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ABSTRACT 

Sufficiently accounting for genotype-environment interactions would enhance genetic 

merit prediction and parameter estimation for traits of economic prominence in beef cattle. The 

objective of this work was to utilize random regressions to estimate additive direct genetic 

variation, and milking ability intercepts expressed as maternal additive genetic, or maternal 

permanent environmental variances, each as proportions of total of phenotypic variance for 

weaning weight, denoted as h2, m2, and c2, respectively, across latitude or longitude coordinates 

within the continental United States. Records came from the American Hereford Association (n 

= 226,845), with pedigree of 383,426 animals. Analyses were conducted across the entire 

continental United States across latitude or longitude. An animal model, linear random 

regression, and quadratic random regression model were employed with latitude as the random 

covariate. Both an animal model, and linear random regression model were utilized with 

longitude as random covariate. From the animal model, direct, maternal, and maternal permanent 

environmental variances as proportions of phenotypic variance for latitude and longitude were 

0.19 ± 0.008, 0.04 ± 0.011, and 0.17 ± 0.011; and 0.19 ± 0.008, 0.04 ± 0.011, and 0.17 ± 0.011, 

respectively. For linear random regression across latitude or longitude, estimates of h2, m2, and c2 

were 0.09 to 0.20, 0.07 ± 0.010, and 0.14 ± 0.011; and 0.15 to 0.26, 0.03 ± 0.009, and 0.15 ± 

0.010, respectively. For the quadratic random regression across latitude, estimates of h2, m2, and 

c2 were 0.08 to 0.23, 0.07 ± 0.010, and 0.14 ± 0.010, respectively. The quadratic random 

regression across latitude was the best fit model (P < 0.001) for the data. A quadratic random 

regression analysis across longitude was attempted, but failed to converge. Linear random 

regressions unique to regional subdivisions were attempted for latitude and longitude, but 

analyses failed to converge. Considerable differences in heritability estimates were observed in 
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different geographical zones as modeled by random regressions across the entire continental 

United States, when modeling intercepts of genetic and environmental components of maternal 

milking ability, across latitude or longitude.   
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1. INTRODUCTION

It is important to the beef cattle industry to further develop genetic merit prediction 

strategies in beef cattle evaluation for economically important traits to further enhance the 

genetic merit of each successive generation of calves through trustworthy genetic selection. It is 

commonly known and accepted that certain breeds of cattle perform better, per their genetic 

potential, in the particular environments for which they are the most genetically suited. However, 

obstacles may arise when specific breeds, as well as specific genetic lines within breeds of 

livestock which vary in levels of genetic potential are reared in different environments. That is, 

environments for which they may be well-adapted and meet their genetic potential for 

performance in certain traits. In other cases, actual performance and ability to meet genetic 

potential for particular traits may be restricted by the environment. Made into separate paragraph 

below: 

In these instances where genetic potential is restricted by the environment, it would be 

advantageous to account for genotype-environment interaction to the extent possible when 

performing genetic evaluations. Traditionally, genotype-environment interaction is defined as a 

situation where the difference in measured performance for a particular trait between different 

genetic groups is different across environments. Additionally, genotype-environment interaction 

can exist when the slope of the trajectory of heritability estimates, breeding values, or expected 

progeny differences from a random regression model across an environmental gradient (when 

environment is characterized as a continuous random covariate) for a single breed of cattle (that 

is, animals of the same genotype broadly categorized as a breed) has an absolute value greater 

than zero. In a more practical sense, genotype-environment interaction can be observed in a case 

of sires significantly reranking in terms of their genetic merit for traits of economic interest with 
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respect to environmental change across the United States. Random regression methodology 

offers the capability of working with longitudinal-type data in such a way as to model changes in 

additive genetic variation as a proportion of total phenotypic variation for particular traits for 

specific breeds of cattle across an environmental gradient. Therefore, the development of the 

most suitable random regression models presents a more reasonable approach to predict genetic 

merit for economically relevant traits for cattle, tailored to their production environment, and to 

more appropriately account for genotype-environment interaction, compared to the present 

genetic evaluation standard which does not currently utilize random regression, and does not 

account for genotype-environment interaction.  

A random regression approach allows for the possibility to model genotype-environment 

interaction and achieve a higher level of precision for parameter estimates and genetic merit 

predictions for beef cattle traits of economic importance (Meyer, 2004). Furthermore, moving 

forward in consideration of the results from prior work conducted by Delgadillo et al. (2019), the 

objective of the current study was to develop and model random regressions of first order 

(linear), second order (quadratic), if possible, and an animal model to estimate additive direct 

genetic variation for weaning weight in American Hereford cattle across latitude or longitude 

coordinates as covariate within the continental United States, while modeling additive maternal 

and maternal permanent environmental variances each as a proportion of total phenotypic 

variance, to represent effects of maternal milking ability on weaning weight in American 

Hereford cattle. This may represent a novel methodology to identify and account for the presence 

and degree of genotype-environment interaction. 
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2. REVIEW OF LITERATURE 

2.1 Historical importance of the Hereford breed  

 Hereford cattle were first cultivated as a breed around 300 years ago in Herefordshire, 

England. Three traits of supreme importance in the selection criteria for the earliest development 

of the breed were reproductive soundness, high yield, and overall efficient production. In the 

year 1817, Henry Clay of Kentucky first introduced Hereford cattle to the United States. 

