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ABSTRACT

Concurrent programs are ubiquitous, from the high-end servers to personal machines, due to

the fact of multi-core hardware. Unfortunately, it is difficult to write correct concurrent programs.

Stateless Model Checking (SMT) and Deterministic Replay are powerful techniques for system-

atic testing and reproducing concurrent failures. However, it is challenging to develop efficient

and practical SMT and bug reproduction systems due to the exponentially large thread interleaving

space which can be exacerbated when it comes to relaxed memory models. In this work, I introduce

my research efforts to address the challenges in developing fast and effective SMT and determin-

istic replay techniques. I present a new model checking technique based on maximal causality

reduction for verifying concurrent programs under different memory models. I also optimize the

model checker by using static dependency analysis to reduce the constraints size and introducing

a new equivalence for checking the seed interleavings, which I call switch equivalence to further

reduce the redundant exploration.

To debug heisenbugs more efficiently, I presents a new concurrency failure reproduction tech-

nique, H3, that enables reproducing concurrency bugs in production runs on commercial off-the-

shelf hardware for the first time. H3 integrates the hardware control flow tracing capability pro-

vided in recent Intel processors, Processor Tracing (PT), with symbolic constraint analysis. Com-

pared to a state-of-the-art solution, CLAP, this integration allows H3 to reproduce failures with

much lower runtime overhead and much more compact control-flow trace. Moreover, it allows us

to develop a highly effective core-based constraint reduction technique that reduces the complex-

ity of the generated symbolic constraints from exponential in the trace size to exponential in the

number of cores.
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1. INTRODUCTION

The multi-core hardware is not new to us anymore these days. Not only in the high-end servers,

they also appear in our personal computers and mobile devices. In order to make full use of the

multi-core CPUs, many softwares are developed using concurrency for higher performance, from

our daily used browsers, database systems, to big data platforms. Unfortunately, it is difficult to

write correct concurrent programs. Moreover, it is extremely hard to test and debug them. Con-

currency errors such as data races, atomicity violations, non-deterministic ordering and deadlocks

threaten the correctness and stability of our software and can cause severe problems such as huge

economy lost [3, 5] and even real-world disaster [6]. The reasons why it is more challenging to

reason about concurrent programs than sequential programs are as follows.

Concurrent Programs Are Difficult to Verify. Concurrent programs can generate a huge thread

interleaving space, while the bug may only manifest in a certain interleaving. It is impossible to

consider every interleaving to verify the correctness of a concurrent program. This problem is

exacerbated when it comes to relaxed memory models. It is known that sequential consistency

(SC) [7] is the most intuitive memory model, under which operations by different threads can in-

terleave but those by the same thread should always follow the program order. It is challenging

enough to verify concurrent programs under SC, because the number of different interleavings

grows exponentially with the number of threads and the length of program execution. To make

matters worse, most contemporary multiprocessors implement relaxed memory models (RMMs),

such as Total Store Order (TSO) and Partial Store Order (PSO) [8, 9] to achieve better perfor-

mance. For TSO and PSO, the verification problem is much more challenging because operations

by the same thread may no longer follow the program order. For instance, under TSO, a write and a

following read by the same thread can be re-ordered if they access different memory locations, and

under PSO, which is a further relaxation of TSO, two writes by the same thread can be re-ordered

if they target different locations.
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The ability to re-order operations from the same thread under TSO and PSO significantly

explodes the state-space over SC. Consider M concurrent threads each executing Ni operations

where i=1, 2, . . . ,M . The total number of interleavings under SC can be calculated by the formula
M∏
i=1

(∑M
j=iNj

Ni

)
[10], and that of allowing the reordering of operations can be calculated by the for-

mula (
M∏
i=1

Ni)!, i.e., the number of permutations of all operations. Consider only four threads and

four operations each (M=Ni=4). The number of interleavings under SC is 6 ∗ 107, whereas the

number of permutations is 2 ∗ 1013, which is 300,000 times larger.

Concurrency Bugs Are Difficult to Reproduce The behavior of a concurrent program is non-

deterministic as it can be impacted by the user input, how the thread interleaves, asynchronous

events and so on. Due to the non-determinism, concurrency bugs may disappear when re-executing

the program. Moreover, the program can exhibit more behaviors under relaxed memory models.

All these non-determinism makes the debugging of concurrent programs extremely difficult. As

a result, a technique that can faithfully reproduce the concurrency failure is of great significance

to the developers. However, most existing solutions either are too slow due to the high runtime

overhead incurred by tracing the shared memory dependencies, introduce the observer effect that

makes the Heisenbugs disappear [11, 12, 13], or require special hardware that does not exist [14,

15, 16, 17, 18].

1.1 Contributions

This dissertation presents four contributions to combat the challenges of developing more ef-

ficient and practical techniques to verify and debug concurrent programs: (1) a stateless model

checker for concurrent programs under relaxed memory models with maximal causality reduction

(MCR); (2) MCR-S: a work that uses static dependency analysis to reduce the complexity of the

constraints built by MCR; (3) SE-MCR: a work that reduces the state space of the concurrent pro-

gram by checking equivalent interleavings so that it makes the model checker more effective; and

(4) H3 a record and replay system that combines hardware flow tracing with offline constraints

analysis to reproduce concurrency failures.
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1.1.1 Maximal Causality Reduction for TSO and PSO

This dissertation presents an effective model checker for programs under two types of relaxed

memory models TSO and PSO. This work builds first-order constraints over an executed trace to

reason about the other possible interleavings that can be derived from the given trace. To support

TSO and PSO, it address two key problems: (1) How to soundly encode the semantics of TSO and

PSO (specifically the write-to-read and write-to-write reorderings) by relaxing the SC constraints

developed by Huang [19]? (2) How to deterministically replay TSO and PSO interleavings for

concurrent programs?

This work is built based on a prior work Stateless Model Checking with Maximal causality

Reduction (MCR) [19]. From a high-level perspective, this work uses constraints to reason about

the semantics of TSO and PSO. Under sequential consistency (SC) memory model, all the read and

write operations are executed following the program order. Different than SC, we build constraints

to allow read and write events to be re-ordered while respecting the semantics of the memory

models with store buffers (FIFO queues) under TSO and PSO. We assign one buffer to each thread

for TSO and multiple for PSO (each corresponds to a dynamic memory location) to achieve the

reordering. By invoking an off-the-shelf SMT solver to solve the constraints, new interleavings

are generated and are used to replay the program to explore new states. We further design a novel

algorithm to deterministically replay concurrent programs under TSO and PSO, where operations

in the generated interleavings can be re-ordered (i.e., does not follow the program order). The

key insight of the algorithm is to decide when to buffer a write and when to flush it into the main

memory by comparing the memory location of the executed operation with that of the operation

given in the generated interleaving. This work not only supports TSO and PSO, but can be easily

to be extended to support more relaxed memory models as long as the semantics can be encoded

into the SMT constraints.
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1.1.2 MCR-S: Speeding Up MCR with Static Dependency Analysis

Though MCR is powerful for verifying the concurrent programs, it it limited the fact that it is

pure dynamic and it only collects information (values and addresses, etc.) from the trace, which

does not reflect the dependency relation of two events. As a result, MCR has to conservatively

enforce all the reads that happen before a considered event e to return the same value as that in the

current trace so that e is reachable in the derived interleaving.

In light of this limitation, this dissertation presents MCR-S to optimize the constraints con-

structed by MCR. The essential idea of this work is to provide the static dependency information

between the events for the dynamic exploration. We use the system dependency graph (SDG) of

the program to identify whether a read has a control or data dependency on an event in the trace.

In the exploration of new schedules from a given trace, we rely on the dependency information to

decide what reads can influence the reachability of a later event, thus reducing the constraints that

make those reads return the same value.

1.1.3 SE-MCR: Reduce the State Space of MCR with Switch Equivalence

MCR reduces the number of explored interleavings by DPOR and iterative context bounding

(ICB) [20] by orders of magnitude, and it improves the scalability, efficiency, and effectiveness

over them significantly for both state-space exploration and bug finding in terms of data races and

null pointer dereferences (NPE). Although MCR gains a great performance improvement over the

POR based approaches, it does not achieve the minimum number of explored interleavings.

This dissertation presents a new algorithm, SE-MCR, applying the switch equivalence checking

to the MCR approach. The new algorithm contains two steps. After collecting the trace by execut-

ing the program along a given prefix, (1) it first computes all the seed interleavings derived from

the given trace to drive the program to new states; then (2) it checks if two interleavings can result

in equivalent executions in the future. If so, the algorithm makes one prefix (say P) remember the

other (say P ′). When we compute a new seed interleaving, suppose P ′′ from the trace that begins

with P , we ignore P ′′ if P ′′ equals to P ′. We formally prove that SE-MCRdoes not miss any states
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that MCR can produce and also avoids the redundant executions by MCR.

1.1.4 H3: Record and Replay on Commercial Hardware

In addition to verifying concurrent programs, which is sometimes limited to the scalability

issue, another effective approach to fixing concurrency bugs is to improve the efficiency of de-

bugging the concurrent program. However, as aforementioned, the bug may disappear when re-

executing the concurrent program due to the non-deterministic memory races. Therefore, the abil-

ity to reproduce software bugs is crucial for debugging.

Researchers have investigated significant efforts in record & replay (RnR) systems aiming to

eliminate the non-determinism. CLAP [21] is the most efficient software-based appraoch. It intro-

duces the idea of recording only thread-local information (i.e., thread-local control flow paths) and

then using offline constraint solving to reconstruct the shared memory dependencies. It is a promis-

ing solution for reproducing Heisenbugs because it does not record any cross-thread communica-

tion (data or synchronization); hence it requires no synchronizations during recording, which not

only reduces the runtime overhead but also minimizes the observer effect.

To enable a production-run RnR solution, however, CLAP is still unsatisfactory due to two im-

portant challenges. First, although CLAP is much faster than conventional solutions, the runtime

overhead incurred by CLAP using software path-recording is as large as 3X, which is unaccept-

able for most production environments. Second, the constraints generated by CLAP can be too

complex to solve. In the worst case, the complexity of the constraints is exponential in the trace

size. Despite that SMT solvers (e.g., Z3 [22]) are becoming increasingly powerful, in practice, the

constraints can become too large to solve in a reasonable time.

This dissertation presents H3, a new record & replay (RnR) system to reproduce Heisenbugs

using commercial hardware features and offline constraints analysis. Our key observation is that

both of the aforementioned challenges can be effectively addressed by hardware-supported control-

flow tracing. Moreover, hardware-supported tracing allows us to perform a significant reduction of

the constraints generated by CLAP because memory accesses executed on each core are ordered

internally. We develop a core-based constraint reduction technique that reduces the complexity of
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the constraints from exponential in the trace size to only exponential in the number of cores.

1.2 Roadmap

The remainder of this dissertation is organized as follows. Chapter 2 introduces the background

knowledge and the prior work on stateless model checking and record and replay systems. Chapter

3 presents our stateless model checker for concurrent programs under two kinds of relaxed memory

models. Chapter 4 addresses the scalability issue of maximal causality reduction, which generates

too complicated constraints to be solved for existing SMT solvers. It uses static dependency anal-

ysis to provide the dependency relation for the constraints analysis. Chapter 5 reduces the state

space of maximal causality reduction by introducing a coarser equivalence. Chapter 6 presents a

new record and replay technique, H3, which is achieved by combining commercial hardware fea-

ture and off-line constraints analysis to reduce the runtime overhead of existing techniques. Last,

Chapter 7 concludes the thesis and discusses the future work.
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2. BACKGROUND AND RELATED WORK

With multi-core architecture prevailing, programmers develop concurrent softwares to fully

take advantage of the parallel computing power. However, it is difficult to guarantee the correctness

of the concurrent software because of all the possible thread interleavings. One direction to address

this issue is stateless model checking, an automatic verification technique that explores all the

possible interleaving of a concurrent program. As the state space explodes when the size of the

program grows, it is difficult to consider every interleaving of a concurrent program. Consequently,

stateless model checkers are usually wrapped with an efficient reduction technique which removes

the redundant interleavings from the state space to make the model checkers more efficient and

scalable.

In addition to verification, the ability to reproduce the concurrence failure is also important

to developers. Record and Replay (RnR) systems are useful techniques for debugging concur-

rency bugs. As the execution of a concurrent program is non-deterministic, RnR records the non-

determinism, e.g., the ordering of the memory accesses, and then replays failure execution so that

the developer can analyze the root cause of the failure. Section 2.1 introduces the existing stateless

model checkers with the reduction techniques behind the model checkers. Section 2.2 presents the

current RnR systems from software/hardware based approaches.

2.1 Stateless Model Checking

Stateless model checking is a technique that systematically explores all the possible thread

interleavings of concurrent programs. Due to the state space explosion problem, a great effort has

been dedicated to reduction techniques to prune the equivalent executions from the state space.

The two most popular techniques are Partial Order Reduction [23, 24] and context bounding. POR

computes an equivalent class of interleavings by checking if one interleaving can be transferred

to another by swapping adjacent, non-conflicting events. POR executes only one interleaving

from such an equivalent class to avoid redundant executions. Context bounding, like VeriSoft
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[25], prioritizes executions with fewer context switches such that it can limit the state space to be

polynomial.

2.1.1 POR Based Model Checking

Dynamic Partial Order Reduction (DPOR) [26] computes the persistent sets on the fly more ac-

curately than the static POR does. Although DPOR improves the performance, the efficiency of its

reduction is heavily influenced by what process is chosen to execute at each point of the scheduling.

Optimal-DPOR proposed by Abdulla et al. [27, 28] attempts to reduce the state space further by

proposing a novel class of sets, called source sets, which are smaller than persistent sets and prov-

ably minimal. The source sets contain the processes that can be executed at a point of scheduling.

The difference between source sets and persistent sets is that source sets remove processes that

are equivalent to some processes already in the sets. Although it is claimed that Source sets obtain

an optimal reduction in the number of explored interleavings, it actually misses opportunities for

reducing the redundancy when there exist two writes by different threads that write the same value.

This approach will swap the order of the two writes to explore new states. Data-Centric DPOR

(DC-DPOR) proposed by Chalupa et al. [29]. presents a coarser equivalence(called as Observa-

tion Equivalence) comparing to the Mazurkiewicz equivalence. Given a trace, the Observation

Equivalence maps every read event to the write event it observes under sequentially consistent

semantics. DC-DPOR considers two traces equivalent if they contain the same read events, and

every read event observes the same write event in both traces. DC-DPOR shows that observation

equivalence can be exponentially more succinct than Mazurkiewicz equivalence [27].

2.1.2 Constraints Based Model Checking

Several other constraints-based approaches have also been proposed for verifying concurrent

programs, such as CheckFence [30], MemSat [31] and SATCheck [32]. Checkfence verifies con-

current data structures for relaxed memory models by explicitly encoding all relevent events into

boolean formulas. It first compiles the code to thread-local sequences and then encodes the se-

quence of instructions and the memory model into boolean constraints. It uses a SAT solver to
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search the erroneous executions. This approach is less automatic and it leaves it to the program-

mers to decide where to insert the fences when it finds bugs. Moreover, because of its static anal-

ysis, CheckFence lazily unroll the loops and it can miss bugs which only manifest in executions

that exceed the loop bounds. MemSat is a similar technqiue to CheckFence. It verifies various

weak memory models by specifying the memory model as a set of constraints in relational logic. It

takes as input a memory model described by a set of constraints and a test with assertions encoded

as constraints as well. By solving the constraints that encode both the memory specifications and

the program assertions, MemSat is able to find subtle bugs in test programs that satisfy the con-

straints. SATCheck is another SAT based approach for checking concurrent programs. Different

than CheckFence and MemSat, SATCheck is dynamic and builds constraints over a trace. Further-

more, instead of encoding a whole program to a SMT formula, SATCheck uses relative order to

encode only a single concrete execution into a SAT formula. SATCheck constructs an event graph

of each execution to capture the control-flow, memory operations, conditional branches, loops and

so on. Then it encode the graph to a SMT formula and searches new interleavings by using a SMT

solver to solve the formula. Each new interleaving will yield new behavior, e.g., executing a new

branch. The working process of SATCheck is very similar to MCR. However, SATCheck requires

the user to manually specify the store and load operations. Moreover, there is no guarantee

that SATCheck can cover all the behaviors of a concurrent program.

Huang [19] proposed a newly efficient reduction technique called Maximal Causality Reduc-

tion, which overcomes such redundancy problem by taking the values of reads and writes in each

trace into consideration. MCR regards the interleaving prefixes that enforce the same read to return

the same value as an equivalent class and only executes one of them. MCR computes the execution

sequence by constructing SMT constraints over the trace and leverages SMT solvers to solve the

constraints. It seems that MCR explores a minimal set of interleavings. But it still can explore

redundant executions if two adjacent execution sequences lead to the same state by swapping the

order of the two sequences. Another limitation of MCR is that it can generate very complicated

constraints which make it difficult for the solver to solve them in a reasonable time.
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DC-DPOR shares the similarity with MCR on maping a read event to a write event. However,

DC-DPOR can explore more executions than MCR as MCR considers the values of the read and

write events as well. For example, if two writes write the same value to the same memory location,

DC-DPOR would take two traces as inequivalent if the writes are executed in different ordering in

the traces, while MCR regards them as equivalent.

2.1.3 Model Checking for Relaxed Memory Models

The feasibility of verifying concurrent programs under relaxed memory models have been stud-

ied before [33, 34, 35]. Abdulla et al. [36] apply SMC techniques to TSO and PSO by adopting

a chronological trace presentation to relax the behavior of SC. Similar to [36], Zhang et al. [37]

develop an approach that extends the original DPOR algorithm [26] to support TSO and PSO.

The approach refines the dependent set to allow the reordering and introduces shadow threads to

simulate the non-determinism of independent events by each thread. Both of the two approaches

leverage DPOR to reduce the state space. However, since DPOR is limited by the happens-before

relation, these approaches are less effective than MCR.

CDSChecker [38] checks C/C++11 programs using a variation of the classic DPOR algorithm.

It exhaustively explores the behaviors of low-level concurrent structured under C/C++11. RCMC

[39] is a model checker for verifying programs running under RC11 [40], a repaired version of the

C/C++11 memory model without dependency cycles. This approach works directly on execution

graphs instead of enumerating thread interleavings as other POR based approaches do.

2.2 Record and Replay Systems

Researchers have proposed many different RnR systems, both at the software level [41, 42, 11,

21, 43, 44, 45, 46, 47, 48, 49] and hardware-level [14, 15, 16, 17, 18]. Most RnR systems are either

order-based [42, 11, 45, 48, 49] that rely on faithfully recording the shared memory dependencies

at runtime, or search-based [41, 21, 43, 44, 47] that record only partial information at runtime and

rely on powerful search engines such as SMT solvers to reconstruct the memory dependencies.

A central goal of RnR systems is to reduce the runtime overhead such that they can be used
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in production runs. Hardware techniques [14, 15, 16, 17, 18] are often much more efficient than

software-level implementation, but most previous RnR systems rely on special hardware that is not

available. Intel PT is an exciting hardware feature that opens a door for RnR systems to be applied

broadly in COTS platforms.

Gist [50] introduces a bug diagnosis technique that also leverages PT to identify root causes of

a failure with low overhead. Different from H3, Gist assumes the failure can be reproduced in the

first place, but it may fail to do so. In addition, Gist relies on statistical analysis to identify failure

causes, but it has no guarantee, i.e., it may miss real causes or report false positives. Compared to

Gist, H3 solves a different problem: reproducing failures before they can be diagnosed, and H3 is

sound: it guarantees to reproduce the failure as long as the constraints can be solved by the solver.

Arulraj et al. [51] use hardware performance counters for failure diagnosis. This technique

leverages the hardware to sample predicates from a large number of successful and failing runs

and then use the sampled predicates to diagnose the failure via statistical analysis.

ReCBuLC [52] uses hardware clocks that are available on modern processors to help reproduc-

ing Heisenbugs. The recorded timestamps local to each thread together with a statistical analysis

for calculating the time differences among local clocks across different cores, are used to deter-

mine the global schedule of shared-resource accesses. One limitation of this approach is that the

statistical analysis may fail to infer a correct global schedule.

The idea of using offline constraint analysis to infer global failure schedules was pioneered

by Lee et al. [43, 44]. The technique uses load-based checkpoints to search for a global schedule

without recording any shared memory dependencies. However, compared to PT, the load-based

checkpoints are not supported by the commodity architecture.

Similar to CLAP, both ODR [41] and Symbiosis [53] rely on symbolic constraint solving to

figure out schedules that can satisfy certain conditions. ODR uses constraints to reproduce failures,

and Symbiosis uses constraints for reducing the schedule complexity.

PRES [46] proposes a probabilistic replay technique that uses an intelligent feedback-based

replayer to reproduce failures with lightweight recording. PRES may fail to reproduce the bug in

11



the first attempt due to a recorded incomplete schedule. However, it can learn from the previous

failing replays to rectify the schedule. Typically after a few attempts, PRES is able to find a correct

schedule to reproduce the bug.

Both CoreDump [47] and ESD [54] rely on only the program coredumps to diagnose failures.

CoreDump uses a technique called execution indexing to compare the differences between core-

dumps from failing and normal runs to identify the failing point. ESD uses static analysis and

symbolic execution to synthesize both program inputs and schedule to reproduce failures. Using

coredumps is promising for diagnosing real-world failures since coredumps are often available af-

ter the program crash. However, since there is no program control flow information, the technique

may be difficult to reproduce failures that require complex paths and schedules to manifest.
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3. MAXIMAL CAUSALITY REDUCTION FOR TSO AND PSO ∗

Since the pioneering work of VeriSoft [55, 56] and CHESS [57], SMC has been successfully

applied in real-world programs and has found many deep bugs. However, due to the state-explosion

problem, it is difficult for a model checker to explore every possible interleaving of a concurrent

program. A key challenge in SMC is how to reduce the state space of the program, thus making the

model checking more efficiently and practical. Maximal Causality Reduction (MCR) is a reduction

technique which computes the equivalent class of interleavings by matching a read to a different

write. In this Chapter, I first introduce the background of MCR and then present a new technique

based on MCR to model check concurrent programs under relaxed memory models.

3.1 Maximal Causality Reduction

In this section we first introduce the Maximal Causality Model and then the constraints built by

MCR over the given trace and the properties can be checked with MCR. Section 3.1.4 introduces

the workflow of MCR.

3.1.1 Maximal Causal Model

A fundamental concept underpinning MCR is the Maximal Causality Model (MCM) [58, 59],

which takes as input an observed execution trace of a multithreaded program, and computes the

largest set of feasible traces that can be inferred from the observed trace by reordering the events.

In MCM, multithreaded programs P are abstracted as the prefix-closed sets of finite traces, called

P -feasible traces that P can produce when P is completely or partially executed.

3.1.1.1 Events

A concurrent system is composed of a finite set of threads or processes, which communicate

by performing atomic operations on concurrent objects such as shared memory locations, locks

and semaphores [60]. For instance, a shared memory location is a concurrent object with read and
∗Reprinted with permission from "Maximal causality reduction for TSO and PSO" by Shiyou Huang and Jeff

Huang, 2016. International Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 51, 447-461.
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write operations, whose serial specification states that each read yields the same value as the one of

the previous write. A (non-reentrant) lock is an object with acquire and release operations, whose

serial specification consists of operation sequences in which the difference between the number

of acquire and release operations is either 0 or 1 for a sequence of operations, and all consecutive

pairs of acquire-release share the same thread. It means the an operation acquire(l) may be blocked

until a release(l) operation happens from another thread. As threads are light-weighted processes,

we use use threads to represent both threads and processes unless otherwise specified.

In MCM, events are operations performed by threads on concurrent objects, abstracted as tuples

of attribute-value pairs. For example, (thread = t1, op = write, target = x, data = 1) is a write

event by thread t1 to memory location x with value 1. Table 3.1 lists common types of events are

considered in MCM:

Table 3.1: Events considered in MCM.

begin(t)/end(t) the first/last event of thread t
read(t, x, v)/write(t, x, v) read/write x with value v
lock(t, l)/unlock(t, l) acquire/release a lock l
wait(t, o)/notify(t, o) wait/notify an object o
fork(t, t′) fork a new thread t′

join(t, t′) block until thread t′ terminates

3.1.1.2 Traces

A trace is abstracted as a sequence of events. Though MCM can be encoded as different

memory consistencies, we only consider sequential consistency [7] in this paper. Given a trace τ

and any set S of concurrent objects, threads, shared variables and event types, we let τ�S denote

the projection of τ restricted by S. For example, if t ∈ S is a thread, then τ�t is the projection of

τ to events by thread t; if loc is the shared location specified by S, then τ�loc is the projection of τ

to events that access loc. If e is an event in τ , let τ�e denote the prefix of τ up to and including e.

We also allow multiple restrictions. For instance, τ�t,read refers to the projection of τ to the read
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events by t.

Given an event e, we use the following notations to help illustrate the consistency of a trace:

• op: op(e) refers to the operation type of e;

• loc: loc(e) refers to the memory location of e, and e ∈ (read, write);

• val: val(e) refers to the value of e, and e ∈ (read, write);

• lastop: lastop(τ) refers to the last event of τ corresponding to operation op.

A trace τ is sequentially consistent iff τ�o siatisfies o’s serial specification for any object o [60].

