
NONPARAMETRIC SHAPE-CONSTRAINED MODELS FOR PRODUCTION ECONOMICS

A Dissertation

by

KEVIN PIERRE A. LAYER

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Andrew Johnson
Committee Members, Erick Moreno-Centeno

Mark Lawley
Jianhua Huang

Head of Department, Mark Lawley

December 2019

Major Subject: Industrial Engineering

Copyright 2019 Kevin Pierre A. Layer



ABSTRACT

In production economics, the cost function is a critical tool used to infer productivity and

efficiency measures to describe the key features of an industry. This dissertation investigates non-

parametric estimators with shape constraints. The goals are to improve researchers’ understanding

and illustrate the advantages of this set of estimators over other commonly used estimators.

First, the dissertation studies the direction selection for stochastic directional distance func-

tions. Unlike much of the published literature on directional distance functions, the analysis is

performed in stochastic settings. Applying a recently developed non-parametric shape-constrained

estimator on a set of simulations, user guidelines about selecting the direction, a key tuning pa-

rameter for such estimators, are given. The estimator is tested and compared to other estimators by

applying it to a cost function estimation. An application of stochastic directional distance function

estimator to the US hospitals industry gives insights into the industry such as most productive scale

size and output trade-off information.

Second, several approximations of shape-constrained non-parametric estimators are analyzed.

The approximations consist of piece-wise linear versus smooth (at least of class C2) estimated

functions and coordinate-wise versus global constraints. The fitting performance and the shape

constraints violations percentages are the main criteria established for the comparison. New esti-

mators are developed for the analysis, in particular a B-spline based shape-constrained estimator

for smooth cases. Based on the results obtained on a range of simulations, guidelines are deter-

mined to help users pick the best estimator, among the ones considered in the study, depending on

the characteristics of the data. Finally additional insights on the US hospital industry are provided

while showcasing the implementation of some of the introduced estimators on real data.
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1. INTRODUCTION

As datasets grow larger and computation power increases, data analytics is expanding as well.

This dissertation contributes to researchers understanding of newly developed methods, shape-

constrained non-parametric, that give more reliable estimations and improve analytic quality. Im-

provements in performance assessment methods will benefit both policy-makers and decision-

makers in manufacturing, finance, education, etc.

A few prominent applications illustrate the importance of performance measurements. For ex-

ample, the electricity distribution market in several European countries is privatized, firms have

local monopoly power to build and operate the last miles of transmission lines, and prices are

controlled by a regulator. Since 2012, the Finnish regulator has used a framework for reward-

ing efficient operators and increasing the network efficiency based on Stochastic Nonparametric

Envelopment of Data (StoNED). For an introduction to the framework see Kuosmanen and Korte-

lainen (2012) and Kuosmanen (2012), and for details about StoNED see Kuosmanen et al. (2015)

and Kuosmanen and Johnson (2017). Another popular regulatory application is carbon permits

that several countries have implemented to reduce CO2 emissions. In China, companies in specific

industries known to release vast quantities of emissions CO2 receive permits that allow them to

release a certain volume of CO2 emissions. If they need to emit more CO2, they can purchase

additional permits from other companies or from the government. This creates a regulated carbon

trading market, see for example Zhao et al. (2016). Production economics is used to ensure the

industry transitioning into a net zero carbon footprint by estimating the lost output if companies

choose to abate by reducing output, or by estimating an appropriate price for additional carbon

permits purchased from the government. Another set of applications concerns the evaluation of

management practices. The “World Management Survey" described in Bloom and Van Reenen

(2007) and Bloom and Van Reenen (2010) relates management practices to productivity. Bloom

and Van Reenen (2010) find a significant correlation between good management (as measured

by their survey) and higher productivity levels for manufacturing facilities, hospitals, and schools
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around the world.

The US healthcare industry could gain from more productivity and efficiency analyses; in

2016, health expenses per capita in the US were 31% higher than in Switzerland, which had the

second-largest national per capita value. The US hospital industry is the focus of the application

subsections of both main chapters of this dissertation. Using the National Inpatient Sample (NIS)

from the Healthcare Cost and Utilization Project (HCUP) and data from the American Hospital

Association (AHA) Annual Survey, the cost function for US hospitals is estimated for multiple

years. From the cost function some of the metrics determined are for instance the most produc-

tive scale sizes (MPSS) of the hospitals. The MPSS are measured for different output ratios and

all values estimated are small. Thus one of the results obtained is that the small hospitals, that

also represent most of the operating hospitals, appear to be more productive than large hospitals.

Based on this analysis and other completing analyses, decision-makers can design better hospital

networks to improve the cost effectiveness of the system.

As described above cost functions are used to determine valuable insights. A cost function

represents the levels of inputs, measured by their cost, to achieve different combinations of outputs

and thus characterizes a production technology. For example, the outputs for a hospital are the

number of procedures for different categories, and the cost is the hospitals total expenses. In the

dissertation we focus our research on the estimation of the conditional mean of the production

technology. We refer the reader to Kuosmanen and Johnson (2017), that integrates the method of

Hall and Simar (2002) to estimate the frontier from the conditional mean to determine the efficiency

levels.

To estimate production technologies many researchers use deterministic models like Data En-

velopment Analysis (DEA). In this dissertation we prefer the stochastic model that is more realistic.

In particular in Chapter 2, the statistical model allows the possibility of noise in all observations and

for measurement errors in all components. Using a stochastic model also raises questions about

endogeneity, that corresponds to the error term being correlated to the regressors of the model.

In Chapter 2, we use the Stochastic Directional Distance Functions for estimating multi-output
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cost functions and potentially improving the estimations in some endogeneous cases. The chapter

shows that the choice of the direction used for the estimator using the Directional Distance Func-

tion matters and it provides recommendations for the user to select the direction of the estimator

using stochastic directional distance functions.

An other aspect of production technologies estimation is that many researchers still use para-

metric models such as translog or Cobb-Douglas functional forms. However, parametric estima-

tors seem to rely on strict assumptions and can suffer from misspecification in most applications

because the correct functional form is typically unknown and cannot be determined by the ob-

servable characteristics of production. On the other hand, fully non-parametric models like local

linear kernel regressions tend to overfit the observed sample and provide limited out-of-sample in-

formation or structural information. Imposing shape constraints allows for a compromise between

parametric and nonparametric models. For instance, cost functions are commonly assumed to be

non-decreasing and convex for any increase in output levels, i.e., it takes additional effort for a

hospital to increase its number of procedures. Shape-constrained non-parametric estimators such

as CNLS (Kuosmanen (2008)), SCKLS (Yagi et al. (2018)), MBCR (Hannah and Dunson (2013))

and CWB (Du et al. (2013)) use different approximations of the shape constraints or functions or

both.

In Chapter 3, the approximation piece-wise linear versus smooth (at least of class C2) estimated

functions and the approximation of coordinate-wise shape constraints versus global constraints are

analyzed. Hence, an estimator like SCKLS is piece-wise linear but has global shape constraints

while an estimator like those in Pya and Wood (2015) is smooth but only satisfies coordinate-wise

constraints. To evaluate the effect of each approximation, two estimators are created: SCKLS

with coordinate-wise constraints, which is a piece-wise linear estimator with coordinate-wise con-

straints, and a spline estimator derived from Pya and Wood (2015) with global shape constraints

imposed on a set of control points, which is smooth with some global constraints. The effects of

each approximation can be evaluated separately. Two criteria are used to evaluate each estimator:

goodness of fit and non-violations of the shape constraints. Based on the results of Monte Carlo
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experiments, Chapter 3 ends by providing guidelines to help users select the best estimator among

the ones considered.

The remainder of the dissertation is structured as follows. Chapter 2 addresses the issue of

direction selection in stochastic directional distance functions, questions related to the problem,

and provides recommendations. Chapter 3 evaluates several approximations to shape constraints

of non-parametric estimators, and suggests guidelines to help users’ estimator selection. Chapters

2 and 3 also give an example of an application for the US hospitals industry. Chapter 4 concludes.
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2. DIRECTION SELECTION IN STOCHASTIC DIRECTIONAL DISTANCE FUNCTIONS ∗

2.1 Introduction

The focus of this chapter is direction selection in stochastic directional distance functions

(SDDF).2 While the DDF is typically used to measure efficiency, in this chapter we use a non-

parametric shape constrained SDDF to model the conditional mean behavior of production. The

stochastic distance function (SDF) was introduced by Lovell et al. (1994) and was used in a series

of early empirical studies by Coelli and Perelman (1999, 2000) and Sickles et al. (2002). The pa-

rameters of a parametric distance function are point identified; however, if the direction in the DDF

is not specified, then the parameters of a parametric DDF are set identified.3 A set of axiomatic

properties related to production and cost functions, such as monotonicity and convexity in the case

of a cost function, are well established in the production literature (Shephard (1970); Chambers

(1988)). Although the stochastic distance function literature acknowledges the axiomatic proper-

ties necessary for duality, it does not impose them globally. Instead, authors typically impose them

only on a particular point in the data (e.g., Atkinson et al. (2003)). Recognizing these issues, we

provide an axiomatic nonparametric estimator of the SDDF and a method to restrict the pool of the

directions to choose from for the SDDF, thereby reducing the size of the set identified parameter

set. Most empirical studies that use establishment or hospital level data to estimate production or

cost functions either assume a specific parametric form or ignore noise, or both ((Hollingsworth,

2003)). In contrast, we use an axiomatic nonparametric SDDF estimator and the proposed method

to determine a set of acceptable directions to estimate a cost function that maintains global ax-

iomatic properties for the US hospital industry. Furthermore, we demonstrate the importance of

∗Reprinted with permission from “Direction Selection in Stochastic Directional Distance Functions" by Layer, K.,
Johnson, A. L., Sickles, R. C., & Ferrier, G. D., 2020. European Journal of Operational Research, 280(1), 351-364,
Copyright 2020 by Elsevier

2Here we use the term stochastic in reference to a model with a noise term.
3Let ϕ be what is known (e.g., via assumptions and restrictions) about the data generating process (DGP). Let θ

represent the parameters to be identified, let Θ denote all possible values of θ, and let θ0 be the true but unknown value
of θ. Then the vector θ of unknown parameters is point identified if it is uniquely determined from ϕ. However, θ is
set identified if some of the possible values of θ are observationally equivalent to θ0 (Lewbel (2018)).
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global axiomatic properties for the estimation of most productive scale size and marginal costs.

A few papers have attempted to implement the directional distance function in a stochastic

setting (see, for example, Färe et al. (2005), Färe et al. (2010), and Färe and Vardanyan (2016)).

The latter two papers discuss the challenges of selecting a parametric functional form that does

not violate the axioms typically assumed in production economics. Based on their observations,

Färe and Vardanyan (2016) use a quadratic functional specification.4 Yet several papers show a

loss of flexibility in parametric functional forms, such as the translog or the quadratic functional

form, when shape constraints are imposed (e.g., Diewert and Wales (1987)). Also important to

implementation, the selection of the direction vector in the SDDF has been discussed in Färe

et al. (2017) and Atkinson and Tsionas (2016), among others. These papers focus on selecting

the direction corresponding to a particular interpretation of the inefficiency measure, based on the

distance to the economically efficient point. In contrast, we consider Kuosmanen and Johnson

(2017)’s multi-step efficiency analysis and focus on the first step, estimating a conditional mean

function. Our goal is to select the direction that best recovers the underlying technology while

acknowledging that the data is likely to contain noise in potentially all variables.5

To model multi-product production, Kuosmanen and Johnson (2017) have proposed the use

of axiomatic nonparametric methods to estimate the SDDF which they name Directional Convex

Nonparametric Least Squares (CNLS-d), a type of sieve estimator. Their methods have the benefits

of relaxing standard functional form assumptions for production, cost, or distance functions, but

also improve the interpretability and finite sample efficiency over nonparametric methods such as

kernel regression (Yagi et al. (2018)). A variety of models can be interpreted as special cases of

Kuosmanen and Johnson (2017), among these are a set of models that specify the direction (e.g.,

Johnson and Kuosmanen (2011); Kuosmanen and Kortelainen (2012)). All CNLS models are sieve
4As Kuosmanen and Johnson (2017) note, the translog function used for multi-output production cannot satisfy

the standard assumptions for the production technology T globally for any parameter values. The quadratic functional
form does not have this shortcoming.

5For researchers interested in productivity measurement and productivity variation (e.g., Syverson (2011)), the
results from this chapter can be used directly. For authors interested in efficiency analysis, the insights from this
chapter could be used to improve the estimates from the first stage of Kuosmanen and Johnson (2017)’s three-step
procedure where efficiency is estimated in the third step.
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estimators and fall into the category of partially identified or set identified estimators discussed in

Manski (2003) and Tamer (2010). The guidance our paper provides in selecting a direction will

reduce the size of the set identified for CNLS-d and other DDF estimators with flexible direction

specifications.

Much of the production function literature concerns endogeneity issues, for example see Olley

and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg et al. (2015). These methods are

often referred to as proxy variable approaches. The argument for endogeneity is typically that deci-

sions regarding variable inputs such as labor are made with some knowledge of the factors included

in the unobserved residuals. Recently, these methods have been reinterpreted as instrumental vari-

able approaches (Wooldridge (2009)), or control function approaches (Ackerberg et al. (2015)).

Unfortunately, the assumptions on the particular timing of input decisions is not innocuous. In-

deed every firm must adjust its inputs in exactly the same way, otherwise the moment restrictions

needed for point identification are violated. For an alternative in the stochastic frontier setting, see

Kutlu (2018).

Kuosmanen and Johnson (2017) have shown that a production function estimated using a

stochastic distance function under a constant returns-to-scale assumption is robust to endogene-

ity issues because the normalization by one of the inputs or outputs causes the errors-in-variables

to cancel each other. In this paper we consider the more general case of a convex technology that

does not necessarily satisfy constant returns-to-scale, and show that when errors across variables

are highly correlated, a specific type of endogeneity, the SDDF improves estimation performance

significantly over the typical alternative of ignoring the endogeneity.

When considering alternative directions in the DDF, we show that the direction that performs

the best is often related to the particular performance measure used. We use an out-of-sample mean

squared error (MSE) that is measured radially to address this issue. This measure is motivated by

the results of our Monte Carlo simulations and is natural for a function that satisfies monotonicity

and convexity, assuring the true function and the estimated function are close in the areas were

most data are observed.
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We analyze US hospital data and characterize the most productive scale size and marginal

costs for the US hospital sector. We demonstrate that out-of-sample MSE is reduced significantly

by relaxing parametric functional form restrictions. We also observe the advantage of imposing

axioms that allow the estimated function to still be interpretable. Concerning the direction selec-

tion, we find, for this data set, that the exact direction selected is not very critical in terms of MSE

performance, but some commonly used directions should be avoided.

The remainder of this chapter is organized as follows. Section 2 introduces the statistical

model and the production model. Section 3 describes the estimators used for the analysis. Section

4 outlines our reasons for the MSE measure we propose. Section 5 highlights the importance of the

direction selection through Monte Carlo experiments. Section 6 describes our direction selection

method. Section 7 demonstrates the benefits of using non-parametric shape-constrained estimators

with an appropriately selected direction for US hospital data. Section 8 concludes.

2.2 Models

2.2.1 Statistical Model

We consider a statistical model that allows for measurement error in potentially all of the input

and output variables. Let x̃i ∈ X ⊂ Rd
+, d ≥ 1, be a vector of random input variables of length

d and ỹi ∈ Y ⊂ RQ
+, Q ≥ 1, be a vector of random output variables of length Q, where i

indexes observations. Let ϵxi ∈ Rd, d ≥ 1, be a vector of random error variables of length d and

ϵyi ∈ RQ, Q ≥ 1, be a vector of random error variables of length Q. One way of modeling the

errors-in-variable (EIV) is: (
xi

yi

)
=

(
x̃i

ỹi

)
+

(
ϵxi
ϵyi

)
. (2.1)

Equation (2.1) is only identified when multiple measurements exist for the same vector of regres-

sors or when a subsample of observations exists in which the regressors are measured exactly

(Carroll et al. (2006)). Carroll et al. (2006) discussed a standard regression setting, not a multi-

input/multi-output production process. Thus, repeated measurement requires all but one of the
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netputs to be identical across at least two observations.6 Neither of of these conditions is likely to

hold for typical production data sets; therefore, we develop an alternative approach to identifica-

tion.

As our starting point, we use the alternative, but equivalent, representation of the EIV model

proposed by Kuosmanen and Johnson (2017):

(
xi

yi

)
=

(
x̃i

ỹi

)
+ ei

(
gx
i

gy
i

)
. (2.2)

Clearly, the representations of Carroll et al. (2006) and Kuosmanen and Johnson (2017) are equiv-

alent if: (
ϵxi
ϵyi

)
= ei

(
gx
i

gy
i

)
. (2.3)

We define the following normalization:

ei =

√√√√ d∑
j=1

(ϵxij)
2 +

Q∑
j=1

(ϵyij)
2, (2.4)

which implies: √√√√ d∑
j=1

(gxij)
2 +

Q∑
j=1

(gyij)
2 = 1. (2.5)

We refer to (gx
i , g

y
i ) as the true noise direction and in the most general case we allow the direction

to be observation specific.7 The estimation methods to consider noise in potentially all inputs will

depend on our assumptions about the production technology, which are discussed in the following

subsection.

6Here we use the term netputs to describe the union of the input and output vectors.
7When the noise direction is observation specific and random, all inputs and outputs potentially contain noise and

therefore are endogeneous variables. If some components of the (gx, gy) vector are zero, this implies the associated
variables are exogeneous and measured with certainty. See Kuosmanen and Johnson (2017) for more details.
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2.2.2 Production Model

Researchers use production function models, cost function models, or distance function models

to characterize production technologies. Considering a general production process with multiple

inputs used to produce multiple outputs, we define the production possibility set as:

T =
{
(x̃, ỹ) ∈ Rd+Q

+ | x̃ can produce ỹ
}
. (2.6)

Following Shephard (1970), we adopt the following standard assumptions to assure that T repre-

sents a production technology:

1. T is closed;

2. T is convex;

3. Free Disposability of inputs and outputs; i.e., if
(
x̃l, ỹl

)
∈ T and

(
x̃k,−ỹk

)
≥
(
x̃l,−ỹl

)
,

then
(
x̃k, ỹk

)
∈ T .

For an alternative representation, see, for example, Frisch (1964).

Developing methods to estimate characteristics of the production technology while impos-

ing these standard axioms was a popular and fruitful topic from the early 1950’s until the early

1980’s, generating such classic papers as Koopmans (1951), Shephard (1953, 1970), Afriat (1972),

Charnes et al. (1978),8 and Varian (1984). Unfortunately, these methods are deterministic in the

sense that they rely on a strong assumption that the data do not contain any measurement errors,

omitted variables, or other sources of random noise. Furthermore, for some research communities

linear programs were seen as harder to implement than parametric regression which could be cal-

culated via normal equations. Thus, most econometricians and applied economists have chosen to

use parametric models, sacrificing flexibility for ease of estimation and the inclusion of noise in

the model.
8Data Envelopment Analysis is perhaps one of the largest success stories and has become an extremely popular

method in the OR toolbox for studying efficiency.
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Here we focus our attention on the distance function because it allows the joint production of

multi-outputs using multi-inputs. The production function and cost functions can be seen as spe-

cial cases of the distance function in which there is either a single output or a single input (cost),

respectively. Further, motivated by our discussion of EIV models above, we consider a directional

distance function which allows for measurement error in potentially all variables. We try to re-

lax both the parametric and deterministic assumptions common in earlier approaches to modeling

multi-output/multi-input technologies. We do this by building on an emerging literature that re-

visits the axiomatic nonparametric approach incorporating standard statistical structures including

noise (Kuosmanen (2008);Kuosmanen and Johnson (2010)).

2.2.2.1 The Deterministic Directional Distance Function (DDF)

Luenberger (1992) and Chambers et al. (1996, 1998) introduced the directional distance func-

tion, defined for a technology T as:

−→
DT (x̃, ỹ; gx, gy) = max {δ ∈ R : (x̃− δ gx, ỹ + δ gy) ∈ T}, (2.7)

where x̃ and ỹ are the observed input and output vectors, such that x̃ ∈ Rd
+ and ỹ ∈ RQ

+ are

assumed to be observed without noise and fully describe the resources used in production and the

goods or services generated from production. gx ∈ Rd
+ is the direction vector in the input space,

gy ∈ RQ
+ is the direction vector in the output space, and (gx, gy) ∈ Rd+Q

+ defines the direction

from the point (x̃, ỹ) in which the distance function is measured.9 δ is commonly interpreted as a

measure of inefficiency by quantifying the number of bundles of size (gx, gy) needed to move the

observed point (x̃, ỹ) to the boundary of the technology in a deterministic setting.

Chambers et al. (1998) explained how the directional distance function characterizes the tech-

nology T for a given direction vector (gx, gy); specifically:

−→
DT (x̃, ỹ; gx, gy) ≥ 0, if and only if (x̃, ỹ) ∈ T. (2.8)

9We assume (gx, gy) 6= 0; i.e., at least one of the components of either gx or gy is non-zero.
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If T satisfies the assumptions stated in Section 2.2.2, then the directional distance function
−→
DT :

Rd
+ × RQ

+ × Rd
+ × RQ

+ → R+ has the following properties (see Chambers et al. (1998)):

(a)
−→
DT (x̃, ỹ; gx, gy) is upper semicontinuous in x̃ and ỹ (jointly);

(b)
−→
DT (x̃, ỹ;λ gx, λ gy) = (1/λ)

−→
DT (x̃, ỹ; gx, gy) , λ > 0;

(c) ỹ′ ≥ ỹ ⇒
−→
DT (x̃, ỹ′; gx, gy) ≤

−→
DT (x̃, ỹ; gx, gy);

(d) x̃′ ≥ x̃ ⇒
−→
DT (x̃′, ỹ; gx, gy) ≥

−→
DT (x̃, ỹ; gx, gy);

(e) If T is convex, then
−→
DT (x̃, ỹ; gx, gy) is concave in x̃ and ỹ.

