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ABSTRACT 

The recent advancements in high-throughput technologies provide a wealth of 

information on gene expression patterns and gene-regulatory pathways. As a result, 

researchers in life sciences have an unprecedented opportunity for more sophisticated, 

integrative and holistic approaches to identify phenotype-associated (signaling) molecular 

markers. Biomarker discovery is one of the most important goals in bioinformatics; 

however, achieving this objective requires comprehensive analysis of gene expression 

profiles and gene-gene interactions that exist in high-dimensional data spaces. In this 

dissertation, we are concerned with critical issues that hinder biomarker discovery. 

In the first part, we focus on the effects of measurement platforms on ranking of 

genes. Analyzing gene expression patterns and selecting informative genes amounts to a 

supervised classification and feature selection. However, if the sample is small, error 

estimation is problematic and the performance of the feature-selection algorithm will be 

impacted by the performance of the error estimator. The problem is compounded by the 

fact that the accuracy of classification depends on the manner in which the phenomena are 

transformed into data by the measurement technology. Therfore, the first part of this 

dissertation is devoted to the study of the effects of the nonlinear transformation of the 

actual gene concentrations introduced by a sequencing machine on the feature-set ranking. 

The second part of this dissertation is devoted to canalizing genes which possess 

an ability to correct abnormal cellular processes for the purpose of biological robustness 

under genetic mutations or environmental perturbations. Despite their central role in gene 



iii 

regulatory networks (GRNs), the observation/detection of canalizing genes is often 

impeded because of their particular behavior. Therefore, we focus on inherent 

characteristics of canalizing genes and develop a quantitative framework that allows for 

the estimation of the power of canalizing genes in the context of Boolean Networks with 

perturbations (BNps). We also consider the problem of reducing the network complexity 

while preserving the distribution of the canalizing power of genes. We evaluate the 

stability of canalizing power under network reduction and proceed with the problem of 

selecting the relevant network features that allow for discriminating reducible networks 

which are determined by the degree of preservation of canalizing power. 
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1. INTRODUCTION

Biomarkers discovery is one of the most important topics in bioinformatics 

because it provides targets for diagnosis, prognosis and therapeutic interventions [1]-[5]. 

The development of high-throughput technologies enables researchers to measure 

thousands of genes simultaneously in one single experiment and has fueled the growth of 

the field of computational biology and bioinformatics [6]-[9]. While obtaining large-scale 

gene expression profiles of cells should theoretically accelerate the identification of 

uncovered biomarkers, high dimesnsionality has become the bottleneck of data analysis 

[10], [11]. The plethora of complex omics data has complicated the problem of extracting 

meaningful molecular signatures. Moreover, the great number of features is often 

accompanied by a small number of available samples [12], [13]. The main challenge is 

that the amount of data required to provide a reliable analysis grows exponentially as the 

dimensionality of the data rises. Bellman referred to this phenomenon as the curse of 

dimensionality which describes the inherent limitation of high dimensionality (𝑝 ≫ 𝑛 

where 𝑝  is the number of dimensions and 𝑛  is the sample size) [14]. The curse of 

dimensionality leads to a peaking phenomenon – adding more features will degrade the 

performance of a classifier [15]. Therefore, feature selection is imperative to alleviate the 

problem of high dimensionality. 

Feature selection not only serves as a strategy to tackle the high-dimensionality 

problem, but also provides a framework for biomarker discovery [16]-[19]. A large 

number of methods have been proposed for the identification of molecular markers and 
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they can be categorized into two main approaches: (i) classical univariate statistical 

methods, where each biomarker is considered as independent from the others; (ii) 

multivariate methods that take into account the correlation structure of the data and 

interactions existing among the genes. 

In the univariate scheme, statistical tests are applied to each biomarker candidate 

individually to evaluate the statistically significant differences between two groups of 

samples, e.g. normal cells vs. cancer cells [17], [20]. There are numerous univariate 

statistcal methods such as t-test, ANOVA, and non parametric tests, like the Mann-

Whitney test, Kruskal-Wallils test, and Chi-squre test [18]-[21]. Although these methods 

provide useful information regarding differences in gene expression between conditions, 

they have a major drawback: the potential correlation and the synergic or antagonistic 

effects between groups of genes are not considered [19], [22], [23]. There are some 

differential expression analysis methods implemented in software packages such as edgeR 

and DESeq2 that model relationships between genes; however, the statistical test for 

assessing significance is still a univariate test performed independently for each gene [24], 

[25]. Genes are known to play key roles as a group in the cell but not when each gene is 

considered independently [26]-[28]. Clearly, the univariate testing for significance is not 

reflecting the gene-gene interactions that are present in the cell. Therefore, biological 

considerations imply that biomarker discovery should be performed in a multivariate 

setting. 

Multivariate methods compare two or more groups of samples considering the 

relationships existing between the candidate molecules, i.e. concordant or discordant 
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effects of different factors [20]. These methods usually belong to one of the following 

categories: (i) unsupervised pattern recognition methods, e.g. clustering methods; (ii) 

supervised classification methods, based on a priori information about the membership of 

each sample to a specific class. Clustering algorithms in unsupervised learning allow the 

identification of groups of samples or features in a dataset [29]. The samples are grouped 

on the basis of a measure of their similarity and attributes selected from a clustering 

algorithm are thus the representative attributes of the same cluster [30], [31]. However, 

ground truth class labels that can evaluate the performance of selection are not usually 

available and thus, one cannot evaluate the accuracy of the clustering. On the other hand, 

samples are given with known lables in supervised learning and this allows outcome 

assessment with misclassification error. Therefore, the discovery of biomarkers is often 

modeled as feature selection based on the use of supervised learning methods [16]-[18], 

[20]. For this reason, we deploy classification approaches throughout this dissertation. 

 The accurate selection of biomarker candidates is crucial, because it determines 

the outcome of further validation studies and the ultimate success of efforts to develop 

diagnostic and prognostic assays with high specificity and sensitivity. During this process, 

three important issues have to be addressed: (i) the small number of available samples, (ii) 

the effects of the measurement technology on the obtained data, and (iii) the appropriate 

mathematical and statistical framework for modeling the activity of important genes. The 

following sections discuss these issues in greater detail. 
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1.1 Feature selection for high dimensional and small-sample size datasets 

When feature selection is based on classification error, the goodness of feature sets 

is determined by their error estimates. The performance of feature selection or feature-set 

ranking concerns the relationship between the true ordering and ranking based on error 

estimates. The most critical aspect of evaluating the performance is the degree of 

preserving the true ordering. In many studies [16], [32], [33], it has been experimentally 

verified that the relatively small number of samples in high-dimensional data is one of the 

main sources of the problem of feature selection. Moreover, Ein-Dor et al. [34] showed 

that at least thousands of samples are needed to generate a robust list that can be used for 

predicting outcome in cancer patients. If there is a large data set, one can obtain good error 

estimates; however, if the sample size is small, the performance of the feature-selection is 

affected to a great extent by the performance of the error estimator [35]-[37]. Previous 

studies [35], [36] focused on the role of error estimators, feature-selection algorithms and 

classification rules in feature selection for small samples and compared the estimated 

results with the absolute/true ranking of feature sets. All feature sets of a given size were 

used to design classifiers and the feature sets were ranked based on their true and estimated 

errors. U. M. Braga-Neto et al. showed that with small samples and a large number of 

features, error estimators have substantial variance, especially cross-validation, and 

possess little correlation or regression with the true error [35], [36]. Moreover, it was 

shown in [38] that the performance differences among the feature-selection algorithms 

appear to be less significant than differences in performance among the error estimators 

used to implement the algorithms for small samples. Studies in [35]-[37] also indicated 
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that error estimators suffer from different degrees of imprecision in the small-sample 

setting. 

All of these previous studies suggest that feature selection algorithms are 

unreliable in the small sample setting [35], [36], [39]. Therefore, one may have poor 

feature sets whose corresponding classifiers possess errors far in excess of the classifier 

corresponding to the optimal feature set [37]. Zhao et al. [39] also showed that the 

estimated errors for the top features may be biased by a low error estimate, and thereby 

selecting a top scored feature set can be misleading. Therefore, Zhao et al. [39] suggested 

that rather than reporting a single feature set, providing a list of the best performing feature 

sets increases the likelihood of finding good features sets when samples are small. This is 

based on an idea that some feature sets in that list will be close to optimal. 

1.2 Feature selection using gene-expression data obtained from NGS pipeline 

Next-generation sequencing (NGS) refers to a class of technologies that sequence 

millions of short DNA fragments in parallel [40]. NGS has rapidly become the method of 

choice for transcriptional profiling experiments due to many advantages compared to the 

available microarray expression platforms [41]. In contrast to microarray technology, the 

high throughput sequencing allows the identification of novel transcripts and isoforms and 

does not require a sequenced genome [9]. Furthermore, the background correction, probe 

design and spot filtering, which are typical for microarray-based technology, are no longer 

problematic due to the different nature of NGS technology [12], [42].  
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The specific application of NGS for RNA sequencing is called RNA-Seq, which 

is a high-throughput measurement of gene-expression levels of thousands of genes 

simultaneously as represented by discrete expression values for regions of interest on the 

genome (e.g. genes) [7], [9], [43]. In particular, RNA-Seq sequences small RNA 

fragments (mRNA) which are produced when a gene is expressed [7]. The schematic of 

the key steps of RNA-Seq analysis pipeline from sample preparation to data analysis is 

illustrated in Figure 1.1. The RNA-Seq experiment randomly shears and converts the RNA 

fragments to cDNAs, sequences them, and finally outputs the results in the form of short 

reads [12], [42], [44]. Then, cDNA fragment reads are mapped back to a reference genome 

to determine the gene-expression levels [6], [12]. The technology assumes that the cDNA 

cleavage is random and so the read start position is independent of the genomic sequence 

[45]. Therefore, it allows to use the number of reads mapping to certain regions of the 

genome as a quantitative measurement. The number of reads mapped to a gene on the 

reference genome defines the count data, which is a discrete measure of the gene-

expression levels [12]. RNA-seq experiments are subject to some systematic variations 

such as library size (i.e., sequencing depth) differences between samples, as well as 

transcript length bias and GC content within a specific sample [46], [47]. Therefore, it 

should be noted that it is essential to normalize data in order to adjust for such biases. 

After correcting systematic variations within and between samples, downstream analysis 

such as differential expression analysis, multivariate statistical analysis and visualization 

is performed [47].  
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Many studies have focused on modeling the discrete NGS data obtained from the 

sequencing instrument. Two popular models for statistical representation of the discrete 

Figure 1.1 A typical RNA-seq experiment consists of the following steps: RNA extraction, 

library preparation, sequencing of the samples, and data analysis. Purified RNA samples 

are sent for library preparation and sequencing. RNA-seq reads are aligned to a reference 

genome and the expression level of each gene is estimated by counting the number of 

reads that align to each exon or full-length transcript. Downstream analyses with RNA-

Seq data include differential expression analysis, multivariate statistical analysis and 

visualization, etc. 



 8 

NGS data are the negative binomial [24], [48] and Poisson [43]. The Poisson model is 

completely parameterized by its mean and thus is known to exhibit problems in fitting 

RNA-Seq data because RNA-Seq generates gene-expression data with overdispersion 

where the variance exceeds the mean [49], [50]. Therefore, the counts are frequently 

modeled by the negative binomial distribution [12], [24], [48]. However, with the 

relatively small number of samples available in most current NGS experiments, it is 

difficult to accurately estimate the dispersion parameter of the negative binomial model 

[12]. Therefore, Noushin et al. [12] modeled the NGS data using a hierarchical, 

multivariate Poisson (MP) model. Specifically, gene concentration levels are modeled 

using a log-normal distribution [51], [52] and the sequencing instrument sampling of these 

is modeled via a Poisson process [12], [49]. Therefore, the read counts are not marginally 

Poisson distributed, but they are modeled as conditionally Poisson where the RNA-Seq 

data overdispersion is obtained by marginal variance calculations. 

With the widespread use of the NGS techniques, many studies have been 

conducted to examine classification approaches for sequencing data [53]-[55]. Noushin et 

al. [12] studied how the NGS processing pipeline affects classification performance. This 

work shows that the NGS pipeline transforms the original Gaussian data and produces less 

discriminative data relative to the actual gene expression levels which diminishes 

classification accuracy. Those results show that the accuracy of classification and feature 

selection depends on the manner in which the phenomena are transformed into data by the 

measurement technology in addition to the choice of error estimators and the availability 

of enough samples. 
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1.3 Important genes in a gene regulatory network 

In Biology, genes that occupy the top of a regulatory hierarchy and control multiple 

downstream genes either directly or by initiating a cascade of gene responses are called 

master or canalizing genes [56]-[59]. Genes that are under the regulatory influence of such 

commanders are called slave genes. It is important to note that these concepts are both 

relative and local. A gene considered as a master for a given portion of a regulatory 

network could be a slave from another local perspective or in a different context. Both 

master and canalizing genes play a key role in the variety of processes such as cellular 

development and differentiation and exert a strong control over many downstream gene 

pathways.  

The conceptual difference between master and canalizing genes is that canalizing 

genes have an additional ability of taking over the control and overriding other regulatory 

instructions [56], [57], [60]. One example is a pathway involving DUSP1 and Ras genes 

which are important in melanoma tumors. Figure 1.2 shows a DUSP1 network and it 

illustrates the canalizing characteristic of DUSP1. When DUSP1 is OFF, or down-

regulated, the downstream genes are controlled by the Ras oncogene through 

phosphorylation and transcriptional activation. However, when DUPS1 is activated, or up-

regulated, it dephosphorylates ERK1/2, thereby overriding the signal sent by Ras [56]. 

The biological role of DUSP1 indicates that it is likely a canalizing gene that can take over 

control of downstream genes when it is ON. 
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Moreover, canalizing genes produce adaptive and optimal reactions for the 

purpose of biological robustness when there are external stimuli or genetic perturbations 

[60]-[62]. They enforce corrective actions on cellular processes to maintain homeostasis 

and buffer itself from the effects of random alterations or operating errors [56], [57], [60]. 

Despite their central role in biological systems, the observation/detection of canalizing 

genes is often impeded because the behavior of affected genes is highly varied relative to 

the inactive canalizer [57], [60]. For example, cellular p53 is expressed at low levels under 

normal physiological conditions, thereby turning off the activity of p53 network [63]. 

Most of the time, canalizing gene such as p53 is turned off or exists in the cell at a very 

low level in a relatively inactive mode. Therefore, the activity of canalizing genes is 

difficult to predict to any significant degree by their subject genes under normal cell 

conditions.  

Figure 1.2 The regulatory pathway including DUSP1 and Ras constructed from canonical 

pathway knowledge presented in [56]. Orange color represents the regulatory influence of 

Ras while blue color indicates the effects of DUSP1 activation. 
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If a strict complete control is applied in a closed environment, it is obvious to 

identify a canalizing gene and measure its effects on other genes. Figure 1.3 illustrates the 

situation where the effects of canalizing genes are easily found when all the genes are 

deterministically controlled. Assume that a master gene 𝑔𝑚 is known to turn on 𝑔𝑠 when

𝑔𝑚  is ON and turn off 𝑔𝑠  when it is OFF, i.e. 𝑔𝑚 ↦ ON ⟹ 𝑔𝑠 ↦ ON,  𝑔𝑚 ↦ OFF ⟹ 

𝑔𝑠 ↦ OFF. With the full knowledge of this rule, the effects of canalizing genes are easily

estimated if change of slave genes’ expression under the same condition of master gene is 

observed as shown in Figure 1.3. By looking at the case where the gene 𝑔𝑠 is turned on

even with inactive 𝑔𝑚 , we can infer that 𝑔𝑐  turns on 𝑔𝑠 . When no latent variable and

perturbation are assumed, the changes of slave genes’ expression are entirely due to the 

activity of a canalizing gene and one can conclude that 𝑔𝑐  determines the state of slave

genes regardless of the activity of 𝑔𝑚 upon its activation. However, such a strict complete

control is extremely unlikely in practice and it is hard to tell whether the changes observed 

Figure 1.3 A pictorial representation of the activity of a canalizing gene 𝑔𝑐 . Corresponding 

wiring diagram and truth table are presented. A left box shows the case where the slave 

gene 𝑔𝑠 is completely regulated by 𝑔𝑚 when 𝑔𝑐  is inactive. The box in the right shows

that 𝑔𝑐  overrides the instructions sent by 𝑔𝑚, so the expression of 𝑔𝑠 is determined by 𝑔𝑐

regardless of 𝑔𝑚 . Blue and yellow color indicates the influence of 𝑔𝑚  and 𝑔𝑐 , 

respectively.  
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in slave genes under the same conditions of master genes are due to latent genes, noise or 

activation of a canalizing gene. This suggests that it is hard to detect canalizing genes from 

gene-expression data only which in turn requires a mathematical framework that can 

capture the activity of the genes.  

1.4 Contributions 

In this dissertation, we consider aforementioned factors and conduct three distinct 

research projects. First, we study the effects of a next-generation sequencing measurement 

platform on the ranking of feature sets. We then formulate a mathematical framework that 

can measure the power of important genes which reflects their intrinsic characteristics. 

Finally, we apply the proposed framework to characterize Boolean networks that are 

reducible under the constraint of preserving the the canalizing power of genes and identify 

relevant network attributes that can detect/discriminate such networks. 

The work in Section 2 builds on previous work by Zhao et al. [39] where they 

studied the effectiveness of reporting list of feature sets for multivariate Gaussian model 

in the small-sample setting. We extend this study by applying methodologies suggested in 

[39] to sequencing data because it is a widespread biological measurement technique

which does not conform to Gaussian distributional assumptions. We use a hierarchical 

Poisson model [12], [49] to represent the NGS sample processing pipeline: from the 

biological sample to the gene counts. We investigate the performance of feature-set 

ranking and compare the list of selected features derived from a model of RNA-Seq data 

with top ranked features from a multivariate normal model of gene concentrations. Three 
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measures are employed for comparison: (i) ranking power, (ii) length of extensions, and 

(iii) Bayes features. We perform the model-based study to examine the effectiveness of

reporting lists of small feature sets using RNA-Seq data and the effects of different model 

parameters and error estimators on the ranked list.  

