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ABSTRACT 

Machine Learning involves analysing large sets of training data to make predictions and 

decisions to achieve a specific objective. This data-intensive computation places enormous 

demand on the underlying hardware. To improve overall performance and make predictions 

quickly, extremely powerful specialized hardware has been built to make the data processing 

faster. Although this has yielded improved results, they are not economical. They often require 

significant investment in additional infrastructure and collaboration among the various hardware 

components. On the other hand, CPUs are cost-effective, and easily accessible for a fraction of the 

cost. Unfortunately, very little work has been done to identify the configuration bottlenecks in 

CPUs and improve their overall performance to meet the demands of Machine Learning. 

This thesis aims to identify the system parameters which can be tweaked to achieve a boost 

in CPU performance for Machine Learning algorithms. Leveraging the Gem5 system simulator, a 

series of experiments were conducted varying the hardware configurations to observe the overall 

system performance. Analysis of the simulation results showed that CPU and system operating 

frequency, the L2 cache size and Indirect branch predictor can significantly affect the system 

performance. We strongly believe our system simulation results can further help in optimizing the 

performance of CPUs for machine learning workloads. 
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NOMENCLATURE 

CPU Central Processing Unit 

GPU Graphical Processing Unit 

ISA Instruction Set Architecture 

IPC Instructions per cycle 

SE System Emulation 

FS Full System 

CNN Convolutional Neural Network 

ReLu Rectified Liner Unit 

MNIST Modified National Institute of Standards and Technology 

BAIR Berkeley Artificial Intelligence Research 

BSD Berkeley Software Distribution 

AI Artificial Intelligence 

ML Machine Learning 

BTB Branch Target Buffer 

SPEC Standard Performance Evaluation Corporation 
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CHAPTER I 

  INTRODUCTION 

Machine Learning (ML) and Artificial Intelligence (AI) have become an integral part of 

human life. It is used in day-to-day chores without ever realizing it. From simplistic applications 

such as Virtual Personal Assistants, to more futuristic autonomous driving vehicles and far more 

complex Bioinformatics and Medical Diagnosis, AI has wormed its way into human lives, helping 

in achieve things which could not have been possible otherwise. As AI continues to enlarge its 

foot print, its ability to make accurate predictions and take real-time decisions becomes all the 

more critical. Machine learning algorithms serve as a means to achieve this. The precision and 

correctness of any ML algorithm depends on its extensive training, which involves massive 

amounts of training data. While having large sets of training data greatly enhances an ML 

algorithm in accurately predicting the outcome, it in turn imposes immense pressure on the 

underlying hardware. As the number of parameters in the algorithm’s model increase, ML 

frameworks could place even more computational demands on the hardware. 

To speed up ML applications, dedicated hardware have been built. These dedicated 

accelerators have been heavily optimized for faster and parallel computations. Recent studies [19] 

have shown that Graphical Processing Units (GPUs) exhibit excellent performance on speeding 

up matrix multiplication operations, which are at the core of ML techniques. Young Jong Mo et. 

al. reported a speed up of 3x in computation speed for TensorFlow implementation of MNIST data 

classification using the multilayer perceptron on GPU-enabled platform as compared to CPU-only 

platform [20]. Shaoli Liu et. al. developed a novel Instruction Set Architecture (ISA) for neural 
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networks called Cambricon, which allows neural network accelerators to flexibly support a broad 

range of different neural network techniques [15].  Dongjoo Shin et. al. implemented an energy 

efficient deep learning processor for convolution neural networks and recurrent neural networks 

[16]. This has resulted in dedicated hardware being widely used to accelerate ML training phase. 

Although dedicated hardware is focused on computing and memory optimizations for ML 

algorithms, it comes at an extra cost. Additionally, it places increased infrastructure demands for 

high and efficient collaboration among the underlying hardware components such as CPU, 

memory, networking and storage devices. CPUs on the other hand, are easily available, well-

supported and are traditionally cheaper. Although much work has been focused on improving 

hardware architectures for computing and memory optimizations, CPUs are often overlooked. 