A sequentially consistent trace τ should hold the following:

• read consistency The value returned by a read event e should be equal to the one written by

the most recent write to the same memory location, val(e) = val(lastwrite(τ�loc(e)));

• lock mutual exclusion Each release event is paired with a acquire event on the same lock,

and there is no any other acquire or release event on the same lock between each pair.

• program order For any two events e1, e2 ∈ τ�t, if e1 precedes e2 in the program, then e1

occurs before e2 in τ�t.

• must happen-before A begin event can happen only as a first event in a thread and only

after the thread is forked by another thread. An end event can happen only as the last event

in a thread, and a join event can happen only after the end event of the joined thread.

3.1.1.3 Feasibility Axioms

Consistency is a property of a trace alone, stating that all the serial specifications describing

the legal behaviors of the involved concurrent objects are met. The most common characterizing

axiom of P -feasible, rooted in Lamport’s happens-before causality [7] or Mazurkiewicz’s trace

theory [61], requires that P -feasible should be closed under consistent interleavings. However, this

axiom is too strong. In maximal causality model, two weaker axioms governing P -feasible are

proposed:
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1. prefix closedness, if τ1τ2 ∈ P -feasible traces, then τ1 ∈P -feasible. It means the prefixes of a

P -feasible trace are also P -feasible.

2. local determinism, each event is only determined by the previous events in the same thread.

These two axioms allow us to associate a maximal set of traces MaxCausal(τ) to any consistent

trace τ , which comprises precisely the traces that can be generated by any program that can gen-

erate τ . Given a trace τ which is P -feasible, we can generate a set of prefixes P which consist

of events (partial or complete) from τ . The axiom prefix closedness provides us with the biggest

possibility to change the order of the events in the original executed trace and guarantees that each

new possible prefix from P is also P -feasible. Therefore, the execution of the program along the

prefix is feasible. The axiom local determinism implies that when we attempt to make an event

e appear in the trace, we can include all the events that occur before e by the same thread in the

prefix ,and make all the reads among such events return the same value as that in the original trace.

3.1.2 Constraints Encoding of MCR

In this Section, we introduce how MCR encodes a trace to a SMT constraint model that not

only satisfies the maximal causal model but also makes the program yield new behaviors. The con-

straints model of MCR basically includes two parts: ¶ constraints (Φmcm) encoding MCM, which

represent all the possible and valid interleavings that can be derived from a trace; · constraints

(Φstate) enforcing that each interleavings is different from each other. Different than DPOR, MCR

uses SMT constraints to reason about the maximal causality of the events in a trace. If a new be-

havior can be derived from the trace, MCR generates an interleaving that guides the re-execution

of program to yield this new behavior.

Given a trace τ MCR encodes τ into a formula MaxCausal(τ) = Φmcm ∧ Φstate, which con-

tains all the different interleavings that can be dericed from τ . Φmcm consisting of three types

of first-order logical constraints: (1) must-happen-before constraints (Φmhb); (2) lock-mutual-

exclusion constraints (Φlock); (3) data-validity constraints (Φvalidity). Φmcm is then conjoined with

a new state constraint Φstate. Φstate enumerates all the reads in τ and the values observed by the
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reads. To make the program yield a new behavior, Φstate enfoeces at least one read to return a dif-

ferent value than what it observes in τ . MCR uses a SMT solver to solve the constraints to search

different interleavings to make the program yield new behaviors. For implementation, we assign

each event in the trace with an order variable O to denote its order in the generated interleaving.

MCR builds the constraints over the order variables O to reason about the maximal causality of the

events.

Must-happen-before (MHB) constraints (Φmhb) The Φmhb constraint ensures a minimal set of

happens-before relations that events in any feasible interleaving must obey. It requires that (1)

All events by the same thread should happen in the program order (obeying SC); (2) The begin

event of a thread should happen after the fork event that starts the thread; (3) A join event for a

thread should happen after the last event of the thread. Clearly MHB yields a partial order over the

events of τ which must be respected by any trace in feasible(τ). We denote MHB by ≺, which

will be used later. We can specify ≺ easily as constraints Φmhb over the O variables: we start with

Φmhb ≡ true and conjunct it with a constraint Oe1 < Oe2 whenever e1 and e2 are events by the

same thread and e1 occurs before e2, or when e1 is an event of the form fork(t, t′) and e2 of the

form begin(t′), etc.

Lock-mutual-exclusion constraints (Φlock) The Φlock constraint ensures that events guarded by

the same lock are mutually exclusive. It is constructed over the ordering of the lock and unlock

events. More specifically, for each lock, MCR extracts all the lock/unlock pairs of events and

constructs the following constraints for each two pairs (l1, u1) and (l2, u2):

Ou1 < Ol2 ∨Ou2 < Ol1

Data-validity constraints (Φvalidity) The Φvalidity constraint ensures that all events in any trace

in MaxCausal(τ) are feasible. For an event e to be feasible, all events that must-happen-before e

must be feasible, and every read event that e depends on (excluding e itself) should read the same

value as it reads in τ . Let ≺e denote the set of events that must-happen-before an event e, and

consider a read event r=read(t,x,v) in ≺e on a memory address x with value v by thread t. Let W x
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denote the set of all writes to x, and W x
v the set of writes to x with value v, the Φvalidity constraint

for e is encoded as
∧
r∈≺e

Φvalue(r, v), where Φvalue(r, v) is the state constraint that ensures r to read

a value v:

Φvalue(r, v) ≡
∨

w∈Wx
v

(Φvalidity(w) ∧Ow < Or∧
w 6=w′∈Wx

(Ow′ < Ow ∨Or < Ow′))

Since MCM models all the incomplete traces as well, the data-validity constraint Φvalidity is

thus satisfiable if any event in the input trace τ is feasible, written as a disjunction of the feasibility

constraints of all events in τ :

Φvalidity ≡
∨
e∈τ

Φvalidity(e)

The constraint Φvalidity enforces the control flows. However, it is not trivial to figure out how

the constraint Φvalidity is needed. Let us consider the example in Figure 3.1.

Initially	x	:=	y	:=	0

p:
x	:= 1

q:
r1	:=	x

r:
y	:=	1

s:
r2	:=	y

Initially	x	:=	y	:=	0
p:

x	:= 1
q:

r1	:=	x
r:

y	:=	1
s:

x	:=	2	
r2	:=	y

Initially	x	:=	y	:=	0

p:
if (x == 0)

r	:=	x

q:
x	:=	1

Figure 3.1: An example showing that Φvalidity is necessary.

Suppose initially the program is executed in the order, p, p, q, and the program generates r = 0.

To make r := x return the value 1 written by x := 1, MCR enforces Φstate = Oq < Op2 (p2

refers to the second statement in thread p) so that x := 1 happens before r := x. By conjoining

with Φmhb = Op1 < Op2, the solver returns a possible solution Oq = 0, Op1 = 1, Op2 = 2,

corresponding to a concrete schedule q, p, p. However, this schedule is not feasible because the

if predicate is not satisfied under this schedule, and hence r := x cannot be reached. To ensure

the reachability of an event, MCR encodes the data-validity constraints into the formula. In other

words, all the reads that happen before the considered event should hold the same value as that in
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the prior execution. In this example, when we consider the value returned by r := x in the trace

p, p, q, we need to guarantee that x == 0 is satisfied so that we have Φvalidity = Op1 < Oq. Then

we get the correct order from the solver Op1 = 0, Oq = 1, Op2 = 2 and construct the feasible

schedule p, q, p, making r = 1.

Initially	x	:=	y	:=	0

p:
x	:= 1

q:
r1	:=	x

r:
y	:=	1

s:
r2	:=	y

Initially	x	:=	y	:=	0
p:

x	:= 1
q:

r1	:=	x
r:

y	:=	1
s:

x	:=	2	
r2	:=	y

Figure 3.2: A simple example.

p q r s

q r s

sr

rs

Figure 3.3: feasible(τ) inferred from a random trace τ of the program in Figure 3.2.

It is worth noting that the formula: Φmcm(τ) = Φmhb ∧Φlock ∧Φvalidity encodes all the feasible

interleavings, i.e., feasible(τ), that can be inferred from the input trace τ . Each solution of the

order variables to Φmcm corresponds to an interleaving in feasible(τ). The size of Φmcm is cubic

in number of reads and writes in τ , and the size of feasible(τ) may be huge as the number of

unique solutions to Φmcm can be exponential. Consider the program P in Figure 3.2. Given a

random trace of the program τ = p.q.r.s, then feasible(τ) contains all the feasible traces that
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can be inferred from τ as shown in Figure 3.3. In this case, because all the four events can be

executed in any order, in total feasible(τ) contains 24 possible traces including τ itself, but 20 of

them are redundant. One execution is redundant if it generates the same output as that in another

execution. For example, executions p.q.r.s and r.s.p.q are equivalent in this case to each other

because both of them produce r1 = 1andr2 = 1. As a result, similar to DPOR, we can apply

a reduction algorithm to feasible(τ) to remove the redundant traces. In practice, MCR does

not need to directly solve Φmcm to produce all the interleavings in feasible(τ). When used for

checking properties, it often suffices to find one interleaving that satisfies the property. We show

how to check assertion violation and data race properties using Φmcm in Section 3.1.3. It is shown

in [58, 59] that feasible(τ) is both sound and maximal: any program which can generate τ can also

generate all traces in feasible(τ), and for any trace τ ′ not in feasible(τ) there exists a program

generating τ which cannot generate τ ′.

New state constraints (Φstate) It is impossible to consider every possible interleaving produced

by a concurrent program. Model checkers (e.g., DPOR) are usually wrapped with a reduction

technique to reduce the state space by removing equivalent interleavings from the state space.

The key idea of MCR to eliminate redundant executions lies in enforcing at least one read event

in each explored execution to read a new value, so that no two executions reach the same state.

MCR enumerates each read event in τ on the set of all values by the writes on the same memory

address. For each value that is different from what it reads in τ , a new state constraint is generated

to ensure the read to read the new value. Consider a read r=read(t,x,v) on x with value v, and

a value v′ 6= v written by any write on x, Φstate is written as Φvalue(r, v
′). Since all such state

constraints are generated, MCR ensures that no non-equivalent interleaving is missed. Hence the

entire state-space will be covered systematically by MCR.

3.1.3 Property Checking with Maximal Causal Reduction

Instead of checking properties for one interleaving at a time, which is performed at runtime

by existing stateless model checkers, MCR enables checking properties against a maximal causal
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set of interleavings offline. Given a property φ defined over the order variables and the values of

reads, we use a constraint solver to solve φ∧Φmcm. If the solver finds a solution, it means that there

exists an interleaving satisfying the property and the corresponding interleaving will be reported,

which can be extracted from the solution by ordering the events according to the value of the order

variables. At a low level, the solving of φ∧Φmcm can be significantly simplified by tailoring Φmcm

to only the relevant events considered in φ.

Checking assertion violations. Consider an assertion violation property φassert(R), which is

defined over the program states concerning the values of a set of read events R. Firstly, since

the property is only affected by the events in R, MCR reduces the data validity constraint Φrw

to consider only those in R, that is, Φvalidity(e) for all e ∈ R. Secondly, for any read in R, it

may read the value written by any write on the same variable, subject to the condition that the

corresponding interleaving is feasible. Let ν(r) denote the value that can be returned by a read

event r = read(t, x, _), and V x the set of values written by W x, the set of writes to x. Recall

Φvalue(r, v) denotes the constraint for r to read a value v. ν(r) is written as:

ν(r) ≡
∨
v∈V x

v ∧ Φvalue(r, v)

With the above reduction, Φ ∧ φassert(R) is simplified to:

Φsync ∧ (
∧
e∈R

Φrw(e) ∧ ν(e)) ∧ φassert(R)

As an example, suppose the property to check is (e) = NULL for a read event e (such as

checking null pointer dereferences), the formula solved by the constraint solver is:

Φsync ∧ Φrw(e) ∧ ((e) = NULL)

Checking data races. Data races are a particularly problematic type of errors that have caused

some of the worst concurrency problems in multithreaded systems today. A data race occurs when

21



Given fixed inputs

Scheduler

New Seed 
Interleavings

Program trace

Constraints 
Formula

SMT Solver

Interleaving 
Builder

Engine

Seed 
Interleavings

Interleaving 1

Interleaving 2

Interleaving n

...

re-execute

Figure 3.4: Workflow of MCR. The engine part of MCR constructs SMT constraints over the trace
to explore new program schedules and the new trace is generated by re-executing the program
under the dynamic scheduler. Reprinted with permission from [1].

there are unordered conflicting accesses in the program without proper synchronization. Consider

two read/write events, ea and eb, to a shared variable from different threads, and at least one of

them is a write, the data race property φrace(ea, eb) can be defined easily over the order variables

corresponding to the events ea and eb:

φrace(ea, eb) ≡ (Oea = Oeb)

Similar to checking assertion violations, checking data races against MCM only needs to con-

sider the data-validity constraints of Φrw(ea) and Φrw(eb) for the property φrace(ea, eb) for each pair

of conflicting accesses by different threads. Therefore, the formula φrace(ea, eb) ∧ Φ is reduced to:

Φsync ∧ (Oea = Oeb) ∧ Φrw(ea) ∧ Φrw(eb)

3.1.4 MCR Workflow

In this section, we introduce the system design of MCR. Figure 3.4 presents the workflow of

MCR. For each program to be explored, MCR instruments the code to collect the interesting events

depicted in Section 3.1.1. Given a multithreaded program (we assume that the input is fixed),

MCR systematically explores the state space of the program in a closed loop by executing the

program along the seed interleavings. In the rest of the paper, we use prefix and seed interleaving
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interchangeably.

Initially, MCR executes the instrumented program following a random interleaving and gener-

ates an initial trace τ . Then τ is used to compute the maximal casual traces MaxCausal(τ), and

from which MCR generates new seed interleavings P (if there exists any).

Definition 3.1.1 (P). Given a trace τ , a seed interleaving P is the shortest sequence of scheduling

choices that matches a read with a write which writes a different value from that in τ . Suppose

the read r in τ is enforced to return a different value, P = τ ′r and ∀e ∈ τ ′ happen before r, and

val(r) 6= val(r′), r′ ∈ τ is the same read as r ∈ P .

Each seed interleaving is produced by encoding

MaxCausal(τ) = Φmhb ∧ Φlock ∧ Φvalidity

together with a new state constraint Φstate over a read event in τ enforcing it to read a new value,

such that the seed interleaving will drive the program to reach a new state, i.e., at least one read

will read a new value. The seed interleavings are then explored as the prefix of an execution to

cover new states, and to generate new seed interleavings to explore. In this work, we use seed

interleavings and prefixes interchangeably.

Let us give formal the definition of the state during the exploration and what two different states

are.

Definition 3.1.2 (S). A state S of a concurrent program in MCR reflects the values returned by the

read accesses to shared variables after the program is executed in a given order. Formally, given

a trace τ , S = {r 7→ val(r)|r←τ�read}. S 6= S ′ iff ∃r ∈ S ∩ S ′, val(r) 6= val(r′), r and r′

correspond to the same read from S and S ′, respectively.

The state-space of a concurrent program is a combination of the reads and the values from

which the reads can read. For instance, if a program contains two reads and each of them can

return two different values, then the number of the total states of the program is 4.

Under the control of a dynamic scheduler, MCR re-executes the program along the seed in-

terleaving and collects the trace to generate more seed interleavings. MCR terminates when all
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Initially: x = y = 0

Thread1: Thread2:

1: x = 1 
2: a = y

3: y = 1 
4: b = x

assert (a == 1 || b == 1)

Initially: x = y = 0        

Thread1: Thread2:

1: x = 1 
2: y = 1 

3: if (y == 1) 
4:    if (x == 0)

 5:      ERROR

(a) A TSO example
Initially: x = y = 0

Thread1: Thread2:

1: x = 1 
2: a = y

3: y = 1 
4: b = x

assert (a == 1 || b == 1)

Initially: x = y = 0        

Thread1: Thread2:

1: x = 1 
2: y = 1 

3: if (y == 1) 
4:    if (x == 0)

 5:      ERROR

(b) A PSO example

Figure 3.5: (a) shows a program with error under TSO, but correct with SC (b) shows a program
with error under PSO, but correct with SC. Reprinted with permission from [2].

seed interleavings have been explored and no new seed interleavings can be generated. For a new

value constraint, there can be multiple interleavings in MaxCausal(τ) that satisfy the constraint.

To avoid generating redundant seed interleavings, MCR ensures that the prefix of each new ex-

plored interleaving is always preserved and the generated seed interleaving is the shortest among

all satisfiable interleavings.

3.1.5 A Running Example for MCR

We use the example in Figure 3.5(a) to illustrate MCR. The program has 6 different executions

(3 are redundant) under SC, but 24 different executions under TSO (20 are redundant). MCR is

able to explore all the state-space under SC via only 3 executions, but it fails to expose the assertion

violation that is only possible under TSO.

Let ei denote the event at the line number i. Given a trace τ = 〈e1, · · · , en〉, MCR uses n integer

variables 〈O1, · · · , On〉 to denote the order in which the events happen in a certain execution. The

value of Oi represents the position of ei in a trace. If Oi < Oj , then ei will be executed before ej

in the generated interleaving.

Suppose in the initial execution, MCR obtains the trace τ0 = 〈e1, e2, e3, e4〉 under SC, and

the program reaches the state (a=0,b=1). MCR constructs the MHB constraints Φmhb = O1 <

O2 ∧ O3 < O4. Since the trace contains two reads, e2 (R(y)=0) and e4 (R(x)=1), to generate new

seed interleavings, MCR tries to enforce each of the two reads to read a different value in future

executions. For example, for e2, it adds the new state constraint Φvalue = O3 < O2 to enforce
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R(y) to read value 1 (written by e3) instead of 0. By solving this constraint conjoined with Φmhb,

the SMT solver will return a solution such as {O1 = 1, O2 = 3, O3 = 2}. From this solution,

MCR will generate a new seed interleaving e1-e3-e2, because O1 < O3 < O2. By re-executing the

program following this seed interleaving, MCR will obtain a new trace τ1 = 〈e1, e3, e2, e4〉, and

reach a new state (a=1,b=1). Then the exploration along this seed interleaving is finished, because

there is no new value that can be read by any read event in τ1. Similarly, the read event e4 in

τ0 generates a new seed interleaving e3-e4, which produces a new trace τ2 = 〈e3, e4, e1, e2〉 that

reaches a new state (a=1,b=0).

As we can see, MCR successfully explores all the three possible program states under SC –

(a=0,b=1), (a=1,b=1) and (a=1,b=0) – through only three different executions. However, MCR

misses the assertion violating state (a=0,b=0), which is feasible under TSO and PSO. To reach this

state, there must be at least a reordering between (e1, e2) or (e3, e4). Neither of them is possible in

the formulation of MCR, because both of them violate the Φmhb constraint. Similarly, MCR cannot

trigger the PSO assertion violation in Figure 3.5(b), because e1 must-happen-before e2 under SC.

Next, we first present the semantics of TSO and PSO in Section 3.2.1. We will show how our

approach enables finding the errors under TSO and PSO in Section 3.3.

3.2 Relaxed Memory Models: TSO and PSO

MCR works efficiently for checking concurrent programs under sequential memory model,

but fails to detect bugs under relaxed memory models, e.g., TSO and PSO. Figure 3.6 shows a

real bug extracted from a large program (with over 40K lines of code) running on an electron

microscope [3]. The program runs safely under SC and TSO. However, an error (lines 15-17 of

Figure 3.6) is triggered when it runs under PSO and unfortunately caused a loss of $12 million of

equipment. The root cause of the error is that the write to the object curPosition can happen before

the write to the field of the object, which is allowed under PSO. What is worse is that this error can

hardly be reproduced. On average, the error appears only once in every 500, 000 loop iterations of

the program2.

2Interestingly, our approach takes only three runs to find this PSO bug.
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1.class A {
2.    static Point currentPos = new Point(1,2);
3.    static class Point {
4.        int x;
5.        int y;
6.        Point(int x, int y) {
7.            this.x = x;
8.            this.y = y;
9.        }
10.    }
11.    public static void main(String[] args) {
12.        new Thread() {
13.            void f(Point p) {
14.             synchronized(this) {}
15.                if (p.x+1 != p.y) {
16.                    System.out.println(p.x+" "+p.y);
17.                    System.exit(1);
18.                }
19.            }
20.            @Override
21.            public void run() {
22.                while (currentPos == null);
23.                while (true)
24.                    f(currentPos);
25.            }
26.        }.start();
27.        while (true){
28.           currentPos = 
29.          new Point(currentPos.x+1, currentPos.y+1);
30.        }
31.    }
32.}

Figure 3.6: A real PSO bug in an electron microscope software [3]. This bug caused a $12 million
loss of equipment. Reprinted with permission from [2].

3.2.1 TSO and PSO

We present the operational semantics of hardware memory models TSO and PSO [62, 8] fol-

lowing the same spirit as previous work [33, 36]. We also discuss the relation of Java Memory

Model (JMM) to TSO and PSO at the end of this section.

Total Store Ordering (TSO) TSO allows a read to complete before an earlier write to a dif-

ferent memory location, but maintains a total order over writes and operations accessing the same

memory location. There are four kinds of operations:

• Store Whenever a thread ti executes a store operation, it does not update it to the shared

main memory immediately. Instead, the store is buffered to the store buffer Bi (which is a

FIFO queue).

• Load When a thread ti executes a load to a memory location x, it will first check its buffer

Bi. If the buffer contains the store to x, then the load gets the latest value written to x in the

buffer; otherwise the load gets the value from the main memory.
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• Update An update operation flushes the store buffer into the main memory. It can happen at

any point as long as the store buffer is not empty. The memory model allows any thread to

non-deterministically perform the update operation any number of times at any state of the

execution.

• Fence Fences are special machine instructions that prevent reordering between the opera-

tions before and after the fence. A fence operation can only be executed when the buffer is

empty.

Consider a concurrent program with n threads T = t1 × t2 × · · · × tn and each thread ti is

associated with a store buffer Bi, forming a set of store buffers B = B1 × B2 × · · · × Bn. Let

M = m1, · · · ,mk be the memory locations in the program, and each memory location can take

value from a data domain. We define a system configuration as a tuple C = 〈T,M,B〉, and the

local configuration of thread ti as Ci = 〈M,Bi〉 where M is the current value in each memory

location, and Bi is the current value in the store buffer of thread ti.

For two system configurations C = 〈T,M,B〉 and C ′ = 〈T ′,M ′, B′〉, we use the notation

C op−→ C ′ to denote the transition from C to C ′ by executing the operation op, where op is one of

the four operations (store/load/update/fence) defined above by a certain thread. Consider that op

is executed by thread ti. The transition on the system configuration is the same as that on the

local configuration of ti: Ci
op(ti)−−−→ C ′i. We use w(ti, x, v)/r(ti, x, v)/u(ti, x, v)/fence(ti) to denote

these four operations respectively, meaning that thread ti writes/reads value v to/from memory

location x, updates the value v to x from the store buffer to the main memory, or performs the

fence operation, respectively.

Let B ⊕ (x, v) denote buffering the write (x, v) to the store buffer B, B 	 (x, v) flushing the

write (x, v) to the main memory from B, and B = ε denote that B is empty. Let B(x) denote

retrieving the value of the most recent buffered write to x in B. Note that B(x) can be null when

there is no buffered write to x in B. We use ∅ to denote the null value.

The operational model is defined as follows:
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1. Store: Ci
w(ti,x,v)−−−−−→ C ′i iff M ′ = M and B′i = Bi ⊕ (x, v).

2. Load: Ci
r(ti,x,v)−−−−→ C ′i iff M ′ = M , B′i = Bi and either one of the following two cases:

(a) Load from buffer: Bi(x) 6= ∅ and v = Bi(x).

(b) Load from memory: Bi(x) = ∅ and v = M [x].

3. Update: Ci
u(ti,x,v)−−−−→ C ′i iff B′i = Bi 	 (x, v) and M ′ = M [x←↩ v].

4. Fence: Ci
fence(ti)−−−−−→ C ′i iff Bi = ε and M ′ = M .

Partial Store Ordering (PSO) PSO is similar to TSO except that it allows reordering writes

on different memory locations. The operational model of PSO can be defined by slightly mod-

ifying the TSO model defined above. Under PSO, each thread has multiple store buffers, each

of which corresponds to one unique memory location. In other words, each memory location is

assigned with a store buffer. Two consecutive write operations on different memory locations can

be buffered into different store buffers, allowing them to be executed out of the program order.

3.2.2 JMM on TSO/PSO platforms

The motivation of our work stems from the real bug exhibited in Figure 3.6. Readers may

concern that Java has its own memory model (Java Memory Model or JMM) [63] and the compiler

and hardware reorderings need to respect the JMM. However, this does not impair the validity

of our motivation, because hardware memory models are orthogonal to language models. For

any language, as long as the compiler does not insert fences to prohibit reorderings, the hardware

may exhibit TSO/PSO behaviors. Because the JMM allows the delayed stores as that in TSO and

PSO [64, 65], the JVM inserts no barriers to disable the reorderings on TSO/PSO platforms. As a

consequent, the reordering can cause the bug in Figure 3.6 to occur. To avoid this bug, one solution

is to declare both the fields x and y in Figure 3.6 as final. For final fields, to respect JMM, the JVM

inserts a barrier after the initialization of final fields. Thus, once an object is constructed, the values

assigned to the final fields of the object are visible to all other threads. This prevents the bug from

occurring in Figure 3.6.
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3.3 MCR for TSO and PSO

Our approach builds upon MCR but enables it to work for both TSO and PSO. There are two

crucial differences between our approach and the original MCR [19]:

1. We relax the must-happens-before (MHB) relation between events to capture the semantics

of TSO and PSO when producing the seed interleavings.