An additional property of the DDF is the translation invariance:

(f)
−→
DT (x̃− αgx, ỹ + αgy; gx, gy) =

−→
DT (x̃, ỹ; gx, gy)− α.

Several theoretical contributions have been made to extend the deterministic DDF, see for ex-

ample Färe and Grosskopf (2010); Aparicio et al. (2017); Kapelko and Oude Lansink (2017), and

Roshdi et al. (2018). The deterministic DDF has been used in several recent applications, including

Baležentis and De Witte (2015); Adler and Volta (2016), and Fukuyama and Matousek (2018).

2.2.2.2 The Stochastic Directional Distance Function

The properties of the deterministic DDF also apply for the stochastic DDF (Färe et al. (2017)).

Here we focus on estimating a stochastic DDF considering a residual which is mean zero.10 This

is represented in Figure 2.1.

Using the statistical model in Section 2.2.1 and the functional representation of technology in

Section 2.2.2, we restate Proposition 2 in Kuosmanen and Johnson (2017) as:

Proposition 1. If the observed data are generated according to the statistical model described

in Section 2.2.1, then the value of the DDF in the observed data point (xi,yi) is equal to the

10Two models are possible, 1) a mean zero residual indicating that the residual contains only noise used to pursue a
productivity analysis, or 2) a composed residual with both inefficiency and noise. Our direction selection analysis is
used in the first step of Kuosmanen and Johnson’s three step procedure in which a conditional mean is estimated.
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Figure 2.1: SDDF in mean zero case

realization of the random variable ϵi with mean zero; specifically

−→
DT (xi,yi, g

x, gy) = ϵi ∀i.

In the stochastic distance function literature, the translation property, (f) above, is commonly

invoked to move an arbitrarily chosen netput variable out of the distance function to the left-hand

side of the equation, yielding an equation that looks like a standard regression model; see, for

example, Lovell et al. (1994) and Kuosmanen and Johnson (2017). Instead, we write the SDDF

with all of the outputs on one side to emphasize that all netputs are treated symmetrically.

Under the assumption of constant returns to scale, normalizing by one of the netputs causes

the noise terms to cancel for the regressors, thus eliminating the issue of endogeneity (e.g., Coelli

(2000), Kuosmanen and Johnson (2017)). However, since we relax the constant returns to scale

assumption, endogeneity can still be an issue.11

11If the endogeneity is caused by correlations in the errors across variables, it can be addressed by selecting an ap-
propriate direction for the directional distance function. This is the direction we explore in the Monte Carlo simulation
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Färe et al. (2017), among others, have recognized that the selection of the direction vector

affects the parameter estimates of the production function. In Appendix A.1.1, for the linear para-

metric DDF defined below, we prove that alternative directions lead to distinct parameter estimates.

2.3 Estimation

We now describe the estimation of the DDF under a specific parametric functional form and

under nonparametric shape constrained methods.

2.3.1 Parametric Estimation and the DDF

Consider data composed of n observations where the inputs are defined by xi, i = 1, ..., n and

the outputs by yi, i = 1, ..., n. The estimator minimizes the squared residuals for a DDF with

an arbitrary prespecified direction (−gx, gy). For a linear production function, we formulate the

estimator as:

min
α,β,γ,ϵ

n∑
i=1

ϵ2i (2.9)

s.t. γ ′ yi = α + β′ xi − ϵi, for i = 1, . . . , n (2.9a)

β′ gx + γ ′ gy = 1, (2.9b)

where α is the intercept, β and γ are the vectors of the marginal effects of the inputs and outputs,

respectively, and the ϵi, i = 1, ..., n are the residuals.

Equation (2.9b) enforces the translation property described in Chambers et al. (1998); i.e.,

scaling the netput vector by δ in the direction (−gx, gy) causes the distance function to decrease

by δ. The combination of Equation (2.9a) and Equation (2.9b) ensures that the residual is computed

along the direction (−gx, gy). Intuitively this is because the β and γ are rescaled proportionally

to the direction (−gx, gy) in Equation (2.9b). For a formal proof, see Kuosmanen and Johnson

(2017), Proposition 2.

below in Section 2.4.1.
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2.3.2 The CNLS-d Estimator

Convex Nonparametric Least Squares (CNLS) is a non-parametric estimator that imposes the

axiomatic properties, such as monotonicity and concavity, on the production technology. The es-

timator CNLS-d is the directional distance function generalization of CNLS (Hildreth (1954), Ku-

osmanen (2008)). While CNLS allows for just a single output, CNLS-d permits multiple outputs.

In CNLS the direction along which residuals are computed is specified a priori and is typically

measured in terms of the unique output, y. This corresponds to the assumption that noise is only

present in y and that all other variables, x̃, do not contain noise. CNLS-d allows the residual to

be measured in an arbitrary prespecified direction. If all components of the direction vector are

non-zero, this corresponds to an assumption that noise is present in all inputs.

Using the same input-output data defined in Section 2.2.1, the CNLS-d estimator is given by:

min
α,β,γ,ϵ

n∑
i=1

ϵ2i (2.10)

s.t. γ ′
i yi = αi + β′

i xi − ϵi, for i = 1, . . . , n (2.10a)

αi + β′
i xi − γ ′

i yi ≤ αj + β′
j xi − γ ′

j yi, for i, j = 1, . . . , n, i 6= j (2.10b)

βi ≥ 0, for i = 1, . . . , n (2.10c)

β′
i g

x + γ ′
i g

y = 1, for i = 1, . . . , n (2.10d)

γi ≥ 0, for i = 1, . . . , n, (2.10e)

where αi, i = 1, ..., n is the vector of the intercept terms, βi, i = 1, .., n and γi, i = 1, .., n are the

matrices of the marginal effects of the inputs and the outputs, respectively, and ϵi, i = 1, ..., n is

the vector of the residuals (Kuosmanen and Johnson, 2017).

Equation (2.10a) is similar to (2.9a) with the notable difference that (αi,βi,γi) are indexed by

i indicating each observation has their own hyperplane defined by the triplet (αi,βi,γi). Equation

(2.10b), which corresponds to the Afriat inequalities, imposes concavity. Given Equation (2.10b),
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Equation (2.10c) imposes the monotonicity of the estimated frontier relative to the inputs. Equation

(2.10d) enforces the translation property described in Chambers et al. (1998) and has the same

interpretation as Equation (2.9b). Similar to Equation (2.10c), the combination of Equation (2.10b)

and Equation (2.10e) imposes the monotonicity of the DDF relative to the outputs. In Equation

(2.10), we specify the CNLS-d estimator with a single common direction, (−gx, gy).12

2.4 Measuring MSE under Alternative Directions

2.4.1 Illustrative Example

2.4.1.1 Data Generation Process

For our illustrative example, we use a simple linear cost function and a directional distance

linear parametric estimator. We consider two noise generation processes: a random noise direction

and a fixed noise direction. Here we discuss the random noise direction case, but direct the reader

to Appendix A.2 for a discussion of the fixed noise direction case.

For our example we consider a single output cost function where the observations (yi, ci) , i =

1, . . . , n, are created by the Data Generation Process (DGP) outlined in Algorithm 1:

12Alternatively, some researchers may be interested in using observation specific directions or perhaps group specific
directions (Daraio and Simar (2016)). In Appendix A.1.3, we derive the conditions under which multiple directions
can be used in CNLS-d while still maintaining the axiomatic property of global convexity of the production technology.
Consider two groups each with their own direction used in the directional distance function. Essentially, the convexity
constraint holds as long as the noise is orthogonal to the difference of the two directions used in the estimation. A
simple example of this situation is all the noise being in one dimension and the difference between the two directions
for this dimension is zero. However, this condition is restrictive when noise is potentially present in all variables. Thus,
specifying multiple directions in CNLS-d while maintaining the axiomatic properties of the estimator, specifically, the
convexity of the production possibility set, is still an open research question.
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Algorithm 1

1. Output, ỹi, is drawn from the continuous uniform distribution U [0, 1].

2. Cost is calculated as c̃i = β0 ỹi, where β0 = 1.

3. The noise terms, ϵyi , ϵci , are constructed as follows:

(a) ϵ0 is calculated as:

ϵ0 =
1

2

 √√√√ 1

n− 1

n∑
i=1

(ỹi − ȳ)2 +

√√√√ 1

n− 1

n∑
i=1

(c̃i − c̄)2

 , (2.11)

where ȳ = 1
n

∑n
i=1 ỹi and c̄ = 1

n

∑n
i=1 c̃i are the means of the output and cost

without noise, respectively.

(b) The scalar length of the noise is rescaled by the vector, vqϵi , in each dimension.

These scaling factors are calculated as vqϵi =
v∗qϵi

||v∗
ϵi
||2 , q = {1, 2} where v∗qϵi are

drawn from a continuous uniform distribution U [−1, 1].

(c) (ϵyi , ϵci) = lϵi vϵi , i = 1, . . . , n, where lϵi is a scalar length drawn from the nor-

mal distribution, N (0, λ ϵ0), where λ is prespecified initial value for the standard

deviation and vϵi = [v1ϵi , v2ϵi ] is a normalized direction vector.

4. The observations with noise are obtained by appending the noise terms to the generated

data: (
yi
ci

)
=

(
ỹi
c̃i

)
+

(
ϵyi
ϵci

)
, i = 1, . . . , n. (2.12)

Figure 2.2: Algorithm 1: Linear function data generation process with random noise directions

Figure 2.3 illustrates the results for two cases of the data generating process; in the first case the
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direction of the noise is random, while in the second case the direction of the noise is fixed.
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Figure 2.3: Linear Case with Random Noise Direction (left), Linear Case with Fixed Noise Direc-
tion (right)

2.4.1.2 Evaluating the Parametric Estimator’s Performance

We use two criteria to assess the performance of the parametric estimator: 1) Mean Squared

Error (MSE) comparing the true function to the estimated function, and 2) MSE comparing the

estimated function to a testing data set. While we can calculate both metrics for our Monte Carlo

simulations, only the second metric can be used with our application data below.

To calculate deviations, we use the MSE direction (gyMSE, g
c
MSE). For any particular point

of the testing set, (ytsi , ctsi) , i = 1, . . . , n, we determine the estimates, (ŷtsi , ĉtsi) , i = 1, . . . , n ,

defined as the intersection of the estimated function characterized by the coefficients
(
α̂, β̂

)
and

the line passing through (ytsi , ctsi) , i = 1, . . . , n, and direction vector (gyMSE, g
c
MSE). We evaluate

the value of the MSE as:

MSE =
1

n

n∑
i=1

(
(ŷtsi − ytsi)

2 + (ĉtsi − ctsi)
2) . (2.13)

To compare the true function to the estimated function, we use the Linear Function Data Gener-
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ation Process, Algorithm 1, steps 1 and 2, to construct our testing data set (ytsi , ctsi) , i = 1, . . . , n.

To evaluate the estimated function without knowing the true function the testing set is built using

the full Linear Function Data Generation Process.

Figure 2.4 show the MSE computations.
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Figure 2.4: MSE calculated relative to the True Function in the MSE direction π/4 (left), MSE
calculated using a testing data set in the MSE direction π/4 (right)

2.4.1.3 Additional Information Describing the Simulations

We apply the DGP described above to generate a training set, (ytri , ctri) , i = 1, . . . , ntr, and

a testing set (ytsi , ctsi) , i = 1, . . . , nts, in which noise is introduced to the observations in random

directions. We set the noise scaling coefficient to λ = 0.6 and the number of observations to

ntr = nts = 100. We run 100 repetitions of the simulation for each experiment on a computer

with a processor Intel Core i7 CPU 860 2.80 GHz and 8 GB RAM. We use the quadratic solver on

MATLAB 2017a.

For the estimator, we define the direction vector used in the parametric DDF as a function

of an angular variable θ, which allows us to investigate alternative directions. Specifically, the

direction vector used in the DDF is (gy, gc) = (cos(θt), sin(θt)). We examine the set of directions

corresponding to the angles θt ∈ {0, π/8, π/4, 3π/8, π/2}.
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2.4.1.4 Results: Random Noise Directions

Table 2.1 and Table 2.2 show results corresponding to the two performance criteria introduced

above and shown in Figure 2.4, the MSE relative to the true function and the MSE relative to a

testing data set, respectively. Table 2.1 shows that the direction corresponding to the angle π/4,

(gy = 0.707, gc = 0.707), produces the smallest values of MSE (shown in bold in the table) regard-

less of the direction used for the MSE computation. However, the estimator’s quality diminishes

if we select the extreme directions corresponding to the angles 0 and π/2. Table 2.2 reports per-

formance via a testing set, the direction corresponding to the smallest MSE value (shown in bold)

is always the one matching the direction used in the MSE computation. In applications, using

a testing set is necessary because the true function is unknown. Table 2.2 shows the benefits of

matching the direction of MSE evaluation direction outweigh the benefits of selecting a direction

based on the properties of the function being estimated.

Table 2.1: Average MSE over 100 simulations for the Linear Estimator compared to the true func-
tion with a DGP using random noise directions

Avg MSE: Comparison
to the True Function

DDF Angle θt

MSE Dir Angle θMSE 0 π/8 π/4 3π/8 π/2

0 2.09 0.75 0.56 1.16 3.68
π/8 1.36 0.46 0.32 0.63 1.89
π/4 1.25 0.41 0.28 0.51 1.48
3π/8 1.59 0.50 0.32 0.57 1.60
π/2 3.06 0.91 0.55 0.92 2.44

Note: Displayed are measured values multiplied by 103.

For the out-of-sample testing set, the direction that provides the smallest MSE value is the

direction used for the MSE computation. Because the functional estimate is optimized for the

direction specified in the SDDF, it is perhaps expected that using the same direction that will
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Table 2.2: Average MSE over 100 simulations for the Linear Estimator compared to an out-of-
sample testing set with a DGP using random noise directions

Avg MSE: Comparison
to Out-of-Sample

DDF Angle θt

MSE Dir Angle θMSE 0 π/8 π/4 3π/8 π/2

0 28.28 29.43 31.29 34.23 40.67
π/8 18.03 17.79 18.19 19.09 21.32
π/4 16.38 15.55 15.45 15.77 16.90
3π/8 20.50 18.67 18.04 17.90 18.46
π/2 38.63 33.07 30.68 29.29 28.70

Note: Displayed are measured values multiplied by 103.

be used in the MSE evaluation would produce a relatively low MSE compared to other directions.

However, when the functional estimate is compared to the true function, the MSE values are around

ten times smaller than the out-of-sample testing case. In out-of-sample testing the presence of noise

in the observations causes a deviation regardless of the quality of the estimator or the number of

observations. The DDF direction corresponding to the smallest MSE is the direction orthogonal

to the true function (i.e., π/4 for our DGP). This direction provides the shortest distance from the

observations to the true function. We conclude that, in this experiment, it is preferable to select a

direction orthogonal to the true function (see Section 2.5 for further experiments).

From the fixed noise direction experiments (see Appendix A.2.1), we observe that using a

direction for the estimator that matches the direction used for the noise generation significantly re-

duces the MSE values compared to the true function. From this, we infer that when endogeneity is

severe, using a direction that matches the characteristics of this endogeneity significantly improves

the fit of the estimator; i.e., the MSE is 50% smaller for the matching direction than for the second

best direction in 70% of the cases (see Section 2.5 for the details).

Finally, we need to solve the problem of evaluating alternative directions when the true func-

tion is unknown so that we can evaluate alternative directions in the application data. Below, we

describe our proposed alternative measure of fit.
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2.4.2 Radial MSE Measure

MSE is typically measured by the average sum of squared errors in the dimension of a single

variable, such as cost or output. As explained in Section 2.4.1, when we compare out-of-sample

performance, we find that the best direction to use in estimating a SDDF is the direction used for

MSE evaluation regardless of the direction of noise in the DGP or any other characteristics of the

DGP. To avoid this relationship between the direction of estimation and the direction of evaluation,

we propose a radial MSE measure.

We begin by normalizing the data to a unit cube and consider a case of Q outputs and n

observations, where the original observations are:

(yi1, . . . , yiQ, ci), i = 1, . . . , n.

The normalized observations are:

y̆ij =
yij −mink ykj

maxk ykj −mink ykj
, j = 1, . . . , Q, i, k = 1, . . . , n, (2.14)

c̆i =
yi −mink ck

maxk ck −mink ck
, i, k = 1, . . . , n. (2.15)

Our radial MSE measure is the distance from the testing set observation to the estimated func-

tion measured along a ray from the testing set observations to the center C. Having normalized

the data, the center for the radial measure is C = [y̆1, , y̆Q, c̆] =

 Q︷ ︸︸ ︷
0, . . . , 0, 1

 .

The radial MSE measure is the average of the distance from each testing set observation to the

estimated function measured radially. Figure 2.5 illustrates this measure. For a convex function, a

radial measure reduces the bias in the measure for extreme values in the domain.
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Figure 2.5: A Radial MSE Measure on a Cost Function with Two Outputs
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2.5 Monte Carlo Simulations

We next examine how different DGPs affect the optimal direction for the DDF estimator based

on a set of Monte Carlo simulations. We consider both random noise directions for each observa-

tion and a fixed noise direction representing a high endogeneity case. We consider the effects of the

different variance levels for the noise and changes in the underlying distribution of the production

data. Using the simplest case of two outputs and a fixed cost level for all observed units allows us

to separate the effects of the data and of the function.

2.5.1 CNLS-d Formulation for Cost Isoquant Estimation

Before describing our experiments, we first outline the CNLS-d for estimating the iso-cost level

set. It is based on the following optimization problem:

min
γ,ϵ

n∑
i=1

ϵ2i (2.16)

s.t. − ϵj + ϵi − γ ′
i (yi − yj) ≤ 0, for i, j = 1, . . . , n, i 6= j (2.16a)

γ ′
i g

y = 1, for i = 1, . . . , n (2.16b)

γi ≥ 0, for i = 1, . . . , n. (2.16c)

Note all observations, yi, have a common cost level. This allows us to focus on a 2-dimensional

estimation problem. For results related to 3-dimensional estimation problems see Appendix A.2.2,

Experiment 6.

We can recover the fitted values, ŷi, and the coefficient, αi, i = 1, . . . , n, using:

ŷi = yi − ϵi g
y, for i = 1, . . . , n (2.17)

αi = γ ′
i yi + ϵi, for i = 1, . . . , n. (2.18)

24



2.5.2 Experiments

We conducted several experiments to investigate the optimal direction for the DDF estimator.

Four experiments’ results are shown in the main text of the chapter with two additional experiments

described in the appendix.

2.5.2.1 Experiment 1 - Base case: A two output circular isoquant with uniformly distributed

angle parameters and random noise direction

For the base case, we consider a fixed cost level and approximate a two output isoquant; i.e.,

Q = 2. Indexing the outputs by q and observations by i, we generate the output variables as:

yqi = ỹqi + ϵqi, q = 1, . . . , Q, i = 1, . . . , n, (2.19)

where ỹi is the observation on the isoquant and ϵi is the noise. We generate the output levels

ỹqi, q = 1, . . . , Q , i = 1, . . . , n as:

ỹ1i = cos(θi), i = 1, . . . , n (2.20)

ỹ2i = sin(θi), i = 1, . . . , n, (2.21)

where θi, i = 1, . . . , n, is drawn randomly from a continuous uniform distribution, U
[
0, π

2

]
. The

noise terms, ϵqi, q = 1, . . . , Q, i = 1, . . . , n, have the following expressions:

ϵ1i = l cos(θϵi), i = 1, . . . , n (2.22)

ϵ2i = l sin(θϵi), i = 1, . . . , n, (2.23)

where the length l is drawn from the normal distribution N (0, λ), the angle θϵi is observation spe-

cific and characterizes the noise direction for each observation, and θϵi is drawn from a continuous
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uniform distribution U
[
−π

2
, π
2

]
. The values considered for the directions in CNLS-d estimator

are θCNLS-d ∈ {0, π
8
, π
4
, 3π

8
, π
2
}. The standard deviation of the normal distribution is λ = 0.1. We

perform the experiment 100 times for each parameter setting.

Table 2.3 reports the radial MSE values from a testing set of n observations lying on the true

function.

Table 2.3: Experiment 1: Values of the radial MSE relative to the true function. The angle used
in CNLS-d estimator varies and the noise direction is randomly selected. In the DGP, the standard
deviation of the noise distribution, λ, is 0.1.

CNLS-d Direction Angle
0 π/8 π/4 3π/8 π/2

Average MSE across simulations 13.90 4.65 3.32 4.49 13.93
Note: Displayed are measured values multiplied by 104.

As shown in Table 2.3, the angle corresponding to the smallest MSE (shown in bold) is the one that

gives an orthogonal direction to the center of the true function, π
4
, and that the MSE values differ

significantly, increasing at similar rates as the direction angle deviates from π
4

in either direction.

2.5.2.2 Experiment 2 - The base case with fixed noise directions

In this experiment, θϵi , which characterizes the noise direction for each observation, is constant

for all observations, θϵ. The values used for θϵ and the directions in CNLS-d estimator are the same,

0, π
8
, π
4
, 3π

8
, π
2
. The standard deviation of the normal distribution is again λ = 0.1. We perform the

experiment 100 times for each parameter settings. Table 2.4 reports the results.

Each row in the Table 2.4 corresponds to a different noise direction in DGP. The bold numbers

identify the directions in the CNLS-d estimator that obtain the smallest MSE for each noise direc-

tion. We confirm our previous insight, from the parametric estimator and fixed noise direction case

described in Appendix A.2.1, that the bold values appearing on the diagonal (from the upper-left

to the lower-right of Table 2.4) correspond to the directions used in CNLS-d. This result indicates
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that selecting the direction in the SDDF that matches the underlying noise direction in the DGP

results in improved functional estimates.

Table 2.4: Experiment 2: Values of radial MSE relative to the true function varying the DGP noise
direction and the CNLS-d estimator direction. In the DGP, the standard deviation of the noise
distribution, λ, is 0.1.

