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ABSTRACT 

 

Oil spills have catastrophic effects on the environment, wildlife, economy, and 

human health. Therefore, timely detection of oil spills can reduce these disastrous impacts. 

Existing oil spill detection practices include in-situ (e.g., acoustic method, vapor sampling, 

pressure-point-analysis, and negative pressure wave) and remote sensing methods (e.g., 

traditional image processing and image processing using artificial intelligence). These 

methods rely mostly on skilled personnel for data collection, processing, and analysis, thus 

leading to slow, costly, and subjective results. Furthermore, oil platforms and pipelines 

are often situated in remote, harsh areas, making inspections hazardous. To remedy this 

problem, in this Thesis, three state-of-the-art artificial intelligence (AI) models, namely 

VGG16, YOLOv3 (you-only-look-once), and mask R-CNN (mask region-based 

convolutional neural network) are used in a transfer learning scheme to facilitate the 

process of detecting oil spills and surrounding objects such as vessels and oil rigs. 

Keyword search, a semi-supervised machine learning approach, is used to collect red-

green-blue (R-G-B) imagery for training and testing these models. The methodology 

includes image classification, object detection, and instance segmentation. The VGG16 

model is used to predict the existence of an oil spill in an image, yielding an accuracy of 

93%. The YOLOv3 model is implemented to detect and mark the location of vessels and 

oil rigs. The mean average precision for detecting these two object classes is 61.5% (46% 

for vessel and 77% for oil rig). The mask R-CNN model is utilized to identify oil spill 

boundaries at the pixel level in the input image. Results (considering all test images) 
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indicate an average precision of 62%, and an average recall of 71%. Findings of this Thesis 

are sought to benefit oil and gas industry stakeholders and coastal communities by creating 

operational AI-assisted technologies for timely detection and response to oil spills and 

other environmental pollutions, ultimately contributing to human health, environment 

preservation, and profitability of energy exploration projects.  
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CHAPTER I  

INTRODUCTION 

 

People from different backgrounds have quite similar perceptions of oil spills. The 

most common image that comes to mind when hearing the word “oil spill” is probably a 

large lost tanker that landed on a rock (Fingas, 2011). Although some major oil spills such 

as the Exxon Valdez incident (Palinkas, 2012), the Hebei Spirit spill (Sim et al., 2010), 

and the Prestige oil spill (Negro et al., 2009) have received more media coverage and 

public attention, the majority of people are not aware of the smaller scale spills that happen 

on a daily basis. 

The importance of oil in all industry sectors is undeniable. With rising global oil 

consumption (Gately et al., 2012; Zou and Chau, 2006) especially in the developing 

regions of the world, oil pollution will also be on the rise (Bloch et al., 2015) which makes 

studying oil spills and their impacts on the environment, people, and wildlife even more 

crucial (Fingas, 2011). The author’s preliminary research has indicated that this global 

challenge affects many countries (both developed and developing) including the U.S., 

Canada, and China. Figure 1 shows thirteen major oil spills between 1967 and 2010: (1) 

the Persian Gulf incident (Kuwait, 1992); (2) the Gulf Oil Spill (Gulf of Mexico, 2010); 

(3) Ixtoc 1 Oil Spill (Mexico, 1979); (4) Atlantic Empress Oil Spill (Off the Coast of 

Trinidad and Tobago, 1979); (5) Kolva River Oil Spill (Kolva River, Russia, 1994); (6) 

Nowruz Oil Field Spill (Persian Gulf, Iran, 1983); (7) Castillo de Bellver Oil Spill 

(Saldanha Bay, South Africa, 1983); (8) Amoco Cadiz Oil Spill (Portsall, France, 1978); 



 

2 

 

(9) ABT Summer Oil Spill (Angola, 1991); (10) M/T Haven Tanker Oil Spill (Genoa, 

Italy, 1991); (11) Odyssey Oil Spill (Nova Scotia, Canada, 1988), (12) the Sea Star Oil 

Spill (Gulf of Oman, 1972); (13) the Torrey Canyon Oil Spill (Scilly Isles, U.K. , 1967) 

(Moss, 2010). 

 

 

 

The consequences of oil spills and slicks are catastrophic, and if not treated 

properly can negatively impact the environment, food chain, wildlife, and human safety 

in addition to producing a heavy financial burden on jurisdictions and 

governments. According to Rodriguez-Trigo (2007), oil spills can cause serious health 

effects on humans, such as damage to some genes or long-term respiratory devastating 

impacts. Beyer (2016) discussed some of the environmental effects of oil spills (in a case 

Figure 1 Geographic Distribution of Thirteen Major Oil Spills around the Globe.  
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study of the Deepwater Horizon oil spill). According to the findings of that study, species 

that were affected by the Deepwater Horizon oil spill included fish, deep-sea corals, sea 

turtles, and cetaceans. Therefore, finding an effective and fast way to detect oil spills could 

be a major first step toward reducing these disasters.  

Traditional methods of oil spill detection include, among others, pressure-point-

analysis (PPA) (Zhang, 1996), Otsu’s method (Shu et al., 2010), and remote sensing 

(Brekke and Solberg, 2005). These methods require continuous involvement of skilled 

personnel in data collection, handling, and analysis that could be costly, slow, and more 

importantly, prone to subjectivity (based on one’s best judgment of the problem 

parameters or solution space). In addition, in many cases, oil pipelines and platforms are 

located in remote and harsh areas, making it difficult and hazardous for engineers to 

conduct timely inspections.   

Applying artificial intelligence (AI) and machine learning (ML) helps automate 

this process and create more objective measures by developing tools that can robustly 

learn from past disaster data and detect potential oil spills in new situations more precisely. 

This Thesis describes a scientific methodology designed and carried out by the author to 

enable the use of unmanned aerial vehicle (UAV) (a.k.a., drone) imagery along oil 

pipelines (on land) or offshore platforms (at sea). This imagery is used to train a deep 

learning model (a type of AI algorithm) on what an oil spill looks like as described by 

parameters such as color palette, pixel density, appearance, geometry, and progression 

pattern. Once trained on such data, the AI model can predict the likelihood of an oil spill 

or leakage in new footage obtained from other pipelines, oil rigs, or platforms. 
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To the best of author’s knowledge, the majority of research on using aerial imagery 

for oil spill detection uses thermal images and Synthetic Aperture Radar (SAR). However, 

these methods are relatively expensive and significantly resource-intensive (Jha et al., 

2008), may not be able to differentiate oil from some image backgrounds, such as soil and 

ice (Fingas and Brown, 1997), and depend on satellite imagery which may not be readily 

available for real-time applications (Girard-Ardhuin et al., 2003). Using ordinary drones 

to obtain Red-Green-Blue (RGB) images from the vicinity of oil spills could be potentially 

less expensive, more ubiquitous, and faster, making the oil spill response mission timely, 

cost-effective, and more practical. Existing literature in this area mostly reports on work 

conducted in Europe with a major focus on incidents that have occurred in geographical 

locations inside or around the European Union (EU) or the Middle East.  

 

Oil Spill Impacts on the Economy, Human Health, Wildlife, and the Environment 

Economic Impacts of Oil Spills 

The extent of damages caused by oil spills on the economy is immense (Negro et 

al., 2009), which is evident by the increasing number of studies on oil spill effects on the 

economy over the past decade (Ritchie et al., 2013). Liu and Wirtz (2006) divided the cost 

imposed by oil spills into four main categories of socioeconomic losses, cleanup costs, 

environmental damages, and research costs. In another categorization, admissible claims 

are classified into three main groups, namely third-party claims, preventive measures, and 

natural resource damages (Loureiro et al., 2006). Negro et al. (2009) studied the economic 

impacts of the Prestige oil spill with a focus on the Death Coast fisheries and utilized fresh 



 

5 

 

fish landings to assess the amount of damage suffered. According to their findings, the 

weight of the species on the Death Coast dropped from 97.2% in 2001 to 84.5% in 2005.  

Among other industries, tourism is the most vulnerable to disasters and crises. 

Ritchie et al. (2013) evaluated the short-term effects of the 2010 BP Gulf oil spill by 

measuring the performance of vacation rentals and hotel businesses. Results indicated that 

the BP oil spill generated both winners and losers depending on the industry type and 

geographical location. In particular, within the surrounding regions, hotel demand 

increased after the oil spill, specifically in the coastal communities of Alabama and 

Mississippi. One explanation could be that the hotel industry benefitted from 

accommodating the media and cleanup crews who chose to stay close to the area. 

Otherwise, a significant decrease in vacation rentals was reported in other locations. 

Garza-Gil et al. (2006) investigated the short-term economic impacts of the 

Prestige oil spill on the Galician fishing and tourism industry. The estimated damages 

from their study are summarized in Table 1.      

 

Table 1 Estimated Damages Caused by the Prestige Oil Spill (Garza-Gil et al., 

2006). 

Affected Sector Loss (Million Euros) 

Cleaning and Restoration 559.0 

Coastal Fisheries and Aquaculture 64.9 

Tourism 133.8 

Total 761.7 
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Human Health Impacts of Oil Spills 

When an oil spill occurs, many people are exposed to the chemicals and toxins, 

from residents who inhabit the area to those who are involved in the cleanup process. Oil 

spill toxins include various chemicals such as toluene, benzene, xylenes, ethylbenzene, 

polycyclic aromatic hydrocarbons (PAHs), vanadium, and mercury (Kadhim and Parry, 

1984). Research shows that this exposure compromises both mental and physical health 

of humans (Aguilera et al., 2010; Levy and Nassetta, 2011). 

Of the major oil spills around the world, the negative effect on human health has 

been investigated in only a few. Rodriguez-Trigo et al. (2007) studied human effects of 

the 2002 Prestige oil spill, and some acute symptoms such as headache, irritated eyes and 

throat, and respiratory symptoms were reported. Carrasco (2007) investigated the effects 

of the Prestige oil spill on health-related quality of life (HRQoL). Some of the health 

problems addressed in this study are social dysfunction, anxiety, insomnia, and 

depression. Palinkas (2012) studied psychological and social effects of the 2010 

Deepwater Horizon oil spill and identified the most common mental health problems such 

as depressive symptoms, generalized anxiety disorders, Post-Traumatic Stress Disorder 

(PTSD), and intrusive stress. 

Table 2 summarizes the findings of several studies related to the impacts of some 

major oil spills on human health. There is a consensus among these studies that exposure 

to oil spills can lead to severe endocrine, genotoxic, physical, and psychological impacts, 

in both short and long terms (Aguilera et al., 2010). Given the recurrence of these 

incidents, it is suggested to take proper actions to reduce these impacts. Goldstein et al. 
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(2011) emphasized the need to initiate some interference protocols, such as short- and 

long-term medical and psychological monitoring, particularly for more exposed 

populations such as oil spill cleanup workers.  

 



 

 

 

Table 2 Major Oil Spills and Their Impacts on Human Health. 