2. We develop novel replay algorithms for TSO and PSO interleavings that allow the reordering

of events by the same thread.

In this section, we first describe how to relax the MHB constraints to allow the semantics of TSO

and PSO defined in Section 3.2.1. We then present our replay algorithms. Finally, we discuss the

limitation of our approach.

3.3.1 Relaxation on MHB Constraints

To encode the semantics of TSO and PSO, we relax the MHB constraints Φmhb of MCR (recall

Section 3.1.2). Specifically, we decompose Φmhb into two components:

Φmhb = Φmem ∧ Φsync

where (1) the memory operation constraint (Φmem) captures the reordering semantics allowed by

different memory models (TSO or PSO); (2) the synchronization constraint (Φsync) captures the

happens-before relation entailed by synchronizations. Φsync is common for all memory models

(e.g., SC/TSO/PSO).

Constraints on memory operations (Φmem) Under TSO, following the operational semantics

defined in Section 3.2.1, we construct Φmem with four rules: (1) write-to-write constraints (Φww).

For all writes by the same thread, their order should be consistent with the program order. (2)

memory location constraints (Φaddr). For all the reads and writes by the same thread that access

the same memory address, they should follow the program order. (3) read-to-read constraints

(Φrr). All read operations from the same thread should follow the program order. (4) read-to-write
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Figure 3.7: The must-happen-before constraints constructed by MCR and our approach on the TSO
and PSO examples in Figure 3.5(a) and Figure 3.5(b), respectively. Reprinted with permission from
[2].

constraints (Φrw). Any read operation and its following write operation from the same thread

should follow the program order. Together, Φmem is represented as the conjunction of these four

constraints:

Φmem = Φww ∧ Φrr ∧ Φrw ∧ Φaddr

PSO is a further relaxation of TSO. PSO not only allows the write-to-read reordering allowed

by TSO, but also the reordering of write-to-write to different memory locations. Therefore the

only difference between the Φmem constraint under TSO and PSO is on the rule Φww. In PSO, Φww

ensures only that all writes to the same memory location from the same thread should follow the

program order.

Constraints on synchronizations (Φsync) For all synchronizations (i.e., lock/unlock and be-

gin/end) by the same thread, they should always be executed in the program order. Moreover,

for each synchronization, all its proceding reads and writes should always happen before it, and all

its following reads and writes should always happen after it.

3.3.2 New States under Relaxed MHB

To show the difference brought by the relaxed MHB constraints compared to the original MCR,

we use the example in Figure 3.5(a) again to illustrate how it enables exposing the TSO and PSO

errors which MCR fails to expose. Same as in Section 3.1.5, let us assume that τ0 = 〈e1, e2, e3, e4〉

is observed as the initial trace. Figure 3.7 shows a comparison between the MHB constraints on
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τ0 constructed by MCR and by our approach for TSO and PSO, respectively. Consider the read

e4 (R(x)=1). To make R(x)=0 in the new seed interleaving, MCR enforces e4 to happen before

e1 by the constraint O4 < O1. Under TSO, because e3 does not necessarily happen before e4, our

approach does not enforce O3 < O4 (as shown in Figure 3.7a) compared to MCR. As a result,

the generated new seed interleaving by our approach will be just e4, while it is e3-e4 by MCR. By

replaying the program with the new seed interleaving e4, our approach will explore a new execution

and generate a new trace τ1 starting with e4, such as τ1 = 〈e4, e1, e2, e3〉. In this case, τ1 reaches

the state (a=0,b=0), which violates the TSO assertion.

Likewise, under PSO, to expose the error in Figure 3.5b, our approach can generate an execu-

tion τ1 = 〈e2, e3, e4, e1〉 because of the reordering between e1 and e2 under PSO.

3.3.3 Deterministic Replay

A key challenge in extending MCR from SC to TSO and PSO lies in how to replay the TSO

and PSO interleavings. Under the original MCR, the interleaving is abstracted as a sequence of

schedule choices, with each choice representing a thread ID by the corresponding operation on

a shared variable. Before a thread executes an operation on a shared location, it is blocked first,

and then the scheduler queries the seed interleaving to decide which thread to execute next. For

SC, since the global order in the generated seed interleaving is consistent with the program order,

this replay strategy guarantees that the operation chosen by the scheduler exactly matches with

the event in the interleaving. However, because operations can be executed out of the program

order under TSO/PSO, the simple global-ordering based replay approach in the original MCR no

longer works. To realize the reordering, we rely on a store buffer (a FIFO queue) assigned to each

thread to delay the execution of a store. The difficulty comes from the non-determinism of the

update operation (recall Section 3.2.1) since it can happen any time at any point of the execution

to flush the store buffer. To deterministically enforce a seed TSO/PSO interleaving, there are two

key issues to be addressed: (1) when to buffer a write; and (2) when to flush the buffered write to

the main memory.

To solve this problem, we first extend the original abstraction of the SC interleaving in MCR
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by adding the memory location information – addr – to each operation. The new abstraction of

interleaving is defined as follows:

Definition 3.3.1. An interleaving is a sequence of schedule choices, with each schedule choice

c(tid, addr) consisting of a thread ID tid and a memory location addr that is expected to be

accessed by the corresponding operation.

The key idea of our TSO and PSO replay algorithms is to use the accessed memory location to

decide whether to buffer a write by checking it against the information in the seed interleaving.

Store Buffering/Updating Before performing a store operation, we first check if the memory

location accessed by this operation is the same as the one in the seed interleaving. If yes, we can

flush the store to the main memory. Otherwise, we buffer the store in the store buffer (a FIFO

Queue). At this point, we do not update the schedule choice since the operation has not been

executed from the view of the interleaving. Later, when the address by the event in the interleaving

matches with the one buffered in the FIFO queue, we flush the value to the main memory and also

update the schedule choice to the next one.

Fence The operational model of TSO and PSO requires that before performing a fence opera-

tion, all the buffered stores in the store buffer should be flushed into the memory. However, in

our approach, the re-execution of a program is controlled by a given interleaving, and our replay

algorithm guarantees that when the scheduler meets a fence operation, the buffer must be empty.

The reason is that all events that occur before a fence should happen before the fence and we have

already constrained all such events to happen before the fence in the formula (see Section 3.3.1).

Therefore, when the scheduler is about to execute a fence of an interleaving, all the events before

this fence have already been executed (all buffered writes have already been flushed), and thus the

buffer is empty at this moment.

Based on the new abstraction above, we can prove the following two theorems to guide our

replay algorithms and to guarantee their correctness. Theorem 1 guides our algorithm to buffer

writes and Theorem 2 guides our algorithm to flush the buffered writes to memory.
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t1:
x = 1;

a = y;

t2:
y = 1;

b = x;

Schedule Choice:
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conflicts
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...

A concurrent program

Addr matches, so t2:y must 
corresponds to W(y) 

Store Buffer  B2

Figure 3.8: An example to illustrate Theorem 1 and Theorem 2. B2 is the store buffer associated
with thread t2. Reprinted with permission from [2].

Theorem 1. At replay, when the program counter (PC) points to an event, say ei, corresponding

to the choice of the schedule, say cj , if addr(ei) 6= addr(cj), then ei must be a write operation and

it needs to be buffered.

Proof sketch: If ei is a read or a fence operation, it implies that a later operation cj (later

according to program order) is allowed to happen before a read/fence operation. This contradicts

the TSO and PSO operational models defined in Section 3.2.1. Hence ei must be a write, and a

certain operation matching with cj that accesses a different location should be executed before ei.

Therefore, ei must be buffered.

Theorem 2. When considering a schedule choice cj in the seed interleaving, if addr(cj) equals to

the memory location of the write at the head of the store buffer, then cj must be corresponding to

that buffered write.

Proof sketch: Proof by contradiction. Suppose that cj is a read or a fence. Since there is a

write w in the store buffer by the same thread that accesses the same address as cj does, it means

that the read (or fence) is allowed to happen before the write w which is before it. This again

contradicts the operational models of TSO and PSO. Therefore, cj must be a write. Similarly,

cj cannot correspond to any other write in the store buffer, otherwise cj would be allowed to be
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executed before its preceding writes. Hence, cj must correspond to the buffered write w and w

should be flushed.

Example Figure 3.8 illustrates the two theorems above. When considering the schedule choice

t2 : x, the instruction y = 1 is to be executed. However, their addresses do not match, which

implies that the write y = 1 should be buffered (Theorem 1). When considering the last schedule

choice t2 : y, its address matches with that of the write at the head of thread t2’s store buffer (B2),

which implies that t2 : y is a buffered write and has to be flushed to memory (Theorem 2).

3.3.4 TSO Replay

To replay TSO interleavings, we associate each thread ti with a FIFO queue (to simulate the

store buffer Bi) and we assume the queue is unbounded. The interleaving here is a seed inter-

leaving generated based on the solution given by the SMT solver. Each interleaving (recall Def-

inition 3.3.1) consists of a sequence of schedule choices c(tid, addr). The program is executed

under the control of an application-level scheduler to enforce the schedule choices specified in the

interleaving.

Algorithm 1 shows how we replay a TSO interleaving. The key idea is to determine whether

to buffer or update a store by comparing its memory location with that specified in the schedule

choice. We use a variable index to indicate the current position of the interleaving. The index is

initialized to 0 and incremented by 1 each time when an instruction is executed (except the store

buffer operation). Before the program executes a load or a store on a shared variable, the program is

blocked and the schedule choice c given by the interleaving is queried to decide the next instruction.

The next instruction is chosen by the program counter via the schedule choice (see the statement

PC(c) at line 4). Before executing an instruction, the algorithm proceeds depending on its type.

If the instruction is a store, the algorithm first checks whether the memory location of this store

and that specified in the schedule choice are equal or not. If they are equal, we write the value to

the memory (see line 10). Otherwise we buffer the store into the thread’s FIFO queue Bi. If the

instruction is a load, the algorithm will first check if there is a buffered write in Bi that writes to

the same address. If yes, the most recent buffered value will be returned; otherwise, the value from
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Algorithm 1: TSO replay algorithm
Input : A seed interleaving S – schedule choices
Return: a new trace by logging the instruction executed

1 Initial: index = 0 // global

2 while index < S.length do
3 c← S[index]
4 Inst← PC(c) // guided by the schedule choice

5 i = tid(Inst)
6 x = addr(Inst)
7 if Inst is a store then
8 v = value(Inst) // the value of the store

9 if addr(Inst) == addr(c) then
10 Write(x, v)
11 index = index+1
12 updateCheck_TSO(S)
13 else

// buffer the store

14 Bi ← Bi ⊕ (x, v)

15 end
16 else if Inst is a load then
17 if x in Bi then
18 v = Bi(x) // read the most recent value from buffer

19 else
20 v = mem(x) // read the value from memory

21 end
22 index = index+1
23 updateCheck_TSO(S)
24 else

// fence - the buffer should be empty

25 Fence()
26 index = index+1
27 end
28 end

the main memory will be returned. For fence instructions, we simply proceed without the need to

flush the buffer because the buffer should already be empty as discussed in 3.3.3.

Each time afte a load or store is executed, our algorithm will check if there are stores in the

FIFO queue that need to be updated to the memory. The function UpdateCheck_TSO in Algo-

rithm 2 shows the process for updating the buffered stores for TSO and PSO. Recall Theorem 2
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Algorithm 2: After a load/store, check whether there are pending stores in the buffer that
need to be updated.
1 Function UpdateCheck_TSO(S):
2 c← S[index] // return if index out of bound

3 i = tid(c)
4 while (addr(c) == addr(Bi[0])) do
5 Bi ← Bi 	 (x, v)
6 flush(x, v) // flush to memory

7 index = index+1
8 c← S[index] // return if index out of bound

9 i = tid(c)

10 end
11 Function UpdateCheck_PSO(S):
12 c← S[index] // return if index out of bound

13 i = tid(c)
14 j = varId(c)

15 while (addr(c) == addr(Bj
i [0])) do

16 Bj
i ← Bj

i 	 (x, v)
17 flush(x, v) // flush to memory

18 index = index + 1
19 c← S[index] // return if index out of bound

20 i = tid(c)
21 j = varId(c)

22 end

that when the current schedule choice has the same memory location as that of the store at the head

of the buffer, then the expected operation must be a store that has been buffered. We hence follow

this condition to detect all such stores and update them to the memory.

Termination Note that our algorithm just replays the instructions within the interleaving, it ter-

minates when index ≥ S.length. For those outside of the interleaving, they are executed following

the program order. The number of while-loop iterations (line 2) is determined by the index, which

specifies the schedule choice. Although the index keeps unchanged when buffering a store (line

13) it will eventually be increased to the size of the schedule and terminates the algorithm. Each

time after we execute or buffer an instruction, the program counter will be updated to point to the

next instruction controlled by the schedule choice (line 4). Although the index is not changed, the
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address or the type (read/write) of the operation will change, which leads to the execution of a

read/write, and eventually the execution of the update function which increases the index.

The correctness of our algorithm is guaranteed by the following theorem.

Theorem 3. Algorithm 1 correctly replays all the events in the given TSO interleaving.

Proof sketch: Theorem 1 and Theorem 2 guarantee that all events in the given interleaving

will be replayed in the order as specified in the interleaving. To prove Theorem 3, we only need

to prove that all the events in the interleaving will be replayed, i.e., no event will be missed. In

our replay algorithm, each time after an event is executed, the updateCheck_TSO(S) subroutine

will update (i.e., execute) the buffered events until the index points to an event that is not buffered.

Suppose there exists an event e that is not executed when the replay algorithm is finished. If e

corresponds to a non-buffered event, e should be executed directly when it is chosen by the index.

On the other hand, if e corresponds to a buffered store, there must exist a nearest non-buffered

event e′ preceding e in the interleaving. After e′ is executed, updateCheck_TSO(S) subroutine

will execute e. Thus, in any case, no event will be missed.

Example To illustrate the algorithm, consider a TSO interleaving of the program in Figure 3.5a:

e4, e1, e2, e3, which corresponds to the sequence of schedule choices: (t2,x),(t1,x),(t1,y),(t2,y).

When replaying this interleaving, the schedule choice (t2,x) guides the program to execute the

instruction y = 1 at line 3. Since the addresses do not match, y = 1 is buffered and the schedule

index does not change. When the program reaches the instruction b = x at line 4, since it is a load

operation, b = x is executed directly. Similarly, x = 1 and a = y at lines 1 and 2 are executed

under the schedule choices (t1,x),(t1,y). After a = y is executed, the algorithm detects that the

schedule choice (t2,y) corresponds to the buffered write y = 1 in the FIFO queue. Therefore,

y = 1 is updated to the memory.

3.3.5 PSO Replay

Replaying PSO interleavings is similar to that for TSO. The only difference is that under PSO,

each thread is associated with multiple FIFO queues with each queue corresponding to one unique
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Algorithm 3: PSO replay algorithm
Input : A seed interleaving S – schedule choices
Return: a new trace by logging the instruction executed

1 Initial: index = 0 // global

2 while (index < S.length) do
3 c← S[index]
4 Inst← PC(c) // guided by the schedule choice

5 xj = addr(Inst) i = tid(Inst)
6 j = varId(xj)
7 if Inst is a store then
8 v = value(Inst) //the value of the store if addr(Inst) == addr(c) then
9 Write(xj, v) index = index + 1 updateCheck_PSO(S)

10 else
// buffer the store

11 Bj
i ← Bj

i ⊕ (xj, v)

12 end
13 else if Inst is a load then
14 if xj in Bj

i then
15 v = Bj

i (xj) // read the most recent value from buffer

16 else
17 v = mem(xj) // read the value from memory

18 end
19 index = index + 1
20 updateCheck_PSO(S,index)
21 else
22

23 end
24 //fence – the buffer should be empty Fence()
25 index = index+1
26 end

memory location. For a thread ti accessing memory locations m1,m2 . . . ,mk, we assign a FIFO

queue Bk
i for memory location mk. Algorithm 3 shows the replay process. The key difference

from Algorithm 1 is that when buffering a store under PSO, the algorithm needs to buffer the store

to the FIFO queue corresponding to the memory location accessed by the store. We use varId()

to get the unique ID assigned to each variable by each thread, and the buffer Bj
i correlates to a

variable which belongs to thread i and has variable ID j. The function UpdateCheck_PSO in

Algorithm 2 shows the process for updating the buffered stores under PSO (similar to the process
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for TSO).

3.3.6 Discussion

We note that our approach is not optimal for minimizing the redundancy under TSO and PSO,

albeit MCR is optimal for SC. The root problem is that under TSO and PSO, the generated seed

interleavings are shorter than that under SC, which results in the possibility that two distinct seed

interleavings may reach the same state. Consider again the example in Figure 3.5(a). In the initial

execution τ0 = 〈e1, e2, e3, e4〉, there exists two reads e2 (R(y)=0) and e4 (R(x)=1). If we force

the read on y (e2) to read value 1 which requires that e3 to happen before e2, our approach will

generate a seed interleaving e3-e2. Likewise, if we force the read on x (e4) to read value 0, which

requires that e4 to happen before e1, our approach will generate a seed interleaving e4.

If we continue with the seed interleaving e3-e2, we will generate two more executions:

• τ1 = 〈e3, e2, e1, e4〉 (a=1,b=1);

• τ2 = 〈e3, e2, e4, e1〉 (a=1,b=0).

And if we continue with the seed interleaving e4, we will generate another two executions:

• τ3 = 〈e4, e1, e2, e3〉 (a=0,b=0);

• τ4 = 〈e4, e3, e2, e1〉 (a=1,b=0).

As we can see, under TSO, our approach explores five executions to cover the whole state-

space. However, the optimal solution should only explore four executions, because there are only

four unique states. In our approach, τ2 and τ4 are equivalent to each other, both of which reach the

state (a=1,b=0).

The only difference between these two redundant executions is the permutation of the two seed

interleavings: e3-e2 and e4, where e3-e2 targets the value read from y and e4 the value read from x.

Since these two seed interleavings are non-overlapping and are permutable, they lead to the same

state. However, it is difficult to prune this type of redundancy in the current MCR, because the seed

interleavings are generated independently without considering their permutations. A potential way
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to eliminate this redundancy for TSO and PSO would be to merge multiple independent seed

interleavings into a single one. Nevertheless, this type of redudancy only accounts for a minor

portion of the explored executions, because the space of seed interleavings is significantly smaller

than the whole interleaving space. As we will show in our experiments in Section 3.5, even with

this redundancy, MCR under TSO and PSO is much more effective than existing approaches on

both popular benchmarks and real programs.

3.4 Case Study

In this section, we present a case study of our approach on the real PSO bug (shown in Fig-

ure 3.6). We also compare our approach with the DPOR algorithm for PSO by Zhang et al. [66]

implemented in the rInspect tool. We show that our approach is much more effective than [66] in

both state-space exploration and bug finding.

To make the problem more clear, we simplify the program to its equivalent form shown in

Figure 3.9a. Note that the simplified example in Figure 3.9a is slightly different from the program

in Figure 3.6, but it exactly presents how the PSO bug occurs in the original program does. Lines

2 and 3 of the example in Figure 3.9a simulate the initialization instructions when constructing a

new Point object. Lines 4 and 5 write the initial values to the fields of the object. We use an integer

variable z to indicate whether or not the object is constructed. If z = 1, it means that the object is

constructed. In our case, we do not simulate the while statements and we just update the values of

x and y once, which is enough to reveal the bug. To show the power of our approach we use two

for loops with N times to change the complexity of the state-space.

Suppose that in the initial execution the two threads run sequentially following the program

order, we will obtain a trace as below3:

τ0 = 〈e1, e2, e3, e4, e5, e6, e7, e18, e28〉

where ei corresponds to an event performed at line i, and e18 and e28 corresponds to the first and

second (read to x and y) events at line 8, respectively. In the initial trace, there are three reads: e7
3We set N to 1 in this case to simplify the presentation.
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 Initial x = y = z =0
Thread 1:
fork();
LOOP N:
1. z = 0;  //W(z)  
2. x = 0;  //W(x) 
3. y = 0;  //W(y) 
4. x = 2;  //W(x) 
5. y = 3;  //W(y) 
6. z = 1;  //W(z) 

Thread 2:
LOOP N:
7.if(z==1)   //R(z) 

8. if (x+1 != y) //R(x), R(y) 
9. print(x, y) //R(x), R(y) 
            ERROR!
   

(a) A simplified version of the program in Figure 3.6.
An execution 1-2-6-7-8-3-4-5-8-9 can trigger this er-
ror under PSO.

Must-happen-before constraints

SC & TSO

PSO
�

�

�

�

�

�

�

�

� �

� �

     � (SC, TSO)

     �

�
�

�

     � �

     � (PSO)

�

�

�

(b) The generated constraints by our approach un-
der three different memory models for the exam-
ple in Figure 3.9a.

Figure 3.9: A simplified example from Figure 3.6 and the SMT constraints. Reprinted with per-
mission from [2].

(R7(z)=1), e18 (R8(x)=2) and e28 (R8(y)=3). The index of R corresponds to the line number of the

statement.

Consider the read e18 (R8(x)=2). To generate a new seed interleaving, we first try to enforce

e18 to read a different value 0 (by e2 which writes 0 to x). Figure 3.9b shows the corresponding

constraints constructed by MCR with our approach for the three different memory models (SC,

TSO and PSO). Φstate ensures that R1
8(x) reads 0 by enforcing e2 to happen before e18 and e4 to

either happen before e2 or after e18. Φvalidity ensures that R7(z) reads the same value as it reads in

the trace τ0.

For SC and TSO, the generated constraint formula is not satisfiable. However, for PSO, the

SMT solver returns a solution {O1 = 0, O2 = 0, O6 = 1, O7 = 2, O1
8 = 3}. Based on this solution,

we can generate a new seed interleaving to continue with: e1-e2-e6-e7-e18.

By re-executing the program with this seed interleaving, we can obtain a new trace:

τ1 = 〈e1, e2, e6, e7, e18, e3, e4, e5, e28, e19, e29〉

The events after the seed interleaving are newly explored events. Among these new events

there are again three reads: e28 (R8(y)=3), e19 (R9(x)=2) and e29 (R9(y)=3). Since R8(x) = 0 and

R8(y) = 3 at line 8, the if condition is satisfied and hence the error is triggered. However, we
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Table 3.2: Experimental results between our approach and DPOR on the program in Figure 3.9a
with N from 1 to 4. The numbers indicate the number of executions explored by each approach.
The symbols indicate timeout in one hour (∗), found the PSO bug (4), not found the bug (8), and
threw exception (�). Reprinted with permission from [2].

Loop times
DPOR MCR (our approach)

SC TSO PSO Error found? SC TSO PSO Error found?
N=1 4 4 � 8 2 2 10 4

N=2 105 105 � 8 43 43 89 4

N=3 4282 4282 � 8 296 296 819 4

N=4 14840∗ 14840∗ � 8 2767 2767 8420 4

note that this bug is quite elusive. Before the read R9(x) at line 9, the buffered write to x has

already been flushed to the memory. When the program executes line 9, we have R9(x) = 2 and

R9(y) = 3, which contradicts with the if condition.

Table 3.2 reports the results comparing our approach with the DPOR algorithm on the number

of explored executions and on whether the approach is able to trigger the error under PSO. We set

the number of loop iterations from 1 to 4. Our results show that as the number of the loop iterations

increases, the number of executions explored by both of the two approaches increases dramatically

(2 to 8420 for MCR and 4 to more than 14840 for DPOR). The reason is that the state-space of

the program significantly increases as more reads and writes are executed. However, MCR is able

to finish exploring the state-space under all memory models in a few seconds, whereas when N=4

DPOR fails to finish the exploration in an hour after exploring 14840 executions under SC and

TSO, and under PSO the rInspect tool terminates early by throwing an exception (likely due to an

implementation bug in the tool). Moreover, our approach takes only 3 executions to trigger the

PSO error, whereas DPOR fails to find the error by throwing an exception.

3.5 Evaluation

We have implemented our approach based on the original MCR [19] for multithreaded Java

programs with ASM [67] for dynamic bytecode instrumentation and Z3 [68] for constraint solving.

We extended MCR from SC to TSO and PSO by relaxing the must-happen-before constraints and

implementing the TSO and PSO replay algorithms presented in section 4.2. We have evaluated our

42



Table 3.3: Benchmarks. Reprinted with permission from [2].

Program LoC #Thrd #Evt Description
Dekker 119 3 56 Two critical sections with 3 shared variables.
Lamport 162 3 40 Two critical sections with 4 variables.
bakery 119 3 27 n critical sections using 2n shared variables. We take n=2.
Peterson 94 3 72 Two critical sections with 3 variables
StackUnsafe 135 3 34 Unsafe operations on a stack by two threads, which cause the stack underflow.
RVExample 79 3 32 An example from original MCR [19], which contains a very tricky error
Example 73 2 44 The example program from Figure 3.9a with loop number from 1 to 4.
Account 373 5 51 Concurrent account deposits and withdrawals suffering from atomicity violations.
Airline 136 6 67 A race condition causing the tickets oversold.
Allocation 348 3 125 An atomicity violation causing the same block allocated or freed twice.
PingPong 388 6 44 The player is set to null by one thread and dereferenced by another throwing NPE.
StringBuf 1339 3 70 An atomicity violation in Java StringBuffer causing StringIndexOutOfBoundsException.
Weblech 35K 3 2045 A tool for downloading websites and enumerating standard web-browser behavior.

approach on a collection of popular benchmarks and real applications shown in Table 3.3. Dekker,

Lamport, Bakery and Peterson are four classic solutions to mutual exclusion problems from the

previous work [36, 66, 69], all of which are intensively racy programs. StackUnsafe contains

improper operations on the stack collected from [66]. RVExample is the motivating example in

the original MCR paper [19]. Example is the real PSO bug example in Figure 3.6. The other six

benchmarks are real programs used in previous concurrency studies [70, 19], including a large

application – Weblech.