CNLS-d Direction Angle

Noise Direction Angle 0 π/8 π/4 3π/8 π/2

0 2.69 3.03 4.49 8.86 25.47
π/8 7.49 3.44 4.00 8.07 28.83
π/4 20.28 5.79 4.30 5.80 19.06
3π/8 25.58 7.80 4.18 3.51 6.84
π/2 25.90 9.09 4.73 3.10 2.57

Note: Displayed are measured values multiplied by 104.

2.5.2.3 Experiment 3. Base case with fixed noise direction and different noise levels

In Experiment 3, we vary the noise term by changing the λ coefficient. Table 2.5 reports the results

for λ = 0.05.

Table 2.5: Experiment 3–Less Noise: Values of radial MSE relative to the true function varying
the DGP noise direction and the CNLS-d direction. In the DGP, the standard deviation of the noise
distribution, λ, is 0.05.

CNLS-d Direction Angle

Noise Direction Angle 0 π/8 π/4 3π/8 π/2

0 0.92 0.82 0.96 1.53 5.12
π/8 1.83 1.09 1.09 1.47 5.45
π/4 3.70 1.41 1.29 1.43 3.93
3π/8 5.75 1.68 1.27 1.18 1.86
π/2 4.61 1.40 0.95 0.79 0.90

Note: Displayed are measured values multiplied by 104.
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In Table 2.5 (Experiment 3, with λ = 0.05), we do not observe the same diagonal pattern ob-

served in Experiment 2, and the best direction for CNLS-d estimator does not match the direction

selected for the noise. This leads us to hypothesize that when the noise level is small, data charac-

teristics, such as the distribution of the regressors or the shape of the function, affect the estimation

whereas when the noise level is large, regressors’ relative variability becomes a more dominant

factor in determining the best direction for the CNSL-d estimator.

However, with λ = 0.2 the results of Experiment 3 are consistent with those from Experi-

ment 2; i.e., the best direction always coincides with the noise direction selected. The results of

Experiment 3 with λ = 0.2 are reported in Appendix A.2, Table A.3 (Experiment 3 with λ = 0.2).

2.5.2.4 Experiment 4: Base case with different distributions for the initial observations on the

true function

In Experiment 4, we seek to understand how changing the DGP for the angle, θi, i = 1, . . . , n,

affects the optimal direction. We consider the three normal distributions with different parameters:

N
[
π
8
, π
16

]
, N
[
π
4
, π
16

]
and N

[
3π
8
, π
16

]
. We truncate the tails of the distribution so that the generated

angles fall in the range [0, π/2]. Noise is specified as in Experiment 1. Table 2.6 reports the results

of this experiment.

Table 2.6: Experiment 4: Values of radial MSE relative to the true function varying the CNLS-d
direction and the mean of the normal distribution used in the DGP.

Mean of the CNLS-d Direction angle

Normal Distribution (θ̄) 0 π/8 π/4 3π/8 π/2

π/8 3.19 2.21 3.89 10.28 46.47
π/4 8.44 2.92 1.98 3.17 9.00
3π/8 45.64 10.25 4.02 2.43 3.07

Note: Displayed are measured values multiplied by 104.

In Table 2.6, we observe that selecting a direction in the SDDF to match θ̄, the mean of the

distribution for the angle variable used in the DGP, corresponds to the smallest MSE value. This
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result suggests that the estimator’s performance improves when we select a direction that points to

the “center” of the data.

Appendix A.2.2 presents additional experiments, varying the distribution of the observations

and considering three outputs with a fixed costed level. These experiments lend further support to

the strategy of selecting a direction pointed to the “center” of the data.

2.6 Proposed Approach to Direction Selection

Based on Monte Carlo simulations, we found that the optimal direction depends on the shape

of the function and the distribution of the observed data. This of itself is not surprising. How-

ever, by assuming a unimodal distribution for the data generation process, a direction that aims

towards the “center" of the data and is perpendicular to the true function at that point tends to

outperform other directions. To apply this finding for a data set with Q outputs and n observations,

(yi1, . . . , yiQ, ci), i = 1, . . . , n, we suggest selecting the direction for the DDF as follows:

1. Normalize the data:

y̆ij =
yij −mink ykj

maxk ykj −mink ykj
, j = 1, . . . , Q, i, k = 1, . . . , n (2.24)

c̆i =
yi −mink ck

maxk ck −mink ck
, i, k = 1, . . . , n (2.25)

2. Select the direction:



gy1

...

gyQ

gc


=



median (y̆1)
...

median (y̆Q)

1− median (c̆) .


(2.26)

This provides a method for direction selection that can be used in applications when the true

direction is unknown.13 We test the proposed method by estimating a cost function for a US

13A cost function is convex with respect to the point [y̆1, , y̆Q, C̆] = [0, , 0, 1]. Therefore, to have a ray that
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hospital data set.

2.7 Cost Function Estimation of the US Hospital Sector

We analyze the cost variation across US hospitals using a conditional mean estimate of the cost

function. We estimate a multi-output cost function for the US hospital sector by implementing our

data-driven method for selecting the direction vector for the DDF. We report most productive scale

size and marginal cost estimates.

2.7.1 Description of the Data Set

We obtain cost data from the American Hospital Association’s (AHA) Annual Survey Databases

from 2007 to 2009. The costs reported include payroll, employee benefits, depreciation, interest,

supply expenses and other expenses. We estimate a cost function which can be interpreted as a dis-

tance function with a single input when hospitals face the same input prices14. We obtain hospital

output data from the Healthcare Cost and Utilization Project (HCUP) National Inpatient Sample

(NIS) core file that captures data annually for all discharges for a 20% sample of US community

hospitals. The hospital sample changes every year. For each patient discharged, all procedures

received are recorded as International Classification of Diseases, Ninth Revision, Clinical Modifi-

cation (ICD9-CM) codes. The typical hospital in the US relies on these detailed codes to quantify

the medical services it provides (Zuckerman et al. (1994)). We map the codes to four categories

of procedures, specifically the procedure categories are “Minor Diagnostic," “Minor Therapeutic,"

“Major Diagnostic," and “Major Therapeutic" which are standard output categories in the litera-

ture (Pope and Johnson (2013)). The number of procedures is each category are summed for each

hospital by year to construct the output variables. The total number of hospitals sampled is around

1,000 per year from 2007 to 2009.15 However, mapping between the two databases is only possible

points from the point [0, , 0, 1] to the median of the data, the directional vector [median(y̆i1), ...,median(y̆iQ), 1 −
median(c̆i)] is needed. Alternatively for a production function we would use the center point [x̆1, , x̆d, y̆] =
[1, , 1, 0] and construct a ray from this point to the median of the data resulting in the directional vector [1 −
median(x̆i1), ...,median(x̆id),median(y̆i)].

14Unfortunately we do not observe input prices. We chose to estimate a cost function and make the assumption of
common input prices rather than impose an arbitrary division of the cost.

15The NIS survey is a stratified systematic random sample. The strata criteria are urban or rural location, teaching
status, ownership, and bed size. This stratification ensures a more representative sample of discharges than a sim-
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for approximately 50% of the hospitals in the HCUP data, resulting in approximately 450 to 525

observations available each year.

Table 2.7: Summary Statistics of the Hospital Data Set

2007
(523 observations)

Cost ($) MajDiag MajTher MinDiag MinTher
Mean 146M 162 4083 3499 7299

Skewness 3.51 2.89 2.63 5.19 3.28
25-percentile 24M 9 277 108 512
50-percentile 72M 73 1688 938 3108
75-percentile 182M 207 5443 4082 9628

2008
(511 observations)

Cost ($) MajDiag MajTher MinDiag MinTher
Mean 163M 175 4433 3688 7657

Skewness 4.19 3.80 2.97 4.87 2.82
25-percentile 28M 10 325 120 545
50-percentile 83M 76 1809 1013 3350
75-percentile 189M 246 5984 4569 10781

2009
(458 observations)

Cost ($) MajDiag MajTher MinDiag MinTher
Mean 175M 161 4471 3615 7905

Skewness 3.39 3.78 2.43 4.68 2.41
25-percentile 31M 12 420 148 713
50-percentile 91M 69 1737 1136 3458
75-percentile 220M 230 6402 4694 10989

2.7.2 Pre-Analysis of the Data Set

2.7.2.1 Testing the Relevance of the Regressors

We begin by testing the statistical significance of our four output variables, y = (y1, y2, y3, y4),

for predicting cost. While the variables selected have been used in previous studies, we use these

ple random sample would yield. For details see on https://www.hcup-us.ahrq.gov/HCUP_Overview/
HCUP_Overview/index508_2018.jsp

31

https://www.hcup-us.ahrq.gov/HCUP_Overview/HCUP_Overview/index508_2018.jsp
https://www.hcup-us.ahrq.gov/HCUP_Overview/HCUP_Overview/index508_2018.jsp


tests to evaluate whether this variable specification can be rejected for the current data set of U.S.

hospitals from 2007-2009.

The null hypothesis stated for the qth output is:

H0 : P [E (c |y − {yq}) = E (c |y)] = 1

against:16

H1 : P [E (c |y − {yq}) = E (c |y)] < 1.

We implement the test with a Local Constant Least Squares (LCLS) estimator described in

Henderson and Parmeter (2015), calculating bandwidths using least-squares cross-validation. We

use 399 wild bootstraps. We found that all output variables were highly statistically significant for

all years.

2.7.3 Results

2.7.3.1 CNLS-d and Different Directions

We analyze each year of data as a separate cross-section because, as noted above, the HCUP

does not track the same set of hospitals across years. To illuminate the direction’s effect on the

functional estimates, we graph “Cost" as a function of “Major Diagnostic Procedures" and “Major

Therapeutic Procedures" holding “Minor Diagnostic Procedures” and “Minor Therapeutic Pro-

cedures” constant at their median values. Figure 2.6 illustrates the estimates for three different

directions, one with only a cost component, one with only a component in Major Therapeutic

Procedures, and one that comes from our median approach. Visual inspection indicates that the

estimates with different directions produce significantly different estimates, highlighting the im-

portance of considering the question of direction selection.

We compare the estimator’s performance when using different directions. Table 2.8 reports the

MSE for three sample directions in each year. We define our direction vector as (gy1, gy2, gy3, gy4, gc).17

16Where the notation y − {yq} implies the vector y excluding the qth component.
17We focus on types of directions found to be competitive in our Monte Carlo simulations.
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Figure 2.6: US Hospital Cost Function Estimates for Three Directions

Table 2.8: Results of the radial MSE values for different directions by year

Direction Year
(gy1 , gy2 , gy3 , gy4 , gc) 2007 2008 2009

(0.45, 0.45, 0.45, 0.45, 0.45) 2.10 1.30 1.50
(0.35, 0.35, 0.35, 0.35, 0.71) 2.15 1.65 1.29
Median Direction 1.79 1.55 1.34
Note: Displayed are the measured values
multiplied by 103

We pick two directions, one with equal components in all dimensions, and a second direction

that has a cost component that is double the value of the output components. The median vector is

(0.014, 0.041, 0.033, 0.038, 0.998), which is very close to the cost-only direction. The MSE varies

by 15-30% over the different directions. We observe that there is no clear dominant direction;

however, the median direction performs reasonably well in all cases. We conclude that as long as a

direction with non-zero components for all variables that could contain noise is selected, then the
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precise direction selected is not critical to obtaining improved estimation results.

2.7.3.2 Comparison with other estimators

We compare three methods to estimate a cost function: 1) a quadratic functional form (without

the cross-product terms), Färe et al. (2010); 2) CNLS-d with the direction selection method pro-

posed in Section 2.6; and 3) lower bound estimate calculated using a local linear kernel regression

with a Gaussian kernel and leave one-out cross-validation for bandwidth selection, Li and Racine

(2007).18 We select these estimators because a quadratic functional form to model production has

been used in recent productivity and efficiency analysis of healthcare. See, for example, Ferrier

et al. (2018). The local linear kernel is selected because it is an extremely flexible nonparamet-

ric estimator and provides a lower bound for the performance of a functional estimate. However,

note that the local linear kernel does not satisfy standard properties of a cost function; i.e., cost is

monotonic in output and marginal costs are increasing as output increases.

We will use the criteria of K-fold average MSE with k = 5 to compare the approaches. This

means we split the data equally into 5 parts. We use 4 of the 5 parts for estimation (training) and

evaluate the performance of the estimator on the 5th part (testing). We do this for all 5 parts and

average the results. The values presented in Table 2.9 correspond to the average across folds.

Table 2.9: US Hospital K-fold Average MSE in Cost to the Cost Function Estimates for the Three
Functional Specifications by Year

Quadratic CNLS-d Lower Bound
Year Regression (Median Direction) Estimator

2007 3.43 2.44 2.35
2008 2.76 1.93 1.48
2009 2.43 1.80 1.53
Note: The MSE values displayed are the measured
values multiplied by 103

18For CNLS-d, we select a value for an upper bound through a tuning process, Ubound = 0.5, and impose the upper
bound on the slope coefficients estimated (Lim, 2014).
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While the average MSEs for all years are lowest for the lower bound estimator, CNLS-d per-

forms relatively well as it is close to the lower bound in terms of fitting performance while impos-

ing standard axioms of a cost function. As is true of most production data, the hospital data are

very noisy. The shape restrictions imposed in CNLS-d improves the interpretability. The CNLS-d

estimator outperforms the parametric approach, indicating the general benefits of nonparametric

estimators.

2.7.3.3 Description of Functional Estimates - MPSS and Marginal Costs

We report the most productive scale size (MPSS) and the marginal costs for the a quadratic

parametric estimator, the CNLS-d estimator with our proposed direction selection method, and an

alternative.19 These metrics are determined on the averaged K-fold estimations for each estimation

method. For the MPSS, we present the cost levels obtained for different ratios of Minor Therapeu-

tic procedures (MinTher) and Major Therapeutic procedures (MajTher), with the minor and major

diagnostics held constant at their median levels.

MPSS results are presented in Table 2.10 and the values for CNLS-d (Median Direction) are

illustrated in Figure 2.7. We observe small variations across both years and estimators. The differ-

ences across years are in part due to the sample changing across years. Most hospitals are small

and operate close to the MPSS. However, there are several large hospitals that are operating signif-

icantly above MPSS. Hospitals might choose to operate at larger scales and provide a large array

of services allowing consumers to fulfill multiple healthcare needs.

For marginal costs, we present the values for different percentiles of the MinTher and MajTher,

with the minor and major diagnostics held constant at their median levels. A more exhaustive

comparison across all outputs is presented in Appendix A.3. Marginal cost information can be

used by hospital decision makers to select the types of improvements that are likely to result in

higher productivity with minimal cost increase. For example, consider a hospital that is in the

50th percentile of the data set for all four outputs in 2008 and the hospital manager has the option

19Here most productive scale size is measured on each ray from the origin (fixing the output ratios) and is defined
as the cost level that maximizes the ratio of aggregate output to cost. Marginal cost is measured on each ray from the
origin (fixing the output ratios) and is defined as the cost to increase aggregate output by one unit.
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to expand operations for either minor or major diagnostic procedures. Results reported in Tables

2.11 and 2.12 indicate that an increase of 1 minor therapeutic procedures would result in a $4.9k

increase in cost. Alternatively, an increase of 1 major therapeutic procedures would result in a

$7.7k increase in cost. A decision maker would want to consider the revenue generated by the

different procedures; however, these estimates provide insights regarding the incremental cost of

additional major and minor therapeutic procedures.

CNLS-d is the most flexible of the estimators and allows MPSS values to fluctuate significantly

across percentiles. CNLS-d does not smooth variation, rather it minimizes the distance from each

observation to the shape constrained estimator. In Appendix A.3, results for the local linear kernel

estimator are also presented. Even though the local linear kernel bandwidths are selected via cross-

validation, relatively large values are selected due to the relatively noisy data and the highly skewed

distribution of output. These large bandwidths and the parametric nature of the quadratic function

make these two estimators relatively less flexible compared to CNLS-d. A feature of performance

that is captured only by CNLS-d is that, hospitals specializing in either minor or major therapeutics

maximize productivity at a larger scales of operation as illustrated in Figure 2.7.

Table 2.10: Most Productive Scale Size measured in cost ($M ) conditional on Minor Therapeutic
procedures (MinTher) and Major Therapeutic procedures (MajTher), Minor Diagnostic procedures
(MinDiag) and Major Diagnostic procedures (MajDiag) held constant at the 50th percentile

Ratio Quadratic Regression CNLS-d (median) CNLS-d (equal)

MajTher/MinTher 2007 2008 2009 2007 2008 2009 2007 2008 2009

20% 13 379 252 210 61 88 224 137 106
30% 17 861 640 146 66 83 134 129 148
40% 272 377 1090 107 56 77 127 85 135
50% 870 249 1552 112 64 85 124 126 134
60% 360 210 276 90 70 120 88 96 142
70% 205 182 187 111 66 184 132 104 104
80% 151 170 150 174 69 286 221 110 111

Note: The values displayed are in $M
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Figure 2.7: Most Productive Scale Size (in red) on the estimated function by “CNLS-d (Med)",
CNLS-d using the median approach for the direction, for different ratios of Major Therapeutic
Procedures over Minor Therapeutic Procedures

Table 2.11: Marginal Cost of Minor Therapeutic Procedures

Percentile Quadratic Regression CNLS-d (median) CNLS-d (equal)

MinTher MajTher 2007 2008 2009 2007 2008 2009 2007 2008 2009

25 25 8.9 6.5 13.2 0.03 0.03 0.03 0.2 0.02 0.1
25 50 8.9 6.5 13.2 0.05 0.1 0.1 0.04 0.1 0.04
25 75 8.9 6.5 13.2 0.2 0.04 0.03 0.1 0.02 0.02
50 25 8.1 6.1 12.4 6.9 5.5 7.4 5.9 6.3 7.8
50 50 8.1 6.1 12.4 4.3 4.9 7.8 2.1 3.7 7.4
50 75 8.1 6.1 12.4 0.2 0.4 0.03 0.1 0.02 0.02
75 25 6.0 5.0 10.4 9.6 13.5 14.0 9.5 10.9 14.1
75 50 6.0 5.0 10.4 9.6 13.5 14.3 9.6 10.9 13.8
75 75 6.0 5.0 10.4 5.7 10.1 6.4 4.6 8.7 6.4

Note: The values displayed are in $k

The marginal cost results for Minor Therapeutic procedures are presented in Table 2.11 and

Figure 2.8 (left) and the marginal cost results for Major Therapeutic procedures are reported in

Table 2.12 and Figure 2.8 (right). As was the case for MPSS (see Table 2.10), CNLS-d is more

flexible and its marginal cost estimates vary significantly across percentiles. The CNLS-d with dif-

ferent directions provides very similar marginal costs estimates. However, the CNLS-d estimates

differ significantly from the marginal cost estimates obtained with the parametric estimator. For
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Table 2.12: Marginal Cost of Major Therapeutic Procedures

Percentile Quadratic Regression CNLS-d (median) CNLS-d (equal)

MinTher MajTher 2007 2008 2009 2007 2008 2009 2007 2008 2009

25 25 10.5 11.5 9.8 0.1 0.04 0.1 0.2 0.03 0.1
25 50 11.7 13.0 10.8 11.3 11.8 15.7 10.5 10.3 14.6
25 75 15.1 17.2 14.5 19.8 22.1 24.6 19.8 21.8 24.0
50 25 10.5 11.5 9.8 0.4 0.2 0.5 0.1 0.1 0.4
50 50 11.7 13.0 10.8 3.7 7.7 1.7 6.9 7.1 3.7
50 75 15.1 17.2 14.5 19.8 22.0 24.6 19.8 21.8 24.0
75 25 10.5 11.5 9.8 0.2 0.03 0.1 0.0 0.1 0.1
75 50 11.7 13.0 10.8 0.2 0.2 0.4 0.8 0.1 0.3
75 75 15.1 17.2 14.5 18.3 12.4 19.8 16.2 11.0 15.2

Note: The values displayed are in $k

Figure 2.8: Marginal Cost of the Minor Therapeutic procedures (left) and Marginal Cost of the
Major Therapeutic procedures (right) (“CNLS-d (Med)" corresponds to CNLS-d using the median
approach for the direction and “CNLS-d (Eq)” corresponds to CNLS-d using the direction with
equal components in all netputs

CNLS-d the marginal costs results are in line with the theory that marginal costs are increasing

with scale. This property can also be violated if using a non-parametric estimator without any

shape constraints imposed. For example this can be seen in the marginal costs of minor therapeutic
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procedures for the parametric (quadratic) regression estimator, Figure 2.8.

Our data set, which combines AHA cost data with AHRQ output data for a broad sample of

hospitals from across the US, is unique to the best of our knowledge. However, the marginal cost

estimates are broadly in line with marginal cost estimates for US hospitals for similar time periods.

Gowrisankaran et al. (2015) studied a considerably smaller set of Northern Virginia hospitals ob-

served in 2006 that, on average, were larger that hospitals in our data set. Due to the differences in

the measures of output the marginal cost levels are not directly comparable. However, conditional

on the size variation, the variation in marginal costs is similar to the variation we observe for the

parametric (quadratic) regression specification applied to our data. Boussemart et al. (2015) ana-

lyzed data on nearly 150 hospitals located in Florida observed in 2005. The authors use a different

output specification and a translog model; however, their distribution of hospital size is similar to

our data set and we observe similar variances in marginal costs with the parametric (quadratic)

regression specification applied to our data.

2.8 Conclusions

This chapter investigated the improvement in functional estimates when specifying a particular

direction in CNLS-d. Based on Monte Carlo experiments, two primary findings emerged from our

analysis. First, directions close to the average orthogonal direction to the true function performed

well. Second, when the data are noisy, selecting a direction that matched the noise direction of

the DGP improves estimator performance. Our simulations indicate that CNLS-d with a direction

orthogonal to the data is preferable if the noise level is not too large and that a direction that

matches the noise direction of the DGP is preferred if the noise level is large. Thus, if users know

the shape of the data or the characteristics of the noise, they can use CNLS-d with a direction

orthogonal to the data if the noise coefficient is small. Or if the noise coefficient is large, the user

can select a direction close to the true noise direction, with non-zero components in all variables

that potentially have noise. Our application to US hospital data shows that CNLS-d performs

similarly across different directions that all include non-zero components of the direction vector

for variables that potentially have noise in their measurement.
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In future research, we propose developing an alternative estimator that incorporates multiple di-

rections in CNLS-d while maintaining the concavity axiom. This would permit treating subgroups

within the data, allowing different assumptions to be made across subgroups (e.g., for-profit vs.

not-for-profit hospitals).
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3. APPROXIMATION TO SHAPE CONSTRAINTS OF NON-PARAMETRIC ESTIMATORS

3.1 Introduction

Production economics theory states some assumptions concerning the shape of a cost function.

