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ABSTRACT

This thesis proposes conjugate stress/strain pairs, enables to derive constitutive

equations without utilizing the invariant theory by using advantages of upper tri-

angular decomposition, improvement for anisotropic materials. Linear small strain

and large strain, nonlinear large strain uniaxial composite experimental results have

been used to validate transversely isotropic conjugate pair models.

Advantages of anisotropic improvement can be justified as isotropic, and anisotro-

pic models can be obtained from the same strain energy density function. Parameters

for a conjugate stress/strain model can be more general than those for a Spencer

model, for example, they can be unique for a given data set. The conjugate pair model

provides a parameter denoted by n (anisotropic parameter) which has a physical

meaning. Conjugate pair models provide linear stress/strain relations for classical

rubber like behavior.
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1. INTRODUCTION

The conjugate pair approach proposes an easy way to derive constitutive equa-

tions for different types of boundary value problems. The rate of mechanical work

can be divided into three parts with physical meanings form which constitutive rela-

tions can be derived. Researchers do not need to take derivatives of a strain energy

density function with respect to their invariants or make complicated calculations.

This proposal begins with a literature review. Continuum mechanics basics, Bal-

ance Laws, and differences between simple shear and pure shear experiments is ex-

plained. Then, Spencer’s fiber model is described via isotropic functions, using the

Cayley Hamilton theorem. A uniform extension boundary value problem was solved

for one preferred fiber direction. A 2D stiffness matrix was derived for a single,

fiber-family material.

In Chapter 2, the conjugate pair model, Srinivasa’s upper triangular decomposi-

tion, and isotropic and anisotropic conjugate stress/strain pairs are explained. Uni-

axial and Biaxial 2D constitutive equations are derived. Experimental procedures,

testing protocols, and tools for data analysis are explained explicitly in Chapter 3.

In Chapter 4, small strain experimental data is analyzed and sets of experimen-

tal results are compared with Spencer’s fiber approach (classical model) and with

the conjugate stress/strain model (new model). Material parameter variations have

been investigated by statistical analysis. The physical meaning of the strength of

anisotropy parameter n is found in Chapter 5. Large strain linear and nonlinear

conjugate pair models is discussed in the same chapter. Finite element implementa-

tion of the conjugate pair approach is described in Chapter 6. In Chapter 7, main

findings and conclusion are addressed.

1
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dx̄ =dsē

Figure 1.1: Deformation from reference configuration to current configuration

1.1 Continuum Basis

Under the continuum mechanics approach, a body B = {Pk} is designated as a

set of material points (Pk) in a three-dimensional Euclidean space (R3) in which

any element of B has a unique representation. The region in R3, maintained by the

images of the particles, is called a configuration of B. A reference frame associates

with an undeformed shape and has an origin located at point O associated with an

orthogonal vector basis ei, i=1,2,3 (coordinate frame). Let a typical particle P be

described by its position vector X(P ) in reference frame at reference time (to). The

domain (Ω0) of X that is the region in Euclidean space occupied by B at time to

is called reference configuration of B. The motion of a particle relative to reference

frame obeys a pair of invertible maps described by the vector function

2



x = χ(X, t). (1.1)

As the body moves with time the configuration and position vectors change; thus,

the new configuration at time t is called the current configuration of B.

Motion χ is considered to be smooth, which means it is a continuous and differ-

entiable function of position

F = ∂x/∂X = Grad x (1.2)

where F is the gradient of motion called the deformation gradient. This tensor

transforms a tangent element dX from the reference configuration into a tangent

element dx in the current configuration, as shown in Fig. 1.1, thus

dx = FdX. (1.3)

Let’s assume |dx| = ds and |dX| = dS, where s and S are the arc lengths for the

deformed and initial states, respectively. So, Eq. 1.3 can be written as

λe = FE (1.4)

which e = dx/ds and E=dX/dS are unit vectors that are tangent to a line. Thus,

stretch can be described as

λ= ds/dS (1.5)

which is ratio of a current length ds to its reference length dS of a material element.

In continuum mechanics, the deformation gradient tensor F plays an important

role in describing how small line segments, infinitesimal surface areas, and infinites-

3



imal volumes transform from the reference configuration to a current configuration.

For small line segments, the relationship between these two configuration has been

shown at Eq. 1.3. Similarly, assuming a reference, infinitesimal, surface area dA

and its associated current, infinitesimal, surface area da, their relationship between

configurations is described as

nda= det(F)F−TNdA (1.6)

where N and n are unit normal vectors to surfaces dA and da, respectively. This

relation is known as Nanson’s formula. Further, the volume relation

dv = det(F)dV (1.7)

describes how infinitesimal volumes transformation between the initial and current

configurations. This relationship shows that the determinant of the deformation

gradient is the ratio of the current volume to a reference volume. The conservation

of mass requires that det(F) 6= 0; otherwise, line elements of non-zero length in

some reference configuration could be mapped into line elements of zero length in

the current configuration∗. A different way of saying that a volume change cannot

become negative at any stage of deformation is that

J = det(F)> 0. (1.8)

A deformation is said to be isochoric (incompressible) if there is no volume change,

i.e., if det(F) = 1.
∗Dr. K.R. Rajagopal explained this during one of his lectures, we cannot take a cube and

transform it to a plane.
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1.1.1 Stress Principles, Balance Laws and Equilibrium

A deformation of a material body B is caused by a system of applied forces

that are comprised of resultant body forces and contact forces. Applied forces are

measured in the current configuration. These forces act on any part P ⊂ B of body

B. The body forces are dispersed all around the continuum and act on each particle

of the body in its current configuration, and are described by a vector field b. Body

forces may be related to gravitational or magnetic forces. On the other hand, tn

is defined as a distribution of contact forces per unit surface area. It is local and

applies on an infinitesimal surface element of area dS.

The total force F(P , t) and the total torque T (P , t) acting on a part of the body

P are associated with the momentum and the moment of momentum of a body (B)

at its material points. Thus, Euler’s law of motion can be shown as [3],

F(P , t) =
∫
∂P

tnda+
∫
P

bdv = d
dt

∫
P

vdm (1.9)

T (P , t) =
∫
∂P

x× tnda+
∫
P

x×bdv = d
dt

∫
P

x×vdm (1.10)

where dm = ρdv is the material element of mass with density ρ per unit volume in

B @ t. The principle of balance of mass also equates dm= ρrdV where ρr is the mass

density per unit volume V in a reference configuration. Due to the conservation of

mass principle, a density relation follows

ρr = det(F)ρ. (1.11)

After the momentum equation (1.9) was applied to an arbitrary tetrahedral element,

5



Cauchy’s theory of stress leads to

tn = Tn (1.12)

where n is the unit normal vector to ∂P in the current configuration, T is called

Cauchy stress tensor which measures force per unit deformed area, and tn is the

traction or stress vector, also with units of force per unit deformed area. Hence, the

Cauchy stress tensor was derived from the existence of contact force, Eq. 1.12 has

to satisfy Euler’s law of motion. By using the divergence theory, the momentum

relation, Eq. 1.9, becomes

div(T) +b = ρa. (1.13)

This equation, known as Cauchy’s first law of motion, is a necessary condition to

ensure a balance of linear momentum. The combination of Euler’s moment of mo-

mentum equation (1.10) with Cauchy’s stress principle (1.12) leads to

TT = T (1.14)

which is known as Cauchy’s second law. Under the purely static loading condition,

and in an absence of body forces, Cauchy’s first law of motion, Eq. (1.10), transforms

to

div(T) = 0 (1.15)

which is the condition for quasistatic equilibrium.

The Cauchy stress tensor establishes the contact force (tn) in the current configu-

ration; however, there are some applications that use a reference configuration. Thus,

the engineering stress tensor P, also known as first Piola-Kirchoff stress tensor, is

6



introduced to establish contact forces in a reference configuration. This engineering

stress (P) is not necessary symmetric, like Cauchy stress. The relationship between

these tensors is

P = det(F)TFT. (1.16)

1.1.2 Mechanical Energy Principles

Lets apply the mechanical energy principle, neglecting all thermal effects; thus,

the total mechanical energy time derivative E(P , t) for any part P ⊂ B of body B is

equal to the rate of working of the applied forces Π(P , t)

E(P , t) = Π(P , t) (1.17)

where the total mechanical energy contains the total kinetic energy and the total po-

tential energy, according to Hamilton’s principle. Thus, these terms may be written

as [4]
d
dt

[∫
P

1
2v ·vdm+

∫
P
W (F)dV

]
=
∫
∂P

tn ·da+
∫
P

b ·vdv (1.18)

where W(F) is the elastic stored energy per unit reference volume, which is also

known as the strain-energy density. The equation above can be solved by using

Cauchy’s stress principle, the divergence theorem and Cauchy’s first law to develop

explicit formulas for both Cauchy stress and the first Piolo-Kirchoff stress. Due

to the dependence of W on the deformation gradient, the rate ∂W (F)/∂t can be

expressed as
∂W

∂t
= tr

(
F∂W
∂F

L
)

(1.19)

where L is velocity gradient tensor, L = gradv = ḞF−1.

A hyperelastic/Green elastic solid is a material whose strain energy (elastic po-

7



tential) can be expressed as a function of

W (X, t) =W (F(X, t),X) (1.20)

Theorem [3]: For elastic bodies the work assumption implies that there exists a

function

W : τ+ · B @ t P =
[
∂W (F,X)

∂F

]T
(1.21)

After introducing basic principles of continuummechanics. Polar and upper-triangular

decomposition have been compared and contrasted for the pure shear and simple

shear deformation.

1.2 Polar Decomposition and Upper Triangular Decomposition

In 2012, Srinivasa [5] demonstrated that constitutive equations for Green elastic

materials can be derived from a distortion tensor that arises from an upper-triangular

decomposition of the deformation gradient. This decomposition doesn’t require an

eigen analysis, in addition, it is very simple, fast and widely applicable. It proposes

that the total deformation can be decomposed into physically apparent, meaning-

ful, and simple constituents. The polar and upper-triangular decompositions are

explained in this section, and applied to simple shear and pure shear deformations

to observe their similarities and differences.

Let the gradient of motion be F. Then the polar decomposition theorem implies

F = RU = VR (1.22)

where R is an orthogonal tensor and U and V are the symmetric, positive-definite,

right- and left-stretch tensors, respectively. To quantify these rotation and stretch

tensors an eigen analysis is required. For this reason, Green’s deformation tensor

8



(C = FTF) needs to be calculated first, which is equal to U2. Then one performs an

eigenvector/eigenvalue analysis using the conventional equation (Ax = λx). Eigen-

vectors (xi) form columns within the rotation matrix (R), while the eigenvalues (λi)

are the principal stretches belonging to U and V. The stretch tensor (U) and its

inverse (U−1) can be obtaioned through calculating the square root of Green’s de-

formation tensor using the Cayley-Hamilton theorem [6], with R = FU−1 following

thereafter. This way is a Lagrangian approach for quantifying the rotation and right-

stretch tensors. An Eulerian way can be accomplished by starting with the Finger

deformation tensor (B = FFT) and employing the same procedure.

On the other hand, Gram-Schmitdt (upper triangular) factorization decomposes

a matrix into a product of a rotation and an upper-triangular matrix, where Q is

a proper orthogonal matrix and R is an upper-triangular matrix. As this applies

to the deformation gradient F, we adopt the notation of Srinivasa [5], viz., F = QF̃

where Q is orthogonal and F̃ is upper triangular. This deformation interpretation

can be deconstructed into physically apparent, meaningful, and simple entities.

Rotation Q arising from a Gram-Schmidt decomposition of F is distinct from the

rotation R coming from a polar decomposition of F!

A Cholesky factorization the right Cauchy-Green deformation tensor C = FTF =

F̃TF̃ establishes the components of distortion that in the 2D case are [5]

[F̃] =

a aγ

0 b

 , a=
√
C11, b=

√
C22−C2

12/C11, γ = C12/C11 (1.23)

where all parameters have physical meaning, such as: a is an elongation in the 1-

direction, b is an elongation in the 2-direction, both measured from a reference gage

of unit length, and γ is the magnitude of shear in the 12-plane. A practical side of
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these parameters is that an experimentalist can measure them directly. Elongations

a and b are equivalent to stretches λ1 and λ2 only when there is an absence of shear.

Conveniently, the elongations a and b, and the shear γ can all be calculated in

terms of entities from the deformation gradient as [7]

a=
√
F 2

11 +F 2
21, b= F11F22−F12F21√

F 2
11 +F 2

21
, γ = F11F12 +F21F22

F 2
11 +F 2

21
(1.24)

as can the trigonometric functions

sinθ = −F21√
F 2

11 +F 2
21
, cosθ = F11√

F 2
11 +F 2

21
(1.25)

which populate rotation

Q =

 cosθ sinθ

−sinθ cosθ

 obeying Q = FF̃−1 (1.26)

with θ being that angle by which the material coordinate axes ẽi (wherein a, b and

γ are measured) rotate about the reference coordinate axes ei (wherein the observer

resides).

Freed [8] applied the QR decomposition to solve different boundary conditions.

The upper-triangular decomposition introduces a new theoretical framework, which

is called experimentor’s frame. This new coordinate frame coincides with the Eu-

lerian frame for deformations without any rotation, such as uniaxial and biaxial

tension/compression deformations. Disparity between the Eulerian and experimen-

tor’s frames can be easily visualized under simple shear and pure shear deformations.