In Section 3, we present a quantitative framework that reflects inherent 

characteristics of canalizing genes and allows for the estimation of the power of canalizing 

genes in the context of Boolean Networks with perturbation (BNps). We define the 

canalizing power (CP) using two terms: regulation power (RP) and incapacitating power 

(IP). We base this assumption on the idea that canalizing power of a gene should be 

quantified by the extent of its regulation on the overall network and the extent of control 

that such gene takes away from other master genes when it is activated. Following this, 

the CP concept is demonstrated on synthetic and real data to provide preliminary evidence 

that CP can be used to characterize the ability of canalizing genes. 

In Section 4, we study the problem of reducing BNs with a perturbation by 

consecutively removing genes with the smallest canalizing power. A systematic empirical 

study demonstrates that there are two classes of networks, reducible and irreducible with 

respect to the preservation of canalizing power of the genes. With these observations in 

mind, we introduce the definition of reducible networks based on two criteria: (i) 

Spearman’s rank-order correlation coefficient, and (ii) weighted Euclidean distance 

between canalizing power vectors of the original and reduced networks. From the 

perspective of optimal control, investigating attributes of the network in a certain class is 

viewed as obtaining the best estimates of conditions which are most likely to elicit a 
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particular behavior of the network. Therefore, to understand inherent properties of the 

networks in the two different classes, we proceed with the problem of selecting their 

relevant network features that allow for discriminating reducible from irreducible 

networks. Discriminant features are obtained from simulated networks of 12 genes and 

the efficacy of the selected features is demonstrated on synthetic networks of 13 genes and 

a real 16-gene p53 regulatory network. 

In Section 5, we summarize the main contributions of the work and discuss some 

future directions of research. 
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2. THE MODEL-BASED STUDY OF THE EFFECTIVENESS OF REPORTING

LISTS OF SMALL FEATURE SETS USING RNA-SEQ DATA1 

2.1 Introduction 

Ranking feature sets for phenotype classification based on gene expression can be 

viewed as gene selection and is a key issue for cancer informatics. Because ranking feature 

sets is often based on error estimates of the designed classifiers and error estimators based 

on training data from small samples tend to perform poorly, exhibiting optimistic bias or 

high variance, a feature set with a low error estimate cannot be automatically declared to 

be credible. Also, it is important to choose an error estimator which yields a reliable 

ranking for the feature sets [35]. Furthermore, when confronted with a small sample, 

feature-selection algorithms often fail to find good feature sets. The problem is 

exacerbated for high-dimensional data, i.e., data sets with feature sets of high cardinality. 

It is difficult to find a good feature set in the small-sample setting even when one uses a 

mathematically favorable gene concentration/expression model [39]. These observations 

suggest that it is prudent to report a list of potential feature sets rather than attempting to 

find the best feature set. In addition to the unreliability of feature selection and error 

estimation, the accuracy of classification depends on the manner in which the phenomena 

1 Part of this section is reprinted with permission (CC by 4.0) from “The Model-Based Study of the 

Effectiveness of Reporting Lists of Small Feature Sets Using RNA-Seq Data” by E. Kim, I. Ivanov, J. 

Hua, J. W. Lampe, M. A. Hullar, R. S. Chapkin, and E. R. Dougherty, Cancer Informatics, vol. 16, 

Feb. 2017. 
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are transformed into data by the measurement technology. High-throughput sequencing 

technologies such as NGS have recently emerged as popular tools to quantify gene 

transcripts. However, NGS technologies pose new computational and statistical 

challenges because their applications result in nonlinear transformations of the underlying 

gene-concentration distributions. A recent study showed that a NGS pipeline could lead 

to transformation degradation in classification performance [12]. In this section, we 

address the effects of the nonlinear transformation induced by the sequencing machine 

and the choice of error estimators on feature-set ranking. 

The development of NGS technologies enables simultaneous measurements of the 

abundance of mRNA transcripts and such information can be utilized to detect differential 

gene expression and design gene-expression-based classifiers for phenotypic 

discrimination and medical diagnosis or prognosis. RNA-Seq provides discrete counting 

measurements for the gene-expression levels [44]. All RNA-Seq data generation follows 

a similar protocol, starting with shearing samples to generate millions of small RNA 

fragments. These fragments are then converted to cDNA and the adapter sequences are 

ligated to their ends. This collection, referred to as a library, is then sequenced, which 

produces millions of short sequence reads that correspond to individual cDNA fragments. 

Finally, those reads are mapped to a reference genome. The number of reads mapped to a 

gene on the reference genome defines the count data, which is a discrete measure of the 

respective gene expression levels. 

Much of the literature concerning the statistical representation of RNA-Seq data 

models it via a negative binomial [24], [48] or Poisson distribution [43]. The Poisson 
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model is parameterized by its mean and it is already known that RNA-Seq data may exhibit 

more variability than the single Poisson distribution parameter. The negative binomial 

distribution can mitigate this over-dispersion problem, allowing the variance to exceed the 

mean; however, when dealing with a relatively small number of samples, it is difficult to 

accurately estimate the dispersion parameter of the negative binomial model. Therefore, 

in this dissertation we focus on a hierarchical multivariate Poisson model [12]. 

Specifically, gene concentration levels are extracted from a log-normal distribution and 

their subsequent processing by the sequencing instrument is modeled via a Poisson 

process. The hierarchical model is not as restrictive as the simple Poisson model, and can 

be considered as a compromise between the Poisson and negative binomial models in the 

small-sample setting [49]. The simulated NGS data follow a conditionally Poisson 

distribution and the marginal distribution of the data is a mixture of Poisson and Gaussian 

distributions. 

Although multivariate data offer the potential for finding features for phenotypic 

discrimination, large-scale and high dimensionality classification problems with small 

sample sizes can result in overfitting of the data. A variety of feature-selection algorithms 

for classification have been proposed over the past decades [64], [65]. Feature selection 

has inherent problems due to its combinatorial nature and sampling procedures. To select 

a subset of 𝑘 features out of 𝑛 potential features and be assured that it provides an optimal 

classifier with minimum error among all optimal classifiers for subsets of size 𝑘, all (
𝑛
𝑘
) 

possible sets must be checked to guarantee that the best one is selected [66]. In other 

words, nothing but an exhaustive search can assure finding the best feature set. In practice, 
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feature selection must proceed from sample data, which leads to the well-known peaking 

phenomenon, i.e., the tendency of achieving improved classification performance with an 

increasing number of features only to a point, beyond which more features lead to 

degradation of the classification accuracy [15], [67]-[70]. Therefore, employing too many 

features in a small-sample setting yields poorer classification accuracy, thereby leading to 

the need for feature selection. This raises a critical question: can one expect a feature-

selection algorithm to yield a feature set whose error is close to that of an optimal feature 

set?  

A good feature selector is expected to report a list of feature sets without missing 

the true target. Thus, ranking of feature sets becomes a key issue for classification. 

Unfortunately, for small samples, error estimators deployed to perform the ranking of the 

feature sets suffer from different degrees of imprecision. Moreover, there is little 

correlation between the errors of the selected feature set and a close-to-optimal feature set 

[37]. When the number of samples is small, using re-sampling-based classifier error 

estimators such as cross-validation and bootstrap is risky owing to the substantial variance 

[36] and lack of regression with the true error [36], [71]-[73], which is exacerbated in the

presence of feature selection [74], [75]. Hence, it is important to choose a computationally 

feasible error estimator that yields rankings that better correspond to rankings produced 

by the true errors.  

Often, when ordering a list of feature sets based on the estimated errors, the smaller 

estimates tend to be biased optimistically and the larger estimates tend to be biased 

pessimistically [39]. Thus, reporting a list of feature sets is preferred compared to 
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providing a single good feature set, the idea being that some in the list of top-performing 

feature sets will be close to optimal [39]. This approach assures that there is at least one 

feature set on the list whose true classification error is within some given tolerance of the 

best feature set with high probability. Given the list, one can either focus on the feature 

sets in the list for further sampling or take a classical wet-lab approach to determine which 

ones are predictive of the phenotype of interest [39].  

In this chapter, we investigate the effects of the nonlinear transformation induced 

by NGS technology and the choice of error estimators on feature-set ranking. 

Quantification of changes in feature-set lists due to a measurement technology requires a 

baseline to compare, i.e., underlying gene-concentration as the biological ground truth. 

This can be accomplished via simulated data experiments. For this purpose, we utilize a 

model-based approach and provided a distribution from which the synthetic data arise. We 

also consider an application of the proposed methodology to real RNA-Seq data as an 

example of one possible way to derive power curves that estimate the goodness of the 

feature-set ranking under user-defined settings.  

We focus on the LDA classification rule and our work is neither a comparison 

study of different pattern classifiers nor a model selection study. The rationale for focusing 

on LDA classifiers is based on our previous studies [35], [76]. The performance of seven 

different classification rules on real patient data was compared in terms of the expected 

classification error, for different sample sizes and dimensionality [76]. Classification rules 

considered were linear discriminant analysis (LDA), quadratic discriminant analysis 

(QDA), nearest-mean classification (NMC), 1-nearest neighbor (1NN), 3-nearest neighbor 
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(3NN), CART with a stopping rule that ends splitting when there are six or fewer sample 

points in a node, and a neural network (NNET) with 4 nodes in the hidden layer. As a 

result, LDA has proved to be a very robust classification rule, which is effective for a wide 

range of sample sizes and therefore, we focus on the LDA classification rule. 

2.2 Methods 

2.2.1 Ranking Power 

The ranking power is a measure of the goodness of a ranked list of classification 

feature sets and is defined by [39] 

∆𝐷,𝑑
𝑛,𝑟 (𝑚) = 𝑃(𝜀1 − 𝜀0  <  𝑟), (2.1) 

where 𝜀1 is the lowest test error for the feature sets in a ranked list of length 𝑚 sorted by

their estimated errors, and 𝜀0  is the test error of the classifier computed for the Bayes

features. Specifically, to compute the ranking power consider all of the possible feature 

sets of size 𝑑 among the number 𝐷 of total features. Then, rank them according to their 

estimated errors and obtain the top m feature sets, ℱ1, ℱ2, ⋯ , ℱ𝑚. Define 𝜀1 as the lowest

test error of the classifier among the 𝑚 feature sets considered. The 𝑖th lowest estimated 

error 𝜀(̂𝑖) corresponds to the feature set ℱ(𝑖), but the 𝑖th lowest test error 𝜀(𝑖) will likely not

correspond to the feature set ℱ(i).

The ranking power provides the probability that given a ranked list of 𝑚 feature 

sets there is at least one feature set in that list with an error that is close to that of the best 

feature set. The ranking power depends on the list length 𝑚, the total number 𝐷 of features, 
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the number 𝑑  of selected features, and sample size 𝑛 . The original ranking power 

definition takes into account the difference between the smallest test error of the classifier 

in a given list of feature sets and the respective test error of the Bayes feature set. However, 

it is often desirable to consider the magnitude of the Bayes error. Thus, we propose the 

following modification to the ranking power definition: 

∆𝐷,𝑑
𝑛,𝑐 (𝑚) = 𝑃( 𝜀1 − 𝜀0  <  𝑐 ∙ 𝜀0) (2.2) 

This modification allows for an explicit comparison of the difference between 𝜀1 and 𝜀0

to the magnitude of the test error of the Bayes feature set as represented by the parameter 

𝑐. For example, 𝑐 = 0.01 indicates that we are only interested in ranked lists of features 

sets where the feature set with the smallest test error differs from the test error of the Bayes 

feature set by less than 1% of the test error of the Bayes feature set. For any given 𝜀0, there

is a clear relationship between the value of 𝑟 in the original definition of the ranking power 

and the parameter 𝑐 in the modified version above. Thus, for the purpose of comparing 

our simulation results to those from the previous study by Zhao et al. [39], we report the 

values of the parameter 𝑟.  

Ranking power of the gene-expression concentration generated from the 

Multivariate Normal (MVN) distribution [77], [78] is computed by the probability of the 

following inequality  

𝜀1,𝑀𝑉𝑁 − 𝜀0,𝑀𝑉𝑁  < 𝑐 ∙ 𝜀0,𝑀𝑉𝑁 , (2.3)

where 𝜀1,𝑀𝑉𝑁 is the lowest test error for the feature sets in the MVN ranked list and 𝜀0,𝑀𝑉𝑁

is the test error of the Bayes feature set in the MVN model. In the same way, ranking 

power of the NGS data is calculated by the probability of 
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𝜀1,𝑁𝐺𝑆 − 𝜀0,𝑁𝐺𝑆  < 𝑐 ∙ 𝜀0,𝑁𝐺𝑆. (2.4)

The same Bayes feature set in the MVN model is used as the Bayes feature set of the NGS 

model and 𝜀0,𝑁𝐺𝑆 is the respective test error of the Bayes feature set in the NGS data. The

smallest test error for the feature sets in the NGS ranked list is 𝜀1,𝑁𝐺𝑆 .

2.2.2 Length of Extensions 

Gene-expression concentration is the biological ground truth and has often been 

modeled by the multivariate normal distribution. We use the MVN model to assess the 

effects of the NGS transformation on the ranking power and the composition of the ranked 

lists of feature sets. In general, when one desires to compare two ranked lists of feature 

sets, one is interested how a particular feature set is ranked in each one of the two lists. 

While there are several possible ways to measure this difference in the ranking we focus 

on the ranking of a top-performing feature set from one of the two lists in the other list. 

To achieve the desired comparison we introduce the following notation: ℱ𝑀𝑉𝑁  denotes the

feature set ranked at the top in the list of feature sets obtained using the MVN model of 

gene concentrations; the rank of ℱ𝑀𝑉𝑁  in the respective NGS list is denoted as τ𝑁𝐺𝑆.

Similarly, τ𝑀𝑉𝑁 is the rank of the top feature set ℱ𝑁𝐺𝑆 from the NGS list in the respective

MVN ranked list of feature sets. 

2.2.3 Bayes Features 

The Mahalanobis distance provides a way to calculate the Bayes error. If class 

densities are Gaussian, the Bayes error can be simply calculated using only sample mean 
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vectors 𝜇𝑖  and sample covariance matrices Σi of class 𝑖. The Mahalanobis distance ∆ is

given by   

∆= √(𝜇1 − 𝜇2)TΣ−1(𝜇1 − 𝜇2), (2.5)

where Σ denotes the average covariance matrix given by Σ= 𝑃(𝑐1) ∙ Σ1 + 𝑃(𝑐2) ∙ Σ2 and

𝑃(𝑐𝑖) is a priori class probability of class 𝑖 = 1, 2. Equal prior probabilities for the classes

and equal covariance matrices are assumed in our model. Therefore the Bayes error for 

any feature set ℱ  of size 𝑑  is Φ(−∆/2), where Φ  is the standard normal cumulative 

distribution function. ℱ𝑏𝑎𝑦𝑒𝑠  denotes the feature set having the largest Mahalanobis

distance and, accordingly, the minimum Bayes error. 

Bayes features of a hierarchical model cannot be easily found as in the Gaussian 

case. Simulated NGS data are the mixed form of Poisson and Gaussian distributions, so 

there is no analytical formula for the Bayes error. The Bayes error of the hierarchical 

model can be estimated using Monte-Carlo sampling. In this dissertation, Bayes features 

of the MVN are used as the Bayes features of the NGS data in the biological context. 

Although Bayes features of the MVN are not equal to those of the transformed data, MVN 

Bayes features reflect the biological ground-truth markers. 

2.3 The Models for Gene Concentrations and NGS data 

Two different types of synthetic data are generated for simulation experiments: (i) 

actual gene-expression concentration, called MVN and (ii) Poisson-transformed MVN 

data, denoted as NGS, which emulate NGS-reads.  
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2.3.1 Multivariate Gaussian Model 

Gene concentration levels can be modeled using a log-normal distribution [51], [7

9], [80] and the hybrid multivariate Gaussian model proposed in Zhao et al. [39] is adopted 

in this dissertation. Genes/features are categorized into two groups: markers and non-

markers. There is a total of 𝐷 = 𝜐 + 𝜂  features and 𝜐  and 𝜂  represent the number of 

markers and non-markers in the model respectively. Markers resemble genes associated 

with diseases and they have two class-conditional Gaussian distributions with equally 

likely classes and common covariance matrix Σ. The mean vectors for the markers are 

𝜇0 = 𝑚0 × (0,0,⋯ ,0)T  and 𝜇1 = 𝑚1 × (𝑎1, 𝑎2,⋯ , 𝑎𝜐)
T  for class 0 and class 1,

respectively, where 𝑚0  and 𝑚1  are scalars and 𝜐  denotes the total number of marker

features generated. In order to mimic real experimental situations, where every marker 

performs well but not exactly the same, all elements of vector 𝜇1 are not equal to one

another. 𝜇1 is an equally spaced vector with 𝑎1 = 1 and 𝑎𝜐 = 0.8. The covariance matrix Σ

is blocked and each block Σ𝜌  has variance 𝜎𝜇
2  along the diagonal and correlation

coefficient 𝜌 off the diagonal: 

Σ =  

[

Σ𝜌 0

0 Σ𝜌
⋯

0 0
0 0

⋮ ⋱ ⋮

0 0
0 0

⋯
Σ𝜌 0

0 Σ𝜌]

(2.6) 

where

Σ𝜌 = 𝜎𝜇
2 [

1 𝜌
𝜌 1

⋯
𝜌
𝜌

⋮ ⋱ ⋮
𝜌 𝜌 ⋯ 1

] . (2.7) 
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Different blocks correspond to different gene regulatory pathways [77], [78] and model 

the assumption that groups of genes in the same pathway are biologically or functionally 

correlated and interacting with each other, while genes in different pathways are 

uncorrelated. Non-markers are uncorrelated and modeled as one-dimensional zero-mean 

random Gaussian noise, with a total of 𝜂 features. 