Hereford cattle then continued to gain popularity in the United States, and in the year 1840, the 

first recorded breeding herd of Hereford cattle in the country began in Albany, N. Y., by William 

Sotham and Erastus Corning. As time went on, and as the Hereford breed continued to grow in 

number, and in terms of genetic merit for traits of economic importance, Charles Gudgell and 

Thomas Simpson of Missouri became two of the most prominent Hereford breeders in the United 

States. They hit a home run in terms of successful breeding and contribution of favorable 

genetics to the Hereford breed in the United States with their importation of the bull, Anxiety the 

4th, from England. Anxiety the 4th became one of the most influential sires in the Hereford breed 

in the United States. Of the calves Anxiety the 4th sired, he sired two sons who became highly 

influential in constructing the Hereford breed as it exists today, Don Carlos, and Don Quioté. As 

Hereford genetics became more conventional, and as breeders sprang up with new herds in 

various parts of the United States, a need began to arise for collaboration among breeders to 

exchange helpful ideas, as well as to genetically evaluate their cattle, and predict future offspring 

performance for traits pertinent to beef cattle production, and production efficiency. 

Consequently, the first organized Hereford association was formed in Chicago, I. L. in 1881, the 

American Hereford Cattle Breeders Association (AHCBA). This organization later became what 

is now known as the American Hereford Association (AHA). As polled (genetically without 
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horns) Herefords began to gain favor among producers, numbers of these cattle began to rise, to 

the extent that another association was formed in the year 1910, the American Polled Hereford 

Association (APHA). However, as both horned and polled Hereford cattle grew both in number 

and in production and genetic quality, both associations merged in the year 1995, keeping the 

name, AHA, located in Kansas City, M. O. (Ward, 2017). In order to take advantage of potential 

benefits from hybrid vigor, as well as to avoid discounts at sale barns from selling red-haired 

cattle, Angus genetics were then incorporated into some Hereford herds to produce black-hided 

and black-haired “Herefords” to better satisfy the needs of producers when selling cattle in a 

“black dominant” market. After generations of experimenting with this breeding objective, John 

Gage of Eudora, K. S. established the American Black Hereford Association (ABHA) in the year 

1994, in order to institute these black hided Herefords as an official breed, and to perpetuate the 

now black-hided and black-haired sector of the Hereford breed to better meet producer needs 

where the market demands these kinds of cattle (ABHA, home page). As it is today, the 

American Hereford Association and its breeders seek to satisfy market demands and producer 

interests in terms of survival, production, reproduction, and overall efficiency in Hereford cattle 

being produced, to a greater degree, through each successive generation of progeny produced 

and sold. 

2.2 Genetic prediction, past to present 

In the early years of livestock breeding, Jay Lush studied animal breeding and genetics at 

Texas A&M University, and later developed a highly prestigious graduate program in animal 

breeding and genetics at Iowa State University in the 1930s. With the help of his colleague, L. N. 

Hazel, they jointly developed selection index principals for genetic selection purposes for traits 



5 

of economic importance in livestock. Furthermore, Lush wrote and published much of his work 

into a well-known and highly referenced book in the world of livestock breeding and academia 

“Animal Breeding Plans”. In the early 1940s, Hazel introduced the concept of genetic 

correlation, and demonstrated how these correlation estimates could be used to compute multi-

trait selection indices. (Hill, 2014). Selection index theory became a highly effective method of 

genetic prediction. However, a fundamental assumption of selection index theory was that the 

performance data to be analyzed would come from genetically similar contemporary groups. 

This can become a problem when contemporary groups in a dataset happen to be genetically 

different. In the early 1960s, C. R. Henderson presented a solution to this deficiency in the 

selection index theory by developing the mixed model equations (MME), which would produce 

best linear unbiased predictions (BLUP). The MME and BLUP contained the flexibility to 

perform genetic evaluations while accommodating contemporary groups that were genetically 

different. This was a major accomplishment. Furthermore, in the early 1980s, mathematical 

algorithms and computer programming capabilities had evolved to the extent that prevalent 

utilization of BLUP for genetic parameter estimation and breeding value prediction became 

feasible then, and customary to this day. (Bourdon, 2000). In addition to BLUP, genomic 

information is currently being used to further enhance genetic predictions for traits of economic 

importance in beef cattle. 

2.3 Importance of genotype-environment interaction 

The potential impact of genotype-environment interaction on economically relevant traits 

could yield variations of genetic merit predictions across environments. An archetypal study 

conducted by Burns et al. (1979), observed genotype-environment interaction in Hereford cattle 
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where cattle that were adapted to their local geographical locations, either Florida or Montana, 

had advantages for birth weight, pre-weaning gain, estimated 205-d weight, body length, body 

condition score, and annual production per cow, when cattle were compared in different 

locations. In a much more recent study, Hayes et al. (2016) recognized the value of accounting 

for genotype-environment interaction in genetic evaluations of livestock. More recently, in Red 

Angus cattle, Fennewald et al. (2017) identified genotype-environment interaction from 

observing reranking of sires for birth weight and weaning weight in the southwestern and 

southcentral United States, compared to the rest of the country. Others have reported the 

importance of accounting for genotype-environment interaction in beef cattle for weaning weight 

(Bertrand et al. 1985; Notter et al. 1992; Williams et al. 2012), calving ease (Burfening et al. 

1982), and pre-weaning gain (MacNeil et al. 2017). However, due to findings such as those 

reported by Tess et al. (1979, 1984), and Bertrand et al. (1987) of sires not reranking in terms of 

breeding values for traits of economic importance across the US, to date, genotype-environment 

interaction has not been modeled in the US National Cattle Evaluation strategies. Nevertheless, 

Hayes et al. (2016), and MacNeil et al. (2017) supported the notion of accounting for genotype-

environment interaction in beef cattle genetic evaluation. Particularly, when using a random 

regression approach where environment is characterized as a continuous random variable over 

which to predict the response of a particular genotype to their specific environment. 

2.4 Usefulness of random regression 

Random regression modeling procedures allow for the possibility to model genotype-

environment interaction for particular genetic groups of animals for traits of economic relevance, 

particularly with the use of longitudinal data. To date, there have been many different uses of 
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random regression in livestock applications, as well as in other disciplines. The capability of a 

random regression model to appropriately account for the variation in the correlation structure 

has been shown to result in an increase in genetic merit prediction accuracy of 5.9%, compared 

to a multivariate model (Meyer, 2004). Meyer (2004) compared genetic merit predictions from a 

multi-trait model and a random regression model for growth in beef cattle and found that the 

random regression model was better, and facilitated the inclusion of additional weight records.  