When using a non-parametric estimator with the adequate shape constraints, the user benefits from

a gain in interpretability compare to a fully non-parametric model and improved finite sample

performance.

In this chapter, we study several approximations to economically motivated shape constraints

that are common in the non-parametric estimator literature and we evaluate their respective perfor-

mance. The performance is evaluated based on three criteria: goodness of fit, non-violation of the

shape constraints and computational feasibility. In this chapter, we focus on the cost function and

its related shape constraints, the function being non-decreasing with a decreasing return to scale,

leading to convexity. Concerning the approximations, two of them are studied: using a piece-wise

linear estimator instead of a smoother estimator and using coordinate-wise constraints instead of

global constraints.

The first approximation regarding smoothness is used in estimators like CNLS presented in

Kuosmanen (2008), MBCR in Hannah and Dunson (2013) and SCKLS in Yagi et al. (2018). The

estimated function is an envelope of hyperplanes, a piece-wise linear representation that is par-

ticularly convenient to impose the desired shape constraints. However since the representation is

piece-wise linear, the marginal costs, that are associated with the values of the partial derivatives,

are constant for some regions of the function’s domain and are discontinuous. This is a problem

for some users who would prefer a smooth function with continuous marginal costs.

The second approximation is about the way the shape constraints are imposed, specifically

coordinate-wise constraints are used rather than global constraints. This means that for instance

the control is on the sign of each first and second partial derivative as in the spline estimators

presented in Pya and Wood (2015). However this is not sufficient, economic theory implies that
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the gradient (i.e. in the cost function case the marginal cost), should be non-negative and increasing

for any increase in a regressor or combination of regressors. This is what we call global convexity,

while coordinate-wise convexity only enforces that conditional on holding all but one regressor

fixed, expanding a single regressor increases the value of the gradient.

We seek to understand the impact of each of these assumptions separately. For the smooth

estimators, we develop and evaluate B-spline estimators with shape constraints. These B-splines

estimators are based on the work of Pya and Wood (2015), that introduced penalized B-splines with

shape constraints. For the piece-wise linear estimators, we extend the SCKLS estimator introduced

in Yagi et al. (2018).

Additionally we study the way the shape constraints are imposed. The necessary and sufficient

conditions for convexity are enforced on a set of control points (in CNLS this is the observations or

in SCKLS this is a set of grid points). CNLS and SCKLS assure global convexity by using linear

interpolation between the control points, specifically the final estimated function corresponds to the

upper envelope of the estimated hyperplanes in the case of the cost function (lower envelope in the

case of the production function). Du et al. (2013) and Yagi et al. (2018)1 present a Kernel regression

model that imposes convexity at as set of control points for smooth estimators. As the number of

control points becomes dense on the domain of the function, global convexity is imposed. Here we

extend this concept to a spline estimator with shape constraints on a set of control points which we

refer to as “Spline Estimator w/ local Afriat constraints". Table 3.1 summarizes the four estimators

considered. The estimators in italics are developed in this chapter.

The chapter is organized as follows. Section 3.2 gives more information on production eco-

nomics theory and the shape constraints that are desired. Section 3.3 describes the estimators used

for the remainder of the chapter, in Section 3.4 where we test these estimators on Monte-Carlo

experiments, and in Section 3.5 where we apply them to US hospitals data. Section 3.6 concludes.

1See the appendix of Yagi et al. (2018).
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Table 3.1: The four estimators considered to establish a comparison of the different approximations
to the shape constraints. The estimators in italics are created for this analysis.

Smoothness

Not smooth Smooth

Coordinate-wise SCKLS Spline Estimator
Shape w/ coordinate-wise constraints derived from SCAM

restrictions
Global SCKLS Spline Estimator

w/ local Afriat constraints

3.2 Production Economics Theory and Shape Constraints

3.2.1 Axioms of the Cost Function

Let f the cost function such that c = f(y), where c is a scalar representing the cost and y is a

Rd vector representing the outputs.

f : Rd
+ → R and the two main properties assumed are:

1. Non-decreasing in y: if ∀y0 ∈ Rd
+,∀y1 ∈ Rd

+,y
1 ≥ y0 then f(y1) ≥ f(y0)

2. Convexity in y: ∀θ ∈ [0, 1] ,∀y0 ∈ Rd
+,∀y1 ∈ Rd

+, f (θy0 + (1− θ)y1) ≤ θf(y0) + (1−

θ)f(y1)

These two main properties are justified by the economics theory:

1. Non-decreasing in y: It represents that the more outputs are generated the cost should

increase.

2. Convexity in y: The function is convex which corresponds to an increasing return to scale,

the more you produce the more it becomes difficult to use your inputs efficiently to produce

more outputs. This represents increasing marginal cost along the corresponding output.

3.2.2 Coordinate-wise constraints versus global constraints

The coordinate-wise constraints are defined as constraints on the signs of the first and second

partial derivatives. For a function f : Rd
+ → R:
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1. Non-decreasing in y: ∂f
∂yk

(y) ≥ 0, for all k = 1, . . . , d, for all y ∈ Rd
+

2. Convexity in y: ∂2f
∂y2k

(y) ≥ 0, for all k = 1, . . . , d, for all y ∈ Rd
+,

It is easy to find counterexamples to show that these conditions are not equivalent to the global

constraints. Still it can be challenging to impose such constraints depending on the functional

representation used by the estimator. The estimators using coordinate-wise constraints introduced

in section 3.3 will be either imposing sufficient conditions or local enforcement of these constraints.

3.2.3 Afriat Inequalities and constraints validation

In order to verify the validity of the global shape constraints specified above, the Afriat in-

equalities are tested on a set of “control points". These inequalities are still written in the case of

the cost function, thus for shape constraints that are convexity and non-decreasing in y:

ĉi − ĉj ≥ b′j (yi − yj) , for all i, j = 1, . . . , n, i 6= j (3.1a)

bi ≥ 0, for all i = 1, . . . , n (3.1b)

where ĉi is the evaluation of the estimated function at the control output level yi, and bi is the

numerical approximation of the gradient of the estimated function at yi. Condition (3.1a) imposes

convexity while condition (3.1b) enforces monotonicity. These are not only used to check the

shape of the function but also in the notations of some estimators.

3.3 Estimators

3.3.1 Shape Constrained Kernel-weighted Least Squares (SCKLS)

3.3.1.1 Regular SCKLS

Shape Constrained Non-parametric Least-Squares (SCKLS) is introduced in Yagi et al. (2018).

The formulation presented here is the cost function estimation case, thus with non-decreasing

monotonicity and global convexity constraints enforced. To be more specific, SCKLS with a local

linear kernel approximation is used. The formulation is the following:
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min
ai,bi

m∑
i=1

n∑
j=1

(cj − ai − (Yj − yi)
′bi)

2K

(
Yj − yi

h

)
subject to ai − al ≥ b′i(yi − yl), i, l = 1, . . . ,m

bi ≥ 0, i = 1, . . . ,m

(3.2)

where Yj , cj, j = 1, . . . , n are the observation output levels and cost level respectively, while

yi, i = 1, . . . ,m are a set of points on which the hyperplanes are defined, ai, i = 1, . . . ,m being

the respective functional estimates and bi, i = 1, . . . ,m the estimated slopes. In Yagi et al. (2018),

the most standard way to define the set of points on which the hyperplanes are defined is to use a

uniform grid.

Also, K
(

Yj−yi

h

)
is a Kernel product and h the vector of bandwidths. The type of kernel func-

tion used for the Monte Carlo simulations in section 3.4 is the Gaussian kernel and the approach

selected to determine the vector of bandwidths is leave-one-out cross validation (LOOCV) applied

to the unconstrained Local Linear Kernel regression estimator. For more information on Kernel

regressions see Racine and Li (2004), and Yagi et al. (2018) for bandwidth selection.

The constraints in the formulation of the regular SCKLS estimator are the Afriat inequalities

defined in section 3.2.3 and adapted to the piece-wise linear representation that is the SCKLS esti-

mated function. This enforces everywhere the global shape constraints, as the estimated function

is an upper envelope of hyperplanes in the convex case considered.

3.3.1.2 SCKLS with coordinate-wise constraints

This is the version of SCKLS for which the shape constraints are modified to correspond to

a coordinate-wise approximation. Let y = {yi ∈ Rd
+, i = 1, . . . ,m} the set of control point

levels. Let s = {s(i, k), i = 1, . . . ,m, k = 1, . . . , d | ys(i,k) < ys(i+1,k), i = 1, . . . , (m− 1) , k =

1, . . . , d} the set of ordered indices for each dimension. In the case of a non-decreasing convex

cost function, the formulation is:
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min
ai,bi

m∑
i=1

n∑
j=1

(cj − ai − (Yj − yi)
′bi)

2K

(
Yj − yi

h

)
(3.3)

subject to
as(i+1,k) − as(i,k)

ys(i+1,k) − ys(i,k)
≤

as(i+2,k) − as(i+1,k)

ys(i+2,k) − ys(i+1,k)
, i = 1, . . . , (m− 2) , k = 1, . . . , d (3.3a)

as(2,k) − as(1,k) ≥ 0 k = 1, . . . , d (3.3b)

as(m,k) − as(m−1,k) ≥ 0 k = 1, . . . , d (3.3c)

bi ≥ 0, i = 1, . . . ,m (3.3d)

where as in Equation (3.2), Yj , cj , j = 1, . . . , n are the observation output levels and cost level respectively,

yi, i = 1, . . . ,m are a set of points on which the hyperplanes are defined, ai, i = 1, . . . ,m being the

respective functional estimates and bi, i = 1, . . . ,m the estimated slopes. K
(
Yj−yi

h

)
is the Kernel product

and h is the vector of bandwidths as described in section 3.3.1.1. Inequalities (3.3a) are the constraints

imposing coordinate-wise convexity, inequalities (3.3b) and (3.3c) impose coordinate-wise monotonicity,

and inequalities (3.3d) impose a positive gradient for the hyperplane.

The estimated function can be evaluated at any level using the unconstrained Local Linear Kernel regres-

sion as a way to interpolate in between the estimated levels at the control points. The type of kernel function

and the vector of bandwidths used for this interpolation are the same as the ones used for the estimation of

the coefficients in equation (3.3).

3.3.2 Shape Constrained B-Splines Least-Squares (SCBLS)

3.3.2.1 B-splines introduction and univariate case

B-splines are thoroughly introduced in De Boor et al. (1978). The B-spline of order (r+1)th is expressed

as:

m(x) =

q∑
j=1

γjB
r
j (x) (3.4)

where q is the number of basis functions, γj are the spline coefficients and Br
j are the B-spline basis functions

determined by the Cox-de-Boor recursion formula. The recursion formula depends on a vector of knots
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t ∈ Rq+r+2 and should be evaluated for x ∈ [tr+2, tq+1]:

Br
j (x) =

x− tj
tj+r+1 − tj

Br−1
j (x) +

tj+r+2 − x

tj+r+2 − tj+1
Br−1

j+1(x), j = 1, . . . , q

B−1
j (x) =


1, tj ≤ x < tj+1

0, otherwise

(3.5)

Here we choose to focus on a sequence of equally spaced knots but the only assumption required about

the knots is that tj+1 ≥ tj , for all j = 1, . . . , (q + r + 2), .

3.3.2.2 Expansion of B-splines to multivariate case

The expansion of B-splines to the multivariate case is through the tensor formulation. For a case with d

variables:

m(x) =

q1∑
j1=1

. . .

qd∑
jd=1

γj1...jdB
r
j1...jd

(x) (3.6)

where Br
j1...jd

(x) =
∏d

k=1B
r
jk
(xk) is the product of the basis functions for each dimension and γj1...jd ∈ R

is the spline coefficient. This means that we define d vectors of knots tk ∈ Rqk+r+2, one for each dimension.

3.3.2.3 SCBLS with coordinate-wise shape constraints

In this section we detail the first Shape-Constrained B-spline Least Squares (SCBLS) estimator. Our

estimator imposes coordinate-wise shape constraints and the estimator is a restricted case of Pya and Wood

(2015)’s estimator.

We first write the formulation in the univariate case, as it is easier to read the constraints. We consider a

vector of knots t that is uniformly spaced2 with a given number of basis functions, q, and (r + 1) the order

of the B-spline considered. In the univariate case, the formulation for SCBLS with coordinate-wise shape

constraints is:
2The formulation for a non-uniform grid is introduced in Appendix B.1.
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min
γj

n∑
i=1

ci −
q∑

j=1

γjB
r
j (Yi)

2

(3.7)

subject to γj ≥ γj−1, j = 2, . . . , q (3.7a)

γj − 2γj−1 + γj−2 ≥ 0, j = 3, . . . , q (3.7b)

where Yi, ci, i = 1, . . . , n are the observation output levels and cost level respectively, γj , j = 1, . . . , q

are the spline coefficients and Br
j , j = 1, . . . , q are the basis functions of order (r + 1) based on the knots

vector t. The constraints only concern the spline coefficients and are sufficient for the coordinate-wise

constraints, the constraints on the signs of the first and second partial derivatives presented in section 3.2.2.

Thus inequalities (3.7a) are sufficient conditions for the sign of the first derivatives and inequalities (3.7b)

for the sign of the second derivatives. Pya and Wood (2015) map these constraints on the spline coefficients

to the signs of the partial first and second partial derivatives.

To write the problem in the multivariate case, we use the tensor formulation introduced in section 3.3.2.2:

min
γj1...jd

n∑
i=1

ci −
q1∑

j1=1

. . .

qd∑
jd=1

γj1...jdB
r
j1...jd

(Yi)

2

(3.8)

subject to γj1...jk...jd ≥ γj1...(jk−1)...jd , k = 1, . . . , d, jk = 2, . . . , qk

l = {1, . . . , d}-{k}, jl = 1, . . . , ql

(3.8a)

γj1...jk...jd − 2γj1...(jk−1)...jd + γj1...(jk−2)...jd ≥ 0, k = 1, . . . , d, jk = 3, . . . , qk

l = {1, . . . , d}-{k}, jl = 1, . . . , ql

(3.8b)

where Yi, ci, i = 1, . . . , n are the observation output levels and cost level respectively, γj1...jd are the spline

coefficients and Br
j1...jd

are the products of basis functions as described in section 3.3.2.2. Inequalities (3.8a)

are sufficient conditions for the sign of the first derivatives and inequalities (3.8b) for the sign of the second

derivatives.
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However the latest formulation suffers from the curse of dimensionality as the decision variables are

the splines coefficients of which the size increases exponentially with the number of dimensions. The

optimization problem can be solved using a quadratic solver for low dimensional problems leveraging the

fact the constraint matrix is sparse.

3.3.2.4 SCBLS with local Afriat constraints

In a similar way to the previous section we start with the univariate case as it is clearer to read the

constraints. Then we write down the multivariate case that uses the tensor formulation. Given a vector of

knots t, q the number of basis functions and (r+1)the order of the B-spline considered, the formulation for

SCBLS with local Afriat constraints in the univariate case is:

min
γj

n∑
i=1

ci −
q∑

j=1

γjB
r
j (Yi)

2

(3.9)

subject to
q∑

j=1

γj
[
Br

j (yi)−Br
j (yl)

]
≥ bl(yi − yl), i, l = 1, . . . ,m, i 6= l (3.9a)

bi ≥ 0, i = 1, . . . ,m (3.9b)

where Yi, i = 1, . . . , n are the observations output levels, ci, i = 1, . . . , n are the observations cost levels,

while yi, i = 1, . . . ,m are a set of control points where the Afriat inequalities are imposed. bi is the

numerical approximation of the gradient of the estimated function at yi. Specifically if we define the small

values used for the numerical approximation as ϵd = 10−10,

bi =

∑q
j=1 γj

[
Br

j (yi + ϵd)−Br
j (yi − ϵd)

]
2ϵd

, i = 1, . . . ,m (3.10)

Inequalities (3.9a) impose the local Afriat inequalities between each pair of “control points", yi, i =

. . . ,m, and inequalities (3.9b) impose monotonicity. Thus they enforce the restrictions suggested by eco-

nomic theory on the set of control points3.

3Note because linear interpolation is not used, the restrictions are only local Afriat inequalities.

49



Using the tensor formulation to extend the estimator for multivariate cases, we can write:

min
γj1...jd

n∑
i=1

ci −
q1∑

j1=1

. . .

qd∑
jd=1

γj1...jdB
r
j1...jd

(Yi)

2

(3.11)

subject to
q1∑

j1=1

. . .

qd∑
jd=1

γj1...jd
[
Br

j1...jd
(yi)−Br

j1...jd
(yl)

]
≥ b′l(yi − yl), i, l = 1, . . . ,m, i 6= l

(3.11a)

bi ≥ 0, i = 1, . . . ,m (3.11b)

where Yi, i = 1, . . . , n are the observations output levels, ci, i = 1, . . . , n are the observations cost levels,

while yi, i = 1, . . . ,m are the set of control points for the Afriat inequalities. In the multivariate case, the

formulation for bi, the numerical approximation of the gradient of the estimated function at yi is:

bik =



q1∑
j1=1

. . .

qd∑
jd=1

γj1...jd


Br

j1...jd





y1
...

(yk + ϵd)

...

yd




−Br

j1...jd





y1
...

(yk − ϵd)

...

yd








/ (2ϵd) ,

i = 1, . . . ,m, k = 1, . . . , d

(3.12)

3.3.2.5 SCBLS with coordinate-wise constaints and local Afriat constraints

This estimator combines the constraints of the two previous introduced spline estimators. It belongs

to the sector of Table 3.1 corresponding to “Global" shape restrictions4. It is a hybrid version of the two

previous estimator that imposes more structure than the two previous estimators, but is similar if not slightly

more computationally intensive than the estimator with only local Afriat constraints. Since we already

introduced the estimators before we only write the multivariate case.

Given a vector of knots t, q the number of basis functions and (r + 1) the order of the B-spline consid-

4Note the coordinate-wise constraints should be redundant; however, because the constraints used are truly impos-
ing coordinate-wise convexity, meaning coordinate-wise convexity is imposed on any point inside the grid constructed
by the set of control points selected, the constraints are more restrictive in some ways than local convexity that only
imposed convexity on the control points.
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ered, the formulation for SCBLS with coordinate-wise constaints and local Afriat constraints is:

min
γj1...jd

n∑
i=1

ci −
q1∑

j1=1

. . .

qd∑
jd=1

γj1...jdB
r
j1...jd

(Yi)

2

(3.13)

subject to γj1...jk...jd ≥ γj1...(jk−1)...jd , k = 1, . . . , d, jk = 2, . . . , qk

l = {1, . . . , d}-{k}, jl = 1, . . . , ql

(3.13a)

γj1...jk...jd − 2γj1...(jk−1)...jd + γj1...(jk−2)...jd ≥ 0, k = 1, . . . , d, jk = 3, . . . , qk

l = {1, . . . , d}-{k}, jl = 1, . . . , ql

(3.13b)
q1∑

j1=1

. . .

qd∑
jd=1

γj1...jd
[
Br

j1...jd
(yi)−Br

j1...jd
(yl)

]
≥ b′l(yi − yl), i, l = 1, . . . ,m, i 6= l (3.13c)

bi ≥ 0, i = 1, . . . ,m, (3.13d)

where Yi, i = 1, . . . , n are the observations output levels, ci, i = 1, . . . , n are the observations cost

levels, while yi, i = 1, . . . ,m are the set of control points for the Afriat inequalities. bi is the numerical

approximation of the gradient at yi. Inequalities (3.13a) and (3.13b) impose coordinate-wise monotonicity

and coordinate-wise convexity, respectively. Inequalities (3.13c) impose the Afriat inequalities and (3.13d)

restrict the gradient to be positive at the control points, yi.

3.4 Monte Carlo simulations

In this section, we test the estimators on data generated using a quadratic cost function. The study

defines a base case and varies the noise level and the numbers of observations. Additional experiments

are performed in which we introduce another approximation, specifically bounding the derivative of the

estimated function to improve computational performance. We conclude the section by summarizing the

results and giving recommendations based in the insights gained.

51



3.4.1 Experiments with different data generation settings

3.4.1.1 Experiment 1 - Base case: A Cost Function varying the number of regressors.

A cost function is simulation which defines the relation between cost and outputs in a production pro-

cess. The cost function we consider satisfies the economic axioms explicitly written and discussed in section

3.2.1, specifically monotonicity and convexity. For the base case we consider several numbers of outputs

d = {2, 3, 4} and fix the number of observations, n = 100. The complete Data Generation Process (DGP)

is detailed in Algorithm 1.

Algorithm 1

1. The outputs are drawn from a continuous uniform distribution yij ∼ U [umin, umax], i =

1, . . . , d, j = 1, . . . , d, where umin = 0.01 and umax = 0.99.

2. We define the function f :

f : Rd → R, y 7→
d∑

k=1

y2k, (3.14)

Let ymin ∈ Rd such that ymin
k = umin, k = 1, . . . , d and let ymax ∈ Rd such that ymax

k =

umax, k = 1, . . . , d. The cost values on the true function corresponding to each observation is

determined as:

c̃i =
f(yi)− f(ymin)

f(ymax)− f(ymin)
, i = 1, . . . , n (3.15)

The function chosen is then a normalized variation of a simple quadratic formulation with no

cross-terms coefficient or linear component. More importantly this function satisfies all the

characteristics described in section 3.2.1.