2.3.2 The Hierarchical Multivariate Poisson Model 

The gene-expression levels in NGS data are measured by the number of reads that 

are mapped to the corresponding gene in the reference genome. Thus, NGS-type data 

values are discrete with non-negative integers. Several statistical models for NGS data 

based on the negative binomial model or Poisson distribution have been proposed [24], [

43], [48]. In this dissertation, the hierarchical multivariate Poisson model [12] is adopted. 

It assumes that the sequencing facility samples mRNA concentration through a Poisson 

process, and the expected number of reads is the mean of the Poisson distribution. Read 

count for a sample point i and the jth gene is 𝑋𝑖,𝑗. It is obtained by the generalized linear

model [81] for a given 𝑠𝑖:

𝑝(𝑋𝑖,𝑗|𝑠𝑖) ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑠𝑖 exp(𝜆𝑖,𝑗 + 𝜃𝑖,𝑗)), (2.8)

where 𝑠𝑖  denotes the sequencing depth for the i-th sample point in the model and is

randomly generated from a uniform distribution, U(α, β), where α > 0 and β > α. To 

generate count data for RNA-Seq reads, the hybrid Gaussian model is fed to the pipeline 

as 𝜆𝑖,𝑗, the j-th gene expression level in a sample point i. The value is perturbed by 𝜃𝑖,𝑗,

which reflects technical effects associated with the experiment and is drawn from a 
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Gaussian distribution, 

𝜃𝑖,𝑗 ~ 𝑁(0, |𝑚1 − 𝑚0|𝐶𝑂𝑉), (2.9)

where COV is the coefficient of variation. Once the NGS data are generated, the features 

are normalized in a way that each feature is zero mean and unit standard deviation across 

all the sample points. 

2.4 Implementation 

2.4.1 Simulation Procedure 

Figure 2.1 presents a general overview of the simulation employed herein. General 

implementation follows a similar simulation procedure proposed in Zhao et al [39]. 

(1) Set up a hybrid Gaussian model with 𝜐 marker features and 𝜂 non-markers to yield

𝐷 = 𝜐 + 𝜂 features. Find the Bayes feature set ℱ𝑏𝑎𝑦𝑒𝑠 of size 𝑑.

Figure 2.1 An overview of the simulation. Two different types of synthetic data are 

generated: (1) MVN; (2) NGS.  Datasets are generated from a multivariate Gaussian 

model and a hierarchical multivariate Poisson model. Subsequently, the datasets are fed 

to the same test modules: classification, error estimation, and feature-set ranking. 
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(2) Generate a large test set of independent data using the MVN model.

(3) For every feature set of size 𝑑, design an LDA classifier and compute its estimated

and test errors. Compute the test error 𝜀0,𝑀𝑉𝑁 for ℱ𝑏𝑎𝑦𝑒𝑠.

(4) Rank all feature sets by their estimated errors based on the training data and select

the top 𝑚 of them to form the MVN ranked list.

(5) Let 𝜀1,𝑀𝑉𝑁 be the lowest test error in the top 𝑚 list.

If 𝜀1,𝑀𝑉𝑁 − 𝜀0,𝑀𝑉𝑁 < 𝑐 ∙ 𝜀0,𝑀𝑉𝑁, set 𝑐𝑜𝑢𝑛𝑡𝑀𝑉𝑁 ∶= 𝑐𝑜𝑢𝑛𝑡𝑀𝑉𝑁 + 1.

(6) The MVN data generated from (1) and (2) are fed to the Poisson transformation

pipeline to obtain the NGS data.

(7) Repeat steps (3) through (5) for the NGS data. Use the same Bayes feature set ℱ𝑏𝑎𝑦𝑒𝑠

to compute the test error 𝜀0,𝑁𝐺𝑆 .  If 𝜀1,𝑁𝐺𝑆 − 𝜀0,𝑁𝐺𝑆 < 𝑐 ∙ 𝜀0,𝑁𝐺𝑆 , set 𝑐𝑜𝑢𝑛𝑡𝑁𝐺𝑆 ∶=

𝑐𝑜𝑢𝑛𝑡𝑁𝐺𝑆 + 1.

(8) Repeat steps (1) through (7) 𝑁  times to get ∆𝐷,𝑑
𝑛,𝑐

𝑀𝑉𝑁
(𝑚) =  𝑐𝑜𝑢𝑛𝑡𝑀𝑉𝑁/𝑁  and

∆𝐷,𝑑
𝑛,𝑐

𝑁𝐺𝑆
(𝑚) =  𝑐𝑜𝑢𝑛𝑡𝑁𝐺𝑆/𝑁.

(9) Compare MVN and NGS lists and obtain τ𝑀𝑉𝑁 and τ𝑁𝐺𝑆.

(10) Find the ranks of Bayes feature sets in the MVN and NGS lists. Denote them as

𝐵𝑀𝑉𝑁 and 𝐵𝑁𝐺𝑆, respectively.

2.4.2 Simulation Parameters 

RNA-Seq technology can provide different numbers of reads per sample, 

depending on many factors, such as quality of the sample, the desired coverage, sample 

multiplexing etc. In order to deal with this issue, a previous study [12] examined a variety 
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of ranges of the sequencing depth and NGS-read counts for real RNA-Seq experiments 

and the parameters 𝛼  and 𝛽  are chosen accordingly. Therefore, our selections for the 

model parameters reflect how real data behaves because they take into account a range of 

NGS-read counts one can expect from real data. Our study is model-based and we do not 

focus on the problems of inference or parameter estimation from data. Thus, we adopt the 

parameters’ ranges/values from the work by Ghaffari et al [12]. Parameters for the 

sequencing depth 𝑠𝑖 ~ 𝑈(𝛼, 𝛽) are set to 𝛼 = 9,  𝛽 = 11, and 𝐶𝑂𝑉 = 0.05; 𝑚0 = 0, 𝑚1 =

1 are used for the distribution of technical effects, 𝜃𝑖,𝑗. Simulation setups and the list of

parameters used for the multivariate Gaussian model are provided in Table 2.1. 

Experiment numbers in Table 2.1 correspond to the parameter setting of each experiment 

in Table 2.2, Table A.1 and Table A.2 in Appendix A. Absolute bound 𝑟  is used for 

comparisons between our results and those in Zhao et al [39]. Corresponding values 

Table 2.1 Model parameters for generating synthetic data. 

Exp 

No. 
𝐷 𝜐 𝑛 𝜎𝜇

2 𝜌 𝐵 𝑑 

1 {50,100,150} {5,10,20} 40 1 0.8 5 {2,3} 

2 150 10 {40,80,120} 1 0.8 5 2 

3 150 10 40 {0.5,1,2} 0.8 5 2 

4 150 10 40 1 {0.1,0.5,0.8} 5 2 

5 150 10 40 1 0.8 {2,5,10} 2 

6 

100 5 

40 1 0.8 5 2 200 10 

300 15 
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Table 2.2. Mean of 𝜀0 in the MVN and NGS list and relative differences between 𝜀0 and

𝜀1 with respect to 𝜀0.

Exp 

No. 
Parameters Ε[ε0,𝑀𝑉𝑁]

𝑐𝑀𝑉𝑁

(𝑟 = 0.03) 
Ε[ε0,𝑁𝐺𝑆]

𝑐𝑁𝐺𝑆

(𝑟 = 0.03) 

1 

( 𝑑 = 2 ) 

𝜐 = 5 

D = 50 0.2557 0.1173 0.2993 0.1002 

D = 100 0.2559 0.1172 0.2990 0.1003 

D = 150 0.2558 0.1173 0.2994 0.1002 

𝜐 = 10 

D = 50 0.2558 0.1173 0.2990 0.1003 

D = 100 0.2557 0.1173 0.2988 0.1004 

D = 150 0.2558 0.1173 0.2992 0.1003 

𝜐 = 20 

D = 50 0.2559 0.1172 0.2992 0.1003 

D = 100 0.2556 0.1174 0.2988 0.1004 

D = 150 0.2559 0.1173 0.2992 0.1003 

1 

( 𝑑 = 3 ) 

𝜐 = 5 

D = 50 0.2557 0.1173 0.2993 0.1002 

D = 100 0.2559 0.1172 0.2990 0.1003 

D = 150 0.2558 0.1173 0.2994 0.1002 

𝜐 = 10 

D = 50 0.2558 0.1173 0.2990 0.1003 

D = 100 0.2557 0.1173 0.2988 0.1004 

D = 150 0.2558 0.1173 0.2992 0.1003 

𝜐 = 20 

D = 50 0.2559 0.1172 0.2992 0.1003 

D = 100 0.2556 0.1174 0.2988 0.1004 

D = 150 0.2559 0.1173 0.2992 0.1003 

2 

𝑛, bresub 

40 0.2558 0.1173 0.2992 0.1003 

80 0.2498 0.1201 0.2956 0.1015 

120 0.2479 0.1210 0.2947 0.1018 

𝑛, loo 

40 0.2558 0.1173 0.2994 0.1002 

80 0.2497 0.1201 0.2958 0.1014 

120 0.2479 0.1210 0.2946 0.1018 

3 σ𝜇
2

0.5 0.1734 0.1731 0.2190 0.1370 

1 0.2558 0.1173 0.2992 0.1003 
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Table 2.2. Continued. 

Exp 

No. 
Parameters Ε[ε0,𝑀𝑉𝑁]

𝑐𝑀𝑉𝑁

(𝑟 = 0.03) 
Ε[ε0,𝑁𝐺𝑆]

𝑐𝑁𝐺𝑆

(𝑟 = 0.03) 

3 σ𝜇
2 2 0.3266 0.0919 0.3737 0.0803 

4 𝜌 

0.1 0.2557 0.1173 0.2995 0.1002 

0.5 0.2559 0.1172 0.2991 0.1003 

0.8 0.2558 0.1173 0.2992 0.1003 

5 𝐵 

2 0.2626 0.1142 0.3042 0.0986 

5 0.2558 0.1173 0.2992 0.1003 

10 0.2535 0.1184 0.2972 0.1009 

6 

          𝐷=100, 𝜐=5 0.2559 0.1172 0.2990 0.1003 

𝐷=200, 𝜐=10 0.2557 0.1173 0.2991 0.1003 

𝐷=300, 𝜐=15 0.2558 0.1173 0.2996 0.1001 

for the relative significance of the difference 𝑐 are provided in Table 2.2. Because there is 

no closed form to calculate the true errors of designed classifiers, large independent test 

sets are generated. When using independent test data, the Root Mean Square (RMS) 

between the true and estimated error is bounded above by 
1

2√𝑛𝑡𝑒𝑠𝑡
 [12]. Test sample of size 

𝑛𝑡𝑒𝑠𝑡 = 10,000 are generated and samples are divided equally between the two classes.

2.5 Results 

2.5.1 Synthetic data 

Effects of 𝐷, 𝜐, 𝑛, 𝜎𝜇
2, 𝜌, 𝐵, 𝑑 and proportion of 𝜐 to 𝐷 are studied.
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2.5.1.1 Effects of Error Estimators 

Previous literature shows that cross-validation methods, especially leave-one-out 

estimators, display large variance [82], [83]. This variance results in a widely dispersed 

deviation between the true and estimated errors of a classifier, thereby making cross-

validation unreliable for ranking feature sets in the small-sample setting. It has been shown 

that bolstering and resubstitution-based feature ranking outperform leave-one-out cross-

validation-based feature ranking for discovering top-performing feature sets for 

classification when using small samples [35]. Previous studies [2], [35]  are based on a 

Gaussian mixture model and microarray-based patient data. In this dissertation, we 

examine the effects of error estimators on the ranking of feature sets of RNA-Seq data. 

Two different error estimators, bolstered resubstitution (BRESUB) and leave-one-out 

(LOO), are used to sort the lists. Figure 2.2 indicates that the hit rate of finding a good 

feature set in the list sorted by bolstered resubstitution error estimators is higher than the 

Figure 2.2. Power curves for different error estimators and sample size 𝑛. solid: MVN, 

dashed: NGS, red: leave-one-out (LOO), blue: bolstered resubstitution (BRESUB). 
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success rate of the leave-one-out-based list. Figure 2.3(A) shows that both 𝜏𝑀𝑉𝑁,𝐿𝑂𝑂 and

𝜏𝑁𝐺𝑆,𝐿𝑂𝑂  are larger than 𝜏𝑀𝑉𝑁,𝐵𝑅𝐸𝑆𝑈𝐵  and 𝜏𝑁𝐺𝑆,𝐵𝑅𝐸𝑆𝑈𝐵 , respectively, which implies that

leave-one-out mixes up the orders more harshly than bolstered resubstitution. Moreover, 

Figure 2.3(B) shows that the ranks of Bayes feature sets in the leave-one-out-based list are 

larger than that of the bolstered resubstituion-based list. All of these results suggest that 

leave-one-out estimators perform poorly with RNA-Seq data, producing less accurate 

ranking orders compared to the list sorted by BRESUB error estimators. 

2.5.1.2 Effects of the Sample Size, 𝑛 

A larger sample size generally leads to better performance of classification and 

ranking feature sets. The results of NGS shown in Figure 2.2  and Figure 2.3 are in accord 

with this expectation. As sample size increases, ranking power curves for NGS are also 

Figure 2.3. Effects of different error estimators and sample size 𝑛 on (A) length of list 

extensions and (B) rank of a Bayes feature set.  solid: median, dashed: average, cyan: 

MVN, LOO, blue: MVN, BRESUB, pink: NGS, LOO, red: NGS, BRESUB. 
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elevated. For both types of data, monotonic decrease of extension length and Bayes rank 

in median are observed as sample size gets larger. 

2.5.1.3 Effects of the Total Number of Features 𝐷 and the Number of Marker Features 𝜐 

Figure 2.4 represents the effects of the total number D of features and the number 

𝜐 of marker features on the ranking power curves when the final number 𝑑 of selected 

features is 2. The ranking power curves for 𝑑 = 3 are provided in Figure 2.5. Zhao et al. 

Figure 2.4 Power curves for different D and 𝜐  when 𝑑=2. 
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[39] have shown that the power curves are lowered in the MVN model as the total number

of features increases. Figure 2.4 and 2.5 show analogous results in the RNA-Seq model. 

The plots also indicate that for a fixed value of 𝐷, the power increases as 𝜐 increases. This 

is not surprising because the prior information provided by the biologist becomes richer, 

containing more markers. Figure 2.6 illustrates the effects of increasing D and 𝜐 on 𝜏𝑀𝑉𝑁

and 𝜏𝑁𝐺𝑆. As D gets larger, a monotonic increase in median and average extension length

is observed in both models. In Figure 2.6(B) and 2.6(D), no obvious trend can be discerned 

Figure 2.5 Power curves for different D and 𝜐 when 𝑑=3. 
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Figure 2.6 Effects of different 𝐷 and 𝜐 on length of list extensions for 𝑑 = 2 are presented 

in (A) and (B). Graphs for 𝑑 = 3 are presented in (C) and (D).  solid: median, dashed: 

average, blue: MVN, red: NGS. 
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in terms of the mean, nor is there any consistency. However, the median extension length 

exhibits a slight increasing trend.  

Histograms of length of extensions and the rank of the Bayes feature set are illustrated 

in Figure 2.7. It is a skewed heavy-tailed distribution with the mean farther out in the long 

tail than the median. Because the mean is highly vulnerable to outliers, it should be 

interpreted with caution when extreme values are present. Focusing on the median values, 

which are less affected by outliers, an increasing trend of median extension length is 

exhibited as υ gets larger. This is because it becomes more competitive to rank at the top 

Figure 2.7 Histogram of length of list extensions and rank of a Bayes feature set. solid: 

median, dashed: average, blue: MVN, red: NGS. 
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Figure 2.8 Effects of different 𝐷 and 𝜐 on rank of a Bayes feature set for 𝑑 = 2 are shown 

in (A) and (B).  Graphs for 𝑑 = 3 are presented in (C) and (D).  solid: median, dashed: 

average, blue: MVN, red: NGS. 
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as more markers enter into the data and the one which occupies the top becomes more 

variable, thereby resulting in the increase of extension length to match two lists. The 

monotonic increase of median rank of Bayes feature pair is presented in Figure 2.8(B) and 

8(D), as 𝜐 increases. As more marker features are included, there are more feature pairs 

which perform as well as a Bayes feature pair. Therefore, the Bayes feature set is no longer 

a unique and distinguishing feature pair, and the multitude of marker features obscures the 

Bayes feature pairs. 

2.5.1.4 Effects of the Variance 𝜎𝜇
2 in the Marker Model

Figure 2.9(A) shows the effect of the variance in the marker model. Higher 

variance results in larger overlaps of the two distributions, which leads to degradation of 

classification performance and increasing difficulty of finding top-performing feature sets. 

Therefore, the success rates of both models decrease as variance increases. When 𝜎𝜇
2 = 

2.0, the power curve of the NGS model is higher than that of MVN. This does not 

necessarily mean that it is better to use the RNA-Seq model to detect a good feature set 

when the problem is difficult. A better interpretation is that mixing is so extensive that 

even the underlying gene concentrations are useless for finding a good feature set. Figure 

2.9(A) also shows that both extension length and rank of Bayes feature sets increase as 

variance increases. 

2.5.1.5 Effects of the Correlation 𝜌 in the Covariance Matrix 

Zhao et al. [39] have shown that a higher correlation makes it slightly harder to 
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find good features in the MVN model. Figure 2.9(B) indicates that the same applies to the 

RNA-Seq model. As 𝜌  increases, ranking power of both MVN and RNA-Seq models 

decreases. Curves for median extension length and the rank of Bayes feature sets are 

almost flat with respect to the correlation. 