Legarra et al. (2004) constructed covariance functions for random regression models for 

growth in Gelbvieh beef cattle, and estimated additive direct and maternal genetic effects, and 

maternal permanent environmental effects. These authors further explained that random 

regression modeling (compared to multiple-trait modeling currently used in the beef cattle 

genetic evaluation) would allow for the flexibility of using all available records without pre-

adjustment, and would produce estimated breeding values for any age, along the continuous age 

gradient. Riley et al. (2007) assessed the genetic influence of, and estimated genetic parameters 

for: body weight, hip height, and ratio of body weight to hip height in Brahman feedlot cattle 

over a 170-d feeding period by use of covariance function random regression models, which 

allowed for genetic variance components to be calculated for any point of time for which the 

cattle were on feed. Speidel et al. (2016) utilized random regression models to predict number of 

days to desired body weight, ultrasound ribeye area, and ultrasound backfat depth in Angus and 

Charolais influenced feedlot cattle in order to reduce the number of days to a desired endpoint 

for economically pertinent traits for terminal cattle through genetic selection. Nobre et al. (2003) 

utilized random regression to estimate growth curves accounting for additive direct and maternal 

genetic effects, and permanent environmental and maternal permanent environmental effects in 

Nellore cattle. Aziz et al. (2005) used random regression to estimate additive direct and maternal 
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genetic effects, and maternal permanent environmental effects for weights from birth to 356 days 

of age in Japanese Black (Wagyu) feedlot cattle. 

 Random regression has also been utilized for genetic evaluation of test day records in 

dairy cattle (Ptak and Schaeffer, 1993; Guo and Swalve, 1997; Brotherstone et al., 2000). 

Koivula et al. (2015) used random regression in single-step genomic evaluation using a multi-

trait random regression model and test-day data for dairy cows. Random regression has been 

used to model pig growth (Andersen and Pedersen, 1996) as well as for genetic merit prediction 

for growth in sheep (Lewis and Brotherstone, 2002). In using a random regression approach, 

variance components can be determined for particular breeds of livestock at any point along an 

environmental gradient. Consequently, random regression modeling presents the capacity to 

account for genotype-environment interaction. This altogether presents the random regression 

modeling approach as considerably advantageous when compared with alternative methods of 

predicting genetic merit. 

2.5 Random regression covariates used in prior literature 

With regard to the premise that random regression modeling can utilize a unique set of 

values which pertain to some specific characterization of the environment, earlier random 

regression analyses for estimation of genetic parameters or genetic merit prediction have 

included a variety of covariates for random regression analyses. There has apparently been no 

attempt to include latitude or longitude coordinates as a random covariate. Aziz et al. (2005), 

utilized random regression to estimate additive direct, additive maternal, and permanent 

environmental effects for body weights of Japanese Black cattle across an age covariate from 

birth to 356 days of age. Riley et al. (2007) included a random covariate of days on feed, to 
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estimate genetic parameters for body weight, hip height, and ratio of body weight to hip height in 

Brahman feedlot cattle, utilizing random regression. Speidel et al. (2016) incorporated a random 

covariate of body weight to predict days to end body weight, ultrasound ribeye area, and 

ultrasound backfat thickness for Angus, Charolais, and Charolais-sired feedlot calves, in random 

regression analyses. Lyles et al. (2000) utilized a random covariate of time in years to estimate 

the presence of HIV RNA and fixed regression coefficients in different sub-groups of people 

within the United States, employing random regression analyses across time. Delgadillo et al. 

(2019) included a random covariate of either latitude or longitude coordinates using an animal, 

linear, and quadratic random regression model to estimate variance components for additive 

direct effects of ultrasound live intramuscular fat in American Hereford cattle across either 

latitude or longitude coordinates within the continental United States. Covariates used in random 

regression analyses should be those that are most biologically practical in terms of how they may 

influence the predicted response in the traits being evaluated. 

2.6 Orders of polynomials in random regression 

The proper random regression polynomial order utilized in random regression analyses 

should be determined by model comparison with a likelihood ratio significance test at the 

predetermined appropriate order of fixed regression common to each of the models being 

compared, as done by Speidel et al. (2016). In that work, no additional genetic variation was 

accounted for by the quadratic random regression relative to the linear random regression for 

each of days to weight, days to ultrasound ribeye area, and days to ultrasound backfat traits in 

beef feedlot cattle with respect to a covariate of body weight. Veerkamp et al. (2001) employed 

random regression models of order zero to four for body condition score in first-parity Holstein-
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influenced dairy cows across days in milk for the covariate, and revealed that the third order 

random regression accounted for the most genetic variation in body condition score. However, 

Legarra et al. (2004) found that random regression polynomials of third order or greater for 

growth in Gelbvieh beef cattle (over a covariate of age in days) accounted only for marginally 

more additive genetic variation when compared to polynomials of first and second order, and 

that first and second order random regression polynomials may be both necessary and sufficient 

account for additive genetic variation. In contrast, Delgadillo et al. (2019) reported that the 

quadratic random regression accounted for additional genetic variation in live ultrasound 

intramuscular fat for American Hereford cattle when compared to the linear random regression 

model, with either latitude or longitude as covariate. Although, there was little observable 

difference in the first and second order random regression curves, or the respective heritability 

estimates.  

