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ABSTRACT 

This first part of the thesis presents a study of the composite system reliability 

evaluation using a cross-entropy based importance sampling method to improve 

computational efficiency of sequential Monte Carlo simulation (MCS). The sensitivity 

analysis studies show how the computational performance of the method and reliability 

indices are affected by varying the system parameters like peak load and forced outage 

rates of the generators. The relationship between computation time, simulation 

parameters, coefficient of variance and number of system cores is also explored. The 

sequential Monte Carlo simulation is implemented using parallel computing techniques 

which reduces the computation time. A comparison study is carried out using Simple 

Monte Carlo method. These methods are tested on an IEEE RTS 79 test system.    

The second part of the thesis presents a study of various techniques to evaluate 

effective capacity of time limited and energy limited energy resources. The energy limited 

sources are added to the generation buses in the IEEE RTS 79 test system and the effective 

load that it can serve to maintain the same reliability benefit is evaluated. All the capacity 

evaluation of the energy limited resources is studied using a composite power system 

model. It is observed that the effective capacity increases as the resource duration 

increases.  
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CHAPTER I  

INTRODUCTION 

Power system reliability assessment is divided into three hierarchical levels [2]. 

The reliability assessment at hierarchical level 2 is usually termed as composite system 

reliability evaluation. The composite system can be used to assess the adequacy of an 

existing or proposed system including both the generation and transmission. The adequacy 

[2] is explained as the existence of sufficient facilities (i.e., generation and transmission

facilities) within the system to satisfy the consumer load demand or system operational 

constraints. Adequacy is therefore associated with static conditions and does not include 

system dynamic and transient disturbances.    

Composite system reliability evaluation is important for power system planning, 

operation and maintenance. Various deterministic as well as probabilistic methods to 

evaluate the reliability indices have been proposed. The probabilistic methods are more 

capable of incorporating the factors that actually influence reliability. 

The probabilistic methods can be implemented using analytical and Monte Carlo (MC) 

approaches. The analytical approaches are attractive since they give exact results but the 

computational time rises heavily as the size of state space increases. Pereira and Balu [27] 

study various analytical techniques and methodologies used for composite system 

reliability evaluation until early 1990s. The MC approach is based on sampling the states 

of the system from its probability distribution and evaluating the expectation of the required 

estimates such as curtailed load. The MC method is computationally more tractable than 
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the analytical approaches because the number of samples needed to estimate the parameters 

is independent of the system size. 

The Monte Carlo Simulation (MCS) is one of the frequently used probabilistic methods 

for power system reliability evaluation. The MCS methods are classified as sequential and 

non-sequential methods. In non – sequential MCS all the possible system states across the 

required period of interest is randomly sampled and are independent. In sequential MCS 

all the system states that are generated for the period of interest follow a sequence resulting 

from system changes.  

Sequential MCS is of two types [20], fixed time step method and next event method. In 

the fixed time step method, a fixed time interval t is taken for each state depending on the 

characteristics of the system. The time is advanced by time interval t after each state, and 

whether an event has occurred is determined in each state. If no event occurs the states 

remain the same and if an event occurs new states are generated according to the event. In 

the next event method after the initial state is generated, we assume an event occurs and 

the time for which the system stays in the particular state is measured and after the time the 

new states are generated according to the previous event. This process is repeated 

continuously until a required convergence is achieved. 

In the MCS methods it is very important to sample sufficient number of states to 

estimate the reliability indices with a specified level of confidence. To increase the 

precision of the calculated reliability indices a large quantity of samples is needed. To 

increase precision means to reduce the variance of the estimates of reliability indices, and 
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the process of repeating the simulations continuously until the variance is reduced below a 

threshold value, is a very time -consuming process. So, various sampling techniques are 

used for reducing the variance.      

One of the important factors in reducing the simulation time is the variance. In an 

attempt to improve computational efficiency various sampling methods have been 

implemented to reduce the variance like stratified sampling [9] [10], dagger sampling [11] 

[12], Latin Hypercube sampling [13],[14], Importance sampling [15] while using the MCS 

based methods. In this thesis a cross entropy (CE) based Importance sampling (IS) method 

is used. Reference [1] describes various approaches where CE method can be used.  

Importance sampling modifies the distribution functions of the components of the 

system due to which the number of rare events or loss of load states increases. Due to the 

increase in the number of loss of load states in the sampled states the variance is reduced 

and the simulation time decreases. In importance sampling, generating the modified 

distribution functions of the system components is of utmost importance as the variance 

may not be reduced if an optimal distribution function is not generated. There is no direct 

procedure to generate these modified distribution functions, in this situation the cross 

entropy (CE) method provides an iterative procedure to generate the optimal modified 

distribution functions. The cross-entropy method can be implemented using both non 

sequential and sequential Monte Carlo simulations. 

  The CE method using non-sequential MCS has been implemented in generation 

capacity reliability (GCR) evaluation, where the system transmission constraints are 
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ignored [3] and the method is tested using a fixed load model and a multilevel load model. 

A CE based sequential Monte Carlo simulation method for GCR evaluation is implemented 

in [4], where time dependent systems are considered and it gives a comparison between 

different CE based and non-CE based Monte Carlo simulation algorithms. They are tested 

on an IEEE RTS 96 and a modified RTS 96 system. These papers show that CE method is 

a computationally improved method to simple Monte Carlo methods, as it reduces the 

sample size and consequently the computation time. 