Figure 2.9 Effects of (A) variance, 𝜎𝜇
2 (B) correlation, 𝜌 and (C) the number of blocks, 𝐵

on the ranking power, length of list extensions, and rank of a Bayes feature set. 
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2.5.1.6 Effects of the Number of Blocks 𝐵 in the Covariance Matrix 

Different blocks represent different metabolic/biologic pathways and as the 

number of blocks increases, genes may become spread among more pathways and may 

increase the power to find good features. Zhao et al. [39] showed that it is easier to find 

good features with more blocks. Figure 2.9(C)  demonstrates that the ranking power 

becomes higher as B increases in the RNA-Seq model. When there are only two blocks, 

RNA-Seq exhibits a higher success rate compared to the MVN model, but it is very 

Figure 2.10 Effects of increasing 𝐷 at the same rate 𝜐  increases on (A) the ranking power 

(B) length of list extensions and (C) rank of a Bayes feature set. Ratio of 𝜐 to 𝐷 remains

the same as 0.05.
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unlikely to have only two pathways in real data. Figure 2.9(C) shows decreasing extension 

length with larger B, which is consistent with the power curve. No specific trend is 

observed in the rank of the Bayes feature set with respect to B. 

2.5.1.7 Effects of Increasing 𝐷 at the Same Rate 𝜐 Increases 

To examine the effects of increasing 𝐷 at the same rate 𝜐 increases, the proportion 

of marker features in the data were fixed at 0.05 with the total number of features ranging 

from 100 to 300. Figure 2.10(A) shows that when the proportion 𝜐/𝐷 is kept constant, the 

power curves are relatively unchanged as the number of total features D increases. 

However, Figure 2.10(B) shows that the extension length and the rank of the Bayes feature 

sets increase under the same conditions, pointing to the increased difficulty of the problem 

as the number of total features increases. 

2.5.2 An example of feature-set ranking for a real data set 

We consider a real RNA-Seq dataset from a randomized, double-blind crossover 

intervention of flaxseed lignan extract and placebo [84]. Colonic mucosal biopsies from 

healthy participants are used to characterize the site-specific global gene-expression 

signatures associated with stromal versus epithelial tissue. The data provide insight into 

the gene expression landscape of the normal epithelium and stroma prior to the onset of 

intestinal tumorigenesis. This is noteworthy because the development of cancer is 

intimately linked to cross talk between cancer cells and the surrounding stromal cells [84]. 

The dataset consists of 29 epithelium and 30 stroma biopsies from the sigmoid colon. 
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Epithelium samples belong to class 0 and stroma samples are labeled as class 1. In total, 

960 intestinal genes were selected using prior biological knowledge [85]. Out of 960 genes, 

259 stromal genes and 9 epithelial genes were included which were shown to be highly 

expressed in stroma and epithelium, respectively [86], [87]. Repeated random 

subsampling holdout [88] method was employed on the dataset. Twenty samples were 

randomly selected and used for training and the remaining data samples were assigned to 

the test set. This process was repeated 10,000 times with different subsamples to improve 

the reliability of the holdout estimate [88]. The proportion of samples from each class was 

kept the same in both the training and test sets. For every feature set of size two, we 

designed an LDA classifier and computed its estimated and test errors. Bolstered 

resubstitution error estimators were used to sort the feature sets. As there is no analytical 

way to obtain a set of Bayes features for real data, we determined 𝜀0 empirically. Random

Figure 2.11 Power curves for a real dataset where 𝑛=59, 𝐷=960, 𝑑=2.  red: 𝑟=0.03, green: 

𝑟=0.05, black: 𝑟=0.07. 
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subsampling was repeated 10,000 times and the mean of the lowest test errors was taken 

as 𝜀0 (𝜀0 = 0.1892).

Figure 2.11 shows the ranking power for this dataset. The parameter 𝑟 = 0.03 ind

icates that we are interested in ranked lists of feature sets where the feature set with the 

smallest test error differs from 𝜀0 less than 15.9% of the 𝜀0. Typically, when a smaller 𝑟 is

employed, a short list may miss interesting gene sets worthy of consideration. Therefore, 

the list should be further extended to increase the probability of the existence of candidate 

genes that provide a good approximation of the Bayes features. It is also important to note 

that a longer list does not always increase the number of candidate genes. As shown in 

Zhao et al. [39], some genes repeatedly appear in the list combined with other genes. 

Ranking power of the real data for large 𝑚 is provided in Appendix A.  

2.6 Conclusion 

This section examines the ranking performance of feature sets derived from a 

model of RNA-Seq data and compares it to that of a multivariate normal model of gene 

concentrations. The results demonstrate that the general trends of the parameter effects on 

the ranking power of underlying gene concentrations are preserved in the RNA-Seq data; 

however, the power of finding a good feature set becomes weaker and the data become 

less discriminative when gene concentrations are transformed by the sequencing machine. 

Moreover, the consistency between the ranked lists of feature sets based on the MVN and 

the NGS data is poor, which indicates unreliable classification performance in the case of 

RNA-Seq data. 



3. QUANTIFYING THE NOTIONS OF CANALIZING AND MASTER GENES

IN A GENE REGULATORY NETWORK – A BOOLEAN NETWORK 

MODELING PERSPECTIVE12

3.1 Introduction 

The concept of genes that can constrain, or canalize, a biological system to a 

specific behavior was first proposed by C. Waddington in 1942 [62]. Waddington 

proposed the existence of genes that can produce reliable developmental effects against 

genetic mutations or environmental changes during evolution [62], [89]. Lehner 

investigated Waddington’s intuition and stated that canalizing genes are hub genes that 

present similar robustness when faced with environmental, stochastic and genetic 

perturbations [61]. The term canalizing gene has been used by Martins et al. [60] to refer 

to genes that possess broad regulatory power, and their action sweeps across a wide swath 

of processes for which the full set of affected genes are not highly correlated under normal 

conditions. Zhao et al. [56] made a clear distinction between master genes and canalizing 

genes. Both master and canalizing genes exert a strong control over many downstream 

gene pathways; however, canalizing genes have an additional ability of taking over the 

control and overriding other regulatory instructions. In this work, canalizing genes refer 

1 Part of this section is reprinted with permission from “Quantifying the notions of canalizing and 

master genes in a gene regulatory network—a Boolean network modeling perspective” by E. Kim, 

I. Ivanov, and E. R. Dougherty, Bioinformatics, vol. 35, no. 4, pp. 643–649, Jul. 2018. Copyright 
2018 Oxford University Press.
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to genes that are not highly active under normal conditions, but are capable of taking over 

the control of many pathways and exerting broad regulatory power upon such activation. 

Canalizing genes produce adaptive and optimal reactions to environmental, stochastic and 

genetic perturbations and they are essential in a complex system so it can achieve 

biological robustness and buffer itself from the effects of random alterations or operating 

errors. We also suggest that the currently adopted definitions of canalizing and master 

genes could be modified so that a particular gene does not have to be exclusively a master 

or a canalizing gene. It is important to emphasize that the notions of canalizing and master 

gene are relative. Any gene possesses some degree of canalizing power over its 

subnetwork. The notion of canalizing gene can only be defined relative to other genes and 

the notation 𝑐,𝑚𝑖  and 𝑠𝑖  used in this Section for a canalizing, master and slave gene,

respectively, is used with this understanding. 

The principle of a canalizing gene is similar to the concept of an interrupt in 

computer architecture. In systems programming, an interrupt is a mechanism by which the 

hardware or software alerts the processor to a high-priority condition indicating an event 

that needs immediate attention and requests the processor to stop the normal processing 

or current code it is executing and perform a specific action [90]. The processor responds 

by suspending its current activities and jumping to a separate piece of code to deal with 

the event. Similar to an interrupt handler or an interrupt service routine (ISR) that is 

invoked by a special instruction or by an exceptional condition and puts the program into 

a different execution context [91], the activation of a canalizing gene occurs in response 

to diverse stress signals or situations where special attention is needed and results in a 
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regulatory mode switch. There are multiple opportunities for canalizing behavior to be 

observed along the signal-transducing pathway that governs central cellular functions such 

as cell-cycle, survival, apoptosis and metabolism [60]. Early observations of canalization 

along the mitogenic pathway involved dual specificity protein phosphatase 1 (DUSP1) 

and Ras [92]. DUSP1 antagonizes the activity of the p38 mitogen activated kinase, 

MAPK1 (ERK), which is a central component of the pathway by which extracellular 

signal-regulated kinases send mitogenic signals [93]; thus, this gene is canalizing in its 

phosphorylated state, and DUSP1 is canalizing when it dephosphorylates MAPK1 [60].  

Another important instance of canalization involves the tumor protein 53 (p53) gene with 

regard to stresses to the genome [63]. While canalizing genes can be extremely potent, 

their potency is often obscured by other features of the regulatory apparatus operating in 

the particular cell where control is attempted [60]. 

Martins et al. [60] proposed Intrinsically Multivariate Predictive (IMP) scores, 

which quantify the synergistic prediction effect of multiple genes, and provided evidence 

that IMP could potentially be used as a practical tool for discovery of canalizing genes. 

Chen et al. [94] developed a statistical tool for this inference problem based on the IMP 

score by providing a test for a nonzero IMP score between a Boolean target and its 

respective Boolean predictors. Rejection of the null hypothesis of zero IMP score at a 

given level of statistical significance gives evidence for the presence of IMP properties. 

Zhao et al. [56] defined canalizing power in a tree model in the context of Bayesian 

networks. The canalizing power of a gene in the study by Zhao and co-authors measures 

the total increase in prediction power using pairs of predictors over the maximum 
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prediction power of the respective single predictors, which is equivalently the sum of the 

IMP scores from all genes in the model. The paper concludes that target genes showing 

large IMP scores with multiple predictor sets tend to be canalizing. However, when single 

predictors provide perfect predictions for a canalizing gene, the sum of the IMP scores 

becomes zero, leading to a paradoxical result: the canalizing power is zero. Furthermore, 

a key characteristic of a canalizing gene is its ability to override other regulatory 

instructions and none of the previously mentioned papers considers terms associated with 

the regulation power of other controlling genes that lose control by the activation of the 

canalizing gene. Although Zhao et al. [56] suggested a formula to measure the canalizing 

power of a gene, their definition fails to capture the incapacitating trait of canalizing genes. 

Therefore, we introduce a novel definition of the canalizing power that can quantitatively 

characterize the power of a canalizing gene based on two important characteristics: (i) It 

has to be sensitive to the strength of the influence of the canalizing gene on downstream 

genes; (ii) It should be able to detect how much the canalizing gene incapacitates other 

regulatory instructions upon its activation. The novelty of this chapter lies in the 

introduction of the notion of incapacitating power and development of a mathematical 

formula for canalizing power in terms of regulation power and incapacitating power. 

This chapter is organized as follows. In Section 3.2, we present the Boolean 

Networks with random gene perturbations (BNps) as a model for gene regulatory networks 

and the concept of CoD. In Section 3.3, we define the regulation power, incapacitating 

power and canalizing power. In Section 3.4, we apply the novel definition of canalizing 

power to both synthetic data and real gene expression data to evaluate effectiveness of the 
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proposed measurements in quantitatively characterizing canalizing genes. Finally, Section 

3.5 gives concluding remarks. 

3.2 Background 

In this section, we provide the basic definitions and notations concerning Boolean 

Networks with random gene perturbations (BNps), and then review the notion of CoD. We 

restrict ourselves to the binary case and note that the methodology presented here 

presupposes that gene expression has been preprocessed and quantized into binary values. 

There are several methods that accomplish this [95], [96]. We do not address these 

methods in this dissertation, but they are naturally central to the accuracy of the results. 

3.2.1 Boolean Networks with Gene Perturbations as a Model for Gene Regulatory 

Networks 

A Boolean network 𝐺(𝑉, 𝒇)  is defined by a set of binary-valued nodes 𝑉 =

{𝑥1,⋯ , 𝑥𝑛} and a corresponding list of Boolean functions 𝒇 = (𝑓1, ⋯ , 𝑓𝑛). Each node 𝑥𝑖

represents the state (expression) of gene 𝑖, where 𝑥𝑖 = 1 means that gene 𝑖 is expressed

and 𝑥𝑖 = 0  means it is not expressed. 𝒇  represents the rules of regulatory interactions

between genes. To every node 𝑥𝑖 , a Boolean function 𝑓𝑖 ∶ {0, 1}𝑛 → {0, 1} determining the

value of gene 𝑥𝑖  is assigned. It is known that genes may become either activated or

inhibited due to external stimuli. Moreover, noise could also affect the Boolean 

relationships. To capture this uncertainty, we consider a BN with perturbation, which has 

been discussed in [97]. A Boolean additive-noise model with a random perturbation vector 
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𝜸 ∈ {0, 1}𝑛 is given by

𝑥𝑖 = 𝑓𝑖(𝑥1 ⋯𝑥𝑛) ⨁ 𝛾𝑖 (3.1)

where 𝑓𝑖  is a Boolean logic function of gene 𝑥𝑖 , 𝛾𝑖   is the 𝑖 th component of 𝜸  and ⨁  is

modulo-2 addition. 𝜸 does not need to be independent and identically distributed (i.i.d.) 

and we suppose that 𝑃{𝛾𝑖 = 1} = 𝑝𝑖 . Then, equation (3.1) states that when 𝛾𝑖 = 1, the 𝑖th

gene is flipped with probability 𝑝𝑖 because of the noise, independently of other genes;

otherwise it remains unperturbed. If 𝑝𝑖 = 0  for all 𝑖 , then the model is reduced to a

deterministic Boolean Network and the standard network transition function 𝒇 determines 

the evolution of the model. If  𝑝𝑖 > 0 , then with a probability 1 − ∏ (1 − 𝑝𝑖)
𝑛
𝑖=1  , the

current network state will change due to at least one random bit perturbation.  

The randomness of this particular network model is encoded by the selection of 

the initial starting state of the network and also by the gene perturbation probabilities. In 

order to have a useful probabilistic description of this dynamical system, it is necessary to 

consider the joint probabilities of all of the genes over time. The dynamics of BNs can be 

modeled by Markov chains, consisting of 2𝑛  states with the 2𝑛 × 2𝑛  state transition

matrix 𝑃 = (Pr(𝒔, 𝒔′))𝒔,𝒔′ where Pr(𝒔, 𝒔′) is the probability of the chain undergoing the

transition from 𝒔 to 𝒔′. The perturbation probability makes the chain ergodic and therefore

it possesses a steady-state probability distribution 𝜋  defined by 𝜋𝑇𝑃 = 𝜋𝑇  , where 𝑇

denotes transpose [98]. 
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3.2.2 Coefficient of Determination 

Let 𝑌 ∈ {0, 1} be a binary target random variable and 𝑿 ∈ {0, 1}𝜂  be a vector

composed of 𝜂 binary predictor random variables. The CoD for 𝑿 predicting 𝑌 is defined 

by  

𝐶𝑜𝐷𝑿(𝑌) =
𝜀0(𝑌) − 𝜺∘(𝑿, 𝑌)

𝜀0(𝑌)
(3.2) 

where 𝜀0(𝑌) = 𝑚𝑖𝑛{𝑃(𝑌 = 0), 𝑃(𝑌 = 1)}  is the optimal error of predicting 𝑌  in the

absence of observations and  

𝜺∘(𝑿, 𝑌) = ∑ 𝑚𝑖𝑛{𝑃(𝑌 = 0, 𝑿 = 𝒙), 𝑃(𝑌 = 1, 𝑿 = 𝒙)}

𝒙∈{0,1}𝜂

(3.3) 

is the optimal error upon observation of 𝑿 [99]. By convention, one assumes 0/0=1 in the 

above definition because zero prediction error indicates strong interaction between 

discrete predictor and target variable. The CoD measures the relative decrease in the 

classification/prediction error when optimally predicting a random variable 𝑌  using 

random vector 𝑿 as opposed to optimally predicting 𝑌 based only on its own statistics. 

The CoD measures the inherent strength of the nonlinear interaction between a target gene 

and its predictors and is therefore more appropriate to genomics than the correlation 

coefficient, which only measures linear interaction. If 𝐶𝑜𝐷𝑿(𝑌) = 0 , there is no

association between 𝑿  and 𝑌 , whereas if 𝐶𝑜𝐷𝑿(𝑌) = 1 , then 𝑿  and 𝑌  are

deterministically related. The CoD measures nonlinear association (increase in prediction 

power), not causality. Moreover, the CoD is often used to measure the strength of 

downstream genes predicting upstream genes. The intuition behind this interpretation is 
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that, if gene 𝑌 regulates genes 𝑋1 and 𝑋2, the observation of 𝑋1 and 𝑋2 should allow one

to predict the behavior of 𝑌. Moreover, the stronger the control by 𝑌, the stronger is the 

prediction based on 𝑋1 and 𝑋2.