The objective of the current work was to develop and model random regression 

polynomials of first and second order, and an animal model to estimate additive direct genetic 

variation for weaning weight in American Hereford cattle across latitude or longitude 

coordinates as covariate within the continental United States, while modeling additive maternal 

and maternal permanent environmental variances each as a proportion of total phenotypic 

variance, to represent the contribution of maternal milking ability toward weaning weight in 

American Hereford cattle. Furthermore, this may be a new and viable method to identify and 

account for the presence and degree of genotype-environment interaction. 
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3. MATERIALS AND METHODS 
 
3.1 Records 

Individual adjusted weaning weight records were supplied by the American Hereford 

Association (AHA).  The adjustments on weaning weight are AHA adjustments for age of calf 

and age of dam. Latitude and longitude coordinates were determined for each weaning weight 

record using the United State Postal Service zip code linked to the location within the continental 

United States associated with each individual herd which weaning weight records came from 

(http://federalgovernmentzipcodes.us/). Records with no zip code, and records with no 

contemporary group were removed. As defined by AHA, contemporary group designation was 

comprised of herd, sex, management group, and birth date of each individual animal. Records 

beyond ± 4 standard deviations of the mean were considered outliers and removed. The final 

edited dataset utilized 226,845 weaning weight records. The pedigree file consisted of 383,426 

animals, nine generations back. Table 1, Figure 1, Figure 2 and Figure 3, below provide a 

description of the data. 

 
    Table 1. Description of American Hereford Association weaning weight data† 

Parameter Estimate 
No. of animals 286,845 
No. of sires 25,704 
No. of dams 155,396 
No. of contemporary groups 90,646 
Average weaning weight (standard deviation) 257.1 (43.95) kg 

†Each animal in the dataset has a single weaning weight record (as calves are only weaned once in 
their lifetime); standard deviation for weaning weight in parentheses beside the average weaning 
weight value 
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Figure 1. Histogram illustrating the distribution of weaning weight records across latitude 
coordinates within the United States 
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Figure 2. Histogram illustrating the distribution of weaning weight records across longitude 
coordinates within the United States 
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Figure 3. Map displaying a visual distribution of weaning weight records across the United 
States (maroon dots), also showing the direction of the latitude and longitude random regressions 
indicated by the vertical and horizontal arrows, respectively 
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3.2 Statistical analyses 

Three different single-trait models were employed in analyses of weaning weight: a 

simple animal model with no random regression (which will be referred to as the animal model, 

in this work), and a linear, and quadratic random regression model. The animal model included 

additive direct genetic, as well as additive maternal genetic, and maternal permanent 

environmental effects, with no random regression components. The animal model was similar to 

the animal model from Maniatis and Pollott (2003) for early growth in sheep, such that it 

included additive maternal genetic effects and maternal permanent environmental effects, as also 

shown in Schaeffer (2016). There were sufficient records to estimate the covariance between 

additive direct and additive maternal genetic effects. The linear and quadratic random regression 

models were similar to those used by Delgadillo et al. (2019), which were developed considering 

those in Speidel et al. (2016). The current project incorporated additive maternal genetic, and 

maternal permanent environmental effects. For additive direct genetic effects, parameters 

estimated were single variances which were considered to correspond to random regression 

intercept coefficients, and all covariances involving random regression coefficients and 

intercepts, according to the order of random regression polynomial used. The models in the 

present work were used in two distinct sets of analyses in ASReml software program (Gilmour, 

2009), and the Texas A&M University High Performance Research Computing Service, across 

the continental United States. One set of analyses included an animal, linear, and quadratic 

random regression which utilized latitude coordinates as the covariate, within the continental 

United States. The other set of analyses included an animal, and linear random regression which 

utilized longitude coordinates as the covariate, within the continental United States.  
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For the linear and quadratic random regression models across latitude, a likelihood ratio 

test was conducted to determine the best fit model for the data. 

For random regression models employed in the current work, the number of covariances 

to be estimated in each analysis was determined in this sequence. The analysis procedure began 

with the attempt to estimate all covariances among random regression coefficients. Upon failure, 

certain covariances were fixed to zero, or to a close reasonable start value. Covariances to be 

either estimated or dropped from the analysis were selected or culled in accordance with their 

ranking of importance, similar to the process done by Delgadillo et al. (2019). The covariances 

of foremost importance were those between random regression coefficients and their associated 

intercepts. The second-most important covariances were those between random regression 

coefficients. The third-most important covariances were those between intercepts. The least 

important covariances were those between a random regression coefficient of one order and an 

intercept associated with a random regression coefficient of a different order. In Delgadillo et al. 

(2019), this similar process entailed a great amount of trial and error to determine the maximum 

number of covariances ASReml could compute for each model, with the given number of effects 

in each model. All (co)-variances were set at the specified starting values used from estimates of 

(co)-variance for weaning weight in Hereford cattle in Torres-Vásquez and Spangler (2016), and 

were designated as free to change. That is, to be estimated in the analysis procedure. 

Consequently, all possible covariances have been estimated (with corresponding correlation 

coefficient estimates) in this study.  
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3.3 The animal model 

y	=	Xβ	+	Z1u	+	Z2m	+	Z3mpe	+	e 

In the animal model (similar to that of Maniatis and Pollott, 2003; Shaeffer, 2016), y was 

the vector of single weaning weight records for each individual animal, β was the vector of 

estimated fixed effects: the mean, contemporary group, and fixed regression of first order; for a 

linear regression on either latitude or longitude coordinates as covariate, u was the vector of 

random additive genetic effects, m was the vector of random maternal additive genetic effects, 

mpe was the vector of maternal permanent environmental effects, e is the vector of residuals 

(random error). Incidence matrices X, Z1, Z2, and Z3, relate individual weaning weight records in 

y to values in β, u, m, mpe, and e, respectively. The expectation of y is Xβ, and the expectation 

of all random variables, u, m, mpe, and e is zero. The (co)-variance structure for this particular 

animal model is as follows: 