Reference [5] implements the CE method in a composite power system model using non 

sequential Monte Carlo Simulation, where the indices are calculated for both single area 

and multi area power systems. Reference [6] implements the CE method using quasi 

sequential Monte Carlo methods, where renewable energy sources are integrated in the test 

system. The CE method has been improved in [7] by assuming the load to follow a 

Gaussian distribution and using a truncated Gaussian distribution for the load in the training 

phase instead of having a fixed load. Here a different mathematical model is used for DC 

OPF where instead of calculating the load curtailment, the excess load served is calculated. 

These are implemented on a single and multi-area reliability test systems. 

A three stage CE IS method is implemented in [8] for degenerate cases. Here a third 

stage is employed before the normal CE algorithm to detect the degenerate parameters. A 

parallel cross entropy optimization method has been implemented in [16]. 

 In this thesis we have extended the sequential Monte Carlo simulation for composite 

system reliability evaluation. Using the developed tools, we have explored the conditions 
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under which importance sampling based cross entropy method is computationally 

advantageous over simple Monte Carlo simulations.   

Time Limited Energy Resources 

Traditionally energy limited generation units have been of the type of hydro units with 

limited storage capacity and they have been included in reliability studies either through 

load modification or capacity modification approach [21]. These units have been treated 

as an integral part of the installed capacity system supplying load and not used just in 

emergency situations. Their modeling in reliability studies has depended on whether they 

are used as base load units or peak shaving units. If they are part of peak shaving, then 

their order of commitment is important as they may or may not be energy limited 

depending on the level of load, they are called upon to serve. These units are then modelled 

by modification of their forced outage rates or capacity modification [22, 23]. 

The capacity markets such as New York Independent System Operator (NYISO) are 

expanding to include the time-limited energy resources in their planning and forecasting 

studies for power system adequacy. By calculating the effective capacities of these 

resources, we can understand their performance and contribution of these time-limited 

energy sources to maintain the power system adequacy. These resources are required by 

power system operators to respond to curtailment request for a minimum time. The 

effective capacity is the capacity value of the resources used to produce an equivalent 

reliability benefit. Most of the literature evaluates effective capacity using multi-area 
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reliability systems, which does not consider transmission congestion [24][25] in sufficient 

detail.  

Technical report [24] evaluates the effective capacity of time limited sources where 

these are called special case resources (SCR). Here the effective capacity as well as 

penetration level of the sources are studied using a GE MARS software which is a multi-

area reliability program, on the New York Independent System Operator (NYISO). This 

program uses only the effective capacity of tie lines between the areas. The composite 

system reliability evaluation uses more detailed information of the transmission system.  

In this thesis we have evaluated and compared the effective capacity of time limited 

energy resources using two different procedures in the context of composite system. To 

our knowledge this the first-time capacity credit is calculated using composite power 

system model. The CE method used for composite system reliability evaluation is used 

here for the reliability index calculation phase of the procedure.   



7 

CHAPTER II 

COMPOSITE SYSTEM RELIABILITY EVALUATION USING 

SEQUENTIAL SIMULATION 

The Monte Carlo simulation is implemented, in this research, as a sequential 

simulation instead of a non -sequential simulation. The sequential simulation steps through 

the year chronologically, recognizing the status of equipment is not independent of its 

status in adjacent hours. Equipment forced outages are modeled by taking the equipment 

out of service for contiguous hours, with the length of outage period being determined 

from the equipment’s mean time to repair. Sequential simulation can model issues of 

concern that involve time correlations and can be used to calculate indices such as 

frequency and duration.    

A non-sequential simulation process does not move through time chronologically, 

but considers each hour independent of every other hour. Because of this the model cannot 

accurately model issues that involve time correlations such as maintenance outages and 

cannot be used to calculate indices such as frequency and duration. 

Importance Sampling and Cross Entropy Method 

Importance Sampling is a variance reduction technique, where using a modified 

probability distribution function g*(X) (X is the system states) of the components of the 

system, the rare events (failure events in reliability evaluation) or loss of load events are 

sampled more frequently. An optimal choice for this modified distribution is the 

distribution which yields the zero-variance estimator. 
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As there is no direct procedure to generate the modified probability distribution 

function, an iteratively updated probability distribution function f(Xi,v) (Xi is the system 

states and v is the distorted parameters) is generated by distorting the original parameters. 

The cross-entropy method [1] gives an adaptive iterative procedure to find the distorted 

parameters. In Importance sampling the modified probability distribution is chosen from 

the iteratively updated distribution such that the distance between the optimal probability 

distribution and iteratively updated probability distribution is minimum. A particular 

measure of distance between the two distributions is the Kullback-Leibler distance 

(Appendix A), which is termed as the Cross Entropy between the optimal g*(X) and 

f(Xi,v). The Cross Entropy based approach is an accelerated Monte Carlo approach which 

improves the computation efficiency.  

