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ABSTRACT 

 

Habitat change is widely considered the primary cause of biodiversity loss and 

the expansion of infrastructure, especially roads, will bring ecological consequences to 

biodiversity. Consequences of roads on biodiversity include habitat loss, fragmentation, 

and among the most insidious causes of impoverishment of vertebrate populations, 

roadkill. My dissertation focused on understanding the magnitude of roadkill and 

developed novel predictive roadkill risk modeling as a conservation tool in two island 

systems.  

We conducted the first synthesis of data from a large citizen science program, the 

Taiwan Roadkill Observation Network (TaiRON), and quantified the magnitude of 

roadkill in Taiwan to understand which taxa were of greatest conservation need. 

Notably, the study revealed that snakes were the largest proportion of all roadkill (35%) 

and 26% of snake roadkills were of protected species. Additionally, the top 23 species of 

a total 496 species ranked by roadkill abundance made up 50% of the observations. 

Importantly, certain taxonomic groups were disproportionately killed on roads, and a 

small number of species account for most of the mortality.  

We analyzed TaiRON roadkill observations in a novel use of the SDM, MaxEnt, 

to predict relative roadkill risk across the Taiwan road network and to identify high 

roadkill risk areas for the taxa with conservation need. Our analyses highlighted key 

environmental variables that impacted roadkill risk for different guilds and species 

modeled. The roadkill prediction models performed well across ecological levels on a 
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national scale. This study demonstrated that the predictive roadkill models are 

ecologically and geographically scalable to address ecological questions of interest. 

Finally, we developed a predictive relative roadkill risk model for the Tasmanian 

devil (Sarcophilus harrisii). I compared the applicability of the roadkill risk modeling 

methodology in a contrasting landscape to expose challenges in other systems. Relative 

to Taiwan, Tasmania is sparsely populated by humans, has a low road density, and has a 

less established roadkill monitoring program. Nevertheless, high model performance in 

predicting roadkill risk in a contrasting system suggests global applicability of the 

methodology, even when roadkill data is less abundant than from databases of larger 

programs. 
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1. INTRODUCTION

1.1. Introduction 

Encountering wildlife on roads can be a shocking everyday reminder of the 

hazards of roads. These encounters between humans and wildlife on roads are a common 

occurrence, and for many, a primary source of interaction with wildlife. Unfortunately, 

this literal intersection of humans and wildlife often has major consequences. Roads can 

be detrimental to humans when interactions between drivers and wildlife collide, and 

these wildlife-vehicle collisions (WVCs) cost US society over an estimated 8 billion 

dollars per year (Huijser, McGowen, Fuller, Hardy, & Kociolek, 2007). There are also 

many major ecological consequences of roads as they are one of the greatest threats to 

wildlife on Earth (Trombulak & Frissell, 2000).  

Road networks require the removal of wildlife habitat, so in existing, a road is 

environmentally and ecologically impactful. They can create direct ecological impacts 

such as impacts during removal of habitat and construction of the road and road kill, or 

indirect ecological impacts such as pollution runoff or act as a genetic barrier (Andrews, 

Gibbons, & Jochimsen, 2006; Coffin, 2007; Forman & Alexander, 1998; Holderegger & 

Di Giulio, 2010). Roads are a major cause of fragmentation for wildlife (Leavitt & 

Fitzgerald, 2013; van der Ree, Jaeger, van der Grift, & Clevenger, 2011; Walkup, 

Leavitt, & Fitzgerald, 2017), and they often trigger ‘contagious’ development, where 

roads “provide access to previously remote areas, thus opening them up for even more 

roads, triggering land-use changes, resource extraction, and human disturbance” (Selva, 

1
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Switalski, Kreft, & Ibisch, 2015). The study of these ecological impacts is termed road 

ecology, and it is a relatively new academic field, but its traditions are old. 

Among one of the first few road ecologists was the prominent ecological figure, 

Joseph Grinnell. As an avid naturalist, he kept logs of road-killed wildlife that he would 

later publish. The road ecology literature of the early 1900s, when roads were less 

ubiquitous and driving was reserved for those who could afford it, was mostly lists of 

dead wildlife (Kroll, 2015). The next major advance for the study of road ecology was 

post-WWII, when road building and car ownership boomed. In the 1980s, the literature 

began to include ecological considerations in highways, mainly spurred on by the many 

roadkill cases of the endangered Florida panther (Maehr, 1989) and because collisions 

with deer became an increasingly dangerous problem. Finally, in 1996, the first seminar 

on road ecology was held where Dr. Richard Forman coined the term for the growing 

discipline (Kroll 2015). 

For the remainder of the 1990s through early 2000s, road ecology was mainly a 

descriptive discipline (Coffin, 2007; Forman et al., 2003). In 2000, Forman again termed 

the “road-effect zone” as the area of ecological effects created by a road, and spatial 

ecology was incorporated into literature (Forman, 2000). Much of the literature was still 

focused on mitigation of the extensive road networks built throughout the 1950s-1990s, 

such as eco-passages and corridors, and was mainly evaluative of mitigation in single 

localities or single stretches of highways rather than landscape scale approaches (van der 

Ree, Smith, & Grilo, 2015). The other main branch of road ecology quantified ecological 

impacts of roads in terms of landscape ecological concepts such as fragmentation and 
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edge-effects (Andrews et al., 2006; Eigenbrod, Hecnar, & Fahrig, 2009; Glista, DeVault, 

& DeWoody, 2008; Jaeger, Fahrig, & Ewald, 2005; Munro, Bowman, & Fahrig, 2013; 

Rytwinski & Fahrig, 2007). During this period, many of the questions in road ecology 

research were still focused on explaining the effects of roads rather than predicting them 

(Fahrig & Rytwinski, 2009).  

In the mid-2000s, road ecology made the jump from descriptive to predictive and 

predictive studies became a budding branch of road ecology (Gunson, Mountrakis, & 

Quackenbush, 2011). Researchers started incorporating linear regressions and general 

linear models to predict possible areas of mitigation (Clevenger, Chruszcz, & Gunson, 

2003; Malo, Suárez, & Diez, 2004) during this time. As spatial tools and data became 

more advanced, researchers began utilizing these new spatial tools to detect non-random 

spatial clusters of road kill data, or road kill “hotspots,” a descriptive analysis, such as 

with the ArcGIS Getis-Ord* hotspot analysis (Shilling & Waetjen, 2012). Road 

ecologists were enabled to explore more environmentally relevant questions that were 

both descriptive as well as predictive.  

Many road ecologists are still working on local mitigation studies of direct 

impacts of current roads, be it through eco-passages, fencing, infrared wildlife detection 

systems, advanced cameras, pressure sensing roads, or other developments in technology 

that have continually expanded mitigation options (Huijser, Mosler‐Berger, Olsson, & 

Strein, 2015; Lester, 2015; Smith, Van Der Ree, & Rosell, 2015; van der Ree, Gagnon, 

& Smith, 2015). This applied facet of road ecology will continue to have importance in 

the discipline as it is the interface at which other road ecology research is tested for 
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effectiveness. However, research in road ecology has steadily moved away from the 

study of impacts on single stretches of roads or highways and has widened its scope to 

broader landscape scale processes as there is a need to document higher order effects of 

roads (van der Ree, Smith, et al., 2015). Hotspot analyses are a popular tool for larger-

scale roadkill analyses, but there have been findings that hotspot analyses may not be 

useful indicators for road mitigation measures on older roads that have already depressed 

populations of wildlife, but could be helpful for newer roads (Eberhardt, Mitchell, & 

Fahrig, 2013; Zimmermann Teixeira et al., 2017). This was an important finding as it 

directly translates to conservation and mitigation actions on the ground and suggests 

utilizing other methods for identifying areas in need of roadkill mitigation, especially for 

established road networks. 

For this and the following reasons, my research focuses on using species 

distribution models (SDMs) to create predictive roadkill maps, rather than hotspot 

analyses. Predictive SDM roadkill models have the advantage of predicting both relative 

roadkill risk outside of areas we have roadkill data and can identify the variables that 

best explain presence of roadkill, whereas hotspot and cluster analyses can only 

highlight spatially clustered data and cannot predict into unsampled areas as they do not 

incorporate environmental or landscape variables. Previous studies have used various 

predictive models for analysis on roadkill (Gomes, Grilo, Silva, & Mira, 2008; Malo et 

al., 2004; Ramp, Caldwell, Edwards, Warton, & Croft, 2005), but few studies have 

employed MaxEnt for vertebrate road mortality (Garrote, López, López, Ruiz, & Simón, 

2018; Ha & Shilling, 2017; Kantola, Tracy, Baum, Quinn, & Coulson, 2019; Lin et al., 



 

5 

2019). My research provides novel use of MaxEnt to predict roadkill mortality across a 

road network utilizing a large and robust citizen science database. 

Big data and global scope have recently entered the realm of road ecology, and 

road ecologists’ foray into big data is usually through citizen science. As roadkill is a 

prominent avenue of public interaction with wildlife, several projects have harnessed the 

human capital of citizens affected and concerned by wildlife road mortality. The first 

was the California Road Observation System (CROS), which was started by Fraser 

Shilling in 2009. Since then, dozens of roadkill observation systems have cropped up all 

over the world, including those focused on singular endangered species (e.g. the Save 

the Tasmanian Devil Program (STDP)), and others that are encompassing of any wildlife 

found, one of the most extensive being the Taiwan Road Observation Network 

(TaiRON). Through roadkill databases, citizen scientists equipped with a GPS and 

camera-enabled smartphone have an opportunity to engage with conservation and are an 

invaluable source of data for roadkill studies in the future. With increasing ability to 

monitor effects of roads through citizen science networks, sensing technologies, and 

overall increase in availability of environmental data, predictive roadkill risk modeling is 

also gaining credibility. As predictive roadkill risk models have the power to test a priori 

hypotheses and project mitigation options for testing, they are powerful tools in road 

ecology.  

In my international research, I incorporate both large crowd sourced datasets and 

predictive modeling methods to develop ecologically attuned tools for applied 

conservation in road ecology. I quantified patterns of roadkill and elucidated wildlife 
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groups that are most heavily impacted in Taiwan. Additionally, I aimed to develop a 

novel use of a modeling methodology to predict relative roadkill risk across a road 

network for species and guilds of conservation concern in Taiwan and Australia. I tested 

this model across scales, both ecologically (from species to guilds) and spatially (in two 

contrasting systems).  

As a student in the Texas A&M University Applied Biodiversity Science 

Program (ABS), I built a network of global collaborations, and have conducted studies 

as the principle investigator in Taiwan as a fellow with the National Science 

Foundation’s (NSF) East Asia and Pacific Summer Institute (EAPSI) during Summer 

2015, a Fulbright Research Fellow in Taiwan during 2016- 2017, and an Endeavour 

Research Fellow in Australia in 2018. In accordance to ABS tenets, my project extended 

scientific involvement to local Taiwanese and Australian actors and institutions in 

conservation of their unique wildlife through participation, and has fostered international 

collaboration between American, Taiwanese, and Australian researchers and institutions. 

The outcomes of my research have produced interactive predictive roadkill tools for 

collaborators and will continue to be fruitful for wildlife conservation globally. 

In Chapter 2, I highlight the magnitude and importance of large, national, citizen 

science roadkill observation programs. I describe the patterns and extent of wildlife 

roadkill in the Taiwan Roadkill Observation Network, a pinnacle of successful roadkill 

monitoring programs. This chapter provided insight on groups of importance for targeted 

roadkill mitigation in Taiwan as we found groups that were highly and 

disproportionately affected by roads, especially snakes. This first synthesis of all data 
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from TaiRON provided an understanding of the magnitude of roadkill in Taiwan to 

inform conservation action. Understanding the patterns and magnitude of wildlife 

roadkill across the island allowed me to make an informed choice of study guilds and 

organisms from those that were found to be highly impacted for predictive roadkill risk 

modeling in following predictive roadkill risk modeling research.  

In Chapter 3 I created predictive relative roadkill risk models across ecological 

scales for wildlife of conservation importance in Taiwan to inform targeted conservation 

action. I analyzed roadkill observations provided by TaiRON in a novel use of the SDM, 

MaxEnt, to predict relative roadkill risk across the Taiwan road network and identify 

high roadkill risk areas. My analyses also identified key environmental variables that 

impacted the roadkill risk for each guild and species modeled and quantified their 

contribution to risk. The models performed well across all studied ecological levels on a 

national scale and predictions and variable importance differed across guild and species 

models. This study demonstrated my predictive relative roadkill risk models are scalable 

to address the ecological question of interest and also emphasized the importance of 

systematic collection of roadkill data. 

Finally, Chapter 4 focused on a particular species of conservation interest in a 

different landscape. Using modeling methodology based on those developed in Chapter 

3, I created a predictive relative roadkill risk model for the Tasmanian devil (Sarcophilus 

harrisii) across the Tasmanian road network. I was interested in comparing the 

applicability of the predictive roadkill risk modeling methods to a juxtaposed landscape 

to expose the challenges for this methodology in other systems. Relative to Taiwan, 
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Tasmania is sparsely populated by humans, has a low road density, and does not have as 

robust or established of a roadkill monitoring program. The species-specific model had 

fewer roadkill observations across a comparatively sparse road network, and new 

challenges of choosing ecologically relevant covariates for devils arose. The high model 

performance in predicting devil roadkill risk in this contrasting system suggests global 

applicability of the methodology, even when roadkill data is less abundant than from 

databases of larger programs. 
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2. THE MAGNITUDE OF ROADKILL IN TAIWAN: PATTERNS AND

CONSEQUENCES REVEALED BY CITIZEN SCIENCE1 

2.1. Synopsis 

Roadkill is among the most severe and insidious causes of impoverishment of 

vertebrate populations. As large roadkill databases develop, inferences from roadkill 

data can inform landscape-scale studies with broad con- servation aims. The Taiwan 

Roadkill Observation Network (TaiRON) is one of the largest roadkill databases, and we 

elucidated taxonomic, seasonal, and temporal trends of roadkill in Taiwan, as well as 

patterns of protected species roadkill. Notably, the study revealed that snakes were the 

largest proportion of all roadkill (35%) and 26% of snake roadkills were of protected 

species. Additionally, the top 23 species of a total 496 species ranked by roadkill 

abundance made up 50% of the observations. During winter, there were significantly 

fewer roadkill observations of bats, lizards, and snakes, but birds and mammals had 

fairly consistent roadkill across seasons. Additionally, 19% percent of the observations 

were of protected species. The staggering magnitude and extent of roadkill observations 

collected by TaiRON indicates a clear impact of roads of on Taiwan's vertebrate fauna. 