Very little work has been done to study and identify the configuration bottlenecks in CPUs and 

improve their overall performance to meet the growing demands of Machine Learning. 

There are several studies focusing on the impact of hardware configurations on the 

execution time for CNN. Jingjun Li et. al. [18] studies the impact of CPU frequency, GPU number, 

storage devices, and memory size on the execution time. Hwan Lim et al. [17] studied the impact 

of storage systems. In comparison, we have looked one level deeper and also focussed on micro 

architectural details such cache misses, branch mispredictions, memory size, clock frequency 

(system and CPU frequency). 

Hand-written digits classification algorithm uses MNIST data set as input, which consists 

of 70,000 images each 28*28 pixels. Along with this, each neural network layer consists of 

learning parameters and activation elements which further require additional memory. It is 

expected that this would hamper the performance of caches and memory. However, in neural 

networks, input data is usually divided into mini-batches and fed to the model. If the memory size 
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is sufficient to hold this mini-batch data and the model’s parameters, its influence on the 

performance could be minimal.  L2 cache on the other hand is not expected to be as big as the 

memory, which could have significant role in performance.  The algorithm consists of training and 

testing loops, and also many library function calls, which results in branching instructions both 

conditional and indirect. If the branch predictor used does not handle these branch instructions 

efficiently, it could hamper the performance. Like in any applications, as the operating frequency 

increases, significant gain in performance can be achieved, AI application performance is expected 

to increase with frequency increase. 

Thesis Statement: AI workloads possess unique characteristics which exercises pressure on 

system memory, attributable to massive amounts of data involved to train the model, and branch 

prediction, attributable to large number of branch instructions generated by training and testing 

loops. 

This thesis focuses on exploring and understanding the impact of these hardware 

configurations in general CPUs. The aim of the thesis is to analyse the performance of the 

workloads and identify the bottlenecks with respect to both hardware and software. In short, the 

key contributions are as follows: 

1. Conduct comprehensive simulations of different implementations of a hand-written digit

recognition algorithm on various system configurations.

2. Experimentally and systematically evaluate the results of simulations in understanding the

overall effectiveness of these configurations on system performance. We believe this work

paves a way for a deeper understanding of the effects the various configurations have on

system performance, and provides means to improve the same.



4 

The rest of the thesis is organised as follows. Chapter III introduces the background of 

CNN, specifically the CNN used for hand-written digit recognition. Chapter III presents our 

experimental methodology. Chapter IV demonstrates the experimental results and analyses the 

results to identify the bottlenecks. Chapter V provides conclusion and explores future work. 
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CHAPTER II 

BACKGROUND 

Artificial Intelligence is a rapidly developing field. A great deal of ML algorithms exits as 

of today, while new ones are being constantly being invented. To ease the effective development 

of the deep learning algorithms, multiple deep learning platforms like TensorFlow [9], Caffe, 

Theano, Scikit-learn, Keras, CNTK, etc., have been developed. A great deal of efforts also goes 

into making these platforms more efficient. Various AI platforms have been compared and contrast 

[10], performance analysis of different frameworks have been conducted [11] [12][13], new 

algorithms have been developed to reduce the data storage requirements [14], enhancements have 

been made in existing software platforms to increase efficiency [8]. 

2.1 Convolutional Neural Networks (CNN):  CNN is widely used deep neural network in the 

domain of Computer Vision as they excel in image recognition and image classification categories. 

The connectivity pattern in CNNs derives its inspiration from the organization of human visual 

cortex. CNNs perform better than Feed-Forward Neural Networks in image processing, as they 

successfully capture the spatial and temporal dependencies in an image.  

A convolutional neural network consists of an input layer, an output layer, and multiple 

hidden layers in-between. Hidden layers can be modelled as Convolution Layer, Activation Layer, 

Pooling Layer and Fully-connected Layer. The convolution layer performs convolution operation, 

which extracts the high-level features from the input image. The first convolution layer typically 

captures the low-level features, while the other added layers covers the high-level features. 