(1) Exxon Valdez Oil Spill, Prince William Sound, AK, US (Palinkas, 1993) (2) Braer Oil Spill, Shetland, Scotland (Campbell 

et al., 1993) (3) Sea Empress Oil Spill, Milford Haven Waterway, UK (Lyons et al., 1999) (4) Nakhodka Oil Spill, The Sea of 

Japan (off the Oki Islands of Simane Prefecture) (Morita et al., 1999) (5) Erika Oil Spill, Brittany, France (Schvoerer et al., 2000) 

(6) Prestige Oil Spill, Galicia, Spain (Suarez et al., 2005) (7) Tasman Spirit Oil Spill, Karachi, Pakistan (Janjua et al., 2006) (8) 

Tasman Spirit Oil Spill, Karachi, Pakistan (Meo et al., 2009) (9) Hebei Spirit Oil Spill, Daesan port, South Korea (Song et al., 

2009) (10) Hebei Spirit Oil Spill, Daesan port, South Korea (Lee et al., 2010) (11) Hebei Spirit Oil Spill, Daesan port, South 

Korea (Sim et al., 2010)

        Symptoms     

Study Headache Eye 

Irritation   

Nausea Dizziness  Throat 

Irritation  

Fatigue  Skin 

Irritation 

Respiratory 

Symptoms 

Depression Anxiety  

1         × × 

2 × × ×  × × ×    

3 × ×   ×    × × 

4 × × ×  × ×     

5 × × ×     ×   

6 × × × ×    ×   

7 ×    × ×  ×   

8 × × ×        

9     ×    ×  

10 × × × × × × ×  × × 

11 × × × ×   × ×   

https://www.google.com/search?safe=active&q=Milford+Haven+Waterway&stick=H4sIAAAAAAAAAONgVuLUz9U3SEuPTyt6xOjMLfDyxz1hKatJa05eYzTh4grOyC93zSvJLKkUUuNig7JkuHilELo0GKS4uRBcnkWsYr6ZOWn5RSkKHollqXkK4YklqUXliZUAM4SLIGwAAAA
https://www.google.com/search?safe=active&q=Galicia+(Spain)&stick=H4sIAAAAAAAAAONgVuLQz9U3ME5OsnjE6Mgt8PLHPWEpi0lrTl5jNOLiCs7IL3fNK8ksqRRS4WKDsqS4eKTgmjQYpLi44DyeRaz87ok5mcmZiQoawQWJmXmaAHVAltFiAAAA


 

 

Wildlife and Environmental Impacts of Oil Spills 

Regardless of their severity, the devastating impact of oil spills on wildlife and the 

environment is undeniable. Wildlife is directly affected by chemicals released during an 

oil spill. However, the damaging effects of small-scale oil spills are often overlooked since 

they lead to less immediate impacts in comparison to major oil spills (Cohen, 1995). 

Nonetheless, it is essential to study these damages to take measures to preserve wildlife.  

Romero and Wilkelski (2002) introduced an evaluation tool for monitoring the health 

status of endangered wildlife. In their study, marine iguanas (Amblyrhynchus cristatus) 

were observed for 20 years before a minor oil spill that occurred in Galapagos archipelago 

in 2001. Based on their findings, 62% of these species deceased one year after the oil spill. 

In investigating the reasons behind the death of these marine iguanas, the study found that 

oil residues killed their digestive bacteria, thus resulting in starvation.  

Dubansky et al. (2013) studied the effects of the Deepwater Horizon oil spill on 

fish, particularly, Gulf killifish (Fundulus grandis). Results showed growing 

developmental abnormalities when Gulf killifish were exposed to oil residue. In another 

study, Swedmark et al. (1973) investigated the impact of oil dispersants on marine animals 

and suggested a sequential effect that included increased activity, successively impaired 

activity, immobilization, and death. 

Oil spill pollution can remain in the environment for many years after the incident 

(Fingas, 2012). However, in most cases, if oil is removed from the scene, the recovery will 

be complete in as little as 2 to 10 years (Kingston, 2002). Therefore, it is necessary to 



 

10 

 

identify the impacts of oil spills on the environment and establish protocols for oil spill 

response.  

Abii and Nwosu (2009) conducted a study on the impact of oil spills in two regions, 

Agbonchia and Ogali, in the Niger-Delta in Nigeria. According to the results, the oil spill 

had a significant impact on the fertility status and nutrient level of the soil. Beyer et al. 

(2016) found that the Deepwater Horizon oil spill had devastating biological impacts on 

the ecosystem. Some of the species affected by this incident were birds, marine mammals, 

pelagic fish, and sea turtles. The study suggested that certain species, such as large fish, 

sea turtles, cetaceans, and deep-sea corals should be monitored to control the long-term 

effects. 

 

Research Objectives and Contributions  

The main goal of this research is to enhance oil spill and leakage detection. Effective 

and rapid detection assists responsible authorities in taking proper actions to prevent 

further damage to the environment, economy, and human health. To achieve this goal, this 

study aims to meet the following primary objectives and answering specific questions 

related to each objective:  

1. Study previous incidents from both environmental impacts and technical 

perspectives. To meet this objective, the following research question is answered:  

a. What are the environmental, economic, ecological, and psychological 

impacts of oil spills, and their effects on flora, fauna, and humankind? 



 

11 

 

2. Explore existing datasets about oil spills and leakages. To meet this objective, the 

following research questions are answered:  

a. Are existing datasets large and diverse enough to cover both land and sea 

incidents? 

b. What are the characteristics and significant differences of these datasets in 

terms of quality and frequency when collected by satellites, planes, and 

drones?  

3. Train AI models on oil spill visual data obtained from previous incidents, and test 

these models on data from other incidents to assess the applicability of the 

developed method to practical cases. To meet this objective, the following research 

questions are answered:  

a. What level of accuracy can be achieved when the trained AI model is used 

to classify unseen images considering the general presence of oil spills in 

an image?  

b. What level of accuracy can be achieved when the trained AI model is used 

to detect and localize (mark the locations) of oil spills and other related 

objects in unseen images? 

This research is intended to introduce new AI-assisted tools that can lead to 

broader environmental, financial, and sociological impacts. It seeks to make a significant 

difference to the safety and wellbeing of people who depend on the petroleum industry 

from upstream (i.e., exploration and production), to midstream (i.e., transportation and 

storage), to downstream (i.e., refineries and distribution). 



 

12 

 

CHAPTER II  

OIL SPILL DETECTION AND RESPONSE  

 

Oil Spill Response Process  

Oil spill response is a demanding task in any environment (Valez et al., 2011). 

Possible strategies to minimize oil spill damages can be divided into two categories, 

namely oil spill preparedness (including prevention) for operational and accident oil 

pollution, and control and recovery of a spill to mitigate its consequences (Ventikos, 

2002).  

Terms such as “cleanup” or “countermeasures” do not have their usual and literal 

sense. In the case of oil pollution, cleanup operations should be cautious, well-planned, 

and balanced because they can cause more damage than the pollution itself, e.g., due to 

the use of heavy machinery in sensitive spill sites, such as marshes. Therefore, it is 

important to compile and categorize an effective oil response plan to protect the 

environment (Ventikos et al., 2004). 

Figure 2 shows the standard protocol that should be followed after an oil spill. 

First, oil spill should be detected using one or a combination of methods that will be 

described in this Chapter. This will be followed by notifying the appropriate authority who 

will implement proper actions to gain and maintain control, and prevent additional spread. 



 

13 

 

Next, cleanup operations will be carried out to avoid further impacts to the environment 

(Doerffer, 2013). 

 

 

 

Oil Spill Detection Techniques  

In-situ (i.e., direct) oil spill detection methods often involve sensor installation or 

deployment of skilled personnel and resources to predetermined locations. To locate and 

detect oil spills using sensors, flow input and output parameters (e.g. pressure, discharge 

rate, velocity, and temperature) and physical properties of the system (e.g. pipe 

dimensions) must be known. Using this information, any divergence from normal state 

could be flagged as an indication of oil spill or leakage (Jiao et al., 2019). 

Covas et al. (2005) classified these methods into direct observation and inference 

methods. Direct observation techniques assess pipeline features by means of specific tools 

such as infrared thermography, artificial patrol, video inspection, visual inspection, and 

acoustic techniques, with the latter considered as the most cost-effective direct observation 

method (Covas and Ramos, 1999). Inference oil spill detection methods can be used to 

monitor oil spills online. These methods rely on the pipeline features that are provided by 

other sensors or tools such as flow, pressure, and temperature. To detect oil spills, a model 

Figure 2 Oil Spill Response Standard Protocol. 
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that is based on real-time data must be established. Inference methods are mostly based 

on inverse analysis, a steady-state equation, and negative pressure wave (NPW) (Covas et 

al., 2005). 

Zhang (1996) categorized oil spill detection methods into three groups, namely 

software-based, biological, and hardware-based methods. Software-based techniques 

include pressure-point-analysis (PPA), dynamic model system, mass or volume balance, 

and flow or pressure change. In biological methods, a leak is detected by a trained dog or 

by skilled personnel, using odor, visual symptoms, or sound. Results obtained by these 

methods rely mainly on human skills and may or may not be accurate (Murvay and Siela, 

2012). Hardware-Based techniques utilize various hardware tools to detect oil spills, such 

as visual devices, pressure wave detectors, gas sampling devices, and acoustic devices 

(Zhang, 1996). 

The limitation of in-situ oil spill detection methods lies in the fact that almost all 

of them require physical hardware (i.e., sensors, gauges, tools) installation, calibration, 

and maintenance. In addition, the majority of such methods is designed for onshore oil 

transit systems, such as pipelines. In this Chapter, a brief description of in-situ oil spill 

detection techniques is first presented. Next, follows an introduction to remote sensing 

techniques, such as those using traditional image processing and more recently, image 

processing using AI. 
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In-Situ Methods 

In this Section, a brief description of some direct oil spill detection methods is 

presented that includes acoustic methods, vapor sampling, PPA, and NPW. Table 3 draws 

a comparison between these methods (Murvay and Silea, 2012). 

 

Table 3 Comparison between Leak Detection Methods (Murvay and Silea, 2012). 

(Y)es, (N)o, (S)low, (M)edium, (F)ast, (L)ow, (H)igh 

 

Acoustic Methods 

When an oil leakage happens, noise is created as a result of fluid (oil) running from 

the pipeline. The velocity of the noise wave depends on the physical attributes of the fluid 

in the pipeline (Fuchs, 1991). In oil spill detection methods that use acoustic devices, 

specialized sensors detect these waves and generate a leak alert accordingly (Furness and 

Reet, 2009). It is recommended to use several detectors along the pipeline since the 

detection range of a single sensor is limited (Brodetsky and Savic, 1993). Installed sensors 

identify acoustic signals along the pipeline and distinguish the sounds caused by leaks 

from other sources of sound (Zhang, 1996). Examples of sensors that have been used for 

 Method 

Acoustic Thermal 

imaging 

Vapor 

sampling 

PPA NPW 

Cost H H H L L 

Detection Speed F M F F F 

Easy Retrofitting Y - N Y Y 

Easy Usage Y Y Y Y Y 

Leak Localization Y Y Y N Y 

Leak Size Estimation Y Y Y N Y 
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the acoustic methods include microphones, dynamic pressure transducers, acoustic 

sensors, and accelerometers (Loth et al., 2003).  