3.3 Definition of Canalizing Power 

3.3.1 Regulation Power 

In [56], the mean CoD value of a gene was defined to represent its regulatory 

importance in the model. Specifically, the mean CoD of a node 𝑌  using all single 

predictors of 𝑿 = (𝑋1,⋯𝑋𝜂) is given by

𝐶𝑜𝐷𝑿,1(𝑌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
∑ 𝐶𝑜𝐷𝑋𝑖

(𝑌)𝜂
𝑖=1

𝜂
(3.4) 

Similarly, the mean CoD of a node 𝑌 using all sets of double predictors is given by 

𝐶𝑜𝐷𝑿,2(𝑌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
∑ 𝐶𝑜𝐷𝑋𝑖,𝑋𝑗

(𝑌)1≤𝑖<𝑗≤𝜂

𝐶2𝜂

(3.5) 

A generalized definition for the mean CoD using 𝑑 predictors is given by 

𝐶𝑜𝐷𝑿,𝑑(𝑌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
∑ 𝐶𝑜𝐷

𝑿𝑑
(𝑖) (𝑌)

𝐶𝑑𝜂

𝑖=1

𝐶𝑑𝜂

= 𝑅𝑃𝑿,𝑑(𝑌) (3.6) 

where 𝑿𝑑
(𝑖)

∈ ℝ𝑑 is the 𝑖th 𝑑-dimensional vector composed of the elements of 𝑿 when all

possible combinations of size 𝑑 from the array 𝑿 are lexicographically ordered for 𝑖 =

1,⋯ , 𝐶𝑑𝜂  (e.g., 𝑿3
(1)

= (𝑋1, 𝑋2, 𝑋3), 𝑿3
(2)

= (𝑋1, 𝑋2, 𝑋4),⋯ ,𝑿3
(20)

= (𝑋4, 𝑋5, 𝑋6)  when

𝜂=6 and 𝑑=3). Equation (3.6) gives the average strength of predicting 𝑌 by using all 
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possible combinations of size 𝑑 formed by the genes in the network. This general mean 

CoD measures the influence of the gene 𝑌 on the overall network and therefore we call it 

the “𝑑-regulation power” of the gene 𝑌 in the network when 𝑑 predictors are used for 

measurements and denote it by 𝑅𝑃𝑿,𝑑(𝑌).

3.3.2 Incapacitating and Enhancing Power 

In this section, we assume that 𝑆 = {𝑠1,⋯ 𝑠𝛼} is a set of regulated/slave genes.

Furthermore, suppose that there is a master gene 𝑚𝑖 which controls the slave genes in a

regular network regime and there is a canalizing gene 𝑐 that is capable of overriding the 

instructions from the master genes. Intuitively, the regulation power of 𝑚𝑖  could

experience significant changes depending on the activation of 𝑐. The conditional CoD for 

𝑆 predicting 𝑚𝑖 given that 𝑐 is on is defined by

 𝐶𝑂𝐷𝑆(𝑚𝑖|𝑐 = 1) =
𝜀0(𝑚𝑖|𝑐 = 1) − 𝜺∘(𝑆,𝑚𝑖|𝑐 = 1)

𝜀0(𝑚𝑖|𝑐 = 1)
(3.7) 

where 𝜀0(𝑚𝑖|𝑐 = 1) is the error of the best predictor of 𝑚𝑖 in the absence of observations

under the condition that 𝑐  is turned on and 𝜺∘(𝑆,𝑚𝑖|𝑐 = 1)  is the error of the best

predictor of 𝑚𝑖 based on the observation of 𝑆 when 𝑐 is on. Change in control of 𝑆 by 𝑚𝑖

relative to the activity of 𝑐 is defined by  

∆𝐶𝑜𝐷𝑆(𝑚𝑖|𝑐) = 𝐶𝑜𝐷𝑆(𝑚𝑖|𝑐 = 0) − 𝐶𝑜𝐷𝑆(𝑚𝑖|𝑐 = 1). (3.8)

A positive value of ∆𝐶𝑜𝐷𝑆(𝑚𝑖|𝑐) indicates that 𝑐 incapapcitates 𝑚𝑖 as 𝑐 is turned on. We

call this value the incapacitating power (IP) of 𝑐 relative to the regulation of 𝑆 by 𝑚𝑖. A

negative value of ∆𝐶𝑜𝐷𝑆(𝑚𝑖|𝑐) means that there is an increase in control of 𝑚𝑖 over 𝑆 as
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𝑐 is turned on and the magnitude is referred to as the enhancing power (EP) of 𝑐 with 

respect to 𝑚𝑖 upon the activation of 𝑐. This can be written as

|∆𝐶𝑜𝐷𝑆(𝑚𝑖|𝑐)| = { 
𝐼𝑃𝑆(𝑚𝑖|𝑐)  𝑖𝑓   ∆𝐶𝑜𝐷𝑆(𝑚𝑖|𝑐) > 0

𝐸𝑃𝑆(𝑚𝑖|𝑐)  𝑖𝑓   ∆𝐶𝑜𝐷𝑆(𝑚𝑖|𝑐) < 0
(3.9) 

Equation (3.8) can be generalized to (3.10) if one wants to consider all possible subsets of 

size 𝑑 ≤ 𝛼 of predictors in 𝑆 being used: 

 ∆𝐶𝑜𝐷𝑆,𝑑(𝑚𝑖|𝑐) =
∑ 𝐶𝑜𝐷

𝒗𝑑
(𝑗)(𝑚𝑖|𝑐 = 0) − 𝐶𝑜𝐷

𝒗𝑑
(𝑗)(𝑚𝑖|𝑐 = 1)𝐶𝑑𝛼

𝑗=1

𝐶𝑑𝛼

(3.10) 

where 𝒗𝑑
(𝑗)

∈ ℝ𝑑 is 𝑗th 𝑑-dimensional vector consisting of the entries of 𝑆 = {𝑠1,⋯ 𝑠𝛼}

when all possible combinations of size 𝑑 from 𝑆 are lexicographically ordered for 𝑗 =

1,⋯ , 𝐶𝑑𝛼 .

3.3.3 Canalizing Power 

In this section, we define the canalizing power of the gene 𝑐 , 𝐶𝑃𝑆∪𝑀(𝑐), as a

quantitative measure of canalization potential of a gene 𝑐 relative to the set of genes 𝑆 ∪

𝑀 = {𝑠1,⋯ , 𝑠𝛼 ,𝑚1, ⋯ ,𝑚𝛽},  where 𝑆 = {𝑠1,⋯ , 𝑠𝛼}  and 𝑀 = {𝑚1,⋯ ,𝑚𝛽}  are sets of

slave genes and master genes, respectively. The canalizing power of gene 𝑐 is expressed 

in terms of the regulation power and incapacitating power of 𝑐. This follows from the 

intuition that canalizing power should be quantified by the control of a gene 𝑐 on the 

overall network and the extent of control that the gene 𝑐 takes over from master genes 

when 𝑐 is activated, which is equivalent to reduction of the control of the master genes 𝑀 

due to gene 𝑐. Thus, the canalizing power of gene 𝑐 is given by 
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𝐶𝑃𝑆∪𝑀,𝑑(𝑐) = 𝑅𝑃𝑆∪𝑀,𝑑(𝑐) + ∑ 𝐼𝑃𝑆,𝑑(𝑚𝑖|𝑐)

𝑖

 

= 𝑅𝑃𝑆∪𝑀,𝑑(𝑐) + ∑∆𝐶𝑜𝐷𝑆,𝑑(𝑚𝑖|𝑐) × 1[𝐶𝑜𝐷𝑆,𝑑(𝑚𝑖|𝑐=0)−𝐶𝑜𝐷𝑆,𝑑(𝑚𝑖|𝑐=1)>0]

𝑖

(3.11) 

where 1[⋅] is an indicator function. Note that the summation is over only those master 

genes that have been incapacitated by the activation of 𝑐. 

3.3.4 Applications 

Consider a network consisting of 𝑛 genes and assume that it has a canalizing gene 

and one is interested in detecting it. One possible approach to do this is to sort out all of 

the controlling genes which could be either a master gene or a canalizing gene by 

computing the mean CoD because both master and canalizing genes should exhibit high 

regulation power. Hypothesis testing based on user-selectable thresholds or statistical 

tools presented in [94], [100] can be also used for picking out controlling genes. Suppose 

that we constitute a set of controlling genes 𝑍 = {𝑧1,⋯ , 𝑧𝑎}  and slave genes 𝑆 =

{𝑠1,⋯ , 𝑠𝑏}, where 𝑛 = 𝑎 + 𝑏. Furthermore, let 𝑍−𝑗 = 𝑍\{𝑧𝑗} = {𝑧1,⋯ , 𝑧𝑗−1, 𝑧𝑗+1 ⋯ , 𝑧𝑎}

be the set 𝑍 without the element 𝑧𝑗 . The canalizing power of 𝑧𝑗 is

𝐶𝑃𝑍−𝑗∪𝑆,𝑑(𝑧𝑗) = 𝑅𝑃𝑍−𝑗∪𝑆,𝑑(𝑧𝑗) + ∑𝐼𝑃𝑆,𝑑(𝑧𝑘|𝑧𝑗)

𝑘≠𝑗

= 𝑅𝑃𝑍−𝑗∪𝑆,𝑑(𝑧𝑗) + ∑ ∆𝐶𝑜𝐷𝑆,𝑑(𝑧𝑘|𝑧𝑗)

𝑘≠𝑗

× 1[𝐶𝑜𝐷𝑆,𝑑(𝑧𝑘|𝑧𝑗=0)−𝐶𝑜𝐷𝑆,𝑑(𝑧𝑘|𝑧𝑗=1)>0]. (3.12) 
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By taking turns, compute the canalizing power for each of the gene in the set of controlling 

genes 𝑍 . The gene 𝑧𝑖∗  possessing the maximum canalizing power is the most likely

candidate for the canalizing gene with respect to our model assumptions, where 

𝑖∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗∈1,⋯,𝑎

𝐶𝑃𝑍−𝑗∪𝑆,𝑑(𝑧𝑗)

 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗∈1,⋯,𝑎

[𝑅𝑃𝑍−𝑗∪𝑆,𝑑(𝑧𝑗) + ∑𝐼𝑃𝑆,𝑑(𝑧𝑘|𝑧𝑗)

𝑘≠𝑗

] (3.13) 

Since the power of incapacitation is a key attribute of canalizing genes which can be used 

to distinguish canalizing genes from master genes, only the second term in (3.13) can be 

utilized for a fast approximate search. Thus, 

𝑖∗ ≈ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗∈1,⋯,𝑎

∑𝐼𝑃𝑆,𝑑(𝑧𝑘|𝑧𝑗)

𝑘≠𝑗

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗∈1,⋯,𝑎

∑∆𝐶𝑜𝐷𝑆,𝑑(𝑧𝑘|𝑧𝑗) × 1[𝐶𝑜𝐷𝑆,𝑑(𝑧𝑘|𝑧𝑗=0)−𝐶𝑜𝐷𝑆,𝑑(𝑧𝑘|𝑧𝑗=1)>0].

𝑘≠𝑗

(3.14) 

3.4 Results 

In this section, we illustrate the application of canalizing power in a number of 

experiments using both synthetic data and real data sets.  

3.4.1 Synthetic Data 

We generate a synthetic BN with 𝑛=10 genes as shown in Figure 3.1 which is 

composed of one canalizing gene 𝐶, two master genes 𝑀1 and 𝑀2 and three levels of slave
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genes 𝑆11, ⋯ 𝑆32. Regulatory influences on downstream genes are transferred between

master genes and the canalizing gene depending on the activity of 𝐶 . Thus, Boolean 

functions that govern the activity of downstream genes are designed to differ according to 

the expression of the canalizing gene 𝐶 and therefore, the canalizing gene is embedded in 

the network by these Boolean rules. When there is no noise, the system transitions in 

accordance with its structural rules as defined by the Boolean functions listed in Table 3.1. 

The regulation power, incapacitating power and canalizing power of controlling genes are 

measured at each time point along the network evolution under various settings of the 

model parameters. Each target is predicted by 𝑑 = 3 predictors. Given the network, we 

consider four different simulation scenarios: 1) no gene is perturbed, 2) only one specific 

gene is perturbed while other genes are noiseless, 3) all genes are perturbed with equal 

probability  and 4) all of the genes are susceptible to noise where the perturbation 

probability for each gene is randomly generated from a beta distribution. Since the 

Figure 3.1 A synthetic BN with 𝑛=10 genes which is composed of one canalizing gene 𝐶, 

two master genes 𝑀1 and 𝑀2 and three levels of slave genes 𝑆11,⋯ 𝑆32. Upstream genes

𝐶 , 𝑀1  and 𝑀2  regulate downstream genes and downstream genes provide feedback 

signals to the upregulators. 
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behavior of the network depends not only on the perturbation probabilities but also on the 

initial state distribution, we compute the average RP, IP and CP over ten thousand random 

generations of its initial joint probability distribution, 𝐷0.

In the first case, no gene is perturbed and we plot the mean RP, IP and CP measured 

at each time step averaged over 10,000 random starting joint probability distributions. 

Figure 3.2(A) shows that the mean regulation power of 𝐶 is similar to or even less than 

that of 𝑀1, whereas incapacitating power is exhibited only for the canalizing gene. This

leads to higher CP of 𝐶, which indicates that the incapacitating power is a key attribute of 

canalizing genes that can be used to distinguish canalizing genes from other controlling 

genes.  

Table 3.1 Boolean functions of genes in the synthetic BN, where the symbols ∨, ∧ 

and ⨁ denote the Boolean disjunction, conjunction and exclusive-OR, respectively. 

Boolean Expression 
𝐶 

Inactivated 

𝐶 

Activated 

Controlling Genes 

𝐶 𝑆11⨁𝑆12 

𝑀1 𝑆22 ∧ (𝑆31
̅̅ ̅̅ ⨁𝑆32)

𝑀2 𝑀2 ∧ 𝑆11 ∧ 𝑆32 

Level 1 

𝑆11 𝐶 ∨ 𝑀1 ∨ 𝑀2 𝑀1 ∨ 𝑀2 𝐶 

𝑆12 𝐶̅ ∧ 𝑀2 𝑀2 𝐶̅ 

𝑆13 𝐶 ∨(𝑀1⨁𝑀2) 𝑀1⨁𝑀2 𝐶 

Level 2 

𝑆21 𝑆11 ∧ 𝑆12 ∨ 𝐶̅ ∧ 𝑀1 𝑀1 ∨ 𝑀2 𝐶̅ 

𝑆22 𝑆11 ∨ 𝑆12 ∧ 𝑆13
̅̅ ̅̅ 𝑀1 ∨ 𝑀2 𝐶 

Level 3 
𝑆31 𝑆21 ∧ 𝑆22 𝑀1 ∨ 𝑀2 𝐶̅ 

𝑆32 𝑆21⨁𝑆22 0 𝐶 
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Figure 3.2 Mean regulation power, incapacitating power and canalizing power over time 

(A) when no gene is perturbed. (B) A particular controlling gene is perturbed with 𝑃𝐶 =
0.1 and (C) 𝑃𝑀1

= 0.1. (D) Effects of noise in the expression of downstream genes on

mean RP, IP and CP when 𝑃𝑆12
= 0.1 and (E) 𝑃𝑆22

= 0.1. All genes are perturbed with the 

same probability (F) 𝑃 = 0.01  and (G) 𝑃 = 0.1.  (H) All genes are perturbed with

different probabilities which are randomly generated from 𝑏𝑒𝑡𝑎(2,200) distribution.
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The results for the second case where only one specific controlling gene is 

perturbed are presented in Figure 3.2(B) and 3.2(C). In Figure 3.2(B), the canalizing gene 

is perturbed with a probability 𝑃𝐶 = 0.1 and other genes are not perturbed at all. Presence

of noise in the canalizing gene corrupts its gene expression resulting in its lower IP, which 

negatively impacts its canalizing power. A case where only 𝑀1  is perturbed with a

probability 𝑃𝑀1
=  0.1 is shown in Figure 3.2(C). In concordance with intuition, RP and

IP of the canalizing gene is hardly impacted which does not compromise its predominance 

in CP. Effects of noise imposed on each of the downstream genes 𝑆12  and 𝑆22  with

perturbation probabilities 𝑃𝑆12
= 0.1 and 𝑃𝑆22

= 0.1 are presented in Figure 3.2(D) and

3.2(E), respectively. 𝑆12  is given as an input to 𝐶  and therefore, IP of 𝐶  deteriorates

substantially which makes CP of 𝐶  contiguous to that of 𝑀1  across the timeline when

𝑃𝑆12
= 0.1. 𝑆22  provides a feedback signal to the master gene 𝑀1 , thus, the RP of 𝑀1

dwindles when 𝑃𝑆22
= 0.1 as illustrated in Figure 3.2(E). While there is little noticeable

distinction in regulation power between 𝐶 and 𝑀1, IP of the canalizing gene is remarkably

higher in comparison to the rest of controlling genes, resulting in CP of 𝐶 being greater 

than 𝑀1 and 𝑀2.

For the next group of experiments, all of the genes are equally perturbed. Figure 

3.2(F) shows that when the common perturbation probability is relatively small, 𝑃 = 0.01, 

𝐶 experiences a decrease in its IP and CP. However, it still remains the gene with the 

highest canalizing potential in the network. When the perturbation probability is increased 

to  𝑃 = 0.1, IP of 𝐶 is virtually nonexistent and mean canalizing power of 𝐶 has fallen 
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below 0.18 as depicted in Figure 3.2(G). This suggests that the amount of noise in the 

regulatory network could negatively affect the canalizing potential of certain genes.  

For the final group of simulation experiments, all genes are perturbed with 

different probabilities. The beta distribution, which is defined on the interval [0,1], can 

represent all the possible values of a probability and it is widely used as a probability 

distribution of probabilities [101]. The perturbation probability for each gene is randomly 

generated from a beta distribution with two parameters α = 2, 𝛽 = 200, which is a right-

skewed distribution with mean 0.0099 to introduce a moderately small perturbation. The 

results are displayed in Figure 3.2(H). When the entire network is exposed to such type of 

random noise, RP of 𝑀1 decreases over time and while the canalizing gene 𝐶 remains the

most potent canalizer in the network despite its diminished IP. Boxplots of incapacitating 

power of controlling genes measured at 𝑡 =14 are shown in Figure 3.3 and the first boxplot 

represents a decrease in control of 𝑀1  over downstream genes as 𝐶  is turned on. The

Figure 3.3 Boxplots of IP and CP of upstream genes. The label 𝑀1|𝐶 on the horizontal 

axis of the left panel represents that the first boxplot indicates a decrease in control of 𝑀1

over downstream genes as 𝐶 is turned on. The boxplots are based on the data measured at 

𝑡 = 14 and generated from random starting joint probability distributions. 
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boxplots are based on the 10,000 samples which are generated from random starting joint 

probability distributions under the same experimental conditions as used for Figure 

3.2(H). The expected canalizing power of 𝐶 is clearly higher than the CP of the rest of the 

controllers in the network: 𝐸[𝐶𝑃𝐶] = 0.483,  𝐸[𝐶𝑃𝑀1
] = 0.053,  𝐸[𝐶𝑃𝑀2

] = 0.005.