3. Noise is drawn from a normal distribution ϵi ∼ N (0, σ) , i = 1, . . . , n, where σ = 0.1

4. The cost values for the observations are then calculated as: ci = c̃i + ϵi, i = 1, . . . , n

In this first experiment we use five estimators on this DGP, all introduced in section 3.3: 1) SCKLS

with coordinate-wise constraints, 2) SCKLS, 3) SCBLS with coordinate-wise constraints, 4) SCBLS with

local Afriat constraints and 5) SCBLS with both coordinate-wise and local Afriat constraints. We detail the

additional settings corresponding to each estimator. For the SCKLS estimators, the type of kernel used is
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Gaussian, the grid is uniform and the number of grid points is approximately 100, specifically m = 100,

that is 10 per axis for d = 2, m = 64 that is 4 per axis for d = 3 and m = 81 that is 3 per axis for d = 4.

For the SCBLS, spline estimators, we use r = 3, with the number of bases q = 6, the knots being uniformly

distributed. For SCBLS with the Afriat inequalities, the grid used is a uniform grid with 6 levels on each

axis for d = 2, that is a total of 36 grid points, 5 levels on each axis for d = 3, that is a total of 125 grid

points, and 4 levels on each axis for d = 4, that is a total of 256 grid points.

We start by showing the results corresponding to the fitting performance, represented by the Mean

Squared Error (MSE) to the true function on the testing set. Using the DGP presented in Algorithm 1,

we generate n observations for the training set that are used to determine the estimated function and n

observations for the testing set that are used for performance measures. This MSE to the true function on

the testing set corresponds to:

MSEtrue-ts = 1/n

n∑
i=1

(ĉtsi − c̃tsi)
2 (3.16)

where ĉtsi is the estimated cost value and c̃tsi is the evaluation of the true cost function both at the outputs

testing set levels ytsi . The simulations are run on a computer with Intel i7-8700 GPU @ 3.20 GHz, 6 cores,

and 16GB RAM on Matlab R2018b. The estimator SCBLS, derived from SCAM of Pya and Wood (2015)

available in the R package “Scam", is recoded in Matlab.

The results are presented in Figure 3.1.

The results vary depending on the number of regressors. The SCBLS, spline estimators, have better

performance than SCKLS for the two-regressor case, but as the regressors number is increased, SCKLS is

more competitive. Additional constraints improve the out-of-sample fitting that we measure. However, not

all constraints perform similarly. The SCBLS estimator with only local Afriat constraints on a set of grid

points has the worse out-of-sample fitting performance among SCBLS estimators. The SCBLS estimator is

very flexible and because unlike SCKLS, SCBLS does not use linear interpolation between grid points, it is

possible the SCBLS estimator, with only local Afriat constraints, has a significant number of violations of the

shape constraints and the local Afriat constraints are only local providing limited structure to the estimated

function. This is confirmed when looking at the number of violations measure in the next paragraph.

Another metric that we use to evaluate the estimators is a function of shape constraints violations. The

measure that we use for it is the percentage of violations of the Afriat inequalities at a set of testing points.
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Figure 3.1: MSE in the base case with 100 observations and for a noise level with standard devia-
tion σ = 0.1 on 50 simulations

This metric is introduced when the Afriat constraints are first mentioned in Section 3.2.3. We show the

results for the ratio of violations of the Afriat inequalties concerning convexity in Figure 3.2.

S
C
K
L
S
 C

o
o
rd

S
C
K
L
S

S
C
B
L
S
 C

o
o
rd

S
C
B
L
S
 A

fr
ia
t

S
C
B
L
S
 A

fr
ia
t+

C
o
o
rd

0

10

20

30

40

50

60

S
C
K
L
S
 C

o
o
rd

S
C
K
L
S

S
C
B
L
S
 C

o
o
rd

S
C
B
L
S
 A

fr
ia
t

S
C
B
L
S
 A

fr
ia
t+

C
o
o
rd

0

10

20

30

40

50

60

S
C
K
L
S
 C

o
o
rd

S
C
K
L
S

S
C
B
L
S
 C

o
o
rd

S
C
B
L
S
 A

fr
ia
t

S
C
B
L
S
 A

fr
ia
t+

C
o
o
rd

0

10

20

30

40

50

60

Figure 3.2: Percentage of Violations of the Afriat Inequalities concerning convexity on the set of
testing points
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The results confirm the shape constraints have a different impact when linear interpolation between

grid points is not used. Local Afriat constraints are not enough for the SCBLS estimator. For SCBLS

with Afriat constraints and coordinate constraints there are not many violations of convexity, but still fitting

performance suffers as the number of regressors increases. This result is likely driven by some extreme

values on the edges a topic we will return to in Section 3.4.2, Experiment 4.

3.4.1.2 Experiment 2 - Noise Levels variations relative to the Base case

In this experiment we follow the same DGP as the base case in Experiment 1 and vary the level of noise.

We look at a case when noise is doubled, with the standard deviation used is σ = 0.2 versus σ = 0.1 in

the base case and also the case when the noise is halved with σ = 0.05. We still use the out-of-sample

fit as the performance metric defined in Experiment 1. Results are presented in Figure 3.3. Additionally,

results concerning the violations of convexity on the set of testing points are presented in Figure 3.4. In

both figures, each row corresponds to a different noise level σ and each column to a different number of

regressors. Thus the middle row corresponds to the base case when σ = 0.1.

Figure 3.3 summarizes the fitting performance. The pattern across noise levels (from one row to another)

is very similar. The ranking of performance of the estimators is not significantly affected by the noise level

in contrast the number of regressors had a significant effect on the ranking of estimators. The conclusion is

that the fitting performance is improved as the structure of the estimator increases, established in the base

case, holds for other noise levels. Figure 3.4, summarizing shape constraint violations, shows differences in

performance across estimators with variation in the noise level. In particular, when the number of regressors

is small, the estimators with coordinate-wise constraints (‘SCKLS Coord’ and ‘SCBLS Coord’) show a

significant increase in the number of convexity violations. For ‘SCKLS Coord’ estimator, d = 2, and

σ = 0.2 the median percentage of violations is approximately 8% compared to approximately 2% in the base

case; for d = 3, this difference is 20% in the noisy case compared to 10% in the base case. For the ‘SCBLS

Coord’ estimator, the ratio increases are similar. For both estimators in the d = 4 case, the percentage

of violations is already high in the base case, so the increase in noise does not impact the percentage of

violations significantly.
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Figure 3.3: MSE measured relative to the true function for a set of 100 testing points varying the
noise standard deviation σ = {0.05, 0.1, 0.2} and the number of observations is 100 measured over
50 simulations.

3.4.1.3 Experiment 3 - Variation of the observation numbers relative to the Base case

In this experiment the number of observations varies from the base case 100 to 200 and 500. We also

increase the number of testing points. The results for the MSE are presented in Figure 3.5 and the results with

the percentage of violations of local Afriat inequalities concerning convexity are in Figure 3.6. The way both

figures are built, each row corresponds to a different number of observations while each column to a different
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Figure 3.4: Percentage of violations of Afriat convexity for a set of 100 testing points varying the
noise standard deviation σ = {0.05, 0.1, 0.2} and the number of observations is 100 measured over
50 simulations.

number of regressors. In this case since the number of observations considered are {100, 200, 500}, the

first row corresponds to the base case.

We first analyze the fitting performance results displayed in Figure 3.5. The results show that, as ex-

pected, increasing the number of observations results in smaller MSE values. For the two regressor case,

d = 2, increasing the number of observations does not seem to change the ranking of the estimators. As
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Figure 3.5: MSE measured relative to the true function for a set of {100, 200, 500} testing
points varying the noise standard deviation σ = {0.05, 0.1, 0.2} and the number of observations is
{100, 200, 500} measured over 50 simulations.

it was for the base case, with 100 observations, the smooth estimators slightly outperform the piece-wise

linear estimators. For d = 3 and d = 4, increasing the number of observations has a greater benefit for the

smooth estimators. In particular, the SCBLS estimators with coordinate-wise constraints (‘SCBLS Coord’

and ‘SCBLS Afriat+Coord’) have better out-of-sample fitting performance than SCKLS estimators for 3

and 4 regressors when there are 200 observations and even more clearly with 500 observations. This result
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Figure 3.6: Percentage of violations of Afriat convexity for a set of {100, 200, 500} testing
points varying the noise standard deviation σ = {0.05, 0.1, 0.2} and the number of observations is
{100, 200, 500} measured over 50 simulations.

corresponds to the performance of the estimators as measured by the median MSE values. Additionally,

the SCBLS estimators have a high variance in performance compared to SCKLS. For the three regressor

case, the variation in performance, as measured by the difference between the 25th and 75th percentiles,

shows that the performance of the piece-wise linear estimators is more consistent. The smooth estimators

outperform the piece-wise linear estimators based on median performance when the number of observations
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is increased even in higher dimensions, but the overall dispersion is higher for smooth estimators relative to

the piece-wise linear estimators.

The results for convexity violations are presented in Figure 3.6. The ‘SCKLS Coord’ estimator benefits

the most from the increase in number of observations, in the d = 3 case, the percentage of convexity

violations goes from 10% using 100 observations to almost none for 500 observations. The smooth estimator

‘SCBLS Afriat’, that only has the local Afriat constraints imposed on a set of control points, has a reduction

from 30% to 15% in the same scenario. However, the ‘SCBLS Afriat’ estimator’s fitting performance is still

considerably worse than ‘SCKLS Coord’, as shown in Figure 3.5.

3.4.2 Additional estimators

3.4.2.1 Experiment 4 - Base case analysis with partial derivatives bounds for spline

For this experiment we add constraints to the SCBLS estimator to improve the boundary performance.

We plotted the previous results and observed that poor fitting performance on out-of-sample data for the

SCBLS estimator was coming from extreme variations in the estimated functions on the edges of the func-

tion’s domain. To explore the boundary issue in higher dimensions, we impose bounds on the partial deriva-

tives of the estimated functions at the set of control points. The formulation for each SCBLS is the same

with the addition of the following constraints:

PartDerm ≤ bik ≤ PartDerM, i = 1, . . . ,m, k = 1, . . . , d (3.17)

where bi are defined in Equation (3.12), PartDerm and PartDerM are respectively the lower bound and the

upper bound for partial derivatives at the control points.

The value of the lower and upper bounds should be a function of parameters of the DGP and thus will

vary across applications. For our DGP, we use PartDerm = 0.01 and PartDerM = 1. We present the results

obtained for the SCKLS estimators without bounds and the three SCBLS versions with the bounds, the DGP

is the base case introduced in Experiment 1. In Figure 3.7, the out-of-sample fitting performance is reported

and in Figure 3.8 the Afriat convexity violations are reported.

The results show that adding these constraints significantly improves the SCBLS estimators perfor-

mance. The median MSEs are almost halved in both d = 3 and d = 4 cases for the SCBLS estimators with
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Figure 3.7: MSE measured relative to the true function for a set of 100 testing points with the noise
standard deviation σ = 0.1 and the number of observations is 100 measured over 50 simulations
adding results from estimator with slope bounds.
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Figure 3.8: Percentage of violations of Afriat convexity for a set of 100 testing points with the noise
standard deviation σ = 0.1 and the number of observations is 100 measured over 50 simulations
adding results from estimator with slope bounds.

coordinate-wise constraints (‘SCBLS Coord’ and ‘SCBLS Afriat+Coord’) and imposing these bounds. Now

the SCBLS estimators with the bounds outperform SCKLS. Bounding the slopes appears to control the vari-

ation of the SCBLS class of estimators near the edge of the function domain improving their out-of-sample

fitting performance.
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3.4.3 Summary and recommendations

The results from the simulations can be summarized as follows:

1. Piece-wise linear approximation: Using the piece-wise linear approximation versus smooth esti-

mators is an advantage because the linear interpolation between grid points enforces the convexity

on the entire domain of the function. However smooth estimators with shape constraints outperform

the piece-wise linear estimators in low dimensional cases or when the training set is large and the

noise is not too large. With a large number of regressors and few data points, the estimators using the

piece-wise linear approximations are preferred and provide consistent results.

2. Coordinate-wise constraints approximation: First the loss in fitting performance between ‘SCKLS

Coord’ and ‘SCKLS’ shows that there is significant benefit to imposing the Afriat version of the shape

constraints. Second, the constraints used in ‘SCBLS Coord’ are stronger than the coordinate-wise

constraints, as they are sufficient but not necessary conditions of them. They also apply on the entire

domain of definition which appears to be be a big advantage compared to constraints only imposed

locally on a set of control points.

3. Local Afriat Inequalities as constraints: Using only local Afriat inequalities on a smooth estimator

performs well for cases with two regressors, but as the number of regressors increases the number

of shape constraints violations increase. A very large number of observations are required to obtain

comparatively good estimates. However, compared to using the Pya and Wood (2015) coordinate-

wise sufficient constraints on a smooth estimator, also including the Local Afriat Inequalities provides

a small boost in performance.

Thus Table 3.2 can be inferred to report the recommended estimator for different cases:

3.5 Application to the cost function estimation of the US hospital sector

In this section, we present the results of the splines-based shape-constrained non-parametric estimator

applied to a dataset containing the number of procedures performed and the cost for a sample of US hospitals.

Based on the results of the simulations and the conclusions presented in Table 3.2, ‘SCBLS Afriat+Coord’

is selected for this data set that has slightly more than 400 observations per year and four regressors. Thus

the following section will focus on the analysis using ‘SCBLS Afriat+Coord’ as the estimator of the cost
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Table 3.2: Optimal estimators in a case of non-extreme noise levels based on our simulation results
depending of data sets characteristics

Number of Regressors

2 > 2

< 400 SCBLS (‘Afriat+Coord’) SCKLS
Number

of Observations
> 400 SCBLS (‘Afriat+Coord’) SCBLS (‘Afriat+Coord’) /

SCKLS (very noisy data)

function. More results comparing alternative estimators and results of other estimators applied to the hospital

data are available in Appendix B.2.

3.5.1 Presentation of the data set

The hospital dataset joins cost data from the American Hospital Association’s (AHA) Annual Survey

Databases and outputs data from the Healthcare Cost and Utilization Project (HCUP) National Inpatient

Sample (NIS) core file. We focus on years 2007 and 2008. The AHA Annual Survey contains an extensive

list of of metrics for every US hospital. The cost measure built takes into consideration payroll, employee

benefits, depreciation, interest, supply expenses and other expenses. If we could not map the AHA data to

the outputs measured in the HCUP data, we excluded that particular AHA data record from the analysis.

Among the output data, there are several observations which are not similar to other hospitals in the sample.

To allow to focus on trends among the most common sizes of hospitals without being effected by these

potential outliers, all records with more than the 90th percentile in an output category were removed from

the analysis. The trimmed version of the data that is used in the application is summarized in Table 3.3.

3.5.2 Results

3.5.2.1 Analysis on the marginal rates of substitution

We perform an analysis on the marginal rates of substitution (MRS) concerning the outputs of the

industry. The levels for minor and major diagnostic procedures are held at their median level and we consider

the marginal rate of substitution between the major therapeutic procedures and minor therapeutic procedures,

as MRSMT−mT , it can be expressed as:
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Table 3.3: Data Summary

2007
(437 observations)

MinDiag MinTher MajDiag MajTher Cost($)
Mean 1505 3798 84 2106 80M

Skewness 2 1 1 1 1
25th Percentile 82 407 6 200 20M
50th Percentile 554 1869 43 1097 54M
75th Percentile 2182 6002 132 3177 112M

2008
(421 observations)

MinDiag MinTher MajDiag MajTher Cost($)
Mean 1563 3935 92 2274 88M

Skewness 2 1 1 2 2
25th Percentile 80 405 7 215 22M
50th Percentile 607 2155 47 1193 59M
75th Percentile 2340 6136 142 3425 118M

MRSMT−mT = MCMT /MCmT (3.18)

where MCMT and MCmT are the marginal costs of the major and minor therapeutic procedures respectively.

These marginal costs are evaluated for combinations of outputs at different percentiles of major and minor

therapeutic procedures. They are evaluated as numerical approximations of the derivatives of the cost func-

tion at these levels. The detailed results for the MCs are detailed in the next paragraph, first the MRSs are

reported in Figure 3.9.

To understand the interpretation of the MRSMT−mT values consider the calculation MRSMT−mT = 2,

this calculation implies that conditional on the current number of procedures and maintaining the same cost

level, minor therapeutic procedures should be reduced by 2 in order to perform one more major therapeutic

procedure. Two main insights can be inferred from these results; the trends are consistent across both years,

and the scale being lower in 2008. First, for hospitals that already perform many minor therapeutic pro-

cedures, the MRS are smaller indicating the substitution of minor to major therapeutic procedures requires

a smaller reduction in minor therapeutic procedures to increase major therapeutic procedures compared to

hospitals that perform few minor therapeutic procedures. A possible explanation is economies of scale ex-
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Figure 3.9: MRS between Major Therapeutic procedures and Minor Therapeutic procedures ob-
tained using the estimator ‘SCBLS Afriat+Coord’ for years 2007 and 2008, evaluated at different
percentile values.

ist. Specifically, large hospitals will have more resources over which they can spread minor therapeutic

procedures while changing some resources over to focus on major therapeutic procedures. The second in-

sight corresponds to the fact that the MRS is higher for higher percentiles of major therapeutic procedures.

One possible explanation is that hospitals have more specialized equipment and that increasing the number

of major therapeutic procedures by reducing the number of minor therapeutic procedures becomes more

difficult.

Eventually it depends how much each type of procedures is valued and if the hospital can influence

patient mix but these results indicate that a hospital with a lot of minor therapeutic procedures would benefit

to diversify with more major therapeutic procedures as the MRS is close to 1 and even smaller than 1 for

2008.

3.5.2.2 Marginal cost analysis

The marginal costs (MC) that are used for the computation of the marginal rates of substitution (MRS)

above are reported in details in Figure 3.10 for the Major Therapeutic procedures and Figure 3.11 for the

Minor Therapeutic procedures respectively. The values are in k$ per procedure.

The marginal costs can be interpreted as follows. If we consider the marginal cost of Major Therapeutic
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Figure 3.10: MC of the Major Therapeutic procedures (in k$ per procedure) obtained using the
estimator ‘SCBLS Afriat+Coord’ for years 2007 and 2008, evaluated at different percentile values.
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Figure 3.11: MC of the Minor Therapeutic procedures (in k$ per procedure) obtained using the
estimator ‘SCBLS Afriat+Coord’ for years 2007 and 2008, evaluated at different percentile values.

procedures, MCMT = 10 k$ per procedure, this value means that conditional on the current output and

cost levels, the cost of performing an additional Major Therapeutic procedure is 10 k$. Therefore, marginal

cost is a function of the current output and cost levels. Two main results are observed. First, looking
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at Figure 3.10, the marginal cost of Major Therapeutic procedures increases with the number of Major

Therapeutic procedures performed. For instance in year 2007, for a fixed percentile of 50th for Minor

Therapeutic procedures, the marginal cost of Major Therapeutic procedures is 14.7 k$ per procedure for a

level of Major Therapeutic procedures at the 50th percentile and 19.2 k$ per procedure for a level at the

75th percentile. Increasing marginal cost is commonly caused by organizational issues when hospitals are

performing a lot of a particular type of procedures and additional increases in procedures of a particular

procedure will require scarce resources. For example a particular piece of equipment or structural resource

is then saturated, increasing costs. Second, the marginal cost of a Major Therapeutic decreases when the

number of Minor Therapeutic procedures performed increases. For instance for a fixed percentile of 50th

for Major Therapeutic procedures, the marginal cost of the Major Therapeutic procedures is 14.7 k$ per

procedure for a level of Minor Therapeutic procedures at the 50th percentile and 10.3 k$ per procedure

for a level at the 75th percentile. This actually corresponds to what was observed with the analysis of the

marginal rates of substitution, the benefits for a hospital to diversify and produce more Major Therapeutic

procedures are positive if the hospital already performs a large number of Minor Therapeutic procedures.

We refer to the previous paragraph for more details about economies of scale argument which is the basis of

this phenomenon. Both results are also observed for Minor Therapeutic procedures in Figure 3.11, and the

same reasoning can be applied to this class of procedures.

3.6 Conclusion

This chapter provided an analysis of shape constraints approximations commonly used in shape-constrained

non-parametric estimators, a type of estimators that we argue has the advantages to be more flexible than

fully parametric approaches, while maintaining the desired level of interpretability to obtain valuable in-

sights about the industry considered. The two approximations analyzed were piece-wise linear function

versus smooth function and global constraints versus coordinate-wise constraints. B-spline estimators with

shape constraints were developed for the smooth cases and Local Linear Kernel estimators with shape con-

straints were used for the piece-wise linear cases. The estimators were tested on a set of simulations to

cover a wide range of settings, the criteria of evaluation being the fitting performance and the violations

of the shape constraints. The results of the simulations are that for noisy data sets and for which you have

more than two regressors and less than 400 observations, the piece-wise linear estimator is preferred be-
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cause global shape constraints can be imposed on the entire domain of the function. For other scenarios the

smooth B-spline estimator is provides slightly better performance, even if violations of the shape constraints

increases slightly. The implementation of one of the spline estimators developed on a cost function of the

US hospital industry to analyze marginal rates of substitution indicated hospitals performing many minor

therapeutic procedures and few major therapeutic procedures would benefit from re-balancing their outputs

production to increase their productivity where possible. Future research could be done in the application

part to extend the hospital analysis or in the methodology part to optimize the selection of the settings for

the estimators, such as the number of knots and their distributions for the B-spline estimators.
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4. CONCLUSIONS

Global interest in production economics has increased due to the rapid development of data analytics

and its applications. Estimation methods also need to evolve, and cost function estimation offers significant

potential improvement through the use of shape-constrained non-parametric estimators. Two main axes of

research were considered and led us to determine recommendations for users interested in such approaches.