While the first uses of the acoustic methods date back to the 1930s (Rocha, 1989), 

the concept is still being used as part of more sophisticated alert systems (Loth et al., 

2003). In a more recent study, a method was introduced based on the concept of acoustic 

methods in which time-frequency analyses were carried out to distinguish between 

background noises and the signals generated by the leakage (Meng et al., 2011). The main 

advantages of using these systems are the ability to conduct remote detection, and the 

relatively good performance of this technique to locate oil leaks (Murvay and Siela, 2012). 

 

Vapor Sampling  

Another method for detecting leaks involves sampling hydrocarbon vapors along 

the pipelines, using either a vapor monitoring system (Sperl, 1991) or mobile detectors 

(Bryce et al., 2002). A vapor monitoring system includes a sensor tube that is buried in 

the vicinity of the pipeline (Geiger et al., 2006). Figure 3 illustrates leak detection using 

vapor sensing tube. Mobile detectors can be mounted on remotely operated vehicles 

(ROVs) or be carried by skilled personnel (Bryce et al., 2002). 
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The remote monitoring method works by using a sensor tube that is buried along 

the pipeline. This sensor tube can absorb the oil if a leak occurs. The content of the tube 

is analyzed periodically by pushing the tube content through a monitoring unit, using a 

pump. The size of the leak is then detected, based on the concentration profile, and the 

location of the leak is determined through comparing the travel time of the gas from a leak 

spot with the overall travel time (Geiger et al., 2006). Some of the limitations of this 

method, however, are that it is not applicable to deep, above-the-ground, or long pipelines, 

is costly, and has a slow response time (Bryce et al., 2002).  

 

Pressure-Point-Analysis (PPA) 

The concept behind PPA is that a drop in the line pressure indicates an oil leakage 

(Geiger, 2008). In this method, a drop in the pressure measurement mean value is 

identified through statistical analysis of pressure measurements. If the drop exceeds a 

predefined threshold, a leakage is reported (Zhang, 1996). This method has proven to 

detect leak rates less than 0.1% of flow (Murvay and Siela, 2012) in cold environments 

Figure 3 Leak Detection and Localization Using Vapor Sensing Tube.  
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and underwater (Scott and Barrufet, 2003). The main disadvantages of this method are 

that it requires continuous measurement of pressure along the pipeline and is not a reliable 

method for transient flow (Murvay and Siela, 2012).   

 

Negative Pressure Wave (NPW) 

When a leak occurs in a pipeline, there is a pressure drop in or around the leak 

location, which creates a rarefaction (i.e., negative pressure) wave in the pipeline (Silva et 

al, 1996). The speed of this wave, which moves both upstream and downstream from the 

location of the leak, equals the speed of sound in the pipeline (Zhang, 1996). This wave 

can, therefore, be measured by installing pressure transducers on both ends of every 

pipeline segment (Silva et al, 1996).  

The oil leak can be located by comparing the time difference of the moments at 

which negative pressure wave occurs at each end of the pipe (Zhang, 1996). More recent 

systems that are based on negative pressure wave concept, such as Atmos wave, can 

estimate the leak size as well as locate it (Souza and Hoffman, 2011). The NPW method, 

however, is not practical for long-range pipelines (El-Sheikh, 2010). Figure 4 presents the 

schematic diagram of the NPW method.   
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Remote Sensing Methods  

Traditional methods of oil spill detection require continuous involvement of 

skilled personnel in data collection, processing, and analysis, which could be costly, slow, 

and more importantly, prone to subjectivity (based on one’s best judgment of the problem 

parameters or solution space). In addition, in many cases, oil pipelines and platforms are 

located in remote and harsh areas, making it difficult and hazardous for engineers to 

conduct safe, timely inspections. In light of these limitations, remote sensing oil spill 

detection techniques rely on information that can be obtained without a need for in-situ 

sensor installation and reading, using some of the approaches explained below.  

 

Traditional Image Processing  

Traditional image processing techniques rely on aerial data collected from the 

location of an oil spill. For instance, methods that use data captured by satellites equipped 

with synthetic aperture radar (SAR) have been previously proposed and tested in oil spill 

detection. SAR is a radar that is utilized to generate two-dimensional imagery or three-

Figure 4 Schematic Diagram of NPW Method for Leakage Detection. 
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dimentional objects  (Kirscht and Rinke, 1998). Satellites with SAR can collect data at 

any time (day or night) and are independent of cloud coverage. These satellites operate at 

designated frequencies with L-band, S-band, and C-band wavelengths. Various SAR-

equipped satellites are listed in Table 4 (Brekke and Solberg, 2005). 

 

Table 4 SAR-Equipped Satellites (Brekke and Solberg, 2005). 

Satellite (Sensor) Operating Period Owner Band 

SEASAT 1978 NASA L-band 

ALMAZ-1 1991-1992 Russian Space Agency S-band 

ERS-1 1991-1996 ESA C-band 

ERS-2 1995-present ESA C-band 

RADARSAT-1 1995-present CSA C-band 

ENVISAT (ASAR) 2002-present ESA C-band 

L-band 1-2 GHz, S-band 2-4 GHz, C-band 4-8 GHz  

 

In open bodies of water, oil leakages change the appearance of the water surface 

which in turn generates dark spots in satellite SAR imagery (Laur et al., 2002). Methods 

that use SAR imagery take advantage of these dark regions to detect oil spills (Curlandar 

and McDonough, 1991). Figure 5 presents the schematic framework for oil spill detection 

algorithms that use SAR images. 

 

 
Figure 5 A Framework for Oil Spill Detection Algorithms, Using SAR Images. 
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Among common approaches to oil spill image processing is Otsu’s method (Sezgin 

and Sankur, 2004; Zaart and Ghosn, 2013), which is an image thresholding technique at 

its core. One of the key advantages of this method is its efficiency and simplicity (Hou et 

al., 2006). The underlying algorithm uses a threshold to separate the pixels of the input 

image into two classes, foreground and background (Liao et al., 2001). To determine the 

threshold, the inter-class variance is maximized, or intra-class intensity is minimized 

(Otsu, 1979). The intra-class variance is defined as a weighted sum of variances of the two 

classes and is calculated using Equation 1 (Otsu, 1979). In this Equation, 𝑤0 and 𝑤1 

represent the probabilities of the two classes that are separated by the threshold t, and 

𝜎2
1 and 𝜎2

0 denote the variances of these classes. 

𝜎2
𝑤(𝑡) = w0(𝑡) 𝜎2

0(𝑡) +  w1(𝑡) 𝜎2
1(𝑡)      (1)  

It has been reported that Otsu’s method performs poorly in some cases, including 

when there is a small mean difference between foreground and background pixels (i.e., 

low contrast), small object sizes, and in the presence of significant noise in the image (Lee 

and Chung, 1990).  

Fiscella et al. (2000) proposed an approach that distinguished oil spills from other 

oceanographic phenomena using SAR imagery. Their method was based on two 

classifiers, namely Mahalanobis and compound probability, both of which measured the 

physical and geometrical features of the object and compared them with a template to 

determine if it was an oil spill. The classification accuracy was reported at 80%. Similarly, 

Solberg et al. (1999) introduced an approach that used adaptive thresholding technique to 

distinguish oil spills from other phenomena. Their method combined a statistical classifier 
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using a Gaussian model and several subclasses with a rule-based modification of prior 

probabilities and yielded a 94% accuracy.  

In another study, Solberg et al. (2007) used two types of SAR imagery (i.e., 

RADARSAT and ENVISAT) for oil spill detection. Their method implemented a 

statistical classifier with subclasses based on wind and shape. The classification task 

considered features that described oil spill surroundings, oil spill and background contrast, 

shape, and homogeneity. Their method yielded a 78% accuracy. When benchmarked 

against manual oil spill detection, this algorithm was found to be faster with an average 

processing time of 1.45 minutes per image compared to 10 minutes per image in manual 

inspection.  

 

Image Processing Using Artificial Intelligence 

More recently, with advancements in processing capacities and big data analytics, 

methods that are built upon AI and fast image computing have gained traction in many 

fields. The introduction of AI and ubiquitous data acquisition platforms such as unmanned 

aerial vehicles (UAVs) and handheld devices with mobile connectivity in the oil and gas 

industry has started to change how oil spills and other types of environmental pollutions 

are detected and monitored.  

Marquez et al. (2016) utilized drones equipped with various types of optical 

sensors to detect oil spills. In another study, Jiao et al. (2019) proposed an oil spill method 

that uses aerial imagery obtained from drones for oil spill detection. Their proposed 

approach consisted of four main sections including data preparation, model construction, 
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detection procedure, and responses to the results. In data preparation, UAVs were used to 

acquire raw training data. Next, several pre-trained DCNN models were used to detect the 

presence of oil spills in input images, and performance metrics (e.g., precision, recall) 

were used to evaluate the models. According to their findings, the DCNN achieved better 

results than the traditionally best method for oil spill detection, as measured by an overall 

accuracy of 98% and above. The study further reported that after one year of deployment 

in an oilfield, this method reduced inspection costs by 57% compared with the costs of the 

typical manual inspection, by reducing the number of workers and eliminating potential 

risks posed to workers by field conditions. However, the dataset used in this study was 

prepared using images taken in and around a particular location (city of Dongying, 

Shandong province, China) over a period of six months (March to December 2016), thus 

lacking diversity.   
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CHAPTER III  

DEEP LEARNING  

 

Machine Learning 

Machine learning (ML), a subset of artificial intelligence (AI), uses algorithms to 

systematize the correlation between data and information (Awad and Khanna, 2015). ML 

has been succinctly defined as the “computer’s ability to learn something without being 

explicitly programmed” (Samuel, 1988). Mitchell (1997) offers a more formal definition 

of ML: “a computer program is said to learn from experience E with respect to some class 

of tasks T and performance measure P if its performance at tasks in T, as measured by P, 

improves with experience E”. ML algorithms have influenced everyday life in a variety 

of ways such as self-driving vehicles, web searches, and email filtering (Schmidhuber, 

2015; Yu and Deng, 2011). They have been applied in many areas, including natural 

language processing (NLP) (Yu and Deng, 2011), information retrieval (Cheng and Baldi, 

2006), and pattern recognition (Bishop, 2006).  

 

Supervised vs. Unsupervised Learning  

In a broader scheme, ML algorithms can be divided into two categories, namely 

supervised and unsupervised algorithms (Dunham, 2006). Figure 6 presents a schematic 

diagram of different ML algorithms. In supervised learning, the algorithm is built given 

both the input and output data. The input data (a.k.a., training data) includes training 

examples. Unsupervised learning, on the other hand, draws interfaces from the input data 
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without being provided with labeled responses (Russel and Norvig, 2010). Supervised 

algorithms are divided into two subsets of classification and regression (Alpaydin, 2010). 

In classification, the outputs are categorical values, such as activities or colors. Regression 

outputs, on the other hand, are numerical values within a range, such as height or 

temperature (Harrington, 2012).  

 

 
Figure 6 Supervised vs. Unsupervised ML Algorithms. 

 

 

Hyperparameters  

Hyperparameters are predefined parameters used by a ML algorithm to learn from 

training data (Claesen and Moor, 2015). Different ML algorithms use different 

hyperparameters (Claesen and Moor, 2015). In this research, examples of the 

hyperparameters that are used to train the ML models are learning rate, number of epochs, 

batch size, and intersection over union (IoU) threshold. These hyperparameters are briefly 

introduced below:  
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 Learning rate: defines how quickly the model updates its parameters during 

training. 