Simple/pure shear deformations are now reviewed to clarify rotation tensor differ-

ences as they pertain to the polar/upper-triangular decompositions.
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1.2.1 Simple Shear Deformation

Figure 1.2: Simple shear deformation where shear strain is given by γ = tanφ. [1]

The deformation gradient of a planar material subjected to a simple shear (shown

in Fig. 1.2) is quantified by the matrix

[F] =

1 γ

0 1

 (1.27)

while the Green deformation tensor C = FTF and the Finger deformation tensor

B = FFT have components of

[C] =

1 γ

γ 1 +γ2

 and [B] =

1 +γ2 γ

γ 1

 (1.28)

. The rotation tensor R (the product of a polar decomposition, which requires

an eigen analysis) and the rotation tensor Q (the outcome of an upper-triangular

decomposition, which does not require an eigen analysis) are distinct, viz.,
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[R] = 1√
4 +γ2

 2 γ

−γ 2

 , [Q] =

1 0

0 1

 (1.29)

1.2.2 Pure Shear Deformation (Strength of Materials)

In a pure shear deformation (as introduced in strength of materials), the differ-

ence between all three coordinate frames can be easily visualized. The Lagrangian,

Eulerian, and experimentor’s frames are all illustrated in Fig. 1.3.

Figure 1.3: The figure at the left shows a Lagrangian viewpoint (e, solid lines), the 
figure in the middle shows an Eulerian viewpoint (e′, dashed lines), and the figure at 
the right shows an experimentor’s viewpoint (ẽ,colored lines) [1]

Let the square in the left graphic of Fig. 1.3 be placed in a Lagrangian frame. A 

small reference frame, the experimentor’s coordinates, is drawn in one corner of the 

square. This square is then rotated by an angle θ (in this case, 45◦). The rotated 

square can be observed in the middle graphic of Fig. 1.3. The dashed lines represent 

the Eulerian frame. Afterwords we deform the square by pulling an amount of λ on 

two opposing corners and proportionally pushing by an amount of (1/λ) on the other 

two opposing corners, as formulated in strength of materials. We then zoom in and
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move the small axes from the corner to the center of the square. The colored lines

are the experimentor’s frame, with angle ψ being the rotation between the Eulerian

and experimentor’s axes. Rotation tensors for both frames can be described as

[R] = 1√
2

 1 1

−1 1

 , [Q] = 1√
λ2 + 1/λ2

 λ 1/λ

−1/λ λ

=

 cosφ sinφ

−sinφ cosφ

 (1.30)

where θ = 45◦ so sinθ = cosθ = 1/
√

2 and where λ is the stretch in the e′1 direction.

1.3 Spencer’s Fiber Approach

Spencer’s [9] fiber model is one of the pioneering studies in fiber reinforced ma-

terials. Before his study researchers, such as Adkins and Rivlin (1955) and Green

and Adkins (1960), assumed fibers to be infinitesimally thin. Their fibers do not

occupy any volume and are localized in an isotropic material. “The result of these

assumptions is that the material is constrained isotropic material” [9, pp. 79].

Spencer’s fiber model has no constraints and is appropriate for densely distributed

fibers. He states that the strain energy function W is a function of the deformation

gradient FiR = ∂xi/∂XR and an initial fiber direction aR. Because a material re-

sponse does not depend upon one’s frame of reference, the strain energy function

has to be invariant under any rigid body rotation of the deformed configuration. For

example, a position vector rotates according to

x̄i =QiJxJ (1.31)

where xi is the current position of a particle position in the deformed body, QiJ is an

arbitrary proper orthogonal matrix, and x̄i is the particle’s position after the rigid
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body rotation. Thus

W (∂xi/∂XR,aR) =W (∂x̄i/∂XR, āR) (1.32)

for any QiJ that satisfies QiKQjK = Iij and det(Q) = 1. This suggests W is a

function of Green’s deformation tensor CRS = FiRFiS and the initial fiber direction

aR. The deformation gradient tensor does not obey an isotropic function rule, but

the Green deformation tensor does. Thus, if a strain energy function is a function

of the Green deformation tensor, then the constitutive equations will be directly

isotropic (C̄ = Q.C.QT).

Let x̄R be the position of a particle in an undeformed body after a rigid body

rotation, and let āR be the fiber direction in the undeformed rotated body. Spencer

assumed that anisotropic properties of a material only come from fibers, then

W (CRS ,aR) =W (C̄RS , āR). (1.33)

If the above equation holds, then W does not depend upon rigid rotations. W is an

isotopic function of CRS and aR and can therefore be replaced by a set of isotropic

invariants of these tensor fields. Furthermore, because aR is not a material property,

W has to be an even function of a (fiber direction) in order for it to represent an

isotropic invariant. That is, a fiber has no preferred direction. It should be replaced

by the vector product aRaS . In that case, CRS and aRaS are symmetric second-order

tensors; thus in the 3D case, W can be expressed as a function of ten invariants [9]

trC,trC2,trC3,tr(aa),tr(aa)2,tr(aa)3,

tr(aa)C,tr(aa)C2,tr(aa)2C,tr(aa)2C2
(1.34)
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where

CRS = ∂xi
XR

∂xi
XS

, C = [CRS ], (aa) = [aRaS ]. (1.35)

Since a is a unit vector

(aa) = (aa)2 = (aa)3 = ...,

tr(aa) = tr(aa)2 = tr(aa)3 = .....= 1
(1.36)

and the number of independent moment invariants in Eq. (1.34) reduces to five:

tr(C),tr(C2),tr(C3),tr(aa)C,tr(aa)C2. (1.37)

The invariants shown above can be written as a different set

J1 = tr(C), J2 = 1
2{tr(C)2− tr(C2)}, J3 = tr(aa)C2,

K1 = detC, K2 = tr(aa)C.
(1.38)

according to the Cayley-Hamilton theorem. Thus, W can also be a function of

the J1,J2,J3,K1,K2 invariants, which have greater physical appeal. If the applied

fibers are inextensible, i.e., stretch λ= 1 in the fiber direction, and if the material is

incompressible, i.e., ρ= ρo and therefore detF=1, then

K1 = 1, K2 = 1. (1.39)

The Finger deformation tensor and fiber direction, as Eulerian fields, are defined

below

Bij = ∂xi
∂XR

∂xj
∂XR

, ai = ∂xi
∂XR

aR. (1.40)
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Like invariants to Eq. (1.38) can be written for these fields

J1 = tr(B) =Bii, J2 = 1
2{(trB)2− tr(B2)}= 1

2{B
2
ii−BikBik},

J3 = tr(aa)B = aiBikak, K1 = det(B), K2 = tr(aa) = aiai

(1.41)

with K1 = 1 if the material is incompressible and K2 = 1 if the fibers are inextensible.

The relationship between second Piola-Kirchhoff Stress and Cauchy stress is

S(X,t) = det(F)[F−1][T(x,t)][F−1]T (1.42)

because the push-forward operator of a weighted contravariant tensor is [10]

Tij = 1
det(F )

∂xi
∂XR

∂xj
∂XS

SRS . (1.43)

Elastic constitutive equations expressed in terms of the second Piola-Kirchhoff stress

and the Green strain are described by

SRS = 1
2
(dW (E)

dERS
+ dW (E)

dESR

)
. (1.44)

The Green strain, determinant of the deformation gradient, and the K1 invariant are

described by

ERS = 1
2
(
CRS− δRS

)
, det(F) =

√
det(C), K1 = det(C). (1.45)

Taking the derivative of Green Strain, 2dE = dC, and plugging it into Eq. (1.44)

combined with Eq. (1.43) leads to

Tij =K1
− 1

2
∂xi
∂XR

∂xj
∂XS

( dW
dCRS

+ dW
dCSR

)
. (1.46)
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Due to the inextensible and incompressible constraints, two Lagrange multipliers

should be introduced, viz., p and t, such that W is replaced by

W − 1
2p(K1−1) + 1

2t(K2−1). (1.47)

Inserting value K1 into Eq. (1.46) and using the chain rule to represent the strain

energy density in terms of invariants J1, J2, J3 results in

Tij = ∂xi
∂XR

∂xj
∂XS

{
W1

( ∂J1
∂CRS

+ ∂J1
∂CSR

)
+W2

( ∂J2
∂CRS

+ ∂J2
∂CSR

)
+W3

( ∂J3
∂CRS

+ ∂J3
∂CSR

)
− 1

2p
( ∂K1
∂CRS

+ ∂K1
∂CSR

)
+ 1

2t
( ∂K2
∂CRS

+ ∂K2
∂CSR

)}
(1.48)

where W1 = ∂W/∂J1,W2 = ∂W/∂J2, and W3 = ∂W/∂J3. Inserting Eq. (1.38) values

into the above Cauchy stress equation results in the following gradients

∂J1
∂CRS

= ∂trC
∂CRS

= δRS ,

∂J2
∂CRS

=
∂ 1

2

(
(trC)2− trC2

)
∂CRS

= trCδRS−CRS = J1δRS−CRS ,

∂J3
∂CRS

= ∂tr(aa)C2

∂CRS
= aRCSIaI +aICIRaS ,

∂K1
∂CRS

= ∂det(C)
∂CRS

= det(C)C−T = J2δRS−J1CRS +CRICIS ,

∂K2
∂CRS

= ∂tr(aa)C
∂CRS

= aRaS .

(1.49)
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Pushing forward the invariant derivatives of Eq. (1.49) with ∂xi
∂XR

∂xj

∂XS
produces

∂xi
∂XR

∂xj
∂XS

δRS =Bij ,

∂xi
∂XR

∂xj
∂XS

(J1δRS−CRS) = J1Bij−BikBjk,

∂xi
∂XR

∂xj
∂XS

(aRCSIaI +aICIRaS) = aiBjkak +ajBikak,

∂xi
∂XR

∂xj
∂XS

(J2δRS−J1CRS +CRICIS) = δij ,

∂xi
∂XR

∂xj
∂XS

aRaS = aiaj .

(1.50)

After plugging the equalities above, Cauchy stress can be expressed as

Tij = 2(W1 +J1W2)Bij−2W2BikBjk + 2W3(aiBjkak +ajBikak)

−pδij + taiaj . (1.51)

After subtracting out the Lagrange multipliers, a reaction stress (Rij) can be iden-

tified

Tij =−pδij + taiaj +Rij . (1.52)

Because the Lagrange multipliers contain pressure and fiber stress, the reaction

stresses Rii and aiajRij will be zero. Therefore Rij should be modified to satisfy

these conditions.

Rij =2(W1 +J1W2)Bij−2W2BikBjk + 2W3(aiBjkak +ajBikak)−

{(J1−J3)W1 + (J2 + 1)W2}δij+

{(J1−3J3)W1− (J2−3)W2−4J3W3}aiaj

(1.53)

which is Spencer’s constitutive equation.
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1.3.1 Validation with 2D Fiber Model

The Model that is derived above for the 3D case can be used for 2D plane strain.

Proof: Consider a bi-axial experiment obeying a plane strain condition whose fibers

are located in the x1 and x2 direction so that

a3 = 0,B13 =B23 = 0,B33 = 1. (1.54)

The 3D Finger deformation tensor now has components of


B11 B12 0

B21 B22 0

0 0 1

 , J1 =B11 +B22 + 1, J2 =B11 +B22 +B11B22−B2
12. (1.55)

Therefore the determinant of the 2D plane-strain Finger deformation tensor is det(B) =

B11B22−B2
12 = 1 impliying that

J1 = J2 =B11 +B22 + 1 (1.56)

with the relationship between J2 and J3 being J3 = J2− 2 and the shear strain

relationship becomes γ2 = J3−1 [9]. Thus, a plane strain bi-axial experiment can be

signified directly in terms of γ. The strain energy density becomes a function of γ.

1.3.2 One Preferred Direction Fiber Uniform Extension

Consider rectangular block that contains fibers perpendicular to the X3 direction.

Initial fiber position has a φ degree angle to the X1 direction, as seen Fig. 1.4.

Uniaxial extension has been applied in the X1 direction. The relation between

19



Figure 1.4: Lagrangian configuration of a rectangular part that is reinforced with a
one preferred direction of straight fibers

initial and final configurations is

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3. (1.57)

initial and final fiber directions is

A= (cosφ,sinφ,0), a= (cosθ,sinθ,0). (1.58)

where cosθ = λ1 cosφ, and sinθ = λ2 sinφ, and constraint conditions λ1λ2λ3 = 1, and

λ2
1 cos2φ+λ2

2 sin2φ= 1, produces a Finger deformation tensor with components of

B11 = λ2
1, B22 = λ2

2, B33 = λ2
3, Bij = 0 (i 6= j). (1.59)

Therefore the invariants at Eq. (1.37) can be written as

J1 = λ2
1 + λ2

2 + λ2
3, J2 = λ−2

1 + λ−2
2 + λ−2

3 , J3 = λ2
1 cos2φ + λ2

2 sin2φ (1.60)
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. Plugging these invariants into the Cauchy stress equation (1.51) leads to

T11 = 2W1λ
2
1 + 2W2(λ2

2 +λ2
3)λ2

1 + 4W3λ
4
1 cos2φ−p+ tλ2

1 cos2φ

T22 = 2W1λ
2
2 + 2W2(λ2

3 +λ2
1)λ2

2 + 4W3λ
4
2 sin2φ−p+ tλ2

1 sin2φ

T33 = 2W1λ
2
3 + 2W2(λ2

1 +λ2
2)λ2

3−p

T12 = λ1λ2 sinφcosφ{2(λ2
1 +λ2

2)W3 + t}

T13 = t23 = 0.