The patterns demonstrate that certain taxonomic groups are disproportionately killed on 

roads, and a small number of species account for most of the mortality. Additionally, 

certain seasons account for higher frequency of road kills, especially for ectothermic 

1 Reprinted with permission from “The magnitude of roadkill in Taiwan: Patterns and consequences 
revealed by citizen science” by Chyn, K., Lin, T.-E., Chen, Y.-K., Chen, C.-Y., & Fitzgerald, L. A., 2019. 
Biological Conservation, 237, 17-326, Copyright [2019] by Elsevier.  
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taxa. These are important insights, as this means that there are groups that are highly and 

disproportionately affected by roads. We hope this first synthesis of all data from 

TaiRON provides an understanding of the magnitude of roadkill in Taiwan to inform 

conservation action. 

2.2. Introduction 

The intersection of roads and wildlife is well-known to be ecologically hazardous 

(Forman & Alexander, 1998; Glista, DeVault, & DeWoody, 2008; Reeves, Dolph, 

Zimmer, & Tjeerdema, 2008; Trombulak & Frissell, 2000). Since the invention of 

automobiles, collisions have resulted in not only damages, injuries, and sometimes 

mortality of humans, but also include clearly-seen direct impacts of wildlife-vehicle 

collisions (WVCs) (Kroll, 2015; Shilling, Perkins, & Collinson, 2015), more commonly 

referred to as roadkill. Wildlife-vehicle collision events can be thought of as the 

unfortunate and obvious outcomes of a convergence of human transportation 

requirements and ecological systems. There are also lesser-witnessed indirect impacts of 

roads in surrounding landscapes. These areas that roads have ecological effects beyond 

the road itself is the ‘road-effect zone’ (Forman, 2000) and include effects such as the 

creation of barriers and filters to movement with associated reduction in dispersal and 

pollution (Andrews, Gibbons, & Jochimsen, 2006). However, as roads are necessary 

human infrastructure for the foreseeable future, we can salvage conservation benefit 

from data on existing roads and their effects to inform future planning and mitigation.  

In 2013, >64 million km of paved and unpaved roads existed in the world (CIA, 

2017), enough road length to circle Earth 1,604 times. Paradoxically, 80% of the planet 



 

16 

remains roadless. However, when a 1 km buffer is applied to roads, roadless areas are 

fragmented into over 600,000 patches (Ibisch et al., 2016). Half of these roadless patches 

are <1 km2, and consequently, many have low environmental value (Ibisch et al., 2016). 

Startlingly, the International Energy Agency estimates that an additional 25 million km 

of paved roads will be built by 2050, and that non-Organisation for Economic Co-

operation and Development (OCED) countries will account for 90% of the growth 

(Dulac, 2013). The building of new roads in non-OCED nations will have large 

ecological impacts such as habitat loss, fragmentation, and habitat degradation 

(Laurance, 2015; Laurance, Goosem, & Laurance, 2009). Plans for future roads need to 

prioritize biodiversity conservation at all scales. For example, an important impact of 

roads is ‘contagious’ development, where roads “provide access to previously remote 

areas, thus opening them up for even more roads, triggering land‐use changes, resource 

extraction, and human disturbance” (Selva, Switalski, Kreft, & Ibisch, 2015). 

As a 40% increase in total road length is expected by 2050, it would be 

advantageous to survey existing roads for ecological data collection to inform future 

road building for the least impact on biodiversity. Roads are widespread and easily 

accessible but are often an untapped source of robust and widespread ecological data. 

One of the most visible forms of ecological data from roads is roadkill. Though there are 

an increasing number of localized studies of roadkill patterns (Hobday & Minstrell, 

2008; Kioko, Kiffner, Jenkins, & Collinson, 2015; Maschio, Santos-Costa, & Prudente, 

2016; Sosa & Schalk, 2016; Taylor & Goldingay, 2004), there is still a paucity of large 

organized databases of roadkill observations and larger-scale road ecology studies 
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(Shilling et al., 2015; van der Ree, Jaeger, van der Grift, & Clevenger, 2011; Waetjen & 

Shilling, 2017). Many of these studies are at the population and community scale, but 

there is a need to push towards landscape-scale research to inform conservation and 

mitigation on larger scales (van der Ree et al., 2011). As WVCs occur across landscapes 

and these observations are relatively easy to access and observe, large roadkill data 

collection programs, such as citizen-science roadkill observation projects, are invaluable 

to studying landscape-scale effects.  

As large roadkill databases become more numerous and engaging for 

participants, the inference from this data will become more robust and can better inform 

a variety of landscape-scale studies with large temporal and spatial extents (Devictor, 

Whittaker, & Beltrame, 2010), such as wildlife distribution and monitoring (Hobday & 

Minstrell, 2008; Vercayie & Herremans, 2015) and hotspot and roadkill pattern studies 

(Gomes, Grilo, Silva, & Mira, 2008; Kioko et al., 2015; Seo, Thorne, Choi, Kwon, & 

Park, 2015). There are currently 12 large roadkill observation systems listed on 

https://globalroadkill.net (Shilling et al., 2015), a directory for roadkill databases and 

organizations that monitor roadkill. Most of these systems utilize volunteers or citizen 

scientists to collect observations and provide reliable data to inform road mitigation and 

planning (Waetjen & Shilling, 2017). We focus on one of the largest roadkill observation 

systems and databases, the Taiwan Roadkill Observation Network (TaiRON).  

In the fall of 2011, a coalition of concerned citizens spearheaded by Te-En Lin, a 

zoologist at the Taiwan Endemic Species Research Institute (TESRI), started a Facebook 

(TM) group that noted and discussed the daily roadkill they encountered in Taiwan. This 
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small group quickly garnered interest from the public and evolved into a thriving, 

government-funded, national citizen science project and one of the largest roadkill 

observation systems in the world (Waetjen & Shilling, 2017). Since 2011, the Taiwan 

Road Observation Network (TaiRON) has captured national media attention, 

membership has expanded rapidly, and the collection and database systems are 

consistently updated to keep up with the increased interest and data management 

demands. Citizen scientists are provided with in-person training around the nation, 

equipment and TaiRON paraphernalia, and a web application (webapp) accessible across 

smartphone platforms (https://roadkill.tw/en/app/report). Volunteers are also encouraged 

to submit carcasses in good condition to be made into specimens at the TESRI 

collection. Project managers employ adaptive management by continuously monitoring 

data quality and quantity and corresponding with volunteers, researchers, and 

transportation managers to assess project satisfaction and to address concerns. 

Additionally, interested parties need only to register on the website to gain access to the 

dearth of roadkill data for non-protected species, whereas no other program makes data 

so readily accessible to users, even citizen scientist contributors. The objectives of 

TaiRON are to promote public and decision-maker engagement and understanding, 

mitigate WVCs to reduce impact on wildlife, and to utilize the data to gain better 

understanding of regional biodiversity. To achieve these goals, we have collaborated 

with citizen scientists to conduct broad opportunistic roadkill surveys and provided 

regular feedback to the public, media, and government. We believe these are aspects of 



 

19 

TaiRON that stand out among other roadkill observation programs, especially given its 

nationwide scale of participation and comparatively large database. 

Taiwan, an island with high ecological value (Laurance et al., 2014) and high 

road density is thus an ideal site for our study. Myers et al. (2000) states that Taiwan 

“appear[s] to feature exceptional […] endemism and exceptional threat, but are not 

sufficiently documented”, so biological data collection is applicable and necessary for 

this ecologically valuable island. Additionally, Taiwan already has twice the road 

density of the U.S.A. at 1.2 km/km2 and 0.67 km/km2, respectively (CIA, 2017). Due to 

Taiwan’s ecological value and high road density, we are motivated to bring attention to 

this incredible source of ecological data of which there have been no publications on 

baseline statistics. We address this gap by conducting analyses to elucidate the 

ecological trends and patterns of roadkill in Taiwan. Previous studies have shown 

roadkill observations to be higher for ectotherms (Farmer & Brooks, 2012) than other 

taxa, seasonality in roadkill richness and rates (da Rosa & Bager, 2012), and differences 

in roadkill composition of nocturnal and diurnal species (Kioko et al., 2015). We 

expected ectotherms, particularly snakes, would incur the highest levels of roadkill due 

to their need for thermoregulation, which may attract them to warm roads (Andrews, 

Gibbons, Jochimsen, & Mitchell, 2008) and their tendency for immobilization behavior 

in response to oncoming traffic (Andrews, Gibbons, & Reeder, 2005). Wildlife activity 

also varies with seasonal patterns, which has been correlated with rates of roadkill (da 

Rosa & Bager, 2012; Shepard, Dreslik, Jellen, & Phillips, 2008), and we predicted 

warmer seasons of spring and summer to have the highest levels of road mortality 
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observations across taxa, but especially in ectotherms. To address these questions, we 

analyzed TaiRON data and test for differences in magnitude of roadkill among 

taxonomic groups, across seasons, and by activity pattern of the top 20 roadkilled 

species. We also quantified the trends and patterns of roadkill of protected species.  

The TaiRON data is opportunistic roadkill data and is one of the most extensive 

and complete vertebrate occurrence point data sets in Taiwan, and one of the most 

extensive roadkill databases in the world. This work is the first synthesis of patterns and 

trends of the TaiRON roadkill observation dataset. As an important first step towards 

understanding the complexities of WVCs in Taiwan, insights from our analyses will 

allow us to gain a fuller understanding of the ecological impacts roads pose to wildlife to 

inform future analyses and possible conservation action. Our study also highlights the 

value of large roadkill databases for developing conservation strategies. 

2.3. Methods 

2.3.1. Study System 

Taiwan is a Pacific island roughly 180 kilometers off the south-eastern coast of 

mainland China that emerged due to collision of the Philippine Sea plate and the 

Eurasian plate during the Mio-Pliocene boundary (Adler, HilleRisLambers, & Levine, 

2007). During the Pleistocene, glaciation and land bridges between China and Taiwan 

provided opportunities for colonization and isolation of organisms in Taiwan (T.-Y. 

Chiang & Schaal, 2006; Y.-C. Chiang, Huang, & Liao, 2012), and present day biota is 

expected to have originated from Asia and surrounding islands (Ali, 2017; He, Gao, Su, 

Lin, & Jiang, 2018). As Taiwan is located at the border of the Palearctic and Oriental 
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biogeographic zones and contains large elevational heterogeneity, it contains diverse 

habitats that support high biodiversity (He et al., 2018) and over 9079 faunal species 

(Center, 2018). Taiwan’s total area is 36,193 km2, and the climate is subtropical in the 

North to tropical in the South. The human population of Taiwan is approximately 23 

million people, comparable to the population of the continent of Australia (CIA, 2017). 

Taiwan is incredibly biodiverse but also space and resource-limited, making roads and 

associated removal of habitat more detrimental to faunal populations.  

2.3.2. Data 

Data for this study were obtained from the Taiwan Roadkill Observation 

Network (TaiRON) database of citizen science collected roadkill data 

(https://roadkill.tw). Data is extensive and opportunistically collected, and volunteers 

contribute data from throughout Taiwan. Though the database contains roadkill 

observations prior to 2011, the citizen science project led by zoologists at the Taiwan 

Endemic Species Research Institute (TESRI) was officially formed in 2011. The Taiwan 

Road Observation Network uses social media (Facebook) to both collect data and 

engage participants, and TaiRON project managers are continuously improving its data 

collection methodology and citizen science engagement practices. Currently, data is 

mainly collected and uploaded to the TaiRON database via a web application 

(https://roadkill.tw/en/app/report) created by data science collaborators. The communal 

data workflow and web-based systems for the acquisition and management of roadkill 

observations were designed and implemented by a group of information scientists and 

biodiversity researchers at Academia Sinica in Taipei, and the data workflow and 
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information system is a crucial component in the successful aggregation of diverse, high-

quality, and large-volume observations (Chuang et al., 2016). Project managers then 

verify individual “unconfirmed” observations for accuracy, which are then either marked 

as “confirmed” or “unable to confirm.” Observations are marked as “confirmed” when 

consensus is reached on taxonomic identification and locational and date/time data are 

provided. Data on non-protected species is freely available to the public for live 

download, whereas protected species and participant data is only available to those who 

have approved applications. 

For this study, the full dataset, including protected species observations and data 

contributed from the Freeway Bureau, Ministry of Transportation and Communications 

Taiwan, was downloaded from TaiRON on 9 March 2018, and at the time of download 

contained a total of 101,354 geo-referenced observations (Fig. 2.1) spanning years 1995-

2018 with the bulk of the data (85%) from 2011 onwards (Fig. 2.2). Additionally, 

protected area data was downloaded from Taiwan’s governmental open data repository 

(https://data.gov.tw/en). 

2.3.3. Analysis 

We removed records prior to 2011 and included only confirmed observations for 

this analysis. Confirmed observations were those that had been checked by TaiRON staff 

scientists. We also calculated survey effort (observations/participants) for each full year 

of data (2012-2017) (Fig. 2.2) and compared the number of observations with the 

number of participants for each year (Fig. 2.2) with a Spearman correlation test, as the 

our data did not meet the assumptions for a Pearson’s correlation test. For this study, 
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taxonomic, locational, temporal, and participant attributes of the data were analyzed. We 

analyzed only vertebrate groups which comprised 92% of the confirmed observations 

with biological data such as genus, species, family, or major taxonomic group. All 

vertebrate observations were classified to the following major taxonomic groups: bats, 

birds, frogs, lizards, snakes, turtles, and terrestrial mammals. Bats were treated as a 

separate group as all other mammals were terrestrial mammals. Herpetofaunal groups 

were separated due to large differences in numbers of observations across taxonomic 

groups. The final dataset contained 45653 observations for analysis (Fig. 2.1). 