Kernel/Filter is used for accomplishing the convolution operation. Activation layer implements 
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activation functions which decide the final value of a neuron. Rectified Linear Unit (ReLu) is the 

typically used activation function.  

The pooling layer is used for dimensionality reduction. It reduces a n x m patch into a 

single value to make the network less sensitive to the spatial location. Pooling layer can be of two 

types – Max Pooling and Average Pooling.  Max Pooling returns the maximum value from the 

portion of the image covered by the Kernel. Average Pooling returns the average of all the values 

from the portion of the image covered by the Kernel. In a fully connected layer, each neuron is 

connected to all the neurons from the previous layer. It is used for learning non-linear combinations 

of the output from previous layer.  

Figure 1: Convolutional Neural Network 

2.2 Handwritten Digits Recognition using CNNs: Handwritten digits recognition is considered 

as the “Hello World” equivalent of the deep learning domain. Images of hand written digits are 

processed through CNN layers, and they are classified as digits between 0 and 9. The MNIST data 

set is used as input data for digits classification. It consists of 70,000 28*28-pixel grayscale images 
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of hand-written single digits. The images are further broken down to 60,000 training images and 

10,000 test images. 

The input layer consists of neurons which maps to a single pixel in the input image. As the 

input images are 28*28 pixels, the input layer for digits recognition CNN has 784 neurons (28*28). 

There are 10 different classes each image can represent i.e., 0-9, hence the output layer has 10 

neurons. The number of hidden layers and also number of neurons in each layer varies from one 

implementation to another. 4 different open-source deep learning platforms, TensorFlow, Caffe, 

Apache MXNet, and Scikit-Learn, are used to collect the micro architecture data.  

Figure 2: Sample MNIST Data Set 

(Figure reused from Online source [23]) 

2.2.1 TensorFlow: TensorFlow is a free and open-source software library for dataflow and 

differentiable programming across a range of tasks. It is also used for machine learning 
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applications. TensorFlow was developed by Google Brain team, released initially in 2015. It is 

programmed using Python, C++ and CUDA. The entire source code is hosted at GitHub [2]. 

TensorFlow CNN network has one input layer with 784 neurons, one output layer with 10 

neurons. There are two hidden layers. Each layer has one convolution layer and one ReLu 

activation layer. Hidden layer 1 has 128 outputs while hidden layer 2 has 32 outputs. 

2.2.2 Caffe: Caffe is a deep learning framework developed by Berkeley AI Research (BAIR), 

released initially in 2013. It is one of the top open source frameworks, licensed under BSD 2-

Clause license. It is developed using C++, with a python, MATLAB and C++ interface. The entire 

source code is hosted at GitHub [3]. 

Caffe MNIST network used for digits recognition has one input layer with 784 neurons, 

one output layer with 10 neurons. The input layer is connected to a convolutional layer 1 with a 

5*5 kernel and 10 outputs. The weights and bias of the convolution network neurons can be 

initialized while defining the layer. Xavier algorithm is used for initialization of the weights value 

based on the number of input and output neurons. The convolution layer is connected to a pooling 

layer 1, which performs max pooling with a pool kernel size 2 and a stride of 2. The pooling layer 

1 is connected to a convolutional layer 2 with a 5*5 kernel and 10 outputs. Xavier algorithm is 

used for initialization of the weights value. The convolution layer 2 is connected to a pooling 

layer2 which performs max pooling with a pool kernel size 2 and a stride of 2. The pooling layer 

2 is connected to a fully connected layer with 500 outputs. This is followed by an ReLu activation 

layer. Activation layer is connected to the output layer with 10 outputs.  
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2.2.3 Apache MXNet: Apache MXNet is an open-source deep learning framework developed by 

Apache Software Foundation. It is written in C++, Python, R, Julia, JavaScript, Scala, Go, Perl. 

The source code is hosted at GitHub [4]. 