(1.61)

By assuming a strain energy function that is a scalar function of the fiber direction

vectors and that is a quadratic function of the infinitesimal strain tensor, the con-

stitutive equation for a transversely isotropic, linear, elastic material with a single

preferred fiber direction is

Tij = λekkδij + 2µteij +α(akamekmδij + ekkaiaj)+

2(µl−µt)(aiakekj +ajakeki) +βakamekmaiaj . (1.62)

To calculate T11 and T22, let i= 1,2, and j= 1,2, respectively, assume a fiber in the

1 direction,viz., a=[1,0]T, thus a1a1 = 1 otherwise aiaj = 0, and therefore one gets

T11 = λ(e11 + e22) + 2µte11 +α(e11 + (e11 + e22))+

2(µl−µt)(e11 + e11) +βe11,

T11 = λ(e11 + e22) + 2µte11 +α(2e11 + e22) + 4(µl−µt)e11 +βe11,

T22 = λ(e11 + e22) + 2µte22 +αe11

T12 = 2µte12 + 2(µl−µt)e12

(1.63)

The 2 dimensional, linear elastic, transversely isotropic, constitutive equation can be
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written as the linear system of equations


e1

e2

e3

=



1
λ+ 2α+β+ 4µl−2µt

1
λ+α

0
1

λ+α

1
λ+ 2µt

0

0 0 2µl




T1

T2

T12

 . (1.64)

This compliance matrix is exactly the same as the one would derive for a conventional,

transversely isotropic, strain-stress response. In that case

E1 = λ+ 2α+β+ 4µl−2µt, E2 = λ+ 2µt, G12 = 2µl (1.65)

that by plugging in these values, compliance matrix becomes,



1
E1

−ν21
E2

0
−ν12
E1

1
E2

0

0 0 1
G12

 . (1.66)

There are 5 material constants; however, the compliance matrix is symmetric due

to transverse isotropy, i.e., ν21
E2

= ν12
E1

, and therefore there are four, independent,

material parameters that need to be calculated.
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2. THE CONJUGATE PAIR FIBER APPROACH

Conjugate variables/pairs have been widely used to express the internal energy

of a system in thermodynamics. Pressure/volume and temperature/entropy are the

most common conjugate pairs, and the product of these two quantities contribute to

a state function that has a unit of energy or power. A small increment in the energy is

the product of pressure (the propulsive force) times a volume change (the associated

displacement). Pressure is an intensive property, which is point-wise defined; whereas

volume is an extensive property which means it depends on the amount of substance.

A similar situation applies to mechanical systems, If we consider the pressure

as a stress, and the small volume change as a strain increment, stress and strain-

rate pairs can be used to represent a potential energy (strain energy) change with

respect to time. The work done is stored as an elastic strain energy. In general,

the mechanical work done δW is not an exact differential; however, under the Green

elastic (hyperelastic) material assumption there exists a scalar function W (F) strain

energy such that

dW (F) = tr
(
W (F)

F
dF
)

(2.1)

where dF is the material derivative of F. There are many ways to express stress and

strain conjugate pairs, each defined stress has an associated strain pair such that

dW = tr(PTdF) = tr(SdE) = tr(TdlnU) (2.2)

where lnU is Hencky strain. In the early twentieth century Caratheodory [11], ap-

plied Pfaffis’ equation to represent theormodynamic concepts in a mathematical ap-

proach which introduces integrating factors to make an inexact differential equation
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exact. Caratheodory’s axiomatic approach to thermodynamics has the consequence

that a change in the internal energy of a body deformed in an adiabatic enclosure is

independent of path; therefore the differentials are exact and the second law becomes

Pfaffian equation wherein temperature is the integrating factor. Consequently, strain

rate must be an exact differential. In other words, strain is a two-state field. It is not

depend upon the path followed and as such, strain rate can be integrated without

full knowledge of path.

2.1 Introduction

Conjugate, stress/strain, base-pairs theory gives us a chance to decompose the

strain energy density into distinct parts. Each part is described by a different

stress/strain conjugate pair and each part has a physical meaning that comes di-

rectly from experiment. Therefore, constitutive equations can be developed by using

these outstanding advantages of conjugate pairs without a need to introduce tensor

invariants.

In 1976, McLellan [12] utilized an upper-triangular decomposition of the defor-

mation gradient, and demonstrated that the work done can be described by six strain

parameters for an isotropic Green elastic solids. Later, Srinivasa [5] applied an equiv-

alent factorization, and extended it for transversely isotropic, and orthotropic, Green

elastic materials. His factorization strategy took advantage of Cholesky factoriza-

tion to obtain direct relations between the deformation gradient and upper-triangle

distortion tensor. Since then, Freed [8] employed this decomposition to solve various

boundary conditions such as pure shear and simple shear deformations. Freed et al.

[7] decomposed these conjugate pairs into three meaningful modes of deformation

which are dilation, squeeze (pure shear) and simple shear.

The conventional way to decompose the strain-energy density is to break it into
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hydrostatic and deviatoric parts as

Ahydrostatic = 1
3tr(A)I, Adeviaotoric = A− 1

3tr(A)I (2.3)

respectively, where A is an arbitrary symmetric matrix and I is the identity matrix.

Dilatation deformation corresponds to the hydrostatic portion, while pure shear and

simple shear match with the deviatoric portion. In classical theory, the deviatoric

portion can not decompose into the pure and simple shear deformations; whereas

the conjugate pair approach provides a means whereby pure and simple shear de-

formations can be decomposed. A decomposition of classical, transversely isotropic,

strain-energy function decomposition will be investigated at following chapters.

In this chapter, the conjugate stress/strain basis pairs for isotropic and anisotropic

materials are derived. Encoding/decoding maps that transform conjugate pairs into

tensor components and vice versa are then described. Uniaxial and biaxial boundary-

value problems are solved under an explicit elasticity assumption.

2.2 Conjugate stress/strain pairs

Derivation of the conjugate stress/strain pairs starts with a notable strain-energy

density rate (stress power) description of [3]

Ẇ = tr(PT Ḟ) (2.4a)

Multiplying by I, specifically FF−1, and using properties of the trace gives

Ẇ = tr(PT Ḟ) = tr(FPT ḞF−1) = tr(SL) (2.4b)
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where, because the Kirchhoff stress S = det(F) is symmetric, it follows that

S = PFT = FPT. (2.4c)

Introducing an upper-trianglar decomposition of deformation gradient, and taking

its material derivative, leads to

Ḟ = Q̇F̃+Q ˙̃F. (2.4d)

Plugging this relationship into the strain-energy equation produces

Ẇ = tr(SḞF−1) = tr(SQ̇F̃F̃−1Q−1) + tr(SQ ˙̃FF̃−1Q−1) (2.4e)

where the first trace on the right-hand side is equal to zero because

tr(SQ̇QT F̃ F̃−1) = tr(SQ̇QT) = 0 (2.4f)

since the trace between a symmetric tensor (S) and a skew-symmetric tensor (Q̇QT)

is zero. Consequently, only the second trace on the right-hand side persists

Ẇ = tr(QTSQ ˙̃FF̃−1) = tr(S̃ L̃) (2.4g)

wherein S̃ ..= QTSQ is symmetric and L̃ ..= ˙̃FF̃−1 is upper-triangular so that

Ẇ = tr


S̃11 S̃12

S̃12 S̃22


L̃11 L̃12

0 L̃22


= S̃11L̃11 + S̃12L̃12 + S̃22L̃22 (2.4h)
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Each of these stress/strain-rate terms corresponds to a different deformation mode

(different experiments). If we decompose the distortion tensor F̃ into a product of

three fundamental modes of deformation, e.g., F̃ = F̃◦ F̃ F̃∠ with matrix components

[7]

F̃◦F̃ F̃∠ =


√
ab 0

0
√
ab



√
a/b 0

0
√
b/a


1 γ

0 1

=

a aγ

0 b

 (2.5)

Figure 2.1: The three different modes of deformation that exist for a 2D strain-energy 
density when deconstructed as independent, thermodynamic, conjugate pairs [1].

where π, σ and τ are the stresses that are conjugate to strains δ, ε  and γ , which are 

defined below. The first matrix F̃ ◦ corresponds to a dilation (hydrostatic like) motion, 

the second matrix F̃ corresponds to a squeeze (pure-shear like) motion, and the third 

matrix F̃ ∠ correlates to a simple shear motion. With this proposed strain energy and 

distortion tensor F̃ decomposition, the deviatoric portion of a deformation is able to be 

described as pure shear and simple shear deformation, independently.
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Now we have enough information to construct each conjugate pair by writing the

rate of strain-energy density out in terms of these pairs.

2.3 Stress/Strain Basis Pairs for Isotropic Materials

This idea was proposed by Freed, Erel and Moreno [7] in their first, conjugate,

stress/strain pairs paper which was published in 2016. It provided an unique set

of conjugate, stress/strain, basis pairs suitable for isotropic planar materials. The

strain energy density of a membrane (2D deformation) was found to decompose into

three separable parts, viz.

Ẇ = S̃11 ȧ/a+ S̃22 ḃ/b+ S̃12aγ̇/b

= πδ̇+σε̇+ τ γ̇

(2.6)

where S̃ = QTSQ, with S being the Kirchhoff stress, and S̃ being its counterpart

when rotated into the experimentor’s frame by Q, which comes from F = QF̃. A

stress basis is defined by

π = S̃11 + S̃22 (2.7a)

σ = S̃11− S̃22 (2.7b)

τ = (a/b) S̃12 (2.7c)

whose associated strain-rate basis becomes

δ = ln
√
ab δ̇ = 1

2

(
ȧ/a+ ḃ/b

)
(2.7d)

ε= ln
√
a/b ε̇= 1

2

(
ȧ/a− ḃ/b

)
(2.7e)

γ γ̇ (2.7f)
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where δ, ε and γ are each two-state fields that are independent of path, and there-

fore, each is a thermodynamically viable measure for strain. From these stress/strain

conjugate pairs, Freed, et al. [7] derived a set of non-linear and implicit constitutive

equations that describes isotropic elastic membranes of biologic origin. Experimental

data from porcine myodarcardium and visceral pleural membrane were used to vali-

date the theory. Furthermore, Abaqus UMAT and FEBio plug-ins have been written

to confirm the theory numerically. This numerical validation method is explained in

Chapter 6. Conversion maps between tensor components and their thermodynamic

coordinates (conjugate pairs) can be described as a linear system of equations that

are


π

σ

τ

=


1 1 0

1 −1 0

0 0 a/b




S̃11

S̃22

S̃12

 (2.8)

and 
δ̇

ε̇

γ̇

= 1
2


1 1 0

1 −1 0

0 0 2




ȧ/a

ḃ/b

γ̇

 (2.9)

both of which are invertible.

2.4 Stress/Strain Basis Pairs for Anisotropic Materials

Most materials are anisotropic, so we seek an augmentation to the stress/strain

basis pairs of Eq. (2.7) that would be appropriate for these materials. Transversely

isotropic behavior is achieved by introducing an anisotropic parameter n into the

stress and strain basis-pair equation (2.7) which are independent from constitutive

relations. As discussed before in §1.1.3, the conventional method has five material
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parameters. What we propose has one less material parameter, and these parameters

have different physical interpretations. Such an extension must remain compliant

with the stress power of Eq. (2.6).

Let n denote the extent of anisotropy, then an admissible stress basis is

π = 1
n S̃11 +nS̃22 (2.10a)

σ = 1
n S̃11−nS̃22 (2.10b)

τ = (a/b) S̃12 (2.10c)

whose associated strain basis (and strain-rate basis) is

δ = ln
√
anb1/n δ̇ = 1

2

(
nȧ/a+ 1

n ḃ/b
)

(2.10d)

ε= ln
√
an/b1/n ε̇= 1

2

(
nȧ/a− 1

n ḃ/b
)

(2.10e)

γ γ̇ (2.10f)

which collectively reduce to Eq. (2.7) at the isotropic boundary of n = 1. If n > 1

then the 1-direction has a stiffer response than the 2-direction, and if n < 1 then the

2-direction has a stiffer response than the 1-direction.

The conjugate, stress/strain, base pairs for a planar state were derived from a

strain energy density by Dr. Freed in [7]. Equation (2.10) preserves the rate by

which work is done on a deformable solid by stressing it, specifically

Ẇ = πδ̇+σε̇+ τ γ̇ = S̃11ȧ/a+ S̃22ḃ/b+ S̃12aγ̇/b (2.11)

In other words, the base pairs from Eq. (2.10) are thermodynamically admissible.

The same strain energy density expression is obtained for both the isotropic and
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anisotropic cases. Both obey the laws of thermodynamics.

The stress/strain base pairs demonstrate an one-to-one mapping property be-

tween tensor components and thermodynamics variables, per our hypothesis. An

encoding/decoding relation can be seen as


π

σ

τ

=


1
n n 0
1
n −n 0

0 0 a/b




S̃11

S̃22

S̃12

 (2.12)

while the rates of the extensive variables map as


δ̇

ε̇

γ̇

= 1
2


n 1

n 0

n − 1
n 0

0 0 2




ȧ/a

ḃ/b

γ̇

 (2.13)

and we notice that the anisotropic parameter n is introduced as a characteristic of the

encoding/decoding map not through the constitutive equation itself, which remains

isotropic. This result illustrates how constitutive equations can be derived without

the aid of invariant theory, as developed by Spencer [9] and others.

2.5 Boundary Value Problems

In this section well-known boundary value problems are investigated from which

one can construct consititive equations using the conjugate pair approach. At the

end of this section, we will have derived the stress/strain relations by which one

can validate the proposed theory. This part demonstrates how theory can inform

experiments.

Consider a Helmholtz free-energy density A for planar membranes that are under
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isothermal adiabatic conditions as explained by [7]

ρ0A=−C(T ln(T/T0)− (T −T0)) + 2K(δ−α(T −T0))2 +Mε2 + 1
2Gγ

2 (2.14)

where C is heat capacity, T is measured temperature, T0 is initial temperature, and

α is the coefficient of thermal expansion. Upon neglecting the effect of temperature

and thermal strain, equation (2.14) simplifies as

ρ0A= 2Kδ2 +Mε2 + 1
2Gγ

2. (2.15)

A Green elastic solids assumes that Helmholtz free-energy A can be written as a

function of temperature and strain as

ρ0 dA=−ρ0SdT + dW. (2.16)

This is an explicit form of Helmholtz free-energy function. To consider implicit

elasticity, temperate, strain and stress should all be function of stored energy [13].