Additional sorting of the data was performed for analyses on road type, protected 

species, and seasonality. Roads in Taiwan are classified into four main types and one 

miscellaneous category, and we conducted descriptive analyses and ANOVAs on the 

roadkill by road type and major taxonomic group road data was acquired from the GIS-T 

Transportation Network Geographic Information Storage System: Taiwan Ministry of 

Transportation and Communication (Tao & Hung, 2013). We used the Taiwan’s 

Wildlife Conservation Act pre-25 June 2018 protected species list (Bureau, 2016) for our 

analyses on observed protected species. Seasonal analyses were performed by sorting the 

observations into the following seasonal categories: observations falling between 

December – February were designated as “winter,” March – May were designated as 

“spring,” June – August were designated as “summer,” and September – November were 

designated as “fall.” Subdivisions for seasonal analysis correspond with seasonal and 

biological cycles in Taiwan. 
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We performed ANOVAs to test for differences in mean number of roadkill 

observations across seasons and road types. Separate analyses were conducted for each 

major taxonomic group as some groups required non-parametric tests. To test for 

heteroscedasticity, we performed Levene’s tests on the number of observations per 

season for all major taxonomic groups. All groups met the assumptions of ANOVA, 

including independence, normality, and homogeneity of variances (indicated by 

Levene’s test) except for bats. That is, the number of bat WVC observations had unequal 

variances across seasons and violated the homogeneity of variance assumption needed 

for an ANOVA, so we conducted a Kruskal-Wallis test for bats as a non-parametric 

alternative. We also performed all tests with outliers removed and results of significance 

did not change. We chose to report results of analyses with the original data because the 

outliers were not due to inaccuracies in data and did not change resulting outcomes. We 

used the program R (version 3.4.0) (Team, 2017) for our analyses. 
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Figure 2.1 Map of Taiwan with outlying islands, showing the 45,653 TaiRON 
roadkill observations (black points) that were used for analyses. The upper inset 
shows a map of protected areas (in shades of gray) in Taiwan. Most protected area 
coverage is within the steep and rugged terrain of Taiwan's Central Mountain 
Range which has remained largely roadless. The lower inset is an example of 
roadkill observations (black points) plotted in a 5 km2 area against the network of 
roads in gray.  
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a)  

b)  

Figure 2.2 The number of TaiRON participants per year in dashed line and the 
number of roadkill observations per year in the solid line. 2018 are data omitted 
due to incomplete data for the year. TaiRON officially began in September 2011. b) 
Survey effort measured as observations/participant per full year of data showed a 
decreasing trend from years 2012–2017.  

0

250

500

750

1000

1250

1500

0

2000

4000

6000

8000

10000

12000

14000

16000

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Pa
rti

ci
pa

nt
s 

pe
r y

ea
r R

oadkills per year

●

●

●

●

●

●

10

20

30

20
12

20
13

20
14

20
15

20
16

20
17

Ef
fo

rt 
(o

bs
er

va
tio

ns
/p

ar
tic

ip
an

ts
)



 

27 

2.4. Results 

2.4.1. Participation 

There were 3414 unique TaiRON participants from 2011 – 2018. The number of 

participants increased from 302 contributing participants in 2012 to 1299 contributing 

participants in 2017. Observations of roadkill also increased dramatically during this 

period (Fig. 2.2) and was significantly correlated (r = 0.79, p < 0.0001). However, effort 

measured as observations/participant showed a decreasing trend from 2012 – 2017 (Fig. 

2.2).  

2.4.2. Taxonomic Diversity and Prevalence of Roadkill 

The 45653 vertebrate roadkill observations comprised 109 families, 294 genera, 

496 identified species. Of the major vertebrate taxonomic groups, snakes comprised the 

largest proportion of the data with 15963 roadkill observations (35%). Birds were the 

second most observed group with 11238 of roadkill observations (25%), followed by 

frogs (7900 roadkill observations, 17%), mammals (5921 roadkill observations, 13%), 

lizards (3457 roadkill observations, 8%), turtles (740 roadkill observations, 2%), and 

lastly bats (434 roadkill observations, < 1%) (Fig. 2.3). 

A rank abundance curve showed a skewed distribution where a small number of 

the total 496 species made up of the majority of roadkill observations (Fig. 2.4). The top 

23 species ranked by roadkill abundance made up 50% of the observations and the top 

79 species encompassed 75% of the observations. The top 20 most-observed roadkill 

species made up 47% of all observations (n = 23217). Among the top 20 most-observed 
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roadkilled species, 13 are nocturnal (65% of the top 20 observed roadkill species), 6 are 

diurnal (30%), and 1 is cathemeral (5%) (Table 1).  

2.4.3. Road Type 

Proportionally, the type of road on which most roadkill observations were found 

per 100 km (to account for the length of road per road category) was on county 

highways (Fig. 2.5). There was no statistical difference in mean WVC observations 

across road types in each major taxonomic group [bats: F(3, 27) =  0.56, p > 0.05 for all 

groups; birds: F(3, 28) =  0.59, frogs: F(3, 28) = 1.47; lizards: chi-squared = 4.6782, df = 3; 

mammals: F(3, 28) = 0.13; snakes: F(3, 28) = 1.17; turtles: F(3, 26) = 1.355].  

2.4.4. Protected Species 

Of the 496 observed species, 96 (19%) are listed as protected by the Taiwanese 

government in accordance to Taiwan’s Wildlife Conservation Act (Bureau, 2016; 

Center, 2018). As the data were downloaded prior to the minor changes made on 25 June 

2018, we are using the pre-25 June 2018 list of protected species for analysis (Bureau, 

2016). The top three protected species with the highest number of observations were 

snakes, and the three protected snake species encompassed 50% of the 6193 protected 

species observations. Thirteen percent of the total confirmed roadkill observations were 

protected species.  

Notably, roadkill observations included 100% of protected terrestrial (non-

marine) turtle species, 94% of protected terrestrial snake species, 86% of the protected 

lizard species, 76% of protected mammal species, and 50% of both protected bird and 

bat species in Taiwan (Bureau, 2016; Shao et al., 2007) (Table 2). 
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In particular, protected snakes had alarmingly high numbers of roadkill, as they 

were the top three most observed roadkilled species, which encompassed half (50%) of 

the protected species observations. These snakes are: Taiwan Habu (Protobothrops 

mucrosquamatus) (1480 obs., 24% protected species observations, #4 most observed 

roadkill species), Many-banded Krait (Bungarus multicinctus multicinctus) (1210 obs., 

19% protected species observations, #9 most observed roadkill species), and Chinese 

Cobra (Naja atra) (414 obs., 7% protected species observations, #28 most observed 

roadkill species).  Additionally, protected snake species accounted for 26% of total 

snake observations. 

2.4.5. Variation in Roadkill 

We found that all groups, except for bats (F = 6.1049, p = 0.0044) and lizards (F 

= 3.0299, p = 0.0533), passed the Levene’s test for homogeneity (p < 0.05). There were 

statistically significant differences (p < 0.05) between seasonal means for snake (F(3, 26) = 

7.19, p = 0.0011) WVC observations. The Kruskal-Wallis test revealed statistically 

differences between seasons for bat roadkill (chi-squared = 8.6212, df = 3, p-value = 

0.0348) and lizard roadkill (chi-squared = 12.639, df = 3, p-value = 0.0055). All other 

groups did not have statistically significant differences between seasonal WVC means 

[birds: F(3, 20) =  0.136, p > 0.05 for following groups; frogs: F(3, 20) = 0.983; mammals: 

F(3, 20) = 0.672; turtles = F(3, 19) = 1.673]. In summary, there were fewer roadkill 

observations in winter and spring (Fig. 2.6). There was an overall decrease in roadkill 

observations during winter (Fig. 2.6) and there were significantly fewer roadkill 
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observations in bats, lizards, and snakes. Birds and mammals had fairly consistent 

roadkill counts across seasons (Fig. 2.7). 

 

Figure 2.3 TaiRON vertebrate roadkill observations by major taxonomic group 
from 2011 to 2018.  
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a)  

b)  

Figure 2.4 a) Rank abundance curve of species roadkill frequencies from highest 
frequency to lowest frequency (from left to right); b) Log of rank abundance of 
species frequencies from highest frequency to lowest frequency (from left to right). 
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Figure 2.5 Proportional frequencies of roadkill per 100 km of road (to account for 
the length of road per road category) for Provincial Highway, County Highway, 
Country Road, and Industrial Road (from left to right).  
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Figure 2.6 Aggregated TaiRON vertebrate roadkill observations per month from 
2011 to 2018.  
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Figure 2.7 Aggregated seasonal TaiRON roadkill observations from 2011 to 2018 
per major taxonomic group.  
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Table 2.1 Top 20 observed roadkill species from 2011 - 2018, their major taxonomic group, the number of observations, 
their activity period behavior, and the number of observations per season. 

Species Group N Activity Fall Spring Summer Winter 

Duttaphrynus melanostictus frogs 4067 Nocturnal 1152 1316 1328 271 

Cyclophiops major snakes 2081 Nocturnal 532 421 1067 61 

Passer montanus saturatus birds 1547 Diurnal 351 467 482 247 

Protobothrops mucrosquamatus snakes 1480 Nocturnal 548 278 364 290 

Streptopelia tranquebarica huminis birds 1452 Diurnal 414 230 334 474 

Japalura swinhonis lizards 1318 Diurnal 138 476 673 31 

Boiga kraepelini snakes 1309 Nocturnal 385 288 589 47 

Bungarus multicinctus multicinctus snakes 1210 Nocturnal 457 154 525 74 

Lycodon rufozonatus rufozonatus snakes 1105 Nocturnal 331 250 470 54 

Trimeresurus stejnegeri stejnegeri snakes 931 Nocturnal 531 133 189 78 

Melogale moschata subaurantiaca mammals 928 Nocturnal 328 254 136 210 

Oligodon formosanus snakes 775 Nocturnal 77 151 543 4 

Ptyas mucosus snakes 718 Diurnal 325 136 222 35 

Bufo bankorensis frogs 703 Nocturnal 191 246 89 177 

Rattus norvegicus mammals 691 Nocturnal 190 109 173 219 

Suncus murinus mammals 637 Nocturnal 243 106 171 117 

Lycodon ruhstrati ruhstrati snakes 601 Nocturnal 160 144 244 53 

Amphiesma stolatum snakes 579 Diurnal 182 176 201 20 

Elaphe carinata snakes 551 Cathemeral 278 114 132 27 

Pycnonotus sinensis formosae birds 534 Diurnal 81 234 156 63 

Total 23217 6894 5683 8088 2552 
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Table 2.2 Statistics on the total number of terrestrial vertebrate species in Taiwan and percent of those species observed 
in the roadkill dataset, the number of protected terrestrial vertebrate species in Taiwan and the percent of those species 
observed, and N per taxonomic group and the percent of N that is of a protected species. 

Group Total species % total species 

roadkilled 

Protected species* % protected species 

roadkilled 

Total N % N protected 

species 

Bats 37 56.76 2 50.00 434 1.15 

Birds 659 43.85 90 53.33 11238 10.08 

Frogs 36 86.11 7 85.71 7900 0.90 

Lizards 40 95.00 7 85.71 3457 2.98 

Mammals (land) 52 98.08 17 76.47 5926 10.95 

Snakes 49 100.00 17 94.12 15963 26.21 

Turtles 5 100.00 3 100.00 779 17.07 

Total 878 NA 148 NA 45697 NA 

* pre 25 June 2018



2.5. Discussion 

The staggering magnitude and extent of roadkill observations collected by 

TaiRON indicates a clear impact of roads of on Taiwan’s vertebrate fauna and 

demonstrates the importance of focused effort on further study and mitigation for WVCs 

in Taiwan. Between fall 2011 and spring 2018, TaiRON collected 45653 verified geo-

referenced vertebrate observations, and this number is likely a vast underestimate of the 

true amount of roadkill in Taiwan due to ecologically-sourced, observer-sourced, and 

environmentally-sourced biases, explained below. Roadkill is pervasive on Taiwan and 

occurs throughout the island except in the largely roadless high elevation Central 

Mountain Range. These areas also coincide with protected areas (Fig. 2.1), but do not 

attribute the lack of roadkill in these areas to the effectiveness of protected areas in 

preventing or decreasing roadkill, but to the fact that Taiwan’s Central Mountain Range 

is extremely steep and rugged, so roads are not easily built and the area is not easily 

accessible for human settlement. 

Notably, the patterns of roadkill demonstrate that certain taxonomic groups are 

disproportionately killed on roads, and that a small number of species account for most 

of the roadkill. Additionally, certain seasons account for higher frequency of road kills, 

especially for ectothermic taxa (e.g. reptiles & amphibians). These are important 

insights, as this means that there are groups and species that are being highly and 

disproportionately affected by roads.  

With the advent of smart-phone collected citizen science data, databases of 

readily available and accessible wildlife data, such as roadkill observations, will become 
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increasingly important for conservation. Additionally, the predicted 40% increase in 

total global road length by 2050, makes citizen science programs and roadkill data 

collection systems like TaiRON indispensable for utilizing existing roads for ecological 

data collection. These programs can offer data to inform this increase in future road 

building to have the least impact on biodiversity and wildlife. Though this field of 

roadkill data collection is growing, there is still a paucity of large organized databases of 

roadkill and larger-scale road ecology studies (Shilling et al., 2015; van der Ree et al., 

2011; Waetjen & Shilling, 2017). As WVCs occur across landscapes and these 

observations are relatively easy to access and observe, we believe large landscape-scale 

roadkill data collection programs, such as TaiRON, are invaluable to studying 

landscape-scale effects.  

The dramatic increase of TaiRON citizen science participants from 2012-2017 

was correlated with the increase of roadkill observations, and the large number of new 

participants explains the higher number of observations every year (Fig 2.2a). However, 

the effort of participants (observation/participants) per year dropped dramatically after 

2012, likely due to the increase of participants that contributed fewer observations of 

roadkill (Fig 2.2b).  

Snakes were the most reported roadkill in Taiwan with 35% of total confirmed 

observations. This may be due to the behavior of snakes that enhance the probability of 

wildlife-vehicle collisions, human behavior in response to wildlife on roads, observation 

bias, or a mixture of causes. Certain ecological traits of snakes such as body size, 

movement speed, thermoregulation behavior, and feeding behavior may also affect the 
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probability of wildlife-vehicle collisions (Andrews et al., 2008; Andrews et al., 2005; 

Langen, Ogden, & Schwarting, 2009). For example, some snakes have been observed to 

have an immobilization response on roads when a vehicle approaches, which may 

increase their risk of being struck by a vehicle (Andrews et al., 2005). Snakes have also 

been noted to bask on roads for thermoregulation, which makes them more vulnerable to 

WVC (Andrews et al., 2006; Bernardino Jr & Dalrymple, 1992; Klauber, 1939). 