3.4.2 Real Data 

In this section, the proposed definition of the canalizing power is applied to a real 

data set from a study on ionizing radiaiton (IR) responsive genes in [102] to assess the 

usefulness of our quantification in characterizing a canalizing gene. Note that our goal is 

not to discover new canalizing genes, but rather to illustrate the potential of our 

measurement on well-known canalizing genes. The data set consists of 12 genes under 

three conditions (i.e., IR, MMS, UV) in 30 cell lines of both p53 proficient and p53 

deficient cells. The data are ternary, indicating up-regulated (+1), down-regulated (-1), or 

no-change (0) status. Here we map this to binary expressions using the following rules: 

change (1), for either up-regulated or down-regulated genes, and no-change (0). 

Additionally, we consider the three binary conditions (IR, MMS, and UV) as possible 

predictive factors, for a total of 15 Boolean variables in the BN model of this data set. We 

then apply the definitions of regulation power, incapacitating power and canalizing power 

outlined in the previous section. Figure 3.4 shows a bar chart with the canalizing power of 

each gene when triple predictors are used (𝑑 = 3). It is stacked to display the regulation 

power and incapacitating power of each gene. p53 turns out to be the most powerful 

canalizing gene in the data set. This is in accordance with the known fact that p53 is kept 
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at a low level/dephosphorylated in unstressed cells and becomes significantly 

activated/phosphorylated in response to environmental stresses like UV, IR and oxidative 

stress, leading to a quick accumulation of p53 in stressed cells [103]. 

3.5 Discussion 

It is a well-established notion in biology that canalizing genes possess broad 

regulatory power, and can enforce broad corrective actions. Canalizing genes can be 

extremely potent not only because they produce optimal reactions to operating errors and 

external stimuli, but also because they don’t act alone. Canalizing genes are more like 

master switches that set in motion a cascade of regulatory events that have huge impacts 

on downstream genes for the sake of driving the system to a desired condition. Discovering 

such potential drug targets that affect the disease trajectories is a strong step toward 

significant therapeutic benefits. From the perspective of optimal control, this is viewed as 

Figure 3.4 A stacked bar chart of CP for each gene in the real dataset. The height of the 

black and gray bar segments represent contributions of RP and IP to CP, respectively. 
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obtaining the best estimates of inputs which are most probable to elicit certain behavior of 

the network. However, the detection of these genes is circumscribed by their particular 

behavior. Under normal cell conditions, canalizing genes are not active and they are turned 

on only when cells encounter unfavorable situation. p53, one of the most intensively 

studied tumor suppressor genes, best describes this situation in which it is found at very 

low levels in normal cells while it is frequently observed in its phosphorylated state 

cancer-prone cells.  

Although there have been several studies attempting to mathematically 

characterize canalizing genes and their power, they all missed the opportunity to 

characterize an important property of canalizing genes; that is, their incapacitating power. 

Therefore, we introduce a conditional CoD that characterizes predictive power of a set of 

genes with respect to a target gene under a specific condition of other genes. Our approach 

also suggests that the currently adopted definitions of canalizing and master genes could 

be modified so that a particular gene does not have to be exclusively a master or a 

canalizing gene. The newly introduced canalizing power resides in the continuous domain; 

therefore it presents a relative characterization of controlling genes. Although we have 

focused on BNs with perturbations to validate our ideas in a simplified environment, the 

same concept can be easily extended to Probabilistic Boolean Networks (PBNs), which 

offers more model flexibility. 
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4. NETWORK CLASSIFICATION BASED ON REDUCIBILITY WITH

RESPECT TO THE STABILITY OF CANALIZING POWER OF GENES IN A 

GENE REGULATORY NETWORK – A BOOLEAN NETWORK MODELING 

PERSPECTIVE 

In the previous chapter, we developed a quantitative framework that reflects 

inherent characteristics of canalizing genes and allows the estimation of the power of 

canalizing genes. In this chapter, we use the proposed measurement in reducing Boolean 

network with perturbation. 

4.1 Introduction 

Probabilistic Boolean networks (PBNs) form a widely accepted mathematical 

model for cellular systems and gene regulatory networks [98]. One of their important 

applications is to design intervention strategies that beneficially alter cell dynamics 

through studying long-run network behavior. Because the dynamics of a PBN are 

represented by an ergodic and irreducible finite Markov chain, the model possesses a 

steady-state distribution (SSD) reflecting its long-run dynamics. Various types of 

stochastic control policies for PBNs have been employed to change the long-run dynamics 

of the model, with immediate implications to practical problems such as reducing the risk 

of entering aberrant states and thereby altering the extant cell behavior [104]; however, 

owing to the inherent computational complexity of optimal control methods using Markov 

chain theory, it is often infeasible to design optimal control policies for large networks 
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[105], [106]. Several approximate and greedy algorithms [107]-[109] have been proposed 

to find suboptimal solutions but many of them still have complexity that increases 

exponentially or hyper exponentially with the number of genes in the network. Even 

relatively small networks can pose serious difficulties in assessing the dynamics, 

considering that a Boolean network of 𝑛 genes has 2𝑛 states and the transition probability

matrix has size 2𝑛 × 2𝑛 . Given the exponential dependence of the state space on the

number of nodes, there is a need for network reduction mappings that produce more 

tractable models whose stationary control policies induce suboptimal stationary control 

policies on the original network.  

While past efforts to network reduction focused on developing reduction 

algorithms that maintain structural consistency or the dynamical behavior of the original 

network [110], [77], the major focus of our work is the preservation of the canalizing 

properties of genes in the original network. For this purpose, we examine what happens to 

canalization when genes are consecutively deleted. It is hypothesized that deleting a gene 

with the smallest canalizing power may help to preserve the canalizational properties of 

the original network under network reduction. The work in this chapter is centered around 

preservation of gene canalizing power under network reduction mappings. An important 

observation made in the course of the study leads to the hypothesis that genes in some 

networks retain their canalization properties after network compression, while there is a 

class of networks that do not possess this property. Naturally, this hypothesis leads to 

definitions of reducible and irreducible networks. Thus, one can formulate a related 
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classification problem that aims to find relevant network features that can separate 

reducible from irreducible networks.  

Compelling evidence for the existence of such network features/parameters is 

found in previous studies [111]-[116]. A previous study [117] showed that the dynamics 

of Boolean networks are mainly determined by two parameters 𝑁 and 𝐾, where 𝑁 is the 

number of nodes in the network and 𝐾 is the average number of directional links between 

them. A change of the network dynamics from chaotic to orderly behavior was observed 

at some critical value of the connectivity parameter 𝐾. There have been several studies 

investigating the structural properties of networks in relation to their operating regime 

[112], [117], [118]. The most frequently studied network parameters have been the 

average connectivity 𝐾  and the function bias which represents the probability for a 

Boolean function to take on value 1. In addition, it has been demonstrated that networks 

constructed from functions belonging to various classes, such as canalizing functions or 

certain Post classes, can also exhibit a tendency toward ordered behavior [119]-[121]. 

These results suggest that network parameter space can be partitioned, which naturally 

leads to the formulation of various classification problems.  

This chapter extends the above considerations to parameters pertaining to network 

reduction and canalizational stability. Hence, we quantitatively define different classes of 

networks in relation to canalizing power robustness under model reduction. Our 

hypothesis about the existence of two classes, reducible and irreducible networks with 

respect to the preservation of canalizing power, requires a systematic empirical study in 

order to properly define the two classes. After completing the study, we introduce the 
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definition of reducible networks in terms of canalizing robustness and proceed with the 

problem of selecting the relevant network features which allow discriminating reducible 

from irreducible networks. For the corresponding classification problem, the feature 

selection part aims to select a subset of highly discriminating features. The goals of this 

study are to (i) examine the stability of canalization under the network reduction mapping 

and (ii) find relevant network features that characterize different classes of networks. It is 

important to note that our novel approach relies only on estimates of canalizing power of 

the participating genes and does not assume any specific information about the Boolean 

rules between nodes. Thus, one can approach the network reduction problem without 

explicitly inferring the network model from data. 

This chapter is organized as follows. In Section 4.2, we present background 

information about reduction mapping and discuss a tentative list of network features that 

might be useful when solving classification problems. In addition, the definition of 

reducible networks is presented and the general process of simulation is described. Section 

4.3 shows experimental results and Section 4.4 provides concluding remarks. 

4.2 Systems and Methods 

4.2.1 Reduction Mapping 

Consider a mapping 𝜓: 𝐺 ⟶𝐺̃ that transforms the original network 𝐺(𝑉, 𝒇) into a 

new one, where a gene is deleted. A specific type of reduction mapping 𝜓 was proposed 

in [122]. Assuming gene 𝑥𝑗 is to be deleted from the network, the reduction mapping

defines the transition rules for states in the network where that gene is removed, i.e. 1-
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reduced network. Every predictor 𝑓𝑖 ∈ 𝒇 generates two predictors 𝑓𝑖,0 and 𝑓𝑖,1 according

to the rule  

𝑓𝑖,𝑔(𝑥1,⋯ , 𝑥𝑗−1, 𝑥𝑗+1,⋯ , 𝑥𝑛) = 𝑓𝑖(𝑥1,⋯ , 𝑥𝑗−1, 𝑔, 𝑥𝑗+1, ⋯ , 𝑥𝑛), (4.1) 

where 𝑔 ∈ {0, 1}. The selection policy we use here is suggested in [122] and is based only 

on the SSD of the network. The selection of every function 𝑓𝑖 ∈ 𝒇̃ is performed pointwise,

and for two states that only differ in the deleted gene 𝑥𝑗, the state transitions of the states

possessing larger steady-state probability mass will be kept as transitions for the reduced 

states, excluding the gene for deletion. Therefore, a selection procedure for the function 𝑓𝑖

is given as follows: 

(a) For all 𝑖, select numbers −1 ≤ 𝜔𝑖 ≤ 1.

(b) For every state 𝒔 = (𝑥1,⋯ , 𝑥𝑗−1, 𝑥𝑗+1,⋯ , 𝑥𝑛), define

𝑓𝑖(𝒔) = {

𝑓𝑖,0(𝒔)     𝑖𝑓 Pr{(𝑥1,⋯ , 𝑥𝑗−1, 0, 𝑥𝑗+1,⋯ , 𝑥𝑛)}

> 𝜔𝑖 + Pr{(𝑥1,⋯ , 𝑥𝑗−1, 1, 𝑥𝑗+1, ⋯ , 𝑥𝑛)};

𝑓𝑖,1(𝒔)     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

We set 𝜔𝑖 = 0 , which means that we do not assume any additional information. In

addition, the perturbation probability 𝑝 remains the same after applying the reduction 

mapping. Assuming that the original network has 𝑛 genes, the 𝑚-reduced network can be 

defined by a set of the 𝑛 − 𝑚 remaining genes based on 𝑚 deletion-selection applications. 
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4.2.2 Gene Deletion 

Let 𝑉 = {𝑥1,⋯ , 𝑥𝑛} be the set of genes in the original network. Supposing the 𝑗th

gene is deleted from the network, the set of genes in the 1-reduced network is 𝑉̃ =

{𝑥1,⋯ , 𝑥𝑗−1, 𝑥𝑗+1, ⋯ , 𝑥𝑛}. After a gene removal, the remaining genes are re-indexed: the

indices of {𝑥𝑗+1,⋯ , 𝑥𝑛} are decreased by 1, and thus {𝑥1,⋯ 𝑥𝑛−1} = {𝑥1,⋯ , 𝑥𝑗−1, 𝑥𝑗+1,⋯

, 𝑥𝑛 }. For example, consider the network that belongs to class 0, Figure 4.1. Gene 6 is

removed from the original network and the remaining genes are relabeled. Therefore, gene 

7 in the original network becomes gene 6 in the 1-reduced network. Consider the 
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Figure 4.1 Each row corresponds to a network that belongs to the respective class. The 

columns represent the results of the consecutive removal of three genes from the network. 

X-axes represent the gene index in the reduced network and the Y-axes indicate the

canalizing power of genes. A gene with the smallest canalizing power is marked with 

circle and is deleted by applying the reduction mapping. Note that in the case of the 

network from Class 0, the canalizing power trends in its CP vectors are maintained up to 

and including the deletion of three consecutive genes while the network from the Class 1 

loses the original distribution of canalizing power even after a single gene is removed.
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canalizing power of 𝑥𝑖  with respect to the rest of the genes in the original network

𝐶𝑃𝑉∖{𝑥𝑖},𝑑
(𝑥𝑖)  as defined in (3.11). In this study, we assume that there is no prior

knowledge of controlling genes and downstream regulated genes. Thus, we compute the 

canalizing power of each gene 𝑥𝑖 in the network assuming that 𝑆 ∪ 𝑀 = 𝑉\{𝑥𝑖}. Let 𝑸𝑛−1

denote the (𝑛 − 1)-dimensional CP vector consisting of the canalizing power of genes in 

the original network, excluding the gene marked for deletion: 

𝑸𝑛−1 = (𝐶𝑃𝑉∖{𝑥1},𝑑(𝑥1),⋯ , 𝐶𝑃𝑉∖{𝑥𝑗−1},𝑑(𝑥𝑗−1) , 𝐶𝑃𝑉∖{𝑥𝑗+1},𝑑(𝑥𝑗+1),⋯ , 𝐶𝑃𝑉∖{𝑥𝑛},𝑑(𝑥𝑛))

= (𝐶𝑃𝑉∖{𝑥1},𝑑(𝑥1),⋯ , 𝐶𝑃𝑉∖{𝑥𝑛−1},𝑑(𝑥𝑛−1))

= (𝑞1,⋯ , 𝑞𝑛−1).        (4.2) 

The second line of (4.2) is obtained by re-indexing the remaining genes. For simplicity, 

we use the notation 𝑞𝑖 in this work to denote 𝑞𝑖 = 𝐶𝑃𝑉∖{𝑥𝑖},𝑑
(𝑥𝑖). Similarly, the CP vector

of the canalizing power of genes in the 1-reduced network is given by 

𝑸̃𝑛−1 = (𝐶𝑃𝑉∖{𝑥1},𝑑(𝑥̃1),⋯ , 𝐶𝑃𝑉∖{𝑥𝑛−1},𝑑(𝑥𝑛−1)) = (𝑞̃1 ⋯ , 𝑞̃𝑛−1), (4.3) 

where 𝑞̃𝑖 = 𝐶𝑃𝑉∖{𝑥𝑖},𝑑
(𝑥𝑖)  is the canalizing power of 𝑥𝑖  with respect to the rest of the

genes in the reduced network 𝑉̃ . Similarly, one can obtain 𝑸𝑛−𝑚  and 𝑸̃𝑛−𝑚  – the CP

vectors of the original network and the 𝑚-reduced networks. The normalized Euclidean 

distance between them is given by 
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𝐷𝑁(𝑸𝑛−𝑚 , 𝑸̃𝑛−𝑚) = √∑ (
𝑞𝑖

‖𝑸𝑛−𝑚‖
−

𝑞̃𝑖

‖𝑸̃𝑛−𝑚‖
)

2𝑛−𝑚

𝑖=1

, (4.4) 

where ‖⋅‖ is the Euclidean norm. 

In model reduction, we aim to preserve the canalizational properties of the original 

network. Our hypothesis is that the removal of the gene with the smallest CP would 

achieve this objective for a specific class of networks. To this end, we examine all of the 

genes in the network by removing one at a time by applying the reduction mapping 

described in Section 4.2.1 and measuring the normalized Euclidean distance between the 

respective CP vectors given by (4.4). Figure 4.2 shows the boxplot of normalized 
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Figure 4.2 Boxplot of Euclidean distances between the CP vectors of the original network 

with 𝑛=12 and the respective 1-reduced network. Each number on the X-axis represents 

the CP ranking of the deleted gene in the original network, and the canalizing power is 

sorted in descending order. Therefore, the rightmost box in the graph corresponds to the 

case where a gene with the smallest canalizing power is deleted. 
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Euclidean distances between 𝑸𝑛−1 and 𝑸̃𝑛−1 when 1,000 randomly generated networks

of 𝑛 =12 genes are examined. The result suggests that removing the gene with the smallest 

CP from the original network might provide a useful heuristic to achieve network 

reduction with a minimal impact on the CP vectors. 