In terms of a decomposition in work, the second law of thermodynamics now takes

on a form of

ρ0
∂A

∂T
dT + ∂A

∂δ
dδ+ ∂A

∂ε
dε+ ∂A

∂γ
dγ
)

=−ρ0SdT +πdδ+σdε+ τdγ. (2.17)

After substituting Eq. (2.15) into the right-hand side of equation (2.17) for the

second law of thermodynamics, the constitutive equations of Freed, Erel and Moreno

[7] evolve

π = 4Kδ σ = 2Mε τ =Gγ (2.18)

which have three material parameters: K is similar to the bulk modulus (areal mod-
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ulus for 2D deformation), M is the pure shear modulus (P-wave modulus) and G is

the simple shear modulus. By using the stress/strain equations (2.10) and the linear

constitutive equations (2.18), a tensile experiment and a general biaxial experiment

can be described with proper constitutive equations.

2.5.1 Uniaxial tension

Fibrous composites with a single fiber family are considered. They were pulled

in directions that align with and are normal to the fiber orientation.

Traction aligns with fiber direction

In this boundary condition, traction S (force per unit undeformed area) applies

to the fiber direction, so S̃11 = S and S̃22 = S̃12 = 0. After encoding these conditions

into their conjugate values via Eq. (2.12), stress measures can be defined as π =

S/n, σ=S/n and τ = 0. Incorporating these stress values with the linear constitutive

Eq. (2.18), and combining the conjugate strains into the same equations produce

S

n
= 4K ln

√
anb1/n,

S

n
= 2M ln

√
an/b1/n (2.19a)

or

S

n
= 2K lnanb1/n, S

n
=M lnan/b1/n (2.19b)

that invert to become

exp
(

S

2Kn

)
= anb1/n exp

(
S

Mn

)
b1/n = an (2.19c)
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Moving an from the right sides of these equations into their left sides leads to

exp
(

S

2Kn −
S

Mn

)
= b2/n or b= exp

(
S

4K −
S

2M

)
(2.20a)

and similarly

exp
(

S

2Kn + S

Mn

)
= a2n or a= exp

(( 1
n2

)(
S

4K + S

2M

))
(2.20b)

where extension ratios in the fiber direction a and normal to the fiber orientation b

can be described as a function of the Kirchhoff stress S.

Traction normal to fiber direction

In this boundary condition, Traction S (force per unit undeformed area) is ap-

plied normal to the fiber direction, so S̃22 = S and S̃11 = S̃12 = 0. After encoding

these conditions into their conjugate values via Eq. (2.12), stress measures can be

defined as π = Sn, σ = −Sn and τ = 0. Incorporating these stress values into the

linear constitutive Eq. (2.18), while combining the conjugate strains into these same

equations, produces

Sn= 4K ln
√
anb1/n, −Sn= 2M ln

√
an/b1/n (2.21a)

or

Sn= 2K lnanb1/n, −Sn=M lnan/b1/n (2.21b)
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that invert to become

exp
(
Sn

2K

)
= anb1/n exp

(
−Sn
M

)
b1/n = an. (2.21c)

Moving an from the right-hand sides into their left-hand sides leads to

exp
(
Sn

2K + Sn

M

)
= b2/n b= exp

(
n2
(
S

4K + S

2M

))
(2.22a)

. (2.22b)

and similarly

exp
(
Sn

2K −
Sn

M

)
= a2n a= exp

(
S

4K −
S

2M

)
(2.22c)

where extension ratios in the fiber direction a and normal to the fiber orientation b

can be described as a function of Kirchhoff stress S, which is now applied normal

to the fibers. The first nonlinear Hookean model, where strains are exponential

functions of traction, was published by Becker [14]. His study was published before

Hencky’s [15] model whose stresses are logarithmic functions of stretch, cf. Neff et

al. [16].

2.5.2 Biaxial tension

Boundary conditions are considered where fibrous composites with a single fiber

family are loaded under biaxial tractions. Specimens are pulled in fiber and trans-

verse directions. Let the traction applied to the fiber direction be S̃11 = S11 and

normal to the fiber direction is S̃22 = S22. After inserting these conditions into Eq.
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(2.12), dilation and squeeze stress measures can be described as

π = S11
n

+nS22 σ = S11
n
−nS22 (2.23)

. Combining these stress measures with constitutive equations (2.18) results in con-

jugate strain relations

4K ln
√
anb1/n = S11

n
+nS22 2M ln

√
an/b1/n = S11

n
−nS22 (2.24a)

or

2K lnanb1/n = S11
n

+nS22 M lnan/b1/n = S11
n
−nS22 (2.24b)

that convert to become

anb1/n = exp
( S11

n +nS22
2K

)
an = exp

( S11
n −nS22
M

)
b1/n. (2.24c)

Moving an from left sides of these equations to their right sides gives

b2/n = exp
( S11

n +nS22
2K −

S11
n −nS22
M

)
(2.24d)

After rearranging terms, the stretch normal to fiber direction can be obtain as

b= exp S11

( 1
4K −

1
2M

)
+n2S22

( 1
4K + 1

2M

))
(2.24e)
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and similarly the stretch along the fiber direction can be found

a= exp S11
n2

( 1
4K + 1

2M

)
+S22

( 1
4K −

1
2M

))
. (2.24f)

These general constitutive equations can easily be applied for equi-biaxial boundary

condition by equating S11 = S22 = S. If S22 is equal to zero, these biaxial constitutive

equations will reduce to the uniaxial equations derived above. Either uniaxial or

biaxial constitutive relation can be easily transformed to the isotropic condition by

assigning n= 1.
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3. EXPERIMENTAL PROCEDURE, TESTING PROTOCOLS AND TOOLS

FOR DATA ANALYSIS∗

In this chapter, specimen preparation, experimental setup, and testing protocols

are explained. The genetic algorithm and digital-image correlation methods are also

investigated in detail.

3.1 Materials and Specimen Fabrication

Sorta Clearr 40, a white translucent silicone rubber, and 1/16” high-temperature 

silicone O-ring cord, purchased from McMaster-Carrr, were used as raw materials for 

the matrix and fiber c onstituents t o p roduce a  s ilicone/silicone c omposite capable 

of large deformations. Matrix silicone has a Shore hardness is 40A; whereas, the 

fiber s ilicone h as 7 0A S hore h ardness b ased o n manufacturers’ t echnical bulletins. 

Because the chemistry for matrix and fiber w as t he s ame, i .e., s ilicon, excellent 

bonding between fiber and matrix was observed.

A 3D printed mold was designed in Solidworksr and used to produce our silicone 

composite. A smooth surfaced plastic cap was implanted into the bottom of the 

polylactide (PLA) mold bottom to obtain a gentle surface. Same length fiber rods 

were inserted into each slot of the mold. A small steel rod was used to push the fibers 

into their slots to make sure the fiber rods were properly a ligned. Figure 3 .1 shows

the PLA mold, silicone fiber r ods, a nd p lastic c aps. T here i s a nother p lastic cap 

that covers the silicone composite top surface to control thickness and top surface

smoothness of the composite material.
∗Part of this section is reprinted with permission of ASME from “Experimental Validation of Neo-

Hookean Fiber Reinforced Elastic Solids” by Veysel Erel, Mingliang Jiang, Micheal R. Moreno 
and Alan D. Freed 2018, Conference on Smart Materials, Adaptive Structures and Intelligent 
Systems, San Antonio, TX, USA, September 10–12, 2018, pp V001T01A019. Copyright 2018 ASME.
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Figure 3.1: 3D printed mold [17]

Sorta Clear part A and part B constituents were combined inside a plastic con-

tainer to prepare the composite matrix material. The mixture was degassed inside

the vacuum oven at 28.5 inches of mercury for around 5 minutes before it was poured

into the PLA mold. Then the mixture was degassed for five additional minutes to

eliminate any air trapped from pouring. Before the composite material was extracted

from the mold, it was allowed to cure for 16 hours. Each casting was cut into three

specimens. A typical specimen had around 18% fiber volume fraction. Figure 3.2

shows 0◦ and 90◦ silicone/silicone composite tensile specimens. ASTM standard

D3039 [18], titled Standard Test Method for Tensile Properties of Polymer Matrix

Composite Materials, was adhered to determine the gage section and clamping area

of each specimen. Black lines close to the top and bottom show where the specimen

is supposed to be clamped; whereas those lines close to the center delineate the gage
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section area.

Figure 3.2: 0◦ and 90◦ uniaxial tensile specimens

3.2 Experimental Setup and Test Procedure

The biaxial system, located inside the Biomechanical Environments Laboratories

in the Mechanical Engineering Department at Texas A&M University, was used to

perform the experimental side of this thesis research. This setup is able to provide

non-contact measurement of mechanical properties for different types of experiments

such as shear, uniaxial and general biaxial tests.

The biaxial mechanical testing system, shown in Fig. 3.3, contains four motorized

linear actuators (DS4 series, Kollmorgen Corp.), each impelled by a servo motor

(AKM23D, Kollmorgen Corp.), rigidly stabilized on a breadboard table to prevent

vibrations. A high resolution camera was installed above the system to observe a

specimen surface and record the markers’ movement on the specimen. The system
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Figure 3.3: Experimental setup

was integrated with a custom made four-axis controller that will allow load, stroke

and centroid control of the deformation on each axis. This adjustable system can be

configured to perform uniaxial, equi-biaxial, general biaxial, and shear tests as-well-

as tests that can measure viscoelastic behaviors.

Linear variable differential transformers (LVDT, MVL7C, Honeywell Sensing and

Control) were employed for closed loop control of displacement. All the drives were

controlled by a custom made four-axis digital servocontroller (MTI TESTExpress
R©, McGaw Technology Inc.) that employs a centroid control algorithm to enable

independent and switchable control between load and displacement on each axis.

Displacements are measured by linear actuators which were connected to linear

variable differential transformers. An area scan camera (Basler acA1300-200um,

Basler AG) fitted with a 25mm lens (HF25HA-1B, Computar) was installed above
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the specimen for non-contacting measurement. For load measurement, there were

uniaxial tension/compression 10 pound load cells (Model 31, Honeywell Sensing and

Control) on each orthogonal axis to measure the forces applied to the specimen.

3.3 Test Procedure

First, a gage length was calculated by subtracting two times the width and clamp-

ing distance from the total length, per ASTM testing standard. Each specimen’s gage

section was drawn with a black marker, and then patterned with small ink dots to

enable tracking displacement changes during the deformation. Second, three width,

height and thickness measurements were taken with an micrometer from each spec-

imen to determine averaged initial specimen dimensions. Then, each specimen was

attached to the set-up using 3D printed toothed clamp, (shown in Fig. 3.3). Each

specimen alignment was checked using the Mako G-419B camera before starting the

experiment. Load cell initial load values were also recorded. Finally, uniaxial tensile

tests were performed at a 1% strain rate on six 0◦ and six 90◦ silicone/silicone com-

posite specimens, six fiber specimens, and six matrix specimens for different percent

strains. The load data and an image were simultaneously captured at 0.2 second

intervals. Axial and transverse displacements were captured through the camera.

3.4 Experiment Analysis

Voltage changes from the load cell and LVDT were recorded by a data acquisition

board. These voltage changes were transformed into calibrated load and displacement

changes. Stress values were calculated by dividing load with the initial cross-section

area, and strain values were calculated by dividing displacement changes with the

initial grip distance. Ncorr [19], an open-source digital image-correlation software,

was used to quantify longitudinal and transverse Eulerian strain measures. All op-

tions were assigned default settings during the image analysis, except for prefering
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Table 3.1: Ncorr strain measurement validation.
Axial Strain Measurement Transverse Strain Measurement
Ncorr LVDT Difference Ncorr ImageJ Difference

0◦ specimen 0.3414 0.345 1.04 % 0.1134 0.1168 2.88 %
90◦ specimen 0.3518 0.345 1.97 % 0.0997 0.1030 3.26 %

the four-thread multithreading option. Only the surface area within the gage section

was used to perform image correlation analysis. The Ncorr axial strain measurements

were verified against readings from an LVDT attached to the biaxial experimental

system; whereas, their transverse strain measurements were validated with the Im-

ageJ [20] software, which can measure pixel differences between images from an initial

frame and a final frame. Table 3.1 presents strain measurements for both the ax-

ial and transverse strains, and their differences between the various measurement

techniques computed.

3.5 Genetic Algorithms

A genetic algorithm was used to analyze the 10% uniaxial compliant/compliant

composite data to obtain optimized, conjugate-pair, material parameters. This al-

gorithm was coded by Dr. Freed, inspired from E. D. Goldberg [21]. In Goldberg’s

book, he clearly explained what genetic algorithms are:

"Genetic algorithms are search algorithms based on the mechanics

of natural selection and natural genetics. They combine survival of the

fittest among string structures with a structured yet randomized infor-

mation exchange to form a search algorithm with some of the innovative

flair of human search. In every generation, a new set of artificial crea-

tures (strings) is created using bits and pieces of the fittest of the old: an
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occasional new part is tried for good measure. While randomized, genetic

algorithms are no simple random walk. They efficiently exploit historical

information to speculate on new search points with expected improved

performance."

Goldberg used a simple genetic algorithm that fixed the probabilities for mutation

and crossover over the lifetime of the colony; however, Dr. Freed implemented an

adaptive genetic algorithm [22] that is able to alter variation of crossover and mu-

tation probability. This is the general objective function that has been used in this

algorithm.

ε= 1
R

R∑
r=1

er (3.1)

where R is number of response variables and

er = ar(Xr−Ξ), ar = 1
maxNn=1(|xrn|)

(3.2)

wherein er is residual error and ar is scaling factor. Expected residual error

E(ε) =
( 1
R

R∑
r=1

(
E(er)

)P)1/P
(3.3)

where P is the number of parameters in a model, E(er) = ar(E(Xr)−E(Ξr)) is the

expected residual error for specific data. This objective function was found by Dr.