Additionally, several studies reported drivers intentionally colliding with wildlife, 

notably snakes, on roads, which could also contribute to the reported high proportion of 

snake roadkill observations (Ashley, Kosloski, & Petrie, 2007; Crawford & Andrews, 

2016; Secco, Ratton, Castro, da Lucas, & Bager, 2014), though there have been no 

studies on intentional WVC behavior in Taiwan. Lastly, observation bias may also be a 

source of high reported snake roadkill. Due to size, many smaller animals such small 

mammals (rodents), amphibians (frogs & toads), and lizards may be underreported, 

while larger and longer animals, such as snakes, mammals, and birds, may be more 

easily seen and reported. Additionally, most roadkill was concentrated on a small 

number of species (the top 23 species accounted for 50% of the roadkill observations). 

These findings indicate that targeted mitigation strategies for snakes and top roadkill 

species should be seriously considered. 

Additionally, 13 of the top 20 most roadkilled species are nocturnal. As noted in 

the results, a high proportion (65%) of the top 20 roadkill species (53% of all vertebrate 

roadkill) were nocturnal. This may be due to several factors including reduced driver 

vision at night, which may shorten the time a driver has to react to an animal on the road, 
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and the proportion of animals active at night. Additionally, 20% of faunal species in 

Taiwan are nocturnal (Center, 2018), which may contribute to a higher likelihood of 

collision with an animal during this activity period. Additionally, wildlife may be 

blinded or stunned by the light of passing vehicles. However, mitigation measures 

should be tested while keeping other ecological effects in mind; e.g. strategies such as 

increased lighting may increase driver vision, but may have other ecological impacts, 

especially for nocturnal animals (Baker & Richardson, 2006; Bird, Branch, & Miller, 

2004; Buchanan, 1993; Macgregor, Pocock, Fox, & Evans, 2015). 

The database also provides a wealth of ecological information on protected 

species (13% of the total roadkill observations were indicated as protected species) that 

are often difficult to study and collect in Taiwan, likely due to both low detection rates 

and governmental restrictions on protected species research. Additionally, at the time of 

data download, TaiRON citizen science volunteers collected 5528 specimens of 

protected species, which are scientifically valuable and were preserved and stored at 

TESRI. The most WVC-impacted group of protected species was the snake group, as 

snakes accounted for half of the protected species observations. We believe conservation 

research and mitigation efforts should be focused on these protected species with 

observed high roadkill observations. This invaluable protected species data can be used 

to supplement ecological studies lacking in data, such as distributional studies on cryptic 

and rare species.  

As most ectothermic species and species that hibernate have reduced activity in 

the winter months, it was expected there would be fewer roadkill observations during 
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this season (Farmer & Brooks, 2012). Bats, lizards, and snakes differed significantly in 

WVC observations across seasons, likely due to ecological changes in seasonal activity. 

The seasonal difference in roadkill could allow for seasonal mitigation efforts rather than 

yearlong action. This seasonal activity pattern could reduce conservation spending and 

provide more targeted conservation action. For example, mitigation could be 

implemented during seasons with high activity, breeding, or migration seasons, which is 

ecologically directed and seasonal rather than year-round. 

TaiRON citizen science data was collected opportunistically, and it contains 

presence only data. There are ecologically-sourced, observer-sourced, and 

environmentally-sourced biases. Ecologically-sourced biases may include effects of 

body size, color of wildlife, and persistence of roadkill on roads before decomposition or 

scavenging. These factors may introduce variability in likelihood of WVCs and 

detection. For example, bias may also occur when there is a difference in persistence of 

roadkilled animals on roads; soft bodied and smaller bodied animals may be removed at 

higher rates, which would make detection of the animals more difficult (Ratton, Secco, 

& Da Rosa, 2014; Santos, Carvalho, & Mira, 2011; Teixeira, Coelho, Esperandio, & 

Kindel, 2013). Observer-sourced biases may include effects of traveling speed, traveling 

method, and perceived danger of data collection. Differences in traveling methods 

(driving instead of walking) have been associated with a decrease the detection rate of 

roadkill (Langen et al., 2007), likely caused by an increase of traveling speed. 

Additionally, perceived danger of data collection due to traffic or road conditions may 

deter citizen scientists from stopping for roadkill on certain roads. Additionally, 
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environmentally-sourced biases may include effects of weather conditions and 

environmental stochasticity. Environmentally-sourced conditions may deter participants 

or obscure detection of roadkill data. 

This study gives researchers baseline context to inform future research utilizing 

this data on an island with high biodiversity and endemism. Species on islands have the 

highest risk of extinction, and “reptiles on islands also risk extinction by chance alone 

due to their isolation and small areas of occupancy” (Fitzgerald et al., 2018). As 86% of 

documented reptile extinctions have been on tropical islands (Fitzgerald et al., 2018; 

IUCN, 2019), the consequences of high road mortality for reptiles, especially snakes, in 

Taiwan could be grave. 

We have found patterns among the roadkill data and elucidated the importance of 

focusing mitigation and research effort on protected snakes and nocturnal animals in 

Taiwan. Such mitigation actions can include building culverts and passages for wildlife 

(Smith, Van Der Ree, & Rosell, 2015), fencing along sections of road with high 

mortality (van der Ree, Gagnon, & Smith, 2015), animal detection systems (Huijser, 

Mosler‐Berger, Olsson, & Strein, 2015), and reduction in vehicle speed. As Taiwan is 

experiences frequent infrastructural and road destruction by way of natural disasters 

(typhoons and earthquakes), we propose that Taiwan uses these destructive events as an 

opportunity to rebuild roads with mitigation strategies incorporated, especially 

mitigation that will aid in reduction of snake road mortality (culverts and fencing).  

Due to the high amount of data on protected species (over 6000 records), 

TaiRON can also provide an important source of data on the life history, ecology, and 
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distribution of cryptic and/or rare species as many cryptic species are lacking in basic 

ecological data. TaiRON also serves as a source of collection specimens and has already 

informed research outcomes with major implications for the public. TaiRON has been 

utilized to inform not only transportation planning and mitigation for wildlife, but also 

topics of importance to public health. In 2013, TaiRON provided several Taiwan Ferret 

Badger (Melogale moschata subaurantiaca) roadkill specimens collected by citizen 

scientists for analysis that helped confirm the presence of rabies in Taiwan. This was a 

weighty public health matter because rabies was previously thought to be absent on the 

island. Epidemic analyses on carcasses provided by TaiRON helped reveal that rabies 

had specialized into a RABV-TWFB strain in Taiwan, and that it had differentiated on 

the island 158 to 210 years ago (Chiou et al., 2016). This important and practical 

application of data and specimens gathered by TaiRON volunteers has further made this 

group indispensable to public, scientific, and governmental sectors in Taiwan and 

internationally. 

As only a small fraction of all roadkill is observed, future work can be aimed at 

using TaiRON to attain more robust estimates of the actual roadkill extent. Important 

next steps are to conduct more in-depth spatial analyses on the TaiRON data, as well as 

establishing systematically citizen science data collection to help reveal the biases 

inherent to opportunistic citizen science data. Spatially explicit analyses were not 

included in this study because roadkill is prevalent throughout Taiwan except for the 

roadless high mountain areas (Fig. 2.1), and these types of analyses, which would 

include in depth discussion of environmental correlates, are appropriate for a different 
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paper, which we are preparing. Moreover, spatial analyses like a hotspot analysis would 

not enhance our discussion of the vulnerability of taxon groups, risk of roadkill across 

seasons, and impact on protected species. As roadkill is pervasive throughout Taiwan, it 

is meritorious and important to describe the magnitude of roadkill and parse out the 

degree of roadkill among taxonomic groups, by season, and how roadkill impacts 

protected species. Future work can focus on modeling roadkill risk for specific species 

and groups, as well as conducting studies on the detection biases of voluntary and 

opportunistic roadkill data collection. As TaiRON has access to a large engaged group of 

citizen science participants, future studies can also explore participant demographics and 

the effects of participation on environmental literacy (Hsu, Lin, Fang, & Liu, 2018). The 

TaiRON database provides ample opportunity for further future research to explore a 

wide spectrum of spatial, temporal, and citizen science participant studies.  

The Taiwan Roadkill Observation Network is a unique and valuable project due 

to its scope, adaptive management style, and level of engagement from its volunteers 

(>3,400) and managers. Its reach extends far beyond roads and wildlife and has made 

major contributions to public health and has made citizen engagement in science easily 

attainable in Taiwan. TaiRON and its database have and will continue to provide 

important conservation information about the impacts of human activity and pressures 

associated with roads on wildlife biodiversity.  
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3. THE INTERSECTION OF WILDLIFE AND ROADS: FINE-SCALE ROADKILL

RISK MODELS FOR HERPETOFAUNAL GUILDS AND SPECIES OF 

CONSERVATION CONCERN IN TAIWAN 

3.1. Synopsis 

3.1.1. Aim 

Robust, spatially-explicit approaches accounting for ecological drivers are 

needed to gain insight into environmental correlates of roadkill and set conservation 

priorities. We modeled and predicted wildlife road mortality across a nation-wide road 

network using species distribution models (SDMs) and environmental covariates for 

informing conservation action. 

3.1.2. Location 

Taiwan is the location of the study. 

3.1.3. Methods 

We applied the MaxEnt SDM to a large citizen science database of >60,000 

roadkill occurrences to predict the probability of roadkill for herpetofaunal guilds of 

conservation need. Twenty-eight environmental covariates at 50 m spatial resolution 

were included, such as road type, road width, and 26 land cover composition and 

distance variables. Models were created for the following guilds and species: Common 

Venomous Snakes (CVS), Semiaquatic and Aquatic snakes (SAS), and Turtles with 

k=10 cross-validation, and both k=10 and k=50 cross-validation for the Maki’s keelback 

snake (Hebius miyajimae, HM). We used the AUC model evaluation metric and 
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minimum and 10th percentile training presence threshold omission rates to help assess 

model performance. Intuitive interactive roadkill risk maps were developed for 

conservation practitioners. 

3.1.4. Results 

All predictive models performed well and had AUCs >0.7. Important covariates 

among the differing roadkill models included road width, road type, buildings, rice, and 

fruit trees. Projected roadkill risks for CVS, SAS, turtles, and HM were highest in 

montane regions, coastal lowlands, the southwestern coast, and parts of central Taiwan, 

respectively. 

3.1.5. Main Conclusions 

Our roadkill projection models performed well across ecological levels on a 

national scale. The road-type variable contributed highly to guild-level roadkill risk, 

indicating that road category strongly influenced roadkill risk. As predictions and 

variable importance differed across guild and species models, individual models need to 

be produced for each group of interest. This study demonstrates our predictive roadkill 

models are scalable to address the ecological question of interest and the importance of 

systematic collection of roadkill data. 

3.2. Introduction 

Habitat loss and conversion is the primary cause of biodiversity loss (Brooks et 

al., 2002; Fahrig, 1997; Gardner, Barlow, & Peres, 2007; Hanski, 2011). The expansion 

of urban infrastructure, especially roads, is a main driver and facilitator for landscape 

change (Freitas, Hawbaker, & Metzger, 2010), and has ecological consequences for 
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biodiversity as many roads were built without the ecological knowledge that we have 

today (Forman & Alexander, 1998). Consequences of roads include the clearly visible 

direct impacts of wildlife-vehicle collisions (WVCs) (Kroll, 2015; F. Shilling, Perkins, 

& Collinson, 2015), more commonly referred to as roadkill, and the less-visible, 

insidious indirect impacts not directly associated with the road. This ‘road-effect zone,’ 

the area upon which roads have ecological effects on the surrounding landscape 

(Forman, 2000), can include a wide range of indirect effects such as changes in soil 

chemical composition resulting from runoff, barriers and filters to species’ movement 

and any associated reductions in dispersal, and edge effects which can affect species 

population and community structures (Andrews, Gibbons, Jochimsen, & Mitchell, 2008; 

Forman & Alexander, 1998). Roadkill and road-effect zones are the unfortunate 

outcomes of the intersection of human transportation requirements and ecological 

systems. However, as roads are a necessity for the foreseeable future, we must use data 

on existing roads and their effects to inform future conservation actions that mitigate 

biodiversity loss stemming from roads. 

Direct and indirect ecological impacts of roads are expected to be especially 

dramatic in island ecosystems. Despite the high propensity for endemism and high 

extinction rates, particularly among endemic species (Frankham, 1998), surprisingly 

little research on the ecological effects of roads has been conducted on islands. Taiwan, 

an island with high ecological value (Laurance et al., 2014) and high road density (S.-C. 

Lin, 2006; Phillips, Anderson, Dudík, Schapire, & Blair, 2017) is thus an ideal site for 

our study. Laurance et al. (2014) concluded that Taiwan’s high ecological value 
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outweighs the benefits of building roads in their global road building strategy maps. 

Taiwan also “appear[s] to feature exceptional … endemism and exceptional threat, but 

are not sufficiently documented” (Myers, Mittermeier, Mittermeier, Da Fonseca, & 

Kent, 2000). Taiwan already has approximately twice the road density of the U.S.A.: 1.2 

km/km2 and 0.68 km/km2, respectively (Phillips et al., 2017). This means it is important 

to study the effects of roads on its ecological structure. Conservation studies of roads in 

Taiwan stand to offer global application for other developing islands, especially in the 

highly biodiverse southeast Asian and Pacific regions. 

Although roads heavily impact all terrestrial animals, amphibians and reptiles 

(herpetofauna) have some of the highest levels of recorded road mortality (Andrews, 

Gibbons, & Jochimsen, 2006; Chyn, Lin, Chen, Chen, & Fitzgerald, 2019), and are the 

most threatened terrestrial vertebrates in the world (Fitzgerald et al., 2018; IUCN, 2019). 