4.2.3 Network Empirical Labeling 

Our empirical study of network reduction based on removing the gene with the 

smallest CP shows that some networks retain their canalization properties, while others do 

not. Figure 4.1 shows examples of these two distinctive categories of networks and 

suggests that there might be classes of networks that are better suitable for reduction than 

others. This observation leads to the hypothesis that networks can be divided into two 

categories: (i) reducible, i.e. maintaining the existing distribution of canalizing power 

among genes after applying the reduction mapping based on the deletion of the gene with 

the smallest CP, and (ii) irreducible, i.e. where the network CP vectors are significantly 

altered after applying the reduction mapping. Preserving the order of genes with  respect 

to their canalizing power and having small distance between the CP vectors of the original 

and reduced networks are the two criteria used in this work for evaluating the stability of 

canalizing power under model reduction. We empirically label the networks based on two 

criteria: (i) Spearman’s rank-order correlation coefficient, and (ii) weighted Euclidean 

distance between CP vectors of the original and reduced networks. 
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4.2.3.1 Spearman’s Rank Correlation Coefficient 

The Spearman’s rank correlation coefficient is defined as the Pearson correlation 

coefficient between ranked variables [123]. Suppose the original network has 𝑛 genes and 

we remove one gene at a time until 𝑚 genes (0 < 𝑚 < 𝑛)  are deleted. Let 𝜌𝑘 , 𝑘 =

1,⋯ ,𝑚 , denotes the Spearman’s rank correlation coefficient between 𝑸𝑛−𝑘  and 𝑸̃𝑛−𝑘 ,

where 𝑸𝑛−𝑘 = (𝑞1,⋯ , 𝑞𝑛−𝑘)  and 𝑸̃𝑛−𝑘 = (𝑞̃1,⋯ , 𝑞̃𝑛−𝑘)  are the CP vectors of the

original and the 𝑘-reduced network, respectively. Let 𝑟(𝑞𝑖 , 𝑸𝑛−𝑘) denote the rank of 𝑞𝑖 in

𝑸𝑛−𝑘. Similarly, let 𝑟(𝑞̃𝑖 , 𝑸̃𝑛−𝑘) denote the rank of 𝑞̃𝑖 in the CP vector 𝑸̃𝑛−𝑘 . Consider

𝒓𝑛−𝑘 = [𝑟(𝑞1, 𝑸𝑛−𝑘),⋯, 𝑟(𝑞𝑛−𝑘 , 𝑸𝑛−𝑘)]  and 𝒓̃𝑛−𝑘 = [𝑟(𝑞̃1, 𝑸̃𝑛−𝑘),  ⋯ , 𝑟(𝑞̃𝑛−𝑘 , 𝑸̃𝑛−𝑘)]

and define 

𝜌𝑘 =
𝑐𝑜𝑣(𝒓𝑛−𝑘 , 𝒓̃𝑛−𝑘)

𝜎(𝒓𝑛−𝑘) ⋅ 𝜎(𝒓̃𝑛−𝑘)
, (4.5) 

where 𝑐𝑜𝑣(𝒓𝑛−𝑘 , 𝒓̃𝑛−𝑘)  is the covariance of two CP rank vectors, and 𝜎(𝒓𝑛−𝑘)  and

𝜎(𝒓̃𝑛−𝑘) are the standard deviations of 𝒓𝑛−𝑘 and 𝒓̃𝑛−𝑘, respectively. Next, we consider

vector 𝝆 = [𝜌1, 𝜌2, ⋯ , 𝜌𝑚],  containing 𝑚 rank correlation coefficients computed at each

gene removal. Denote 𝝆̅ by the mean of the vector 𝝆 and 𝜌𝑚𝑖𝑛 by the minimum value of

𝝆. Our first criterion for 𝑚-reducibility of a network is based on these two quantities 𝝆̅ 

and 𝜌𝑚𝑖𝑛: if 𝝆̅ is larger than a user-defined parameter 𝜃𝑎𝑣𝑔 and 𝜌𝑚𝑖𝑛 is greater than a user-

defined threshold 𝜃𝑚𝑖𝑛, the network is considered to be 𝑚-reducible from the perspective

of canalizing power ranking preservation. 
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4.2.3.2 Weighted Euclidean Distance 

Weighted Euclidean distance is used to measure the distance between the CP 

vectors of the original and reduced networks. We normalize the canalizing power of genes 

to unity to put CP on the same scale. Then, the weighted Euclidean distance [124] is given 

by 

𝐷(𝑸𝑛−𝑘 , 𝑸̃𝑛−𝑘) = √∑ 𝑤𝑖 (
𝑞𝑖

‖𝑸𝑛−𝑘‖
−

𝑞̃𝑖

‖𝑸̃𝑛−𝑘‖
)

2𝑛−𝑘

𝑖=1

(4.6) 

where ‖⋅‖ is the Euclidean norm and the weight for each gene is 

𝑤𝑖 =
|𝑟(𝑞𝑖 , 𝑸𝑛−𝑘) − 𝑟(𝑞̃𝑖 , 𝑸̃𝑛−𝑘)|

𝑚𝑖𝑛 (𝑟(𝑞𝑖 , 𝑸𝑛−𝑘), 𝑟(𝑞̃𝑖 , 𝑸̃𝑛−𝑘))
 . (4.7) 

The weight 𝑤𝑖  , assigned to the CP difference of the 𝑖 th gene, is the CP ranking

gap,  |𝑟(𝑞𝑖 , 𝑸𝑛−𝑘) − 𝑟(𝑞̃𝑖 , 𝑸̃𝑛−𝑘)| , divided by the minimum of the two rankings. The

denominator of 𝑤𝑖  is used to penalize for changes in the upper ranks of the CP. Thus, this

weighting scheme puts larger weights to bigger fluctuations in CP ranking and changes in 

higher ranks. The distance measure 𝐷(𝑸𝑛−𝑘 , 𝑸̃𝑛−𝑘) not only represents the differences in

CP, but also involves the ranking of genes to penalize ranking discrepancies. Given 

𝐷(𝑸𝑛−𝑘 , 𝑸̃𝑛−𝑘) for 𝑘 = 1,⋯ ,𝑚, we consider

𝐷𝑚𝑎𝑥 = 𝑚𝑎𝑥 (𝐷(𝑸𝑛−1, 𝑸̃𝑛−1),⋯ , 𝐷(𝑸𝑛−𝑚 , 𝑸̃𝑛−𝑚)) . (4.8) 

Our second criterion for 𝑚-reducibility of a network is based on (4.8): if 𝐷𝑚𝑎𝑥 is smaller
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than a threshold 𝜃𝑑𝑖𝑠𝑡, the network is considered 𝑚-reducible with respect to preserving

the distance between the respective CP vectors. Combining the criteria 1 and 2 together, 

one arrives at the following definition: 

Definition 1. Given the parameters 𝜃𝑎𝑣𝑔 , 𝜃𝑚𝑖𝑛 and 𝜃𝑑𝑖𝑠𝑡, the Boolean network 𝐺 is said

to be 𝑚 -gene reducible (0 < 𝑚 < 𝑛)  if and only if the following conditions are 

satisfied: 

i. 𝜌̅ ≥ 𝜃𝑎𝑣𝑔 𝑎𝑛𝑑 𝜌𝑚𝑖𝑛 ≥ 𝜃𝑚𝑖𝑛

ii. 𝐷𝑚𝑎𝑥 ≤ 𝜃𝑑𝑖𝑠𝑡

4.2.4 Network Features 

There are a number of parameters of a Boolean network that could be used to 

characterize different classes of networks. It is well known that the bias and average 

connectivity are important because they can modulate the order-disorder transition in the 

network dynamics [121]. Attractor structure is another important characteristic of the 

dynamical behavior of a Boolean network. Starting from any initial state, a BN will 

eventually enter a fixed state called a singleton or fixed-point attractor, or a set of states, 

called an attractor cycle, through which it will cycle endlessly. The attractors capture the 

model’s essential long-term behavior and have been widely recognized to correspond to 

meaningful cellular phenotypes [125], [126]. Hence, we include values associated with 

the attractor structure, such as the cycle length, i.e., the number of states an attractor 

comprises, the number of singleton attractors, the proportion of states that belong to 

attractors, and mass of the attractors in the SSD of the network. Furthermore, each network 
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state flows into a unique attractor cycle, and the set of states leading to that cycle is known 

as its basin of attraction (BOA). The level of a state is defined as the number of transitions 

required for that state to flow into an attractor cycle. It has been shown that the steady-

state probabilities for attractors are dependent on the size and structure of BOAs [127]. 

After considering all these factors that characterize network behavior, we outline a list of 

network features for our classification task in Table 4.1. We restrict ourselves to 15 

features using descriptive statistics to avoid the ‘curse of dimensionality’ [14]. 

Table 4.1 The list of Boolean network attributes 
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4.2.5 Simulation Procedures 

To study canalization stability in network reduction and find network features that 

contribute to the classification of networks as either 𝑚-gene reducible or not, we carried 

out simulations on synthetic data. The entire procedure is given in Table 4.2. As the 

network SSD provides insight into long-run dynamics and allows one to compute the long-

term influence of a gene on another gene, we use it in (3.2) and (3.11) for computing the 

Table 4.2 The general procedure of network reduction followed by network classification 

and feature selection 
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canalizing power of genes. Since networks with strong canalizing genes are the central 

focus of our study, we filter out networks that do not have any sets of genes with relatively 

high CP at step 3. We use the interquartile range (IQR) method for outlier detection and 

the presence of outliers indicates the existence of genes with comparatively high 

canalizing power. Thus, any gene with CP greater than Q3+𝜉 ×IQR is considered to be a 

gene with high canalizing power, where 𝜉  is the parameter for the determination of a 

canalizing gene. Figure 4.3 shows the effects of the parameter 𝜉 on the percentage of 

networks with a canalizing gene. We set 𝜉=1.5 as the standard IQR method and filter out 

networks that have no canalizing genes. As to the remaining networks, we remove the 

gene with the smallest canalizing power and obtain the reduced network by applying the 

reduction mapping described in Section 4.2.1. We repeat the steps 4(a) through 4(c) until 

𝑚 genes are removed and compute the CP vectors of the reduced network after each gene 
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Figure 4.3 The percentage of networks that have at least one canalizing gene depending 

on the parameter 𝜉. 
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removal. Then, we compute the CP ranking correlation coefficients and distances between 

the CP vectors of the original and reduced networks. According to Definition 1 with the 

selected parameter settings for 𝜃𝑎𝑣𝑔 , 𝜃𝑚𝑖𝑛  and 𝜃𝑑𝑖𝑠𝑡 , networks are labeled as either 𝑚-

gene reducible or not. Finally, classification and feature selection are performed at step 6. 

4.3 Results 

4.3.1 Synthetic Data 

In our simulation study, we randomly generated 10,000 Boolean Neteworks with 

perturbation (BNps) with 𝑛=12 genes and a perturbation parameter 𝑝=0.01. There are

several computational challenges that have to be addressed to accomplish the goals of the 

study. Owing to the large number of repetitions in the simulation, the exponential increase 

of the network state space with the number of participating genes makes it computationally 

prohibitive to deal with networks having more than 12 genes. Owing to our desire to use 

a brute-force feature selection method to exhaustively evaluate all possible combinations 

of the input features listed in Table 4.1, we use 12-gene networks for the feature selection 

step of our procedure. The computation of the network’s SSD usually includes 

construction of the transition probability matrix; however, matrix-based methods quickly 

become prohibitive for large sizes of networks, and therefore, we use Monte Carlo 

methods. We derive the SSD by running the network for a long time from a randomly 

selected initial state. To test the convergence to its SSD, we apply the Kolmogorov-

Smirnov statistic. 
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Our first objective is to examine the proportion of reducible networks among the 

set of randomly generated BNp s. While consecutively removing 3 genes from the 

networks, we investigate the effects of the parameters 𝜉 , 𝜃𝑎𝑣𝑔 , 𝜃𝑚𝑖𝑛  and 𝜃𝑑𝑖𝑠𝑡  on the

percentage of 3-gene reducible networks as shown in Figure 4.4. Based on these results, 

we empirically tuned up the parameters 𝜉=1.5, 𝜃𝑎𝑣𝑔=0.9 and 𝜃𝑚𝑖𝑛=0.8 for the rest of our

simulation studies. The threshold 𝜃𝑑𝑖𝑠𝑡  is set to 0.0938 which corresponds to the 20th

percentile of the mean of the vector (𝐷(𝑄𝑛−1, 𝑄̃𝑛−1),⋯ , 𝐷(𝑄𝑛−3, 𝑄̃𝑛−3))  of 10,000

Figure 4.4 Effects of the parameters 𝜉, 𝜃𝑎𝑣𝑔, 𝜃𝑚𝑖𝑛, and 𝜃𝑑𝑖𝑠𝑡 on the percentage of 3-gene 

reducible networks out of 10,000 generated networks with 𝑛=12 genes. 
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networks when 𝑛=12. As shown in Figure 4.5(A), 2,126 out of 10,000 generated networks 

(21.26%) possess at least one canalizing gene and only 1.24% are 3-gene reducible based 

on Definition 1. Figure 4.5(B) shows that the percentage of reducible networks drops from 

3.41% to 1.24% as more genes are removed from the model. These figures confirm that it 

is unusual to find networks with a canalizing gene, and it is even more rare to have a model 

that can be reduced without unduly altering canalizational properties of the participating 

genes. 

Figure 4.5 (A) The pie chart shows the percentage of networks without canalizing genes 

which are not considered for model reduction in our simulation. The remaining networks 

have been tested for reducibility and only 1.24% of the total networks are 3-gene 

reducible. (B) The bar graph represents that the proportion of reducible networks 

decreases as more genes are deleted. 
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After labeling networks based on Definition 1, we proceed to address classification 

in the particular setting of severely imbalanced data: approximately 5% of the networks 

belong to the class 0 (i.e. 3-gene reducible networks). Thus, one could simply classify all 

observations into the majority class and be correct 95% of the time. There are several 

available approaches to address the issue of such imbalanced data [128]. For example, one 

can resample the dataset to balance the skewed distribution [129]. Alternatively, other 

performance metrics such as precision and recall can be applied to evaluate the model 

[128]. We use both balanced and imbalanced data to build classifiers. Previous studies 

[130], [131] have shown that imbalanced data sets introduce a significant reduction in 

classifiers’ performance because most of standard classifiers tacitly assume or expect 

balanced class distribution or equal misclassification cost. Rather than directly applying 

classification algorithms to severely imbalanced data, it is a common practice to 

preprocess the data to balance the distribution of the classes before the learning stage of 

each classifier [132]-[134]. Therefore, results obtained from the balanced data are 

presented in the main body of this chapter while the results for the case of imbalanced data 

are provided in the Appendix B. Importantly, we adopt the downsampling method for 

resampling thus, randomly selecting samples without replacement from the majority class 

[130]. 

Consider a binary classifier 𝛹: ℝ𝜆 → {0, 1}  which assigns a network on 𝜆 -

dimensional feature space ℝ𝜆 to either class 0 or 1. Let class 0 (i.e. 𝑚-gene reducible

networks) indicate the positive class and class 1 (i.e. not 𝑚-gene reducible networks) be 

the negative class. Given a network 𝐺, there are four possibilities when comparing the 
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predicted class 𝛹(𝐺) to its true class 𝑦: true-positive 𝑦 = 0 and 𝛹(𝐺) = 0; false-negative 

𝑦 = 0  and 𝛹(𝐺) = 1 ; false-positive 𝑦 = 1  and 𝛹(𝐺) = 0 ; true-negative 𝑦 = 1  and 

𝛹(𝐺) = 1 . We denote by 𝑇𝑃  and 𝑇𝑁  the number of true-positive and true-negative 

networks, respectively. Similarly, 𝐹𝑃 and 𝐹𝑁  denote the number of false-positive and 

false-negative networks, respectively. Using these notations, we define the positive 

predictive value of a classifier by 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) , the negative predictive value by 

𝑇𝑁/(𝑇𝑁 + 𝐹𝑁), the sensitivity by 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), and the specificity by 𝑇𝑁/(𝑇𝑁 +

𝐹𝑃).  

We evaluate the performance of the features listed in Table 4.1 with six different 

classification rules: linear discriminant analysis (LDA), 3-nearest neighbors (3NN), 

support vector machine (SVM), decision tree (DT), Naïve Bayes (NB), and a neural 

network (NN) with 10 hidden layers. A training set of size 10,000 is used for classifier 

construction, and an independent test set of size 3,000 is used for evaluation. We 

exhaustively perform all of the 𝜆-feature (𝜆=1,⋯,15) classifications and Figure 4.6 shows 

the respective performance metrics. Given a specific classification rule, each data point in 

Figure 4.6 corresponds to the best performance metric among all of the results from 𝜆-

tuples of features. For example, sensitivity at 𝜆 = 1 in Figure 4.6 represents the highest 

of all 15 sensitivities when the classification is based on a single feature. Figure 4.6 shows 

that a nonlinear support vector machine with a radial basis function (RBF-SVM) achieves 

the lowest test error 3.48% across all of the considered classifiers when using the following 

couple of features: the variance of the steady-state probabilities of attractor states and the 

variance of the SSD of the original network. In general, the decision tree performs better 
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Figure 4.6 Based on 15 features listed in Table 4.1, all of the 𝜆-feature (𝜆 =1,⋯,15) 

classifications are performed using six different classification rules: LDA, 3NN, RBF-

SVM, DT, NB and NN. Each data point on the graphs represents the best value among 

the respective performance measures. 
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than the other classification rules while 3NN shows the worst performance. Figure 4.6 also 

shows that in most cases the designed classifiers have high sensitivity with moderate 

specificity which indicates that the classifiers are capable of detecting reducible networks; 

however, there is also a presence of false positives. If one desires to decrease the number 

of false positives, one can increase the values of the parameters 𝜃𝑎𝑣𝑔  and 𝜃𝑚𝑖𝑛  while

simultaneously decreasing the value of 𝜃𝑑𝑖𝑠𝑡.

After performing all of the 𝜆-feature (𝜆=1,⋯,15) classifications, we sort feature 

sets according to their test error and list the top 3 best performing feature sets with respect 

to that error. Feature sets that achieve the 3 lowest misclassification errors for each 

classification rule and the corresponding test errors are listed in Table 4.3. Note that the 

two top ranked LDA feature sets share the features: the average connectivity, the average 

bias, the maximum attractor cycle length, the average of the distances from each state to 

its corresponding attractor, and the average size of basins of attraction. Table 4.3 also 

shows that feature sets resulting in the lowest test error for decision tree and Naïve Bayes 

are similar: the sum of the steady-state probabilities of attractor states, the average bias, 

the maximum of the distances from each state to its corresponding attractor, the total 

number of attractors, and the variance of the steady-state distribution of the original 

network.  

The normalized empirical histogram of the appearance of each individual feature 

in the top 3 performing feature sets is shown in Figure 4.7. It shows that the variance of 

the steady-state probabilities of attractor states and the number of singleton attractors 

appear in most of six classification rules’ top 3 performing feature sets. One can also see 
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that the variance of the SSD of the original network is the most frequently appearing 

feature. 