 Number of epochs: is the number of times the entire training data is passed through 

the model during training. 

 Batch size: indicates the number of training data samples in one forward or 

backward pass. 

 Number of steps: a training step is one gradient update. During one step, several 

training data samples (as specified by the batch size) are processed.  

 IoU threshold: for some ML tasks that deal with visual recognition (e.g., a 

computer vision algorithm to detect objects in an image), an IoU threshold is 

needed to differentiate between good and poor outputs, and determine the overall 

model performance in performing the desired task (classification or regression) 

(Cai and Vasconcelos, 2017). This hyperparameter is defined using Equation 2. In 

this Equation, area of overlap corresponds to the intersection of ground truth and 

detected area, and area of union is the union of ground truth and detected area.  

𝐼𝑜𝑈 =
Area of Overlap

Area of Union
        (2)  

 Binarize threshold: using the Binarize threshold t, an algorithm creates a binary 

image by replacing all values above t with 1 and remaining values with 0.   
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Performance Metrics   

In this Subsection, a brief description of several mathematical approaches that are 

widely used to evaluate the performance of a ML model is provided.  

Accuracy is perhaps the most intuitive metric used to describe the quality of the 

output generated by an ML model. Accuracy is defined as the ratio of number of instances 

that are correctly classified to the total number of instances (Dunham, 2006), as shown in 

Equation 3.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%)  =
No.  of instances correctly classified

Total no.  of instances
× 100    (3) 

The accuracy for a binary (yes/no) classification is calculated by Equation 4. In 

this Equation, True Positive (TP) and True Negative (TN) refer to the number of correctly 

predicted values. TP indicates positive (i.e., yes) predictions that are correct, while TN 

indicates negative (i.e., no) predictions that are correct. False Positive (FP) and False 

Negative (FN), on the other hand, refer to the number of incorrectly predicted values. FP 

indicates positive (i.e., yes) predictions that are incorrect, while FN indicates negative (i.e., 

no) predictions that are incorrect (Powers, 2011). Using these definitions, the denominator 

in Equation 4 is the total number of predictions (regardless of correctness) made by the 

model.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+TN+FP+FN
        (4) 

The performance of an ML model can be also presented in a matrix form known 

as the confusion matrix. Figure 7 shows an example of an n-by-n confusion matrix for a 

multiclass (n-class) classification task performed by a trained ML model. Rows in this 

matrix represent the actual (ground truth) classes, while columns indicate the predicted 
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classes. The (i, j) cell in the matrix indicates the number of instances that belong to class 

i but were predicted as belonging to class j (Harrington, 2012). 

 

 

 

 

 

 

 

 

 

Knowing the number of TP, TN, FP, and FN instances, two more measures of 

performance can be calculated, namely precision and recall. Precision is defined as the 

number of TPs divided by the total number of predictions belonging to the positive class 

(i.e. TP+FP). Recall, on the other hand, refers to the number of TPs divided by the total 

number of TPs and FNs (Powers, 2011). Equations (5) and (6) are used to calculate 

precision and recall. Figure 8 presents a confusion matrix of a binary-class classification.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP 
          (5)  

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP+FN
          (6) 

Figure 7 Confusion Matrix for a Multiclass Classification. 
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The F-score is the harmonic mean of precision and recall, calculated using 

Equation (7). In this Equation, 𝛽 is a positive real value that is chosen by the user 

depending on the specific type of problem the ML model is expected to solve. For 𝛽 = 1, 

the general formula for 𝐹(𝛽) is simplified to the form shown in Equation (8), and the 

calculated value is referred to as the F-1 score.  

𝐹(𝛽) =  
(1+β2)∗(precision∗recall)

(β2∗precision+recall)
        (7)  

𝐹(1) =  2 ∗
(precision∗recall)

(precision+recall)
         (8) 

If precision 𝑝(𝑟) is defined and plotted as a function of recall 𝑟, then the area under 

𝑝(𝑟) curve is termed average precision (AveP), as shown in Equation (9). In simple terms, 

AveP is the average value of 𝑝(𝑟) when 𝑟 varies between 0 and 1 (Dunham, 2006).  

𝐴𝑣𝑒𝑃 = ∫ 𝑝(𝑟)𝑑𝑟
1

0
          (9) 

In a multiclass classification task, the average of all AveP values (corresponding 

to different classes) is calculated using Equation (10) and referred to as the mean average 

precision, or mAP. In this Equation, c is the number of classes (Power, 2011). 

𝑚𝐴𝑃 =
∑ 𝐴𝑣𝑒𝑃(𝑖)𝑐

𝑖=1

𝑐
              (10) 

Figure 8 Confusion Matrix of a Binary-Class Classification. 
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            Dice coefficient is a similarity coefficient that is used as a performance metric in 

image segmentation problems (Milletari et al., 2016). The original formula, denoted in 

Equation (11), could be applied to discrete data. In this Equation, X and Y represent two 

sets. When working with Boolean data, the dice coefficient can be written as Equation 

(12) (Thada and Jaglan, 2013). 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
2|𝑋∩𝑌|

|𝑋|+|𝑌|
        (11) 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
2𝑇𝑃

2TP+FP+FN
       (12) 

 

Transfer Learning 

For a ML model to be properly trained, there is a need for sufficient amount of 

training data. However, in many cases for reasons such as data scarcity, it is not possible 

to gather sufficient data from the problem domain. Generating a high-performance learner 

for a target domain (application of interest) by training it on data from a related source 

domain can help remedy this problem (Weiss et al., 2016). This process is often called 

transfer learning and aims at “storing knowledge gained while solving one problem and 

applying it to a different but related problem” (West et al., 2007). Figure 9 illustrates the 

difference between traditional ML and transfer learning approaches. 
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Deep Learning 

Traditional ML algorithms may underperform when dealing with large amounts of 

complex data, such as vision and speech for which hand-picking distinctive features may 

not be practical (Indiveri and Liu, 2015). The earlier notions of deep learning (DL) 

originally emerged in 1943, motivated by deep hierarchical structures of human speech 

perception (Liu et al., 2017). DL algorithms have improved significantly in the past few 

decades, particularly in areas such as computer vision, image analysis, natural language 

processing (NLP), speech recognition, and information retrieval (LeCun et al., 2015; Noda 

et al., 2015; Wu et al., 2016). Figure 10 illustrates the relationship between DL, ML, and 

AI. Figure 11 presents the difference between traditional ML algorithm and DL algorithm. 

As shown in this Figure, the traditional ML approach differs from DL is that ML 

algorithms need complex feature engineering (extraction, ranking, selection), and feature 

Figure 9 Learning Process in Traditional ML (Left), and Transfer Learning 

(Right). 
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extraction should be performed prior to passing the features to the ML algorithm. 

However, in DL, the data will be passed to the network directly (Bengio, 2009). 

 

 

 

 

 

 

 

 

 

 

DL architectures, such as artificial neural networks (ANNs), deep neural networks 

(DNNs), and recurrent neural networks (RNNs) (Hinton and Salakhutdinov, 2006) have 

Figure 10 Relationship between AI, ML, and DL. 

Figure 11 Traditional ML Algorithm vs. DL Algorithm.  
(Images reprinted with permission from: Skimming Oil in the Gulf of Mexico during the 

Deepwater Horizon Oil Spill by Flickr user Office of Response and Restoration, CC-BY-

2.0.)   

https://www.flickr.com/photos/noaa_response_restoration/12685861633
https://www.flickr.com/photos/noaa_response_restoration/12685861633
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been applied in various fields, such as speech recognition (Hinton et al., 2012), computer 

vision (Szegedy et al., 2015; Nath and Behzadan, 2019), bioinformatics (Min et al., 2017), 

medical image analysis (Milletari et al., 2017), and drug design (Jing et al., 2018).  

DL particularly became popular after significance advancements in speech 

recognition domain in 2006 (Hinton and Salakhutdinov, 2006; Hinton et al., 2012). Zhao 

et al. (2019) listed three main reasons for the increasing popularity of DL, as (1) high 

performance computing systems, such as graphics processing unit (GPU); (2) large-scale 

annotated datasets, including ImageNet (Deng et al., 2009), Pattern Analysis, Statistical 

Modeling and Computational Learning (PASCAL) Visual Object Class (VOC) 

(Everingham et al., 2010), and Common Objects in Context (COCO) (Lin et al., 2014); 

and (3) major improvements in network structures, such as AlexNet (Krizhevsky et al., 

2012), Overfeat (Sermanet et al., 2013), VGG (Simonyan and Zisserman, 2014), 

GoogleNet (Szegedy et al., 2015), and Resnet (He et al., 2016). 

The architecture of a DL model can be best described using the traditional notion 

of ANNs (Hinton and Salakhutdinov, 2006). The resulting DL model is often referred to 

as a DNN. Figure 12 presents a schematic diagram of an ANN and a DNN. As shown in 

this Figure, a DNN is an ANN with multiple hidden layers between the input and output 

layers. Computations can be done faster and more parallelized, using DNNs (Yosinski et 

al., 2014).  
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A convolutional neural network (CNN) is a type of deep learning model (LeCun 

et al., 2015). Each layer of a CNN encapsulates a feature map. The input layer feature map 

is a 3D matrix of pixel intensities for various color channels, such as RGB (Krizhevsky et 

al., 2012). Several types of transformation can be applied to feature maps, including 

pooling and filtering (Oquab et al., 2014). Pooling functions such as average pooling and 

max pooling, condense multiple cells (i.e., a field) of a feature map into one, and generate 

more vigorous feature descriptions (Kavukcuoglu et al., 2009). Filtering (i.e., convolution) 

function, on the other hand, convolutes a filter matrix (learned weights) with the values of 

a receptive field of neurons and takes a non-linear function to obtain final responses 

(Wadley, 1947). A feature hierarchy is created by interleaving between pooling and 

convolution. By adding various fully connected (FC) layers, with specific activation 

functions, this hierarchy can be fine-tuned and adapted for various tasks (Zhao et al., 

2019).  

In this Thesis, three well-established deep convolutional neural networks 

(DCNNs), including VGG16, you-only-look-once (YOLO), and mask region-based 

Figure 12 Traditional ANN (Left) vs. DNN (Right). 
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convolutional neural network (R-CNN) are used for object recognition tasks. Object 

recognition, which is a field in computer vision, is used to identify objects in images or 

video frames (Torralba et al., 2003). Figure 13 outlines object recognition tasks, which 

fall into two main categories of image classification and object localization. In this Thesis, 

DCNN models are used for image classification (i.e., predicting the existence of an object 

in an image), object detection (i.e., detecting the location of an object in an image, using 

bounding boxes), and object segmentation (i.e., identifying the pixel-level boundaries of 

an object in an image). Figure 14 presents state-of-the-art object detection methods. From 

these methods, YOLO and Mask R-CNN are chosen for this research. These models are 

explained thoroughly in the following Chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 13 Object Recognition Tasks. 
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Figure 14 Object Detection Methods. 
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CHAPTER IV  

RESEARCH METHODOLOGY 

 

In this Chapter, the proposed solution to AI-assisted oil spill recognition in visual 

data is explained, which consists of image classification, object detection, and instance 

segmentation steps. Figure 15 presents the schematic diagram of the designed 

methodology. In data collection, relevant images are retrieved from Google using keyword 

search, a type of supervised web mining technique. Web mining is the process of 

integrating information gathered by traditional data mining techniques with those obtained 

from the world-wide web (Li, 2002). Following image retrieval through web mining, 

LabelBox (a web-based labeling toolbox) is used to label and annotate the visual data. 