In the rest of this section, we first describe our evaluation methodology and then report our

experimental results.

3.5.1 Evaluation Methodology

Our evaluation aims to answer the following three research questions:

1. How effective is our approach for exploring the state-space of concurrent programs?

2. How effective is our approach for finding TSO and PSO errors?

3. How scalable is our approach on real programs?

For the first question, we compared our approach with the most recent development of DPOR

by Zhang et al. [66], which extended the original DPOR algorithm [26] with sleep-set reduction for
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TSO and PSO. Because their rInspect tool is implemented for C/C++, we carefully transformed

seven standard benchmarks from Java to C/C++ or in reverse for the comparison.

For the second question, we compared the number of executions needed by different ap-

proaches to expose the injected or known errors in each benchmarks. We injected assertion viola-

tions in the critical sections of four mutual exclusion programs for different memory models. For

those benchmarks with known errors (e.g., StackUnsafe and RVExample), we directly used those

errors for the evaluation. Besides DPOR, we also compared our approach with SATCheck [32], a

recent SAT-based stateless model checking approach. SATCheck is a branch-driven approach that

aims to cover all branches and all the unknown behaviors of the uninterpreted functions by system-

atically exploring thread schedules under SC and TSO. However, we found that the SATCheck tool

missed executions during testing, especially when the benchmarks become more complicated, e.g.,

when the program has more conditional paths. Also, since SATCheck runs on C/C++ programs

that use primitive reads/writes to access the shared memory, it needs sophisticated instrumentations

to identify operations on shared variables, which is done manually in SATCheck. For comparison,

we carefully transformed the seven benchmarks to the required format.

For the third question, we tested our approach on the six real programs. We evaluated our

approach on these benchmarks under TSO and PSO, in addition to SC which is supported in the

original MCR. Because none of the other two tools can support complex real applications and

both of them work for C/C++ programs, we were not able to compare our results with the other

approaches.

All experiments were conducted on an Apple MacBook Pro machine with 2.6 GHz Intel Core

i5 processor, 8 GB DDR3 memory and Java JDK 1.7. All results were averaged over three runs.

3.5.2 Results of State Space Exploration

Table 3.4 summarizes the results of state-space exploration for the first seven benchmarks in

Table 3.3. The first three columns report the results of DPOR, the three columns in the middle

report the results of our approach, and the last three columns report the comparison between the

two approaches. On average, MCR takes 5X to 10X (as much as 30X) fewer executions than DPOR
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Table 3.4: Results of state-space exploration between our approach and DPOR. ∗ means timeout
in one hour and� indicates that an exception happened before finishing the experiment. Reprinted
with permission from [2].

Program DPOR MCR (our approach) SpeedUp
SC TSO PSO SC TSO PSO SC TSO PSO

Dekker 248 252 508 62 98 155 4.0X 2.6X 3.3X
Lamport 128 208 2672 14 91 102 9.1X 2.3X 29.4X
Bakery 350 1164 2040 77 158 165 4.5X 7.1X 12.4X
Peterson 36 95 120 13 18 19 2.8X 5.3X 6.3X
StackUnsafe 252 252 252 29 46 108 8.7X 5.5X 2.3X
RVExample 1959 � � 57 64 70 34.4X � �

Example
(N = 1 to 4)

4 4 � 2 2 10 2.0X 2.0X �
105 105 � 43 43 89 2.4X 2.4X �

4282 4282 � 296 296 819 14.5X 14.5X �
14840∗ 14840∗ � 2767 2767 8420 5.4X 5.4X �

Avg. 435 394 1118 42 79 103 10.4X 5.0X 10.9X

to explore the entire state-space. For RVExample, which contains a very tricky error with loops,

DPOR takes almost 2,000 executions, while MCR only takes 57 executions under SC. Moreover,

the rInspect tool cannot finish under TSO and PSO by throwing a socket exception. For our

Example in Figure 3.6, MCR takes 2,767 executions under SC and TSO, and 8,420 executions

under PSO. Because the tools are implemented in different languages, it is difficult to compare the

runtime speed between them. We hence focused on evaluating the effectiveness of our approach

in reducing the number of executions but not the runtime performance. In the original MCR

paper [19], it has shown that MCR outperforms DPOR in terms of runtime speed.

3.5.3 Results of Bug Finding

Table 3.5 summarizes the results of the bug finding for the first seven benchmarks in Table 3.3.

Overall, our approach takes much fewer executions than the other two approaches for finding the

errors. Moreover, our technique is able to find all the known errors and injected assertion viola-

tions, whereas DPOR fails to find the errors in Example and RVExample by throwing exceptions,

and SATCheck cannot find any error by either throwing segmentation faults or repeating the same

execution forever. Because SATCheck is a branch-driven approach, when there exists a certain
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Table 3.5: Results of bug finding between our approach, DPOR and SATCheck. � indicates the
tool failed to run on the benchmark. ! means the tool finished the exploration without finding the
bug. ∗ means the tool repeats the same execution and did not terminate. Since SATCheck does not
support PSO, we only report its results on SC and TSO. Reprinted with permission from [2].

Program DPOR SATCheck MCR (our approach)
SC TSO PSO SC TSO SC TSO PSO

Dekker 22 28 29 32∗ 68735∗ 10 4 5
Lamport 6 8 24 � � 2 2 3
Bakery 12 15 15 � � 8 8 15
Peterson 4 5 6 19! 34282∗ 7 2 3
StackUnsafe 6 6 6 � � 2 2 2
RVExample 301 � � 60564∗ 70365∗ 53 54 39
Example 14840! 14840! � 1! 1! 2767! 2767! 3

path that it cannot cover, the tool will run forever, for example in Dekker, Peterson and RVExam-

ple. For RVExample, DPOR takes 301 executions to find that tricky error, while our approach takes

only 53 executions.

3.5.4 Results on Real Programs

Table 3.6 reports the number of executions taken by MCR to explore the state-space of the

six real programs under SC, TSO and PSO as well as the number of data races found during the

exploration. MCR stops exploration when all state-space of the program has been explored, or it

triggers a bug in the program that leads to a runtime exception. Overall, MCR scales well to these

real programs, and it is highly effective in exploring the state-space and finding bugs including

data races in these programs. For example, for Account, MCR took only 7 executions to explore

the whole state-space under SC, and 9, 11 under TSO and PSO, and found 3 data races. For

Weblech, which contains over 2K critical events, MCR finished after explorating 185, 106 and 113

executions, respectively, under SC, TSO and PSO, and found 6 data races. The reason that MCR

explored fewer executions under TSO and PSO than that under SC is that bugs in Weblech that lead

to runtime exceptions are revealed faster under TSO and PSO.
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Table 3.6: Results of MCR under SC, TSO and PSO on real programs for state-space exploration
and bug finding. Reprinted with permission from [2].

Program
#Executions # Data Races

SC TSO PSO SC TSO PSO
Account 7 12 12 3 3 3
Airline 8 11 11 0 0 0

StringBuf 3 3 3 0 0 0
Allocation 30 30 30 0 0 0
PingPong 411 483 527 7 7 7
Weblech 178 103 116 6 6 6

3.6 Summary

We have presented an extension of MCR for stateless model checking of concurrent programs

under TSO and PSO. Our approach solves two key technical challenges. First, how to generate

new unique interleavings by formulating the operational semantics of TSO and PSO as first-order

logical constraints. Second, how to deterministically execute the program following the generated

TSO and PSO interleavings. By relaxing the must happen-before constraints in MCR to allow

TSO and PSO reorderings, and by developing novel replay algorithms that allow executions out

of program order, our approach enables MCR to effectively verify concurrent programs for TSO

and PSO. We have also presented our experimental results of applying MCR on both popular

benchmarks and real applications and comparing MCR with DPOR and SATCheck. Our results

show that our approach is much more effective than the other approaches for both state-space

exploration and bug finding.
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4. MCR-S: SPEEDING UP MCR WITH STATIC DEPENDENCY ANALYSIS ∗

Maximal Causality Reduction (MCR) gains a promising performance improvement over prior

reduction techniques. To explore the maximal causality between redundant executions that lead to

equivalent states, MCR takes the values of the reads and writes into consideration and constructs

first-order constraints over the events in the trace to generate schedules. As the new schedule

contains at least one read that returns a different value from that in the prior trace, the program

reaches a new state if it is executed following the derived schedule.

However, MCR is purely dynamic and it only collects information (values and addresses, etc.)

from the trace, which does not reflect the dependency relation of two events. As a result, MCR

has to conservatively enforce all the reads that happen before a considered event e to return the

same value (Section 3.1.2) as that in the current trace so that e is reachable in the derived schedule.

Consider the following code snippet.

i n t c o u n t e r = 0 ;

/ / t h r e a d t 1 : / / t h r e a d t 2 :

w h i l e ( i ++ < Max) w h i l e ( i ++ < Max)

c o u n t e r += 1 ; c o u n t e r −= 1 ;

This program contains two threads with one global variable counter, one thread increasing the

counter but the other decreasing it. The loop iteration in the program is decided by Max. For

ease of presentation, we extend the while loop with Max = 2 and execute the program in the

program order. The execution by each thread is an alternation of reads and writes to the shared

variable counter, e.g., r1-w1-r2-w2. MCR enumerates all the reads in the trace and considers all

the possible values that each read can return. To ensure the reachability of the considered read

r, MCR enforces the reads that happen before r to return the same value (3.1.2). For example, if

MCR considers the second read r2 in the trace, it will enforce the first read r1 to return the same
∗Reprinted with permission from "Speeding Up Maximal Causality Reduction with Static Dependency Analysis"

by Shiyou Huang and Jeff Huang, 2017. 31st European Conference on Object-Oriented Programming (ECOOP), 74,
16:1-16:22.
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value to ensure the reachability of r2. This is because MCR does not know whether or not the

value returned by r1 can influence the evaluation of a predicate (e.g., a if statement), thus affecting

the execution of a later event, such as r2. With the number of reads and writes increasing in the

trace, MCR needs to construct expensive constraints to ensure the reachability of an event, which

on the one hand consumes more memory and on the other more time for the solver to solve the

constraints.

In light of the limitation, the main question we consider is the following: Can we skip those

reads (e.g. r1) that happen before a target event (e.g. r2) in the exploration, thus reducing the

constraints? Combining with the program’s information, we can figure out whether a read (e.g.

r1) affects the reachability of another (e.g. r2). The key contribution of MCR-S is to integrate the

static dependency analysis into the dynamic exploration to reduce the complexity of the first-order

constraints. Although the dependency information provided by the static analysis may be imprecise

due to the limitations of all classic static analysis, we discuss that the soundness of the dynamic

exploration is not impacted by the imprecision in Section 4.2.3. We use the system dependency

graph (SDG) of the program to identify whether a read has a control or data dependency on an

event in the trace. Then in the exploration of new schedules from a given trace, we rely on such

dependency information to construct constraints to only make the dependency-related reads return

the same value.

4.1 System Dependency Graph

The system dependency graph (SDG) for a program P, denoted by Gp = (N,E), is a directed

graph, where the nodes inN represent the statements or predicates in P and the edges inE represent

the dependencies between the nodes [71]. Figure 4.1 presents an SDG of a concrete program,

which includes a procedure call add in the main procedure. An SDG is made of the procedure

dependency graphs (PDGs), which model the system’s procedures. In a PDG, all the nodes are

connected by either control dependency edges or data dependency edges. A node m is control

dependent on the node n if the evaluation of n controls the execution of m. The source of a control

dependency edge is either an enter node or a predicate node. A data-dependency between two
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Figure 4.1: The System Dependency Graph of a concrete program, where the dependencies are
distinguished by different edges. Reprinted with permission from [1].

nodes indicates that the program’s computation might be changed if the relative order of the two

events represented by the two nodes are reversed. In the SDG, all the PDGs are connected by the

edges between the call sites nodes and the enter nodes of the called procedures. For example, in

Figure 4.1, there exists a procedure call add in the main procedure. The two PDGs are connected

by a call edge from call add node to the entry node Enter add of the procedure add. In SDG, for

each parameter passing, there exists an actual-in node and formal-in node, which are connected by

a parameter-in edge. For instance, when passing parameter x to the procedure add, the actual-in

node x_in=sum is connected to the formal-in node x=x_in by a parameter-in edge (the dashed

arrow). For each modified parameter and returned value, there also exists a parameter-out edge

connecting the formal-out node and the actual-out node. Formal-in and -out nodes are control

dependent on the entry node and the Actual-in and -out nodes are control dependent on the call

node. The SDG permits us to analyze the dependency between two events presented by nodes in

the graph by traversing the graph.
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Algorithm 4: Φvalidity(e) Reduction
Input : τ - a trace and e - a given event in τ
Output: Φvalidity(e) - data-validity constraints related to e

1 Φvalidity = ∅
2 ≺τ (e)← Happens-before(τ , e)
3 ≺Dτ (e)← DependencyComputation(≺τ (e), e)
4 foreach read r ∈≺Dτ (e) with value v do

// Φvalue(r, v) recursively call DataValidityConstraints()

5 Φvalidity ∧ = Φvalue(r, v)

6 end
7 return Φvalidity

4.2 MCR with Static Dependency Analysis

This section introduces how our approach leverages the SDG to reduce the data-validity con-

straints (Φvalidity). We first present the overall algorithm and then the detailed dependency analysis.

4.2.1 Constraints Reduction

The essential idea for reducing Φvalidity is to reduce the number of the reads that are required

to return the same value by MCR. We begin with the definition of the set of reads that an event is

control dependent on to help illustrate the algorithm.

Definition 4.2.1. Given an event e in a trace τ , ≺τ (e) denotes the set of the reads that must-

happen-before e, and ≺Dτ (e) ⊆ ≺τ (e) denotes the set of reads that e is dependent on.

The main algorithm of our approach is presented as follows.

Algorithm 4 shows how to compute data-validity constraints of a given event e. It takes as

input the current executed trace τ and the considered event e. It first computes the set of reads

that must-happen-before e (line 2) based on the constraints Φmhb introduced in Section 3.1.2. Then

our algorithm computes a subset of reads ≺Dτ (e) ⊆≺τ (e), and all the reads in ≺Dτ (e) have a

dependency on e (line 3). We will give the details of the function DependencyComputation() in

Section 4.2.2.3. The algorithm finally enforces that all the reads return the same value as that in

the current trace τ according the encoding of Φvalue(r, v). The detailed expression of Φvalue(r, v)
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is presented in Section 3.1.2.

Because the number of the reads in ≺τ (e) that e is dependent on takes a small portion

of the total number of the reads in ≺τ (e), our algorithm reduces the size of Φvalidity

greatly. Meanwhile, the reduction will not lead to the missing of any executions explored

by MCR.

Proof. To prove the correctness of this approach, it only needs to prove that our new constraints

model Φ′validity is equivalent to Φvalidity presented in Section 3.1.2 because all the rest part of Φmc

remain the same. Consider a trace τ = e1, e2, · · · , en. To guarantee the reachability of an event

ei ∈ τ in a new schedule, we only need to make a read event e ∈ τ to return the same value and e is

the last read that ei is control dependent on. Since e is forced to return the same value, it guarantees

that e is reachable and the path containing ei is evaluated. Then no matter what values returned

by the read between e and ei, ei is always executed. Therefore, our algorithm will not cause any

infeasible executions or miss any executions.

4.2.2 Dependency Analysis

In this subsection, we present how we compute ≺Dτ (e) based on the program’s SDG from

two parts, control dependency and data dependency. The insight for identifying that an event is

dependent on another is to check if it exists a path in the SDG between the two events and the

path satisfies a specific pattern. For the rest of the paper, we will abbreviate control dependency

CD, data dependency DD, call CL and parameter in/out PI/PO. The reason why we distinguish

PI/PO and DD is that the SDG that we construct via an existing tool JOANA [72, 73] contains

these edges, and we use the type of the edge labeled by the graph to find the dependency relation.

We use n1
e∗−→ n2 to denote that there is a path p = e∗ in SDG from node n1 to node n2, and each

edge e in p belongs to one of CD, DD, PI, PO and CALL.

4.2.2.1 Control Dependency

We first discuss several situations where a read can influence the execution of a later event

and then derive a rule of how to decide that an event is control dependent on a prior read from
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Figure 4.2: Four different cases where a read is control dependent on another marked by the blue
edges. Reprinted with permission from [1].

the general cases. In SDG, an event is control dependent on a predicate event that is either a if

condition or procedure call related events. But the evaluation of the predicate is determined by the

values returned by some reads. Our goal is to find those reads. We give the definition of a read that

an event is control dependent on as following.

Definition 4.2.2. An event e is control dependent on a read r if r is a read access to a shared

variable, and r has data dependency on the predicate that decides the reachability of e.

We present four different cases in Figure 4.2 to help understand the definition and then sum-

marize the rules to help identify the dependency between two events. The variables x and y in the

figure are shared and all the others are local.

Case 1. Figure 4.2(a) shows the most direct control dependency between two events. The read

r = y is control dependent on the if predicate, which is data dependent on x == 1. As a result,

the read r = y is control dependent on the read x == 1 and the path between the two events is

x == 1
DD·CD−−−−→ r = y.

Case 2. Besides direct control dependency, the evaluation of a predicate may depend on a prior
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read. As Figure 4.2(b) shows, although the evaluation of the if predicate is determined by the

value of a, the read access to local variable a is data dependent on a prior read a = x. Therefore,

according to Definition 4.2.2, a = x is control dependent on r = y and x == 1
DD·DD·CD−−−−−−−→ r = y

Case 3. Figure 4.2(c) illustrates the propagation of the control dependency between different

procedures. The computation of the if predicate depends on the return value of the procedure

func(). It implies that the reachability of a read operation might be decided by a read in another

procedure. In this case, r = y is control dependent on the read return x in func() and return x
PO·DD·DD·CD−−−−−−−−−→ r = y. Likewise, the dependency can also be transmitted by a PI edge in the graph.

We omit the discussion of this case in the paper.

Case 4. In this case, the event func() has a special control dependency on r=y. As a

procedure may crash (program exits abnormally) during the execution, all the executions that occur

after the procedure call are not executed if the crash happens. SDG adds a control dependency

edge, also denoted as CD, from the node func() to the node r=y. Through this edge, we derive

r = y is control dependent on x == 1 and x == 1
CD·CD·CD·CD−−−−−−−−−→ r = y

As all the other cases are either the combination of the four basic cases above or can be derived

using the same way, we only analyze the four basic cases in this paper. From the analyses on the

four basic situations, now we summarize the rule to decide if an event is control dependent on a

prior read in the program. We denote the control dependency between two events as δc: given

two nodes n1 and n2 in an SDG, we use n1 δc n2 to denote that n2 is control dependent on n1.

By analyzing the patterns of the paths in the four cases above, we derive that given any event e

and a read r, to check r δc e is equivalent to check that if there is a path p ending with a control

dependency edge from r to e, and each edge e in p belongs to one of CD, DD, PI, PO and CALL.

We present the rule in Figure 4.3 to formalize this process.

4.2.2.2 Data Dependency

So far we have only considered the control dependency of the nodes. In this Section, we will

point out that under some cases, the reads on which an event is data dependent on should also

be added to the read set ≺Dτ (e) . Recall that when MCR maps a read to a certain write w, the
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Figure 4.3: Rule 1: the condition that a node has control dependency on another in SDG. Reprinted
with permission from [1].

data validity constraints in Section 3.1.2 also need to guarantee the reachability of w. We have

illustrated in Section 4.2.2.1 that to ensure the reachability of an event e in the trace τ , we only

need to ensure the reads in ≺Dτ (e) to return the same value. However, we also need to guarantee

that the value written by w matches with the one expected by the read in≺Dτ (e). Take the following

program as an example.

i n t x = y = 0 ;

/ / t h r e a d 1 : / / t h r e a d 2 : / / t h r e a d 3 :

1 : r = y ; /∗ r1 ( y ) ∗ / 2 : x = 1 ; /∗w1 ( x ) ∗ / 4 : x = 2 ; /∗w2 ( x ) ∗ /

3 : y = x ; /∗w( y ) , r2 ( x ) ∗ /

Suppose initially the program is executed along the program order: 1-2-3-4. The state of the

program is r1(y) = 0 and r2(x) = 1. Next, to make r(y) = 1 (return the value of w(y)), we

encode O3 < O1. Because there is no event that is control dependent on a read in this program, we

do not consider the data-validity constraints. Then a feasible schedule generated by our constraints

can be 2-4-3-1, making r1(y) = 2 and r2(x) = 2 instead of r1(y) = 1. This is because our

constraints only ensure the reachability of w(y) and does not constrain the value returned by r2(x),

which has a data dependency on w(y). Hence the value written to w(y) can be any one returned

by r2(x).

When considering the reachability of a write w, we also need to ensure that w writes the same

value to the shared address as it does in the original trace. To guarantee this, we force a read r

to return the same value if r is a read access to the same address accessed by w and has a data

dependency on w. Similar to δc, we denote the data dependency between two events as δd: given

two nodes n1 and n2 in an SDG, we use n1 δd n2 to denote that n2 is data dependent on n1. Then
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we can derive the data dependency rule following the spirit of RULE 1. Given a write w and a read

r, to check r δd w is equivalent to check that if there is a path p ending with a data dependency

edge from r to w. We present the rule in Figure 4.3.
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∗)) "2,	
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	Figure 4.4: Rule 2: the condition that a node has data dependency on another in SDG. Reprinted
with permission from [1].

The reason why the path may contain several DD edges is that the dependency can be trans-

mitted via the operations on local variables, similar to Case 2 presented in Section 4.2.2.1.

4.2.2.3 Dependency Reads Computation

After the discussion about the control and data dependency, we now present the algorithm of

the function DependencyComputation() in Algorithm 4 to give the details about how to compute

the set of reads that an event is dependent on in the program.

Algorithm 5 takes as input a given event e and the set of the reads ≺τ (e), containing all the

reads in τ that must-happen-before e. The algorithm analyzes two situations. If event e is a read, it

only chooses the reads from≺τ (e) that e is control dependent on and adds them to the set≺Dτ (e).

If e is a write, the algorithm adds the reads from ≺τ (e) that e is control or data dependent on to

≺Dτ (e).

4.2.3 Discussion

Challenges of static analysis for object-oriented languages, such as Java, stem from object- and

filed- sensitivity, dynamic dispatch and objects as parameters problems and so on. These statically

undecided problems are usually approximated relying on points-to analysis, or pointer analysis.

However, it is difficult to make precise points-to analysis, and even the precise points-to analysis

has to approximate certain undecidable situations which lead to may-alias. Due to the limitations
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Algorithm 5: Computation of ≺Dτ (e)

1 Function DependencyComputation(≺τ (e), e):
2 ≺Dτ (e) = ∅ ;
3 foreach read r in ≺τ (e) do
4 if e is a read then
5 if r δc e then
6 add r to ≺Dτ (e) ;

7 else
8 if r δc e or r δd e then
9 add r to ≺Dτ (e) ;

10 return ≺Dτ (e) ;

of all static analysis, it is difficult for us to build fully precise SDGs so that an SDG may contain

false or approximated dependency information. However, the soundness of our approach is not

threatened by the unsound dependency. In this section, we use two cases to explain why our

approach is not affected by imprecise static analysis.

Case 1: Problem with may-alias Imprecise points-to analysis may lead to the may-alias problem

between two pointers of the same type. In the construction of the SDG, the may-alias problem may

lead to that a later read is data dependent on several writes to the same memory location. Let us

consider the following example:

1 : p . o = 1 ; / / w1

2 : q . o = 2 ; / / w2

3 : i f ( p . o == 1) ; / / r

where p and q are pointers of the same type and o is the field that p and q can access. When

we construct the SDG for the program above, both w1 and w2 have a data dependency on r (i.e.,

(w1, w2) δd r) because p and q may alias. However, this does not affect our algorithm to decide

which write that r is exactly data dependent on. This is because when the program is executed and

generates the trace e1 − e2 − e3, our algorithm is aware of the field information accessed by each

event. From the trace, we can identify exactly what event has a dependency on e3.
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Case 2: Problem with path-insensitivity Because the generated SDG considers all the possible

paths of the program, the dependency read set ≺D computed from the SDG contains reads in all

the paths, which leads to imprecise dependency. Consider the following program as an example.

1 : i f ( exp ) r = x ; / / r1

2 : e l s e r = x ; / / r2

3 : y = r ; / / w

If we use the SDG to compute the read set that write y = r is data dependent on, both of the

reads r1 and r2 have a data dependency on y = r (i.e., (r1, r2) δd w) because the SDG is path-

insensitive. But this can be avoided by our approach because we combine static analysis with the

dynamic information. Our algorithm for computing ≺Dτ (e) is based on a concrete executed trace,

i.e., only e1 − e3 or e2 − e3 can be generated. As a result, only one read, either r1 or r2 has data

dependency on w in an concrete execution.