First, we discussed the importance of direction selection for estimators with stochastic directional dis-

tance functions. The CNLS-d estimator is a shape-constrained non-parametric estimator based on the

stochastic directional distance function. Using this estimator and Monte Carlo simulations, we provided

guidelines for selecting a well performing direction, to obtain a good fitting performance to the true func-

tion: Guideline 1: If the user has an idea of the noise direction, assign this direction as the direction used

in the estimator; Guideline 2: Select a direction orthogonal to the data. Since knowing the noise direction

is not very common, most users rely on the orthogonal direction. The CNLS-d estimator with the direction

orthogonal to the data was implemented for estimating a cost function in the US hospitals industry. The

results were compared to the results of a quadratic estimator, that is fully parametric and a linear kernel

regression, that is fully non-parametric. The CNLS-d with direction selection is more flexible to avoid

possible functional form misspecification coming from a fully parametric model and it has more structure

than the fully non-parametric model to help with the estimation and interpretation of valuable metrics, for

instance marginal costs. The main insight gained for the US hospitals industry is that the Most Productive

Scale Sizes are small, which indicates that clusters of smaller hospitals would be more productive than large

hospitals.

Second, we analyzed two shape approximations commonly used for shape-constrained non-parametric

estimators: piece-wise linear versus smooth functional forms, and global constraints versus coordinate-wise

shape constraints. We developed an estimator based on B-splines, called SCBLS, to become the base of

the smooth estimators used for the comparison. The piece-wise linear estimators were based on a shape-

constrained local linear kernel regression, called the SCKLS estimator. The results of an exhaustive range

of experiments, led us to conclude that SCKLS is the best estimator for problems with both small datasets

(less than 400 observations) and more than two regressors, and that SCBLS is the best estimator for other
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problems, even if the shape constraints are not enforced globally (over the entire domain of the function).

SCKLS still performs well in all cases. The standard deviations for its fitting performances were smaller,

particularly for some of the larger datasets with four regressors. The result suggests it might be a preferred

estimator for cases with high noise levels. We used SCBLS to estimate the US hospital industry cost func-

tion. Our study of the marginal rates of substitution determined that hospitals that perform many minor

therapeutic procedures would be more productive if they re-balance their outputs to perform more major

therapeutic procedures, if customer in-take practices allow.

In summary, based on our analytical results, we suggested recommendations for users of non-parametric

shape-constrained estimators. First, we proposed a method to select the direction for an estimator using a

stochastic directional distance function. Second, we provided information about the performance of different

approximations to shape constraints of non-parametric estimators to help with estimator selection. We

developed several estimators for the latest analysis including the B-spline based estimators, SCBLS, for

which promising results were obtained. From the applications subsections, we shared insightful results on

the US hospitals industry.

Future research could build on the results discussed in Chapter 2 by continuing studying the possibility

of developing an estimator that would allow using several directions depending on the data and still main-

taining the shape constraints. Also more study of the SCBLS estimator could reveal the benefits of tailoring

the SCBLS estimator to specific applications.
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APPENDIX A

APPENDIX OF CHAPTER 2

The appendix is composed of the following parts:

• Properties of Directional Distance Functions and CNLS-d (A.1)

• Monte Carlo, Additional Experiments (A.2)

• Detailed results for the Hospital Application (A.3)
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A.1 Properties of Directional Distance Functions and CNLS-d

A.1.1 Direction Selection in Directional Distance Functions

In this appendix we prove that the direction vector affects the functional estimates. Let gx,y = (gx, gy),

then we can state the following theorem:

Theorem 1. Suppose that two direction vectors exist, gx,y
a and gx,y

b , such that gx,y
a 6= gx,y

b . Then the

directional distance function estimates using these two different directions are not equal, D(X,Y ; gx,y
a ) 6=

D(X,Y ; gx,y
b ).

Proof. Rewrite Problem (2.10) from Section 3.2 as

min
α,β,γ

n∑
i=1

(αi + β′
i xi − γi

′
yi)

2 (A.1)

s.t. αi + β′
i xi − γ ′

i yi ≤ αj + β′
j xi − γ ′

j yi, for i, j = 1, . . . , n, i 6= j (A.1a)

βi,γi ≥ 0, for i = 1, . . . , n (A.1b)

β′
i g

x + γ ′
i g

y = 1, for i = 1, . . . , n (A.1c)

Observe that all decision variables appear in the objective function and that the objective function is a

quadratic function while the constraints define a convex solution space; i.e., this optimization problem has a

unique solution (Bertsekas (1999)). If we solve Problem (A.1) with gx,y
a , then the resulting solution vector is

(αa,βa,γa). Changing the direction vector from gx,y
a to gx,y

b the normalization constraint β′
i g

x
b +γ ′

i g
y
b = 1

no longer holds for βa and γa. However, the previous argument holds for the uniqueness of (αb,βb,γb).

Thus, (αa,βa,γa) 6= (αb,βb,γb).

A.1.2 Details of CNLS-d

An alternative expression for CNLS-d (cf. equations (16)-(16c) from Section 5.1) is given by:
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min
α,β,γ

n∑
i=1

ϵ2i (A.2)

s.t. − ϵj + ϵi + β′
i (xi − xj)− γ ′

i (yi − yj) ≤ 0, for i, j = 1, . . . , n, i 6= j (A.2a)

β′
i g

x + γ ′
i g

y = 1, for i = 1, . . . , n (A.2b)

βi, γi ≥ 0, for i = 1, . . . , n. (A.2c)

It’s possible to recover αi, i = 1, . . . , n, and the final estimates using the following relations:

x̂i = xi + ϵi g
x, for i = 1, . . . , n (A.3)

ŷi = yi − ϵi g
y, for i = 1, . . . , n (A.4)

αi = −β′
i xi + γ ′

i yi + ϵi, for i = 1, . . . , n. (A.5)

A.1.3 Different Directions for Different Groups in CNLS-d

Consider the case where all observations have the same input level and produce two outputs and estimate

the isoquant. Define two groups of observations G1 and G2 such that |G1 ∪ G2| = n and G1 ∩ G2 = ∅.1

Using the notation in A.1.1, the direction vector for the first group of observations G1 is gyG1 and it’s gyG2

for the second group of observations G2.

For either a fixed input vector, X , or a fixed cost level, c, formulate the iso-cost estimator for G1 and

G2 with different directions vectors as:

1The notation |·| corresponds to the cardinality of the set.
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min
α,β,γ,ϵ

n∑
i=1

ϵ2i (A.6)

s.t. − ϵj + ϵi − γ ′
i (yi − yj) ≤ 0, for i, j = 1, . . . , n, i 6= j (A.6a)

γ ′
i g

yG1 = 1, for i ∈ G1 (A.6b)

γ ′
i g

yG2 = 1, for i ∈ G2 (A.6c)

γi ≥ 0, for i = 1, . . . , n. (A.6d)

Note that using more than one direction for CNLS-d can lead to violations on convexity. Only under

very limiting conditions can we allow for multiple directions in CNLS-d and guarantee that the resulting

estimated function will maintain convexity. The following theorem formalizes the conditions.

Theorem 2. If a CNLS-d estimator is calculated using two groups of observations with different direction

vectors as shown in Equation (A.6) and the following condition holds regarding the direction vectors and

the noise direction:

(
ϵi

gyk(i)

‖gyk(i)‖

)′ [ gyk(j)

‖gyk(j)‖
− gyk(i)

‖gyk(i)‖

]
≥ 0, for i, j = 1, . . . , n, i 6= j, (A.7)

where

k(i) =


1, if i ∈ G1

2, if i ∈ G2,

then the resulting CNLS-d estimate is a concave function.

Proof. Consider the Afriat inequalities in the context of cost isoquant estimation. One of the conditions of

Equation (2.16) is:

ϵi − ϵj − γ ′
i (yi − yj) ≤ 0, for i, j = 1, . . . , n, i 6= j. (A.8)

Knowing that ϵi g
yk(i)

∥gyk(i)∥ = ŷi − yi means that ϵi = (ŷi − yi)
′ g

yk(i)

∥gyk(i)∥ .

Substituting ϵi and ϵj in the inequalities (A.8) obtains:

(ŷi − yi)
′ gyk(i)

‖gyk(i)‖
− (ŷj − yj)

′ gyk(j)

‖gyk(j)‖
− γ ′

i (yi − yj) ≤ 0, for i, j = 1, . . . , n, i 6= j. (A.9)
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Next, consider the case where both observations have the same direction. Then the expression is:

[(ŷi − yi)− (ŷj − yj)]
′ gyk(i)

‖gyk(i)‖
− γ ′

i (yi − yj) ≤ 0, for i, j = 1, . . . , n, i 6= j. (A.10)

If Equation (A.10) is satisfied, we know that the CNLS-d constraints hold. By comparison observe that

the condition listed below is a sufficient condition for Equation (A.10) being satisfied when Equation (A.9)

holds:

[(ŷi − yi)− (ŷj − yj)]
′ gyk(i)

‖gyk(i)‖
− γ ′

i (yi − yj) −−from eq.(A.10)

≤ (ŷi − yi)
′ gyk(i)

‖gyk(i)‖
− (ŷj − yj)

′ gyk(j)

‖gyk(j)‖
− γ ′

i (yi − yj) −−from eq.(A.9)

for i, j = 1, . . . , n, i 6= j,

which, after simplifying, becomes:

(ŷi − yi)
′
[

gyk(j)

‖gyk(j)‖
− gyk(i)

‖gyk(i)‖

]
≥ 0 for i, j = 1, . . . , n, i 6= j (A.11)

Thus Theorem 2 is proved and a sufficient condition is found that, if verified, ensures the concavity

property of the estimator even when multiple directions are used in the estimation of the directional distance

function.

The following corollary, concerning the convex case, is directly inferred from Theorem 2:

Corollary 1. If a CNLS-d estimator is calculated using two groups of observations with different direction

vectors as shown in Equation (A.6), and the following condition holds regarding the direction vectors and

the noise direction:

(
ϵi

gyk(i)

‖gyk(i)‖

)′ [ gyk(j)

‖gyk(j)‖
− gyk(i)

‖gyk(i)‖

]
≤ 0, for i = 1, . . . , n, i 6= j, (A.12)
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where

k(i) =


1, if i ∈ G1

2, if i ∈ G2,

then the resulting CNLS-d estimate is a convex function.

Proof. Reverse the inequality sign in Equation (A.8):

− ϵj + ϵi − γ ′
i (yi − yj) ≥ 0, for i, j = 1, . . . , n, i 6= j, (A.13)

and follow the logic of the proof of Theorem 2 to obtain Corollary 1 and Equation (A.12).

Theorem 2 clarifies that if the directions for each respective group are orthogonal to each other, then

condition A.7 is verified. This means that if the direction for group 1 has a single nonzero component in the

output 1 dimension and group 2 has a single nonzero component in the output 2 dimension, then we will not

observe violations of the convexity property.

We state a second Corollary that follows from Theorem 2, which is useful when there are more than two

groups each with their own estimation direction in CNLS-d.

Corollary 2. Let n ∈ N the total number of observation. Let Q the number of outputs considered. Let

Y = {yi ∈ RQ
+, i = 1, . . . , n} the set of observed outputs. Let Pg a partition of Y of cardinal Ng ∈ N. Let

gy = {gyk , k = 1, . . . , Ng} the set of directions used for each respective group of the partition. If a CNLS-d

estimator is calculated using the directions from gy based on partition Pg, and the following condition holds

regarding the direction vectors and the noise direction:

(
ϵi

gyk(i)

‖gyk(i)‖

)′ [ gyk(j)

‖gyk(j)‖
− gyk(i)

‖gyk(i)‖

]
≥ 0, for i, j = 1, . . . , n, i 6= j, (A.14)

where for each i = 1, . . . , n, k(i) corresponds to the indicator of the part of the partition Pg, in which yi

belongs. Then the resulting CNLS-d estimate is a concave function.

Proof. We can follow the proof of Theorem 2, as the condition does not change. The condition still concerns

pairwise observations, the only difference is that now the partition of observations corresponds to more than
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two groups. This does not affect the proof of the condition.

Corollary 2 extends the statement of Theorem 2 to provide sufficient conditions to avoid violations of

the shape constraints in a scenario where there are more than two groups each with their own estimation

direction in CNLS-d estimation.

A.1.3.1 Simulations to investigate the frequency with which multiple directions leads to violations

We run simulations to investigate the effects of using multiple directions. We use the same DGP as

stated in Section 2.5, Example 1. However, we define two groups and assign different directions for each

one of them:

G1 = {i ∈ {1, 2, ..., n}| arctan (ỹi2/ỹi1) ≤ π/4} (A.15)

G2 = {i ∈ {1, 2, ..., n}| arctan (ỹi2/ỹi1) > π/4}, (A.16)

and,

gy =


gyG1 , if i ∈ G1

gyG2 , if i ∈ G2,

(A.17)

where gyG1 = [cos(π/8), sin(π/8)] and gyG2 = [cos(3π/8), sin(3π/8)].

We run a total of 100 simulations. For comparison, for each simulation, we also record the estimates

when using only the direction based on π/8 and 3π/8 only for all observations. We identify violations of

the monotonicity and concavity by sorting the estimates by y1. We identify all adjacent pairs and triplets,

which means 99 pairs and 98 triplets given that we consider 100 observations for each simulation.

As expected, there are no violations when we use a single direction for the estimation. However, when

we use two directions violations are observed. For monotonicity, we observe no violations for pairs of

observations that are part of the same group. However, for pairs with one member from each group we

observe violations of monotonicity for 6% of the pairs. We use the triplets to analyze concavity. When

the members of the triplet are from the same group, we observe violations of concavity for 2% of the

triplets. When one member of the triplet is from a different group, the violations of concavity increase to

45%. These results indicate that for one instance when the conditions of Theorem 2 do not hold, we see a
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significant number of violations of the maintained assumptions.
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A.2 Additional Experiments

A.2.1 Experiments Related to Section 2.4.1 - with the Linear Estimator.

A.2.1.1 Measuring MSE Example, Section 2.4.1 - Noise Generated in a Common and Prespeci-

fied Direction θf

This section describes the simulations and the results for the fixed noise direction case referenced in

Section 2.4.1.

The Data Generation Process (DGP) for observations (yi, ci) , i = 1, . . . , n, is as follows:

1. The output, ỹi, is drawn from the continuous uniform distribution U [0, 1]

2. The cost is calculated as c̃i = β0 ỹi, where β0 = 1.

3. In the case of fixed direction, the noise term is determined as:

(a) lϵi is the scalar length that is drawn from a normal distribution, N (0, λ ϵ0), λ is prespec-

ified and an initial value for the standard deviation, ϵ0, is calculated as in Equation (2.11)

in Section 2.4.1.:

ϵ0 =
1

2

√√√√ 1

n− 1

n∑
i=1

(ỹi − ȳ)2 +

√√√√ 1

n− 1

n∑
i=1

(c̃i − c̄)2

 , (A.18)

where ȳ = 1
n

∑n
i=1 ỹi and c̄ = 1

n

∑n
i=1 c̃i are the mean of the output and the mean of the

cost without noise, respectively.

(b) vf = [cos(θf ), sin(θf )] is the fixed noise direction that is inferred from the prespecified

angle θf .

(c) (ϵyi , ϵci) = lϵi vf , i = 1, . . . , n.

4. The observations with noise are obtained by appending the noise term:

(
yi
ci

)
=

(
ỹi
c̃i

)
+

(
ϵyi
ϵci

)
, i = 1, . . . , n. (A.19)

Apply the DGP described above to generate a training set, (ytri , ctri) , i = 1, . . . , ntr, and a testing set
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Figure A.1: Linear function data generation process with fixed noise direction

(ytsi , ctsi) , i = 1, . . . , nts. Consider 100 repetitions of the simulation and set the number of observations in

each group to ntr = nts = 100. Set the scaling coefficient for the noise to λ = 0.6. Consider different DGP

since data is generated for the following values of noise direction angles, θf ∈ {0, π/8, π/4, 3π/8, π/2}.

We test the set of directions corresponding to the angle θt ∈ {0, π/8, π/4, 3π/8, π/2}. If the direction

of the noise, θf , matches the direction used in the DDF, θt, then the smallest MSE results for all cases.

A.2.1.2 Results: Fixed Noise Direction

Table A.1 reports the MSE computed by comparing the estimated function to the true function and Table

A.2 reports the MSE computed by comparing the estimated function to the testing set.

In Table A.1, the direction for the DDF corresponding to the smallest MSE always matches the noise

direction in the DGP. Further for more than 70% of the cases tested there is more than a 50% decrease in

MSE by using the correctly specified direction compared to the next best direction tested, which was not as

large in the random direction case in Table 2.1 of Section 2.4.1. In other words, when endogeneity is severe,

the benefits of using a DDF with a well-selected direction are potentially large.

Table A.2 is consistent with the results observed in the random noise case, in Table 2.2 of Section

2.4.1. The DDF directions corresponding to the smallest MSE values are those matching the directions used

for the MSE computation. Thus, the proposed radial MSE measure addresses the challenge of measuring

performance in applications with a testing dataset.

A.2.1.3 Monte Carlo Simulations - Experiments, Section 2.5.2.3 - Experiment 3. Base case with

fixed noise direction and different noise levels

This section summarizes the results of Experiment 3 with λ = 0.2.

A.2.2 Experiments related to Section 2.5.2 - with CNLS-d

Here we complete Section 2.5.2 with additional experiments and we follow the numbering experiments

numbering established then.
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Table A.1: Average MSE over 100 simulations for the Linear Estimator compared to the true
function with a DGP using random noise directions

Average MSE: Estimator
compared to the true function

DDF Direction Angle θt

Noise Dir Angle θf MSE Dir Ang θMSE 0 π/8 π/4 3π/8 π/2

0 0 0.55 1.59 3.49 6.35 12.06
0 π/8 0.32 0.86 1.81 3.17 5.70
0 π/4 0.27 0.69 1.42 2.44 4.23
0 3π/8 0.32 0.77 1.54 2.58 4.36
0 π/2 0.54 1.21 2.37 3.86 6.28

π/8 0 3.22 1.00 2.66 7.79 22.92
π/8 π/8 2.16 0.59 1.39 3.80 9.98
π/8 π/4 2.04 0.50 1.10 2.88 7.09
π/8 3π/8 2.67 0.59 1.21 3.02 7.02
π/8 π/2 5.40 1.03 1.88 4.45 9.68

π/4 0 8.95 2.92 1.18 2.95 15.94
π/4 π/8 6.46 1.93 0.70 1.53 7.21
π/4 π/4 6.49 1.81 0.61 1.20 5.24
π/4 3π/8 9.10 2.35 0.74 1.31 5.30
π/4 π/2 20.84 4.70 1.32 2.03 7.48

3π/8 0 9.65 4.44 1.90 1.13 5.70
3π/8 π/8 6.99 3.00 1.22 0.65 2.83
3π/8 π/4 7.05 2.86 1.11 0.55 2.17
3π/8 3π/8 9.92 3.76 1.40 0.64 2.30
3π/8 π/2 22.76 7.71 2.66 1.09 3.45

π/2 0 6.15 3.76 2.29 1.16 0.50
π/2 π/8 4.25 2.50 1.49 0.73 0.29
π/2 π/4 4.11 2.36 1.37 0.66 0.25
π/2 3π/8 5.52 3.06 1.74 0.81 0.29
π/2 π/27 11.62 6.10 3.33 1.50 0.49

Note: Displayed are the measured values multiplied by 103

A.2.2.1 Experiment 5: Base case with different distributions for the initial observations on the

true function

In Experiment 5, we extend the analysis performed in Experiment 4. We consider additional distri-

butions of the DGP for the angle, θi, i = 1, . . . , n and see how it affects the optimal direction. Unlike
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Table A.2: Average MSE over 100 simulations for the Linear Estimator compared to an out-of-
sample testing set with a DGP using fixed noise directions

Average MSE: Estimator
compared to testing set data

DDF Direction Angle θt

Noise Dir Angle θf MSE Dir Ang θMSE 0 π/8 π/4 3π/8 π/2

0 0 30.02 31.22 33.23 36.21 42.08
0 π/8 17.53 17.13 17.46 18.24 20.01
0 π/4 14.95 13.99 13.86 14.10 14.92
0 3π/8 17.51 15.70 15.15 15.03 15.42
0 π/2 29.93 25.30 23.55 22.64 22.32

π/8 0 49.89 52.78 58.59 68.39 91.28
π/8 π/8 32.41 30.88 31.71 34.14 40.37
π/8 π/4 29.93 26.38 25.69 26.27 28.92
π/8 3π/8 38.15 31.00 28.66 27.92 28.88
π/8 π/2 74.19 53.30 45.83 41.93 40.19

π/4 0 51.54 53.79 59.55 70.76 101.99
π/4 π/8 36.65 34.53 35.21 38.14 47.22
π/4 π/4 36.39 31.60 30.32 30.83 34.75
π/4 3π/8 50.32 39.87 35.91 34.32 35.52
π/4 π/2 112.21 76.31 62.47 54.76 50.83

3π/8 0 39.37 41.09 45.01 52.54 73.64
3π/8 π/8 28.28 27.35 28.14 30.56 37.89
3π/8 π/4 28.30 25.72 25.22 26.01 29.73
3π/8 3π/8 39.47 33.40 31.11 30.42 32.19
3π/8 π/2 89.14 66.84 57.41 51.96 49.51

π/2 0 22.47 22.94 23.97 25.85 30.66
π/2 π/8 15.44 15.16 15.36 15.99 17.91
π/2 π/4 14.89 14.17 14.01 14.21 15.27
π/2 3π/8 19.88 18.27 17.59 17.35 17.88
π/2 π/2 41.52 36.04 33.31 31.51 30.54

Note: Displayed are the measured values multiplied by 103

Experiment 4, we don’t consider only normal distributions, instead we consider the following: a normal

distribution, N
(
π
4 ,

π
16

)
, and two gamma distributions, Γ

(
3, π2

)
and Γ

(
.5, π

24

)
. For the gamma distributions,

the first parameter corresponds to the shape coefficient and the second the scale coefficient. Each distri-

bution is later referenced respectively as Normal, Gamma1 and Gamma2. We truncate the tails of the
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Table A.3: Experiment 3–More Noise: Values of radial MSE relative to the true function varying
the DGP noise direction and the CNLS-d direction. In the DGP, the standard deviation of the noise
distribution, λ, is 0.2.