MXNet CNN used for digits recognition has one input layer with 784 neurons, one output 

layer with 10 neurons. There are 3 hidden layers, the first layer consists of first convolution layer, 

tanh activation layer, a pooling layer, the second layer comprises of second convolution layer, tanh 

activation layer, a pooling layer, the third layer is made up of fully connected layer and tanh 

activation layer. 

The first convolution layer has 20 5*5 kernels/filters which are used for carrying out the 

convolution operation. The type of the pooling layer is Max pooling. The second convolution layer 

has 50 5*5 kernels.  

Figure 3: First Convolution Layer with tanh activation function, 

and pooling layer in MXNet CNN  

(Figure reused from Online source [7]) 
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2.2.4 Scikit-Learn: Scikit-learn is an open-source machine learning library designed to 

interoperate with the Python numerical and scientific libraries NumPy and SciPy. It was initially 

developed as a Google Summer of Code project by David Cournapeau in 2007. The source code 

is hosted at GitHub [5]. 



11 

CHAPTER III 

EXPERIMENTAL SET UP 

In the interest of identifying the bottlenecks in the CPU architecture, performance data of 

lower level components of system needs to be collected. For this purpose, we use an architecture 

simulator. Gem5 [1][6] was chosen as the architecture simulator used to simulate a general-

purpose CPU. The gem5 simulator is an open source software used for computer architecture 

research. It is a merge between M5 (University of Michigan) and GEMS (University of Wisconsin-

Madison) simulators. It uses the CPU models, Instruction Set Architectures (ISA), I/O devices 

from M5 simulator, and cache coherence protocols, interconnect models from GEMS simulator, 

thus exploiting the goodness of both the simulators.  

The simulation framework provided by gem5 is highly configurable, supporting different 

execution modes, multiple interchangeable CPU models, memory models, and also GPU. It 

supports most commercial ISAs like ARM, X86. ALPHA, MIPS, Power, and SPARC. Unix-like 

operating systems can also be booted on gem5. Gem5 also provides flexibility of defining the build 

of the system under observation. This feature of gem5 is exploited to vary the build of the simulated 

system to study the impact of various hardware configurations on the execution of Deep learning 

workloads. Gem5’s full system simulation mode is used to simulate the microprocessor hardware 

along with Linux operating system. This requires a disk image with the operating system and the 

deep learning framework installed on it. The details of creating a new disk image and installing 

the framework are available in appendix A. 
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ARM and X86 are two most widely-used ISA in a CPU. While ARM dominates the mobile 

market, X86 dominates the Personal Computer field. The leading platforms for AI workloads are 

ARM-based systems. Lot of work is going on in integrating AI co-processors with ARM-based 

CPU. Naturally, ARM ISA becomes the first choice for our experiments. However, it does come 

with challenges when integrating it with gem5. The ubuntu core distribution for ARM, which is 

required by the full system image, does not come with a packet manager. Hence, all deep learning 

frameworks needs to be installed from source or requires cross compilation. This approach did not 

work for all frameworks. X86 ISA was chosen instead, as it is widely used in data centres and well 

supported by both gem5 and ubuntu.  

Gem5 has its own set of limitations which makes choosing deep learning frameworks 

trickier. Currently gem5 doesn’t support python versions greater than 2.7, whereas deep learning 

frameworks have moved on to python 3+ versions. Also, 64-bit floating point values are not 

supported by gem5, while some deep learning frameworks extensively use 64-bit floating point 

values. Keeping in mind all these limitations Caffe, TensorFlow, Apache MxNet and Scitkit-learn 

platforms were chosen.  

As shown in figure 4, the system simulated has a CPU core, L1 data and instruction cache, 

L2 cache and a main memory. The configurations of these system components are varied to study 

their effect on performance. 
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Figure 4: Simulated System Overview 

Table 1 shows an overview of the configuration values chosen for experimentation. Gem5 

supports three branch predictors: 2-bit local predictor, bi-mode predictor and tournament predictor. 