Three object classes (oil spill, vessel, and rig) are annotated at the pixel-level (i.e., 

polygons are drawn around the object boundaries). Afterwards, the dataset is randomly 

split into three subsets of training (%65 of the entire dataset), validation (15% of the entire 

dataset), and testing (remaining 20% of the entire dataset). This distribution follows 

common practices in machine learning where an 80-20 split is used to split the dataset into 

training and testing subsets, and the same ratio is applied within the training subset to 

separate initial training data from validation data (Nahato et al., 2015). 
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Next, three state-of-the-art deep learning models (pre-trained on general large-

scale datasets) are selected. Table 5 lists these models, their network structures, and the 

datasets on which they are pre-trained. In particular, the VGG16 model is used for image 

classification. For object detection, YOLO (you-only-look-once) model is used to 

differentiate between two object classes (i.e., vessel and rig), and mask R-CNN (region-

based convolutional neural network) is used for instance segmentation only for the oil spill 

class.  

 

 

 

 

Figure 15 Schematic Diagram of the Methodology. 
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Table 5 Overview of Deep Learning Models Used for Image Classification, Object 

Detection, and Instant Segmentation. 

Model Network Structure Pre-Trained Dataset 

VGG16 

(Krizhevsky et al., 2012) 

16 Convolutional Layers ImageNet  

(Deng et al., 2009) 

YOLOv3  

(Redmon et al., 2016) 

Darknet-53  

(Redmon and Farhadi, 2018) 

VOC  

(Everingham et al., 2010) 

Mask R-CNN 

(Gkioxari et al., 2018) 

Resnet-50  

(He et al., 2016) 

COCO  

(Lin et al., 2014) 

 

 

To implement the algorithms used in this research, Texas A&M University High 

Performance Research Computing (HPRC) clusters are used. In particular, the Terra 

cluster which comprises of an Intel x86-64 Linux cluster with 320 compute nodes with 

each node containing an Intel Xeon 2.5GHz E5-2670 v2 10-core processor is utilized 

(HPRC 2019). The total training time for the YOLOv3 and mask R-CNN models is 

approximately 5 hours and 18 hours, respectively. 

Afterwards, pre-trained model weights are fine-tuned using the in-domain training 

images collected through web mining. In hyperparameter tuning, different 

hyperparameters such as batch size, learning rate, and the number of epochs is tuned for 

each model. This is followed by testing each model on unseen (i.e., test) images. Sample 

detections and their corresponding ground truth images are presented in Figures 16 and 

17. Finally, the performance of the models is evaluated, using different evaluation metrics, 

including mean average precision, accuracy, recall, dice coefficient, and F1 score.   
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Figure 16 Sample Images from the Test Dataset (Left) and 

Corresponding Detected Images by YOLOv3 (Right). 

(Images reprinted with permission from: View of Deepwater Horizon Oil 

Spill in May 2020 by Flickr user Office of Response and Restoration, 

CC-BY-2.0.; HDR of Offshore Jack Up Rig in the Middle of the Sea at 

Sunset Time, Oil Rig by Flickr user Solvay Group.)   

 

Figure 17 Sample Unseen Test Image (Left) and Corresponding 

Pixel-Level Segmentation by Mask R-CNN Model (Right). 

(Image reprinted with permission from: Ixtoc I Oil Spill by Flickr user 

NOAA Photo Library.)   

https://www.flickr.com/photos/noaa_response_restoration/16437275362
https://www.flickr.com/photos/noaa_response_restoration/16437275362
https://www.flickr.com/photos/153164477@N08/42412887965
https://www.flickr.com/photos/153164477@N08/42412887965
https://commons.wikimedia.org/wiki/File:Line5134_-_Flickr_-_NOAA_Photo_Library.jpg
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Image Collection and Labeling   

As mentioned earlier, in order to create an image dataset in this research, relevant 

images are retrieved from Google using keyword search. Examples of keywords used are 

“oil spill”, “ocean aerial imagery”, and “sea aerial view”. Following image retrieval 

through web mining, LabelBox (a web-based labelling toolbox) is used to label and 

annotate the visual data. Figure 18 shows a sample image from the dataset and its 

corresponding image segmented in LabelBox.  

 

 

 

Dataset Description    

The in-house dataset created in this research contains 1,292 images that are used 

to train, validate, and test several Deep Neural Network (DNN) models. The dataset is 

classified based on two criteria, namely the viewpoint (high altitude, low altitude, and first 

person) and the presence of oil spill (binary: yes/no). Figure 19 illustrates the distribution 

Figure 18 A Sample Image from the Dataset (Left) and Corresponding Segmented 

Image in LabelBox (Right). 

(Images reprinted with permission from: View of Deepwater Horizon Oil Spill in May 

2020 by Flickr user Office of Response and Restoration, CC-BY-2.0.)   

 

https://www.flickr.com/photos/noaa_response_restoration/16437275362
https://www.flickr.com/photos/noaa_response_restoration/16437275362
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of the dataset based on each criterion. In addition, each image is segmented by marking 

the boundaries of instances of three pre-defined object classes (i.e., oil spill, vessel, and 

rig). Each instance is marked by drawing polygons around the object boundaries. Figure 

20 shows the distribution of the dataset based on the number of instances.  

 

 

 

 

Figure 20 Distribution of the Number of Instances per Class Label. 

 

 

14%

70%

16%

Viewpoint
First Person

Low Altitude

High Altitude

51%

49%

Spill

Spill

Non-Spill

Figure 19 Distribution of the Number of Samples per Class Label. 
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Figure 21 shows the distribution of the dataset based on the instances in a weighted 

Venn diagram, and Figure 22 presents samples from the dataset.  

 

 

 

 

 

 

 

 

 

 

Figure 21 Weighted Venn Diagram for the Distribution of Number of Instances 

per Class Label. 
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Figure 22 Examples from All Object Classes from the Dataset. 

(Images modified and reprinted with permission from: Deepwater Horizon Oil Spill-

May 24,2010 by NASA/GSFC, MODIS Rapid Response; Ixtoc I Oil Spill by Flickr 

user NOAA Photo Library; Louisiana Oil Spill by US Coast Guard; Ixtoc I Oil Well 

Blowout by NOAA; Skimming Oil in the Gulf of Mexico during the Deepwater 

Horizon Oil Spill by Flickr user Office of Response and Restoration, CC-BY-2.0.; 

Deepwater Horizon Oil Spill- Gulf of Mexico by Kris Krug; Controlled Burn of Oil 

on May 19th  by John Kepsimelis; Development-Driller-2 by Barry Bena; HDR of 

Offshore Jack Up Rig in the Middle of the Sea at Sunset Time, Oil Rig by Flickr user 

Solvay Group; Oil Rig in the Gulf of Mexico by Flickr user Office of Response and 

Restoration; Off Shore by Flickr user arbyreed; Oil Platform in the Santa Barbara 

Channel, California 2 by Flickr user Ken Lund, CC-BY-SA-2.0.)   

 

 

https://en.wikipedia.org/wiki/File:Deepwater_Horizon_oil_spill_-_May_24,_2010.jpg
https://en.wikipedia.org/wiki/File:Deepwater_Horizon_oil_spill_-_May_24,_2010.jpg
https://commons.wikimedia.org/wiki/File:Line5134_-_Flickr_-_NOAA_Photo_Library.jpg
https://commons.wikimedia.org/wiki/File:Louisiana_Oil_Spill.jpg
https://commons.wikimedia.org/wiki/File:IXTOC_I_oil_well_blowout.jpg
https://commons.wikimedia.org/wiki/File:IXTOC_I_oil_well_blowout.jpg
https://www.flickr.com/photos/noaa_response_restoration/12685861633
https://www.flickr.com/photos/noaa_response_restoration/12685861633
https://commons.wikimedia.org/wiki/File:Deepwater_Horizon_Oil_Spill_-_Gulf_of_Mexico.jpg
https://commons.wikimedia.org/wiki/File:Controlled_burn_of_oil_on_May_19th.JPG
https://commons.wikimedia.org/wiki/File:Controlled_burn_of_oil_on_May_19th.JPG
https://commons.wikimedia.org/wiki/File:Development-driller-2.jpg
https://www.flickr.com/photos/153164477@N08/42412887965
https://www.flickr.com/photos/153164477@N08/42412887965
https://www.flickr.com/photos/noaa_response_restoration/23923156722
https://www.flickr.com/photos/19779889@N00/153277616
https://www.flickr.com/photos/kenlund/4082488072
https://www.flickr.com/photos/kenlund/4082488072
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The area covered by oil spill in the training set ranges from 5% to 90%. Figure 

23 depicts examples of the training set with different levels of oil spill coverage. 

 

Figure 23 Examples of the Training Dataset Including Different Proportions of Oil 

Spill in the Image, Ranging from 5% to 90%.  

(Images modified and reprinted with permission from: Oil Leak from Damaged Well in 

Gulf of Mexico April 25th View by Flickr user NASA Goddard Space Flight Center, 

CC-BY-2.0; Striped Dolphins by NOAA’s National Ocean Service; Montara Oil Spill- 

August 25, 2009 by Flickr user SkyTruth, CC-BY-NC-SA-2.0.; Deepwater Horizon Oil 

Spill- Gulf of Mexico by Kris Krug;  Deepwater Horizon Oil Spill Skimming Operations 

2010-04-28 by PO2 Prentice Danner.)  

 

 

Image Recognition 

Image Classification  

For image classification, a well-established deep learning network, namely 

VGG16 (Krizhevsky et al., 2012), is adopted and fine-tuned (through transfer learning). 

This network takes an RGB image as input, generates intermediate features through a 

series of convolution and max-pooling operations, passes the features to the fully-

connected layer, and outputs the probabilities of the image belonging to any of the two 

classes of “spill” or “no spill”. As shown in Figure 24, the model is comprised of one input 

layer, 18 VGG16 layers, two FC layers, and one output layer. The VGG16 layers consist 

of a series of convolutional and max-pooling layers with 14,714,688 pre-trained weights. 