The system State Xi is generated as [XG,XL,Xload], which is a vector containing 

generator states , transmission states and load level. The XG and XL are calculated using 

the component unavailability vector u = [uG,uL] where uG  and uL are sub vectors for 

generation and transmission. The up/down states of generator and transmission lines are 

determined after generating random numbers for each component and comparing with its 

unavailability vector. The load is randomly generated from the load curve. The reliability 

adequacy indices such as Loss of Load Probability (LOLP), Expected Energy not Supplied 

(EENS) etc. are used for reliability assessment. For a random sample X1, X2, …. XN 

generated considering [uG,uL] the generator and transmission line unavailabilities and 



9 

probability distribution, the reliability index calculated from a Monte Carlo simulation is 

given by 

𝐸(𝐻) =
1

𝑁
∑ 𝐻(𝑋𝑖)  (1)

𝑁

𝑖=1

 

Where H(Xi) is the test function for computing the reliability index. H(Xi) = 1 if there is 

loss of load event and H(Xi) = 0, otherwise. 

For a system using importance sampling where rare events are sampled more often, 

the reliability index calculated from the samples X1,X2,….XN generated considering 

distorted unavailabilities of generators and transmission lines [vG,vL] and probability 

distribution, with likelihood ratio (W)  is given by 

𝐸(𝐻) =  
1

𝑁
∑ 𝐻(𝑋𝑖)𝑊(𝑋𝑖; 𝑢, 𝑣)

𝑁

𝑖=1

  (2) 

Likelihood Ratio 

The expression W(Xi;u,v) is the likelihood ratio between the two probability 

distribution functions and is a correction factor introduced to avoid any biased estimates. 

Here the density functions f(Xi,u) and f(Xi,v) represent Bernoulli distribution, W(Xi;u,v) 

is given by 

𝑊(𝑋𝑖; 𝑢, 𝑣) =  
𝑓(𝑋𝑖; 𝑢)

𝑓(𝑋𝑖; 𝑣)
=  

∏ (1 − 𝑢𝑗)
𝑥𝑗

(𝑢𝑗)(1−𝑥𝑗)𝑁𝑐
𝑗=1

∏ (1 − 𝑣𝑗)
𝑥𝑗

(𝑣𝑗)(1−𝑥𝑗)𝑁𝑐
𝑗=1

 (3) 

Xi=X1,X2,….XN are random samples of generating states, uj represents unit unavailability, 

vj  represents distorted unavailability. xj represents availability of a component, with a 

value 1 if the component is available and 0 if not. Nc is the total number of components. 
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Here likelihood ratio W for the composite system is given by 

W = WG*WL         (4) 

𝑊𝐺 =  
∏ (1 − 𝑢𝐺)𝑥𝐺(𝑢𝐺)(1−𝑥𝐺)𝑁𝐺

𝐺=1

∏ (1 − 𝑣𝑗)
𝑥𝐺(𝑣𝐺)(1−𝑥𝐺)𝑁𝐺

𝐺=1

 (5) 

𝑊𝐿 =  
∏ (1 − 𝑢𝐿)𝑥𝐿(𝑢𝐿)(1−𝑥𝐿)𝑁𝐿

𝐿=1

∏ (1 − 𝑣𝐿)𝑥𝐿(𝑣𝐿)(1−𝑥𝐿)𝑁𝐿
𝐿=1

 (6) 

WG and WL are the likelihood ratios of generators and transmission lines respectively. NG, 

NL are total number of generators and transmission lines. uG, vG, uL, vL are generator and 

transmission line original and distorted unavailabilities. xG, xL are the generator and 

transmission lines states represented by 1 if up and 0 if down. 

The sequential simulation using cross entropy method uses the distorted parameters of the 

system generators and transmission lines. 

Evaluation of Distorted Parameters for the Sequential Simulation 

The initial undistorted unavailabilities of the power system components are given 

by 𝑢 =  
𝜆

(𝜆+µ)
. Where λ and µ are the component failure and repair rates respectively. 

During the cross-entropy procedure, a distortion is applied to the unavailabilities and a 

new distorted unavailability parameter are generated. So, during the sequential simulation 

to calculate the residence time of each state the new failure and repair rates, λ* and  µ* 

rates generated from distorted parameters are used. 
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The new distorted parameters [3] are given by, 

µ* = µ       (7) 

𝜆∗ =  
𝑣µ ∗

(1 − 𝑣)
 (8) 

To maximize the number of failure events in a time period the distortion is applied only 

to the failure rate. 

The cross-entropy algorithm as given in [1][3] is used to evaluate the required distorted 

parameters of the proposal distribution. The CE algorithm steps are given below.  

Cross - Entropy algorithm 

Step1: Initialize all the parameters such as N (number of samples), ρ (multi-level 

parameter), α (smoothing parameter), Nmax (maximum sample size) and Limiting Load or 

threshold load (Ld) below which the samples are considered as loss of load samples.   

Step 2: Define V0 = u, that is the initial undistorted unavailabilities of Generators and 

Transmission lines. Set t = 1 (iteration counter).  

Step 3: Generate system states X1, X2, …. XN from the initial unavailabilities according to 

the Bernoulli mass function. 

