors, PI3K/mTOR 

inhibitors and cell cycle regulators in both cell types tested. The explanation for this could be: 

i) most of the pHGG cancers are highly dependent on similar targets, cell processes or 

signaling pathways that are being targeted by the drugs being tested; ii) some of these drugs 

such as HDAC inhibitors, proteasome inhibitor, HSP 90 inhibitors, have multiple functional 

which could interfere with multiple proteins and therefore affect multiple cell processes, 

resulting cell death. In our study, by combining the active and most effective drug classes 

from the single agent screen, we were successful in identifying combinatorial pairs that 

exhibited synergistic lethality. The strategy of combining the most effective drugs may be 

one of the strategies for discovering for more synergistic pairs for pHGG in the future. 

Moreover, the combination of Wee1 inhibitor and Chk1 inhibitors showed selective 

synergistic lethality in the pHGG tumor cell rather than in normal Astrocyte cells. All of 

these data indicated that Wee1/Chk1 inhibition could selectively inhibit the viability in 

pHGG tumor cells and could be a potential novel combinatorial strategy for management of 
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pHGG. Due to the difficulties in studying the mechanisms responsible for the synergistic 

effects of two multifunctional drugs (HDACi and Proteasome inhibitor) we decided to focus 

on the mechanisms of combination of the targeted agents Wee1i and Chk1 inhibitors since 

they showed selective synergistic lethality in pHGG. 

The second part of this study has been to identify the molecular mechanisms 

responsible for the selectively synergistic cytotoxic activity of Wee1/Chk1 inhibition in 

pHGG. The combinatorial screening of Wee1i/Chk1i dual inhibition demonstrated a rapid 

decrease in ATP level (used for measuring the cell viability) between 12 to 24 hours after the 

initiation of treatment. This decline in ATP preceded and changes in cell number. This 

observation raised the question of whether the dual inhibition of Wee1 and Chk1 could cause 

a deficiency in energy supply. To address this question, we used the Seahorse metabolic 

assay system to measure the effect of Wee1i and Chk1i on ATP production. Our Seahorse 

Metabolic Assay results demonstrated that the combination of Wee1i and Chk1i reduced the 

ATP production from mitochondrial respiration and didn’t affect the function of glycolysis. 

The combination of Wee1i and Chk1i had no effect on ATP production in normal astrocyte 

cells. ATP production provides the energy necessary to drive almost all cell biological 

process in all normal cells, even more so in tumor cells that have a high demand for 

metabolic energy. Tumor cell growth signaling and gene activation require ATP for protein 

phosphorylation, and cellular machineries that include the enzymes for DNA/RNA synthesis. 

Biomolecules cannot be produced without adequate supplies of metabolic energy. If the 

supply of ATP is deficient, almost all of cell processes will be impacted. The high energy 

requirements for the synthesis of dNTP and DNA repair may also contribute to the energetic 

stress in Wee1i and Chk1-treated pHGG cell. There is no information currently available on 
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the metabolic profile in pHGG or whether the energy deficiency is a metabolic vulnerability 

of pHGG. However, there are studies that have shown that tissues with a high dependence on 

aerobic respiration, such as the central nervous system and heart, are particularly vulnerable 

to treatment with ATP synthesis inhibitors. ADDA, 5(1-[2-(1-adamantyl) ethoxy]-3-(3, 4-

dihydro-2(1H)- isoquinolinyl)-2-propanol hydrochloride]), was found to possess a significant 

anti-glioblastoma multiforme activity both in vitro and in a mouse xenograft model [120] 

(nude mouse, rear flank). This activity was due to a specific noncompetitively inhibition of 

mitochondrial complex IV activity. Chemo-resistance to temozolomide in glioblastoma 

multiforme is associated with an increased level of complex IV activity [120]. It is possible 

that the effect of reducing ATP production from mitochondrial respiration may contribute to 

the efficacy of dual inhibition of Wee1 and Chk1 in pHGG. Exploiting the metabolic 

vulnerability of pHGG cells could be one of the strategies for the management of pHGG in 

the future. The dependence of pHGG cells ATP production from mitochondrial respiration 

could be due to the reduced quantity of mitochondrial or deficiencies in their function. Future 

studies to quantify mitochondrial based on mitochondrial DNA and tracing the metabolic 

function of mitochondria by using U13C-Glucose Metabolic Flux Assay could be used to 

address this question. Using these methods, we could quantify pHGG cell metabolism after 

different treatments as well as the differences in metabolic activity between tumor cells and 

normal cells. 

The effect of reducing ATP production from mitochondrial respiration is probably not 

the only reason for the efficacy of combinations of Wee1 and Chk1 antagonists. The 

Seahorse metabolic data demonstrated that the ATP production also significant reduced after 

mono-treatment of Chk1 inhibitor AZD 7762 whereas the cell viability and cell count data 
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showed that cells could still survive after 3 or 7 days. These results indicate that there are 

additional mechanisms responsible for the synergistic effect of combination of Wee1 

inhibitor and Chk1 inhibitors.  