CNLS-d Direction Angle

Noise Direction Angle 0 π/8 π/4 3π/8 π/2

0 8.15 15.62 37.66 82.16 183.39
π/8 50.60 11.59 20.68 67.88 206.46
π/4 145.21 29.40 11.89 33.89 149.24
3π/8 220.24 69.87 22.28 11.66 53.66
π/2 165.84 72.13 33.27 14.25 7.41

Note: Displayed are measured values multiplied by 104

distribution so that the generated angles fall within the range [0, π/2]. Noise is specified as in Experiment

1. In Figure A.2, the distributions of the angles θi are illustrated and in particular the median values are

highlighted. Table A.4 reports the results of this experiment.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
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Figure A.2: (a) On the left, histogram of the angles θi and its median obtained for each distribution
when running a simulation with 100 observations. (b) On the right, the corresponding observations
and the median of the angles θi for each distribution for the same simulation as the histogram (a).

Two main conclusion can be drawn from the results in Table A.4. First, the smaller the variance of the

data distribution, the greater is the importance of direction selection. Looking at the differences between
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Table A.4: Experiment 5: Values of radial MSE relative to the true function varying the CNLS-d
direction and type of direction used for the DGP.

CNLS-d Direction Angle

Distribution 0 π/8 π/4 3π/8 π/2

Normal 8.45 3.04 1.96 3.01 8.60
Gamma1 29.34 6.92 3.27 2.54 3.39
Gamma2 6.62 9.69 19.19 72.55 598.97

Note: Displayed are measured values multiplied by 104.

the two gamma distributions, Gamma1 has a larger tail than Gamma2, which means the observations for

Gamma2 have a smaller variance. Table A.4 indicates that the MSE increases rapidly with deviations from

the optimal direction when variance of observations is smaller as with Gamma2 compared to Gamma1.

Second, among the directions tested, θi, MSE is minimized for the direction closest to the direction corre-

sponding to the median of the distribution. This second point supports the selection approach proposed in

Section 2.6.
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A.2.2.2 Experiment 6: Adaptation of the Base Case to a 3-Dimensional Case

We adapt the DGP from Experiment 1, the base case. We consider a fixed input level and approximate

a three output isoquant, Q = 3. Indexing the outputs by q and observations by i, we define the outputs,

yqi = ỹqi + ϵqi, q = 1, . . . , Q, i = 1, . . . , n, (A.20)

where ỹi is the observation on the isoquant and ϵi is the noise. The output levels ỹqi, q = 1, . . . , Q, i =

1, . . . , n are generated:

ỹi =
li

||li||2
, i = 1, . . . , n (A.21)

where lqi, q = 1, . . . , Q, i = 1, . . . , n, are drawn randomly from a continuous uniform distribution, U [0, 1].

The noise terms ϵi, i = 1, . . . , n is adapted to the 3-dimensional isoquant:

ϵi = lϵi vi, i = 1, . . . , n (A.22)

where the length lϵi is drawn from the normal distribution N (0, λ), and vqi =
v∗qi

||vi||2 , q = 1, . . . , Q, i =

1, . . . , n for which v∗qi are drawn from a continuous uniform distribution U [−1, 1].

In Experiment 6, 19 directions are considered for the CNLS-d estimators. The directions are determined

using the following steps:

1. enumerate all 3 component vectors, corresponding to R3 with elements from the set {0, 0.5, 1} and

excluding (0, 0, 0);

2. normalize the direction vectors dividing them by their respective Euclidean norms;

3. eliminate duplicates

The 19 directions are represented by the markers in Figure A.3 and create a balanced grid on the eighth of

a unit sphere, our isoquant. The median direction is [1/
√
3, 1/

√
3, 1/

√
3] = [.58, 58, .58]. The standard
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deviation of the normal distribution is λ = 0.1. We perform this experiment 100 times for each direction.

We report the averaged radial MSE values on a testing set of n observations lying on the true function in

Table A.5. In addition to the table, the MSE results are also illustrated in Figure A.3 where the size of the

markers has a positive affine relation with the MSE values and that in the color range from yellow to red,

with larger the MSE values associated with more red markers.

Figure A.3: Experiment 6: 3-dimensional isoquant case: Representation of the directions tested
and the values of averaged radial MSE, the size of the markers having a positive affine relation to
the values. The color is an other indicator as the more red the higher the averaged radial MSE is
and the more yellow for lower values.

We can establish three categories of directions that correspond to certain ranges of MSE values. The

first category corresponds to the worst MSE values, which are almost twice the smallest values. These are

the directions that have only one non-zero component shown with red markers on the corners of the surface
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Table A.5: Experiment 6: Values of radial MSE relative to the true function varying the CNLS-d
direction in a 3- dimensional case

CNLS-d Direction
(gy1 , gy2 , gy3) Average of radial MSE

(0, 0, 1) 9.07
(0, 0.45, 0.89) 5.23
(0, 0.71, 0.71) 5.04
(0, 0.89, 0.45) 5.53
(0, 1, 0) 9.62
(0.33, 0.67, 0.67) 4.24
(0.41, 0.41, 0.82) 4.29
(0.41, 0.82, 0.41) 4.35
(0.45, 0, 0.89) 5.12
(0.45, 0.89, 0) 5.44
(0.58, 0.58, 0.58) 4.21
(0.67, 0.33, 0.67) 4.15
(0.67, 0.67, 0.33) 4.18
(0.71, 0, 0.71) 4.89
(0.71, 0.71, 0) 4.91
(0.82, 0.41, 0.41) 4.23
(0.89, 0, 0.45) 5.20
(0.89, 0.45, 0) 5.18
(1, 0, 0) 8.58

Note: Displayed are measured values multiplied by 104.

shown in Figure A.3. The second category is for the MSE values that are above 5 · 10−4 but less than

8 · 10−4. These directions are labeled with the orange markers in Figure A.3 that are on the edges of the

surface but not the corners. One of their directional components, (gx, gy), is zero but all others are not.

The third category of directions, which has the smallest MSEs, correspond to the yellow markers in Figure

A.3. These directions have only positive components. Thus, we observe a trend that the directions that

have positive components in all variables correspond to the best MSE values. The median value direction,

[0.58, 0.58, 0.58], is among the yellow markers. These results support the selection approach proposed in

Section 2.6 and confirm the results obtained on the US hospitals data set.
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A.3 U.S. Hospital Dataset Application

We describe the functional estimates provided by quadratic regression, CNLS-d using a direction with

equal components in all dimensions and CNLS-d using the median direction, and the local linear kernel.

Table A.6 provides most productive scale size (MPSS) measurements in cost in $M . Tables A.7 and A.8

provide the marginal cost of Minor Therapeutic procedures and the marginal cost of Major Therapeutic

procedures, respectively. The units for Tables A.7 and A.8 are cost in $k over Minor and Major Therapeutic

procedures, respectively.

Our conclusions are the same as stated in the body of the paper, CNLS-d provides the advantage of

being more flexible than the parametric estimator (quadratic regression) while having shape constraints that

maintain the interpretability of the results.
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Table A.6: Most Productive Scale Size (c)

Percentile Quadratic Regression CNLS-d (median) CNLS-d (equal) LL Kernel

MinDiag MinTher MajDiag MajTher 2007 2008 2009 2007 2008 2009 2007 2008 2009 2007 2008 2009

25 25 25 25 529 234 823 105 58 87 109 93 103 228 301 885
25 25 25 50 118 118 122 406 81 369 412 91 112 220 143 216
25 25 25 75 102 110 93 1214 82 895 1220 92 104 209 120 189
25 25 50 25 79 693 560 177 94 166 131 93 140 226 136 162
25 25 50 50 104 139 141 98 60 94 95 79 84 233 217 210
25 25 50 75 105 114 103 165 80 340 179 90 114 219 139 208
25 25 75 25 56 414 335 179 108 554 124 96 384 158 133 27
25 25 75 50 77 245 176 149 93 194 126 91 132 292 117 185
25 25 75 75 94 133 115 93 61 107 105 71 85 226 197 197
25 50 25 25 15 42 63 330 53 78 327 123 127 400 271 1062
25 50 25 50 1074 234 1333 119 55 92 108 91 89 1027 306 215
25 50 25 75 137 131 138 209 78 331 264 98 110 222 153 206
25 50 50 25 248 330 381 80 57 83 93 74 84 373 304 336
25 50 50 50 332 273 1349 70 64 86 127 78 80 903 251 1152
25 50 50 75 133 134 141 177 76 304 182 95 109 233 261 231
25 50 75 25 108 492 718 126 91 144 143 89 129 204 187 79
25 50 75 50 122 694 1068 128 87 137 144 95 112 331 159 239
25 50 75 75 118 154 152 91 59 104 110 77 93 239 232 229
25 75 25 25 11 13 13 915 53 80 1015 125 130 246 98 921
25 75 25 50 11 231 149 192 52 78 197 130 136 537 433 1129
25 75 25 75 1139 223 1542 112 55 75 101 91 115 1015 287 215
25 75 50 25 18 16 5 133 52 79 181 114 118 293 111 887
25 75 50 50 13 311 217 135 51 77 181 111 125 528 466 1091
25 75 50 75 1155 230 1563 109 61 75 99 90 114 1062 272 214
25 75 75 25 64 220 275 81 57 85 94 82 84 300 199 274
25 75 75 50 304 483 484 79 56 93 85 73 83 478 400 437
25 75 75 75 333 265 1532 77 64 96 115 78 79 963 249 153
50 25 25 25 143 189 126 165 115 149 173 157 183 132 139 123
50 25 25 50 119 124 105 126 68 143 110 88 98 287 116 197
50 25 25 75 103 111 90 289 82 424 265 92 104 218 116 185
50 25 50 25 84 740 157 136 72 258 140 91 277 128 209 93
50 25 50 50 106 146 124 96 59 100 101 85 113 245 244 202
50 25 50 75 106 114 100 173 80 292 212 90 113 229 135 211
50 25 75 25 58 431 217 205 97 452 119 95 440 161 128 7
50 25 75 50 79 247 160 140 82 192 114 91 154 150 114 150
50 25 75 75 95 133 111 93 61 106 104 79 106 233 207 197
50 50 25 25 10 142 207 99 51 75 107 111 112 462 363 1031
50 50 25 50 1156 232 1319 109 61 81 114 89 80 1134 367 264
50 50 25 75 138 131 135 208 78 240 267 98 110 233 150 212
50 50 50 25 357 387 450 87 56 90 91 80 90 419 324 194
50 50 50 50 307 272 1329 76 63 84 88 77 78 218 269 652
50 50 50 75 134 135 137 185 76 258 183 95 108 236 170 232
50 50 75 25 110 508 702 125 90 143 124 89 139 209 178 30
50 50 75 50 123 646 1044 128 77 147 119 94 132 333 340 178
50 50 75 75 119 155 149 91 59 103 110 77 103 240 236 236
50 75 25 25 18 15 6 274 53 80 282 124 130 291 117 933
50 75 25 50 14 245 142 191 52 77 188 129 126 566 456 1134
50 75 25 75 1155 224 1523 111 55 75 101 91 115 1050 348 247
50 75 50 25 18 13 10 132 52 79 172 114 118 316 140 894
50 75 50 50 17 325 209 135 51 76 164 111 124 537 502 680
50 75 50 75 1170 230 1544 109 61 83 106 90 114 1106 308 252
50 75 75 25 85 232 264 81 57 84 94 82 84 321 205 245
50 75 75 50 323 493 471 79 56 92 85 81 82 499 406 306
50 75 75 75 335 266 1514 77 64 95 115 78 79 966 252 1192
75 25 25 25 75 101 29 548 309 213 620 177 136 20 27 34
75 25 25 50 100 118 50 129 74 176 142 137 128 100 46 73
75 25 25 75 102 112 81 101 78 133 104 79 99 242 73 160
75 25 50 25 74 142 39 244 95 190 322 92 285 49 57 42
75 25 50 50 95 140 59 112 120 154 189 112 386 123 58 81
75 25 50 75 106 116 83 107 76 131 110 78 99 259 79 179
75 25 75 25 60 534 65 163 75 260 178 84 355 79 115 17
75 25 75 50 80 213 82 139 72 237 179 81 280 129 147 135
75 25 75 75 96 137 96 91 69 111 99 84 114 242 117 188
75 50 25 25 233 593 136 232 128 157 229 254 130 109 542 677
75 50 25 50 185 196 138 171 93 156 145 145 121 154 146 135
75 50 25 75 137 132 115 107 75 118 101 76 106 243 111 182
75 50 50 25 175 670 149 133 85 132 133 98 118 135 278 412
75 50 50 50 169 223 149 120 98 141 121 108 136 179 171 139
75 50 50 75 133 137 118 104 74 117 107 75 95 300 128 211
75 50 75 25 101 607 182 106 71 258 156 80 351 139 161 59
75 50 75 50 117 359 177 102 69 236 150 77 279 171 291 160
75 50 75 75 120 159 131 97 67 108 97 90 111 274 253 210
75 75 25 25 11 57 144 92 52 85 101 92 83 380 220 872
75 75 25 50 12 371 377 88 51 83 105 90 90 642 551 1051
75 75 25 75 740 219 452 101 53 81 86 88 88 253 359 237
75 75 50 25 13 136 202 88 51 84 105 90 92 404 284 866
75 75 50 50 19 439 428 93 50 82 109 89 90 631 630 1048
75 75 50 75 549 225 459 106 59 89 91 88 96 263 349 286
75 75 75 25 296 328 415 79 48 89 85 86 89 363 233 191
75 75 75 50 507 564 593 85 48 88 83 77 97 385 423 191
75 75 75 75 285 261 472 82 56 92 88 76 101 236 264 713

Note: The values displayed are in $M
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Table A.7: Marginal Cost of Minor Therapeutic Procedures

Percentile Quadratic Regression CNLS-d (median) CNLS-d (equal) LL Kernel

MinDiag MinTher MajDiag MajTher 2007 2008 2009 2007 2008 2009 2007 2008 2009 2007 2008 2009

25 25 25 25 8.9 6.5 13.2 1.3 1.5 2.5 0.3 0.3 1.5 6.3 10.4 4.7
25 25 25 50 8.9 6.5 13.2 0.1 0.1 0.0 0.3 0.1 0.1 6.1 9.9 3.8
25 25 25 75 8.9 6.5 13.2 0.1 0.0 0.0 0.1 0.0 0.0 5.1 7.8 4.2
25 25 50 25 8.9 6.5 13.2 0.0 0.1 0.4 0.0 0.0 0.6 6.5 10.7 5.9
25 25 50 50 8.9 6.5 13.2 0.1 0.1 0.2 0.0 0.1 0.5 6.4 10.2 5.1
25 25 50 75 8.9 6.5 13.2 0.2 0.0 0.0 0.1 0.0 0.0 5.5 8.0 4.6
25 25 75 25 8.9 6.5 13.2 0.0 0.1 0.1 0.1 0.0 0.6 6.8 10.0 8.2
25 25 75 50 8.9 6.5 13.2 0.0 0.1 0.0 0.0 0.0 0.2 6.8 9.6 7.6
25 25 75 75 8.9 6.5 13.2 0.0 0.0 0.0 0.0 0.0 0.1 5.9 7.8 6.4
25 50 25 25 8.1 6.1 12.4 7.3 8.7 10.3 8.0 8.1 9.6 5.0 10.7 6.2
25 50 25 50 8.1 6.1 12.4 2.8 7.1 8.3 4.9 4.5 8.0 4.8 9.5 4.8
25 50 25 75 8.1 6.1 12.4 1.4 0.2 0.0 0.1 0.0 0.0 4.3 7.0 3.6
25 50 50 25 8.1 6.1 12.4 6.9 5.8 7.7 5.9 5.9 6.0 5.3 10.5 7.8
25 50 50 50 8.1 6.1 12.4 4.1 5.5 7.2 2.3 3.4 6.5 5.2 9.8 6.3
25 50 50 75 8.1 6.1 12.4 0.2 0.0 0.0 0.1 0.0 0.0 4.7 6.9 4.1
25 50 75 25 8.1 6.1 12.4 0.4 1.6 1.2 1.4 0.2 1.7 6.0 9.6 10.6
25 50 75 50 8.1 6.1 12.4 0.5 1.8 0.7 1.4 0.3 0.9 5.9 9.0 9.2
25 50 75 75 8.1 6.1 12.4 0.0 0.0 0.1 0.0 0.0 0.1 5.0 6.7 6.7
25 75 25 25 6.0 5.0 10.4 9.6 13.5 14.0 9.5 11.0 14.2 4.7 8.0 16.0
25 75 25 50 6.0 5.0 10.4 9.6 13.5 14.1 9.6 11.0 14.2 3.8 7.6 14.9
25 75 25 75 6.0 5.0 10.4 5.7 10.1 5.7 4.6 8.6 6.9 3.7 6.3 9.5
25 75 50 25 6.0 5.0 10.4 9.6 13.5 14.1 9.5 10.9 13.8 4.5 7.1 16.5
25 75 50 50 6.0 5.0 10.4 9.6 13.5 14.3 9.6 10.9 13.8 4.0 6.9 15.4
25 75 50 75 6.0 5.0 10.4 5.7 9.6 5.7 4.6 8.1 6.4 3.5 5.8 9.7
25 75 75 25 6.0 5.0 10.4 8.8 12.5 13.1 8.1 10.4 12.2 4.6 7.2 18.4
25 75 75 50 6.0 5.0 10.4 8.8 12.5 13.1 7.8 10.4 12.2 4.3 6.1 17.9
25 75 75 75 6.0 5.0 10.4 4.3 8.9 4.3 2.7 5.8 4.3 3.6 3.6 13.2
50 25 25 25 8.9 6.5 13.2 0.0 0.4 0.1 0.1 0.3 0.2 6.6 10.0 4.9
50 25 25 50 8.9 6.5 13.2 0.1 0.0 0.1 0.1 0.1 0.1 6.4 9.6 4.0
50 25 25 75 8.9 6.5 13.2 0.1 0.0 0.0 0.1 0.0 0.0 5.3 7.9 4.4
50 25 50 25 8.9 6.5 13.2 0.0 0.0 0.0 0.2 0.0 0.1 6.8 10.4 6.1
50 25 50 50 8.9 6.5 13.2 0.0 0.1 0.1 0.0 0.1 0.0 6.7 10.0 5.4
50 25 50 75 8.9 6.5 13.2 0.2 0.0 0.0 0.1 0.0 0.0 5.8 7.9 5.0
50 25 75 25 8.9 6.5 13.2 0.0 0.1 0.0 0.2 0.0 0.1 7.0 9.8 8.6
50 25 75 50 8.9 6.5 13.2 0.0 0.1 0.0 0.1 0.0 0.1 7.1 9.5 7.8
50 25 75 75 8.9 6.5 13.2 0.0 0.0 0.0 0.0 0.0 0.0 6.0 8.2 6.7
50 50 25 25 8.1 6.1 12.4 8.0 8.6 9.7 7.6 6.8 9.9 5.3 10.3 6.6
50 50 25 50 8.1 6.1 12.4 3.9 7.1 7.2 4.9 4.3 7.8 5.1 9.5 5.2
50 50 25 75 8.1 6.1 12.4 1.4 0.4 0.0 0.1 0.0 0.0 4.6 7.2 4.0
50 50 50 25 8.1 6.1 12.4 6.9 5.5 7.4 5.9 6.3 7.8 5.6 10.4 8.0
50 50 50 50 8.1 6.1 12.4 4.3 4.9 7.8 2.1 3.7 7.4 5.5 9.8 6.6
50 50 50 75 8.1 6.1 12.4 0.2 0.4 0.0 0.1 0.0 0.0 4.8 7.2 4.2
50 50 75 25 8.1 6.1 12.4 0.5 1.6 0.8 0.7 0.1 1.0 6.4 9.6 10.2
50 50 75 50 8.1 6.1 12.4 0.5 1.8 0.7 0.6 0.3 0.7 6.3 9.1 9.1
50 50 75 75 8.1 6.1 12.4 0.1 0.0 0.1 0.0 0.0 0.1 5.3 7.1 7.2
50 75 25 25 6.0 5.0 10.4 9.6 13.5 14.0 9.5 11.0 14.2 4.7 7.9 15.9
50 75 25 50 6.0 5.0 10.4 9.6 13.5 14.1 9.6 11.0 14.2 3.9 7.6 13.5
50 75 25 75 6.0 5.0 10.4 5.7 10.1 6.4 4.6 8.7 7.6 3.4 6.4 9.1
50 75 50 25 6.0 5.0 10.4 9.6 13.5 14.0 9.5 10.9 14.1 4.6 7.7 16.7
50 75 50 50 6.0 5.0 10.4 9.6 13.5 14.3 9.6 10.9 13.8 4.1 6.9 15.7
50 75 50 75 6.0 5.0 10.4 5.7 10.1 6.4 4.6 8.7 6.4 3.6 6.0 9.2
50 75 75 25 6.0 5.0 10.4 8.8 12.5 13.1 8.1 10.1 12.2 4.8 7.5 18.4
50 75 75 50 6.0 5.0 10.4 8.8 12.5 13.1 8.2 10.1 12.2 4.3 6.3 17.6
50 75 75 75 6.0 5.0 10.4 4.3 8.9 4.3 2.9 5.8 4.3 3.4 4.4 13.2
75 25 25 25 8.9 6.5 13.2 0.0 0.0 0.3 0.1 0.0 0.3 6.9 9.1 6.9
75 25 25 50 8.9 6.5 13.2 0.2 0.2 0.0 0.5 0.1 0.1 6.6 9.0 6.6
75 25 25 75 8.9 6.5 13.2 0.1 0.1 0.4 0.0 0.0 0.0 6.0 7.9 5.7
75 25 50 25 8.9 6.5 13.2 0.0 0.0 0.3 0.1 0.1 0.1 7.1 9.3 7.8
75 25 50 50 8.9 6.5 13.2 0.2 0.1 0.3 0.3 0.1 0.0 7.0 9.0 7.5
75 25 50 75 8.9 6.5 13.2 0.1 0.1 0.1 0.0 0.0 0.0 6.2 8.0 5.8
75 25 75 25 8.9 6.5 13.2 0.1 0.2 0.3 0.1 0.1 0.2 7.3 8.6 9.5
75 25 75 50 8.9 6.5 13.2 0.1 0.2 0.3 0.2 0.1 0.2 7.1 8.6 8.8
75 25 75 75 8.9 6.5 13.2 0.0 0.1 0.2 0.0 0.0 0.2 6.3 8.1 8.1
75 50 25 25 8.1 6.1 12.4 3.1 2.3 2.9 2.6 1.2 4.0 6.0 9.6 8.4
75 50 25 50 8.1 6.1 12.4 3.0 0.5 3.3 1.7 0.9 1.8 5.9 9.5 7.4
75 50 25 75 8.1 6.1 12.4 0.1 0.1 0.8 0.0 0.2 0.0 5.3 7.9 5.6
75 50 50 25 8.1 6.1 12.4 2.6 2.6 0.4 1.5 2.4 0.5 6.2 9.9 9.2
75 50 50 50 8.1 6.1 12.4 2.1 0.1 0.3 0.8 0.1 0.5 6.2 9.5 8.6
75 50 50 75 8.1 6.1 12.4 0.1 0.1 0.7 0.0 0.2 0.0 5.5 7.7 6.4
75 50 75 25 8.1 6.1 12.4 0.4 0.2 0.5 0.2 0.1 0.8 6.8 8.9 10.8
75 50 75 50 8.1 6.1 12.4 0.4 0.2 0.4 0.2 0.1 0.8 6.7 8.8 10.0
75 50 75 75 8.1 6.1 12.4 0.1 0.1 0.3 0.0 0.0 0.3 5.7 7.8 7.7
75 75 25 25 6.0 5.0 10.4 9.6 13.1 14.4 9.6 11.0 12.6 5.5 8.6 14.8
75 75 25 50 6.0 5.0 10.4 9.6 13.0 14.4 9.6 11.0 12.6 4.8 8.3 14.2
75 75 25 75 6.0 5.0 10.4 4.1 9.0 7.4 3.6 5.6 6.6 3.9 6.9 8.4
75 75 50 25 6.0 5.0 10.4 9.6 13.1 14.4 9.6 11.1 12.5 5.6 8.5 15.5
75 75 50 50 6.0 5.0 10.4 9.6 13.0 14.1 9.6 11.1 12.5 4.9 8.1 15.4
75 75 50 75 6.0 5.0 10.4 4.1 7.6 7.5 3.6 5.6 6.9 3.7 6.6 9.4
75 75 75 25 6.0 5.0 10.4 7.1 8.2 9.5 7.9 6.8 10.7 6.5 8.3 18.1
75 75 75 50 6.0 5.0 10.4 7.1 8.2 9.5 7.9 6.8 10.7 5.6 7.7 17.8
75 75 75 75 6.0 5.0 10.4 4.5 7.7 7.5 3.1 5.3 6.4 4.0 5.3 12.8