Step 4: Evaluate the system performance function P(Xi) for all Xi. A DC power flow 

analysis is performed and load curtailment is calculated. If any power flow violations occur 

then an optimization algorithm based on linear programming, described in (Appendix B), 

is solved. P(Xi) is the sum of capacity of all the generators. If a load curtailment occurs 

then P(Xi) is recalculated as  
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P(Xi) = Lmax – load Curtailment.   (9) 

Step 5: Sort the calculated performance functions P(Xi) in an ascending order such as P = 

[P1, P2, ….PN], P1<P2<…<PN. Then calculate the (1-ρ) th quantile of performance function 

P[(1-ρ)*N]. 

Step 6: If P[(1-ρ)*N] <Ld, set L = Ld, otherwise set L = P[(1-ρ)*N]. Then evaluate the 

function H(Xi) for all Xi, such that H(Xi) = 1 if P(Xi) <L and H(Xi) = 0, otherwise. 

Step 7: Calculate the Likelihood ratios W(Xi,u,vt-1), Where   W  =  WG*WL. Update the 

new distorted parameters vGt,vLt 

𝑣𝐺𝑡𝑗 = 1 −
∑ 𝐼{𝑃(𝑋𝑖)<𝐿}𝑊(𝑋𝑖; 𝑢, 𝑣)𝑋𝑖𝑗

𝑁
𝑖=1

∑ 𝐼{𝑃(𝑋𝑖)<𝐿}𝑊(𝑋𝑖; 𝑢, 𝑣)𝑁
𝑖=1

 (10) 

𝑣𝐿𝑡𝑗 = 1 −
∑ 𝐼{𝑃(𝑋𝑖)<𝐿}𝑊(𝑋𝑖; 𝑢, 𝑣)𝑋𝑖𝑗

𝑁
𝑖=1

∑ 𝐼{𝑃(𝑋𝑖)<𝐿}𝑊(𝑋𝑖; 𝑢, 𝑣)𝑁
𝑖=1

 (11) 

The derivation for generating the distorted parameters vGt, vLt is given in Appendix A. 

Step 8: If L=Ld, then the training phase ends and go to Step 9 or else increase the iteration 

counter t and go to step 3 for next iteration. 

Step 9: Start the Testing Phase. 

The reference [3] implements the CE based sequential simulation for Generation 

capacity reliability evaluation where transmission constraints are ignored. Here we have 

used the sequential simulation and implemented it to a composite system which includes 

transmission constraints. Including the transmission constraints complicates the task of 

evaluating the reliability indices as it requires a power flow analysis and an optimal power 
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flow algorithm has to be run to eliminate any violations in operating limits (eg., circuit 

overloads) if any violations occur. 

Testing phase (sequential simulation) 

For the testing or evaluation phase of sequential simulation, the optimal distorted 

parameters are derived from the initial training phase. Here the load is taken from the hourly 

load curve [17] and is not distorted. 

Step 1: From the distorted parameter vector v the new transition rate vectors µ* and λ* are 

generated for the generators and transmission lines. Initialize NY max (maximum 

simulated years ~5000) 

Step 2: Generate the random sample X1 from the new distorted transition rate vectors and 

the sample residence time (Tres (Xi)) is calculated. Initialize Tsim (~8736 hours), T_Down, 

TWDown, T_Up, TWUp to Zero. 

Step 3: Evaluate the Current sample likelihood ratios W(Xi;u,v). 

Step 4: Transition to the next system states, and sample the residence time from the 

chronological load model and the distorted transition rate vectors. Calculate the cumulative 

sample times Tres total = ΣTres(Xi). If the total residence time after the current sample is 

greater than Tsim, the residence time of the current sample is reduced and same sample is 

used as starting sample for the next year. 

Step 5: Once all the sample states and likelihood ratios for a simulation year is generated 

all the states are evaluated to generate each sample up time and down time. Here a parallel 

computing technique is used to calculate the sample up and down times to reduce the 
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computational time. The MATLAB parallel tool box is used to reduce the computational 

time by evaluating all the states parallelly using the multi cores of the processor. Go to step 

6 if down time or go to step 7 if up time. 

Step 6: Accumulate the Down time 

T_Down  =  T_Down+ti;   (12) 

TWDown = TWDown+(ti*W(Xi,u,v));    (13) 

Step 7: Accumulate the Up time 

T_Up = T_Up+ti;   (14) 

TWUp = TWUp + (ti*W(Xi,u,v))  (15) 

Step 8: The LOLP index for this simulation year is evaluated using a weighted mean 

approach. 

𝜔(𝑁𝑌) =  
(𝑇𝑊𝑈𝑃 + 𝑇𝑊𝐷𝑜𝑤𝑛)

𝑇𝑠𝑖𝑚
 (16) 

𝐿𝑂𝐿𝑃(𝑁𝑌) =  
(𝑇𝑊𝐷𝑜𝑤𝑛 ∗ 𝜔(𝑁𝑌))

(𝑇𝑊𝑈𝑝 + 𝑇𝑊𝐷𝑜𝑤𝑛)
 (17) 

Step 9: The Coefficient of Variation (β) is calculated and Compared with the βmax. If it falls 

below βmax or NY>NYmax the simulation is stopped. Or else go to step 2. 