4.3 Redundant Executions

Extending MCR with static dependency analysis reduces the size of the constraints for explor-

ing new program’s states, and it will not miss any executions. However, our approach may explore

redundant executions. In this section, we use a simple example to illustrate how the redundant

executions are introduced and explain the root reason that causes the redundancy. We also propose

a solution to the redundancy problem.

i n i t i a l l y x = 0 ;

t h r e a d 1 : t h r e a d 2 :

1 : x = 1 ; /∗w( x ) ∗ / 2 : r1 = x ; /∗ r1 ( x ) ∗ /

3 : r2 = x ; /∗ r2 ( x ) ∗ /

Listing 4.1: An example that shows redundant explorations by our approach.

Consider the example above. MCR generates only three different executions to explore the

state space of this program.

• τ0 =< e1, e2, e3 >, (r1 = 1, r2 = 1);
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• τ1 =< e2, e1, e3 >, (r1 = 0, r2 = 1);

• τ2 =< e2, e3, e1 >, (r1 = 0, r2 = 0).

However, using static dependency analysis, our approach generates one more execution τ ′1 =<

e2, e3, e1 > (r1 = 0, r2 = 0), which is equivalent to τ2. We explain how the same state is explored

twice as follows.

First, the program is executed in the program order and the execution τ0 =< e1, e2, e3 >

(r1 = 1, r2 = 1) is generated. Then the two read events in the trace, r1(x) and r2(x), will be

considered to return a different value. To make r1(x) return a different value 0, r1(x) should read

from the initial write. Then e2 is required to happen before the write e1 and thus we generate a

new execution τ1 =< e2, e1, e3 > (r1 = 0, r2 = 1). Then the analysis on τ0 is done because

r2(x) cannot read from the initial write if we use MCR to model check the program. The reason

is that when considering the second read r2(x) in τ0, MCR enforces that r1(x) = 1 because r1(x)

happens before r2(x) according to the data validity constraints. This implies that r1(x) should

read from w(x) so that e1 should happen before e2. As e2 happens before e3 by the program order,

then e1 happens before e3 because of the transitive relation. Therefore r2(x) is only able to read

from w(x) from the analysis on τ0. But by our approach, we assume that r(1) does not affect the

reachability of r2(x). As a consequence, we do not enforce r1(x) = 1 when considering different

values that r2(x) can return. Then a new execution is allowed by our approach,

• τ ′1 =< e2, e3, e1 > (r1 = 0, r2 = 0).

This execution is equivalent to the state of τ2. And τ2 can be derived from τ1. The root reason

why MCR does not generate such a redundant execution is that enforcing the read to hold a value

implicitly causes a happens-before order between the write and the read (e.g. w(x) and r1(x)),

thus indirectly affecting the value by a later reader (e.g. r2(x)). Now that we do not require those

reads to hold the same value, the implicit happens before order imposed on some writes and reads

that access the same memory locations and reside in different threads is removed.
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Figure 4.5: Removed happens-before between x = 1 and r2 = x by our approach. Reprinted with
permission from [1].

Figure 4.5 shows the difference of the order relation by MCR and our approach on the example

above. The dashed arrow represents the implicit happens-before relation and the shadowed box

represents the read we consider. As we can see in Figure 4.5(b), x = 1 and r2 = x can be in any

order by our approach, while x = 1 happens before r2 = x in MCR.

4.3.1 Redundancy Elimination

According to the analysis on the example presented in Listing 4.1, we observe that when MCR

explores the new values that a considered read r can return, enforcing all the reads that happen

before r, on the one hand, guarantees the reachability of r and on the other hand, restricts the

writes that r can read from. But for the rest of the reads and writes, we are only concerned about

the reachability of them. We address the redundancy problem by adding constraints to make all

the reads that happen before r return the same value. This is a trade-off between the original MCR

and Algorithm 4. We present our algorithm as follows.

The only difference between Algorithm 6 and Algorithm 4 lies in line 3. In our new algorithm,

we decide whether to add the reads that happen before e to ≺Dτ (e) based on the type of e. If e

is a read expected to return a new value, we put all the reads that happen before e into ≺Dτ (e) to

avoid the redundant behavior. For the example, in Listing 4.1, as we want to explore what values

r2(x) can read, we also put r1(x) into ≺Dτ (e) to make r1(x) return the same value as that in τ0

so that τ ′1 will not be generated by our approach. If e is an event that we only care about if it will

be reached in the next schedule, we handle e in the way of Algorithm 4. Although this expands
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Algorithm 6: DataValidityConstraints′(τ, e)
Input : τ - a trace and e - a given event in τ
Output: Φvalidity(e) - data-validity constraints related to e

1 Φvalidity = ∅
2 ≺τ (e)← Happens-before(τ , e)
// target read: read considered to return new values

3 if e is not a TARGET READ then
4 ≺Dτ (e)← DependencyComputation(≺τ (e), e)
5 end
6 foreach read r ∈≺Dτ (e) with value v do

// Φvalue(r, v) recursively call DataValidityConstraints()

7 Φvalidity ∧ = Φvalue(r, v)

8 end
9 return Φvalidity

≺Dτ (e) and increases the size of the constraints, it still generates less constraints than MCR does

but with no redundancy. Moreover, if the solving of the constraints takes much more time than

what the execution of the program needs, we can keep the redundant executions to reduce the

overall checking time. We will have more discussions about this in Section 4.4.

Algorithm 6 can remove all the redundancies caused by Algorithm 4, and it will not miss

any executions.

Proof. The proof on the latter part follows the same analysis on Algorithm 4 in Section 4.2.1. To

prove that Algorithm 3 reduces all the redundancies, we show that by using Algorithm 6, our ap-

proach explores the same executions as MCR does. Given a trace τ , MCR considers only one read

r ∈ τ each time when exploring new schedules. Consequently, the number of the new executions

derived from r depends on the number of the writes that r can read from in τ . Because we force

all the reads that happen before r to return the same value as that in τ , which remains completely

the same as how MCR handles such a read, r reads from the same writes as that it can read from

in MCR. Therefore, our approach explores the same executions as MCR does.
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4.4 Implementation and Evaluation

This section presents the implementation of integrating static dependency analysis into MCR

and evaluates the performance improved by using static analysis.

4.4.1 Implementation

SDG construction The SDG of the program has been well studied for a long time and there are

many framework that can compute SDG, such as WALA [74] and Soot [75] for Java programs.

In this work, we build the SDG of Java programs based on two existing framework, JOANA [72,

73] and WALA. JOANA is a information flow tool based on WALA for Java programs. JOANA

implements flow-sensitive, context-sensitive and object-sensitive analysis and it minimizes false

alarms. Considering that JOANA supports full Java bytecode and refines the SDG by WALA, we

choose JOANA as our framework to construct the SDG.

Path Finding Before the dynamic analysis on the executed trace, we first generates the SDG of the

program and use a map structure to store the information of the graph. Because the SDG of a large

system contains thousands of nodes, we use a distinct integer ID to represent each node to save

the memory space of the map. During the dynamic exploration, we match the event in the trace

with its corresponding node in SDG, and decide the dependency relation of two events by checking

whether the path (if it exists) between the two nodes matches the rule defined in Figure 4.3 or 4.4.

4.4.2 Methodology

In the rest of this section, we refer to as MCR-S and MCR-S+ the approach that implements

Algorithm 4 and 6, respectively. We evaluate the effectiveness of MCR-S and MCR-S+ by testing

the three approaches on various benchmarks, including two large Java programs. Our evaluation

aims to answer the following three research questions:

RQ1: How many reads and constraints can be reduced by our approach, compared to MCR?

RQ2: To what extent can the solving time be improved after the constraints are reduced, compared

to MCR?

RQ3: How does the redundancy by MCR-S affect the total time spent on the state-space explo-
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ration?

In Section 4.4.3, we address RQ1 by comparing MCR-S and MCR-S+ with MCR, with respect to

the number of the reads, constraints and the solving time. In Section 4.4.4, we consider RQ3 via

evaluating the total time spent in exploring the state space of the program by the three approaches.

We expect to see how the overall performance is improved by the static analysis and meanwhile

the influence by the redundant executions. The comparison between MCR-S and MCR-S+ re-

veals which improves the performance more, the maximal constraints reduction with redundant

executions or the partial constraints reduction with no redundancy.

The experiments were run on a MacBook with 2.6 GHz Intel Core i5 processor, 8 GB DDR3

memory and JDK 1.7. All results were averaged over three runs.

Benchmarks To show the effectiveness improved by our hybrid analysis, we run our approach on

the same benchmark set used by prior work [19] so that we can make a direct comparison. Table

4.1 summarizes the benchmarks evaluated in this work. Counter is the example introduced in

the beginning of this chapter, and we take Max = 5 during the evaluation. Airline is a program

that can sell more tickets than the capacity. Pingpong can arouse an NPE error on the shared

variable player. BubbleSort is a small but read-write intense program with more than 10 million

interleavings. Pool contains a concurrency bug in Apache Commons Pool causing more instances

than allowed in the pool. StringBuf contains an atomicity violation. Weblech and Derby are two

large real-world programs with long trace and complicated constraints. We present the time and

memory used to construct the program’s SDG in the second and third column, respectively. The

last two columns show the number of the nodes and edges in the graph generated.

4.4.3 Reduction Analysis

Table 4.2 reports the results by MCR, MCR-S and MCR-S+ on the benchmarks. Column

#reads lists the number of the reads the three approaches considered totally when constructing

constraints to explore new interleavings. Column #constraints gives the total number of data-

validity (Φvalidity) constraints that map a read to a certain write. The number is the sum of the
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Table 4.1: Benchmarks. Reprinted with permission from [1].

Program time(s) memory(M) #nodes #edges
Counter 2.00 69 289 1,440
Airline 2.10 79 809 4,902

Pingpong 2.52 83 914 5,244
BubbleSort 2.14 81 911 5,710

Pool 3.67 75 2,848 17,586
StringBuf 2.96 111 2,129 12,310
Weblech 8.01 219 22,094 167,492
Derby 69.67 1,385 115,658 2,409,784

constraints generated by each exploration in the whole state-space search. As the other constraints

remain the same for MCR and the new approaches, we just discuss the read-write constraints in

the evaluation. Column time shows the time used by the solver to solve the constraints.

Figure 4.6 presents the reduction results by MCR-S and MCR-S+ compared to MCR on the

number of the reads and constraints as well as the solving time. The figure is best viewed in

color. The blue bar represents the results by MCR, green for MCR-S and yellow for MCR-S+,

respectively. For comparison, we normalize MCR’s results to 1 as the baseline and length of the

green and yellow bars represents the ratio of the results of MCR-S and MCR-S+ to that of MCR.

Number of reads reduced. Figure 4.6(a) summarizes the comparison on the number of the reads

reduced by MCR and our approaches. Averagely, MCR-S reduces the number of the reads by

27.1% and MCR-S+ by 12.1% compared to MCR. And the reduction percentage by MCR-S ranges

from 14.2% to 51.3%, and MCR-S makes the greatest reduction on the Derby benchmark. Com-

paring to MCR-S, MCR-S+ makes less reduction because it needs to constrain more reads into

the formula to avoid the redundant executions (Section 4.3). But MCR-S+ still makes a reduction

that ranges from 8.9% to 25.0% compared to MCR. Among the 6 benchmarks, neither MCR-S or

MCR-S+ makes a reduction on Airline. The reason is that in the routine run() of Airline, all

the reads and writes are control dependent on a read in the if predicate. As introduced in Section

4.2, we can’t reduce any reads for this benchmark. In addition to Airline, the other benchmark

that MCR-S+ fails to reduce the reads is Pingpong, while MCR-S reduces the reads by 28.2%.
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Figure 4.6: Reduction on the number of the reads and constraints as well as the solving time
achieved by MCR-S and MCR-S+ comparing to MCR. The results generated by MCR are normal-
ized to one as the baseline. Reprinted with permission from [1].
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Note that for benchmark Weblech, MCR-S considers more reads than MCR-S+ does. This is

because that MCR-S explores more executions than MCR-S+ does due to the redundancy, and

we take as the final result the total number of reads the approaches have considered in the whole

state-space exploration.

Table 4.2: Results of the number of the reads and constraints as well as solving time generated by
MCR, MCR-S and MCR-S+ to explore the state-space of the benchmarks, respectively. one hour.
Reprinted with permission from [1].

Program
MCR MCR-S MCR-S

#reads #consts time(sec) #reads #consts time(sec) #reads #consts time(sec)
Counter 55,886 202,039 22.11 37,515 108,270 7.41 45,972 131,053 12.25
Airline 15,632 24,643 2.43 15,328 24,475 2.39 15,599 24,625 2.38

Pingpong 1,905 5,225 1.42 1,376 3,684 1.38 1,906 5,227 1.32
BubbleSort 5,583,561 3,487,802 679.27 3,574,528 2,158,422 546.75 5,087,528 3,046,852 586.42

Pool∗ 143 68 < 1 94 12 < 1 117 36 < 1
StringBuf∗ 102 30 < 1 102 30 < 1 102 30 < 1
Weblech 120,161 5,676 13.75 103,155 3,920 6.39 90,096 4,217 5.24
Derby 46,222,858 22,008,512 477.13 22,530,501 12,184,850 347.98 36,461,542 17,412,201 300.58
Avg. 8,666,667 4,288,982 199.35 4,377,067 2,413,936 151.03 6,950,440 3,437,362 151.26

* The exploration time on these two benchmarks is far less than 1 second and we ignore them when we compute the average results.
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Table 4.3: The total number of executions and time taken by the three methods to explore the
state-space of the benchmarks. Reprinted with permission from [1].

Program
MCR MCR-S MCR-S+

#executions time(sec) #executions time(sec) #executions time(sec)
Counter 4,523 181 6,550 247 3,485 133
Airline 14 4 14 5 14 5

Pingpong 394 13 535 16 394 15
BubbleSort 5,823 OOT 1,828 OOT 6,885 OOT

Weblech 967 677 756 511 668 385
Derby 15 787 16 797 15 676

Number of constraints reduced. Figure 4.6(b) reports the reduction of the data validity constraints

by MCR-S and MCR-S+. As the reads are reduced by our approaches, we do not need to constrain

those reads to return the same value, and thus reduce the size of the constraints. Given a read r

that returns the value by the write w, we count the constraint as one, and the constraint enforces

another write that writes a different value from that by w to the same location to either occur before

w or after r. On average, MCR-S reduces the number of constraints by 31.6%, while MCR-S+ by

15.7%. As Figure 4.6(b) shows, the reduction on the constraints is consistent with that on the reads

in Figure 4.6(a).

Solving time reduced. Figure 4.6(c) presents the results of the solving time by each method.

From Figure 4.6(b) and (c), we can see that though MCR-S approximately makes two times as

much constraints reduction as MCR-S+ does, the solving time taken by the two approaches is

quite close to each other. Among the 6 benchmarks, MCR-S reduces the solving time by 27.8%

compared to MCR, on average, while 26.2% by MCR-S+. Moreover, for benchmarks Weblech

and Derby, it takes more time for MCR-S to solve the constraints than MCR-S+. This is because

MCR-S explores more executions than MCR-S+ does, and thus the size of the total constraints

generated by MCR-S actually is greater than that by MCR-S+. Likewise, though MCR-S reduces

the size of constraints by 29.5% on the benchmark Airline, it takes almost the same time for

MCR-S to solve the constraints as that for MCR.
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4.4.4 Overall Checking Performance Comparison

Table 4.3 summarizes the state-space exploration results by the three approaches, in terms of

the number of executions explored and time (seconds) taken to finish the exploration. Note that

we do not report the results of Pool and StringBuf because the execution time for these two

benchmarks is too small to be tracked. We run BubbleSort with an input which contains four

integers. Because BubbleSort is a read and write intensive benchmark, none of three methods

can finish the exploration in a reasonable time. Therefore, we set one hour as an upper bound for

the exploration and use OOT to represent that the exploration runs out of time. As discussed in

Section 4.3, MCR-S may introduce some redundant executions into the exploration. Consider the

Counter and Pingpong benchmarks. It takes 6, 550 and 535 executions for MCR-S to explore

the state-space, respectively. But it only takes 4, 553 and 394 executions for MCR and 3, 485 and

394 for MCR-S+. Although MCR-S reduces more reads and constraints than MCR-S+ does, it

also introduces redundant executions. As a result, it takes more time for MCR-S to check the two

benchmarks. But MCR-S+ reduces the total time of the exploration of Counter by 48 seconds,

compared to MCR. For the BubbleSort benchmark, all of the three methods fail to finish the

exploration in one hour. MCR-S+ explores the most executions while MCR-S explores the least

among the three methods in the bounded time, meaning that the average time of MCR-S+ spent

on each execution is the least. MCR-S+ fails to reduce the total exploration time on Pingpong

and Airline for two reasons: (1)First, the two benchmarks generates light constraints and the

solving time of the constraints only takes a small portion of the total time. (2) Second, it takes time

for MCR-S+ to check the dependency between two events in the dynamic exploration.

For the benchmark Weblech, both MCR-S and MCR-S+ reduce the exploration time by

about 3 and 5 minutes, respectively. Although MCR-S and MCR-S+ explores less executions on

Weblech, interestingly, all of the three methods expose the null pointer exception in the bench-

mark. For Derby, MCR-S+ reduces the checking time by about 2 minutes, compared to MCR

and MCR-S, and MCR-S spent 10 more seconds than MCR does. Among the six benchmarks,

MCR-S+ achieves the best effect. This is because MCR-S+ reduces the size of the constraints, and
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meanwhile it does not introduce any redundant executions.

4.5 Summary

In this work, we present a new technique to reduce the size of the constraints formula to speed

up MCR via static dependency analysis. We use system dependency graph to capture the depen-

dency between a read and an event e in the trace and exclude those reads that e is not control

dependent on. We then can ignore the constraints over such reads to make them return the same

value and thus reducing the complexity of the formula. The experimental results show that com-

paring to MCR, the number of the constraints and the solving time by our approach are averagely

reduced by 31.6% and 27.8%, respectively.

68



5. SE-MCR: REDUCE THE STATE SPACE OF MCR USING SWITCH EQUIVALENCE

Stateless Model Checkers suffer from state explosion problem. As a result, the reduction tech-

nique behind a model checker is critical to make the model checkers efficient and more scalable.

MCR uses SMT constraints to reason about the maximal causality of a given execution trace and

partitions the traces based on the values seen by the read events in each trace. Compared with

DPOR, MCR reduces the number of executions by orders of magnitude, and significantly improves

the scalability, efficiency, and effectiveness of the state-of-the-art for both state-space exploration

and bug finding.

Although MCR gains a great performance improvement over the POR based approaches, it

does not achieve the minimum number of explored interleavings. Consider four threads, p, q, r

and s, performing read and write accesses to shared variables x and y:

p: write x; q: read x; r: write y; s: read y;

Given the execution trace p.q.r.s, MCR considers all the reads and tries to make them return dif-

ferent values. Suppose it considers q first and then s, the execution q.s.p.r can be generated. If it

considers s first and then q, s.q.p.r is explored. However, these two executions produce the same

output. The fundamental reason for this is that after MCR computes two interleaving prefixes {q,s}

from the trace p.q.r.s to make the reads happen before the writes, it assumes that the explorations

starting with q and s are independent and will not lead to redundant executions. But executions

starting with q.s and s.q are actually equivalent to each other. We call such equivalence as switch

equivalence. Even worse, the future exploration along q.s and s.q will also be equivalent, which

causes a performance loss to MCR. In this cahpter, I first illustrate how MCR explores redun-

dant interleavings with a concrete example and then present the new algorithm, called SE-MCR,

applying the switch equivalence checking to the MCR approach.
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5.1 MCR Explores Redundant Interleavings

MCR reduces the number of explored interleavings by DPOR and iterative context bounding

(ICB) [20] by orders of magnitude. In this section, we use the program in Figure 3.2 as an example

to interpret how MCR works, and then show that MCR is limited to redundant executions. The

program contains four threads p,q,r and s, and two shared variables x and y. Figure 5.1 shows the

exploration process by MCR. In this paper, for ease of presentation, we use the thread label (e.g.,

p) to refer to the corresponding event. MCR uses integer variables 〈O1, · · · , On〉 to denote the

order in which the events happen in a certain execution. The value of Op represents the position of

the event p in a trace. If Op < Oq, then p will be executed before q in the generated interleaving.

q ss
q

q

S0:	p.q.r.s

p.r.s

p.q.r

p.r

p.r

S0.1	:

S0.2	:

S1.1	:

S2.1	:
redundant

(r1	=	0,	r2	=	1)

(r1	=	r2	=	1)

(r1	=	r2	=	0)

(r1	=	1,	r2	=	0)

(r1	=	r2	=	0)

q

s

q

s

Figure 5.1: The exploration for the program in Figure 3.2 by MCR. The prefix is wrapped by a
box. A trace is collected by re-executing the program starting with the prefix, and bold letters
corresponds to read events in the trace.

Initially, suppose the program is executed in the order p.q.r.s and reaches the initial state S0,

where r1 = 1 and r2 = 1,

S0 : p.q.r.s {r1 = 1, r2 = 1}.

To explore new possible execution interleavings from the trace p.q.r.s, MCR enumerates all the

reads in the trace, e.g., r1 = x and r2 = y by threads q and s (marked as bold in the figure),

respectively. In S0, MCR detects that q reads from p, and the program can generate a new state if q
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reads from the initial value, implying that q happens before p. MCR generates Φstate = Oq < Op

to encode the order. Therefore, MCR generates a new schedule prefix, q , wrapped by a box in the

figure. Likewise, to make s read from the initial value, MCR generates another prefix s from the

constraints Os < Or. Then by running the program starting with q , a new trace p.r.s is collected,

leading to state

S0.1 : q.p.r.s {r1 = 0, r2 = 1}.

Similarly, the program reaches the state

S0.2 : s.p.q.r {r1 = 1, r2 = 0}

by the execution along s . Using the same strategy on trace p.r.s in S0.1 and p.q.r in S0.2, MCR

generates two more prefixes s and q, respectively. By re-executing the program starting with the

two prefixes, two new states

S1.1 : q.s.p.r {r1 = 0, r2 = 0}

and

S2.1 : s.q.p.r {r1 = 0, r2 = 0}

are generated.

Figure 5.2 shows the reduction made by MCR. The interleaving highlighted in blue are ex-

ecuted by MCR, while the dashed are redundant executions identified by MCR. The number of

explored interleavings is reduced from 24 to 5. However, as we can see, states S1.1 and S2.1 are

equivalent to each other, both of which making r1 = r2 = 0. MCR fails to identify q . s and

s . q as redundant executions because when MCR first computes the prefixes q by S0.1 and

s by S0.2, it takes q and s as two totally independent prefixes. MCR then assumes that the

sub-state spaces of the program starting with these two prefixes will not overlap, meaning that

executions from different sub-space (i.e., starting with different prefixes) cannot generate the same
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Figure 5.2: State-space reduced by MCR.

state. The redundancy problem can harm the efficiency of the model checker severely because the

explorations along two redundant prefixes are equivalent to each other.

Limitation To avoid generating duplicated seed interleavings from different τ , MCR ensures

that the prefix of each new explored interleaving is always preserved. Figure 5.1 shows an intuitive

view of this process. From state S0 : p.q.r.s, MCR generates two prefixes q and s. Let us take

q as an example. By executing the program starting with q, MCR collects the trace p, r, s. Note

that the events corresponding to the prefix are not included in the trace any more. A new prefix s

can be generated from p.r.s. Since the new prefix s is generated under the sub-space by q, MCR

combines s with q (i.e., q.s) to guide the new execution. Obviously, given a trace τ collected by

executing the program along a prefix P , no two prefixes generated from τ are equivalent. Suppose

any two prefixes P1 and P2, derived from τ . As each prefix enforces only one read to return a

different value, assume that P1 targets read r1 and P2 targets r2. Because both of P1 and P2 are

derived under P , prefixes P .P1 and P .P2 must guide the program to generate different states.

However, as Figure 5.1 shows, MCR explores redundant states, q.s.p.r and s.q.p.r. Let us

assume that from P1 (here corresponds to q), MCR can further generate prefix P ′1 (s) and from P2

(s), MCR generates P ′2 (q). Then there is no guarantee that P .P1.P ′1 is different from P .P2.P ′2,

where P is the prefix of P1 and P2. Because P ′1 and P ′2 may target different reads. Figure 5.2

shows where the redundancy happens in the reduced space by MCR for the example in Figure 3.2.
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Initially	x	:=	y	:=	0

p:
x	:= 1

q:
r1	:=	x

r:
y	:=	1

s:
r2	:=	y

Initially	x	:=	y	:=	0
p:

x	:= 1
q:

r1	:=	x
r:

y	:=	1
s:

x	:=	2	
r2	:=	y

Figure 5.3: An example that shows swapping the order of two seed prefixes does not always work.

In this work, we also present an optimized MCR and show that the new algorithm can explore a

provable minimum number of interleavings.

5.2 Solution Overview

In this section, we present the basic idea for our solution. To identify the redundancy, we

check if there exists such a situation, (1) there is an execution sequence that makes the program

produce a state S, and MCR explores another state S ′ following S; (2) there exists an alternative

execution sequence that makes the program produce S ′ first, and then MCR explores another state

S following S ′. If such a situation exists, MCR potentially explores redundant executions.