The output of the last VGG16 layer is connected to a flattened layer including 8,192 nodes, 

https://www.flickr.com/photos/gsfc/4557390211
https://www.flickr.com/photos/gsfc/4557390211
https://commons.wikimedia.org/wiki/File:Striped_Dolphins.jpg
https://www.flickr.com/photos/skytruth/3884430554
https://www.flickr.com/photos/skytruth/3884430554
https://commons.wikimedia.org/wiki/File:Deepwater_Horizon_Oil_Spill_-_Gulf_of_Mexico.jpg
https://commons.wikimedia.org/wiki/File:Deepwater_Horizon_Oil_Spill_-_Gulf_of_Mexico.jpg
https://commons.wikimedia.org/wiki/File:Deepwater_Horizon_oil_spill_skimming_operations_2010-04-28.jpg
https://commons.wikimedia.org/wiki/File:Deepwater_Horizon_oil_spill_skimming_operations_2010-04-28.jpg
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which is fully connected to the next layer of 256 nodes. In this layer, a dropout operation 

is performed with 50% probability, i.e., during each iteration of the training session, 50% 

of the nodes are randomly excluded from weight updating. Together, the two FC layers 

contain 2,097,408 (i.e., 8192*256) weights. Table 6 summarizes the properties of the 

model.    

 

Table 6 VGG16 Model Summary. 

Layer (Type) Output Shape Parameter # 

VGG16 (Pre-trained Model) (None, 4, 4, 512) 14714688 

Flatten_1 (Flatten) (None, 8192) 0 

Dense_1 (Dense) (None, 256) 2097408 

Dense_2 (Dense) (None, 1) 257 

 

 

Training, Validation, and Testing  

The training process consists of two steps. In the first step, which is referred to as 

“training”, the DNN model learns how to classify new images using the filters from the 

Figure 24 The Architecture of VGG16. 

(Image reprinted with permission from: Skimming Oil in the Gulf of Mexico during 

the Deepwater Horizon Oil Spill by Flickr user Office of Response and Restoration, 

CC-BY-2.0.)   

 

https://www.flickr.com/photos/noaa_response_restoration/12685861633
https://www.flickr.com/photos/noaa_response_restoration/12685861633
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pre-trained dataset. In this step, only the weights of the FC layers are updated, and the 

weights of the VGG-16 layers are frozen (i.e., not updated). The next step of training is 

referred to as “fine-tuning” during which all the previously frozen layers adapt to the new 

dataset with no significant change in their weights (Simonyan and Zisserman, 2014). In 

this step, the model is fed with the training dataset, and weight values of the last three 

convolutional layers and two FC layers are updated again. The hyperparameters listed in 

Table 7 are selected empirically. Finally, for model validation, the validation dataset was 

tested on the trained model.  

 

 

Table 7 Selected Hyperparameters for the Classification Model. 

Hyperparameter Value 

Epoch 30 

Batch size 20 

Learning rate 10-4 

 

 

Image Classification Performance  

In order to evaluate model performance in correctly classified images based on the 

presence of oil spill, precision, accuracy, and recall metrics are used. As shown in Figures 

25 and 26, in both training and fine-tuning steps, the training loss decreases with each 

epoch, while the training accuracy increases with every epoch (Chollet, 2018). 
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The model achieves an overall accuracy of %92.77 and a test loss of %23.71. 

Classification results in form of a confusion matrix are shown in Figure 27, which 

indicates that in 83 test images, oil spill is classified correctly, while in only one of the test 

images it is classified incorrectly (i.e., the model predicts an oil spill while there is no oil 

spill in the image). Similarly, in 90 test images, no spill is classified correctly, while in 10 

Figure 25 Training and Validation Accuracy per Epoch (Left)Training and 

Validation Loss (Right) (Training Step). 

Figure 26 Training and Validation Accuracy per Epoch (Left)Training and 

Validation Loss (Right) (Fine-Tuning Step). 
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test images it is classified incorrectly (i.e. the model predicts that the image does not 

contain an oil spill while there is an oil spill in the image). 

 

 

 

 

 

 

 

 

 

Object Detection  

Object detection aims at localizing (i.e., marking the location of) three types of 

objects in an input image. In this research, these object types include “oil spill”, “vessel”, 

and “oil rig”. For this purpose, a state-of-the-art deep learning model is used, namely 

YOLO (You-Only-Look-Once) (Redmon et al., 2016). YOLO can predict bounding boxes 

and confidence scores for multiple categories by using the uppermost feature map. Figure 

28 presents key steps of YOLO implementation. The process involves dividing the input 

Figure 27 Confusion Matrix for Oil Spill Classification. 

(Images reprinted with permission from: Skimming Oil in the Gulf of Mexico during 

the Deepwater Horizon Oil Spill by Flickr user Office of Response and Restoration, 

Platform Hillhouse, Dos Cuadras (10) by Doc Searls; CC-BY-2.0; Deepwater Horizon 

Oil Spill-May 24,2010 by NASA/GSFC, MODIS Rapid Response; HDR of Offshore 

Jack Up Rig in the Middle of the Sea at Sunset Time, Oil Rig by Flickr user Solvay 

Group.)   

 

https://www.flickr.com/photos/noaa_response_restoration/12685861633
https://www.flickr.com/photos/noaa_response_restoration/12685861633
https://commons.wikimedia.org/wiki/File:Platform_Hillhouse,_Dos_Cuadras_(10).jpg
https://en.wikipedia.org/wiki/File:Deepwater_Horizon_oil_spill_-_May_24,_2010.jpg
https://en.wikipedia.org/wiki/File:Deepwater_Horizon_oil_spill_-_May_24,_2010.jpg
https://www.flickr.com/photos/153164477@N08/42412887965
https://www.flickr.com/photos/153164477@N08/42412887965
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image into an S×S grid, and predicting bounding boxes and their corresponding confidence 

scores inside each grid cell.  

 

 

 

 

 

 

 

 

 

 

The YOLO architecture, established in 2017, includes two FC layers and 24 

convolutional layers, some of which create ensembles of inception modules with 1×1 

reduction layers, followed by 3×3 convolutional layers. This architecture can do real-time 

image processing at 45 frames per second (FPS) (Redmon et al., 17). Later, an enhanced 

version of YOLO, YOLOv2, was introduced, that implemented various outstanding 

strategies, including anchor boxes, and multi-scale training (Redmon and Farhadi, 2016). 

Afterwards, YOLOv3 was presented in 2018, with some updates to YOLOv2. YOLOv3 

is capable of processing images at 30 FPS on a Pascal Titan X, and it has a mAP of 57.9% 

Figure 28 Key Steps in YOLO Implementation. 

(Images reprinted with permission from: Development-Driller-2 by Barry Bena.)   

 

https://commons.wikimedia.org/wiki/File:Development-driller-2.jpg


 

51 

 

on COCO test set. It can detect small objects significantly better than the previous models 

and is also faster when the speed of the detection is of high importance. Figure 29 presents 

a sample ground truth image from the test dataset, and its corresponding detections marked 

with bounding boxes.  

 

 

 

 

 

 

The mean average precision (mAP) for all three classes (oil spill, vessel, and rig) 

is 37.9%. Precision-recall curves and the average precision for each class are plotted in 

Figure 30. 

 

Figure 29 Sample Image from the Test Dataset (Left) and Corresponding 

Detected Image by YOLOv3 (Right). 

(Image reprinted with permission from: Ixtoc I Oil Well Blowout by NOAA.)   

 

https://commons.wikimedia.org/wiki/File:IXTOC_I_oil_well_blowout.jpg
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Object Detection Performance  

The YOLOv3 model is initially used in this research for detecting all three object 

classes (i.e., oil spill, vessel, and rig). However, as shown in Figure 30, the average 

precision for the oil spill class is very low (8%) in comparison to other classes (vessel: 

59% and rig: 47%). This could be potentially attributed to fuzzy and unclear borders of 

oil spills and their concave and arbitrary shapes (Chang et al., 2009). Therefore, the YOLO 

model is subsequently trained only on the other two classes (i.e., vessel and rig) and for 

the oil spill class, another DL model, mask R-CNN, is used for object detection and 

instance segmentation. As shown in Figure 31 (Left), the dataset used for retraining the 

YOLO model on vessel and rig classes is not balanced. To balance the dataset, data 

Figure 30 Precision-Recall Curve for the Trained YOLOv3 Model. 
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augmentation is conducted on the rig class as the number of instances belonging to this 

class are significantly lower than the number of instances belonging to the vessel class.  

Data augmentation is done as a preprocessing step by performing one or a 

combination of multiple operations on the initial image. Examples include flipping (both 

horizontally and vertically), rotating in different angles, and changing the blurriness, 

brightness, contrast, and hue and saturation (Chollet, 2018). In this research, changes in 

the blurriness of the images, hue and saturation, brightness, and rotation are used to 

increase the number of images that contain the minority class (i.e., rig).  Figure 32(Left) 

presents an example image from the training set, and Figure 32(Right) presents resulting 

images after augmentation. As shown in Figure 31(Right), data augmentation results in a 

fairly balanced dataset by adding 564 new images that contain instances of class rig. 

 

 

 

 

Figure 31 Distribution of the Number of Instances per Class Label, Before Data 

Augmentation (Left) and After Data Augmentation (Right). 
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Model Retraining after Data Augmentation 

Following data augmentation, a new YOLO model is trained on vessel and rig 

classes only. Figure 33 presents sample ground truth images from the test dataset, and 

their corresponding detections marked with bounding boxes. The mAP for the two classes 

(vessel and rig) is 61.5%. Precision-recall curves and the average precision for each class 

are plotted in Figure 34.  

 

 

 

 

 

 

 

 

Figure 32 Example Image from the Training Set (Left) and Corresponding 

Augmented Images (Right).  

(Images modified and reprinted with permission from: HDR of Offshore Jack Up Rig 

in the Middle of the Sea at Sunset Time, Oil Rig by Flickr user Solvay Group.)   

 

 

https://www.flickr.com/photos/153164477@N08/42412887965
https://www.flickr.com/photos/153164477@N08/42412887965
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Figure 33 Sample Images from the Test Dataset (Left) and Corresponding 

Detected Images by YOLOv3 (Right). 

(Images reprinted with permission from: Ixtoc I Oil Spill by Flickr user NOAA Photo 

Library;  Controlled Burn of Oil on May 19th  by John Kepsimelis.)  

 

Figure 34 Precision-Recall Curve for the Retrained YOLOv3 Model. 

https://commons.wikimedia.org/wiki/File:Line5134_-_Flickr_-_NOAA_Photo_Library.jpg
https://commons.wikimedia.org/wiki/File:Controlled_burn_of_oil_on_May_19th.JPG
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Object Segmentation  

The mask R-CNN model is used in this research to detect and segment instances 

belonging to the oil spill class. This model uses the mask R-CNN algorithm (Gkioxari et 

al., 2018), presented in Figure 35, for instance segmentation. 

 

 

 

 

 

 

Figure 36 illustrates the algorithms that are based on region-based convolutional 

neural networks, namely, R-CNN, fast R-CNN, faster R-CNN, and mask R-CNN. In this 

Thesis, mask R-CNN algorithm is used for instance segmentation. Instance segmentation 

comprises of detecting objects in an image and segmenting each object (i.e., semantic 

segmentation) (Arnab and Torr, 2017). These two tasks (i.e., object detection and semantic 

segmentation) are considered independent from one another, and prior to the introduction 

of mask R-CNN it was not possible to do both simultaneously. To remedy this issue, mask 

R-CNN uses the faster R-CNN algorithm (which does the classification and bounding box 

prediction) while also adding a branch to do pixel-level segmentation (He et al., 2017). 

 

Figure 35 Mask R-CNN Algorithm. 