Var #

u
m

mpe
e

$=

⎣
⎢
⎢
⎢
⎡ 𝐀𝛔𝐚

𝟐 𝐀𝛔𝐚𝐦 𝟎 𝟎
𝐀𝛔𝐚𝐦 𝐀𝛔𝐦𝟐 𝟎 𝟎
𝟎 𝟎 𝐈𝛔𝐦𝐩𝐞𝟐 𝟎
𝟎 𝟎 𝟎 𝐈𝛔𝐞𝟐⎦

⎥
⎥
⎥
⎤
 

where, A in 𝐀𝛔𝐚𝟐 , 𝐀𝛔𝐦𝟐  , and	𝐀𝛔𝐚𝐦 represent the numerator relationship matrix constructed with 

the pedigree information, and  𝛔𝐚𝟐, 𝛔𝐦𝟐 , and 𝐀𝛔𝐚𝐦 were the additive direct genetic variance, 

additive maternal genetic variance, and the direct-maternal covariance, respectively; the I in 

𝐈𝛔𝐦𝐩𝐞𝟐 , and 𝐈𝛔𝐞𝟐, was an identity matrix and 𝛔𝐦𝐩𝐞𝟐 , and 𝛔𝐞𝟐, were the maternal permanent 

environmental, and residual variances, respectively. The additive genetic-maternal additive 
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genetic covariance term (𝐀𝛔𝐚𝐦) was excluded from the final animal model in order to conduct 

likelihood ratio tests. 

3.4 General model for linear and quadratic random regression 

y	=	Xβ	+	Qu	+	Z1m	+	Z2mpe	+	e 

Where y, β, and e vectors were as described for the animal model; u was the vector of 

random regression coefficients for additive genetic effects, and similar to the animal model, m 

was the vector of random maternal additive genetic effects, and mpe was the vector of maternal 

permanent environmental effects. The incidence matrix, X, was as described for the animal 

model; Q was the incidence matrix which contained the latitude or longitude coordinate 

covariates, which related the weaning weight records in y to the additive genetic random 

regression coefficients in u; and the number of columns in the Q matrix is associated to the order 

of the random regression being employed (first, or first and second order, in the current work). 

As in the animal model, incidence matrices, Z1 and Z2 relate individual weaning weight records 

in y to values in m and mpe, respectively. The expectation of y was Xβ, and the expectation of 

all random variables, u, m, mpe, and e was zero. The (co)-variance structure for the linear 

random regression model was as follows (similar to that of Nobre et al., 2003): 

Var #

u
m

mpe
e

$ =

⎣
⎢
⎢
⎢
⎡
A⨂G 0 0 0

0 Aσm
2 0 0

0 0 Iσmpe
2 0

0 0 0 Iσe
2⎦
⎥
⎥
⎥
⎤
 

where A was the numerator relationship matrix, and G was the (co)-variance matrix of random 

regression coefficients for additive direct genetic effects with an order equal to the polynomial 
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modeled. For the linear and quadratic random regression models, the G matrix included the 

variance estimation of the intercept, and the regression coefficients (first order, or first and 

second order), and all covariances. 



 20 

4. RESULTS AND DISCUSSION 

4.1 Fixed effects 

 The regression of weaning weight on either latitude or longitude as covariate, and 

contemporary group were important fixed effects (P < 0.001) in all analyses. 

 

4.2 Animal model 

Estimates of heritability, maternal heritability, and proportion of maternal permanent 

environmental variance to total phenotypic variance are presented in Table 2. Including either the 

fixed regression on latitude coordinates or longitude coordinates did not result in changed 

genetic variances or parameters. These were consistent with those used by the American 

Hereford Association (S. Sanders, personal communication). Other recent reports of heritability 

for this trait in Hereford cattle were larger (0.35 to 0.45; Dodenhoff et al., 1998; Torres and 

Spangler, 2016). Torres-Vázquez and Spangler (2016) reported estimates of maternal heritability 

and maternal permanent environmental effects as a proportion of phenotypic variance of 0.15, 

and 0.14, respectively. Dodenhoff et al. (1998) reported values of 0.1 and 0.01, respectively. It 

was reasonable to assert that lower heritability estimates in this work relative to those in 

Dodenhoff et al. (1998) and Torres-Vázquez and Spangler (2016) may be related to the current 

work not having estimated covariance between direct and maternal genetic effects, though it was 

estimated in the two prior studies. This covariance was not estimated in the current animal 

models due to failure of convergence when attempted to estimate in random regression models. 

Therefore, to preserve model consistency for comparison using a likelihood ratio test, this 

parameter was not estimated in any of the current models. Estimates of heritability, maternal 

heritability, and maternal permanent environmental variance from animal models in the current 
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work with the modeled covariance between direct and maternal genetic effects were 0.22, 0.14, 

and 0.16, respectively. The direct-maternal genetic correlation was moderate and negative in the 

current work (– 0.56), and not different than the direct-maternal genetic correlation found in 

Torres-Vásquez and Spangler (2016) of – 0.58. Heritability, maternal heritability, and maternal 

permanent environmental proportion of phenotypic variance from the animal model where the 

direct-maternal genetic covariance was left in the model to be estimated (0.22, 0.14, and 0.16, 

respectively) were slightly different from those estimated by the current animal models which 

did not estimate the covariance between direct and maternal genetic effects, as seen in Table 1 

(0.19, 0.04, and 0.17, respectively). The largest difference in proportions of phenotypic variance 

between the two animal models was observed in the maternal heritability (0.04 without the 

direct-maternal genetic covariance in the model, and 0.14 with this term in the model for 

estimation). This difference is not negligible, and due to the enormity of weaning weight records 

used in these analyses, it would be reasonable to assert that this difference is real and 

meaningful. 
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Table 2. Estimates of variance components and heritability (SE) using a single-trait animal 
model for weaning weight 

 1σa
2 = additive genetic variance; σm

2  = additive maternal genetic variance; σc
2 = maternal permanent 

environmental variance; σe
2 = residual variance; σp

2 = phenotypic variance; h2 = direct heritability;  
m2 = maternal heritability; c2 = maternal permanent environmental variance as a proportion of phenotypic 
variance 

Parameter1 Estimate 
σa

2 632.4 (27.74) 
σm

2  137.2 (35.73) 
σc

2 580.3 (37.63) 
σe

2 2010.9 (23.26) 
σp

2 3360.8 (13.86) 
h2 0.19 (0.008) 
m2 0.04 (0.011) 
c2 0.17 (0.011) 
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4.3 Random regression analyses across latitude 

Estimation of linear (first order) random regressions of the additive genetic component of 

weaning weight unique to subdivided regions was attempted, and did not converge. Linear and 

quadratic random regressions across latitude over the entire continental United States was 

accomplished. The quadratic random regression was the preferred model for the data (P < 

0.001). Attempts to model either the maternal additive genetic, or the maternal permanent 

environmental components as random regressions were unsuccessful. This failure is most likely 

due to the lack of support for these effects (individual dams) in the data.   