Freed after many trial and errors. There is no literature behind this function.

Genes reside at the lowest level of genetic algorithm hierarchy, and allele are the

possibility value of the genes. During procreation, which is where the first colony of

individuals come from, the allele are randomly assigned, whereas in later colonies,

allele are assigned through chromosome crossovers with a possible additional gene

mutation. In this programming stage, biallelic genes have been used to assign a
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dominant gene with 1 and a recessive gene with 0. Mutation may also happen in this

stage. The probability of mutation Pm is assigned to each creature after a generation

has been fully populated and the fitness of all creatures in that generation are known.

Pm = Pmmax−
(Pmmax−Pmmin)(f −favg)

fmax−favg
if f ≥ favg otherwise Pm = Pmmax (3.4)

where Pmmax and Pmmin are the maximum and minimum probabilities for mutation,

while f is the fitness of an individual creatures, favg is the average fitness of that

generation and fmax is the fitness of its elite creature. During the reproduction,

father and mother’s mutation chances become averaged and are to assigned to their

offspring’s probability of mutation.

Chromosomes are on the second level of a genetic algorithm hierarchy. At this

programming stage, each chromosome is correlated with a single model parameter

that is desired to be optimized. A one-point chromosome crossover happens at this

stage. A random number generator determines where a splice is to take place to

complete a crossover. A probability for crossover Pc is assigned to every chromosome

of an individual creature after a generation has been fully populated and the fitness

of all creatures in that generation are known.

Pc = 1
P

(
P cmax−

(P cmax−P cmin)(f −favg)
fmax−fmin

)
if f ≥ favg otherwise Pc = P cmax

P

(3.5)

where P cmax and P cmin are the maximum and minimum probabilities for crossover

happening within a creature, and P corresponds to number of chromosomes that a

creature has. During the reproduction, father and mother’s crossover chances will

be averaged to assign their offspring’s probability of crossover.

Schemata are fundamental building blocks in genetic algorithms. A schema is
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a combination of genes that is shorter than the chromosome. They carry high per-

formance matchings to successive generations. In schemata, there are some gene

expressions are fixed; whereas, others are allowed to vary.

The third level of genetic algorithm hierarchy is the genome, which contains the

entire evolution history of a living organism. Genomes are groups of chromosomes,

which relate to each model parameter. Thus the number of model parameters cor-

responds to the number of arrays of chromosomes contained in its genome.

Creatures belong to the level of a physical being, an organism or an individual.

This level contains a lot of information such as: a creature’s birthID, fitness, param-

eters, similarity of its parent’s genome, and probabilities of mutation and crossover.

Each individual associates with an unique set of model parameters that contains

both fixed and varied parameters. An individual can come into being from three

different ways. Procreation is used to create the first colony. This process requires

specified upper and lower bounds for each parameter interval. Then initialization

starts with an upper level of 11111111 (assuming the chromosome has eight genes)

and a lower level of 00000000 span the range of allowed chromosomes which scale

with the min and max of parameter’s values. The second way an individual can

be created is through an alien migration. Aliens have a known phenotype (mate-

rial parameter); whereas, procreated individuals have random (assigned by chance)

phenotypes. This process seeds individuals with good fitness into a population. The

final way to a create an individual is though mating two distinct individuals. This

method creates an individual from its parents, and carries mutation and crossover

possibilities to its offspring.

Colonies are the highest level in genetic algorithm hierarchy. Creature couples

from an existing colony are selected to mate through a process called tournament play

to determine whose offspring will constitute the next generation of the colony. The
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participants for tournament play are randomly selected from an existing population,

and mate with the winner (most-fit) participant from each tournament of play. The

number of participants in the tournament is a set that is 2% of the population size.

In figure 3.4 each step in the genetic algorithm hierarchy has been summarized;

a) Gene mutation happens at this stage.

b) Crossover occurs at this stage. Each chromosome correlates with a single material

parameter.

c) There is a one-to-one correlation between the number of material parameters in a

model and the arrays number of chromosomes in its genome.

d) Each individual has an unique assigned set of model parameters which contains

all of its genetic information, plus its fitness, mutation and crossover probabilities.
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Figure 3.4: Genetic Algorithm Hierarchy
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3.6 Digital Image Correlation:Ncorr

Digital image correlation (DIC) uses an image processing technique to obtain

non-contact measurements of displacements from which strain fields can be derived.

Specimen images are taken during deformation, then compared with an initial (ref-

erence) image by obtaining one-to-one mappings between the undeformed image and

subsequent deformed images. The planar, stress/stain, conjugate pair, approach re-

quires two-dimensional strain measurements. Thus, the author used Ncorr [19], an

open source and digital image correlation software, to analyze his planar deforma-

tions. In this section, theory and numerical methods behind the Ncorr software are

investigated.

The deformation is aimed to observe within a region of interest (ROI) that is

divided into many subsections (subsets). A group of neighboring points can generate

a subset as-long-as it contains a center point. The deformation is assumed to be

homogeneous inside each subset. Consider a first-order transformation described by

x̃curi = xrefi
+urc+ ∂u

∂xrc
(xrefi

−xrefc) + ∂u

∂yrc
(yrefj

−yrefc)

ỹcurj = yrefj
+vrc+ ∂v

∂xrc
(xrefi

−xrefc) + ∂v

∂yrc
(yrefj

−yrefc)
(3.6)

where xrefi
and yrefj

indicate the location of an initial reference subset point in x and

y coordinates, xrefc and yrefc express the center of the initial reference subset in the

x and y coordinates, xcuri and ycurj provide the location of a final (current) subset

point in the x and y coordinates, with i and j being symbols used to represent the

relative location of subset points with respect to the center of the subset. S is a set

that contains all of the subset points. The subscript ’rc’ refers to a transformation

from the reference to the current coordinate system. p is a generalized deformation
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vector defined as

p =
{
u v

∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

}
. (3.7)

Equation (3.6) can also be described in a matrix form as

ξrefc +w(∆ξref ;prc) =


xT
refc

yT
refc

1

+


1 + du

dxrc

du
dyrc

urc

dv
dxrc

1 + dv
dyrc

vrc

0 0 1




∆xT

ref

∆yT
ref

1

 (3.8)

where ξ is an augmented vector, ∆x = xrefi
−xrefc and ∆y = yrefi

− yrefc are dis-

tances between points inside the subset the center of the subset, and w is called the

warp function. Ncorr allows the reference subset to deform within the reference con-

figuration to achieve computationally more efficient algorithm. This idea is solved

using the inverse, compositional, Gauss-Newton numerical, method [23]. Thus

x̃refi
= xrefi

+urr + ∂u

∂xrr
(xrefi

−xrefc) + ∂u

∂yrr
(yrefj

−yrefc)

ỹrefj
= yrefj

+vrr + ∂v

∂xrr
(xrefi

−xrefc) + ∂v

∂yrr
(yrefj

−yrefc), (i, j ε S)
(3.9)

where x̃refi
and ỹrefi

indicates location of a final reference subset in x and y coor-

dinates. The ’rr’ subscription implicates transformation between the two coordinate

systems with respect to the reference configuration (image).

Ncorr uses two different correlation criteria [24] in order to associate similarity

(gray-scale value) between the final reference subset and a final current subset. The

normalized cross correlation (NCC) equation is used to compute an initial guess at

the integer pixel locations, i.e.,

Ccc =
∑
ij

(
f(x̃refi

, ỹrefj
)−fm

)(
g(x̃curi , ỹcurj )−gm

)
√∑

ij

[
f(x̃refi

, ỹrefj
)−fm

]2∑
ij

[
g(x̃curi , ỹcurj )−gm

]2 , (i, j ε S) (3.10)
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where f and g are the reference and current image grayscale intensity functions,

respectively, for a specific location (x,y). Functions fm and gm correlate with the

reference and current subset mean grayscale values, respectively. The procedure to

find an initial guess is as follows:

1. Use a reference subset (a small circle inside the ROI) and pad it with zeros to

obtain a full size image that is equal in area to current image.

2. Convolve the padded image with the current image to find the array of NCC.

3. Determine the subset location in the current configuration by finding the po-

sition of the maximum correlation criteria.

Because an initial guess only provides u and v at integer location p = { u, v, 0, 0,

0, 0 }, another correlation criteria CLS is used to refine location at sub-pixel level

resolution, specifically

CLS =
∑ f(x̃refi

, ỹrefj
)−fm√∑

ij

[
f(x̃refi

, ỹrefj
)−fm

]2 − g(x̃curi , ỹcurj )−gm√[∑
ij

[
g(x̃curi , ỹcurj )−gm

]2
 (3.11)

which is considered as a normalized least square criteria that indicates a good match

whenever its value is close to zero whereas the Ccc value (normalized cross correlation

criteria) is close to one. Subtracting mean components (fm and gm) from Eq. (3.10)

and (3.11) and dividing by the quantity in the denominator provides a correlation

criteria that is invariant to affine shifts in gray scale values.

The starting point of nonlinear, iterative, least square optimization in Ncorr is

the Gauss-Newton method, which is widely used to find the roots of a function.

This method can be extended to optimization by finding the roots of a function

derivative. Furthermore, multi-variable optimization, a more generalized version,
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can be obtained by replacing derivatives with gradients, and determining where the

norm of the gradient approaches.

In this case, the general form of the iterative equation has been derived by apply-

ing the second order Taylor series expansion of CLS around po, which contains the

initial guess, and then determine where its derivative with respect to ∆p is equal to

the zero vector, viz.,

CLS(po + ∆p)≈ CLS(po) +∇CLSpo(∆p) + 1
2(∆p)2∇∇CLS(po) (3.12)

then,
dCLS(po+ ∆p)

d∆p
≈∇CLS(po) +∇∇CLS(po)∆p = 0 (3.13)

where ∇CLS(po) is the gradient of CLS at po and ∇∇CLS(po) is the Hessian of CLS

at po. The general form for this optimization equation can be then rewritten as

∇∇CLS(po)∆p =−∇CLS(po) (3.14)

Newton-Raphson iteration is applied to this equation.

Ncorr utilizes an inverse compositional method to update p. With this method,

the final reference subset location is allowed to alter; however, prr is set to zero at

every iteration. On the other hand, the final current subset location is allowed to

alter; it is set to pold. This method requires a single Hessian calculation at every

iteration. The gradient ∇CLS(0) and Hessian ∇∇CLS(0) are used to compute ∆p

from Eq. (3.14). Then pold is multiplied by ∆p−1 to obtain a closer approximation

to prc. Ncorr developers also investigated another method (forward additive Gauss-

Newton) to obtain update for p that are equal to pold+ ∆p. For this method, the

Hessian matrix needs to be calculated after every iteration, which is a computational
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expensive.

To calculate the gradient dCLS(0)/d∆p and Hessian d2CLS(0)/d∆p2, the func-

tions below have to be known;

∂

∂x̃refi

f(x̃refi
, ỹrefj

), ∂

∂ỹrefj

f(x̃refi
, ỹrefj

), g(x̃curi , ỹcurj ) (3.15)

Ncorr uses biquantic B-spline interpolation [25], to mitigate DIC error caused by

interpolating signals with high frequency content, and thereby being able to compute

the functions shown in Eq. (3.15). B-splines have a very favorable property in that

they are separable. In other words, 2D interpolation can be decomposed into a series

of 1D interpolations, which can be computed faster than 2D interpolations. This 1D

interpolation can be described as:

g(x) =
∑
kεZ

c(k)βn(x−k) (3.16)

where c(k), βn(x−k) and g(x) are the B-spline coefficients at integer k and kernel x−

k values, and interpolated signal value at x, respectively. Ncorr developers adopted

a B-spline kernel of order five with Z denoting the integer set. The kernel equation

was defined as

βn(x) = 1
n!

n+1∑
k=0

(n+1
k )(−1)k(x−k+ n+1

2 )2. (3.17)

B-spline coefficients can be found through deconvolution. In this case, a discrete

Fourier transform is applied to Eq. (3.16) giving

F{c}= F{g}
F{βn}

(3.18)

that upon taking the inverse direct Fourier transform of Eq. (3.18) will provide the
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B-spline coefficients. Now we need to interpolate the gray scale value from these 1D

B-spline coefficient values [c](xf ,yf ).

g(x̃cur, ỹcur) = [1 ∆y ∆y2 ∆y3 ∆y4 ∆y5]T[QK][c](xf ,yf )[QK]T



1

∆x

∆x2

∆x3

∆x4

∆x5



(3.19)

where ∆x= x̃cur−xf and ∆y = ỹcur−yf ,

[QK] =



1
120

13
60

11
20

13
60

1
120 0

− 1
24 − 5

12 0 5
12

1
24 0

1
12

1
6 −1

2
1
6

1
12 0

− 1
12

1
6 0 −1

6
1
12 0

1
24 −1

6
1
4 −1

6
1
24 0

− 1
120

1
24 − 1

12
1
12 − 1

24
1

120



and

[c](xf ,yf ) =



cxf−2,yf−2 c(xf−1,yf−2) c(xf ,yf−2) c(xf +1,yf−2) c(xf +2,yf−2) c(xf +3,yf−2)

c(xf−2,yf−1) c(xf−1,yf−1) c(xf ,yf−1) c(xf +1,yf−1) c(xf +2,yf−1) c(xf +3,yf−1)

c(xf−2,yf ) c(xf−1,yf ) c(xf ,yf ) c(xf +1,yf ) c(xf +2,yf ) c(xf +3,yf )

c(xf−2,yf +1) c(xf−1,yf +1) c(xf ,yf +1) c(xf +1,yf +1) c(xf +2,yf +1) c(xf +3,yf +1)

c(xf−2,yf +2) c(xf−1,yf +2) c(xf ,yf +2) c(xf +1,yf +2) c(xf +2,yf +2) c(xf +3,yf +2)

c(xf−2,yf +3) c(xf−1,yf +3) c(xf ,yf +3) c(xf +1,yf +3) c(xf +2,yf +3) c(xf +3,yf +3)



54



Here the inverse compositional method has a work-flow that is an extension of

the Lucas Kanade algorithm published by S. Baker [23].