Bi-mode and Tournament predictor as chosen for observation. The bi-mode predictor is a two-

level branch predictor that has three separate history arrays: a taken array, a not-taken array, and a 

choice array [21]. The taken/not-taken arrays are indexed by a hash of the PC and the global 

history. The choice array is indexed by the PC only. Because the taken/not-taken arrays use the 

same index, they must be the same size. The bi-mode branch predictor aims to eliminate the 

destructive aliasing that occurs when two branches of opposite biases share the same global history 

pattern. By separating the predictors into taken/not-taken arrays, and using the branch's PC to 

choose between the two, destructive aliasing is reduced. 

Memory Size L2 Cache 

Size 

Associativity System 

Frequency 

CPU 

Frequency 

Branch Predictor 

4 GB 512kB 4 3GHz 3GHz Bi-Mode 

2 GB 1024kB 8 1GHz 1GHz Tournament 

500MHz 

Table 1: Overview of System parameters selected for study 
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Tournament predictor has a local predictor, which uses a local history table to index into 

a table of counters, and a global predictor, which uses a global history to index into a table of 

counters [22]. A choice predictor chooses between the two. Both the global history register and 

the selected local history are speculatively updated. 

Hand written digits recognition algorithm is chosen to be executed on the system simulated. 

Four different deep learning platform (TensorFlow, Caffe, MXNet, Scikit-learn) implementation 

of this algorithm is used. Each of the implementations are executed on 14 different hardware 

configurations. Table 2 summarizes the combinations of the system parameter configurations used 

for simulations.   

Memory size L2 cache size Associativity System frequency CPU frequency Branch Predictor 

4GB 512KB 4 3GHz 3GHz Bi-Mode 

4GB 512KB 8 3GHz 3GHz Bi-Mode 

2GB 512KB 4 3GHz 3GHz Bi-Mode 

2GB 512KB 8 3GHz 3GHz Bi-Mode 

4GB 512KB 4 3GHz 500MHz Bi-Mode 

4GB 1024KB 4 3GHz 3GHz Bi-Mode 

4GB 512KB 4 1GHz 1GHz Bi-Mode 

4GB 512KB 4 3GHz 3GHz Tournament 

4GB 512KB 8 3GHz 3GHz Tournament 

2GB 512KB 4 3GHz 3GHz Tournament 

2GB 512KB 8 3GHz 3GHz Tournament 

4GB 512KB 4 3GHz 500MHz Tournament 

4GB 1024KB 4 3GHz 3GHz Tournament 

4GB 512KB 4 1GHz 1GHz Tournament 

Table 2: Various System Parameters combination simulated 

Standard Performance Evaluation Corporation (SPEC) CPU2006 [24] benchmarks are 

used as baseline to compare the data generated by AI workloads. SPEC CPU2006 is industry-
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standardized, CPU-intensive benchmark suite, which is used widely both in industry and 

academics. SPEC CPU2006 workloads are executed on the gem5 simulator in system emulation 

mode and statistics data are collected. Some of the CPU2006 benchmark tests chosen are SPECint 

benchmarks - bzip2, gombk, sjeng, and SPECfp benchmarks - bwaves.  

Bzip2 benchmark test performs compression and decompression of both highly 

compressible and not very compressible files. Gombk program plays Go game and executes a set 

of commands to analyse Go positions. Sjeng is a program that plays chess.  Bwaves program 

numerically simulates blast waves in three-dimensional transonic transient laminar viscous flow.  
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CHAPTER IV 

ANALYSIS OF RESULTS 

4.1 SPEC Benchmarks: Selected SPEC benchmarks were executed with system configurations – 

Memory size 4GB, L2 Cache size 512KB, L2 cache associativity 4, System frequency 3GHz, CPU 

frequency 3GHz, and Bi-mode, and Tournament branch predictors. Performance data varied from 

one test to another as the application and implementation differ. Average of these values are 

considered to set the baseline. The execution time of the selected test suites were on an average of 

2 seconds whereas CNN algorithm required an average of 400 seconds. Miss rates at L2 cache 

were on average of 90%. Tournament branch predictor achieved better results that Bi-mode 

predictor on all the test suites, having an average misprediction rate of less than 1%.  Indirect 

branch predictor exhibited an average miss rate of 2%. 