Due to their terrestrial lifestyles, diverse life histories, and urgent need for conservation, 

herpetofauna are ideal for studying road-effect zones across multiple landscape and 

ecological scales. Previous research has shown road-effect zones can create landscapes 

near roads that are attractive as reproduction, foraging, or nesting habitat for species, 

increasing their vulnerability to road mortality (Andrews et al., 2008; Hódar, 

Pleguezuelos, & Poveda, 2000). Snakes are especially vulnerable to roadkill (Chyn et al., 

2019; Farmer & Brooks, 2012), and previous research has shown that environmental 

variables like proximity to land cover (Gonçalves et al., 2017), foraging guild and body 

size (Andrews, Gibbons, & Reeder, 2005), and proximity to water bodies (Seo, Thorne, 

Choi, Kwon, & Park, 2015) may affect snake road mortality.   
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We collaborated with citizen scientist volunteers to conduct broad, opportunistic 

roadkill surveys. Our database, the Taiwan Road Observation Network (TaiRON) (Chyn 

et al., 2019), is a national citizen science project formed in August 2011. The data is 

opportunistic roadkill data with >60,000 observations collected by >4300 TaiRON 

citizen scientist members throughout Taiwan, and the data set is continuously growing as 

the TaiRON citizen science membership is active and increasing. This database is one of 

the most extensive and complete vertebrate occurrence point data sets in Taiwan, and 

one of the most extensive roadkill data sets globally (https://globalroadkill.net). Citizen 

scientists are provided with in-person training, equipment, and a web application 

accessible across smartphone platforms. Citizen scientists are also encouraged to submit 

carcasses in good condition to be made into specimens for the Taiwan Endemic Species 

Research Institute (TESRI) collection. The Taiwan Roadkill Observation Network has 

garnered proven interest and participation from the public as a thriving government-

funded, national citizen science project, and one of the largest roadkill observation 

systems in the world (Waetjen & Shilling, 2017). 

Though roads are widespread and easily accessible, they are often an untapped 

source of ecological information. One of the most visible and accessible forms of this 

ecological data is roadkill. Though there is an established literature of localized studies 

of roadkill patterns (Hobday & Minstrell, 2008; Kioko, Kiffner, Jenkins, & Collinson, 

2015; Maschio, Santos-Costa, & Prudente, 2016; Sosa & Schalk, 2016; Taylor & 

Goldingay, 2004), there is still a paucity of large organized databases of roadkill and 

large-scale roadkill studies (F. Shilling et al., 2015; van der Ree, Jaeger, van der Grift, & 
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Clevenger, 2011; Waetjen & Shilling, 2017). To understand and predict WVCs to set 

conservation priorities, robust, spatially-explicit approaches that take ecological drivers 

into account are needed to interpret roadkill data.  

Reliable modeling of predicted roadkill probability is invaluable to prioritization 

in mitigation and conservation action towards reducing wildlife-vehicle collisions. 

Previous research has explored predictive roadkill modeling by analyzing roadkill data 

with other environmental, and often, anthropogenic variables. Modeling approaches 

have included mainly regressions (Eberhardt, Mitchell, & Fahrig, 2013; Malo, Suárez, & 

Diez, 2004; Roger & Ramp, 2009; S. M. Santos, Lourenco, Mira, & Beja, 2013), 

including MaxEnt (Kantola, Tracy, Baum, Quinn, & Coulson, 2019). Our primary 

objective was to use TaiRON’s large citizen science database of WVC occurrences and 

the species distribution model (SDM), MaxEnt, to predict the relative probability of 

roadkill, which we call roadkill risk, for future conservation action. Our study examined 

the influence of environmental variables on our power to predict the risk of WVCs and 

herpetofaunal road mortality in Taiwan across several guilds and species. Another aim 

was to assess the scalability of this approach. As such, we also developed models for a 

rare snake species with relatively fewer roadkill observations to test the applicability of 

our predictive roadkill modeling for conservation driven initiatives for vulnerable and 

rare species. We expected that roadkill risk and environmental variable importance 

would differ across guilds, species, and other groupings due to differences in life history. 

Our modeling approach also allowed us to develop a useful conservation and 

management tool for roadkill mitigation, an intuitive interactive predictive roadkill risk 
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map, for each guild and species of conservation interest. As a 40% increase in global 

road length is predicted by 2050 (Dulac, 2013), our approach will be invaluable for 

transportation planning, for example projecting risk of roadkill of proposed roads. This 

work demonstrates the importance of systematic collection of roadkill data and the 

utility of our predictive roadkill risk methodology. 

3.3. Methods 

3.3.1. Study Area 

Taiwan is an island roughly 180 kilometers off the eastern coast of mainland 

China that emerged due to collision of the Philippine Sea plate and the Eurasian plate 

during the Mio-Pliocene boundary (Adler, HilleRisLambers, & Levine, 2007). As 

Taiwan is located at the border of the Palearctic and Oriental biogeographic zones and 

contains elevational heterogeneity, it supports diverse habitats with high biodiversity 

(He, Gao, Su, Lin, & Jiang, 2018). Taiwan’s total area is 36,193 km2 and the climate is 

subtropical to tropical. The human population of Taiwan is approximately 23 million 

people with a human population density of 653 people/km2 (Phillips et al., 2017). 

Taiwan is incredibly biodiverse but also space and resource-limited, making roads and 

associated removal of habitat more detrimental to faunal populations. 

3.3.2. Data 

The data were acquired from three sources (Table 1). Data for roadkill 

occurrences were obtained from the Taiwan Roadkill Observation Network citizen 

science database, which utilizes social media (Facebook™) and their web application 

(https://roadkill.tw/app) for data collection and community engagement. Although the 



 

60 

 

data is opportunistic, the database is extensive. Project managers verify individual 

“unconfirmed” observations for accuracy, which are then either marked as “confirmed” 

or “unable to confirm.” Observations are “confirmed” when consensus is reached on 

taxonomic identification and locational and date/time data are provided. Data on non-

protected species is freely available to the public for live download, whereas protected 

species and participant data is only available to those who have approved applications. 

The full TaiRON dataset, including protected species observations, was downloaded on 

April 24th, 2018, and contained a total of 113,906 observations spanning the years 1995-

2018 with the majority of the observations (87%) occurring from 2011 onwards. Data in 

target taxonomic guilds were then selected (explained below) for analyses. 

Table 3.1 Data and data sources. 
 

Data Data Source 
Citizen science roadkill 
observations 

Taiwan Road Observation Network (TaiRON) database (downloaded 24 
April 2018) 

Road network GIS-T Transportation Network Geographic Information Storage System: 
Taiwan Ministry of Transportation and Communication (downloaded 22 
November 2017) 

Sub-meter land use land 
cover 

GIS-T Transportation Network Geographic Information Storage System: 
Taiwan National Land Survey and Mapping Center 

 

3.3.2.1. Roadkill Data 

For this study we selected three guilds of species, common venomous snakes 

(CVS), semiaquatic & aquatic snakes (SAS), and turtles, and one rarely observed 

species, the Maki’s keelback snake (Hebius miyajimae) (HM), from the TaiRON records 

based on conservation need and utility for TaiRON projects (Table 2). The semiaquatic 

and aquatic snake guild (SAS) was chosen due to the high level of threat it faces in 
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Taiwan. Their habitats are waterways and bodies of water, which are increasingly 

polluted, modified, or lost, causing major population declines and local extirpations 

across areas in Taiwan (Chen, Lin, Lin, & Yang, 2017; Mao, 2004). Terrestrial turtles 

were chosen as turtle populations are also declining in Taiwan, mainly due to illegal 

poaching for human consumption in Mainland China and habitat loss (Chen et al., 2017; 

Y.-F. Lin, Wu, Lin, Mao, & Chen, 2010; Zhao, 1998; Zhihua Zhou & Jiang, 2008). The 

rarely observed Maki’s keelback snake, was chosen as it is protected by the Taiwanese 

government and is an International Union for Conservation of Nature (IUCN) Redlist 

“vulnerable” species, where roads are listed as a major threat to the species (IUCN, 

2019). 

We included only TaiRON data containing observations with spatial coordinates 

and taxonomic identifications that were confirmed by project managers. All roadkill 

points that were within 30 m of the road network were set to the closest center of a road. 

This allowed us to account for inaccuracies in GPS location from smart phones. The data 

partitioned into the following groups: CVS, SAS, turtles, and HM (Table 2). 

Table 3.2 Roadkill occurrence groups, the species that comprise the groups, and the 
number of roadkill occurrences analyzed within each group. 
 

Guild Species Comprised Observations 
Common venomous 
snakes (CVS) 

 Naja atra, Bungarus multicinctus multicinctus, 
Protobothrops mucrosquamatus, Deinagkistrodon 
acutus, Trimeresurus stejnegeri stejnegeri, Daboia 
siamensis 

4486 

Maki’s keelback snake 
(HM) 

 Hebius miyajimae 50 

Semiaquatic & aquatic 
snakes (SAS) 

 Amphiesma stolatum, Xenochrophis piscator, 
Sinonatrix percarinata suriki, Sinonatrix annularis, 
Myrrophis chinensis, Enhydris plumbea 

1161 

Turtles  Mauremys sinensis, Mauremys mutica mutica, 
Cuora flavomarginata 

633 



 Road Network 

We cleaned the road network data to contain only roads between 3 m and 100 m 

in width, as roads narrower or wider likely represented errors. We added a variable-

width buffer to road sections that was the width of the section of road, half of the width 

of the road on each side. For example, a section of road that is 10 m wide will have 5 m 

of buffer on each side for a total buffer width of 10 m. We converted the road shapefile 

to a 50 m x 50 m raster (Fig. 3.1A).  

3.3.2.2. Environmental Covariates 

The Taiwan National Land Survey and Mapping Center provided sub-meter 

resolution that is classified into 103 land use categories. Many of these categories 

include specific building-type designations and other categories that would be 

ecologically irrelevant for our analyses. We reduced the 103 land use categories to 28 

environmental covariates by amalgamating repetitive land use types and removing road 

categories as the data was redundant to the Taiwan Ministry of Transportation and 

Communication’s roadway data. We analyzed 28 environmental covariates for our 

predictive roadkill risk maps in total (Table 3), with the covariate “road type” as a 

categorical variable (Table 4). We excluded elevation because it is often highly 

correlated with other environmental variables and has low contribution to models 

(Bradie & Leung, 2017). 

We conducted pre-model fitting covariate selection by testing for correlations 

between our variables. None of the correlations were over the moderate correlation value 

of 0.5 for the 28 variables, so all variables were kept in the model. Additionally, all non-

categorical variables were standardized to aid in model fitting and result interpretation. 
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After choosing our environmental covariates, we converted the polygon 

shapefiles to 50 m x 50 m rasters for each covariate. We calculated percentage cover to 

capture the spatial effect of land use category covariates up to 250 m outside of its 

delineated area. A 250 m x 250 m moving window was chosen because ecological 

studies on snakes and turtles in Taiwan and other tropical climates report home ranges 

generally within 62500 m2 (or 250 m x 250 m) (Brown, Shine, & Madsen, 2005; Lue & 

Chen, 1999; Rodda, Fritts, McCoid, & Campbell III, 1999). We used the “focal” 

function in the raster R package to create percent cover layers. For covariates relating to 

waterways or bodies of water, we calculated Euclidean distance (Fig. 3.1B), as these 

water features are generally attractive to fauna and distance to water may have 

ecological spatial effects (Farmer & Brooks, 2012; Langen, Ogden, & Schwarting, 

2009). We created Euclidean distance-to-variable gradients for these environmental 

variables using the “Proximity (raster distance)” tool in QGIS (Fig. 3.1B). We masked 

all of the covariate gradients to the rasterized Taiwan road network (Fig. 3.1D). This is 

to constrain the roadkill model to areas where fauna-vehicle interactions are expected. 
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Figure 3.1 Flowchart of predictive roadkill risk model methodology. A) Flowchart 

of data processing methodology and statistical analysis with three main sections, 
data, analysis, and visualization. B) Examples of unmasked % cover and distance 

environmental variables (Dry Crop and River variables, respectively). C) Bias layer 
for generating pseudo-random background point. D) Zoomed in sections of masked 

environmental variables (wetland % cover, distance to drain). 
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Table 3.3 Environmental covariate names and definitions. 

 
Environmental covariate Definition 
Road type Type of road defined by the Taiwan Ministry of Transportation and 

Communication. This is a categorical variable. See Table xx for road 
categories 

Road widthWidth of roads in meters.Roads analyzed are 3 m ≤ and ≤ 100 m. 
Land Usage Percent Cover (w/ 250 m window) 
BuildingsBuildings are permanent structures with a roof and walls 

 

Dry field crop Agricultural field crops that are grown on dry land 
Fruit trees Agricultural fruit tree orchards 
Grassland Grassland 
Harvested forest Harvested forest without regrowth 
Managed bamboo Managed bamboo forest (> 75% bamboo) 
Managed broadleaf Managed broadleaf forest (> 75% broadleaf) 
Managed conifer Managed conifer forest (> 75% conifer) 
Managed mixed forest Managed mixed forest 
Mining Mining activities, including rock quarries and salt mines 
Parks Recreational parks 
Pasture Agricultural livestock pastures 
Rice Agricultural rice 
Shrub land Shrub land 
Virgin bamboo Virgin bamboo forest (> 75% bamboo) 
Virgin broadleaf Virgin broadleaf forest (> 75% broadleaf) 
Virgin conifers Virgin conifer forest (> 75% conifer) 
Virgin mixed forest Virgin mixed forest 
Wasteland Agricultural fields that have been exhausted 

Distance to variable 
Aquaculture An artificial body of water for farming fish 
Beaches A landform alongside a body of water typically consisting of loose 

particles of rock 
Beach wetland An area of land on or alongside a beach inundated with marine water 
Cistern An artificial reservoir for storing water 
Ditch An artificial small to moderate depression created to channel water 
Riverways A naturally-formed waterway that is rendered as a line 
Wetlands An area of inundated land 
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Table 3.4 Road categories 

 
Number Road code Road type 
1 1E Provincial highway fast road 
2 1U Provincial highway collinear 
3 1W Provincial highway 
4 2U County road collinear 
5 2W County road 
6 3U Township (country) road collinear 
7 3W Township (country) road 
8 4W Industrial road 
9 AL Urban roads (Lane, Alley) 
10 FR N/A 
11 HU National (state) Highway subsidiary road 
12 HW National (state) Highway 
13 OR With (having) road name but cannot be classified 
14 OT No road name 
15 RD Urban roads (Road, Street) 
16 RE Urban fast road 

 
3.3.3. Analysis 

We related observed roadkill records to environmental covariates to predict 

roadkill distributions, or “roadkill risk,” across a road network. We employed SDMs 

rather than popular hotspot and clustering analyses for roadkill analyses (F. M. Shilling 

& Waetjen, 2015) as we believe SDMs to have several advantages. Species distribution 

models can both predict relative roadkill rates in areas without roadkill observations and 

can identify the variables that best explain presence of roadkill, whereas hotspot and 

cluster analyses can only highlight spatially clustered data and cannot predict into 

unsampled areas as they do not incorporate environmental or landscape variables. 