1. Entire DIC Analysis Computation (Optional)

(a) Precompute [QK][c](xf ,yf )[QK]T for the entire current image.

(b) Compute ∂
∂x̃refi

f(x̃refi
, ỹrefj

) and ∂
∂ỹrefj

f(x̃refi
, ỹrefj

) for the entire refer-

ence image.

2. A subset computation

(a) Compute d
d∆pf

(
ξrefc +w(∆ξref ;0)

)
(b) Compute Hessian ∇∇CLS(0)

(c) Set the initial pold value to the initial guess from NCC

3. Computation for each subset iteration

(a) Compute g(x̃cur, ỹcur) by utilizing the B-spline method

(b) Compute the gradient ∇CLS(0)

(c) Compute ∆p using the known Hessian and gradient of CLS

(d) Update pold

(e) Exit when the norm of ∆p is small.

Ncorr utilized a reliability-guided digital image correlation method [26] to obtain full

field displacements. This method begins with selecting a seed point that is at the

center location of the first reference subset. This is a special subset, because it is

the one that uses NCC correlation to obtain an initial guess. The rest of the subsets

inside the region of interest use neighboring information as an initial guess. After

selecting a seed point, the neighboring points CLS are computed. The algorithm then
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moves in the direction of the lowest CLS value, computing neighboring point least

squares correlation CLS again, and finally moving on to the next lowest correlation

value until the queue is empty. This method helps to protect wrong computation

due to area and/or deformation discontinuity. In other words, leaving the least

correlated values (best match) at the end of entire computation will help prevent to

the propagation of error, i.e., the bad points do not affect subsequent calculations.

Calculating strains is more difficult than calculating displacements due to dif-

ferentiation. Any noise in displacement field will magnify errors in the strain field.

B. Pan [27] proposed another idea that utilizes a two-dimensional Savitzky-Golay

digital differentiator, rather than a reliability guided method. The basic idea behind

this differentiator method is to fit a 2D polynomial function to a local subregion of

the displacement field. Then to determine the unknown polynomial coefficients by

using the least squares method. Finally, to take derivatives of the found polynomial

displacement function with respect to x and y to obtain Lagrangian/Eulerian strain

components.
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4. ANISOTROPIC SMALL STRAIN CONJUGATE PAIRS∗

4.1 Small Strain Validation

Linear anisotropic vinylester data [28] are used to validate our transversely isotro-

pic conjugate stress/strain pairs theory. A set of experimental results comprised

of five 0◦ and six 90◦ specimens was used to compare experiment with both the

conventional and conjugate-pair models. The 0◦ specimens were loaded in the fiber

direction and are numbered from 1 to 5. The 90◦ specimens were loaded normal to

the fiber direction and are numbered from 6 to 11.

Figure 4.1: 0◦ fiber and 90◦ fiber

∗Part of this section is reprinted with permission from "Stress/strain basis pairs for anisotropic
materials." by Veysel Erel and Alan D. Freed 2017, Composites Part B: Engineering 120 (2017):
152-158. Copyright 2017 Elsevier Ltd. All rights reserved.
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4.1.1 Data Analyzing

Raw datum [28] were obtained from Dr. Muliana, Texas A&M University Me-

chanical Engineering Department. Axial stress was quantified by dividing the axial

force by the reference cross-sectional area. If the first strain value was not zero in an

experimental data set, then small digits were added or subtracted to round the first

strain values to zero. There were two strain probes placed at each side of specimen

that measured strain at micro strain resolution. Strains from the first probe were

used for calculations.

In the conventional Spencer model, the elastic modulus is determined by calcu-

lating the slope of the stress/strain curve data in both the pulling and transverse

directions. The negative ratio of the transverse strain vs. pulling direction strain

gives the Poisson ratio for the material. Linear regression was used to find the slope

of the curves, with optimal lines enforced to pass through the origin.

Elongation ratios a and b were converted into percent strain values in an engi-

neering sense for plotting purposes. A code written in C++ was used to analyze the

data.

4.1.2 Specimen Comparision

In the figures that follow, Figs. 4.2 - 4.31, the graphs at the left demonstrate the

elastic modulus in the pulling direction for both the 0◦ and 90◦ specimens. Small

figures close to curves indicate the fiber and pulling directions. Graphs at the right

show a axial/transverse strain ratio for both the 0◦ and 90◦ specimens.
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Figure 4.2: 0◦ specimen 1 vs 90◦ specimen 6
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Figure 4.3: 0◦ specimen 1 vs 90◦ specimen 7
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Figure 4.4: 0◦ specimen 1 vs 90◦ specimen 8
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Figure 4.5: 0◦ specimen 1 vs 90◦ specimen 9
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Figure 4.6: 0◦ specimen 1 vs 90◦ specimen 10
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Figure 4.7: 0◦ specimen 1 vs 90◦ specimen 11
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Figure 4.8: 0◦ specimen 2 vs 90◦ specimen 6
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Figure 4.9: 0◦ specimen 2 vs 90◦ specimen 7
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Figure 4.10: 0◦ specimen 2 vs 90◦ specimen 8

61



Poisson's Response

Classic Model Experimental Result Conjugate Pair Model

| T
ra

ns
ve

rs
e S

tra
in

 %
 |

0

0.1

0.2

0.3

0.4

0.5

Axial Strain %
0 0.02 0.04 0.06 0.08 0.1 0.12

Modulus in Pulling Direction

St
re

ss
 ( 

ki
p/

in
ch

2  )

0

2

4

6

8

10

12

Strain %
0 0.1 0.2 0.3 0.4

Figure 4.11: 0◦ specimen 2 vs 90◦ specimen 9
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Figure 4.12: 0◦ specimen 2 vs 90◦ specimen 10
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Figure 4.13: 0◦ specimen 2 vs 90◦ specimen 11
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Figure 4.14: 0◦ specimen 3 vs 90◦ specimen 6
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Figure 4.15: 0◦ specimen 3 vs 90◦ specimen 7
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Figure 4.16: 0◦ specimen 3 vs 90◦ specimen 8
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Figure 4.17: 0◦ specimen 3 vs 90◦ specimen 9
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Figure 4.18: 0◦ specimen 3 vs 90◦ specimen 10
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Figure 4.19: 0◦ specimen 3 vs 90◦ specimen 11
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Figure 4.20: 0◦ specimen 4 vs 90◦ specimen 6
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Figure 4.21: 0◦ specimen 4 vs 90◦ specimen 7
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Figure 4.22: 0◦ specimen 4 vs 90◦ specimen 8
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Figure 4.23: 0◦ specimen 4 vs 90◦ specimen 9
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Figure 4.24: 0◦ specimen 4 vs 90◦ specimen 10
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Figure 4.25: 0◦ specimen 4 vs 90◦ specimen 11
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Figure 4.26: 0◦ specimen 5 vs 90◦ specimen 6
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Figure 4.27: 0◦ specimen 5 vs 90◦ specimen 7
Classic Model Experimental Result Conjugate Pair Model

Poisson's Response

| T
ra

ns
ve

rs
e S

tra
in

 %
 |

0

0.1

0.2

0.3

0.4

0.5

Axial Strain %
0 0.02 0.04 0.06 0.08 0.1 0.12

Modulus in Pulling Direction

St
re

ss
 ( 

ki
p/

in
ch

2  )

0

2

4

6

8

10

12

Strain %
0 0.1 0.2 0.3 0.4

Figure 4.28: 0◦ specimen 5 vs 90◦ specimen 8
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Figure 4.29: 0◦ specimen 5 vs 90◦ specimen 9
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Figure 4.30: 0◦ specimen 5 vs 90◦ specimen 10
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Figure 4.31: 0◦ specimen 5 vs 90◦ specimen 11
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Both the classical model and the conjugate pair model describe linear responses

for transversely isotropic behavior. It can be clearly seen in the graphs from the

proceeding figures that the 0◦ fiber specimens response in the pulling direction is

mostly linear; however, a few specimens’ experimental results did not match with

either theoretical approach due to material non-linearity. Some of the 90◦ specimens

have a response in the pulling direction that is also a nonlinear response. The

conjugate pair model fit better than the classical model for the 90◦ pulling direction

response. It fits the linear regions of these response curves.

Most 0◦ Poisson responses are linear. Thus both models fit the data well for

this type of response. Some 90◦ specimens demonstrate nonlinear behavior. Linear

regression was used to fit the classical model to data; however, the conjugate pair

model assumes isotropic behavior, even in the off-fiber direction. In the presence of

non-linearity the classical, model may generate a better fit. Some 90◦ specimens,

viz. (Fig. 4.30), show isotropic behavior described well by both models.

4.2 Classic Model and Conjugate Pair Models: A Comparison

The capability of our model is contrasted against that of the classic fiber (trans-

versely isotropic) model of Spencer [9] which was derived (in Chapter 1.3) from

invariant theory. These two models are outlined and compared in Table 4.1.

The 0◦ and 90◦, one-preferred fiber direction composite plates were used to com-

pare the two different models’ numerical results. Three different types of stress/strain

behaviors were examined in this study. Specimens were pulled along with fiber di-

rection and normal to fiber direction. Parameters K, M and n correlate to the 0◦

elastic modulus E1, and the 90◦ elastic modulus E2. The relationship is written

below.
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Table 4.1: Model comparison table. [2]

Spencer’s Model (Conventional) Conjugate Base-Pair Model (New)


ε11
ε22
γ12

=



1
E1

−ν21
E2

0
−ν12
E1

1
E2

0

0 0 1
G12



T11
T22
T12



δ
ε
γ

=


1

4K 0 0

0 1
2M 0

0 0 1
G





S11
n

+nS22

S11
n
−nS22

a

b
S12


This model has 5 parameters to de-
scribe material behavior: E1, E2, G12,
ν12 and ν21.

This model has 4 parameters to de-
scribe material behavior: K, M , G and
n.

Off diagonal terms imply a coupling be-
tween strains in terms of stresses.

No coupling effect. Each conjugate
strain is independent of the other con-
jugate stresses.

Constitutive equations are derived
from a strain-energy density described
in terms of strain invariants.

Constitutive equations are derived
from a strain-energy density described
in terms of thermodynamic conjugate
pairs.
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1
n2

( 1
4K + 1

2M
)

= 1
E1
, n2

( 1
4K + 1

2M
)

= 1
E2

(4.1)

In the conjugate pair model parameters K, M and n have unique values for data

from this set of specimens. Parameters n and K changed in value after 0◦ specimen

was changed. For the conventional model, each specimen pair associates with a

different elastic modulus and different Poisson ratio, because they represents material

parameters. So, to; the optimal parameters were not found to be unique when the

data were parameterized against the classic model derived from invariant theory. In

contrast, the optimal parameters were unique for our new theory of elastic anisotropy

constructed from thermodynamic conjugate pairs.

Model parameters obtained from all twenty-five sets of data are tabulated in

Table 4.2. In that table, modulus M was intentionally held fixed, while modulus

K was allowed to vary. Because the data sets investigated did not contain shear

experiments, responses governed by the shear moduli, viz., Spencer’s G12 and our

G, could not be compared.
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Table 4.2: Parameterization the classic invariant model and our conjugate-pair
model. [2]

0◦ vs. 90◦ n K M E1 E2 ν12 ν21
Spec. 1 vs. Spec. 6 1.14 1250 1670 2640 1510 0.265 0.169
Spec. 1 vs. Spec. 7 1.14 1250 1670 2640 1400 0.265 0.167
Spec. 1 vs. Spec. 8 1.14 1250 1670 2640 1400 0.265 0.139
Spec. 1 vs. Spec. 9 1.14 1250 1670 2640 1500 0.265 0.179
Spec. 1 vs. Spec. 10 1.14 1250 1670 2640 1510 0.265 0.162
Spec. 1 vs. Spec. 11 1.14 1250 1670 2640 1440 0.265 0.147
Spec. 2 vs. Spec. 6 1.20 1220 1670 2880 1510 0.274 0.169
Spec. 2 vs. Spec. 7 1.20 1220 1670 2880 1400 0.274 0.167
Spec. 2 vs. Spec. 8 1.20 1220 1670 2880 1400 0.274 0.139
Spec. 2 vs. Spec. 9 1.20 1220 1670 2880 1500 0.274 0.179
Spec. 2 vs. Spec. 10 1.20 1220 1670 2880 1510 0.274 0.162
Spec. 2 vs. Spec. 11 1.20 1220 1670 2880 1440 0.274 0.147
Spec. 3 vs. Spec. 6 1.16 1270 1670 2710 1510 0.278 0.169
Spec. 3 vs. Spec. 7 1.16 1270 1670 2710 1400 0.278 0.167
Spec. 3 vs. Spec. 8 1.16 1270 1670 2710 1400 0.278 0.139
Spec. 3 vs. Spec. 9 1.16 1270 1670 2710 1500 0.278 0.179
Spec. 3 vs. Spec. 10 1.16 1270 1670 2710 1510 0.278 0.162
Spec. 3 vs. Spec. 11 1.16 1270 1670 2710 1440 0.278 0.147
Spec. 4 vs. Spec. 6 1.11 1290 1670 2530 1510 0.269 0.169
Spec. 4 vs. Spec. 7 1.11 1290 1670 2530 1400 0.269 0.167
Spec. 4 vs. Spec. 8 1.11 1290 1670 2530 1400 0.269 0.139
Spec. 4 vs. Spec. 9 1.11 1290 1670 2530 1500 0.269 0.179
Spec. 4 vs. Spec. 10 1.11 1290 1670 2530 1510 0.269 0.162
Spec. 4 vs. Spec. 11 1.11 1290 1670 2530 1440 0.269 0.147
Spec. 5 vs. Spec. 6 1.17 1310 1670 2820 1510 0.304 0.169
Spec. 5 vs. Spec. 7 1.17 1310 1670 2820 1400 0.304 0.167
Spec. 5 vs. Spec. 8 1.17 1310 1670 2820 1400 0.304 0.139
Spec. 5 vs. Spec. 9 1.17 1310 1670 2820 1500 0.304 0.179
Spec. 5 vs. Spec. 10 1.17 1310 1670 2820 1510 0.304 0.162
Spec. 5 vs. Spec. 11 1.17 1310 1670 2820 1440 0.304 0.147
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4.2.1 Statistical analysis

Variations in the moduli from both models, the Poisson ratios, and the n param-

eter have been investigated for all data sets. Results from statistical analyses are

tabulated in Table 4.3. The strength of anisotropy parameter n in our model and

the Poisson ratios ν12 and ν21 of the invariant model have minimal variation, while

our modulus K has less variation than the classic moduli E1 and E2.