Step 10: Evaluate the LOLP index 

𝐿𝑂𝐿𝑃 =  
∑ 𝐿𝑂𝐿𝑃(𝑖)𝑁𝑌

𝑖=1

∑ 𝜔𝑁𝑌
𝑖=1 (𝑖)

(18)
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Acceleration using parallel pool 

Using the parallel computing capacity of any desktop or laptop for simulations 

helps us in improving the computation efficiency. Using Matlab for parallel computing 

[19], we need to first assign number of cores we need for simulation, depending on the 

availability of cores. Once the number of cores is specified the main Matlab creates the 

same number of worker Matlabs. Main Matlab divides the work and sends the data and 

code to the workers. The workers execute the assigned iterations and send results back to 

the main Matlab. Then main Matlab combines results and continues executing statements 

after parallel computing. This causes an extra overhead time but for a large system the 

parallel computing benefit is far higher than the overhead time. 

For example, if the main Matlab has to evaluate 100 samples with four cores it divides the 

work between the workers and each worker evaluates 25 samples.        

Results  

IEEE RTS 79 test system 

The Sequential Monte Carlo-Cross Entropy Method is illustrated using IEEE RTS 79 

[16]. To show the sensitivity of computation time the parameters are varied and the change 

in computation time is recorded. The IEEE RTS 79 is a 24-bus system with 32 generating 

units and 38 transmission lines. The maximum generation capacity is 3405 MW. The load 

is a correlated hourly load with a peak load of 2850 MW. The load is correlated amongst 

the buses. All the simulations are performed on Matlab using an Intel 4 core, 3.4GHz 

processor. 
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Varying the multi core for computational efficiency 

Here the number of cores or workers used for computing is varied and computational 

time is noted. All the computations are done at system peak load of 2850 MW until a 2% 

convergence is reached. 

It can be observed from the Table I that as the number of cores of the computer utilized 

for evaluating the states increases the computational time decreases. As expected, the 

improvement ratios as a function of cores are about the same in CE-ISMC and SMC. 

Table 1 Results with varying cores 

Number 

of cores 

LOLP 

(10-3) 

Ny 

(years) 

Time 

(Secs) 

Ratio of improvement 

in time 

#core1/#core1,2,4 

CE-

ISMC 

1 1.17 182 5,753 1 

2 1.16 177 2,893 1.98 

4 1.18 181 1,987 2.89 

SMC 1 1.1 6990 46,498 1 

2 1.1 6957 24,919 1.86 

4 1.1 7061 17,130 2.71 



17 

Table 2 Results with varying Coefficient of variation 

COV 

(β) (%) 

LOLP 

(10-3) 

Ny 

(years) 

Time 

(Secs) 

Time saving= 

SMC-CE-ISMC 

CE-ISMC 5 1.1 26 335 2359 

2 1.1 179 1,846 15,284 

1 1.1 775 8,000 60,658 

SMC 5 1.1 1077 2,694 

2 1.1 7061 17,130 

1 1.1 28204 68,658 

Varying coefficient of variation (COV) 

The COV value is varied from 5% to 1% and the change in LOLP and computation 

time is observed. This simulation is implemented at a system peak load of 2850 MW using 

4 cores. 

It can be seen from Table 2 and Fig 1 that for COV of 5%, the CE IS reduces 

computation time by 2395 seconds whereas for 1% the time is reduced by 60,658 seconds. 

Therefore CE-IS becomes computationally more advantageous as value of COV is made 

tighter. 
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Figure 1 Time Saving by varying Coefficient of Variation 

Varying the system peak load 

In this case the system peak load is increased and decreased by 300 MW from the 

base peak load of 2850 MW of the chronological Load Curve. 

The LOLP and the computation time is evaluated and compared with the Simple Monte 

Carlo Simulation. All the values are calculated for a 2% convergence using 4 cores. 
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Table 3 Results with varying system peak load 

LOAD 

(MW) 

LOLP 

(10-3) 

Ny 

(years) 

Time 

(Secs) 

Time saving= 

SMC-CE-

ISMC 

CE-

ISMC 

3150 5.9 163 1,637 5101 

2850 1.1 185 1,978 15152 

2550 0.14 224 2,666 63098 

SMC 3150 6.0 1696 6,738 

2850 1.1 7061 17,130 

2550 0.14 39329 65,784 

As can be seen from the table 3 and Fig 2, the simulation requires a greater number of 

samples and increased computation time before converging as the load decreases. This is 

because the LOLP increases with higher peak load and simulation time is inversely 

proportional to the LOLP being estimated [20]. Therefore, the CE-IS MC becomes 

computationally more advantageous with higher reliability systems. 



20 

Varying the system outage rates 

The component outage rates are varied and the change in LOLP and computation time 

are observed. The Forced outage rate is the generator probability of failure. The forced 

outage rate is changed uniformly for all the generating components. This is carried out at 

a system peak load of 2850 MW and 2% convergence criteria. 

It can be observed from the Table IV and Fig 3 that increasing the forced outage rates 

increases the loss of load and decreases the computational time. Similar to the previous 

case, increased reliability leads to higher savings in computational time with the CE-IS 

use in MC. 