Note: The values displayed are in $k
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Table A.8: Marginal Cost of Major Therapeutic Procedures

Percentile Quadratic Regression CNLS-d (median) CNLS-d (equal) LL Kernel

MinDiag MinTher MajDiag MajTher 2007 2008 2009 2007 2008 2009 2007 2008 2009 2007 2008 2009

25 25 25 25 10.5 11.5 9.8 1.7 2.8 4.4 3.3 1.8 4.9 18.4 14.3 22.9
25 25 25 50 11.7 13.0 10.8 17.3 17.0 20.0 16.8 15.2 18.5 17.5 11.2 18.5
25 25 25 75 15.1 17.2 14.5 19.4 22.3 24.6 19.8 21.8 24.0 15.2 10.2 12.7
25 25 50 25 10.5 11.5 9.8 0.0 0.0 0.2 0.1 0.0 0.1 17.4 14.6 21.7
25 25 50 50 11.7 13.0 10.8 9.6 10.6 13.5 11.2 10.3 13.4 16.8 12.2 18.1
25 25 50 75 15.1 17.2 14.5 19.8 22.2 24.6 19.8 21.8 24.0 15.8 10.5 13.9
25 25 75 25 10.5 11.5 9.8 0.1 0.9 0.1 0.1 0.0 0.2 17.4 14.9 17.2
25 25 75 50 11.7 13.0 10.8 1.3 1.7 1.3 2.9 0.1 5.1 17.3 14.0 17.2
25 25 75 75 15.1 17.2 14.5 16.1 18.0 23.5 16.8 16.5 23.8 16.9 11.8 14.2
25 50 25 25 10.5 11.5 9.8 0.1 0.1 0.2 0.1 0.1 0.5 17.9 12.6 20.0
25 50 25 50 11.7 13.0 10.8 12.9 7.9 8.2 10.0 7.0 6.2 17.1 9.7 16.8
25 50 25 75 15.1 17.2 14.5 19.8 22.3 24.6 19.8 21.8 24.0 15.0 8.7 12.1
25 50 50 25 10.5 11.5 9.8 0.4 0.2 0.4 0.1 0.5 0.3 17.3 13.3 18.9
25 50 50 50 11.7 13.0 10.8 5.2 5.2 1.4 10.5 8.1 5.8 16.6 10.8 16.5
25 50 50 75 15.1 17.2 14.5 19.8 22.2 24.6 19.8 21.8 24.0 15.4 8.5 12.6
25 50 75 25 10.5 11.5 9.8 0.1 0.3 0.1 0.2 0.1 0.2 17.3 14.1 15.7
25 50 75 50 11.7 13.0 10.8 0.1 0.5 0.9 0.2 0.2 4.6 16.9 13.0 16.3
25 50 75 75 15.1 17.2 14.5 16.1 18.0 22.8 16.8 16.5 23.8 15.9 10.2 14.3
25 75 25 25 10.5 11.5 9.8 0.0 0.0 0.1 0.2 0.1 0.1 17.1 9.3 9.9
25 75 25 50 11.7 13.0 10.8 1.6 0.0 0.3 0.7 0.1 0.1 15.4 7.0 9.8
25 75 25 75 15.1 17.2 14.5 18.3 12.4 20.9 16.2 10.9 14.3 15.3 6.2 6.7
25 75 50 25 10.5 11.5 9.8 0.2 0.0 0.2 0.0 0.1 0.2 16.3 9.2 9.4
25 75 50 50 11.7 13.0 10.8 0.2 0.3 0.4 0.8 0.1 0.3 15.6 6.6 8.4
25 75 50 75 15.1 17.2 14.5 18.3 12.8 20.9 16.2 11.3 15.2 15.2 6.2 5.8
25 75 75 25 10.5 11.5 9.8 0.1 0.1 0.1 0.2 0.1 0.1 15.7 11.1 9.8
25 75 75 50 11.7 13.0 10.8 0.1 0.1 0.1 0.6 0.1 0.1 15.6 8.4 9.7
25 75 75 75 15.1 17.2 14.5 15.5 10.4 19.7 17.2 10.8 16.7 14.7 6.9 8.0
50 25 25 25 10.5 11.5 9.8 0.3 0.1 0.0 0.2 0.3 2.7 18.6 14.1 21.4
50 25 25 50 11.7 13.0 10.8 17.8 17.7 17.0 16.3 15.4 19.3 18.0 11.4 17.2
50 25 25 75 15.1 17.2 14.5 19.2 22.3 24.6 19.8 21.8 24.0 15.1 11.1 13.1
50 25 50 25 10.5 11.5 9.8 0.1 0.0 0.1 0.2 0.0 0.1 17.6 14.7 20.4
50 25 50 50 11.7 13.0 10.8 11.3 11.8 15.7 10.5 10.3 14.6 17.2 12.5 17.2
50 25 50 75 15.1 17.2 14.5 19.8 22.1 24.6 19.8 21.8 24.0 15.9 10.7 13.5
50 25 75 25 10.5 11.5 9.8 0.1 1.0 0.3 0.1 0.0 1.3 17.3 15.1 16.8
50 25 75 50 11.7 13.0 10.8 0.9 1.5 2.1 0.5 0.2 1.3 17.2 14.5 16.9
50 25 75 75 15.1 17.2 14.5 16.1 18.0 23.5 16.8 16.5 23.6 16.7 13.0 14.3
50 50 25 25 10.5 11.5 9.8 0.2 0.1 0.2 0.1 0.4 0.5 18.2 12.8 18.6
50 50 25 50 11.7 13.0 10.8 11.1 7.9 10.0 9.4 7.7 5.5 17.6 10.3 15.8
50 50 25 75 15.1 17.2 14.5 19.8 22.2 24.6 19.8 21.8 24.0 14.9 9.4 12.1
50 50 50 25 10.5 11.5 9.8 0.4 0.2 0.5 0.1 0.1 0.4 17.5 13.6 17.6
50 50 50 50 11.7 13.0 10.8 3.7 7.7 1.7 6.9 7.1 3.7 16.9 11.5 15.6
50 50 50 75 15.1 17.2 14.5 19.8 22.0 24.6 19.8 21.8 24.0 15.2 9.5 12.8
50 50 75 25 10.5 11.5 9.8 0.1 0.3 0.2 0.0 0.0 0.4 17.4 14.6 14.8
50 50 75 50 11.7 13.0 10.8 0.1 0.5 0.3 0.1 0.2 1.0 17.0 13.6 15.3
50 50 75 75 15.1 17.2 14.5 17.4 18.0 22.8 16.8 16.5 23.8 16.0 11.5 14.8
50 75 25 25 10.5 11.5 9.8 0.0 0.0 0.1 0.2 0.1 0.0 17.0 9.3 9.5
50 75 25 50 11.7 13.0 10.8 1.6 0.0 0.3 0.7 0.1 0.1 15.7 7.6 6.3
50 75 25 75 15.1 17.2 14.5 18.3 12.4 19.8 16.2 11.0 13.4 14.4 6.6 6.5
50 75 50 25 10.5 11.5 9.8 0.2 0.0 0.1 0.0 0.1 0.1 16.6 10.0 8.9
50 75 50 50 11.7 13.0 10.8 0.2 0.2 0.4 0.8 0.1 0.3 15.8 8.2 8.1
50 75 50 75 15.1 17.2 14.5 18.3 12.4 19.8 16.2 11.0 15.2 14.8 6.7 5.3
50 75 75 25 10.5 11.5 9.8 0.1 0.1 0.1 0.2 0.1 0.1 16.1 11.6 9.6
50 75 75 50 11.7 13.0 10.8 0.1 0.1 0.1 0.3 0.1 0.1 15.5 9.2 9.1
50 75 75 75 15.1 17.2 14.5 15.5 10.4 19.7 16.3 10.8 16.7 14.6 8.3 7.2
75 25 25 25 10.5 11.5 9.8 0.3 0.0 0.3 0.3 0.0 1.5 18.9 14.7 15.0
75 25 25 50 11.7 13.0 10.8 2.4 9.7 4.0 6.7 6.2 4.3 18.0 13.9 13.9
75 25 25 75 15.1 17.2 14.5 19.6 19.5 24.7 19.3 18.3 24.4 15.7 13.2 11.0
75 25 50 25 10.5 11.5 9.8 0.1 0.0 0.2 0.3 0.0 0.2 18.0 15.4 14.8
75 25 50 50 11.7 13.0 10.8 3.9 5.5 0.8 4.5 2.8 3.3 17.6 14.7 13.8
75 25 50 75 15.1 17.2 14.5 19.6 19.5 24.7 19.3 18.9 24.4 16.4 13.4 11.9
75 25 75 25 10.5 11.5 9.8 0.1 0.1 0.3 0.0 0.1 0.4 17.1 16.1 14.0
75 25 75 50 11.7 13.0 10.8 0.1 0.1 0.3 0.2 0.1 0.4 17.1 16.5 14.3
75 25 75 75 15.1 17.2 14.5 19.5 11.6 23.4 19.1 18.5 20.8 17.5 15.4 16.5
75 50 25 25 10.5 11.5 9.8 0.3 0.1 0.5 1.7 0.1 0.7 18.6 13.9 13.2
75 50 25 50 11.7 13.0 10.8 0.9 7.4 1.4 3.1 4.5 3.5 17.8 13.3 12.5
75 50 25 75 15.1 17.2 14.5 19.6 19.5 24.7 19.3 19.2 24.4 15.0 12.4 10.9
75 50 50 25 10.5 11.5 9.8 0.5 0.1 0.2 0.7 0.1 0.1 17.8 15.0 12.8
75 50 50 50 11.7 13.0 10.8 0.7 5.5 0.8 2.5 2.8 3.3 17.3 14.2 12.2
75 50 50 75 15.1 17.2 14.5 19.6 19.5 24.7 19.3 19.8 24.4 15.7 12.3 12.3
75 50 75 25 10.5 11.5 9.8 0.1 0.1 0.2 0.2 0.1 0.2 17.3 16.0 12.1
75 50 75 50 11.7 13.0 10.8 0.1 0.1 0.3 0.2 0.1 0.2 17.0 16.1 12.9
75 50 75 75 15.1 17.2 14.5 19.2 11.6 24.2 19.1 18.5 20.0 16.5 15.0 15.5
75 75 25 25 10.5 11.5 9.8 0.1 0.2 0.1 0.1 0.2 0.3 16.8 11.6 6.9
75 75 25 50 11.7 13.0 10.8 0.1 0.4 0.1 0.1 0.2 0.3 16.2 10.4 6.5
75 75 25 75 15.1 17.2 14.5 18.6 12.6 15.4 15.9 15.0 14.1 14.6 10.1 4.5
75 75 50 25 10.5 11.5 9.8 0.1 0.2 0.1 0.1 0.1 0.1 16.5 12.4 7.2
75 75 50 50 11.7 13.0 10.8 0.1 0.4 0.1 0.1 0.1 0.1 15.8 11.5 7.2
75 75 50 75 15.1 17.2 14.5 18.6 13.4 15.9 15.9 15.0 13.6 14.4 10.6 5.3
75 75 75 25 10.5 11.5 9.8 0.1 0.1 0.1 0.1 0.1 0.2 15.7 14.1 8.5
75 75 75 50 11.7 13.0 10.8 0.1 0.2 0.1 0.1 0.1 0.2 15.3 13.1 7.4
75 75 75 75 15.1 17.2 14.5 13.5 7.2 14.2 12.2 11.7 12.1 14.6 12.7 7.9

Note: The values displayed are in $k
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APPENDIX B

APPENDIX OF CHAPTER 3

The appendix is composed of the following parts:

• Formulations of SCBLS when grid is not equal (B.1)

• Additional Results for the US Hospitals Application (B.2)
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B.1 Formulations of SCBLS when the knots vectors are not uniform

In the main core of the paper the estimator is introduced for uniform vectors of knots. We write below

the formulation for the general case.

B.1.1 SCBLS with coordinate-wise constraints in the univariate case in the non-uniform

knots vector case

min
γj

n∑
i=1

ci −
q∑

j=1

γjB
r
j (Yi)

2

(B.1)

subject to γj ≥ γj−1, j = 2, . . . , q

(B.1a)

γj
tj+r−1 − tj−1

− 2γj−1

(
1

tj+r−1 − tj−1
+

1

tj+r − tj

)
+

γj−2

tj+r − tj
≥ 0, j = 3, . . . , q

(B.1b)

where Yi, ci, i = 1, . . . , n are the observation output levels and cost level respectively, γj , j = 1, . . . , q

are the spline coefficients and Br
j , j = 1, . . . , q are the basis functions of order (r + 1) based on the knots

vector t.
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B.1.2 SCBLS with coordinate-wise constraints in the multivariate case in the non-uniform

knots vector case

min
γj1...jd

n∑
i=1

ci −
q1∑

j1=1

. . .

qd∑
jd=1

γj1...jdB
r
j1...jd

(Yi)

2

(B.2)

subject to γj1...jk...jd ≥ γj1...(jk−1)...jd , k = 1, . . . , d, jk = 2, . . . , qk

l = {1, . . . , d}-{k}, jl = 1, . . . , ql (B.2a)

γj1...jk...jd
tk,(j+r−1) − tk,(j−1)

− 2γj1...(jk−1)...jd

(
1

tk,(j+r−1) − tk,(j−1)

+
1

tk,(j+r) − tk,j

)
+

γj1...(jk−2)...jd

tk,(j+r) − tk,j
≥ 0, k = 1, . . . , d, jk = 3, . . . , qk

l = {1, . . . , d}-{k}, jl = 1, . . . , ql (B.2b)

where Yi, ci, i = 1, . . . , n are the observation output levels and cost level respectively, γj1...jd are the spline

coefficients and Br
j1...jd

are the products of basis functions as described in Section 3.3.2.2.

B.2 Additional Results for the US Hospitals Application

B.2.1 Estimators performance for a cost function with four outputs.

The dataset is described in the main body of the paper, Section 3.5.1. The estimators applied on the

data are the same as in the Base case of the Monte Carlo Simulations (Section 3.4.1.1): 1) SCKLS with

coordinate-wise constraints, 2) SCKLS, 3) SCBLS with coordinate-wise constraints, 4) SCBLS with local

Afriat constraints and 5) SCBLS with both coordinate-wise and local Afriat constraints. We report the

averaged K-fold MSE to the observations, with k = 5 folds to compare the estimators. The data is equally

split into 5 parts. For each part i = 1, . . . , k, part i is the testing set on which the estimated function is

evaluated and the remaining parts are used to determine the estimated function. The averages across folds

are reported in Table B.1 alongside the corresponding standard deviations.

In Table B.1, we do not report the values of MSE for SCBLS with only local Afriat constraints as
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Table B.1: Averaged K-fold MSE to the observations with its standard deviation (underneath in
italics) on two years of the hospital data obtained for different estimators.

Year SCKLS Coord SCKLS SCBLS Coord SCBLS Afriat+Coord

2007 7.5 7.7 8.0 7.4
2.6 2.5 2.4 2.4

2008 5.9 6.0 6.1 7.5
3.3 3.3 3.6 5.9

Note: Displayed are the measured values multiplied by 103

the results obtained are significantly larger than the other values reported. As observed in simulations,

Section 3.4, the out-of-sample fitting performance for this estimator is not competitive for cases with more

than two regressors. About the results displayed, we notice that the fitting performance is comparable

for all estimators in 2007, but that for 2008 the ‘SCBLS Afriat+Coord’ does slightly worse for than the

other estimators for that estimation. Further, the standard deviation of all estimators is high indicating the

data set has a high level of noise. In the main body of the paper, Section 3.5.2, we focused on ‘SCBLS

Afriat+Coord’ because it is smooth (a characteristic preferred by some practitioners) and it has sufficient

shape constraints to obtain valuable insights about the industry. However, in B.2.3 we report the results of

the SCKLS estimator applied to the hospital data. This allows the reader to compare the difference in results

due to the piece-wise linear approximation.

B.2.2 Fitting performance with aggregated outputs

We use the same K-fold analysis from B.2.1 to investigate a lower dimensional cost function. The same

dataset is used but before estimation, Minor Diagnostic Procedures and Major Diagnostic Procedures are

grouped together, and similarly for Minor and Major Therapeutic Procedures. Then a cost function with

two regressors (Diagnostic Procedures and Minor Procedures) is estimated. Table B.2 reports the values

obtained in this case for the K-fold MSE.

The fitting performances are not very different from one estimator to another in this case. Also contrary

to the four-regressor case, ‘SCBLS Afriat’ also obtain good estimates. This is similar to the results obtained

in the simulations section for which all estimators performed well for the two-regressor case and a larger

number of observations.
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Table B.2: Averaged K-fold MSE to the observations with its standard deviation (underneath in
italics) on two years of the hospital data obtained for different estimators.

Year SCKLS Coord SCKLS SCBLS Coord SCBLS Afriat SCBLS Afriat+Coord

2007 5.3 5.1 5.2 5.2 5.3
0.5 0.6 0.5 0.5 0.4

2008 6.6 6.7 6.7 6.6 6.7
2.3 2.4 2.3 2.4 2.3

The values displayed are the true values multiplied by 103

B.2.3 Results obtained with SCKLS

In this subsection we report the results obtained using ‘SCKLS’ instead of ‘SCBLS Afriat+Coord’

as analyzed in the main body of the paper, Section 3.5.2. The Diagnostic procedures being held at their

respective median levels, the metrics considered are the marginal rate of substitution between the major and

the minor therapeutic procedures (Table B.1), the marginal cost of major therapeutic procedures (Table B.2)

and the marginal cost of minor therapeutic procedures (Table B.3). For more details about the metrics and

the computation, we refer to Section 3.5.2.

25 50 75

MinTher%

25

50

75

M
a
jT

h
e
r%

Year 2007

3.4

5.3

5.3

3.4

3.4

5.0

3.4

3.4

3.5

25 50 75

MinTher%

25

50

75

M
a
jT

h
e
r%

Year 2008

1.8

2.5

2.5

1.8

1.8

2.1

1.6

1.8

1.8

Figure B.1: MRS between Major Therapeutic procedures and Minor Therapeutic procedures ob-
tained using the estimator ‘SCKLS’ for years 2007 and 2008, evaluated at different percentile
values.
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Figure B.2: MC of the Major Therapeutic procedures (in k$ per procedure) obtained using the
estimator ‘SCKLS’ for years 2007 and 2008, evaluated at different percentile values.
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Figure B.3: MC of the Minor Therapeutic procedures (in k$ per procedure) obtained using the
estimator ‘SCKLS’ for years 2007 and 2008, evaluated at different percentile values.

The trends in the results obtained for ‘SCKLS’ and ‘SCBLS Afriat+Coord’ are the same. The conclu-
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sions from the main body of the paper are confirmed with this estimator. However we can notice that the

variations were a lot higher for ‘SCBLS Afriat+Coord’. For instance in 2007, the largest MRS is around 8

times the value of the smallest MRS. while for ‘SCKLS’ it is 1.5 times. Further notice the marginal cost es-

timated by SCKLS is often constant over multiple percentiles indicating relatively few hyperplanes are used

to approximate the cost function. These results indicate that the smoothness (or changes in the marginal

cost) observed in the spline estimator are a result of the underlying assumptions of the spline model.
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