Table 4.3: Mean and standard deviation values for material parameters. [2]

Parameters n K E1 E2 ν12 ν21

Mean 1.15 1270 2720 1460 0.278 0.160

Standard deviation 0.03 30 130 50 0.004 0.013
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5. LARGE STRAIN LINEAR AND NONLINEAR CONJUGATE PAIR∗

Transversely isotropic conjugate pair theory has been extended for large linear 

and nonlinear deformation in this chapter. The physical meaning of anisotropy 

parameter n (the strength of anisotropy) has been obtained and implemented to 

uniaxial silicone/silicone composite material behavior.

5.1 The Strength of Anisotropy

Anisotropy parameters have been widely used to describe behavior difference from 

axial to transverse direction. In 2008, Shivakumar [29] proposed a new, universal, 

anisotropy index for elastic single crystals by relating stiffness matrix components 

(the moduli C11, C12 and C44) from cubic cystal symmetry. Another anisotropic 

parameter introduced [30] to describe the ratio between the horizontal and vertical 

velocities of seismic waves is P-wave anisotropy. In addition to these, an anisotropic 

index definition, s imilar t o what i s d escribed h ere, h as b een p resented by Cheney 

[31]. He states the surface anisotropy is a ratio of the tangent moduli measured 

parallel and perpendicular to elastin fibers. In this section, we utilize the anisotropic 

conjugate-pair approach to find a relationship between these Young’s moduli and the 

strength of anisotropy parameter n.

Constitutive formulæ describing an uniaxial extension of anisotropic materials 

were derived in terms of our anisotropic, stress/strain, basis pairs in the third chapter. 

Let us assume a1 and a2 are elongations in the fiber d irection, while b 1 and b 2 are 

elongations normal to the fiber d irection i n 0 ◦ a nd 9 0◦ c omposites, respectively. 

Stress S1 is an applied traction in the fiber direction for 0 ◦ specimens, whereas stress
∗Part of this section is reprinted with permission from "Anisotropic Conjugate Stress/Strain 

Base Pair Approach for Laminates Undergoing Large Deformations" by Veysel Erel and Alan D. 
Freed 2019. Copyrigh 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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S2 is an applied traction normal to the fiber direction for 90◦ specimens [2]. Then,

a1 = exp
( 1
n2

(
S1
4K + S1

2M

))
, b1 = exp

(
S1
4K −

S1
2M

)
(5.1a)

a2 = exp
(
S2
4K −

S2
2M

)
, b2 = exp

(
n2
(
S2
4K + S2

2M

))
(5.1b)

where K is the areal modulus, and M is the pure shear modulus in 2D space. Shear

modulus G does not arise in these formulæ because their boundary conditions are

shear free.

Here a formula to quantify parameter n is derived. By using Eq. (5.1), which

contains parameter n, we select

a1 = exp
( 1
n2

(
S1
4K + S1

2M

)
, b2 = exp

(
n2
(
S2
4K + S2

2M

))
(5.2a)

that invert to become

n2lna1
S1

=
( 1

4K + 1
2M

)
,

lnb2
S2n2 =

( 1
4K + 1

2M

)
(5.2b)

which when equated lead to the following expression for n

n= 4

√
S1lnb2
S2lna1

. (5.2c)

By using Eq. (19) in Ref. [2], a useful relationship follows,

n= 4

√
S1lnb2
S2lna1

= 4

√
E1
E2

(5.2d)

where E1 and E2 are the elastic moduli aligned with the fiber and transverse-fiber

75



directions, respectively. R. W. Ogden [32] and T. J. Pence [33] have used a parameter

(γ) with the neo-Hookean model to describe the anisotropic portion of mechanical

behavior; however, their parameter doesn’t have any physical meaning, unlike our

parameter n defined in this thesis which does.

As seen above, parameter n can be calculated without knowing the other conjugate-

pair material parameters viz., K and M . With this method, constitutive equations

can easly be solved and material parameter calculation becomes straight forward. It

describes how much the fibers increase material stiffness in the preferred direction. If

n > 1, then the 1-direction will be stiffer than the 2-direction, and if n < 1, then the

2-direction will be stiffer than the 1-direction, while isotropy exists whenever n= 1.

In addition, we conclude that parameter n arises from decoding/encoding maps, and

not the constitutive equation itself [2]. In other words, n does not appear in either

the stiffness or compliance matrices. A comparison for the strength of anisotropy

(n) for different composite materials is discussed in later sections.

5.2 Large Strain Conjugate Pair for Linear Behavior

In Figure 5.1 curves in the left plot describe an average stress/strain response

for 0◦ and 90◦ composite specimens, while curves in the right plot demonstrates the

axial/transverse strain response for both the 0◦ and 90◦ specimens. The 0◦ specimens

show higher stress/strain and Poisson values than the 90◦ specimens. Stress and the

axial and transverse strain measurements are averaged from six specimens. The solid

line represents the 0◦ composite responses, while dashed line presents 90◦ composite

response with maximum and minimum bounds shown. Figure 5.2 demonstrates fiber,

0◦ and 90◦ silicone fiber-matrix composite, and matrix material uniaxial response.
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Figure 5.1: 0◦ silicone/silicone fiber-matrix composite material Stress vs. axial 
strain, and transerve vs. axial strain graphs. Barrents show the stress variation 
observed from six specimens. [17]
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Figure 5.2: From top to bottom: fiber, 0◦ and 90◦ silicone fiber-matrix composite, 
and matrix material stress/strain responses. [17]
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5.2.1 Data Analysis

A genetic algorithm optimization technique [21] was used to find optimum mate-

rial parameters. Six 0◦ and six 90◦ stress/strain data sets generated 36 combinations

of response, e.g., specimen 1 (0◦) vs. specimen 7 (90◦) and so on. First, material

parameters (n,K,M) were obtained for the 36 individual combinations. Then av-

erage values for the three material parameters were calculated. Second, the six 0◦

stress/strain responses were combined by taking their average. Then the same proce-

dure was applied to the six 90◦ responses. Both the 0◦ and 90◦ averaged stress/strain

responses were used for parameter estimation. Third, each 0◦ and 90◦ data set was

optimized by itself. After these parameter optimizations were completed. A statis-

tical analyses was performed to gain a better understanding of the conjugate-pair

material parameters.

Figure 5.3 shows parameter n, which represents the strength of anisotropy, as a

box and whisker plot of the data for all optimization cases. The first two optimiza-

tion cases and the 90◦ individual fits provide similar n mean values, while the 90◦

individual optimization demonstrates higher variation. Figure 5.4 shows parameter

K and M , as box and whisker plots of the data for all optimization cases. The

mean and variations show similarity for parameter K, while only the combined opti-

mization demonstrates similar optimization results for parameter M . All mean and

standard deviations are tabulated in Table 5.1, with an addition of the coffecient of

determination (R-squared analysis). Because the R-squared values do not represent

reliable measures for the different goodness of curve fitting, the authors added z-test

and t-test statistical analyses to compare the different optimization cases.

Z-tests and t-tests were performed to compare whether two samples have the

same mean or the same variance, respectively. The 0◦ and 90◦ averaged response
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Figure 5.4: Parameter K and M box and whisker plots of the data for all optimiza-
tion cases. [17]

Table 5.1: Optimization table for model parameters. [17]
n K M 0◦ R2 90◦ R2

0◦ and 90◦ Average Mean 1.056 157.86 177.76 0.998968 0.9997954
Standard Deviation 0.015 22.74 12.05 3.527E-5 7.798E-5

0◦ and 90◦ All Mean 1.054 161.75 172.88 0.998932 0.997840
Standard Deviation 0.016 20.83 14.35 4.449E-4 8.18E-4

0◦ All Mean 1.089 158.22 157.47 0.998908
Standard Deviation 0.037 25.04 19.38 4.419E-4

90◦ All Mean 1.054 142.11 135.77 0.997825
Standard Deviation 0.036 27.63 22.29 8.36E-4
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(optimization case two) was used to compare with other optimization cases in terms

of material parameters. Table 5.2 presents the p-values used to determine if the data

are statistically significant or not. Bolded values corresponding to less than 0.05

means there is a difference between the mean or the variance in a statistical sense.

Only when each combination of all specimens are optimized (case one) are all p-values

satisfied, i.e., there is insufficient statistical evidence to support the hypothesis that

they are different.

Table 5.2: Z-test and t-test analyses were performed to compare mean and variance

values. [17]
p values

selected p-value: 0.05 n K M

z test: Two sample assuming same means

0◦ and 90◦ All 0.574 0.565 0.22

0◦ All 8.93E-6 0.96 1.22E-5

90◦ All 0.767 0.03 7.96-5

t test: Two sample assuming same variance

0◦ and 90◦ All 0.586 0.563 0.2615

0◦ All 0.002 0.962 0.0006

90◦ All 0.828 0.061 1.89E-8

Three material parameters arise from the conjugate-pair approach. They have

been calculated and compared with E-glass/vinylester material parameters [2]. Table

5.3 presents differences between compliant (silicone) and stiff (E-glass/vinylester)

composites. Parameters K and M for the stiff composite are around an order in

magnitude larger than those of the compliant composite.

Parameter n, as calculated by using elastic moduli via Eq. (7d), is compared with

n values obtained through optimization in Table 5.4. A big difference can only be
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Table 5.3: Stiff and compliant composites: conjugate-pair material comparison [17]

Conjugate parameters n K M
E-glass/vinylester composite 1.15 1270 1670
Silicone/silicone composite 1.055 142 191

Table 5.4: An n value of 1.055 arises from the elastic modulus ratio, Eq. (7d),
compared with statistical n values. [17]

n Difference from theoretical n Variance
0◦ and 90◦ Average 1.056 0.1% 0.000254

0◦ and 90◦ All 1.054 0.1% 0.000262
0◦ All 1.89 3.2% 0.00138
90◦ All 1.054 0.1% 0.00132

seen for the 0◦ individual fits for the n value, while only the analysis that uses both

0◦ and 90◦ experimental results shows similar variance. By definition, n describes

strength differences between the 0◦ and 90◦ specimens.

The goal of this work, proven in figure 5.5, was to validate an anisotropic, conju-

gate, stress/strain pairs approach for laminates undergoing large deformation. Com-

pliant silicone/silicone fiber-matrix composite specimens were studied under uniaxial

tension loading conditions. The author’s anisotropic, conjugate, stress/strain basis

theory has been successfully implemented for large deformations using three mate-

rial parameters. A genetic algorithm was used to optimize the parameter estimation.

Statistical methods like R-squared, z-test, and t-test were then used to gain a deeper

understanding of the material parameters. Evidence suggests that the combined 0◦

and 90◦ data should be used to obtain less varied material parameters. Of particular

interest is that the anisotropy parameter n, formulated in terms of Young’s moduli,

has a physical meaning, unlike classical anisotropic parameters such as γ.
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Figure 5.5: Correlation of experimental results with a conjugate-pair model for 0◦
and 90◦ composite specimens. [17]

5.3 Large Strain Conjugate Pair for Nonlinear Behavior

The same experimental setup and testing procedures have been used to perform

60% uniaxial tensile experiments on a silicone/silicone composite material. Due to

90◦ specimen delamination, Gom Correlate commercial DIC software was used to

verify strain results obtained through Ncorr. Each specimen comparison for axial

and transverse percent strain values can be seen in Tables 5.5 and 5.6. Strain dif-

ferences between these two softwares are in the acceptable range. Explicit conjugate

pair models have been used to model experimental results and compared with con-

ventional (Neo-Hookean) transversely isotropic models that were proposed by Pence,

and Ogden. A constraint caused by transverse direction boundary condition has been

implemented into a genetic algorithm for obtaining material parameters.
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Table 5.5: Ncorr vs. GOM Axial Percent Strain Comparison
0◦ degree 90◦ degree

Specimen Ncorr GOM Specimen Ncorr GOM

1-1 58.9874 59.4085 3-1 58.164 60.8837

1-2 59.1136 59.9767 3-2 58.7275 61.0505

1-3 57.5182 58.3475 3-3 57.7671 60.5215

2-1 58.9951 62.9051 4-1 59.4908 59.1700

2-2 57.6887 58.1328 4-2 61.1311 62.3756

2-3 58.9174 60.1433 4-3 59.4756 57.9016

Average 58.8649 59.8425 Average 59.1260 60.3171

Difference 1.66% Difference 2.02%

Table 5.6: Ncorr vs. GOM Transverse Percent Strain Comparison
0◦ degree 90◦ degree

Specimen Ncorr GOM Specimen Ncorr GOM

1-1 -19.6426 -19.3992 3-1 -17.8706 -18.8505

1-2 -20.1462 -20.7243 3-2 -17.7676 -18.3283

1-3 -19.4583 -20.1714 3-3 -16.3703 -19.0631

2-1 -19.9068 -19.6378 4-1 -18.2945 -17.6873

2-2 -19.2425 -19.3998 4-2 -17.4043 -17.4879

2-3 -20.1857 -20.1599 4-3 -18.2129 -18.4824

Average -19.878 -20.553 Average -17.6534 -18.3166

Difference 3.4% Difference 3.75%
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5.3.1 Conventional Nonlinear Transversely Isotropic Theories

Neo-Hookean transversely isotropic theories, have historically been used to de-

scribe rubber-like behavior, which were studied by T.J. Pence [33], J. Merodio and

R.W. Ogden [32], and others as an application of fiber-reinforced, nonlinear, elas-

tic solids. Single-axis, continuous, fiber reinforcement provides transverse anisotropy,

which can be described in terms of a forth and fifth strain invariant [9]. In a proceed-

ing paper [34] published by the author contains a different Neo-Hookean transversely

isotropic models comparison and uniaxial boundary condition derivation. In that

study the author concluded that a constitutive equation which uses the 4th invariant

provides better results, and that silicone/silicone composite material is compressible.