Consider the exploration in Figure 5.1. After we collect the trace from the execution S0 :

p.q.r.s, we compute two prefixes q and s in the same way as MCR does. Then our approach

checks if the combination of q and s in a different order will lead to an equivalent execution.

We find that if the program reaches state S0.1 along q first, the model checker will explore the

prefix s next. If the program reaches S0.2 along s first, q will be considered next. Our approach

detects that q . s and s . q make the program produce the same outcome statically (i.e., without

execution). Then when we reach state S0.1 by q .p.r.s we can skip the prefix s generated from

the trace p.r.s, and state S1.1 is avoided.

Challenges 1 Swapping the order of two seed prefixes does not always generate the equivalent

execution sequence. Take the program in Figure 5.3 as an example. This program slightly modifies

the example in Figure 3.2 by adding a write x := 2 before r2 := y in thread s. Figure 5.4 shows the

exploration process of this program. The redundancy occurs between the executions starting with
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Figure 5.4: The exploration for the program in Figure 5.3 by MCR.

S0.2 : s.q s and S0.3 : s.s q , both of which drive the program to generate r1 = 2, r2 = 0. If we

check the equivalency by just reordering the prefixes, the equivalent execution sequence should be

S0.1 : q . s.s and S0.3 : s.s . q , because one can be transformed to the other by just swapping q

and s.s . But obviously, q . s.s and s.s . q are not equivalent to each other because the former

drives the program to the state r1 = r2 = 0, while the latter r1 = 2, r2 = 0. We explain how to

check the equivalence of two prefixes computed from the same trace in next section.

Initially	x	:=	y	:=	0

p:
x	:= 1

q:
lock(l)
r1	:=	x
unlock(l)

r:
y	:=	1

s:
lock(l)
r2	:=	y
unlock(l)

Figure 5.5: An example with locks.

Challenges 2 The second challenge to identify a redundant interleaving is to guarantee the exe-

cution is feasible. Consider an example in Figure 5.5, a variation of the program in Figure 3.2. The
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only difference is that the two reads shown in Figure 5.5 is protected by a lock. For the program

in Figure 5.5, suppose initially the program is executed in the order p.q.q.q.r.s.s.s and reaches the

initial state S0, where r1 = 1 and r2 = 1,

S0 : p.q.r.s {r1 = 1, r2 = 1}.

To make x and y read from the initial writes, the first two prefixes computed from the initial

execution become q.q and s.s because the lock(l) happens before the read. If we directly combine

the two prefixes, it could be q.q.s.s. However, this execution sequence is not feasible because

s : lock(l) should happen after q : unlock(l). As a result, we need to add events to the prefix

until it contains the unlock event, e.g., q.q is extended to q.q.q and s.s is extended to s.s.s In our

implementation, we model a wait event as a wait-lock pair and handle it in the same way as

we handle the unpaired lock event here.

Challenges 3 Moreover, it requires a theoretical proof that the alternative execution (generated

by swapping the order of two seed interleavings) is always valid and removing the redundant

interleavings does not harm the completeness of the exploration.

We present how we address these challenges in next section.

5.3 Maximal Causality Reduction across Equivalent Interleavings

In this section, we present a new algorithm, SE-MCR, to address the redundant issues in MCR

and a proof that shows our algorithm will not miss any interleavings. SE-MCRextends the original

MCR to check the redundancy across all seed interleavings generated by MCR with switch equiv-

alence. Given a random trace τ0, the algorithm enumerates all the reads on it. For each read, the

algorithm checks all the different writes that this read can read from, and generates a causal prefix

P to enforce the order of the events in the program to make a specific read to read from that write.

Among the prefixes that are computed from τ0, the algorithm checks if any two of them make a

redundant execution by altering their order. Section 5.3.1 introduces the new algorithm, Section

5.3.2 shows the advantages of the new algorithm over MCR and Section 5.3.3 formally proves the
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correctness of this algorithm.

5.3.1 MCR with Switch Equivalence

Algorithm 7: SE-MCR algorithm
1 P = {P0} // P: a set of unexplored prefixes

2 E [P0] = ∅ // E: a map from a prefix to its equivalent prefixes

3 foreach P ∈P do
4 Explore(P)
5 end
6 Function Explore(P):
7 τ ← Execute(P)
8 Φ← ConstraintsModel(τ )
9 P← SearchNewPrefixes(τ ,Φ)

10 CheckEquivalence(P, E)
11 foreach Pnew ∈ P do
12 if Pnew 6∈ E [P ] then
13 add Pnew to P
14 end
15 end

TheSE-MCR is presented in Algorithm 7. We use P to maintain all the prefixes that have not

been explored by the algorithm. A map denoted as E records the equivalent prefixes of a prefix P .

Initially, P only contains P0 that executes the program in the program order thread by thread. The

algorithm terminates when all the prefixes in P are explored (lines 3− 5).

Whenever the program is executed along the prefix, a trace denoted as τ is collected to record

the new generate events (line 7). Then a maximal causal model is constructed over the trace (line

8), encoding all the possible executing sequences that can be derived from this trace. The model

is constructed by Φmcm = Φmhb ∧ Φlock ∧ Φvalidity (3.1.2). In line 9, the algorithm searches new

prefixes that drive the program to reach different states by calling SearchNewPrefixes. For all the

new computed prefixes, the algorithm checks if either two of them lead to an equivalent execution

by calling CheckEquivalence (line 10). Then for each new prefixPnew, if it is not in the equivalent
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prefixes of P , the algorithm adds it to P (lines 11− 15).

5.3.1.1 Search New Prefixes

Algorithm 8: SearchNewPrefixes(τ ,Φ)
Return: a set of prefixes P

1 Function SearchNewPrefixes(τ ,Φ):
2 P = ∅
3 foreach r = read(t, x, v) ∈ τ do
4 foreach w = write(−, x, v′) ∈ τ ∧ v′ 6= v do
5 ΦP ← NewPrefixesConstraints(r, w,Φ)
6 P ← SolveConstraints(ΦP)
7 add P to P
8 end
9 end

10 return P

The new prefix searching algorithm is presented in Algorithm 8. The key insight behind this

algorithm is taking the values of reads and writes into consideration. It enforces a read event to read

a different value from that in the given trace τ . For each read r = read(t, x, v) ∈ τ , it enumerates

each write w = write(−, x, v′) ∈ τ (from any thread) that writes a different value from that

returned by r (lines 3− 4). Function NewPrefixesConstraints constructs constraints to identify if

r can read from w (line 5). Basically, it enforces other writes (e.g., w′ = write(−, x, v′′), v′′ 6= v′)

to either happen before w or after r, recalling that Φvalue(r, v) makes the read r to read a value v.

The following constraint defines how to compute ΦP .

ΦP ≡ Φlock ∧ Φmhb ∧ Φvalidity(r) ∧ Φvalidity(w) ∧ Φvalue(r, v
′)

For each ΦP , we invoke a constraint solver. If the solver returns a solution, the solution rep-

resents a new interleaving that is feasible and in which the read will read that new value. We

construct a new prefix from the solution and add it to P (lines 6 − 7). Note that each read only
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concerns about the distinct values but not distinct writes. If there are multiple writes writing the

same value, it suffices to generate only one new interleaving for all of them. This explains why

MCR is insensitive to N in our example in Figure 6.1.

5.3.1.2 Check Equivalence across New Prefixes

Algorithm 9: Switch Equivalence(P, E)
1 Function CheckEquivalence(P, E):
2 n = P.size()
3 for i = 0 to n− 2 do
4 for j = i+ 1 to n− 1 do
5 Pi = P[i], Pj = P[j]
6 P = Equivalent (Pi,Pj)
7 if P 6= ε then
8 add P to E[Pi]
9 end

10 end
11 end
12 Function Equivalent(Pi,Pj):
13 P = Pij = Pji = ε
14 ri= last(Pi), rj= last(Pj) // must be a read

15 if ri 9 rj and rj 9 ri then
16 Pij = Pi♦Pj , Pji = Pj♦Pi

// Pij and Pji lead to the same state

17 if Pij ' Pji then
18 P = Pij.remove(Pi)
19 end
20 end
21 return P;

Algorithm 9 checks if two prefixes in P generated by Algorithm 8 can lead to equivalent execu-

tions. Given a scheduling prefix P , we use the following notations to help illustrate the algorithm:

• last(P) refers to the last schedule choice of P;

• Pi.remove(Pj) removes from Pi the common elements of Pi and Pj;
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• Pi.Pj appends Pj to Pi;

• → refers to the happens before relation.

For any two prefixes Pi and Pj , the algorithm invokes Equivalent to search the equivalent

prefix (lines 3 − 6). However, before checking if two prefixes are equivalent or not, it first needs

to extend the prefix if it contains an unpaired lock event as stated in Section 5.2. To detect if the a

prefix contains an unpaired lock, we traverse the events in the order specified by the prefix with a

stack. If we encounter a lock event, we push it to the stack; if an unlock event is met, we pop the

unpaired lock from the stack. At last, we check if the stack still contains any events. If so, it means

the prefix contains an unpaired lock event. To extend the prefix, we first identify the thread of that

unpaired lock, then adding events from that thread to the prefix until it meets the unlock event.

Switch Equivalence: To judge if two prefixes Pi and Pj will yield reduandant executions, we

introduce switch equivalent, which is depicted as the following two conditions: ¶ the last events

ri in Pi and rj in Pj do not happen before each other(line 15); · Pij and Pji make ri and rj see

the same value as that in Pi and Pj , respectively. The computation of Pij is defined as follows.

Definition 5.3.1 (Pij = Pi♦Pj). Pi♦Pj = Pi.(Pj.remove(Pi)).

We use the following definitions to describe two equivalent execution sequences.

Definition 5.3.2 (Pvx). Pvx denotes an execution sequence in which a read access to a shared mem-

ory location x returns the value v.

Definition 5.3.3 ('). Given Pv1x and Pv2y , let P = Pv1x ♦Pv2y and P ′ = Pv2y ♦Pv1x . P is equivalent

to another P ′ ( denoted as P ' P ′ ) iff, for the read accesses to x and y, denoted as rx and ry,

in P and P ′, the values returned by them, value(rx) and value(ry), should equal to v1 and v2,

respectively;

Definition 5.3.3 means that the combination of two prefixes should make the reads return the

same value as they do in the prefix they belong.
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Initially	x	:=	y	:=	z	:=	0
p:

r1	:= x
q:

r2	:=	y
r:

r3	:=	z
s:

x	:=	1
t:

y	:=	1
u:

z	:=	1

Figure 5.6: An example shows the efficiency of SE-MCR.
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{t.q,	u.r} {u.r}

{u.r} {t.q}

Figure 5.7: State-space exploration for the program in Figure 5.6 by SE-MCR.

To illustrate Algorithm 9, consider the exploration in Figure 5.3. Given the trace S0 : p.q.r.s.s,

Algorithm 8 generates three causally different prefixes: q , s.q and s.s . For prefixes Pi = s.q

and Pj = s.s , their last events are r1 := x and r2 := y, which do not happen before each other.

Then Algorithm 9 computes Pi♦Pj = s.q.s and Pj♦Pi = s.s.q. Since both of them make r1 = 2

and r2 = 0, the algorithm adds the execution sequence Pij.remove(Pi) = s (it will be generated

from the execution trace starting with Pi) to Pi’s equivalent prefix set, E(Pi). When the algorithm

considers the trace p.r.s in S0.2, it ignores the new prefix s so that it avoids the execution S2.1 :

s.p.r.
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5.3.2 Efficiency

In this section, we use the program in Figure 5.6 to show the efficiency of SE-MCR in reducing

the size of the state space and that our algorithm is intuitively correct. The exploration of the state

space is abstracted as the process of traversing a tree presented in Figure 5.7. Each node represents

a program’s state. For instance, assume that the program is executed in the order p.q.r.s.t.u and

reaches the state S0(000), meaning that the values of r1, r2 and r3 are all 0. For each state, it is

assigned with prefixes in the braces, marking that executions beginning with them from this state

will be redundant. Each edge is labeled with the target read and the corresponding prefix to make

that read return a different value. Take the out edge r1: s.p from S0 as an example. It enforces

r1 = 1 by executing the program starting with s.p. The dashed edges refers to the redundant

execution starting with the prefix on the edge. For instance, the execution starting with r2: t.q out

from S1.1 is equivalent to that along r1: s.p out from S1.2. As a result, our algorithm only executes

one of them. All the states in the dashed box are redundant states that are generated by MCR but

not by our algorithm. In total, SE-MCR explores all the eight unique states that can be produced

by the program in Figure 5.6, from 000, 100, ... to 011, 111. However, MCR explores 16 states in

total, half of which are actually redundant.

As is shown in Figure 5.7, our searching starts with an initial state (e.g., S0). For each state, all

possible distinct execution sequences are computed. For instance, our algorithm computes prefixes

s.p, t.q and u.r from S0 in this example. By re-executing the program starting with the prefix, the

program reaches different states, e.g., S1.1 produced by the execution along s.p. The key insight

for SE-MCR to avoid redundancy is to make each state aware of its sibling’s states. For example,

when the program reaches state S1.1, it knows that its sibling S1.2’s state is 010 and S1.2 next will

reach 110 by attempting to change the value of r1 from 0 to 1. Knowing that s.p.t.q is equivalent

to t.q.s.p, S1.1 will ignore the prefix r2: t.q generated from the execution starting with r1: s.p.

When two states at the same level do not influence each other (i.e., no happens-before relation

between the target reads), they are interchangeable in the trace, and a redundant execution is gen-

erated by swapping the exploration order of the two states. Algorithm 9 illustrates when redundant
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execution sequences can happen. Since each state on the same level of the tree comes from the

same prefix, exploring only one of the two sequences would not influence the completeness. So

our algorithm does not miss any causally different execution sequences. In the next two subsec-

tions, we formally prove the feasibility of interchanging two states at the same level in the tree,

and optimality of Algorithm 9.

5.3.3 Correctness

To prove the correctness of Algorithm 9, we first show why Pi♦Pj.remove(Pi) must be ex-

plored after the program is re-executed along Pi. Then we prove that our algorithm achieves

completeness.

5.3.3.1 Feasibility

We prove that at an exploration point, the program may reach state A or B, and if the program

reaches either of the states, it will next explore the other. Given a prefix P , we first give the

following notations:

• dom(P) means {1, 2, ...,P .len()};

• Pk refers to the kth event in P .

Given a trace τ , we compute two prefixes: PA represents the execution that makes program reach

state A and PB for state B. We use rA = last(PA) and rB = last(PB). For a prefix P computed

from τ , it has two properties:

Property 1. ∀i ∈ dom(P), P i → last(P); ∀e ∈ τ , if e→ last(P), e ∈ P .

Property 2. ∀r ∈ P , r 6= last(P), r returns the same value as that returned by the same read in

τ .

Lemma 4. If rB 9 rA, rB must be explored after enforcing rA to see a different value, and vice

versa.
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Proof. Suppose PA enforces rA to see a different value. Since rB 9 rA, rB 6∈ PA (Property 1).

Therefore, rB must occur in the trace after executing the program along PA. Our algorithm then

will explore a different value that rB can see.

Lemma 5. If e ∈ PB, and e 6∈ PA, e must happen after rA and before rB, and vice versa.

Proof. e → rB due to Property 1. If e → rA, then e ∈ PA, which contradicts with the condition

e 6∈ PA.

Theorem 6. Given a state S0, and S0 contains two reads rA and rB. If there exist

1. two different prefixes PA and PB, making that S0
PA SA, rA reads from a write wA that

writes a different value; and S0
PB SB, rB reads from a write wB that writes a different

value;

2. rA 6∈ PB, and rB 6∈ PA,

then S0
PA SA

P ′B S is feasible, and there exists another execution sequence S0
PB SB

P ′A S ′,

where P ′B = (PA♦PB).remove(PA) and P ′A = (PB♦PA).remove(PB) .

Proof. According to Lemma 4, if the program is executed along PA first, then our algorithm must

explore the read rB in the new trace. If PA is reached first, rB will be considered next. Assume

an execution S0
PA SA

P ′B SB. After the state SA is reached by S0
PA SA, if PA ∩ PB = ∅, it

implies that for any event e, if e ∈ PB, then e 6∈ PA. According to Lemma 5, for each e ∈ PB,

e → rB, therefore e ∈ P ′B (Property 1). So P ′B = PB, which also equals to PB.remove(PA),

i.e., the shortest sequence to make rB see a different value. If PA ∩ PB 6= ∅, then for each

e ∈ (PB −PA ∩PB), e→ rB, and thus e ∈ P ′B. Because events that have already been contained

in PA do not appear in the trace any more, P ′B will not contain any event e|e ∈ PA. So P ′B =

PB−PA∩PB = PB.remove(PA). After the program reaches state SA alongPA, PB.remove(PA)

is the shortest execution sequence that reaches rB from SA. Because of symmetry, if the program

reaches SB first along PB, it next explores rA along PA.remove(PB).
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5.3.3.2 Completeness

To show that our new searching algorithm is complete, we prove that SE-MCR never misses

any states that can be generated by MCR.

Theorem 7. SE-MCR explores every unique execution sequence that MCR explores.

Suppose two execution sequences PA.P ′B ' PB.P ′A. According to Algorithm 8, we will skip

the exploration of the sub-space constructed from the trace by re-executing the program starting

with PA.P ′B. Next, we prove that this does not cause our exploration to miss any behaviors that

can be covered by MCR.

Proof. We proceed by contradiction. Suppose that the exploration of the trace by re-executing the

program beginning with PB.P ′A misses a state but covered by the exploration along PA.P ′B.

It can only be one of the two cases: (1) there exists a read r, r ∈ PB.P ′A, but r 6∈ PA.P ′B such

that r only appears in the trace guided by PA.P ′B. If our algorithm selects to analyze the trace by

re-executing the program starting with PB.P ′A, it misses r. (2) there exists a write w, w ∈ PB.P ′A,

but w 6∈ PA.P ′B. Then a read r which occurs later in the trace by the execution starting with

PB.P ′A has no chance to read from w because this w has already been contained in the prefix. But

the two cases above are impossible. Because both PB.P ′A and PA.P ′B derived from the same state,

and the execution to reach that state is the same. Based on Theorem 6, for any event e ∈ PA.P ′B,

e ∈ PB.P ′A.

5.4 Parallel SE-MCR

DPOR uses a DFS strategy to search the state space and maintains a backtrack set for each

scheduling point to record the next executable steps. The backtrack set is dynamically updated

when the execution encounters events that are conflict with the previous steps. Unlike ICB and

DPOR which are completely online and are hard to parallelize, SE-MCR opens the door for massive

parallelism. As shown in Figure 5.7, SE-MCR adopts a BFS strategy to search the state space.

For each state it reaches, it directly computes the possible seed interleavings from the current
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Algorithm 10: Parallel-SE-MCR algorithm
1 P = {P0} // P: a set of unexplored prefixes

2 E [P0] = ∅ // E: a map from a prefix to its equivalent prefixes

// each exploration can be in parallel

3 parallel foreach P ∈P do
4 ParallelExplore(P)
5 end
6 Function ParallelExplore(P):
7 τ ← Execute(P)
8 Φ← ConstraintsModel(τ )

// match each read to a different write in parallel

9 parallel foreach r = read(t, x, v) ∈ τ do
10 parallel foreach w = write(−, x, v′) ∈ τ ∧ v′ 6= v do
11 ΦP ← NewPrefixesConstraints(r, w,Φ)
12 P ← SolveConstraints(ΦP)
13 add P to P
14 end
15 end

// call Algorithm 9 to check equivalence

16 CheckEquivalence(P, E)
17 foreach Pnew ∈ P do
18 if Pnew 6∈ E [P ] then
19 add Pnew to P
20 end
21 end

state (corresponding to an executed trace). By separating offline interleaving generation from

online exploration, parallelizing MCR is mostly straightforward, as the only dependence between

different iterations is the seed interleaving. Inside each iteration, multiple seed interleavings can be

generated in parallel. In addition, the online exploration for each seed interleaving is independent,

which can be further parallelized.

Algorithm 10 shows our parallel SE-MCR algorithm. To maximize the degree of parallelism,

the input to the procedure Explore is a single seed interleaving (initially empty). At any time

of our algorithm’s execution, there can be many parallel executing Parallel-MaxCausalExplore

procedures each working on a different seed interleaving. parallel means executing the for loop in

parallel. Inside the procedure, the MCM formula Φ corresponding to the input trace (produced by
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executing the program following the seed interleaving) is first constructed. Then property checking

and seed interleaving generation are performed in parallel based on Φ. Lines 9-15 describe the

parallel seed interleaving generation. For each pair (r, w) of a read event r and a matching write

event w (which writes a different value). In each parallel subtask corresponding to (r, w), the seed

constraint ΦP is constructed and solved with a SMT solver. If the constraint is satisfiable, a new

seed interleaving will be returned and added to a set P.

5.5 Implementation

We implement our tool using ASM [67] and Z3 [68]. The tool consists of three parts: an

instrumentor, an offline constraint analyzer, and a dynamic scheduler. Although the tool so far is

implemented in Java, the algorithm can be applied to any other programming languages. The tool

is publicly available at: https://github.com/parasol-aser/JMCR.

Instrumentor To collect the trace information, we leverage the framework ASM to dynami-

cally instrument the critical events using Java bytecode rewriting. The critical events include all

shared data accesses and thread synchronizations. If an event is a read or write, we use a tuple

〈tid, op, addr, value〉 to record the thread ID, operation type, memory address of the shared vari-

able and the value information of the event. If it is a synchronization, we use 〈tid, op, object〉 to

describe the what object is protected by this synchronization. For fork and join, we record which

thread creates/waits the child thread by 〈op, tid, tid〉. We also have considered wait-notify and

re-entrant locking statements in our implementation:

• wait-notify - Java’s wait() and notify()/notifyAll() are usually not discussed in previous stud-

ies [76, 77]. In our implementation, we treat wait() as two consecutive release-acquire

events, notifyAll() as multiple notify() where the number is equal to the number of currently

waiting threads on the same signal, and keep a mapping from wait() to its corresponding

notify() in the original execution. In the constraint, we ensure the order of the notify() is

between that of the two consecutive release-acquire events of the corresponding wait(), but

not between that of any other wait() on the same signal (to ensure that the notify() is matched
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with the same wait() as that in the original execution). Currently, we do not model spurious

wakeups and lost notifications in our implementation. However, since they happen rarely in

practice, this does not limit the usability of our tool.

• re-entrant locking - To simplify the constraint, re-entrant lock acquire/release events are

filtered out dynamically in the execution, i.e., discarding all but the outermost pair of ac-

quire/release events on the same lock.

Offline constraint analyzer The offline constraint analyzer formulates the MCM constraints

from the events and generates seed interleavings by solving the constraints using Z3. Since all

MCM constraints are simple ordering comparisons over integer variables, we use the Integer Dif-

ference Logic (IDL) in Z3 to solve them efficiently. The constraints encoding is presented in

Section 3.1.2. If the solver finds a solution to the constraints, it returns the solution which contains

the integer variables and the values assigned to them by Z3. We first map the variables to their

corresponding events in the trace and then order the events based on the value of each integer vari-

able. Then we build the schedule by mapping the events to a sequence of thread IDs in the same

order, in the form of 〈tid, tid, tid . . .〉. As we only want to make the target read to return a different

value, the schedule ends with that read event.

Dynamic scheduler To re-execute the class, we implement a re-execute engine based on the

BlockJUnit4ClassRunner framework. The re-execution of the program is under the control of the

dynamic scheduler. We block a thread before it accesses a shared memory. It queries the schedule

choices from the prefix computed from the constraints and picks a thread to execute. After all

the choices in the schedule are consumed, the scheduler can take a random order to execute the

program.

To compare with the state-of-the-art, we have also implemented the ICB algorithm in the

original CHESS model checker [20, 57] and its integration with DPOR [26]. In addition, for these

algorithms we have implemented the detection of two safety violation properties: null pointer
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dereference (NPE) and data race.

ICB and DPOR Our implementation of ICB follows the original algorithm [20]. The only

difference is that we preempt not only prior to thread synchronizations but also before every shared

data access, because we want to evaluate on programs with data races as well. For ICB+DPOR,

naively combining ICB with the original DPOR algorithm [26] is unsound. We follow the bounded

partial order reduction [78] to implement it. Both of these two algorithms are implemented as

plugins to the special scheduler as they are purely dynamic. For ICB, the scheduler checks before

every critical event the number of thread preemptions in the current schedule. All schedules with

preemption number less or equal to a pre-defined bound, N , will be explored. ICB starts with

zero preemption. After all such interleavings are explored, it increases the preemption number by

one and starts a new iteration. This process is repeated until reaching N . For ICB+DPOR, our

implementation maintains vector clocks for tracking happens-before following the optimization

in [26]. When a dependence is detected, following [78], we create new schedules to explore by

adding backtracking points at both the earlier event and a previous event in the schedule where the

backtracked event does not require a preemption.