Previous studies have used various predictive models for analysis on roadkill (Gomes, 

Grilo, Silva, & Mira, 2008; Malo et al., 2004; Ramp, Caldwell, Edwards, Warton, & 

Croft, 2005), but few studies have employed MaxEnt for vertebrate road mortality 
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(Garrote, López, López, Ruiz, & Simón, 2018; Ha & Shilling, 2017; Kantola et al., 

2019; Y.-P. Lin et al., 2019). We provide novel use of MaxEnt to predict roadkill 

mortality across a road network utilizing our large and robust citizen science database. 

We chose to use the MaxEnt modeling method (Phillips, 2005), one of the most 

widely used SDMs (Elith et al. 2011), for our predictions as it can be applied to 

presence-only datasets and incorporates regularization to reduce overfitting, which 

facilitates the use of a large number of covariates (Merow, Smith, & Silander, 2013). 

This is important because the TaiRON roadkill data consists only of opportunistic 

observation records, so it is presence-only data. We used the R package ‘zoon’ (v0.6.3) 

(Golding et al., 2017) to create a reproducible workflow for our SDM analyses. MaxEnt 

uses maximum entropy estimation to fit a model to data (for details, see Merow et al., 

2013). We employed all available MaxEnt feature types (linear, quadratic, hinge, 

threshold, and product) as more than 80 presence points were available for each group 

(Merow et al., 2013) except HM, however, we wanted to keep methodology consistent 

across models. MaxEnt is a presence-background modeling method, so we generated 

10,000 background points using a bias layer to account for sampling bias (Dudík, 

Phillips, & Schapire, 2006; Phillips et al., 2009). Our bias layer was created using a two-

dimensional kernel density estimate based on the coordinates of the presence points. 

This was then masked to the road network (Fig. 1C). This means that our background 

samples are biased towards areas with a higher density of occurrence points and 

background points would be generated with the same biases inherent in the occurrence 

data. Generating biased background points assures the same environmental biases in 
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both presence and background data and the model will account for sampling bias (Dudík 

et al., 2006; Phillips et al., 2009). We utilized biased background sampling because 

sampling effort could not be estimated across our landscape as the nature of roadkill 

confounds the state and observation processes, and we had data on roadkill occurrences 

of other taxa that employed the same sampling methods (Merow et al., 2013). Following 

TaiRON protocol, roadkill observations were removed from the road once recorded, 

which removes the risk of multiple observations of the same individual due to higher 

sampling effort. We also selected additional options for jackknife and variable percent 

contribution analyses as measures of variable importance. We turned off “auto features” 

so that MaxEnt would include all model features instead of just one to ensure consistent 

methodology across models.  

3.3.4. Model Evaluation 

We ran 10-fold cross-validation (k = 10) in all models and used the Area Under 

the Receiver Operating Characteristic Curve (AUC) model evaluation metric to help 

assess the performance of our model. We provide the test AUC, training AUC as well as 

the overfitting statistics of AUC difference (AUCdiff = training AUC – test AUC) 

(Warren & Seifert, 2011) and minimum and 10th percentile training presence threshold 

omission rates (Radosavljevic, Anderson, & Araújo, 2014) to test for overfitting. Cross-

validation is especially helpful for SDMs when there is no independent dataset available 

to validate model predictions. In our analysis, the data was split into 10 dataset folds, 

and we fit a model to every possible combination of 9 folds, known as the training 

dataset, and then evaluated the model’s predictions on the remaining hold-out fold, 
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known as the testing data (see Appendix A). The continuous projections of the 10 

MaxEnt training set models were combined by averaging to create a training set 

ensemble (TSE) model. Additionally, as H. miyajimae had a relatively small sample size 

(n = 50), we employed a hold-one-out jackknife approach, where during cross-

validation, k is equal to the number of presences to maximize the utility of information 

from species with few records (k = n = 50) (Shcheglovitova & Anderson, 2013). 

Consequently, we developed MaxEnt TSEs of both 10 and 50 models for H. miyajimae. 

The AUC was used as a metric to evaluate performance for all models when data was 

cross-validated as it is a threshold-independent metric that can be used for presence-only 

models. We chose to report variable importance as a measure of permutation importance 

rather than percent contribution, as permutation importance has been shown to be a more 

accurate and reliable predictor for variable selection accuracy (Halvorsen, 2013; Searcy 

& Shaffer, 2016).  

For all above analyses, we used the following programs and R packages: R 3.5.1 

(Team, 2017), QGIS 2.18.14 (QGIS Development Team , 2019), MaxEnt 3.4.1 (Steven 

J. Phillips, Miroslav Dudík, & Schapire, 2017), ‘zoon’ (Golding et al., 2017), dismo 

(Robert J. Hijmans, Steven Phillips, John Leathwick, & Elith, 2017),  and ‘caret (Max 

Kuhn. Contributions from Jed Wing, Engelhardt, & Lescarbeau, 2018). 

3.4. Results 

We produced predictive roadkill risk maps for the aforementioned groups (CVS, 

SAS, turtles, and HM) (Fig. 2-6). We also produced interactive versions of these 

predictive maps, which allow users to zoom in on details of the predictive model (see 
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Appendix A). Each respective group produced differing predictions of roadkill risk 

across Taiwan’s road network, and several environmental variables best explained the 

presence of roadkill for each guild.  

The predictive maps for CVS showed patterns of higher risk of road mortality 

were widespread across Taiwan’s rural inner montane regions, with some of the highest 

mortality on trans-national highways that cut through the steep and rugged central 

mountain range (Fig. 2). The following covariates had the highest permutation 

importance: road type, buildings, road width, virgin mixed forest, and rice (Table 5, see 

Appendix A). The model had the following performance metrics: test AUC = 0.717, 

training AUC = 0.734, and the AUCdiff = 0.017. The minimum training presence 

threshold omission rate = 0.000, and the 10th percentile training presence threshold 

omission rate = 0.100. 

The predictive maps for SAS show patterns of higher risk of road mortality that 

are widespread along coastal lowlands of Taiwan, and low risk of road mortality is 

concentrated in the steep, high-elevation, rugged central mountain range (Fig.3). The 

following covariates had the highest permutation importance: road type, ditch, road 

width, buildings, beach wetland (Table 5, see Appendix A). The model had the 

following performance metrics: test AUC = 0.772, training AUC = 0.797, and the 

AUCdiff = 0.025. The minimum training presence threshold omission rate = 0.000, and 

the 10th percentile training presence threshold omission rate = 0.100. 

The predictive maps for turtles show patterns of higher risk of road mortality 

concentrated on the southwestern coast in Taiwan, mostly in Chiayi and Tainan counties 
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(Fig. 4). The following covariates had the highest permutation importance: road type, 

buildings, rice, road width, fruit trees (Table 5, see Appendix A). The model had the 

following performance metrics: test AUC = 0.798, training AUC = 0.832, and the 

AUCdiff = 0.034. The minimum training presence threshold omission rate = 0.000, and 

the 10th percentile training presence threshold omission rate = 0.100. 

Under the k = 10, k-fold cross-validation model, the predictive maps for HM 

show patterns of higher risk of road mortality concentrated in a few regions in central 

Taiwan (Fig. 5). The following covariates had the highest permutation importance: 

managed bamboo forest, fruit trees, cistern, beach wetland, and road width (Table 5, see 

Appendix A). The model had the following performance metrics: test AUC = 0.982, 

training AUC = 0.998, and the AUCdiff = 0.016. The minimum training presence 

threshold omission rate = 0.000, and the 10th percentile training presence threshold 

omission rate = 0.081. 

Under the k = n (= 50), k-fold cross-validation model, the predictive maps for 

HM show patterns of higher risk of road mortality similarly concentrated in a few 

regions in central Taiwan as in the k = 10 model (Fig. 6). The following covariates had 

the highest permutation importance: managed bamboo forest, buildings, fruit trees, 

beach wetlands, and riverways (Table 5, see Appendix A). The model had the following 

performance metrics: test AUC = 0.980, training AUC = 0.997, and the AUCdiff = 0.017. 

The minimum training presence threshold omission rate = 0.000, and the 10th percentile 

training presence threshold omission rate = 0.081. 
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Both HM models with (k =10) and (k = n = 50) produced similar predicted 

roadkill risk maps (Fig. 5, 6) and had similar model performance. Our overfitting 

statistic, AUCdiff, for the HM (k = 10) and HM (k = n) models were comparatively low, 

suggesting overfitting was not a problem. Additionally, the minimum and 10th percentile 

training presence omission rates were not higher than the theoretical expectation for the 

thresholds, 0% and 10 %, respectively, and do not indicate overfitting for either HM 

model. Due to a small sample size, the AUC may be inflated due to modeling a small 

number of mostly clustered occurrences over a large area, which gives a largely 

dichotomous relative probability estimate. 

The models produced for the three guilds, CVS, SAS, and turtles performed well, 

with all models holding AUCs > 0.77. The road type variable had the highest 

permutation importance across all three guilds. This is likely because we are predicting 

onto the road network itself, so the variable will correlate strongly with the road 

variables. As road type is a categorical variable, the types of roads that most strongly 

influenced roadkill probability for CVS, SAS, and turtles were types 1W (provincial 

highways), 2U (two-lane county roads), and 2U (two-lane county roads), respectively. 

The protected species model, HM, had a very high AUC, and the low overfitting statistic 

compared to the models for various guilds suggests the elevated AUC metric is not due 

to overfitting. However, the high AUC may also be due to a small sample size modeled 

over a large area.  

Clear spatial associations between environmental variables and road mortality of 

herpetofaunal taxa were revealed in the MaxEnt roadkill risk models. Overall, the 
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environmental variables with the highest permutation importance to road mortality 

points across taxa were related to characteristics of roads. Response curves for the top 

five contributing variables for each group showed how strongly each environmental 

variable affected the model predictions and are given in Appendix A.

 

 

Figure 3.2 The predicted roadkill probability (“risk”) for common venomous 
snakes (CVS) in Taiwan with an inset at the bottom right to show detail. Values 

closer to 1 (yellow) denote higher risk of roadkill and values closer to 0 (purple) 
denote lower risk 

23.80

23.85

23.90

120.80 120.85 120.90



 

74 

 

 
 

Figure 3.3 The predicted roadkill probability (“risk”) for semiaquatic & aquatic 

snakes (SAS) in Taiwan with an inset at the bottom right to show detail. Values 
closer to 1 (yellow) denote higher risk of roadkill and values closer to 0 (purple) 

denote lower risk 
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Figure 3.4 The predicted roadkill probability (“risk”) for turtles in Taiwan with an 

inset at the bottom right to show detail. Values closer to 1 (yellow) denote higher 
risk of roadkill and values closer to 0 (purple) denote lower risk. 
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Figure 3.5 The predicted roadkill probability (“risk”) for Hebius miyajimae (HM) 

in Taiwan using k = 10 fold cross-validation with an inset at the bottom right to 
show detail. Values closer to 1 (yellow) denote higher risk of roadkill and values 

closer to 0 (purple) denote lower risk. 
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Figure 3.6 The predicted roadkill probability (“risk”) for Hebius miyajimae (HM) 

in Taiwan using k = n (= 50) fold cross-validation with an inset at the bottom right 
to show detail. Values closer to 1 (yellow) denote higher risk of roadkill and values 

closer to 0 (purple) denote lower risk. 
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Table 3.5 Variable importance measurements for each model where PC = percent 
contribution and PP = permutation importance 

 
covariate CVS1 SAS2 Turtles HM3(k = 10) HM3(k = n) 

 PC PP PC PP PC PP PC PP PC PP 

aquaculture 0.2 0.8 9.3 4.5 19.5 6.4 3.9 0.4 0.7 0 
beaches 0.7 1.2 1.4 6 0.6 1.4 1.7 0.2 3.9 3.5 
beachwetland 0.3 0.3 2.1 6.4 1.6 5 3.5 2.1 2.8 7.3 
buildings 19.1 15.2 5.7 8.4 5.4 16.3 1.2 0.5 1 15 
cistern 1 1.1 6.9 4.5 2.6 0.4 39.7 4.2 38.7 3.4 
ditch 0 0 14.2 11 5 4.2 0.2 0 0.4 1.1 
dry field crop 0.4 1.7 0.5 1.6 1 2 0.4 0.3 0.1 0.5 
fruit trees 0.6 8.1 0.8 4 1.7 7.1 0.8 13.6 0.7 11.8 
grassland 0.3 0.2 0 0.1 0.1 0.2 0 0 0 0 
harvested forest 0 0 0 0 0 0.2 0 0 0 0 
managed bamboo 0 0 0.2 0.3 0.7 1.9 0.5 74.6 0.6 35 
managed broadleaf 0.3 0.1 0.4 1.9 2.4 2.2 0.4 0.7 0.3 0.5 
managed conifer 0 0 0.3 0.6 0 0.2 0.3 0.2 0.1 0.4 
managed mixed forest 2.9 3.8 0.5 4.2 0.7 4.9 1.7 0 1.3 0.2 
mining 0 0 0.1 0.1 0.1 0 0 0 0 0 
parks 0 0 0 0 0.7 0.6 0 0 0 0 
pasture 0 0 0 0 0 0 0 0 0 0 
rice 4.7 8.8 8.3 3.9 1.2 8.5 0.1 0.3 0.1 1.4 
riverways 1.2 1.5 3.3 6.1 3.3 5.9 0.4 0.3 1.2 6.9 
road type 35.8 26.7 17.8 19.6 17.9 17 35.4 0.7 36.5 6.2 
road width 18.9 11.9 21.3 8.8 25.1 7.5 1.7 1.2 1.4 5.3 
shrubland 2.4 2.4 0.1 0 0 0 0 0 0 0 
virgin bamboo 0.1 0 0 0.1 0 0 0 0.1 0 0 
virgin broadleaf 0.4 0.9 0 0.1 0.2 1.6 0.1 0 0.1 0 
virgin conifers 0 0 0.1 0.1 0 0 0 0 0.1 0 
virgin mixed forest 8.9 10.6 0.6 1.9 0.5 3.1 7.9 0.4 9.7 1.6 
wasteland 0 0.1 0.4 0.2 1.7 1.2 0 0 0 0 
wetlands 1.7 4.6 5.6 5.7 7.7 2.1 0.2 0.3 0.1 0.1 

1 Common Venomous Snakes 
2 Semiaquatic & Aquatic Snakes 
3 Hebius miyajimae 
 

3.5. Discussion 

We modeled roadkill risk across several taxonomic scales (i.e., guilds and 

species), and our methods and associated maps revealed versatile options in 
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applicability. A meaningful contribution of this paper is demonstration that the 

predictive modeling approach we employed can easily be scaled up or down, depending 

on the ecological question. The methodology is globally applicable anywhere there is 

sufficient roadkill data. This work also highlights the utility and importance of amassing 

roadkill data, as it can greatly contribute to both informing future conservation action 

and engaging the public in wildlife education and conservation ethics. Specifically, we 

made novel findings on where predicted high and low risk areas are for threatened guilds 

of reptiles in Taiwan and identified which environmental variables, including variables 

about the roads themselves, contributed most to high roadkill predictions. Additionally, 

the interactive roadkill risk map can be a useful conservation tool for managers. To our 

knowledge, this study is the first to utilize an SDM and a roadkill database to predict 

roadkill presence, or “risk,” directly to a road network on a national scale. Importantly, 

this methodology and its findings are not limited to Taiwan; it can be applied to any area 

with sufficient roadkill and environmental data. 