Nevertheless, upon observation of heritability estimates from both the linear and 

quadratic random regressions across latitude in the current work (as validated by similar 

observations in recent research involving random regression of intramuscular fat (IMF) across 

latitude in Delgadillo et al., 2019), only small differences were seen in heritability estimates and 

curves between the linear and quadratic random regressions across latitude. Additionally, larger 

standard errors were observed from the quadratic random regression for heritability estimates 

across latitude, particularly at the ends of the curves, both in the current work and in Delgadillo 

et al. (2019). This observed increase in variability at the ends of the random regression curves is 

likely due to reduced density of records near the ends of the country (and the curves) making the 

higher order polynomial behave in an unwieldy manner as to potentially accentuate records and 

inflate heritability estimates near the ends of the random regression curves beyond their true 

values (Speidel, 2011). Therefore, the linear random regression is likely the model of greatest 

precision for best practical use in genetic parameter estimation, given these data.  

For analyses which utilized latitude coordinates as covariate, the random regression 

curves for estimates of heritability (h2), and estimated maternal milking ability intercepts, 
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expressed as two distinct proportions: proportion of additive maternal genetic variance to total 

phenotypic variance (m2, maternal heritability), and the proportion of maternal permanent 

environmental variance to total phenotypic variance (c2), were plotted across the continental 

United States (Figure 4). Estimates of heritability, maternal heritability, and c2 from linear 

random regression results ranged from 0.15 to 0.26, 0.03 ± 0.009, and 0.15 ± 0.010, respectively 

(Table 3). For the quadratic random regression analysis, estimates of heritability, maternal 

heritability, and c2 were from 0.08 to 0.23, 0.07 ± 0.010, and 0.14 ± 0.010, respectively (Table 4; 

Figure 5). Estimates of (co)-variances, and correlation coefficients from the quadratic random 

regression analysis across latitude are listed in Table 5. 

 
 
Table 3. Estimates of variance components and heritability (SE) using a single-trait linear 
random regression model for weaning weight 

 1σb0
2 = additive direct genetic intercept variance; σb0,	b1

= covariance between the additive direct genetic 
intercept and random regression coefficient; σb1

2 = additive direct genetic random regression coefficient 
variance; σm

2  = additive maternal genetic variance; σc
2 = maternal permanent environmental variance;  

 σe
2 = residual variance; σp

2 = phenotypic variance; h2 = direct heritability from linear random regression;  
m2 = maternal heritability; c2 = maternal permanent environmental variance as a proportion of phenotypic 
variance 
 
 
 
 
 
 

Parameter1 Latitude Longitude 
σb0

2               583.9 (45.12)            1033.3 (58.08) 
σb0,	b1

             – 34.4 (21.65)           – 102.0 (11.70) 
σb1

2               278.9 (38.78)              178.5 (21.07) 
σm

2               276.4 (38.44)              132.3 (35.20) 
σc

2              563.1 (41.01)              575.6 (37.26) 
σe

2            2251.2 (18.81)            1978.4 (23.25) 
σp

2            3919.1 (42.78)            3796.2 (38.36) 
h2                  0.09 to 0.20                  0.15 to 0.26 
m2                  0.07 (0.010)                  0.03 (0.009) 
c2                  0.14 (0.011)                  0.15 (0.010) 
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Table 4. Estimates of variance components and heritability (SE) using a single-trait quadratic 
random regression model for weaning weight, with latitude as covariate 

1σm
2  = additive maternal genetic variance; σc

2 = maternal permanent environmental variance; σe
2 = residual 

variance; σp
2 = phenotypic variance; h2 = direct heritability; m2 = maternal heritability; c2 = maternal 

permanent environmental variance as a proportion of phenotypic variance

Table 5. Estimates of (co)variance components and correlation coefficients (SE) using a single-
trait quadratic random regression model for weaning weight, with latitude as covariate1 

1Estimates of variance along the diagonal in bold; estimates of covariance below the diagonal; estimates 
of correlation coefficients above the diagonal 

Parameter1 Latitude 
σm

2     276.3 (38.48) 
σc

2    564.2 (41.00) 
σe

2  2253.5 (18.82) 
σp

2  4036.8 (62.02) 
h2   0.08 to 0.23 
m2   0.07 (0.010) 
c2   0.14 (0.010) 

β0 β1 β2

β0   747.3   (68.00) – 0.05   (0.136)  0.58   (0.229) 
β1 – 9.43 (24.818) 44.97 (53.541) – 0.26   (0.433)
β2 117.7   (29.64) – 12.88 (18.672) 55.21 (34.506)
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Figure 4. Estimates of heritability from linear random regression, with milking ability intercepts 
represented by additive maternal genetic, and maternal permanent environmental variance each 
as proportions of phenotypic variance for weaning weight across latitude coordinates (dashed 
lines indicate ± 1 SE) 
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Figure 5. Estimates of heritability from quadratic random regression, with milking ability 
intercepts represented by additive maternal genetic, and maternal permanent environmental 
variance each as proportions of phenotypic variance for weaning weight across latitude 
coordinates (dashed lines indicate ± 1 SE) 
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4.4 Random regression analyses across longitude 

As conducted with latitude as random covariate, estimation of linear random regressions 

of the additive genetic component of weaning weight unique to subdivided regions was 

attempted, but analyses failed to converge due to insufficient computing power in the super 

computer at maximum allowable workspace in ASReml. Also, a quadratic random regression 

across longitude over the entire continental United States was attempted, and convergence was 

not achieved. As concluded from the attempts with latitude, attempts to model either the 

maternal additive genetic, or the maternal permanent environmental components as random 

regressions across longitude were not successful. Similar to analyses for latitude, this failure is 

most likely due to insufficient support for these effects in the data, where dams are very likely to 

be more prominently localized at a limited set of covariate values. 