Thus, the same constitutive equations have been used to obtain material parameters

for the 0◦ and 90◦ silicone/silicone material.

5.3.2 Constraint Condition

Constitutive equations derived from invariant theory introduce constraint con-

ditions arising in the transverse direction. The contracted direction should have a

zero stress value with a constant material parameter and varying strain input. Con-

sider a compressible Neo-Hookean transversely isotropic constitutive equation that

was proposed by Thomas Pence, which uses the 4th invariant to describe anisotropic
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behavior. The 0◦ composite nominal stress can be found as [34]

N11 = µJ−1
[
− λ

2
1 +λ2

2
2λ1

+λ1

]
+ 2D1(J−1)λ2 + 2µγλ1(λ2

1−1)

= µ

2J
−1
[
λ1−

J2

λ3
1

]
+ 2D1(J−1)λ2 + 2µγλ1(λ2

1−1) (5.3a)

N22 = µJ−1
[
− λ

2
1 +λ2

2
2λ2

+λ2

]
+ 2D1(J−1)λ1 = 0

= µ

2J
−1
[
λ2−

J2

λ3
2

]
+ 2D1(J−1)λ1

= µ

2J
−1
[
J

λ1
− λ

3
1
J

]
+ 2D1(J−1)λ1 (5.3b)

The N22 stress value is equal to zero due to the reason mentioned above. To obtain

material parameters, this constraint condition has also to be satisfied. A sequential

least square algorithm was used for this purpose, which is in the implemented in the

Scipy library.

Consider the Conjugate Pair dilation and squeeze stress terms, which are

π = S11
n

+nS22, and σ = S11
n
−S22n. (5.4)

For uniaxial tensile boundary condition, S11 =S and S22 =0. After inserting these

stress values into the conjugate pair stress terms one gets

π = S11
n
, and σ = S11

n
(5.5)

with this relations, and the constraint conditions are been satisfied. Thus, the conju-

gate pair approach does not require nonlinear optimization with a constrain condition

to find optimal material parameters.
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5.3.3 Material Parameter Optimization

A transversely isotropic Neo-Hookean model was parameterized using 0 degree

and 90 degree silicone/silicone uniaxial data. A sequential, nonlinear, least-squares

(SLSQP) program from the SciPy Python library was used to quantify these material

parameters. Constraint conditions (Eqs. 21b and 22a) arise from the traction-free

boundary condition that exists in the transverse direction, and were also applied to

the least-squares algorithm. A simultaneous least-squares algorithm was also used to

obtain material parameters for Qiu and Pence’s model. Figure 5.6 demonstrates the

Neo-Hookean model fits to the author’s experimental results, and Table 5.7 shows

these material parameters.
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Figure 5.6: Uniaxial tensile 0◦ and 90◦ composite specimens response and the 
transversely isotropic Neo-Hookean model

86



Table 5.7: 60 % Neo-Hookean material parameters

Neo-Hookean model parameters µ D1 γ
Silicone/silicone composite 69.8192 83.486 0.1297

5.3.4 Conjugate Pair Model

The same uniaxial experimental results were used with transversely isotropic

conjugate pair approach (explicit dilation and squeeze equations) to obtain material

parameters. First the anisotropic parameter n was calculated through Eq. 5.2. Then

the First PK and stretch measurements were used to plot the dilation and squeeze

responses. Unlike the Neo-Hookean response, the explicit conjugate pair models

provide a linear response for both dilation and squeeze. Figure 5.7 and 5.8 show the

dilation and squeeze responses respectively. Material parameters can been seen in

Table 5.8.
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Figure 5.7: Uniaxial tensile 0◦ and 90◦ composite specimens dilation response
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Figure 5.8: Uniaxial tensile 0◦ and 90◦ composite specimens squeeze response

Table 5.8: 60 % Conjugate pair material parameters

Conjugate parameters n K0 K90 M

Silicone/silicone composite 1.098 643.04 826.53 270.13
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6. FINITE ELEMENT IMPLEMENTATION

Hyperelastic materials utilize a strain energy density function to derive constitu-

tive equations. Professor Ronald Rivlin, who was one of the creators of large strain

elasticity theory, published a series of papers between 1948 and 1952 entitled ‘large

elastic deformations of isotropic elastic materials’. He luculently explained that the

strain energy density for an isotropic elastic solid can be stated as a function of de-

formation tensor invariants [35]. The Neo-Hookean model, derived from statistical

mechanics by Treloar [36] and others, is a special case of Rivlin’s invariant theory at

the continuum level. Models by Mooney-Rivlin, Ogden, Fung and numerious others

have been proported, often given the name of their developers. Most material models

are derived from a strain energy function, a feature that finite element software has

widely adopted.

Finite element analysis is a method that solves engineering and physics problems

numerically. The working principle of a finite element solver is to first process the

deformation gradient to obtain either a Lagrangian or an Eulerian strain measure.

Then use either the Green deformation or the Finger deformation tensor invariants

to calculate stress values, which are gradients of the strain energy density function.

Lastly, a tangent (stifness) matrix is calculated using material parameters. It is com-

prised of second derivatives of the strain energy density. There are many commercial

finite element softwares available to simulate a material response. These codes are

commonly used for solid and fluid material applications. Biological materials such

as bones, tissues, ligaments and muscles, due to anisotropy, non-homogeneity, and

viscoelastic behavior of these materials, are more challenging to implement into code.

FEBio is an open-source, nonlinear, finite element software specifically constructed
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for biomechanical applications. Abaqus/CAE is a commercial finite element analysis

software. Both packages offer plugin options that provide a means for users to ex-

pand upon the existing material model library without a need of recompile the whole

source code. Plugins for FEBio can be written in C++ or Fortran77, the latter be-

ing used for Abaqus/CAE. Tangent (Jacobian) and stress functions are the two main

matrices that need to be defined for our application. The conjugate pair approach

constructs its stress and tangent functions in the experimentor’s coordinate frame,

after which they need to be rotated into the spatial frame. Even if there is no rota-

tion during deformation, our stress/strain measure still requires to be transformed.

There is no rotation between frames, and the fiber directions are parallel to the x

direction are the assumptions made to calculate the stress and a tangent function.

The stress function takes a deformation gradient to calculate the conjugate strain

measures. A root finding algorithm is required to determine the conjugate stress val-

ues because the constitutive equations are nonlinear. The false position method has

been implemented for this purpose. Finally, values for stress are calculated via known

stress relations. Rotations between the experimentor’s frame to the Lagrangian and

Eulerian frames should be considered as final steps. A flow chart demonstrates all

calculations to get Cauchy stress, in detail.
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Figure 6.1: Cauchy stress calculation
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6.1 Tangent Modulus Calculation from Experimentor’s Frame to Spatial Frame

The most general tangent equation is dS = M:dE where S is the PK stress and E

is Almansi strain, which is a general constitutive equation expressed in the Eulerian

frame. The tangent function requires some transformation, because the conjugate

approach uses conjugate stress/strain pairs that need to be converted into Eulerian

stress/strain measures. A chain rule and a compliance matrix were used to reduce

complicated calculations. The compliance matrix equation for the Experimentor’s

frame can be separated as below

C̃ = dẼ
dS̃

= ∂Ẽ

∂Λ : dΛ
dΩ : dΩ

dΣ : ∂Σ
∂S̃

(6.1)

where Λ = {a,b,γ} is set of stretch components , Σ = {π,σ,τ} is set of conjugate

stresses and Ω = {δ,ε,γ} is set of conjugate strains.

Lets investigate each term in the chain; and begin with the relation between

stretch and Almansi strain that can be found in Eq. 8a [7]. The aim is to find

tangent modulus for the spatial configuration.

Ẽ = 1
2(I− b̃−1), b̃−1 = F̃−T F̃−1, F̃−1 =

1/a −γ/b

0 1/b

 (6.2a)

and

Ẽ11 Ẽ12

Ẽ21 Ẽ22

= 1
2

1−1/a2 γ/ab

γ/ab 1− (γ2 + 1)/b2

 (6.2b)

We need to take the derivative of stretch components (a,b,γ) with respect to Ẽ11,
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Ẽ22, and Ẽ12

∂Ẽ11
∂a

= 1
a3 (6.3a)

∂Ẽ22
∂b

= 1 +γ2

b3
,

∂Ẽ22
∂γ

=− γ
b2

(6.3b)

∂Ẽ12
∂a

= −γ
2a2b

,
∂Ẽ12
∂b

= −γ
2ab2 ,

∂Ẽ12
∂γ

=− 1
2ab (6.3c)

Secondly, the relation between stretch and conjugate stress can be seen as

δ = ln
√
ab, ε= ln

√
a/b, γ = γ (6.4)

Their derivatives with respect to conjugate strains are quite straight forward.

∂δ

∂a
= 1

2a,
∂δ

∂b
= 1

2b,
∂ε

∂a
= 1

2a,
∂ε

∂b
=− 1

2b,
∂γ

∂γ
= 1 (6.5a)

We need to take the inverses of these matrices to find stretch derivatives with respect

to these conjugate strains.

Thirdly, the derivative of conjugate stress pairs with respect to conjugate strain

pairs means a material models’ derivatives. These come from constitutive equations.

These relations can be derived by using equations 22 [7].

dδ
dπ = 1

4KC
+ 1

4KE(π(β◦−1)
4KE + 1)(2β◦−1)/(β◦−1)

(6.6a)

dε
dσ = 1

2MC
+ sign(σ)

2ME(σ(β −1)
2ME + 1)(2β −1)/β −1

(6.6b)

dγ
dτ = 1

GC
+ sign(τ)
GE(τ(β∠−1)

GE + 1)(2β∠−1)/(β∠−1)
(6.6c)

Lastly, the relation between conjugate pair stresses and Kirchhoff stress S̃ can be
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found in the Freed, Erel and Moreno paper Eq 11b.

∂S̃

∂Σ =


1 1 0

1 −1 0

0 0 e2ε

 (6.7)

A multiplication of these 4 matrices can be seen below


1/a3 0 0

0 (1 +γ2)/b3 −γ/b2

−γ/2a2b −γ/2ab2 −1/2ab




a a 0

b −b 0

0 0 1




dδ
dπ 0 0

0 dε
dσ 0

0 0 dγ
dτ




1 1 0

1 −1 0

0 0 e−2ε

 (6.8)

All these multiplications produce a compliance matrix in the experimentor’s co-

ordinate frame. A matrix inversion and a tensor transformation are done to finally

obtain a tangent modulus for the spatial configuration. There is no rotation between

frames and fiber directions are parallel to the x direction assumptions were made to

calculate this tangent matrix.

6.2 FEBio and Abaqus, Comparisions with Experimental Results

The specimen dimensions (25mm x 25mm) taken from reference paper [37] are

used to simulate a dilation and squeeze experiment. FEBio is a new finite element

package compared to Abaqus, so it has some limitations, e.g., load driven simulations

are nonstable for some cases. A plane stress condition has been selected with a

prescribed displacement boundary condition. Material parameters have been taken

from a conjugate pairs paper presenting a planar analysis of biological tissues [7].

Figure 6.2 shows simulation results which are very close to the experimental results.

There are small mismatching regions because constitutive equations cannot perfectly

represent experimental results.
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Figure 6.2: FEBio and Abaqus simulations are compared with experimental results
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7. CONCLUSION

This study presents linear and nonlinear transversely isotropic material mod-

els. Theoretical models validated with experimental results and material parameters

have been found through optimization techniques such as a genetic algorithm and

a sequential least square algorithm. Advantages of newly proposed models can be

summarized as follows

1. Isotropic and anisotropic constitutive equations can be derived from the same

strain energy function. In other words, the conjugate base pairs obey the law of

thermodynamics.

2. The anisotropic conjugate stress/strain model, which doesn’t require invariant

theory, has parameters that are more general than Spencer’s model. It requires

four material parameters to describe material behavior: K,M,G and n vs. five for

Spencer’s model.

3. Strength of anisotropy parameter (n), formulated in terms of Young’s moduli,

has a physical meaning and is readily extracted from basic experiments done on

composites.

4. Constraint conditions like traction free are automatically satisfied, unlike the

Neo-Hookean model, due to the nature of dilation and squeeze equations. Constraint

optimization techniques are required to obtain Neo-Hookean material parameters.

5. Conjugate pair approach provides an opportunity to describe nonlinear, rubber

like behavior as a linear response.

6. Anisotropic, conjugate, stress/strain basis theory has been successfully im-

plemented for small and large deformation. From 0.1% to 60 % percent uniaxial

behavior can be described with unique constitutive equations.
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