Figure 3 Time Saving by Varying Outage rate 
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Table 4 Results with varying Forced Outage Rates 

Outage 

Rate 

(multiplier) 

LOLP 

(10-3) 

NY 

(Years) 

Time 

(Secs) 

Time 

saving= 

SMC-CE-ISMC 

CE-

ISMC 

1 1.1 194 2,099 15031 

1.25 2.2 156 1,808 8854 

2 9.4 85 1,058 3746 

SMC 1 1.1 7061 17,130 

1.25 2.2 3617 10,662 

2 9.6 989 4,804 
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CHAPTER III  

EFFECTIVE CAPACITY EVALUATION OF TIME LIMITED AND ENERGY 

LIMITED RESOURCES 

As  by New York Independent system operator [24], energy limited resources are 

a resource that, due to environmental restrictions on operations, cyclical requirements, 

such as the need to recharge and refill, and other non-economic reasons, is unable to 

operate continuously on a daily basis, but is able to operate a limited number of 

consecutive hours each day. Examples of energy limited resources are hydro units that are 

subjected to recharge periods, storage systems or generators with NOx/Sox restrictions on 

run times. 

The need for calculating effective capacity of duration limited resources has been 

highlighted by the plans to incorporate these in the capacity markets [24]. The Effective 

capacity of the time limited energy resources is the amount of perfect capacity of the 

resource which would provide equivalent reliability benefit. Reliability benefit is the 

impact the resource has on the reliability indices such as loss of load probability. So, 

effective capacity is the increase of load the time limited resource can serve and maintain 

the reliability of the system.    

The time limited energy units are added at some of the buses in the composite 

system model. In the composite model the generation (conventional and time limited) and 

load at different buses are connected together using transmission lines. In the composite 

system the constraints imposed by the capacities and failures of transmission lines are also 
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considered whereas in a generation planning model the constraints on transmission lines 

are not considered. In this chapter the Importance sampling based cross entropy method 

investigated in the chapter II for composite system reliability evaluation is used for the 

reliability index calculations.  

The effective capacity of the time limited energy units can be calculated using two 

approaches. In one procedure, the effective load is added uniformly across the load curve. 

In the other procedure it is added at the peak load point of the load curve and all other 

hours are updated proportionally. The time duration limited units are added as   

discontinuous units. For example, if an energy unit has the capacity to work for 4 h it can 

be utilized continuously for 4 hours or used as a combination of smaller intervals totaling 

4 hours within a day. 

General algorithm [25][26] for the effective capacity evaluation is described in the 

following for these two scenarios mentioned. 

Effective Capacity Evaluation 

For calculating effective capacity, the reliability indices will be calculated using 

sequential Monte Carlo simulation including importance sampling based cross entropy 

method.  The effective capacity of limited time energy sources is calculated as follows: 

Step 1: First the reliability index without adding the limited time sources is evaluated. 

Step 2: The limited time sources at the respective buses are added and the reliability index 

calculated. The reliability improves, i.e., the LOLP index value decreases. 

Step 3: Procedure 1: To calculate the effective capacity which would provide the same 

reliability benefit, the load is added uniformly in steps of 50 MW in the hourly load curve. 
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Step 3: Procedure 2: To calculate the effective capacity which would provide same 

reliability benefit, the load is added uniformly in steps of 50 MW to the annual peak load 

in the hourly load curve. All the loads in the hourly load curve will increase proportionally 

to the annual peak load. 

Step 4: Once the load is added the reliability index is evaluated and if the reliability index 

reaches the earlier value without the time limited resources the iteration is stopped. Or else 

go to step 3 and increase the load and reevaluate the reliability index.  

Step 5: The load value at which the reliability index matches is the effective capacity of 

the time limited sources.  

Results 

Effective capacity evaluation adding load uniformly to load curve 

In this case the load is added uniformly to the load curve, across all the hours. From 

the table 5 and figure 4 it can be observed that if the limited time resource generation 

capacity is less compared to the peak load, it can reach maximum effective capacity even 

if it works for less time. The 200 MW source reaches maximum effective capacity if it 

works for 12 hours whereas the 400 MW source reaches maximum capacity at 16 hours 

and 800 MW source at 24 hours. 

In this case the generation sources are used discontinuously, as all the hours the source 

is available can be used whenever the loss of load occurs. All the simulations are done 

until the reliability index loss of load probability reaches 0.0012 and a convergence of 5%. 
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Figure 4 Plot of effective capacity vs resource duration for discontinuous time 

limited resource 

Table 5 Effective capacity of discontinuous time limited energy sources 

Resource 

Duration 

(Hours) 

Effective 

capacity of 200 

MW Source  

Effective 

capacity of 400 

MW Source 

Effective 

capacity of 800 

MW Source 

4 100 115 160 

8 150 230 260 

12 200 350 500 

16 200 400 700 

20 200 400 755 

24 200 400 800 
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Figure 5 Plot of effective capacity vs resource duration for continuous time limited 

resource 

Table 6 Effective capacity for continuous time limited resource 

Resource 

Duration 

(Hours) 

Effective 

capacity of 200 

MW Source 

(MW)  

Effective 

capacity of 400 

MW Source 

(MW) 

Effective 

capacity of 800 

MW Source 

(MW) 

4 100 100 110 

8 150 210 220 

12 200 335 500 

16 200 400 680 

20 200 400 735 

24 200 400 800 
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In table 6 and figure 5 the limited energy source is used continuously i.e., whenever 

the source is used to supply the load it cannot be stopped until the time it can be used is 

ended.  The effective capacity reaches maximum when the time limited source is a 12 hour 

source for 200 MW, a 16 hour source for 400 MW and a 24 hour source for 800 MW. 