Data race and NPE detectors For ICB and DPOR, we implement dynamic NPE and data race

detection since they both perform property checking online. For NPE, the scheduler simply tracks

NullPointerException at runtime. For race detection, we implement the happens-before

(HB) based algorithm using vector clocks. Note that classical happens-before tracks HB edges on

synchronization events only and is only precise up to the first race. We also track HB on shared

data reads and writes to ensure all detected races are real. For MCR, we implement the property

checking algorithms for NPE and data race in the constraint analyzer according to Section 3.1.3. It

is worth noting that neither any NPE nor data race has to occur in the explored executions before

it can be detected by MCR. The offline property checking on the MCM formula enables precisely

predicting these property violations in all the maximal causal set of interleavings. Moreover, once

the seed interleaving corresponding to a property violation is generated, it will drive the program

to deterministically expose the violation.
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5.6 Evaluation

In this section, we present the evaluation results on SE-MCR and existing techniques. The

evaluation aims to answer two research questions: (1) how effective is SE-MCR for exploring the

state space of concurrent programs? (2) how effective is SE-MCR for finding concurrency errors?

To answer the first question, we have made three comparisons: ¶ We compare effectiveness of

MCR with DPOR and ICB+DPOR on state-space exploration. · We then compare the the per-

formance of SE-MCR and MCR. For this comparison, we add four mutual exclusion algorithms,

which contain intensive shared write and read operations. We report the reduction made by SE-

MCR in the number of interleavings executed and and the total exploration time used to search the

state space of the benchmarks. As SE-MCR relies on extra data structure to store the equivalent

execution prefixes, we evaluate the memory space overhead caused by SE-MCR. ¸ Last, we com-

pare SE-MCR with the tool, Nidhugg [36], which implements the optimal DPOR. We compare the

number of executions by each approach to show the effectiveness in reducing the size of the state

space.

For the second question, we compared the number of executions required by different ap-

proaches to expose the injected or known errors in each benchmark. We also report the results of

SE-MCR on two real-world applications, Weblech and Jigsaw and some new errors detected

by our technique.

We evaluate the three approaches on a variety of popular multithreaded benchmarks including

two real-world large applications. All experiments were conducted on a MacBook with 2.6 GHz

Intel Core i5 processor, 8 GB DDR3 memory and JDK 1.8. All results were averaged over three

runs. We evaluated different approaches on a wide variety of benchmarks from prior work [19, 2,

79].

5.6.1 Comparison between SE-MCR and MCR

Table 5.1 summarizes the main results that compare our approach with MCR. The second

column shows the number of lines of code for each benchmark, and the third shows the number of
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threads that we use to evaluate each benchmark. Column 4 shows the comparison of the number of

the executions used to explore the state space of each benchmark. Column 5 shows the comparison

of the time used to explore the state space of each benchmark. We highlight the results of SE-MCR

in gray. For the evaluation of the four mutual exclusion algorithms, we set the loop iteration bound

of Dekker as 4 and the others as 10. The reason is that Dekker is implemented using two

nested while loops, of which the size of the state space grows exponentially with the number of

iterations. In our evaluation, when the loop iteration of Dekker is greater than 5, the model checker

cannot finish the exploration in one hour. For BubbleSort, we tested the program on sorting an

array with five integers. For Account, we allow four threads to make operations on the account.

From the experimental results, we can find that the size of the state space does not depend on the

number of lines of code, but the number of read/write operations to the shared memory location.

For example, although the StringBuf contains about 1.3K LoC, it only took 8 executions for MCR

to check this program. However, Dekker is a small program but generates more than four thousands

of executions.

Reduction of #executions and exploration time. From the results in Table 5.1, we can see that

except Peterson, SE-MCR improves the performance of MCR not only in the number of the

executions and but also the total exploration time. The number of the executions reduced by SE-

MCR ranges from 6.8% to 91.4%. Although it takes time for SE-MCR to check the redundancy

across during runtime, the total exploration time is still reduced by 11.1% to 80.6%. The reason

why SE-MCR can achieve a significant reduction on Lamport, Dekker and BubbleSort is

that each thread in the three programs contains many reads. This implies that each layer of the

exploration tree of these programs has more nodes, which increases the probability of redundant

executions. If SE-MCR detects that some nodes at this layer can lead to redundant executions, all

the explorations from that node starting with the identified execution sequence can be removed.

Therefore, SE-MCR can significantly reduce the size of the state space. In fact, the earlier SE-

MCR detects the potential redundancy, the more executions it can reduce.
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Memory space overhead. The last column of Table 5.1 reports the extra memory space used by

SE-MCR. On average, SE-MCR only consumes extra memory from 1.9KB to 937KB. To compute

the average memory consumption, we first compute the total memory usage during the whole

exploration and count the total number of executions. Then we get the average value by dividing

the total memory usage with the number of the executions.

Table 5.1: Results on state-space exploration for benchmarks.

Program LoC #Thrd. #Exec. Explored Time Space
MCR SE-MCR reduction MCR SE-MCR reduction OH.

RVExample 79 3 107 77 ↓ 28.0% 2s 2s − 2.8KB
Account 373 5 27830 14124 ↓ 49.2% 45m 23s 17m 42s ↓ 61.0% 353KB
Airline 136 4 2222 1354 ↓ 39.1% 1m 17s 43s ↓ 44.2% 60.2KB
Allocation 348 3 169 113 ↓ 33.1% 11.1s 10.1s ↓ 9% 6.6K
BubbleSort 175 4 29148 8084 ↓ 72.3% 20m 13s 5m 56s ↓ 70.7% 181KB
PingPong 388 6 411 282 ↓ 31.4% 13s 10.3s ↓ 20.8% 26.9K
Pool 10K 3 3 3 − 0.9s 0.9s − 370B
StringBuf 1.3K 3 8 8 − 0.7s 0.7s − 249B
Peterson 94 3 402 402 − 17s 17s − 1.9KB
Bakery 119 3 822 766 ↓ 6.8% 45s 40s ↓ 11.1% 2.9KB
Lamport 162 3 1192 103 ↓ 91.4% 51s 7s ↓ 86.3% 3.8KB
Dekker 119 3 4474 1648 ↓ 63.2% 2m 17s 55s ↓ 59.9% 49.5KB

5.6.2 Comparison between SE-MCR and Optimal DPOR

We compared SE-MCR with Nidhugg, which implemented optimal DPOR, with respect to the

number of explored interleavings for covering the whole state-space. As the tool is implemented

in C/C++, we transformed five of the benchmarks to C for comparison. Table 5.2 reports the

results. Comparing to Nidhugg, SE-MCR explores much fewer executions to cover the state space

of the benchmark, especially for the Lamport and Dekker benchmarks. SE-MCR reduces the

number of executions by more than 95% on these two programs. For RVExample, the number

of interleavings executed by Nidhugg is almost five times that by SE-MCR. The reason why

Nidhugg explores more executions is that it does not consider the values of the read and write

operations. For two writes, if they are from different threads and write the same value to the
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Table 5.2: Comparison of the number of the executions explored by SE-MCR and Nidhugg.

Program RVExample Peterson Bakery Lamport Dekker
SE-MCR 77 402 766 103 1648
Nidhugg 577 780 3137 132034 34931

Table 5.3: Results on bug findings.

Program #Race #NPE
ICB ICB+DPOR SE-MCR ICB ICB+DPOR SE-MCR

RVExample 7 10 10 0 0 0
Account 3 3 3 0 0 0
Airline 0 0 0 0 0 0
Allocation 0 0 0 0 0 0
BubbleSort 4 6 7 0 0 0
PingPong 6 7 7 1 1 1
Pool 0 0 0 0 0 0
StringBuffer 0 0 0 0 0 0

same memory location, optimal DPOR will think that there is a dependency between the two

writes and the reordering of them could make the program reach a new state. Because the tools

are implemented in different programming language, we didn’t make comparisons on the time

performance of the two tools.

5.6.3 Bugs Finding Report

Table 5.3 shows the races and NPEs detected by SE-MCR and ICB and DPOR. Among all the

benchmarks, all tools do not detect any data races and NPEs in Airline, Allocation, Pool

and StringBuffer. For RVExample ICB only finds 7 races while both ICB+DPOR and SE-

MCR find 10 races. For BubbleSort, SE-MCR detects two more races than ICB and one more

race than ICB+DPOR. For PingPong, SE-MCR detects one more race than ICB and all the tools

find the NPE.

Results on real-world applications To show the effectiveness and scalabitlity of SE-MCR for

finding bugs, we also evaluate SE-MCR on two real-world Java applications. Table 5.4 reports our
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Table 5.4: Results on real applications. * means OOM.

Program ICB ICB+DPOR SE-MCR SE-MCR-P

Jigsaw
#Race 2 7 20 38
#NPE 1 2 6 10
#Run 307* 425* 32 769

Weblech
#Race 4 4 6 7
#NPE 0 0 1 1
#Run 1229* 1072* 185 3311

results on Jigsaw and Weblech. The rows #Race, #NPE, and #Run report the number of data

races, NPEs, and executions detected and explored by each technique. The last column shows the

results of parallelized SE-MCR. As expected no technique was able to finish exploration within an

hour. ICB and ICB+DPOR even ran out of memory on both of these two programs. For Jigsaw,

ICB explored 307 executions, ICB+DPOR 425, and SE-MCR 32 before they terminated or timed

out. For Weblech, ICB explored 1229 executions, ICB+DPOR 1072, and SE-MCR 185.

Although SE-MCR explored fewer executions than ICB and DPOR (because the offline analysis

takes more time for longer executions), it detected many more data races and NPEs. For Jigsaw,

SE-MCR detected 20 data races (13 more than ICB+DPOR and 18 more than ICB) and 6 NPEs

(4 more than ICB+DPOR and 5 more than ICB). For Weblech, SE-MCR detected 6 data races

and 1 NPE, while both ICB and ICB+DPOR detected 4 data races and none NPE. Note that all

the reported data races and NPEs are distinct (on different program locations). Moreover, by

parallelizing the MCR algorithm on a 32-core machine, SE-MCR-P was able to explore many more

executions and detect more data races and NPEs within the same time. For Jigsaw, SE-MCR-P

was able to explore 769 executions and detected 38 data races and 10 NPEs, and for Weblech,

SE-MCR-P explored 3311 executions and detected one more data race than SE-MCR.

5.7 Summary

We presented the maximal causality reduction (MCR) for reducing the redundant interleavings

from the state space of concurrent programs. MCR leverages SMT constraints to model the space

of a given trace and takes the value of read and write accesses into consideration to remove re-
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dundant states. We have also extended MCR to present a new algorithm SE-MCR, which explores

a provably minimal set of interleavings. The algorithm regards the exploration of the state space

as a process of traversing a tree using breadth first search (BFS). On each state node, we make

an equivalence checking between the sibling nodes on the same level of the tree. We mark the

potential equivalent prefixes and temporarily store them so that the model checker can skip them

in the future exploration. We have implemented MCR and SE-MCR in a stateless model checker

for Java programs. We compared MCR with DPOR and ICB in terms of bug finding and state-

space exploration. Our experimental results show that MCR reduces the number of executions by

orders of magnitude, comparing to DPOR and ICB. SE-MCR significantly reduces the number of

executed interleavings and the total exploration time as well. On average, SE-MCR reduces the

number of explored interleavings by 58.6% and exploration time by 45.6%, compared to the origi-

nal MCR. We also compared our algorithm with Nidhugg, which implements optimal-DPOR. The

comparison shows that our algorithm is much more efficient in reducing the size of the state space.
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6. H3: PRODUCTION-RUN HEISENBUGS REPRODUCTION WITH INTEL PT ∗

In addition to verifying concurrent programs, which is sometimes limited to the scalability

issue, another effective approach to fixing concurrency bugs is to improve the efficiency of de-

bugging the concurrent program. However, as aforementioned, the bug may disappear when re-

executing the concurrent program due to the non-deterministic memory races. Therefore, the abil-

ity to reproduce software bugs is crucial for debugging.

Researchers have investigated significant efforts in record & replay (RnR) systems aiming to

eliminate the non-determinism. CLAP [21] is the most efficient software-based appraoch. It intro-

duces the idea of recording only thread-local information (i.e., thread-local control flow paths) and

then using offline constraint solving to reconstruct the shared memory dependencies. It is a promis-

ing solution for reproducing Heisenbugs because it does not record any cross-thread communica-

tion (data or synchronization); hence it requires no synchronizations during recording, which not

only reduces the runtime overhead but also minimizes the observer effect.

However, CLAP is still unsatisfactory to enable a production-run RnR solution. In this thesis,

I first introduce the basics about CLAP and its limitations, and then present H3, a new record

& replay (RnR) system to reproduce Heisenbugs using commercial hardware features and offline

constraints analysis.

6.1 CLAP

CLAP can not only reproduce Heisenbugs under sequential consistency (SC), but also a wide

range of weak consistency memory models, including TSO (total store order) and PSO (partial

store order) [62]. It has two key components: I) collecting per-thread control flow information

via software path-recording (using an extended Ball-Larus path-recording algorithm [80]), and II)

assembling a global schedule by solving symbolic constraints constructed over the thread local

∗Reprinted with permission from "Towards Production-Run Heisenbugs Reproduction on Commercial Hardware"
by Shiyou Huang, Bowen Cai and Jeff Huang, 2017. In Proceedings of the 2017 USENIX Conference on Usenix
Annual Technical Conference (USENIX ATC ’17), 403-415.
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paths. To assemble a global schedule, CLAP has three steps:

1. Along the local path of each thread, it collects all the critical accesses (read, write or syn-

chronization) to shared variables.

2. It introduces a fresh symbolic value for each read access, and collects the path constraints

following the control flow for each thread via symbolic execution; it introduces an order

variable for each critical access, and generates additional constraints according to synchro-

nization, memory-consistency model, and potential inter-thread memory dependencies.

3. It uses an SMT solver to solve the constraints, to which the solutions correspond to global

schedules that can reproduce the error. In other words, the SMT solver computes what inter-

thread memory dependencies would satisfy the memory-consistency model and enable the

recorded local execution path.

Figure 6.1: A real PSO bug in an electron microscope software [3], which caused a $12 million
loss of equipment. Reprinted with permission from [4].

CLAP contains several components to model a failing execution as constraints (e.g., failure,

path, synchronization, read-write, and memory model). We next use an example in Figure 6.1 to

illustrate these constraints. Section 6.3.3 presents the constraint model in detail.

The program in Figure 6.1 contains a real Heisenbug that only manifests under the PSO mem-

ory model, which caused a $12 million financial loss in the real-world [3]. The root cause of the
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Figure 6.2: The CLAP constraints for reproducing the PSO error in Figure 6.1. To save space,
we show the read-write constraints for z only. Those for x and y are similar. Reprinted with
permission from [4].

bug is that the write to z (line 5) can be reordered with the writes to x and y (lines 3-4) under PSO.

The dashed arrow in the figure shows that the satisfaction of the if condition at line 7 depends on

the write to z at line 5, which always happens after lines 3 and 4 under SC. However, under PSO,

the write to z is allowed to happen before the write to y at line 4. As a result, when the if condition

is satisfied, the value of x + 1 and y may be unequal and hence triggering the error. The error

can be triggered by the following PSO schedule: 1-2-3Rx-3Wx-4Ry -5-7-8Rx-8Ry (the subscripts are

used to distinguish different operations from the same line).

The CLAP constraints for reproducing the buggy PSO schedule are shown in Figure 6.2. We

use the order variable Oi denotes the order of the corresponding access at line i. The symbolic

variable Ri
v denotes the value returned by the read access to the variable v at line i, and W i

v the

value written to v by the write at line i. To distinguish different operations at the same line, we add

the type of the operation to the order variable. For example, ORx
3 and OWx

3 represent the orders of

the read and write to x at line 3, respectively.

To manifest the error, CLAP enforces the assertion to be violated while satisfying the path

constraints, i.e., true ≡ (R7
z = 1 ∧ R8

x + 1 6= R8
y). A major part of the CLAP constraints is the

read-write constraints, which are used to capture the potential inter-thread memory dependencies.
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Because the order of the memory accesses from different threads is unknown, the read-write con-

straints must encode a schedule for every potential read-write match, in which the read returns the

value written by the write. For example, the read of z at line 7, R7
z, may be matched with either the

initial value 0, or the value written by line 2 or 5. If the former, the readR7
z should happen before all

the writes to z; if the latter,R7
z should be matched with the corresponding write. For example, ifR7

z

returns the value by the write at line 2, the constraintR7
z = W 2

z ∧O2 < O7∧(O5 < O2∨O7 < O5)

is generated.

CLAP Limitations 1. Exponential complexity of read-write constraints. The read-write con-

straints generated by CLAP are very complicated in practice because there may exist many writes

that a read can be matched with. In the worst case, the complexity of the read-write constraints

(i.e., the space of scheduling choices) is exponential in the number of writes (which typically ac-

counts for a large percentage of the events in the trace). This is a bottleneck in CLAP especially

for programs with intensive inter-thread memory dependencies, because the SMT solver may fail

to solve the constraints. We will present a detailed complexity analysis in Section 6.3.4.

2. Slowdown of software path-recording. CLAP uses a highly optimized algorithm (i.e.,

Ball-Larus [80]) to track the control flow information for each thread. Although it greatly reduces

the runtime overhead incurred by many other RnR solutions, it still incurs 10%-3X performance

slowdown on popular benchmarks [21]. For instance, for the example in Figure 6.1, when the code

is executed in a loop for 10 million times, CLAP incurs 2.3X program slowdown.

3. Difficulty of code instrumentation. It is difficult to apply software path-recording in pro-

duction runs because it requires code instrumentation. Real-world programs often rely on external

libraries, proprietary code, and/or are composed from layers of frameworks and extended by third-

party plugins. Tracing the whole program control flow by code instrumentation is difficult or

impossible. For example, if a failure is caused by a bug in the uninstrumented external code, the

constraints generated by CLAP may be incomplete and hence fail to reproduce the bug.
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Figure 6.3: Components of Intel Processor Tracing (PT). Reprinted with permission from [4].

6.2 Hardware Control-Flow Tracing

Tracing control flow at the hardware level opens a door to apply CLAP in production runs by

addressing the aforementioned limitations in three ways. First, hardware-supported control flow

tracing is significantly more efficient than software-level path-recording. Compared to the 10%-3X

overhead by software path-recording, PT achieves as low as 5% runtime overhead [81]. Second,

hardware can track the full control flow of the code executed on each core. PT can not only trace

the application code, but also the whole operating system kernel [81]. Third, tracing the control

flow on each core enables a significant reduction of the complexity of the read-write constraints,

because reads and writes from the same core are ordered already.

Next, we first review the basics of PT and then show its performance improvement over soft-

ware path-recording on PARSEC 3.0 benchmarks [82].

6.2.1 PT

As depicted in Figure 6.3, PT consists of two main components: tracing and decoding. For

tracing, it only records the instructions that are related to the change of the program control flow

and omits everything that can be deduced from the code (e.g., unconditional direct jumps). For

each conditional branch executed, PT generates a single bit (1/0) to indicate whether a conditional

branch is taken or not taken. As such, PT tracks the control flow information, such as loops,

conditional branches and function calls of the program, with minimal perturbation, and outputs a
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highly compact trace.

For decoding, PT provides a decoding library [83] to reconstruct the control flow from the

recorded raw trace. It first synchronizes the packet streams with the synchronization packets gen-

erated during tracing, and then iterates over the instructions from the binary image to identify what

instructions have been executed. Only when the decoder cannot decide the next instruction (e.g.,

when it encounters a branch), the raw trace is queried to guide the decoding process.

PT is configurable via a set of model-specific registers by the kernel driver. It provides a

privilege-level filtering function for developers to decide what code to trace (i.e. kernel vs. user-

space) and a CR3 filtering function to trace only a single application or process. PT on Intel

Skylake processors also supports filtering by the instruction pointer (IP) addresses. This feature

allows PT to selectively trace code that is only within a certain IP range, which can further reduce

the tracing perturbation.

6.2.2 PT Performance.

Table 6.1: Runtime and space overhead of PT on PARSEC. Reprinted with permission from [4].

Program
Native PT

time (s) time (s) OH(%) trace
bodytrack 0.557 0.573 2.9% 94M

x264 1.086 1.145 5.4% 88M
vips 1.431 1.642 14.7% 98M

blackscholes 1.51 1.56 9.9% 289M
ferret 1.699 1.769 4.1% 145M

swaptions 2.81 2.98 6.0% 897M
raytrace 3.818 4.036 5.7% 102M
facesim 5.048 5.145 1.9% 110M

fluidanimate 14.8 15.1 1.4% 1240M
freqmine 15.9 17.1 7.5% 2468M

Avg. 4.866 5.105 4.9% 553M

Table 6.1 reports the runtime and space overhead of PT on the PARSEC 3.0 benchmarks. We

report the execution time of the programs without and with PT tracing (and the trace size), marked
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Figure 6.4: H3 Overview. Reprinted with permission from [4].

as native and PT respectively. Among the 10 benchmarks, PT incurs 1.4% to 14.7% runtime

overhead (4.9% on average) and 88MB to 2.4GB space overhead (0.5GB on average).

6.3 H3

In this section, we present the technical details of H3. As we have described in Figure 6.4,

H3 integrates hardware control-flow tracing with offline symbolic constraint analysis to reproduce

Heisenbugs. H3 consists of two phases. First, users run the target program on a COTS (commercial

off-the-shelf) hardware with PT enabled. Once a failure occurs, the PT trace together with the

thread context switch log are sent to the developer for reproducing the bug. From the PT trace

and the binary image of the target program, H3 generates the instructions executed on each core.

Second, H3 infers the instructions executed by each thread based on the thread context switch log

and generates a symbolic trace for each thread. It then constructs symbolic constraints with the

core-based constraint reduction, and computes a global failure reproducing schedule with an SMT

solver. Although the overall flow is easy to understand, there are three technical challenges in the

integration:

1. Absence of the thread information. There is no thread information from the PT traces. It

is unknown which instruction is executed by which thread, and hence difficult to construct

the inter-thread synchronization and memory dependency constraints.

2. Gap between low-level hardware traces and high-level symbolic traces. The decoded

execution from PT is in the low-level assembly form. However, to construct constraints and

to reproduce bugs, we need a high-level symbolic trace containing shared variable accesses
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and branch conditions.

3. No data values for memory accesses. PT only traces control flow information but does not

record any data values of memory accesses. To reconstruct the shared memory dependencies,

we need a way to match reads with writes without using values.

We present our solutions to these challenges in the next three subsections. We also present

a constraint reduction algorithm in Section 6.3.4 enabled by the partial order of writes per-core,

which significantly reduces the complexity of the generated constraints.

6.3.1 Thread Local Execution Generation

We leverage the context-switch software events (generated by the Linux Perf tool) to distin-

guish instructions from different threads. Each context-switch event contains three attributes: TID,

CPUID, and TIME (i.e., the timestamp of the event). Because PT also generates frequent syn-

chronization packets (including the timestamp information) into the packet stream, we can use the

timestamp information to synchronize the context switch events with the PT packets from the same

core (i.e., CPUID). Because the timestamp clocks local to each core is precise, the inferred thread

identity based on the timestamp information is also precise. Hence, we locate the context switch

points in the PT packets on each core by comparing the timestamps, and determine the thread

identity of each instruction as the TID attribute of the leading context-switch event.

6.3.2 Symbolic Trace Generation

In CLAP, the symbolic trace of each thread is generated by symbolic execution along the

recorded path profile of each thread. The path profile for each thread is decoded (from the Ball-

Larus path encoding [80]) as a sequence of basic block transitions at the LLVM IR level in the

form of (Tid, BasicBlockId). In H3, we also rely on these high-level per-thread path profiles to

collect the symbolic traces, and we extract the path profiles from the low-level PT trace as follows.

We first instrument all basic blocks of the target program and assign each a unique identifier.

Then we compare the generated assembly code from the instrumented program with the decoded

instructions from the PT trace to identify which basic blocks are executed by each thread.
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Algorithm 11: Path profiles generation
Input : L:< line, insn >
// execute instructions and #line

Input : B: <line, block_id>
// basic blocks of the paths

Return: Q: <tid, block_id>
// path profile of each thread

// traverse each thread

1 for each tid do
// get the instructions of each thread

2 ` = {S ⊆ L|∀insn ∈ S.insn, T id(insn) = tid} ;
3 for each item ∈ ` do
4 if item.line ∈ B.line then
5 block_id = B.get(item.line) ;
6 Q.add(tid, block_id) ;

7 return Q

Algorithm 7 shows the process of generating the path profiles for each thread. The algorithm

takes as input: (1) the executed instructions and their corresponding line number; and (2) the

basic blocks of the control-flow of the program with the BlockId and the line number of the first

instruction of this block. The algorithm first gets the executed instructions by each thread (line 3)

and then matches the line number of the executed instructions with that contained in each basic

block (line 4-7). To identify the path profile of a thread, the algorithm iterates over the instructions

of each thread to check whether the instruction is the first one of the block by comparing the line

number (line 5). If so, we add this block into the path profile as (Tid, BasicBlockId).

6.3.3 Matching Reads and Writes

To reconstruct the shared memory dependencies without data values, similar to CLAP, we

construct a system of symbolic constraints over the per-thread symbolic traces. The basic idea is

to introduce an order variable for each read/write denoting the unknown scheduling order, and

a symbolic variable for each read/address denoting the unknown read value and address. We

symbolically execute the program following the recorded per-thread control flow, and constructs
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constraints over the order and symbolic variables to determine the inter-thread orders and values

of reads/addresses.

More specifically, we construct a system of SMT constraints formula, denoted by Φg, over

the symbolic traces. The computed orders/values from solving Φg then correspond to one or more

concrete global schedules that can reproduce the Heisenbugs. We note that the computed schedules

may be different from that in the failure execution, but any one of them is sufficient to reproduce

the Heisenbugs.