Similar to analyses done across latitude, for analyses across longitude, the random 

regression curves for estimates of h2, m2, and c2, were plotted across the continental United 

States (Figure 6). For the linear random regression model with longitude as random covariate, 

these estimates were 0.09 to 0.20, 0.07 ± 0.010, and 0.14 ± 0.011, respectively (Table 3). 
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Figure 6. Estimates of heritability from linear random regression, with milking ability intercepts 
represented by additive maternal genetic, and maternal permanent environmental variance each 
as proportions of phenotypic variance for weaning weight across longitude coordinates (dashed 
lines indicate ± 1 SE) 
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4.5 Random regression results vs. animal model results, and prior work 

As with the animal models in the current work, estimates for heritability from the current 

random regression models were in agreement with those estimated by the American Hereford 

Association, and lower than those found by both Dodenhoff et al. (1998), and Torres-Vásquez 

and Spangler (2016). Estimates of maternal heritability, and c2 from the current random 

regression models were similar to those found by Torres-Vásquez and Spangler (2016), and 

greater than those found in Dodenhoff et al. (1998). While remaining consistent with weaning 

weight heritability estimates from the American Hereford Association, and with those in prior 

literature, change has been observed in heritability estimates as plotted in linear random 

regression analyses across latitude or longitude in the current work. It is apparent from these 

findings that genotype-environment interaction is indeed accounted for to some extent in the 

random regression for additive direct genetic effects for weaning weight across latitude or 

longitude. Furthermore, heritability estimates in the current work were conserved to a range of 

values consistent with those documented by trustworthy sources, and should be representative of 

the Hereford cattle population in the United States. 

Similar to the linear random regression curves across longitude for additive direct genetic 

variation as a proportion of total phenotypic variation across the continental United States for 

IMF in Delgadillo et al. (2019), apparent change was also observed across either latitude or 

longitude as random covariate, in this work. The linear and quadratic random regression curves 

of plotted heritability for linear random regression for weaning weight in the current work 

(regardless of covariate) have their minimum heritability estimate nearer to middle of the curve 

(associated with the center of the country), and the greatest estimates of heritability appeared to 

consistently occur at the ends of the curves (the farthest south and north with latitude as 
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covariate; and the farthest west and east with longitude as covariate, in the present work). With 

latitude as random covariate, the minimum heritability estimate from the linear random 

regression for weaning weight was 0.09 at approximately 38.37º N, in the middle of the United 

States. Similarly, the quadratic random regression across latitude (Figure 5) had a minimum 

heritability estimate of 0.08 at approximately 37.45º N (central United States). Linear and 

quadratic random regression curves for weaning weight were generally parabolic in shape, and 

fairly symmetrical. With longitude as random covariate, the minimum heritability along the 

linear random regression curve for weaning weight was shifted only slightly east of central 

United States (0.15 at approximately 87.55º W; Figure 6). The linear random regression curve 

for weaning weight across longitude was skewed parabolic, with the minimum of the curve 

shifted slightly east of central United States. These results propose that greater estimates of 

heritability for weaning weight occur nearer to coastal areas of the United States. Lower 

estimates of heritability for weaning weight exist in the south-central United States. These 

findings advocate that genetic progress through selection for weaning weight in Hereford cattle 

may be realized most rapidly in coastal herds that select sires native to either coastline, and 

slower genetic progress may be actualized in herds located nearer the south-central United States 

which select sires therein.  

This work showed a measurable effect of geographical location on additive direct genetic 

effects for weaning weight in American Hereford cattle. The use of latitude or longitude 

coordinates as random covariate served as a continuous characterization across the United States, 

for climatic and nutritional conditions (environment) for which Hereford cattle were reared. To 

that effect, these results therefore provide clear evidence of genotype-environment interaction as 

revealed by random regression analyses of weaning weight in the current study. These findings 
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were consistent with those from random regression work done with American Hereford IMF in 

Delgadillo et al. (2019). 

Results from this study suggest the importance of a random regression modeling 

approach attempting to sufficiently account for genotype-environment interaction in genetic 

merit predictions in American Hereford cattle. Furthermore, the use of random regression to 

predict genetic merit may allow for the possibility of selecting sires based on their genetic merit 

specific to their environment, rather than a blanketed average across the whole continental 

United States. This could result in a more precise sire selection process, which could eventually 

lead to greater efficiency and productivity in genetic enhancement for weaning weight in beef 

cattle. Consequently, generational genetic progress would then depend upon the environment-

specific genetic variability, by use of the genetic prediction methods suggested in the current 

work. Moving forward to incorporate random regression methodology into national cattle 

evaluation or breed association evaluations with use of random covariates such as latitude or 

longitude as a proxy for rearing environment and plane of nutrition, may be advantageous. 

Linear random regression analyses across either latitude or longitude appear to account for 

genotype-environment interaction, at least to some degree. It is nevertheless unclear as to which 

covariate has best accounted for genotype-environment interaction in the current work. Perhaps, 

a necessary follow-up study to help gain clearer direction as to practical applications of methods 

presented in this project (which covariate is most useful) would entail estimation of expected 

progeny differences (EPDs) from the current linear random regression analyses (across latitude 

or longitude), to compare with those currently estimated by the American Hereford Association. 