4.2 Operating Frequency: System and CPU frequencies were varied to study the influence of 

frequency on the performance of training neural network models. As shown in figure 5, as the 

frequency of operation was reduced, execution time on all the deep learning platforms increased. 

On Caffe, execution time increased approximately 3 times when CPU and system frequencies were 

reduced by 3 times. TensorFlow and MxNet showed an increase of 2.5 times, and Scikit-learn 1.4 

times. On further decreasing CPU frequency to 500MHz and keeping system frequency at 3GHz, 

the execution time further decreased by 4.7 times for TensorFlow and MxNet, and 2 times for 

Scikit-learn. 

It is common knowledge that when the CPU frequency is decreased, the CPU clock cycle 

is increased, reducing the number of instructions executed per second. As a result, the performance 
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of all CNN models is hampered. Also, we observe difference in the performance reduction caused 

by reducing CPU frequency due to the fact that batch sizes and implementation differs from one 

deep learning platform to another. Decreasing the system frequency affects the memory access 

times. When the system frequency is decreased, the access time of images from the memory 

increases, resulting in performance loss. 

All the four deep learning platforms performed best when the CPU and System were 

clocked at the maximum frequency possible in the simulator. It is safe to assume that the operating 

frequency has a huge impact on the performance of CNN networks models, higher the frequency 

better the performance. 

Figure 5: Operating Frequency vs Execution time 

4.3 Memory Size: To study the impact of memory size on the performance of the CNN models, 

two memory sizes were chosen for experimentation – 2GB and 4GB. Figure 6 shows that varying 

the memory size had very less impact on the execution time. For Caffe, the execution time 
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increased by 1.5% when memory size was reduced to 2GB. TensorFlow, Apache MxNet, and 

Scikit-learn displayed a reduction in execution time of 1%, 0.78% and 1.45% respectively. This is 

because of the way images are fed in to the neural networks for training. The entire data set, in our 

case 70,000 images, is divided into mini batches and then fed to the CNN model. The time spent 

by CPU on computing is more due to the vast number of parameters and complex algorithm. This 

part of computing time can be utilized by storage devices simultaneously to prefetch the next batch 

of data. As long as the memory size is sufficient to hold all the images in the min batch, the effect 

of memory size on performance is minimal. 

Figure 6: Memory size vs Execution time 

4.4 L2 Cache: To explore the impact of L2 Cache size on the performance, cache sizes of 512KB 

and 1024KB were chosen. Although the miss rate in L2 cache was much lesser than the SPEC 

benchmarks, the number of L2 cache accesses in CNN algorithm was almost 1000 times more than 

that of SPEC test suites. As shown in figure 7, increasing the L2 cache size reduced the miss rate. 

TensorFlow showed a reduction in miss rate of approximately 10%, and MxNet approximately 

5%. There was very little change in Scikit-learn as the data sets involved is very less.  
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The training loop in the CNN network model involves the input data image to be processed 

through all the layers in the model. Each layer holds a value called weights which aids the learning 

process. As these weights are frequently used in the loops, they would occupy the L1 cache. L2 

cache would then be used for the input data images. Typically used L2 cache is not sufficient to 

hold these the data images. The result is we have a higher miss rate at this level. Thus, increasing 

the cache size helps improve the performance with increase in hit rate. To further support this 

conclusion, an experiment was conducted by increasing the L2 cache size to 16MB. Figure 8 shows 

that, for Apache MXNet, the cache miss rate decreased to 6.33% from 36.38%, while for 

TensorFlow, the cache miss rate decreased to 9.43% from 44.78%.  