Φg can be decomposed into five parts:

Φg = Φpath ∧ Φbug ∧ Φsync ∧ Φmo ∧ Φrw

where Φpath denotes the path conditions by each thread; Φbug the condition for the bug manifes-

tation; Φsync the interactions between inter-thread synchronizations; Φrw the potential inter-thread

memory dependencies; and Φmo the memory model constraints. The formula contains two types

of variables: (1) V - the symbolic value variables denoting the values returned by reads; and (2) O

- the order variables the order of each operation in the final global schedule.

Path Constraints (Φpath). The path constraints are constructed by a conjunction of all the path

conditions of each thread, with each path condition corresponds to a branch decision by that path.

The path conditions are collected by recording the decision of each branch via symbolic execution.

Bug Constraints (Φbug). The bug constraints enforce the conditions for a bug to happen. A

bug can be a crash segfault, an assert violation, a buffer overflow, or any program state-based

property. To construct the bug constraints, an expression over the symbol values for satisfying the

bug conditions is generated. For example, the violation of an assertion exp can be modeled as

!exp.

Synchronization Constraints (Φsync). The synchronization constraints consist of two parts: par-

tial order constraints and locking constraints. The partial order constraints model the order between

different threads caused by synchronizations fork/join/signal/wait. For example, The begin event

of a thread t should happen after the fork event that starts t. A join event for a thread t should
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happen after the last event of t. The locking constraints ensures that events guarded by the same

lock are mutually exclusive. It is constructed over the ordering of the lock and unlock events.

More specifically, for each lock, all the lock/unlock pairs of events are extracted, and the following

constraints for each two pairs (l1, u1) and (l2, u2) are constructed: Ou1 < Ol2 ∨Ou2 < Ol1 .

Memory Order Constraints (Φmo). The memory order constraints enforce orders specified by

the underlying memory models. H3 currently supports three memory models: SC, TSO and PSO.

For SC, all the events by a single thread should happen in the program order. TSO allows a read

to complete before an earlier write to a different memory location, but maintains a total order over

writes and operations accessing the same memory location. PSO is similar to TSO, except that it

allows re-ordering writes on different memory locations.

Read-Write Constraints (Φrw). Φrw matches reads and writes by encoding constraints to en-

force the read to return the value written by the write. Consider a read r on a variable v and r is

matched to a write w on the same variable; we must construct the following constraints: the order

variables of all the other writes that r can be matched to are either less than Ow or greater than Or.

As discussed in Section 6.1, Φrw can be complicated because there may exist many potential

matches between reads and writes. The size of Φrw is cubic in the trace size and its complexity

is exponential in the trace size. Nevertheless, in next subsection, we show that both the size and

complexity of Φrw can be greatly reduced in H3.

6.3.4 Core-based Constraints Reduction

Besides the low runtime overhead, another key innovation enabled by PT is that the order of

executed events on each core (either by the same thread or by different threads) is determined,

which can reduce the complexity of Φrw from exponential in the number of writes to exponential

in the core counts.

The key observation of this reduction is that the executed memory accesses on each core de-

coded from PT trace are already ordered, following the program order. Once the order of a certain

write in the global schedule is determined, all the writes that happen before or after this write,
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Figure 6.5: Core-based constraint reduction. Reprinted with permission from [4].

on the same core, should occur before or after this write in the schedule correspondingly. This

eliminates a large number of otherwise necessary read-write constraints for capturing the potential

inter-thread memory dependencies.

Consider an example in Figure 6.5, which has four cores with each executing four different

writes. Suppose there is a read R that can be potentially matched with all of these writes, because

each of them writes a different value to the same shared variable read by R. Without the partial

order information of each core, we must include all writes and their orderings into the constraints.

For instance, if R reads the value from the write W7 on Core 2, then R must happen after W7

(i.e., OR > OW7), and all the other writes must either happen before W7 or after R. Taking W5

as an example; it must either happen before W7 or after the read R, resulting in the constraint

(OR < OW5 ∨ OW5 < OW7). In general, if there are N writes in the trace, the constraints can
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generate 2N different ordering choices for these writes. As typically most accesses in the trace are

reads and writes, this exponential search space can be a bottleneck for the technique to scale.

However, with the per-core partial order information, the execution order of the writes on each

core is already determined. To prevent other writes from happening between the considered write

and read, we only need to take the read-write as a whole and insert it to those sorted writes.

Algorithm 7 presents our constraints reduction algorithm. Following this algorithm, to make R

Algorithm 12: Core-based constraints reduction
Input : a matched read-write < R,W >
Return: Φrw to make R read from W

1 Initial: Φrw = ∅ ;
2 case 1: writes executed on the same core as W ;
3 Φrw = Φrw ∧ (OW < OR < OW ′) // W ′ happens right after W on the same

core

4 case 2: writes executed on other cores ;
5 // for any two writes Wi and Wi+1 on the same core

6 Φrw = Φrw ∧ (OR < OWi
∨ (OWi

< OW ∧OR < OWi+1
)) ∨ OW > OWi+1

;
7 return Φrw

read from W7, for all the other writes on Core 2, we only require OW7 < OR < OW8 . Moreover,

for the writes on the other cores, our new constraints encode fewer ordering choices. For example,

for the four writes (W1-W4) on Core 1, the constraints are written as OR < OW1 ∨ (OW1 <

OW7 ∧OR < OW2) ∨ (OW2 < OW7 ∧OR < OW3) ∨ (OW3 < OW7 ∧OR < OW4) ∨OW4 < OW7).

There are only 5 ordering choices (compared to 16 in CLAP).

We note that the core-based constraints apply to SC and TSO, but may not apply to those weak

memory models that allow re-ordering of writes on the same core. The reason is that if writes

are re-ordered, the partial order witnessed on each core may not reflect the actual buggy execution

order.

Theorem 8 below states the soundness guarantee of the core-based reduction:
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Theorem 8. If a concurrent program runs on an SC or TSO platform with C cores and there are N

writes executed, the number of the ordering choices of the read-write constraints is reduced from

2N to (
N

C
+ 1)C .

Proof. Consider that a read R returns the value of a write W . When not knowing the partial

order of the writes on each core, each write either happens before W or after R. Consequently,

there are 2N ordering choices in total. If the partial order of the writes on each core is known and

each core contains mi =
N

C
writes, the ordering on each core has only mi + 1 choices. Therefore,

the total number of choices is reduced to ΠC
i=1(mi + 1), which equals to (N

C
+ 1)C .

6.4 Implementation

We have implemented H3 for Pthreads-based C/C++ programs based on a number of tools,

including CLAP [21], the Linux Perf Tools [84], the PT decoding library [83], and the Z3 SMT

solver [22]. We use Perf to control Intel PT to collect the packet streams and the context switch

events. We first insert the context switch events to the packet streams by comparing the timestamp

information, and then use the PT decoding library to decode the packets information. As in CLAP,

we use KLEE [85] as the symbolic execution engine to generate the symbolic traces for each

thread, and construct an SMT constraint formula. We modified CLAP to implement the core-

based constraint reduction algorithm, and we use Z3 to solve the constraints.

Shared Variable Identification. We first run a static thread sharing analysis based on the

Locksmith [86] race detector and then manually mark each shared variable x as symbolic by

klee_make_symbolic(&x, sizeof(x), "x"), like CLAP. One way to automate this

step is to conservatively consider all variables in the program as potentially shared and marked

them as symbolic. However, this would produce a large amount of unnecessary constraints. For

external function calls that are not supported by KLEE, we also mark the input and return variables

of the external function calls as symbolic.

Constraint Reduction. For the core-based constraint reduction, we first extract the writes on

the same core from the PT trace and store these writes in a map (core Id: w1[line], w2[line]...).
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When constructing the read-write constraints, this map is used to determine which write belongs to

which core by comparing the associated line number information. Because all writes on the same

core occur in the order that they are executed, we construct a happens-before constraint over these

writes. When matching a read r to a corresponding write w, we first constrain r to happen after w

and happen before the write that occurs right after w on the same core, and we then only need to

disjunct the order constraints between w and those writes from a different core.

6.5 Evaluation

Our evaluation of H3 focuses on answering two sets of questions:

• How is the runtime performance of H3? How much runtime improvement is achieved by

H3 compared to CLAP?

• How effective is H3 for reproducing real-world Heisenbugs? How effective is the core-based

constraint reduction technique?

6.5.1 Methodology

Table 6.2: Benchmarks. Reprinted with permission from [4].

Program LOC #Threads #SV
#insns #branches #branches Ratio Symb.

(executed) (total) (app) app/total time
racey 192 4 3 1,229,632 78,117 77,994 99.8% 107s
pfscan 1026 3 13 1,287 237 43 18.1% 2.5s

aget-0.4.1 942 4 30 3,748 313 5 1.6% 117s
pbzip2-0.9.4 1942 5 18 1,844,445 272,453 5 0.0018% 8.7s

bbuf 371 5 11 1,235 257 3 1.2% 5.5s
sbuf 151 2 5 64,993 11,170 290 2.6% 1.6s

httpd-2.2.9 643K 10 22 366,665 63,653 12,916 20.3% 712s
httpd-2.0.48 643K 10 22 366,379 63,809 13,074 20.5% 698s
httpd-2.0.46 643K 10 22 366,271 63,794 12,874 20.2% 643s

We evaluated H3 with a variety of multithreaded C/C++ programs collected from previous

studies [21, 87, 88], including nine popular real-world applications containing known Heisenbugs.
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Table 6.2 summarizes these benchmarks. pfscan is a parallel file scanner containing a known bug;

aget-0.4.1 is a parallel ftp/http downloading tool containing a deadlock; pbzip2-0.9.4 is a multi-

threaded implementation of bzip with a known order violation; bbuf is shared bounded buffer and

sbuf is a C++ implementation of the JDK1.4 StringBuffer class; httpd-2.2.9, httpd-2.0.48, httpd-

2.0.46 are from the Apache HTTP Server each containing a known concurrency bug; We also

included racey [88], a special benchmark with intensive races that are designed for evaluating

RnR systems. We use Apache Bench (ab) to test httpd, which is set to handle 100 requests with a

maximum of 10 requests running concurrently.

We compared the runtime performance of H3 and CLAP by measuring the time and space

overhead caused by PT tracing and software path-recording. We ran each benchmark five times

and calculated the average. All experiments were performed on a 4 core 3.5GHz Intel i7 6700HQ

Skylake CPU with 16 GB RAM running Ubuntu 14.04.

We evaluated the effectiveness of H3 for reproducing bugs by checking if H3 can generate a

failure reproducing schedule and by measuring the time taken by offline constraint solving. We set

one hour timeout for Z3 to solve the constraints.

For most benchmarks, the failures are difficult to manifest because the erroneous schedule for

triggering the Heisenbugs is rare. Similar to CLAP, we inserted timing delays (sleep functions)

at key places in each benchmark and executed it repeatedly until the failure is produced. We also

added the corresponding assertion to denote the bug manifestation.

Benchmark Characteristics. Table 6.2 reports the execution characteristics of the benchmarks.

Columns 3 and 4 report the number of threads and shared variables, respectively, contained in

the execution. We also profiled the total number of the executed instructions and branches in the

assembly code, and the branches from the LLVM IR code, as reported in Columns 5-7. Column

8 reports the ratio of the number of the branches in the instrumented application code versus the

total number of branches (in both the application code and all the external libraries). For most

benchmarks (except racey), the ratio is smaller than or around 20%. Column 9 reports the time for

constructing the symbolic trace for the corresponding recorded execution of the benchmark.
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Table 6.3: Performance comparison between H3 and CLAP. Reprinted with permission from [4].

Program
Native Time (s) Branch Space overhead
time (s) CLAP (Overhead) H3 (Overhead) Speedup insts% CLAP H3

racey 0.268 0.768(186.6%) 0.288(7.5%) 65.2% 6.4% 96M 2.68M
pfscan 0.094 0.104(11.0%) 0.116(23.4%) -11.5% 18.4% 3.2K 30K

aget-0.4.1 0.139 0.156 (12.1%) 0.152(9.4%) 2.6% 17.9% 11K 41K
pbzip2-0.9.4 0.102 0.134(31.4%) 0.112(9.8%) 16.4% 14.8% 5.2K 677K

bbuf 0.232 0.696(200%) 0.264(13.8%) 62.1% 20.1% 3.9K 2.7M
sbuf 0.216 0.299(38.5%) 0.256(18.5%) 14.4% 17.2% 6.6K 4.5M

httpd-2.2.9 0.53 0.71(34.0%) 0.57(7.5%) 19.7% 17.4% 7.8M 10.43M
httpd-2.0.48 0.45 0.59(32.1%) 0.51(13.3%) 13.6% 17.4% 8.1M 11.79M
httpd-2.0.46 0.42 0.57(36.2%) 0.50(19.0%) 12.3% 17.4% 7.2M 10.62M

avg. 0.272 0.447(64.3%) 0.307(12.9%) 31.3% 16.3% 13.2M 4.8M

6.5.2 Runtime Performance

Table 6.3 reports the performance comparison between H3 and CLAP. Column 2 reports the

native execution time of the benchmarks. Columns 3-4 report the execution time with H3 and

CLAP and their runtime overhead. Column 5 reports the speedup of H3 over CLAP. Column 6

reports the percentage of branch instructions in the execution. This number is proportional to the

runtime overhead of PT. Columns 7-8 report the space overhead of H3 and CLAP, respectively.

Overall, the runtime overhead of H3 on these benchmarks ranges between 7.5%-23.4% and

12.9% on average. Compared to CLAP (11.0%-2X overhead), H3 achieves as much as 8X perfor-

mance improvement and reduces its overhead significantly by 2.6%-65.2% and 31.3% on average.

The only exception is pfscan. However, this is just because pfscan contains significantly more

external calls compared to the other benchmarks; while H3 records all external library calls, the

implementation of CLAP does not (which sacrifices the correctness). In addition, the short execu-

tion time of pfscan can suffer from noise.

For space overhead, H3 produces 30KB-2.4GB traces on these benchmarks, whereas CLAP

produces 2KB-2.1GB. Some numbers of CLAP are smaller than that of H3, because external

library calls are not traced by CLAP.
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Figure 6.6: H3 performance analysis. Reprinted with permission from [4].

H3 performance analysis. We note that the performance of H3 is dominated by PT for tracking

the control flow events. The additional cost for H3 to track context switching events is almost

negligible as compared to tracing the control flow. We have also evaluated the runtime performance

of H3 on the PARSEC 3.0 benchmarks and found that H3 incurs only 1.4% to 14.7% runtime

overhead (4.9% on average) and 0.5GB trace size, the same as that reported in Table 6.1 for PT.

We further conducted a performance study of H3 on PARSEC with respect to three impacting

factors: the trace size, the number and percentage of branch instructions, as shown in Figure 6.6.

Figure 6.6(a) shows the relation between the size of the recorded trace and the execution time of

H3. Figure 6.6(b) shows the relation between the number of executed branches and the size of

the recorded trace. Figure 6.6(c) shows that relation between the percentage of executed branch

instructions and the runtime overhead of H3. The results indicate that the performance of H3 is

proportional to the percentage of executed branch instructions in the execution. Recall Column 8 in

Table 6.2 that the number of branches in the application code often accounts for a small percentage

of the total number of branches. Hence, in practice, the performance of H3 can be further improved

by tracing only the application code and omitting external library calls.
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Table 6.4: Results of Heisenbug reproduction. (-) means the solver runs timeout in one hour.
Reprinted with permission from [4].

Program #Var
CLAP #constraints

solve time success?
H3 #constraints

solve time success?
#Total #RW #Total #RW(Reduction)

bbuf 79 14264 13902 98s Y 10344 9982(28.2%) 52s Y
sbuf 102 438 302 1s Y 344 208(31.1%) 1s Y

pfscan 25 199 60 1s Y 179 40(33.3%) 1s Y
pbzip2 113 5890 1270 2s Y 5460 840(33.9%) 1s Y
racey1 15040 540602 540388 - N 50602 50388(90.7%) 267s Y
racey2 30108 41612000 41607900 - N 201202 200788(99.5%) - N
racey3 67850 1.3× 108 1.3× 108 - N 451802 451188(99.7%) - N

6.5.3 Effectiveness of Bug Reproduction

Table 6.4 reports the results of Heisenbug reproduction. We successfully evaluated five bench-

marks2 with a total number of seven Heisenbugs. racey1, racey2 and racey3 correspond to the

racey benchmark with 500, 1000, and 1500 loop iterations.

Column 2 reports the number of unknown variables in the constraint formula, corresponding

to the number of read/write/synchronization operations in the symbolic trace. Columns 3-6 report

the results of CLAP, including the total size of the generated constraints (in terms of the number

of constraint clauses), the size of read-write constraints, the constraint solving time by Z3 and

whether Z3 returns a solution before timeout in one hour. Columns 7-10 report the corresponding

results of H3.

Overall, H3 is more efficient and effective than CLAP in reproducing Heisenbugs. The key

difference between H3 and CLAP is that with the core-based constraint reduction, H3 generates

a much simpler and smaller constraint formula than CLAP. H3 reduces the size of the CLAP

constraints by 28%-99%, and is able to reproduce more bugs than CLAP. Both H3 and CLAP

reproduce the bugs in the four benchmarks bbuf, sbuf, pfscan and pbzip2. H3 additionally repro-

duces the bug in racey1, while CLAP fails because the solver could not solve the constraints in

time. In addition, for bbuf, although both H3 and CLAP can reproduce the bug, H3 is much faster

(52s vs 98s) than CLAP. H3 fails on racey2 and racey3 because the constraints in these two cases
2We excluded aget and the httpd benchmarks because the KLEE symbolic execution failed on them.
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are still too complex to solve.

6.6 Summary

We have presented H3, a novel technique that reproduces Heisenbugs by integrating hardware

control flow tracing and symbolic constraint solving. With the efficient control flow tracing sup-

ported by PT, H3 enables for the first time the ability to efficiently reproduce Heisenbugs in pro-

duction runs on commercial hardware. We have also presented an effective core-based constraint

reduction technique that significantly reduces the size of the symbolic constraints and hence scales

H3 to larger programs compared to the state-of-the-art solutions. Our evaluation on both popular

benchmarks and real-world applications shows that H3 can effectively reproduce Heisenbugs in

production runs with very small overhead, 4.9% on average on PARSEC.
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7. CONCLUSION AND FUTURE WORK

This thesis makes contributions to verifying and debugging concurrent programs. For verifying

concurrent programs, this thesis presents a series of stateless model checking techniques including

model checking concurrent programs under relaxed memory models, improving the scalability of

the model checker and reducing the redundant exploration of a model checker.

Comparing to the existing POR based model checking techniques, MCR uses SMT constraints

to reason about the maximal causality between shared memory operations, which greatly improves

the scalability and efficiency. However, MCR is limited to sequential consistency architecture. In

this thesis, we present a work to check the correctness of concurrent programs under relaxed mem-

ory architecture, TSO and PSO. This work solves two key technical challenges: how to encode

operational semantics of TSO and PSO as first-order logical constraints and how to deterministi-

cally execute the program following the generated TSO and PSO interleavings. To evaluate the

effectiveness, we compare the work with one existing work based on DPOR and the other work

SATCheck which also uses constraints analysis. The results show that our approach is much more

effective than the other approaches for both state-space exploration and bug finding – on average

it explores 5X to 10X fewer executions and finds many bugs that the other tools cannot find.

To further improve the scalability of MCR, I present MCR-S, which significantly reduces the

size of the validity constraints built by MCR. This work is motivated by the fact that MCR is

completely dynamic and it has to make every read before a target event to return the same value

to guarantee the reachability of the target event. MCR-S mitigates the complex constraints by

using static dependency analysis to identify a set of reads that the target event depends on. MCR-S

considers both control dependency and data dependency from a whole program dependency graph.

Compared to MCR, MCR-S reduces the number of the constraints and the solving time by 31.6%

and 27.8%, respectively.

SE-MCR optimizes MCR by proposing a new equivalence checking, switch equivalence to

further reduce the state space explored by MCR. This thesis presents a coarser equivalence,

115



which we call switch equivalence, to check if two seed interleavings are equivalent to each

other. We formally prove that SE-MCR does not miss any states that MCR can produce and

also avoids the redundant executions by MCR. We implemented the new algorithm based on

MCR. Compared to the original MCR, SE-MCR reduces the number of explored interleavings

by 58.6andexplorationtimeby45.6Compared to Nidhugg, which implements optimal-DPOR, SE-

MCR is more efficient in reducing the size of the state space.

For debugging concurrent programs efficiently, this thesis presents H3, a new record and re-

play technique. H3 is motivated by the work CLAP which records thread-local trace and then

building SMT constraints to compute the global failure interleaving. As CLAP does not need to

record any cross thread communication, it reduces the runtime overhead. However, it is still not

unsatisfactory to enable a production RnR system. To address this issue, we developed H3 using

the hardware supported control-flow tracing, Intel PT, to record the thread-local trace. To our best

knowledge, H3 is the first technique that integrates hardware control flow tracing with offline sym-

bolic analysis for reproducing production-run Heisenbugs on commercial hardware. We develop a

new core-based constraint reduction technique that significantly reduces the complexity of gener-

ated symbolic constraints from exponential in the trace size to exponential in the core counts. We

implement and evaluate H3 on both popular benchmarks and real applications. Experiments show

that H3 can reproduce real Heisenbugs in production runs with very small overhead.

Future Work The stateless model checker powered by MCR shows the advantages over the POR

based approaches. In the future, I have interests in applying MCR to two important problems. So

far MCR has only worked to concurrent programs using shared memories. It would be interesting

to see how well MCR can work for message passing concurrency models. With the advent of the

new programming language, Go [89] and the success of the open source projects Docker [90] and

Kubernetes [91], which uses channels to communicate between threads, it would be interesting to

verify the correctness of these softwares. Different from the traditional shared memory models,

concurrent modules interact by sending messages to each other via communication channels. To

make MCR work for such programs, it needs to encode the message passing events into SMT
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constraints to reason about the ordering of these events.

Another direction along model checking I want to explore is how to verify critical systems

via model checking. With the rise of blockchain and cryptourrency, a variety of smart contract

applications emerge. Due to strategic motives of contract developers (i.e., "time-to-market" re-

quirements) and blockchain system constraints, smart contracts are generally perceived as prone

to exploitation and security breaches. Massive attacks have been launched to exploit online smart

contracts, causing severe threats to financial stability. As smart contract applications are usually

small and it is easy to generate non-deterministic ordering issues, it is good fit for model checkers

to systematically checks the states of these applications and secure the program.

H3 achieves a significant performance improvement over CLAP by integrating hardware

control-flow tracing with constraint analysis. Nevertheless, there are still several factors that can

be leveraged to further improve the performance of H3.

First, On the current platform, the size of the PT trace buffer per core is limited to 4MB.

For tracing long running programs, the buffer can get full quickly (e.g., 0.01s for the PARSEC

benchmarks). Currently, Perf actively monitors the trace buffer and flushes it to disk once the

buffer is full. To avoid overwriting the buffered data, Perf also needs to disable PT when the buffer

is full, and wakes it up when the data is copied out. This is a main bottleneck that limits the runtime

performance of H3 because the program execution has to be suspended when PT is off, otherwise

the control flow data may be lost when the buffer data is being copied out. We also experienced

data loss with Perf when using PT to track long traces. This happens because the speed of copying

data out is not fast enough, causing certain buffered data overwritten by the new data. We expect

that a larger trace buffer or double buffering in the future generations of PT will help alleviate this

problem.

Second, another limitation of PT is that it only tracks the control flow of the program but not any

data values or memory addresses. This is the main reason why symbolic execution is needed in H3

to construct symbolic traces. Although symbolic execution engines such as KLEE are becoming

increasing powerful, scaling symbolic execution to long running programs remains a challenging
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problem. In addition, limited by KLEE, H3 currently can only reproduce concurrency failures

that occur in the application code, but not external function calls (though it traces the control flow

in all external libraries). For future work, we plan to use hardware watchpoints (as also used in

Gist [50]) to capture the value and address of variables along with the PT control flow tracing. With

the value information, we can then skip the symbolic execution part but construct the constraints by

matching the values of reads and writes directly. Moreover, this will further reduce the complexity

of the generated constraints.

Third, although our constraint reduction is effective, the complexity of the generated constraints

is still exponential in the number of cores. For long traces, the constraint size can still be large and

solving them remains challenging. For this problem, we plan to improve H3 in two ways. First,

we can perform periodic checkpoints (e.g., using the snapshot mode of Perf) to save the current

state of the program, such that when a failure occurs, H3 needs only to generate the constraints

from the last checkpoint to the failure. Second, we can reduce the amount of the trace by not

tracing the control flow in the external libraries (e.g., using the IP filtering featured supported by

Skylake processors). As shown in our experimental results, the branches from the application code

account for only a small percentage (7-20%) of the total trace, most of which are from the external

libraries. Skipping tracing the external libraries will greatly reduce both the trace size and the

runtime overhead.

Last, similar to CLAP, currently H3 does not record the program input but assumes that all

program inputs are fixed. If the program input is non-deterministic or certain program inputs

are missed, H3 may fail to reproduce the bug. This problem can be addressed by tracking the

program input and enforcing the same input value during the symbolic trace construction and the

bug reproduction. Mozilla RR [92] is a promising solution to track non-deterministic inputs in real-

world systems, by tracing only system call results and signals with ptrace. We expect that by

integrating H3 with RR, H3 will be able to reproduce failures resulted from both non-deterministic

schedules and inputs.
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