Similar to the findings from other studies, we found that the combination of Wee1 

and Chk1 inhibition selectively cooperated to induce DNA damage and G2/M phase arrest, 

increased replication initiation and slowed down the replication fork speed. The consequence 

of these effects may be that the dual Wee1 and Chk1 inhibition selectively induces mitotic 

catastrophe and cell death in pHGG tumor cells. Our data are compatible with a model 

(Figure 27) in which, due to high endogenous replicative stress in cancer cells, with the 

combinatorial therapy with Wee1i and Chk1i increase replicative stress and resulted in 

massive DNA damage and cell death. In the normal astrocyte cells that have low endogenous 

DNA damage and replicative stress, the combinatorial therapy of Wee1 and Chk1i induced 

minimal increases in replicative stress and the cells survived. Together, these data indicate 

that endogenous replicative stress in tumor cells may underlie the efficacy of combinatorial 

Wee1 and Chk1 therapy in the tumor cells. Moreover, the replicative stress may be one of 

biomarker for the efficacy of therapy of combination of Wee1i and Chk1i. To test this 

hypothesis, in the future study, we will need to elevate the replicative stress in the normal 

cells to levels and then test the efficacy of combined inhibition of Wee1 and Chk1 in the 

higher stressed normal cells. These studies could provide insights as to whether the level of 

endogenous replicative stress predicts the efficacy of therapy of combination of Wee1i and 

Chk1i.  
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Figure 27. Model of Different Replicative Stress Level Causing Selective Cytotoxic Activities in pHGG Tumor 
Cells and Normal Cells. 
High endogenous replicative stress in cancer cells, with the combinatorial therapy with Wee1 and Chk1i further 
increased the replicative stress with massive DNA damage and cell death. In the normal astrocyte cells with low 
endogenous DNA damage and replicative stress, the combinatorial therapy of Wee1 and Chk1i induced minimal 
increases in replicative stress and cells survived. 

Lack of cellular energy and energy metabolites and high replicative stress are the two 

of the mechanisms we have identified that may account for the synergistic effect of combined 

Wee1 and Chk1 inhibition in pHGG tumor cells. In addition, the lack of energy may cause 

the tumor cells to be particularly sensitive to the higher replicative stress. To address this 

possibility, we could elevate the energy supply and then test the efficacy of combination of 

Wee1 and Chk1 inhibition in tumor cells in the future study. 

In summary, our study provides a strategy of the discovery of new drug combinations 

with potential applications in the treatment of pHGG. Rather than using traditional totally un-

biased high throughput screening to discover the drug combinations, we annotated the 
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mechanisms of the compounds selected for the screen and did then used mechanism-based 

combinatorial screen and to identify and characterize combinatorial pairs exhibiting 

synergistic lethality. We not only successfully identified mechanisms that contribute to the 

synergistic effect of some drugs in pHGG tumor cells but we have also provided a future 

strategy to identify novel combinations for the treatment of pHGG. From the mechanism 

studies, we have shown that Wee1i/ Chk1i combination not only resulted in mitotic 

catastrophe, but also discovered a novel effect of combinatorial treatment on the metabolic 

activity of pHGG cells. In the future, we will study the mechanisms for this metabolic effect 

and use it to discover more metabolism-associated interventions for pHGG. Our study 

suggests that combining drugs that impact cancer metabolism and drugs that impact DNA 

damage may provide novel effective and efficient treatments for pHGG and other cancers. 

Although the results obtained with combined Wee1/Chk1 inhibition in in vitro cell 

viability studies is promising but needs to be validated in the PDOX model in vivo. A major 

challenge to the in vivo studies will be the management of toxicity.  Future studies will need to 

address the proper doses, treatment frequency, delivery methods and other experimental 

pharmacodynamic parameters. Recent studies have reported that sequential therapy with PARP 

and Wee1 inhibitors can be used to minimize toxicity while maintaining efficacy [121]. The 

sequential inhibition of PARP and ATR or Wee1 has been shown to have antitumor activity in 

vivo that is similar to concurrent treatment but exhibits less toxicity on normal cells. Sequential 

treatments may also be an option for in vivo validation of Wee1 and Chk1 inhibitors in animal 

models of pHGG. An additional challenge to the use of Wee1/Chk1 inhibitor combinations to 

treat intracranial tumors is the blood-brain barrier (BBB). Studies have reported that the efficacy 

of the Wee1 inhibitor MK 1775 is limited by heterogeneous distribution across the BBB in 
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glioblastoma [122]. The ability of Wee1 and Chk1 inhibitors to by-pass the BBB is not well 

known and needs to be tested in the PDOX models of pHGG, these studies need to be conducted 

in the context of pHGG since the ability of drugs to cross the BBB in brains with tumor is not the 

same as in the normal brain. We need to develop new drugs or new drug delivery systems that 

can be used to by-pass the BBB and therefore be used for the treatment of pediatric brain 

cancers. 
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