Consequently, it may prove necessary for the American Hereford Association (or national cattle 

evaluation) to then implement this methodology in parallel with their current means of 
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estimating expected progeny differences to provide producers some flexibility in their selection 

procedures. Producers would then be afforded the opportunity to use either EPDs estimated by 

the proposed new methods (random regression across either latitude or longitude coordinates) for 

genetic selection, or to continue to use the standard EPDs. Over generations of selection, the use 

of location-specific EPDs may prove to be more practical and useful to beef cattle producers than 

current blanketed selection methods. Nevertheless, further research is needed to more precisely 

adjust and refine the practical application of this approach of genetic parameter estimation and 

genetic merit prediction. Perhaps genetic parameter estimation and genetic merit prediction in 

other economically relevant traits for the Hereford breed, as well as additional beef cattle breeds, 

and the possible effect of regional subdivision of random regressions nested within regions 

would be advantageous pursuits, where records are sufficient, and where data would allow. 
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5. CONCLUSION

Findings from the present study revealed that a random regression modeling approach 

showed differences in estimates of heritability for weaning weight in American Hereford cattle 

in different longitude or latitude coordinate positions within the continental United States. A 

classic animal model might not sufficiently account for potential change in genetic variation for 

economically pertinent traits of livestock production performance in various livestock 

operations, across different environments. Nevertheless, using a random regression modeling 

approach for additive genetic variation in proportion to phenotypic variation, while attempting to 

account for milking ability of dams in genetic parameter estimation, and genetic merit prediction 

analyses for weaning weight may very well have the potential to advance the American Hereford 

Association genetic evaluations, as it appears to embody a considerably more flexible and 

suitable representation of additive genetic variation, and changes in additive genetic variation 

conditional to locational or environmental differences. Furthermore, the inclusion of genomic 

information may effectively compliment and further enhance the proposed random regression 

approach to genetic parameter estimation and genetic merit prediction in the current work. 

Nevertheless, in order to validate that the current approach is sufficiently accounting for all 

major sources of environmental effects influencing genotype, a reasonable next step would be to 

compare EPDs from random regression analyses to those from the animal models in the current 

study, and with those estimated by the American Hereford Association. 
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APPENDIX 

ASREML COMMAND FILE CODE FOR RANDOM REGRESSION ANALYSES

Linear random regression across latitude 

!WORKSPACE 32000
RANDOM_REGRESSION_WW
id                                !P
sire                             !P
dam                            !P
ww_adj                      !M -9999
ww_group                  !I 90646
scanwt_adj                 !M -9999
scanwt_group             !I 11447
scanimf_adj                !M -9999
scanimf_group            !I 13385
ce_group                     !I 11921
lat                                !M -9999
long                             !M -9999
zipcode                        !I 3027
Ped_WW_SHORT.ped   !SKIP 1
WW_SHORT.dat            !SKIP 1 !MVREMOVE !DDF !FCON !MAXIT 5000 !CONTINUE !STEP 0.01
######################################################## 
# MODEL = WW 
######################################################## 
ww_adj !SIGMAP ~ mu ww_group leg(lat,1), 
!r !{ leg(lat,1).id nrm(dam) !} ide(dam)
########################################################
0 0 3
#
leg(lat,1).id 2
leg(lat,1) 0 US !GPPP
327.9
-77.0 327.9
id 0 AINV
#
nrm(dam) 2
1 0 US !GP
141.1
nrm(dam) 0 AINV
#
ide(dam) 2
1 0 US !GP
130.8
ide(dam)
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Quadratic random regression across latitude 

!WORKSPACE 32000
RANDOM_REGRESSION_WW
id                               !P
sire                            !P
dam                           !P
ww_adj                     !M -9999
ww_group                 !I 90646
scanwt_adj                !M -9999
scanwt_group            !I 11447
scanimf_adj               !M -9999
scanimf_group           !I 13385
ce_group                    !I 11921
lat                               !M -9999
long                            !M -9999
zipcode                       !I 3027
Ped_WW_SHORT.ped   !SKIP 1
WW_SHORT.dat            !SKIP 1 !MVREMOVE !DDF !FCON !MAXIT 5000 !CONTINUE !STEP 0.01
######################################################## 
# MODEL = WW 
######################################################## 
ww_adj !SIGMAP ~ mu ww_group leg(lat,2), 
!r !{ leg(lat,2).id nrm(dam) !} ide(dam)
########################################################
0 0 3
#
leg(lat,2).id 2
3 0 US !GP
327.9
-77.0 327.9
-77.0 -77.0 327.9
id 0 AINV
#
nrm(dam) 2
1 0 US !GP
141.1
nrm(dam) 0 AINV
#
ide(dam) 2
1 0 US !GP
130.8
ide(dam)
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Linear random regression across longitude 

!WORKSPACE 32000
RANDOM_REGRESSION_WW
id                               !P
sire                            !P
dam                           !P
ww_adj                     !M -9999
ww_group                 !I 90646
scanwt_adj                !M -9999
scanwt_group            !I 11447
scanimf_adj               !M -9999
scanimf_group           !I 13385
ce_group                    !I 11921
lat                               !M -9999
long                            !M -9999
zipcode                       !I 3027
Ped_WW_SHORT.ped   !SKIP 1
WW_SHORT.dat            !SKIP 1 !MVREMOVE !DDF !FCON !MAXIT 5000 !CONTINUE !STEP 0.01
######################################################## 
# MODEL = WW 
######################################################## 
ww_adj !SIGMAP ~ mu ww_group leg(long,1), 
!r !{ leg(long,1).id nrm(dam) !} ide(dam)
########################################################
0 0 3
#
leg(long,1).id 2
leg(long,1) 0 US !GPPP
327.9
-77.0 327.9
id 0 AINV
#
nrm(dam) 2
1 0 US !GP
141.10
nrm(dam) 0 AINV
#
ide(dam) 2
1 0 US !GP
130.8
ide(dam)