It can be observed from figures 4 and 5 that there is not much difference in the 

effective capacity calculated. As all the different energy limited sources reach their 

maximum effective capacity when they work for the same amount of time in both 

continuous and discontinuous cases. 

Effective capacity evaluation adding load at peak hour 

In this case the load is added at the annual peak hour and the load curve is adjusted 

proportionately for all hours. Here all the simulations are run until a COV of 5% is reached 

and loss of load probability reaches the same value as before adding time limited 

resources. 
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Table 7. Effective capacity for discontinuous time limited resource with load added 

at peak hour 

Resource 

Duration 

Effective 

capacity of 200 

MW Source  

Effective 

capacity of 400 

MW Source 

Effective 

capacity of 800 

MW Source 

4 135 160 160 

8 200 300 315 

12 220 415 645 

16 220 445 900 

20 220 445 900 

24 220 445 900 

Figure 6 Plot of effective capacity vs resource duration for discontinuous time 

limited resources with load added at peak load. 
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It can be observed from table 7 and figure 6 that the effective capacity calculated 

can be greater than the generation capacity as the effective load added is not uniform 

across the load curve but at non-peak hours it is less than at the peak load. For longer 

resource durations the added capacity the resource additions over compensate the decrease 

in reliability due to load increase. 

When the time limited energy sources are used continuously, it can be inferred from table 

8 and figure 7 that the effective capacity evaluated is similar to that of table 7 and figure 

6. 

Table 8 Effective capacity for continuous time limited resource with load at peak 

hour 

Resource 

Duration 

Effective 

capacity of 200 

MW Source  

Effective 

capacity of 400 

MW Source 

Effective 

capacity of 800 

MW Source 

4 115 150 160 

8 200 280 300 

12 220 420 630 

16 220 445 900 

20 220 445 900 

24 220 445 900 
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Figure 7 Plot of Effective capacity vs resource duration for continuous generation 

and load added to peak hour. 
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CHAPTER IV

CONCLUSION 

Composite System Reliability Evaluation 

It should be noted that the results obtained by Monte Carlo are only estimates of true 

values and not the true values., the estimates have a variance. The estimates approach the 

true values as the variance of estimates is reduced by increasing the sample size. 

Importance sampling helps by reducing the variance of the estimator and thus a smaller 

sample size is needed to get the same coefficient of variation. The coefficient of variation 

determines the gap between the upper and lower bounds with a given level of confidence. 

The smaller the coefficient of variation, the tighter are the bounds around the true values. 

The main advantage of using variance reduction technique of Importance sampling is the 

reduction in computational time. This paper has explored the conditions under which the 

computation time is reduced more favorably by implementation of IS and thus it becomes 

advantageous to use this variance reduction approach. In general, the conditions which 

lead to higher computation time for the straight MCS tend to favor the use of IS for 

relatively higher reduction of computation time by reducing the variance of estimates. The 

conditions which lead to higher computation time are either the ones that lead to higher 

reliability, i.e., lower loss of load probability or the ones where tighter bounds on estimates 

are needed to have higher confidence in the estimated results. 
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Time limited Energy Resources 

It is understood from the effective capacity evaluation studies that, to properly evaluate 

the effective capacity of time limited and energy limited resources, it is better to add the 

extra load the resource can serve uniformly across the load curve i.e., all the hourly loads 

increases uniformly with the same amount of load across the annual load curve. If the 

annual load curve is changed by adding the load at the annual peak and the annual load 

curve is adjusted proportionately for other hours, there is a mismatch in the evaluated 

effective capacity. It is observed that for the time limited resources there is not much 

difference in the evaluated effective capacity when they are used continuously and 

discontinuously. This is because the contributions to reliability indexes come primarily 

around the peak period. It can also be seen that higher the capacity of the resource, the 

longer is the duration of the resource to reach maximum effective capacity.   
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APPENDIX A 

KULLBACK – LEIBLER DISTANCE 

Derivation of v parameter using Kullback-Leibler Distance 

This appendix provides a detailed derivation on calculating the v parameter for 

Importance sampling as given in [1]. 

With samples X1, X2, …XN generated from secondary density g*(X) the reliability index 

is calculated using an unbiased estimator as 

𝑟 =  
1

𝑁
∑ 𝐼{𝑃(𝑋𝑖<𝐿)}

𝑓(𝑋𝑖; 𝑢)

𝑔(𝑋𝑖)
 (19)

𝑁

𝑖=1

 

The best way to estimate r is given by 

𝑔(𝑋𝑖) =  
𝐼{𝑃(𝑋𝑖<𝐿)}𝑓(𝑋𝑖; 𝑢)

𝑟
 (20) 

Using this g we will have a zero variance estimator for r and it requires only one 

sample. But this approach is unworkable because of the unknown parameter r which we 

want to estimate. So, the idea of cross entropy is to choose g from a family of densities 

f(.;v), i.e. to calculate the reference parameter v such that the distance between the 

densities g* and f(.;v) is minimum. This distance between the densities is represented by 

Kullback -Leibler distance or Cross Entropy. 