(Image reprinted with permission from: Gulf of Mexico Oil Spill by Rob Gutro.)   

 

 

https://commons.wikimedia.org/wiki/File:Gulf_of_Mexico_oil_spill_May_17_cropped.jpg
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Figure 36 R-CNN Algorithms. 

(Images reprinted with permission from: Skimming Oil in the Gulf of Mexico 

during the Deepwater Horizon Oil Spill by Flickr user Office of Response and 

Restoration, CC-BY-2.0.)   

 

https://www.flickr.com/photos/noaa_response_restoration/12685861633
https://www.flickr.com/photos/noaa_response_restoration/12685861633
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 Mask R-CNN uses a layer, called region of interest (RoI) align, that 

implements bilinear interpolation (Jaderberg et al., 2015) to compute the precise values of 

the input features at four sampling locations in each RoI bin. This layer preserves the pixel-

level spatial correspondence thus enhancing the mask accuracy (Zhao et al., 2019).  Using 

this layer, an RoI can be mapped from the input image into the feature map accurately. 

Figure 37 illustrates example of the RoI align. 

 

 

 

 

 

 

As formulated in Equation 13, the total loss of a mask R-CNN model is defined as 

the sum of three individual losses, namely, the classification loss, the bounding box 

regression loss, and the mask loss (Zhao et al., 2019).   

𝐿 =  𝐿(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛) +  𝐿(𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) +  𝐿(𝑚𝑎𝑠𝑘)  (13) 

Equation 14 denotes the classification loss. In this Equation, 𝑝𝑖 is the predicted 

probability of anchor i being an object, and 𝑝𝑖
∗ is the ground truth anchor label of an object. 

Figure 37 Example of RoI Align. 
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The regressor is configured to learn scale-invariant transformation between two centers 

and log-scale transformation between widths and heights of the ground truth bounding 

boxes and predicted bounding boxes. This transformation is illustrated in Figure 38. The 

ground truth box coordinates are 𝑔 =  (𝑔𝑥, 𝑔𝑦 , 𝑔𝑤 , 𝑔ℎ) where x and y are the coordinates 

of the center, w is width, and h is height of the box, and predicted bounding box 

coordinates are 𝑝 =  (𝑝𝑥, 𝑝𝑦 , 𝑝𝑤 , 𝑝ℎ). Equations 15 to 18 denote the transformations, all 

of which taking p as the input. Finally, the bounding box regression loss function can be 

written as Equation 19.  

𝐿𝑐𝑙𝑠 (𝑃𝑖 , 𝑃𝑙
∗) =  −𝑃𝑙

∗ log 𝑃𝑖   - (1- 𝑃𝑖
∗) log (1- 𝑃i)       (14) 

�̂�𝑥 =   𝑝ℎ𝑑𝑥 (𝑝) +    𝑝𝑥        (15) 

�̂�𝑦 =   𝑝ℎ𝑑𝑦 (𝑝) +    𝑝𝑦        (16) 

�̂�𝑤 =   𝑝𝑤  exp (dw (𝑝))         (17) 

�̂�ℎ =   𝑝ℎ exp (dh (𝑝))        (18) 

𝐿(𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) =  ∑ (𝑖∈{𝑥,𝑦,𝜔,ℎ} ti −  di (𝑝))2 +  𝜆‖𝑤‖2  (19) 

 

 

 

 

 

 

 

Figure 38 Transformation between Ground Truth and Prediction Bounding 

Boxes. 
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The mask loss is defined as the average binary cross-entropy loss, as expressed by 

Equation 20. In this Equation, 𝑦𝑖𝑗  represents a cell (i, j) that belongs to the ground truth 

mask for the region of size m*m. It uses the classification branch for category prediction 

and only relies on the ground truth class. �̂�𝑖𝑗
𝑘  is the predicted value of the same cell in the 

mask learned for the ground truth class k.   

𝐿(𝑚𝑎𝑠𝑘) =  −
1

𝑚2
∑ [1≤𝑖,𝑗≤𝑚 yij log �̂�𝑖𝑗

𝑘 + (1 − yij)log (1 −  �̂�𝑖𝑗
𝑘 )]   (20) 

Figures 39 illustrates the total loss, classification loss, bounding box regression 

loss, and mask loss per epoch for the trained Mask R-CNN model. 

 

 

 

 

 

(a)                                                             (b)                                        

 

 

 

 

                              (c)                                    (d) 

 

Figure 39 Loss Function per Epoch (a) Total (b) Classification (c) Bounding 

Box Regression (d) Mask. 
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The testing set contains 95 images of oil spill, taken from three different altitudes, 

namely high altitude (i.e., satellite imagery), low altitude (i.e., drone imagery), and first 

person. Figure 40 presents the distribution of the number of images based on the altitude. 

 

 

 

 

 

 

 

As before, hyperparameters used for both training and testing are chosen 

empirically, and listed in Table 8. Figure 41 presents sample ground truth images from the 

test dataset, and their corresponding detections marked with bounding boxes and masks. 

The mean average precision is 15.64% using transfer learning, and 12.56% when training 

from scratch.  

 

Table 8 Hyperparameters Used for the Mask R-CNN Model. 

Hyperparameter Value 

Batch size 1 

Epochs 50 

Steps 300 

Score threshold 0.05 

Binarize Threshold 0.5 

IoU threshold 0.5 

14%

70%

16%

First Person

Low Altitude

High Altitude

Figure 40 Distribution of the Number of Oil Spill Images Based on Altitude. 
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Object Segmentation Performance  

            To evaluate the performance of this model, each image from the testing set is 

assessed using pixel-level evaluation metrics, including precision, recall, IoU, F1, and 

Dice coefficient.  Most of these metrics were defined in the previous Chapter. The 

definition of IoU for the pixel-level evaluation is given below:  

Intersection over union (IoU), a widely used metric for instance segmentation problems, 

is defined as the ground truth and prediction intersection divided by their union and is 

Figure 41 Sample Images from the Test Dataset (Left) and Corresponding 

Detected Images by Mask R-CNN (Right). 

(Images reprinted with permission from: Montara Oil Spill- August 25, 2009 by 

Flickr user SkyTruth, CC-BY-NC-SA-2.0.; Gulf of Mexico Oil Spill by Rob Gutro.)   

 

https://www.flickr.com/photos/skytruth/3884430554
https://commons.wikimedia.org/wiki/File:Gulf_of_Mexico_oil_spill_May_17_cropped.jpg
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calculated using Equation 21 (Alipour et al., 2019). Figure 42 illustrates the positive and 

negative classes for pixel-level evaluation.  

𝐼𝑜𝑈  =  
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
         (21) 

 

 

 

 

 

 

 

 

Table 9  presents the pixel-level evaluation results based on different performance 

metrics, such as precision, recall, and IoU. According to this Table,  the average precision 

for all the images is 62%. In other words, on average, for an image belonging to the testing 

set, the ratio of the pixels that are detected correctly (i.e., pixels that contained oil spill and 

are detected as oil spill) to the total positive classes (i.e., the sum of pixels that contained 

an oil spill and are detected as an oil spill and the pixels that do not contain any oil spill 

but are detected as an oil spill) is 62%.  

Figure 42 Positive and Negative Classes Based on the Detection and the Ground 

Truth. 
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Table 9 Performance Metrics Used for the Pixel-Level Evaluation on the Mask R-

CNN Model. 

 Precision Recall IoU F1 Dice Coeff. 

      

1 0.803 0.877 0.722 0.838 0.838 

2 0.803 0.596 0.589 0.684 0.742 

3 0.339 0.416 0.230 0.373 0.373 

4 0.799 0.335 0.309 0.472 0.472 

5 0.848 0.765 0.673 0.805 0.805 

6 0.742 0.796 0.624 0.768 0.768 

7 0.540 0.765 0.463 0.633 0.633 

8   0.914 0.889 0.820 0.901 0.901 

9 0.987 0.936 0.925 0.961 0.961 

10 0.616 0.970 0.605 0.754 0.754 

. . . . . . 

. . . . . . 

. . . . . . 

85 0.847 0.754 0.664 0.798 0.798 

86 0.379 0.921 0.367 0.537 0.537 

87 0.254 0.872 0.244 0.393 0.393 

88 0.002 0.103 0.002 0.005 0.005 

89 0.493 0.184 0.154 0.268 0.268 

90 0.498 0.520 0.341 0.509 0.509 

91 0.205 0.728 0.190 0.320 0.320 

92 0.901 0.907 0.826 0.904 0.904 

93 0.921 0.882 0.821 0.901 0.901 

94 0.170 0.446 0.140 0.246 0.246 

95 0.945 0.893 0.849 0.918 0.918 

Average 62% 71% 49% 60% 60% 

 

Similarly, the average recall for all the images is 71%. In other words, on average, 

for an image belonging to the testing set, the ratio of the pixels that are detected correctly 

(i.e., pixels that contain oil spill and are detected as oil spill) to the total number of TPs 

and FNs (i.e., the sum of pixels that contain an oil spill and are detected as an oil spill and 
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the pixels that contain an oil spill but are detected as no spill) is 71%. In addition, the 

average IoU is 49%, which indicates that on average, the ratio of TPs to the sum of TPs, 

FPs, and FNs in an image is 49%. Lastly, the average F1 score and Dice coefficient is 

60%. 

Figure 43 summarizes the distribution of the precision, recall, IoU, F1 Score, and 

Dice coefficient for the testing set images in pixel level. These metrics are used to evaluate 

the pixel-level performance of the Mask R-CNN model for each image belonging to the 

testing set. Evaluation results for each image using these metrics were previosuly 

presented in Table 9. 

 

 

 

 

 

 

 

According to this Figure, the maximum precision among all the testing set images 

is 0.99, and the minimum precision is 0. Also, one-forth of the images have a precision 

Figure 43 Box Plots Summarizing Performance Metrics of Pixel-Level 

Segmentation of Test Images. 
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lower than 0.35, and half of the images have a precision lower than 0.68. The precision of 

three-forth of the images is less than 0.86, and the mean precision is 0.61. The standard 

deviation (SD) of the precision values is 0.30.  Similarly, the maximum recall among all 

the testing set images is 0.97, and the minimum recall is 0. Also, one-forth of the images 

have a recall lower than 0.54, and half of the images have a recall lower than 0.79. The 

recall of three-forth of the images is less than 0.89, and the mean recall is 0.70. The SD of 

the recall values is 0.26. 

It can also be observed that the maximum IoU among all the testing set images is 

0.92, and the minimum IoU is 0. Also, one-forth of the images have an IoU lower than 

0.22, and half of the images have an IoU lower than 0.48. The IoU of three-forth of the 

images is less than 0.73, and the mean IoU is 0.48. The SD of the IoU values is 0.28. 

Moreover, the maximum F1 score among all the testing set images is 0.96, and the 

minimum F1 score is 0. Also, one-forth of the images have a F1 score lower than 0.37, 

and half of the images have a F1 score lower than 0.65. The F1 score of three-forth of the 

images is less than 0.84, and the mean F1 score is 0.60. The SD of the F1 scores is 0.27. 