Lin et al., (2019) recently used TaiRON data to separately model annual and 

seasonal roadkill of four common herpetofaunal species in Taiwan at 1 km resolution. 

They followed a framework that used the SDM of habitat as the only environmental 

correlate of exposure with road characteristics as environmental correlates of hazard to 

develop a model with roadkill data as response variable input (Visintin, Ree, & 

McCarthy, 2016). Our study followed the more traditional approach using raw 

environmental correlates (e.g., land cover variables as opposed to solely a habitat model) 

with road characteristics to model roadkill risk (e.g., Ha & Shilling, 2017; Kantola et al., 
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2019). In addition, we utilized finer 50 m resolution that is more suitable for the scale of 

road characteristics. Our use of raw environmental correlates allowed representation of 

individual correlates as both elements of exposure (habitat suitability) and risk. For 

example, the land cover of ditches may have an intermediate habitat suitability value of 

exposure for a semiaquatic species and may also represent a high value of risk around 

roads due to use as corridors for movement. Further use of our approach with seasonal 

data, as done by Lin et al. (2019), should be explored. 

Our models predicted relative probabilities of roadkill and serve to identify key 

sections of the road network with high predicted risk of roadkill for further investigation 

or mitigation. Examining these key areas and environmental variables associated with 

WVCs and wildlife mortality would allow managers to plan to avoid and mitigate these 

deadly encounters, which is especially important for rare and protected species (Chyn et 

al., 2019). Road mitigation measures are a crucial component in Taiwan’s transportation 

management due to the intersection of their extensive density of roads and high wildlife 

biodiversity and endemism. Translating our models into an interactive mapping tool 

helps make our results immediately applicable to management of WVCs in Taiwan at 

the national level.  

Importantly, our study demonstrates the utility of using SDMs to predict roadkill 

risk for endangered species based on relatively few observations. Hebius miyajimae is a 

forest-dwelling species restricted to relatively undisturbed forests in Taiwan of high 

conservation priority (Z. Zhou, Lau, Jiang, & Lin, 2016). Both models (k = 10 and k = n 

= 50) produced near identical predictive maps and model performance metrics. The 
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similarity of the k = n with the k = 10 model outcomes suggest that the k = 10 model 

utilized sufficient information with a small sample size. The high AUCs and limited high 

roadkill risk areas in both models were likely due to strong association between 

environmental covariates and habitat of this specialist species. Thus, model predictions 

were likely not overfitted as the areas with highest predicted risk coincided with more 

heavily forested and less developed regions of Taiwan’s central mountain range with 

only three highways that cross the range and island. Expectedly, the transnational 

provincial highway road types were identified as the road type with the highest 

correlation to H. miyajimae roadkill. Interestingly, the strong prediction that managed 

bamboo forest was inversely correlated with HM roadkill risk may be due to the high 

amount of disturbance managed bamboo forests receive from consistent harvesting and a 

lack of forest diversity (see Supporting Information Appendix S3.4-S3.5). Modified 

habitats with strongly negatively correlated variables were the highest contributing 

factors behind HM roadkill risk. This broader model is an important first step for 

identifying major areas for conservation and top variables that contribute to roadkill risk 

of H. miyajimae. However, MaxEnt provides relative suitability predictions, so the 

isolated model predictions of high roadkill risk areas in both HM models may also be 

due to analysis with few clustered roadkill occurrences over a large area. A finer-scale 

study of HM roadkill risk modeling is recommended to more specifically isolate and 

identify habitat variables contributing to HM roadkill risk in a smaller area.  

The road-type variable contributed highly to guild-level roadkill risk, which 

means that the category of road likely strongly influenced the risk for roadkill of these 
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guilds. Provincial highway type was most correlated with CVS roadkill. Higher roadkill 

risks may exist on provincial highways for CVS, as these highways tend to carry a larger 

volume of traffic than smaller country roads, but they also run through less developed 

regions that are surrounded by more potential CVS habitat. The importance of low 

building cover and high virgin mixed forest cover in CVS roadkill projections is 

indicative of expected CVS habitat preferences. In contrast, although SAS roadkill 

projections were also associated with low building cover, they were also associated with 

higher cover of wetland habitats preferred by SAS, such as ditches and beach wetland. 

County road collinear type, areas are where two roads merge, most highly contributed to 

both SAS and turtle guild roadkill risk. Colinear roads may contribute more to roadkill 

risk of SAS and turtle guilds because traffic from two or more roads is funneled into one, 

creating a higher probability of WVCs at these locations (see Supporting Information 

Appendix S4). These findings can help transportation managers prioritize mitigation 

strategies for colinear roads. 

Potential concerns for using SDMs for modeling roadkill risk for larger 

taxonomic or functional groupings is that model suitability may be noisier as there are 

potentially drastically different ecological niches for species within the same groupings. 

Although the strength of our model predictions was potentially affected by this variation 

in life histories and habitat preferences among species within the guilds, the AUCs for 

each guild were high (>0.77), indicating the models performed well (Lobo, Jiménez‐

Valverde, & Real, 2008). For example, both arboreal and terrestrial snakes were 

included in the CVS guild, though the species of snakes have different habitat 
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associations (e.g. forest and grassland). Another concern with SDMs in general is 

modeling with too few data, which is often the case for rare or endangered species, as 

the model may be prone to overfitting. However, modeling as guilds, or other higher-

order groupings, allows sharing of information between common species and those with 

few observations. Summarizing, our models based on a priori assignment of species into 

ecological guilds were successful in producing useful predictive roadkill maps with good 

performance across ecological levels on a national scale.  

The scalability of our approach proved useful to reveal impacts of roads on 

wildlife across multiple ecological scales. At the species level, our models showed that 

restricted species might be further confined to smaller habitat patches, which may be the 

case with the HM model. The HM model did not predict much roadkill across Taiwan’s 

road network but predicted high risk on roads in areas with lower road density. These 

roads have the potential to cause further isolation of H. miyajimae populations in these 

regions that our models have identified as it has been shown that genetic isolation of 

wildlife populations can be caused by roads (Holderegger & Di Giulio, 2010) through 

barriers of movement (Andrews et al., 2005; Robson & Blouin-Demers, 2013) and 

genetic isolation in snakes (Clark, Brown, Stechert, & Zamudio, 2010). At higher 

ecological scales, models may elucidate patterns of impact on functional guilds or larger 

taxonomic groups. For example, though CVS and SAS are both guilds of snakes, the 

areas identified as high roadkill risk were almost reversed across the island. Common 

venomous snakes had high roadkill risk in rural montane regions of Taiwan, whereas 

SAS risk was highest in coastal lowlands. Thus, this study indicates both the ecological 
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scalability of our approach as well as the need for individual roadkill risk models for 

each taxonomic grouping of interest. High and low roadkill risk varied greatly across 

models, even in guilds within the same suborder (Serpentes, i.e. CVS and SAS). These 

ecologically meaningful guilds had vastly different patterns of roadkill risk (Figs. 2-6) 

across the island and would need targeted mitigation efforts that vary according to 

identified environmental factors of high roadkill risk contribution and areas of high risk. 

We recognize limitations of opportunistic roadkill data. Variability in detection 

of roadkill may occur, which may introduce spatial, taxonomic, or temporal bias. 

Opportunistic datasets are incomplete and do not accurately identify all areas with 

roadkill risk, so predicting roadkill probability in areas without observations is especially 

valuable. We accounted for these potential issues by using biased background points in 

the models. Datasets on effort to collect roadkill data would allow further enhancement 

of predictive roadkill models, however, like most other roadkill databases, TaiRON does 

not quantify sampling effort. Additionally, roadkill often goes unnoticed for a variety of 

reasons (S M Santos, Carvalho, & Mira, 2011; Skórka, 2016). Our models are 

meritorious as a tool for identifying locations where actionable conservation mitigation 

and further research can occur in Taiwan. These roadkill risk models can provide 

important predictions that supplement and compensate for lacking data.  

Our findings highlight the utility of predictive roadkill modeling as a tenable 

conservation product for conservation practitioners. Once key roadkill variables are 

identified, roadway and landscape management and mitigation can reduce the impact of 

these variables on roadkill risk. Possible mitigation measures include enhancing habitat 
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connectivity (wildlife crossing structures, culverts, etc.), fencing, seasonal traffic 

reduction (i.e. breeding season), and reducing traffic speed and can be prioritized for 

areas identified as high roadkill risk. Future research should be targeted at ground-

truthing validation of these roadkill risk models, comparing outputs and accuracy of 

models created with different SDMs, and testing the methods we describe in different 

regions. We also suggest incorporating finer resolution micro-habitat variables for 

habitat specialists as these variables could identify key fine-scale landscape 

characteristics that contribute to roadkill risk. We hope our predictive roadkill risk 

models will contribute to informing current and future transportation mitigation and 

planning globally 
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4. ROADS ARE HELL FOR THE DEVIL: PREDICTIVE ROADKILL RISK 

MODELING FOR THE TASMANIAN DEVIL (SARCOPHILIUS HARRISII) 

 

4.1. Synopsis 

In recent decades, the Tasmanian devil (Sarcophilus harrisii) has seen an over 

85% decrease in overall population due to devil facial tumor disease (DTFD). These 

depleted devil populations are at increasingly higher risk of local extirpation from other 

added threats to survival. One major cause of mortality is wildlife-vehicle collisions 

(WVCs). Additionally, many devil behaviors and traits compound risk of WVC, such as 

foraging and traveling along roads, nocturnal activity, their dark black pelage, and 

tendency to roam large distances. Due to the threat of WVCs to devil survival, our 

primary objective was to use the species distribution model (SDM) MaxEnt and devil 

roadkill records to predict the relative probability of roadkill across the Tasmanian road 

network, or roadkill risk. We aim to describe the spatial patterns of devil roadkill in 

Tasmania, identify environmental and anthropogenic variables that contribute to roadkill 

risk, and develop a predictive roadkill risk tool to help conservation and transportation 

managers mitigate or prevent devil mortality on roads. We provided novel use of 

MaxEnt to predict roadkill mortality for devils across the Tasmanian road network 

utilizing citizen science roadkill observations. The results will be used to inform 

transportation management and to make recommendations to reduce the ecological 

impacts of roads on Tasmanian devils. 
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4.2. Introduction 

The world’s largest surviving marsupial carnivore has seen rapid population 

declines across its endemic range for the past two decades. Devil facial tumor disease 

(DFTD), an infectious disease affecting Tasmanian devils (Sarcophilus harrisii) with 

almost 100% adult mortality, has led to an overall population decrease of over 85%, with 

local declines of over 90% (Hendricks et al., 2017; Lazenby et al., 2018; McCallum et 

al., 2009). The disease was first discovered in northeastern Tasmania in 1996 and has 

since spread over 95% of the species’ geographic range (Storfer et al., 2018). Moreover, 

depleted devil populations are at increasingly higher risk of local extirpation from other 

threats that were not previously considered significant. Under normal circumstances, 

threats such as secondary poisoning, illegal persecution, and competition from feral 

animals (e.g. foxes) would probably not greatly increase risk of endangerment 

(Brüniche-Olsen, Jones, Austin, Burridge, & Holland, 2014; Lawrence & Wiersma, 

2019; McCallum & Jones, 2006; Rose, Pemberton, Mooney, & Jones, 2017). In 

particular, the threat that potentially has a more significant and detrimental impact on 

depleted Tasmanian devil populations is road mortality from wildlife-vehicle collisions 

(WVCs) (Lawrence & Wiersma, 2019).   

Significant conservation efforts have been made to maintain functional devil 

populations in the wild, including the establishment of captive breeding programs 

(McCallum & Jones, 2006, 2010) and wild DFTD-free populations (C. Grueber, Peel, 

Wright, Hogg, & Belov, 2019), vaccine development (Kreiss, Brown, Tovar, Lyons, & 

Woods, 2015), and augmentation of wild populations (Fox & Seddon, 2019). Early 
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attempts to augment or re-establish wild devil populations with captive-bred devils were 

hampered by high WVC mortality following release (C. E. Grueber et al., 2017) as 

genetic and behavioral adaptation to the captive-environment over successive 

generations may have left captive-born devils to be naïve to the threats associated with 

roads (Rabin, 2003). Instead, wild disease-free populations are managed in isolated 

locations such as Maria Island and Forestier Peninsula, and individuals are taken from 

these populations as propagules for translocations to enhance the stock population and 

improve genetic diversity. Although wild-bred devils are less vulnerable to WVCs than 

captive-bred devils following release, roadkill can still potentially limit the success of 

important conservation activities if not locally managed. As WVCs are an important 

source of devil mortality, understanding the risk of roads on devils is important for 

Tasmanian devil conservation.  

Several aspects of Tasmanian devil life history may also compound WVC risks. 