The Kullback - Leibler distance or Cross Entropy is defined as 

𝐷(𝑔∗, 𝑓) =  𝐸(𝑙𝑛 (
𝑔∗(𝑋)

𝑓(𝑋; 𝑣)
)) 

=  ∫ 𝑔∗(𝑋) ln(𝑔∗(𝑋)) 𝑑𝑥 − ∫ 𝑔∗(𝑋) ln(𝑓(𝑋; 𝑣)) 𝑑𝑥     (21)
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Minimizing Kullback-Leibler distance is equivalent to maximizing 

max ∫ 𝑔∗(𝑋) ln(𝑓(𝑋; 𝑣)) 𝑑𝑥                      (22)

This can be written as: 

𝑀𝑎𝑥 𝐷(𝑣) = max 𝐸 (𝐼{𝑃(𝑋<𝐿)} ln(𝑓(𝑋, 𝑣)))        (23)

Using Importance Sampling and a change of measure f(.;v) we can rewrite it as 

Max D(v) = max E (I{P(X)<L} W(X;u,v) ln(f(X;v)))        (24) 

for any reference parameter v, where  

𝑊(𝑋; 𝑢, 𝑣) =  
𝑓(𝑋; 𝑢)

𝑓(𝑋; 𝑣)
 (25) 

The optimal solution v* can be written as 

v* = argmax Ew (I{P(X)<L} W(X;u,v) ln(f(X;v)))                   (26) 

The D(v) is differential with respect to v, and the solution can be obtained by solving the 

following system of equations. 

1

𝑁
∑ 𝐼{𝑃(𝑋𝑖)<𝐿}𝑊(𝑋𝑖; 𝑢, 𝑣)𝛻 𝑙𝑛( 𝑓(𝑋𝑖, 𝑣)) = 0  (27)

𝑁

𝑖=1

 

Now 

𝜕

𝜕𝑣𝑗
(ln(𝑓(𝑋𝑖; 𝑣))) =

−𝑥𝑖

𝑣𝑗(1 − 𝑣𝑗)
+

1

𝑣𝑗
 (28) 

Substituting this equation in the above equation, the jth equation becomes 

∑ 𝐼{𝑃(𝑋𝑖)<𝐿}𝑊(𝑋𝑖; 𝑢, 𝑣)(
−𝑋𝑖𝑗

𝑣𝑗(1 − 𝑣𝑗)
+

1

𝑣𝑗
)

𝑁

𝑖=1

= 0 (29)
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By solving the equation (29) we get 

𝑣𝑗 = 1 −
∑ 𝐼{𝑆(𝑋𝑖)<𝐿}𝑊(𝑋𝑖; 𝑢, 𝑣)𝑋𝑖𝑗

𝑁
𝑖=1

∑ 𝐼{𝑆(𝑋𝑖)<𝐿}𝑊(𝑋𝑖; 𝑢, 𝑣)𝑁
𝑖=1

(30)
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APPENDIX B

DC POWER FLOW MODEL 

This appendix describes the DC Power flow model used in the simulations. 

The DC power flow equation and line flow equations are 

Bθ+G = D (31) 

b𝐴̂θ = F       (32) 

where  

Nb = Number of buses 

Nt = Number of transmission lines 

b    = Nt x Nt primitive matrix of transmission line susceptances 

𝐴̂ = NtxNb element node incidence matrix 

B = NbxNb augmented node susceptance matrix 

θ = Nb vector bus voltage angles 

G = Nb vector of bus Generation levels 

D = Nb vector of bus loads 

F = Nt vector of transmission line flows 

 A computationally efficient selective approach based on DC power flow as given in [17] 

is first used to find a feasible flow.  

This approach consists of the following steps. 
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Step 1: The total injection at all buses are calculated by subtracting the bus loads from 

available generations at buses. 

Step 2: If the sum of positive injections is greater than the sum of negative injections, the 

positive injections are scaled down proportionately so that the sum equals that of negative 

injections and vice versa if net negative injections are greater than net positive injections. 

Step 3: once power balance is accomplished the G vector generated from step 2 is used in 

DC Power flow equation (31) to calculate θ, then θ is used in line flow equation (32) to 

calculate the line flows. 

If the line flows satisfy flow constraints a feasible flow is found and if load is curtailed 

then the reliability indices are updated. If the line flows do not satisfy the flow constraints 

a Linear Programming (LP) model is implemented to calculate the optimized line flows 

and load curtailment. This LP model is described as follows: 

Minimize Load Curtailment = Min∑ 𝐿𝐶𝑖
𝑁
𝑖=1

Subject to Constraints: 

Power balance: Bθ + G +LC = D 

Generation limit: 𝐺 ≤ 𝐺𝑚𝑎𝑥

Flow Limits:    𝑏𝐴̂𝜃 ≤ 𝐹𝑚𝑎𝑥

−𝑏𝐴̂𝜃 ≤ 𝐹𝑚𝑎𝑥

Load Limits:                𝐿𝐶 ≤ 𝐷 

Boundaries:      𝐺, 𝐿𝐶 ≥ 0      
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θ     unrestricted 

where  

LC = Nb vector of Load curtailments 

Gmax = Nb vector of maximum available bus generation levels 

Fmax = Nt vector of flow capacities of transmission levels 