Finally, the maximum Dice coefficient among all testing set images is 0.96, and the 

minimum Dice coefficient is 0. Also, one-forth of the images have a Dice coefficient lower 

than 0.37, and half of the images have a Dice coefficient lower than 0.65. The Dice 

coefficient of three-forth of the images is less than 0.84, and the mean Dice coefficient is 

0.60. The SD of the Dice coefficient values is 0.30.  Table 10 summarizes these results. 
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Table 10 Measures of Central Tendency and Variability for Precision and Recall of 

Testing Set Images in Pixel Level. 

 Max Min 1st Quartile Median 3rd Quartile Mean SD 

Precision 0.99 0.00 0.35 0.68 0.86 0.61 0.30 

Recall 0.97 0.00 0.54 0.79 0.89 0.70 0.26 

IoU 0.92 0.00 0.22 0.48 0.73 0.48 0.28 

F1 0.96 0.00 0.37 0.65 0.84 0.60 0.27 

Dice Coeff. 0.96 0.00 0.37 0.65 0.84 0.60 0.27 

 

To take a closer look at the evaluated images, three examples are presented in 

Figure 44. Figure 44(a) corresponds to the ground truth image number 48 in the testing 

set, and Figure 44(b) presents the corresponding detection by the mask R-CNN model. 

According to the findings, precision, recall, IoU, F1 score, and Dice coefficient for this 

image are 0.503, 0.911, 0.479, 0.648, and 0.648, respectively. Figure 44(c) corresponds to 

the ground truth image number 38 in the testing set, and Figure 44(d) presents the 

corresponding detection by the mask R-CNN model. According to the findings, precision, 

recall, IoU, F1 score, and Dice coefficient for this image are 0.795, 0.808, 0.669, 0.801, 

and 0.801, respectively. Lastly, Figure 44(e) corresponds to the ground truth image 

number 94 in the testing set, and Figure 44(f) presents the corresponding detection by the 

mask R-CNN model. According to Table 9, precision, recall, IoU, F1 score, and Dice 

coefficient for this image are 0.170, 0.446, 0.140, 0.246, and 0.246, respectively.  
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                                     (c)                                                              (d) 

 

 

 

 

 

 

 

 

 

                                  (e)                                                             (f)  

 

 

 

 

Figure 44 Sample Images from the Testing Set (Left) and Their Corresponding 

Detection Images by Mask R-CNN (Right). 

(Images reprinted with permission from: Fighting the Oil Slick  by Adrian Cadiz; Gulf Oil 

Spill Creeps Towards Mississippi Delta Detail_2010-04-29 by Jesse Allen; Montara Oil 

Spill- August 25, 2009 by Flickr user SkyTruth, CC-BY-NC-SA-2.0.)   

  

 

https://www.af.mil/News/Photos/igphoto/2000365662/
https://upload.wikimedia.org/wikipedia/commons/2/29/Gulf_Oil_Spill_Creeps_Towards_Mississippi_Delta_detail_2010-04-29.jpg
https://upload.wikimedia.org/wikipedia/commons/2/29/Gulf_Oil_Spill_Creeps_Towards_Mississippi_Delta_detail_2010-04-29.jpg
https://www.flickr.com/photos/skytruth/3884430554
https://www.flickr.com/photos/skytruth/3884430554
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As mentioned earlier, the dataset consists of images from three different altitudes, 

including high altitude (i.e., satellite imagery), low altitude (i.e., drone imagery), and first-

person images (i.e., images that are taken from the perspective of a person). To further 

evaluate the performance of the mask R-CNN model, the trained model (which is trained 

on images from all these altitudes) is tested separately on images from each group (satellite 

imagery, drone imagery, and first person). The model is then evaluated, using the 

evaluation metrics that were previously explained, such as precision, recall, and IoU. 

Table 11 summarizes the evaluation results. The first row presents the model performance 

in image level, using mean average precision. The following rows present the model 

performance based on pixel-level evaluation. Figure 45 draws a comparison between 

pixel-level model evaluation results (based on various metrics), based on the altitude of 

the testing set images.   

 

Table 11 Performance Metrics of the Mask R-CNN Model Tested on Images from 

Different Altitudes. 

 Satellite Drone First Person 

mAP (Image level) %9.97 %30.72 %47.50 

Precision 0.506 0.573 0.545 

Recall 0.546 0.686 0.689 
Intersection over Union (IoU) 0.335 0.457 0.466 

F1 0.525 0.592 0.582 

Dice Coefficient 0.589 0.577 0.582 
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It must be noted that for any given test image, the generated masks marking the 

boundaries of adjacent oil spills may be separated from each other, as the model predicts 

each mask independent from other predictions in the neighboring areas. A pre-processing 

step is thus created to combine these fragmented masks prior to measuring the 

performance of the model in oil spill segmentation. Figure 46 shows three examples where 

separate detected masks, i.e., Figure 46(a) and (c) are merged to create a single mask, 

illustrated in Figures 46(b) and (d). 

 

 

 

 

 

 

 

 

Precision Recall IoU F1
Dice

Coeff.

First Person 0.54 0.68 0.46 0.58 0.58

Drone 0.57 0.68 0.45 0.59 0.57

Satellite 0.5 0.54 0.33 0.52 0.58

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Figure 45 Pixel-Level Performance Metrics of the Mask R-CNN Model Tested on 

Images from Different Altitudes. 
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(a)                                                                                    (b) 

 

 

 

 

 

 

 

 

 

 

                   (c)                                                                                     (d)  

 

 

Figure 46 Preprocessing of Images from the Testing Set to Marge Separate Masks 

into One Single Mask. 

(Images reprinted with permission from: Gulf Oil Spill Creeps Towards Mississippi 

Delta Detail_2010-04-29 by Jesse Allen; Controlled Burn of Oil on May 19th  by John 

Kepsimelis.)  

 

 

 

https://upload.wikimedia.org/wikipedia/commons/2/29/Gulf_Oil_Spill_Creeps_Towards_Mississippi_Delta_detail_2010-04-29.jpg
https://upload.wikimedia.org/wikipedia/commons/2/29/Gulf_Oil_Spill_Creeps_Towards_Mississippi_Delta_detail_2010-04-29.jpg
https://commons.wikimedia.org/wiki/File:Controlled_burn_of_oil_on_May_19th.JPG


 

 

CHAPTER V  

CONCLUSIONS 

 

Limitations  

Although the mask R-CNN (Gkioxari et al., 2018) model deployed in this study is 

the most recent DL model (introduced in 2017) used for instance segmentation, and one 

of the best models for instance segmentation for complex objects (in this case, oil spills), 

it still cannot predict oil spills with high accuracy in certain cases. To start with, one of 

the issues that confuses the model and results in false positives is the presence of low RGB 

contrast between some oil spills and the background (i.e., water). Figure 47 shows an 

example of this issue where part of the background (i.e., water) is mistakenly detected as 

oil spill.  

 

 

 

 

 

The other limitation of this study is the scarcity of the data obtained through web 

mining, since not all oil spill incidents receive wide news or social media coverage. 

Existing images on the public domain represent mostly some of the major oil spills (e.g., 

Figure 47 Example of False Positive Due to Low Contrast between Oil Spill and 

Background. 

(Images reprinted with permission from: Fighting the Oil Slick  by Adrian Cadiz.)   

 

https://www.af.mil/News/Photos/igphoto/2000365662/
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BP and Exxon Valdez) and those belong only to specific geographic locations. While some 

existing datasets from National Aeronautics and Space Administration (NASA) include 

larger numbers of oil spill images, they mostly contain satellite imagery. However, as 

previously explained, the key motivation behind this research is to use RGB drone imagery 

for model training and testing, since satellite imagery is expensive to attain and the 

frequency in which the data can be obtained is not enough.  

More importantly, the concave and arbitrary shapes of oil spills make the instance 

segmentation more complicated for the model. Similar problems can be found in other 

domains where objects of interest have arbitrary shapes, such as medicine (to detect the 

boundaries of tumors) (Moeskops et al., 2016; Milletari et al., 2017; Roa et al., 2017; Farag 

et al., 2017; Brebisson and Montana, 2015) and morphology (Mancha et al., 2010). In 

particular, to this research, in certain cases, the reflection of objects on the water is 

mistaken for oil spills due to the darkness of the shades.  

In addition, in some images, depending on the view angle and brightness, different 

shades of blue in the water can be mistaken for oil spills. As seen in Figure 48, some 

portions of the water are marked as oil spill by the model despite the fact that they do not 

contain any oil.  
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Future Work  

Potential directions of future work in this research include adding mapping 

functionalities and benchmarking results against common industry practices. To this end, 

geographic information system (GIS) can be used to correspond detected oil spills and 

other objects of interest (e.g., vessels, cleaning crew) to geocoded locations on the map. 

Decision support system (DSS) can be also utilized to send this information to different 

stakeholders and authorities to take proper actions. As illustrated in Figure 49, following 

oil spill detection, the location of the oil spill will be mapped and the information will be 

communicated. Consequently, drones can be deployed to the oil spill location to retrieve 

more information and facilitate timely response to the accident.  

 

Figure 48 Example of False Positive Due to the Color of the Background. 

(Images reprinted with permission from: Montara Oil Spill- August 25, 2009 by Flickr 

user SkyTruth, CC-BY-NC-SA-2.0.)   

 

 

https://www.flickr.com/photos/skytruth/3884430554
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Mapping can be done using different methods. For example, text mining can be 

used to extract location information from the metadata associated with a given image. Text 

mining is an area of research that tries to derive information such as patterns, trends, and 

semantic relationships embedded in textual data (Feldman and Sanger, 2007). Text mining 

has been implemented in different areas, including natural language processing (Gupta 

and Lehal, 2009), knowledge discovery (Mack and Henenberger, 2002), records 

management (Lee et al., 2007), patent mapping (Fattori et al., 2003), and social 

networking (Aggarwal, C. C. and Zhai, C., 2012). In this research, if the image includes 

metadata containing among others, coordinates information, that information can be 

retrieved through text mining and it can be pinned to the map.  

In addition, triangulation can be used to map the location of an oil spill. 

Triangulation is the process of determining the location of an unknown point by forming 

triangles to it from known points (Hartley and Sturm, 1997). Figure 50 presents the 

schematic diagram of triangulation. In this method, the location of an oil spill can be 

Figure 49 Schematic Diagram of the Future Direction of this Research. 
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determined, using the coordinates of a known fixed object, such as an oil rig. However, 

the applicability of this method may be limited to cases where there are visible landmarks 

in the image. Figure 51 presents an example of a practical scenario (from the dataset 

developed in this Thesis) that is suitable for triangulation and mapping purposes. In this 

Figure, the location of oil spills could be calculated using the known location of the oil 

rig.  

 

 

 

 

 

 

 

 

 Figure 49 Schematic Diagram of Triangulation. 
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Figure 50 Example of a Practical Scenario (From the Dataset Developed 

in this Thesis) Suitable for Triangulation and Mapping Purposes. 

(Images reprinted with permission from: View of Deepwater Horizon Oil 

Spill in May 2020 by Flickr user Office of Response and Restoration, CC-

BY-2.0.)   

 

https://www.flickr.com/photos/noaa_response_restoration/16437275362
https://www.flickr.com/photos/noaa_response_restoration/16437275362
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