Figure 7: Cache size vs Miss rate 

L2 Cache size was further varied and Apache MxNet algorithm was executed to 

understand the working set size of the algorithm. As shown in figure 9, 512KB cache had a miss 

rate of 36.38%, 1MB cache had a miss rate of 29.67%, 3MB cache had a miss rate of 21.09%, 

6MB cache had a miss rate of 11.06%, 12MB cache had a miss rate of 7.11, and 16MB cache had 
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a miss rate of 6.33.  As cache size was increased the miss rate decreased and approached saturation 

around 12MB, indicating the working set for Apache MxNet implementation to be around 10MB-

12MB. 

Figure 8: L2 cache size vs Cache miss rate 

Figure 9: Apache MxNet L2 cache size vs Cache miss rate 
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Figure 10 shows that increasing the L2 cache associativity had very less effect on the miss 

rate. Given the fact that each data image is unique, and the chance that the same data image would 

be present in cache when it is referenced again is very thin owing to large data sets and small 

batch-size, associativity needs to be a very large number to gain any significant improvement in 

hit rate.   

Figure 10: Cache Associativity vs Miss rate 
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Figure 11: Branch Predictors vs Miss rate 
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To inspect the effect indirect branch target address cache on the miss rate, the set entries 

were increased to 512, and each set was configured to be 8-way set. As shown in figure 12, the 

branch target address cache miss rate for TensorFlow decreased to 38.9% from 43.8%. The branch 

target address buffer used for conditional branch predictor has a size of 4096 entries. As the 

number of indirect and conditional branches are comparable, increasing the number of unique 

entries similar to branch target address buffer size would yield a much better hit rate. 

Figure 12: Indirect Branch Target Address cache size vs Miss rate 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions: As Machine Learning algorithms become more ubiquitous, specialized hardware 

have been constructed to meet their ever-growing computing demands. Even though dedicated 

hardware have been widely successful in meeting these demands, they come at steep costs. On the 

other hand, general purpose CPU are often neglected in this aspect. Very little work is done to 

understand the configuration bottle-necks which hold the key to unlocking CPU performance to 

match the computing standards imposed by Machine Learning. 

In this thesis, we have assessed the impact of various CPU configurations on the 

performance of CNN algorithm. In particular, we have focused on understanding the effect 

operating frequency, L2 Cache size, branch predictors and size of memory have on CPU 

performance. 

Pushing the frequency to the highest possible limit extracted maximum efficiency from the 

framework. Increasing the L2 cache size resulted in an increase in the hit rate of input data images. 

While increasing the L2 cache size resulted in a positive impact, increasing the L2 cache 

associativity had minimal effect on the miss rate and did not provide any significant improvement. 

Memory size was shown to have minimal impact on the performance. Indirect branch predictors 

had huge miss rates.  Increasing the branch target address cache size showed a positive effect by 

decreasing the miss rate. 

Frequency scaling showed the highest impact on the performance of CNN algorithm. The 

CPI was reduced by an average of 0.6 when frequency was scaled 3 times.  Memory references 

constituted of an average of 45% of the total number of instructions simulated, whereas the branch 
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instructions constituted an average of 20% of instructions executed. Even though the memory 

references constitute a higher fraction of the simulated instructions than branch instructions, 

around 98% of them are serviced by L1 data and instruction caches. L2 cache misses per kilo 

instruction was found to be around 5. The impact of the indirect branch predictor was found to be 

greater than that of L2 cache size.   

Despite the fact that the results presented in this work are based on a very basic CNN 

algorithm, the same can to extrapolated to more complex CNN algorithms. Other CNN 

implementations would constitute of similar layers as present in hand written digit recognition 

algorithm, but would be more complex, consisting of much larger hidden layers both in size and 

numbers. Higher hidden layers imply higher learning parameters which leads to higher memory 

requirements and much larger working sets, and also higher number of branch instructions. Hence 

memory and branch predictors play a vital role in CNN algorithm performance. 