Finally, we train classifiers using 3,000 networks with 13 genes using the top 

performing feature sets for each classification rule given in Table 4.3 and test the designed 

classifiers on 1,000 independently generated networks. Table 4.4 summarizes the 

Table 4.3 Feature sets that achieve the 3 lowest misclassification errors for each 

classification rule and their respective test error estimates. Note that numerical identifiers 

are provided in Table 4.1. 
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Classifier Feature Sets Test Error

LDA
{1, 3, 4, 5, 8, 11}

{3, 4, 5, 8, 9, 11}

0.189

0.171

3NN {2, 3, 6, 12} 0.149

RBF-SVM {2, 15} 0.027

DT
{1, 4, 7, 8, 10, 12, 15}

{1, 4, 7, 8, 10, 12, 13, 15}

0.081

0.081

NB {1, 4, 7, 9, 12, 15} 0.169

NN {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15} 0.059

Table 4.4 Test errors of classifiers on 13-gene networks when the best performing feature 

sets given in Table 4.3 are used. 

Figure 4.7 The stacked bar represents how often each feature appears in the top 3 

performing feature sets for each classification rule. Each segment of the stacked bar 

represents the normalized count which is the frequency of individual feature’s appearance 

in Table 4.3 divided by the total number of feature sets shown in Table 4.3 for each 

classification rule. For example, there are 9 feature sets in Table 4.3 for LDA, and 

therefore, the occurences of each feature in Table 4.3 for LDA are divided by 9. 
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respective test errors for the six classification rules considered in our study. The result 

demonstrates that RBF-SVM achieves the lowest error among all of the classifiers when 

a pair of features {2, 15} is used. It is also shown that test errors of decision tree and neural 

nets are less than 0.1 while LDA, 3NN and NB result in high test error rates of 0.14 or 

greater.  

4.3.2 p53 Network 

We now apply our algorithm to a 16-gene p53 regulatory network presented in [8]. 

M. Choi et al. [8] modeled the signaling response of DNA damage in a p53 network using

a Boolean network with a set of state transition rules defined on the basis of biological 

evidence. The 16-gene network includes the following genes: ATM, p53, Mdm2, MdmX, 

ATM

p53 Mdm2

MdmX

Wip1

cyclinG PTEN

p21

AKT

cyclinE

Rb

E2F1

p14ARF

Bax Bcl2 caspase

Figure 4.8 The p53 regulatory network adapted from [8]. Blunt arrows represent inhibition 

while normal arrows represent activation. 
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Wip1, cyclinG, PTEN, p21, AKT, cyclinE, Rb, E2F1, p14ARF, Bcl2, Bax, and caspase. 

The network consists of 160 negative and 218 positive feedback loops and several 

crosstalk pathways, such as pathways involved in survival signaling and the cell cycle 

regulatory pathway involving retinoblastoma (Rb). The wiring diagram of the model is 

given in Figure 4.8 and a logic table that determines the response of the output nodes for 

a given set of inputs is shown in Table 4.5. 

Table 4.5 Boolean functions for the genes in the p53 regulatory network, where the 

symbols ∨, ∧ and ⨁ denote the Boolean disjunction, conjunction and exclusive-OR, 

respectively. The DNA damage input is denoted by ‘dna_dam’. 
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We use a perturbation parameter 𝑝=0.01 and the SSD is estimated by running the 

network for a long time from a randomly selected initial state. The Kolmogorov-Smirnov 

test is used to decide if the network has reached its steady state. We compute the CP of 16 

genes in the network and observe that p53 has the largest canalizing power 5.454. It agrees 

with the known biological fact that p53 is a tumor suppressor gene with strong canalizing 

ability. It is kept at a low level/dephosphorylated in unstressed cells but becomes 

significantly activated/phosphorylated in response to DNA damage [103]. Our 

computations show that when the parameter 𝜉 is less than 1.68, the network possesses a 

canalizing gene which makes the experimental result consistent with the known fact. 

Next, we assess if the model could be reduced while preserving its CP vector. At 

each iterative step, the gene having the smallest CP is removed. For 3-gene reduction, 

caspase, PTEN and cyclinE are removed consecutively. The CP ranking correlation 

coefficients computed at each gene removal are 𝜌1=0.721, 𝜌2=0.314 and 𝜌3=0.093 which

gives 𝝆̅=0.376 and 𝜌𝑚𝑖𝑛=0.093. The distances between CP vectors of the original and 𝑘-

reduced networks are 0.371, 0.343 and 0.618 for 𝑘=1, 2 and 3, respectively. Based on 

Definition 1, this network is not 𝑘-gene, 𝑘=1, 2, 3 reducible with the parameter setting 

Figure 4.9 Canalizing power of genes in the 16-gene p53 regulatory network. A gene with 

the smallest canalizing power is removed at each consecutive step (caspase, PTEN and 

cyclinE). 
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𝜃𝑎𝑣𝑔=0.9 and 𝜃𝑚𝑖𝑛=0.8. It could be considered 1-gene reducible with lower correlation

coefficient values of 𝜃𝑚𝑖𝑛  < 0.721, but it requires far less stringent value for distance

parameter 𝜃𝑑𝑖𝑠𝑡  > 0.371. The network is 2-gene reducible when 𝜃𝑎𝑣𝑔 < 0.518, 𝜃𝑚𝑖𝑛  <

0.314 and 𝜃𝑑𝑖𝑠𝑡 > 0.371, but a correlation coefficient less than 0.5 is not considered to

indicate a strong association between CP vectors of the original and reduced network. As 

shown in Figure 4.9, the network does not maintain the existing distribution of canalizing 

power among genes and even with less stringent thresholds of 𝜃𝑎𝑣𝑔 > 0.376, 𝜃𝑚𝑖𝑛 > 0.093

and 𝜃𝑑𝑖𝑠𝑡 < 0.618, this network is classified to class 1, i.e., not 3-gene reducible.

4.4 Conclusion 

Canalization is the tendency of a biological process to follow particular trajectories 

despite external or internal perturbation, and it plays a pivotal role for phenotypic 

robustness [60]-[62]. Therefore, the preservation of the canalizational properties of the 

genes participating in a network model of gene regulation should be one of the main 

objectives in network reduction. Our empirical study suggests that it is rare to find 

networks with a canalizing gene. Moreover, network reduction could easily destroy the 

canalizational properties of the genes in the original network. In this article, we show that 

removing genes with weak canalizing power seems to be a good heuristic for network 

compression. Furthermore, our study indicates that there are two major classes of BNp 

model which are determined by the degree of preservation of the CP vectors after applying 

the reduction mapping. Based on this observation, we introduce the definition of 𝑚-gene 

reducible networks using the CP ranking correlation coefficients and distances between 
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the CP vectors of the original and reduced networks. Subsequently, we proceed with the 

problem of selecting the relevant network features which help to discriminate 𝑚 -gene 

reducible from other networks.  

Our comprehensive simulation study leads to several important observations: (i) 

RBF-SVM achieves the lowest error among the six classification rules considered. The 

couple of  features that provides the best separation between the two classes of networks 

is composed of the variance of attractors’ stationary mass and the variance of the steady-

state probabilities of the network. The SSD reflects the long-run behavior of a given 

network, and stationary masses of attractors reflect the structure of BOAs. Importantly, 

many studies [122], [135] have utilized SSD and stationary masses of critical states in 

network reduction and intervention. Our result also confirms that the SSD and the 

stationary masses of attractors encode important properties of the network in the context 

of network compression with the objective to preserve canalization properties of the genes; 

(ii) Neural nets achieve the lowest test error when employing nearly all of the features.

Although neural network can have test error rates as low as 0.0586, it is very often the 

case that a neural net requires thousands of labeled samples [136]. Therefore, it might be 

impractical to use this classification rule. Furthermore, the typical small sample size in 

experiments related to gene regulation could lead to overfitting when it is coupled with 

the requirement for a large number of features as in the case of NN classification; (iii) Our 

study shows that the number of singleton attractors in the networks is an important feature 

as it appears in the top 3 performing feature sets across all of the six classification rules; 

(iv) Decision trees give the second lowest test error in 12-gene network classification
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while NN is the second best performer in 13-gene network classification. This implies that 

the total number of genes in the network or the proportion of the removed genes influence 

the network reducibility and classification performance. Our results also suggest that the 

classifier that performs the best in identifying 1-gene reducible networks might be 

different from the best classifier in 2-gene reducibility classification. Thus, the attributes 

that determine the network reducibility could change depending on how many genes are 

already deleted from the model.  

It is practically impossible to have complete knowledge about the structure of the 

network. Therefore, one may not be able to exploit the best combination of features and 

classification rules as outlined by our simulation study. To facilitate the practical selection 

of combinations of feature sets and classification rules, we present not only the best result 

but also all possible feature sets and corresponding error rates in the following website: 

https://sites.google.com/view/canalizingpower/. Thus, our simulation study can serve 

as a guideline in selecting a suitable classifier depending on the feasibility and availability 

of features, as it also provides an estimate for the performance of the selected feature sets 

and classification rules. 
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5. CONCLUSION

In this dissertation, we have focused on the problem of identifying important genes 

that exist in high-dimensional data spaces. In Chapter 2, we performed a model-based 

study to examine the effectiveness of reporting lists of gene sets using RNA-Seq data. We 

compared the performance of ranking of feature sets derived from a model of RNA-Seq 

data with that of a multivariate normal model of gene concentrations. The results of our 

study show that the performance of feature selection using RNA-Seq data deteriorates 

which is most likely due to a nonlinear transformation of the actual gene or RNA 

concentrations by next-generation sequencing technologies. We also examined the effects 

of different model parameters and error estimators on the ranked lists of features. The 

results demonstrate that the general trends of the parameter effects on the ranking power 

of the underlying gene concentrations are preserved in the RNA-Seq data, whereas the 

power of finding a good feature set becomes weaker when gene concentrations are 

transformed by the sequencing machine. 

In Chapter 3, we developed a quantitative framework that allows to compute the 

canalizing power of genes in the context of Boolean Networks with perturbation (BNps). 

This framework borrows tools from the Pattern Recognition theory and uses the CoD to 

capture the capacity of the canalizing genes. The canalizing power of a gene is 

quantitatively characterized by two terms: regulation power and incapacitating power. 

Following this, the CP concept was illustrated with examples to verify how CP can be 

used to characterize the ability of canalizing genes. 
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In Chapter 4, we study the problem of reducing BNps by deleting genes with the

smallest canalizing power consecutively and evaluated the stability of canalizing power. 

Our systematic empirical study demonstrates that there are two classes of networks with 

respect to the preservation of canalizing power of the genes when such reduction mapping 

is applied. Subsequently, we proceeded with the problem of selecting the relevant network 

features that allow for discriminating these two different classes of networks. 

In our opinion, there are several potential avenues for further development and 

application of the definition of the canalizing power: (i) One could extend the study by 

investigating the relationship between network attributes and the magnitude of the 

canalizing power of genes. There might be some factors that potentially determine the 

canalizing power of genes such as Boolean rules, connectivity of the corresponding gene, 

attractor structures of the network, existence of feedback loops, etc;  (ii) To our 

knowledge, there is no explicit representation of canalizing genes in Boolean expressions. 

The Boolean disjunction and conjuction can represent canalizing functions in which at 

least one of the input variables, called a canalizing variable, is able to determine the 

function ouput regardless of the values of the other variables. However, the canalizing 

function does not explicitly show which one is a canalizing variable. Mathematically, any 

variable associated with Boolean disjuction or conjunction operator could be a canalizing 

variable. However, in biology, the main driver is preordained and sometimes it has been 

even decided who the next will be when the main driver is deactivated. Therefore, in order 

to reflect this hierarchical architecture inherently embedded in gene regulatory networks, 

there is a need to explicitly represent commanders and their respective order. 
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Table A.1 Median and average length of list extensions to find the top set of genes in the 

other list.  τMVN is the rank of ℱNGS in the MVN list and τNGS is the rank of ℱMVN in the

NGS list where ℱNGS and ℱMVN denote the top set of features in the NGS and MVN list,

respectively.  Detailed parameter information for each experiment is provided in Table 2.1 

in accordance with the experiment number. 

Exp No. Parameters 
Median Average 

τ𝑀𝑉𝑁 τ𝑁𝐺𝑆 τ𝑀𝑉𝑁 τ𝑁𝐺𝑆 

1 

( 𝑑 = 2 ) 

𝜐 = 5 

𝐷 = 50 6 6 27.0 23.3 

𝐷 = 100 11 10 71.0 53.6 

𝐷 = 150 16 14 131.3 93.1 

𝜐 = 10 

𝐷 = 50 7 7 24.8 24.6 

𝐷 = 100 11 11 60.6 53.0 

𝐷 = 150 15 14 112.3 85.4 

𝜐 = 20 

𝐷 = 50 12 12 35.4 37.8 

𝐷 = 100 17 16 72.0 68.6 

𝐷 = 150 19 20 107.8 107.5 

1 

( 𝑑 = 3 ) 

𝜐 = 5 

𝐷 = 50 37 31 273.8 167.6 

𝐷 = 100 109 82 1387.9 683.8 

𝐷 = 150 224 148 4037.0 1593.7 

𝜐 = 10 

𝐷 = 50 43.5 42 253.5 204.7 

𝐷 = 100 115 96 1220.9 723.9 

𝐷 = 150 215 175 3162.4 1639.6 

𝜐 = 20 

𝐷 = 50 87 84 344.6 338.6 

𝐷 = 100 174 165 1282.2 997.3 

𝐷 = 150 266 250 2762.9 2010.7 

2 

𝑛, bresub 

40 15 14 112.3 85.4 

80 7 7 35.7 40.0 

120 6 6 21.5 27.9 

𝑛, loo 

40 59 62 190.8 228.6 

80 25 27 101.5 109.3 

120 12 15 63.8 64.7 

3 σ𝜇
2 0.5 6 6 30.1 29.6 
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Table A.1 Continued. 

Exp No. Parameters 
Median Average 

τ𝑀𝑉𝑁 τ𝑁𝐺𝑆 τ𝑀𝑉𝑁 τ𝑁𝐺𝑆 

3 σ𝜇
2

1 15 14 112.3 85.4 

2 59 51 272.9 275.6 

4 𝜌 

0.1 9 8 76.6 55.9 

0.5 11 11 85.6 67.6 

0.8 15 14 112.3 85.4 

5 𝐵 

2 31 27 185.1 141.4 

5 15 14 112.3 85.4 

10 10 10 82.1 69.6 

6 

𝐷=100, 𝜐=5 11 10 71.0 53.6 

𝐷=200, 𝜐=10 19 18 164.3 129.8 

𝐷=300, 𝜐=15 29 26 282.1 213.4 
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Table A.2 Median and average rank of the Bayes feature set in the MVN and NGS lists. 

Exp. Parameters 
Median Average 

B𝑀𝑉𝑁 B𝑁𝐺𝑆  B𝑀𝑉𝑁 B𝑁𝐺𝑆  

1 

( 𝑑 = 2 ) 

𝜐 = 5 

𝐷 = 50 15 24 43.9 60.6 

𝐷 = 100 30 57 115.6 178.3 

𝐷 = 150 46 99 211.7 350.8 

𝜐 = 10 

𝐷 = 50 42 56 81.0 101.7 

𝐷 = 100 76 114 184.9 260.7 

𝐷 = 150 120 182.5 316.3 481.5 

𝜐 = 20 

𝐷 = 50 105 128 162.0 189.1 

𝐷 = 100 182 239 336.8 422.6 

𝐷 = 150 258 352 534.2 716.4 

1 

( 𝑑 = 3 ) 

𝜐 = 5 

𝐷 = 50 59.5 112 263.0 460.7 

𝐷 = 100 182 387 1258.1 2566.6 

𝐷 = 150 361 866 3130.1 6794.1 

𝜐 = 10 

𝐷 = 50 227 362 648.3 914.0 

𝐷 = 100 606 117.5 2539.3 4238.0 

𝐷 = 150 1139 2176 5941.2 10601.0 

𝜐 = 20 

𝐷 = 50 892.5 1222.5 1650.0 2074.0 

𝐷 = 100 2198 3254 5762.0 7867.0 

𝐷 = 150 3727.5 6222 12426.0 18960.0 

2 

𝑛, bresub 

40 120 182.5 316.3 481.5 

80 26 57 116.2 180.1 

120 15 25 63.3 114.1 

𝑛, loo 

40 137 195 346.0 489.5 

80 41 71 136.5 185.5 

120 18 35 82.8 115.4 

3 σ𝜇
2

0.5 23 54 98.8 169.1 

1 120 182.5 316.3 481.5 

2 425 557 1036.3 1516.7 

4 𝜌 0.1 158 193 349.0 497.3 
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Table A.2 Continued. 

Exp No. Parameters 
Median Average 

τ𝑀𝑉𝑁 τ𝑁𝐺𝑆 τ𝑀𝑉𝑁 τ𝑁𝐺𝑆 

4 𝜌 
0.5 146 190 327.4 469.3 

0.8 120 182.5 316.3 481.5 

5 𝐵 

2 110 183 309.8 473.6 

5 120 182.5 316.3 481.5 

10 129 180 321.3 470.3 

6 

𝐷=100, 𝜐=5 30 57 115.6 178.3 

𝐷=200, 𝜐=10 157 247 464.9 723.1 

𝐷=300, 𝜐=15 377.5 558 1089.3 1651.9 
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Figure A.1 Power curves for a real dataset where 𝑛=59, 𝐷=960, 𝑑=2.  red: 𝑟=0.03, green: 

𝑟=0.05, black: 𝑟=0.07. 
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Figure B.1 Based on 15 features listed in Table 4.1, all of the 𝜆-feature (𝜆 = 1,⋯,15) 

classifications are performed on imbalanced data set using six different classification. 
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