5.2 Future work:  All the experiments presented here were conducted on a single core CPU. We 

do not explore the effect of multi-core CPU and multi-threaded ML algorithm implementation, on 

the performance. Our work concentrated on CNN, particularly hand written digit classification 

algorithm. Other deep learning networks like RNN can also be explored to gain better 

understanding of the bottlenecks.  
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APPENDIX A 

GEM5 FULL SYSTEM SIMULATION SET-UP 

This appendix covers all the steps required to set-up a simulation environment to run CNN 

workloads.  

A.1 Installing gem5

a) Install required dependency packages

sudo apt install build-essential git m4 scons zlib1g zlib1g-dev libprotobuf-dev protobuf-

compiler libprotoc-dev libgoogle-perftools-dev python-dev python

b) Get the source code

git clone https://gem5.googlesource.com/public/gem5

c) Modify source code to include the required branch predictor

Edit file gem5/src/cpu/simple/BaseSimpleCPU.py and add the appropriate branch

predictor.

d) Build gem5 binary (2 binaries need to be built – one for BiMode branch predictor and

another for Tournament branch predictor)

scons build/<CONFIG>/gem5.opt -j<N>

where <CONFIG> is the gem5 build configuration available in build_opts folder

specifying the ISA and the coherence protocol, and <N> is the number of threads used

for compilation.

A.2 Building Linux kernel

a) Download Linux kernel version 4.8.13 from https://www.kernel.org/

b) Download the config file from http://www.lowepower.com/jason/files/config

c) Build Linux kernel using make.

A.3 Creating disk image

a) Create an empty disk image

https://gem5.googlesource.com/public/gem5
https://www.kernel.org/
http://www.lowepower.com/jason/files/config
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b) Mount the created disk image

sudo mount -o loop,offset=<VALUE> <PATH_TO_DISK_IMAGE>

<PATH_TO_FOLDER_WHERE_IMAGE_WILL_BE_MOUNTED>

where VALUE is the product of start value of partition and sector size of the disk image.

c) Download the Ubuntu core release 16.04 ‘ubuntu-base-16.04-core-amd64.tar.gz’ from

http://cdimage.ubuntu.com/ubuntu-base/releases/16.04/release/

d) Copy Ubuntu core files onto the disk image

sudo tar xzvf ubuntu-base-16.04-core-amd64.tar.gz -C

<PATH_TO_FOLDER_WHERE_IMAGE_WAS_MOUNTED>

A.4 Install required frameworks on the disk image

a) copy /etc/resolv.conf onto the new disk

b) Update init script - Using precompiled binaries

a. wget http://cs.wisc.edu/~powerjg/files/gem5-guest-tools-x86.tgz

b. tar xzvf gem5-guest-tools-x86.tgz

c. cd gem5-guest-tools/

d. sudo ./install

c) Change the root directory to directory where image was mounted (say mnt)

a. sudo /bin/mount -o bind /sys mnt/sys

b. sudo /bin/mount -o bind /dev mnt/dev

c. 5sudo /bin/mount -o bind /proc mnt/proc

d. sudo /usr/sbin/chroot mnt /bin/bash

d) Install the required frameworks using apt package manager.

e) After all installations unmount all of the directories, we used bind on.

a. sudo /bin/umount tmp/sys

b. sudo /bin/umount tmp/dev

c. sudo /bin/umount tmp/proc

d. sudo umount tmp

http://cdimage.ubuntu.com/ubuntu-base/releases/16.04/release/
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A.5 Running gem5 full system simulation

a) Create directory structure as below (required by gem5)

<FULL_SYSTEM_IMAGE_PATH>/

+ binaries/

+ vmlinux

+ disks/

+ linux-x86.img

b) Set environment variable M5_PATH

export M5_PATH=<FULL_SYSTEM_IMAGE_PATH>

c) Create a script file <name>.rcS with commands needed to start execution of CNN

workload on the simulated system.

d) Launch gem5 full system simulation

./build/X86/gem5.opt –outdir=<OUTDIR_PATH> configs/example/fs.py --disk-

image=<path_to_disk_image>

--kernel=<path_to_kernel_binary> --script=<name.rcS>

Other system configuration parameters can also be added as arguments. 