Devils are wide-ranging carnivorous mammals with an average overlapping home range 

of 13.3 km2 and a neighborhood size of about 100 km (Rose et al., 2017). Thus, 

individuals tend to roam large distances across the landscape and may encounter many 

roads per day. Extensive gene flow has been found which suggests that distances moved 

are large (Jones, Paetkau, Geffen, & Moritz, 2004). Devils also travel and forage along 

habitat edges and anthropogenic linear features, such as roads, as these corridors 

facilitate rapid travel and provide opportunities for hunting and scavenging (Andersen, 

Johnson, Barmuta, & Jones, 2017; Frey & Conover, 2006). Carnivores with large home 

ranges and dispersal distances are particularly vulnerable to the effects of roads and road 
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network expansion (Grilo, Smith, & Klar, 2015).  Jones et al. (2004) identified two 

major genetic subpopulations of devils, one on the eastern half of Tasmania and the 

other on the northwestern corner (near Marrawah). A band of unsuitable habitat 

including farmland, cleared land, urban development, steep rocky areas, dense wet forest 

(e.g. rainforest), and alpine regions separates the subpopulations which may be a barrier 

to dispersal (Jones et al., 2004; Rose et al., 2017). Devils prefer open forest and 

woodlands without much ground level shrub, to facilitate hunting, but are also attracted 

to predictable point sources of scavengeable food such as garbage pits, “devil 

restaurants” for tourism, carcass dumps on farms, and roadkill (Jones, 2000; Rose et al., 

2017). Additionally, areas with abundant prey, such as sheep pastures that are attractive 

to their primary native prey, macropods, often host the highest population densities of 

devils (Jones & Barmuta, 2000). 

Importantly, the dark pelage and nocturnal activity of Tasmanian devils puts 

them at increased risk of WVCs as drivers may have more difficulty detecting these 

black-furred animals at night (Hobday, 2010). Devils are also noted to react 

unpredictably to headlights of oncoming vehicles (Hobday, 2010). Since devils are 

generalists and often forage along or are attracted to the roadway to scavenge on 

roadkill, they are increasingly vulnerable to becoming secondary roadkill themselves.  

Furthermore, as devils are marsupials, WVCs have the potential of causing greater loss if 

there are young carried in the pouch. 

Roadkills are unfortunate outcomes of the intersection of human transportation 

requirements and ecological systems. However, as roads are a necessity for the 
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foreseeable future, we must use data on the effects of existing roads to inform future 

conservation actions to mitigate any biodiversity loss stemming from roads. Though 

roads are widespread and easily accessible, they are usually an untapped source of 

ecological information. One of the most visible and accessible forms of this ecological 

data is roadkill. Although there is literature on localized studies of roadkill patterns for 

Tasmanian devils (Hobday & Minstrell, 2008; Jones, 2000; Kioko, Kiffner, Jenkins, & 

Collinson, 2015) there has been no large-scale study across the entire Tasmanian road 

network. To understand and predict devil WVCs to set conservation priorities, robust, 

spatially-explicit approaches that take ecological drivers into account are needed. 

Reliable modeling of predicted roadkill probability is invaluable to prioritization in 

mitigation and conservation action towards reducing Tasmanian devil WVCs. Previous 

roadkill research has explored predictive roadkill modeling by analyzing roadkill data 

with environmental and anthropogenic variables. Modeling approaches have included 

mainly regressions (Eberhardt, Mitchell, & Fahrig, 2013; Malo, Suárez, & Diez, 2004; 

Roger & Ramp, 2009; S. M. Santos, Lourenco, Mira, & Beja, 2013), including MaxEnt 

(K Chyn, Lin, Wilkinson, Tracy, & Fitzgerald, in review; Kantola, Tracy, Baum, Quinn, 

& Coulson, 2019; Yue, Bonebrake, & Gibson, 2019). As roads often have insidious 

effects on wildlife populations, and certain aspects of roads or areas surrounding roads 

can be more consequential than others, it is important to identify these factors.  

Due to the threat of wildlife-vehicle collisions and subsequent road mortality to 

devil survival, our primary objective was to use the species distribution modeling tool 

(SDM) MaxEnt and devil roadkill records to predict the relative probability of roadkill 



 

102 

 

across the Tasmanian road network, which we call roadkill risk, for future conservation 

action. In addition, we aim to describe the spatial patterns of devil roadkill in Tasmania, 

identify environmental and anthropogenic variables that contribute to roadkill risk, and 

develop a predictive roadkill risk tool to help conservation and transportation managers 

mitigate or prevent devil mortality on roads. Our study examined the influence of 

environmental variables on our power to predict the risk road mortality for the 

endangered Tasmanian devil. In previous studies, roads with high traffic speed and 

volume have been shown to have significantly higher wildlife roadkill (Hobday, 2010; 

Jaarsma, van Langevelde, & Botma, 2006; S.-C. Lin, 2016; van Langevelde & Jaarsma, 

2005), and thus we expect road classes with these characteristics to have the highest 

devil road mortality risk (Hobday, 2010; Lester, 2015). We also expected that the 

presence of roadkill will be an important risk factor for devils, as devils are scavengers 

and may be attracted to this reliable source of food and increasing their risk of becoming 

secondary roadkill (Rose et al., 2017). Devil roadkills have also been observed on roads 

that divide forest-grassland ecotones (Save the Tasmanian Devil Program researcher, 

personal communication, July 2019), so we expected this environmental variable to have 

a relatively high effect on devil roadkill risk (Andersen et al., 2017). Lastly, we expect 

regions with higher human activity, such as urban areas and regions with more roads, 

will have more road mortality due to higher likelihood of interaction. Our modeling 

approach also allowed us to develop an intuitive interactive roadkill risk map, which we 

consider a useful conservation and management tool for conservation managers. We 

provide novel use of MaxEnt to predict roadkill mortality for devils across the 
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Tasmanian road network utilizing citizen science roadkill observations. The results will 

be used to inform transportation management and to make recommendations to reduce 

the ecological impacts of roads on Tasmanian devils. 

4.3. Methods 

4.3.1. Study Area  

Tasmania is Australia’s smallest state with an area of approximately 68401 km2 

and is separated from the mainland by the Bass Strait. At its narrowest Bass Strait is 

approximately 240 km wide and at its shallowest less than 70 m deep (Rawlinson, 1974). 

In contrast to mainland Australia, which is the driest inhabited continental land mass, 

Tasmania is temperate and maritime with mild winters and cool summers. It is the most 

mountainous state in Australia and the Central Highlands region extends over most of 

the central western parts of the state. The central eastern region is fairly flat and mainly 

used for agriculture. Tasmania also contains some of the last temperate rainforests in the 

Southern Hemisphere and is overall densely forested (Atlas, 2019). Tasmania also has a 

low human population density, approximately 7.6 people/km2(Statistics, 2016), so the 

primary form of transport throughout the state is by road.  

4.3.2. Data 

4.3.2.1. Roadkill Data 

Data for roadkill occurrences were obtained from Dr. Alistair Hobday (Hobday 

& Minstrell, 2008) and the Tasmanian Government - Department of Primary Industries, 

Parks, Water and Environment (DPIPWE)’s Save the Tasmanian Devil Program (STDP) 

(https://dpipwe.tas.gov.au/wildlife-management/save-the-tasmanian-devil-program). The 
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former systematically collected wildlife roadkill data, including devils, from June 2001 

to November 2004 within five general regions radiating out from Hobart, Tasmania. A 

total of 154 surveys were conducted and included major state and federal highways and 

secondary sealed roads. Each region was surveyed at least once per season, and seasonal 

surveys were assumed to be independent due to short persistence periods of carcasses on 

roads (Hobday & Minstrell, 2008). The roadkill data from the STDP, which comprises 

opportunistic wildlife roadkill data collection from volunteers and experts, was collected 

from February 2003 to December 2018. Data from STDP is filtered by reliability and 

accuracy. Reliability is a high likelihood that the animal was a devil and is given a 

binary assignment based on the status of the observer – observers who have had training, 

reports from the public which were accompanied by a quality photo, and Tasmanian 

devil biologists are given a “reliable” status, whereas all other observers are “not 

reliable.” Locational accuracy (in metres) was estimated at the time of entry to the 

database, based on the location details provided in the report. Additionally, STDP also 

provided a separate database of wildlife roadkill obtained through reports to the Roadkill 

TAS app (https://dpipwe.tas.gov.au/wildlife-management/save-the-tasmanian-devil-

program/about-the-program/roadkill-project/roadkill-tas-app) and were not checked as 

rigorously as the devil observations were. 

The data from Dr. Hobday included a total of 47 devil observations, and we 

utilized all observations in our study as they were reliable and accurate. When acquired 

on January 10th, 2019, the STDP data contained 4192 observations of devil roadkill. 

After filtering observations to only include those from reliable observers and location 
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accuracies of <50 m there were 166 observations remaining. In total, there were 213 

devil roadkill observations with high accuracy and reliability used in our analyses. 

Additionally, when combined, both sources of roadkill data amassed 11454 Tasmanian 

wildlife roadkill observations with geospatial coordinates, excluding Tasmanian devils. 

All devil and wildlife roadkill points that were within 100 m of the road network were 

set to the closest center of a road. This allowed us to account for inaccuracies in GPS 

location from smart phones and reduced the data to 205 total devil observations. 

4.3.2.2. Road Network 

We cleaned the road network data obtained from the Land Information System 

Tasmania (LIST) to contain only segments categorized as “Road” transportation type 

(Table 1) – this transportation type includes defined paths primarily for cars and other 

general vehicles. The road network was categorized into road classes (Table 2) and we 

converted the individual road class shapefiles to 50 m x 50 m rasters.  

4.3.2.3. Environmental Covariates 

We analyzed 27 environmental covariates for our predictive roadkill risk maps 

(Table 3) that were generated from the following sources: the LIST provided sub-meter 

resolution land use (Australian Land Use and Management Classification (version 8) 

(ALUMv8)), a 25 m resolution digital elevation model (DEM), and vegetation 

(TASVEG 3.0) data. In both the ALUMv8 and TASVEG 3.0 datasets, we combined 

similar and redundant categories and chose variables that are ecologically relevant to 

Tasmanian devils. Slope was calculated from the 25 m DEM. As devils are a wide-

ranging habitat generalist, covariate resolution can be coarse; many of the variables 
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chosen were originally defined by the ALUMv8 and TASVEG 3.0 authors as coarser, 

more encompassing levels (see Supplemental Material xx). 

We were also interested in the effect of the ecotone between forest and 

grasslands, as devils have been anecdotally noted to travel between these habitats (C. 

Lawrence, pers. obs.), so we created a forest-grassland ecotone variable from the 

TASVEG 3.0 and ALUMv8 data. To create this layer, we extracted two groups pasture 

and grasslands, and forest and woodlands, and ran a Euclidean distance tool to 100 m for 

each group. Areas where these groups overlapped were assigned as a “forest-grassland 

ecotone.” 

We also included Estimated Resident Population (ERP) data from the Australian 

Bureau of Statistics, which was provided in the Australian Statistical Geography 

Standard (ASGS) Statistical Areas Level 2 (SA2) resolution. Non-devil wildlife roadkill 

observations were included as a covariate as devils tend to scavenge on roadkill (Rose et 

al., 2017). We created a raster layer of the count of the non-devil wildlife roadkills 

within each 50 m x 50 m cell as a wildlife roadkill covariate. Additionally, road classes 

(Table 2) were included as covariates. We conducted pre-model fitting covariate 

selection by testing for correlations between our variables, and all values were <0.8 for 

the 27 variables, so all variables were kept in the model. Additionally, all non-

categorical variables were standardized to aid in model fitting and result interpretation. 

After selecting our environmental covariates, we converted the polygon 

shapefiles to 50 m x 50 m rasters for each covariate. We calculated percentage cover to 

capture the spatial effect of vegetation covariates up to 550 m outside of its delineated 
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area. A 550 m x 550 m moving window was chosen because ecological studies on devils 

report large home ranges averaging 13.2 km2 and neighborhood sizes of 100 km (Rose et 

al., 2017) and pass through many environments, so we account for a spatial effect of 

these environmental covariates up to 0.5 kms from the covariate areas themselves to 

account for possible push/pull factors of the covariates on devils. We used the “focal” 

function in the raster R package to create percent cover layers.  

For covariates relating to bodies of water and bridges (Table 3), we calculated 

Euclidean distance. Water features are generally attractive to fauna and distance to water 

may have ecological spatial effects (Coffin, 2007; Farmer & Brooks, 2012; Hobday, 

2010; Langen, Ogden, & Schwarting, 2009). We also calculated slope from the 25 m 

DEM and resampled the raster to 50 m resolution. Human population was rasterized to 

50 m resolution from the SA2 level shapefiles. Lastly, the wildlife roadkills within a 50 

m x 50 m raster cell were counted and assigned as values. We masked all of the 

covariate gradients to the rasterized Tasmanian road network. This is to constrain the 

roadkill model to areas where fauna-vehicle interactions are expected. Analyses were 

run with all variables projected in Asia South Albers Equal Area Conic projection. 

Table 4.1 Data and data sources 
Data	 Data	Source	
Wildlife	roadkill	occurrences	 Alistair	Hobday;	Save	the	Tasmanian	Devil	Program	
Road	network	(transport	segments)	 Land	Information	System	Tasmania	(LIST)	-	Land	

Tasmania,	DPIPWE	
Digital	Elevation	Model	(DEM)	25	m	 Land	Information	System	Tasmania	(LIST)	-	Land	

Tasmania,	DPIPWE	
TASVEG	3.0	(vegetation)	 Land	Information	System	Tasmania	(LIST)	-	Land	

Tasmania,	DPIPWE	
Australian	Land	Use	and	Management	
Classification	version	8	(ALUMv8)	

Land	Information	System	Tasmania	(LIST)	-	Land	
Tasmania,	DPIPWE	

Human	population	estimate	 Australian	Bureau	of	Statistics	
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Table 4.2 Categorical road classes 
Road	Code	 Road	Class	
1	 Access	Road	
2	 Arterial	Road	
3	 Collector	Road	
4	 Local	Road	
5	 National/State	Highway	
6	 Sub	Arterial	Road	
7	 Vehicular	Track	

 

 

Table 4.3 Model covariates and covariate importance measurments 
Environmental	covariate	 Covariate	raster	

type	
Percent	
contribution	

Permutation	
importance	

All	wildlife	roadkill	 count	 0.6	 0.7	
Forest-grassland	ecotone	 distance	 1.8	 0.7	
Human	population	density	 continuous	 1.3	 2.5	
Animal	farming	 percent	cover	 0	 0	
Animal	grazing	 percent	cover	 1	 2.5	
Forestry	 percent	cover	 0	 0	
Mining	 percent	cover	 0	 0	
Waste	 percent	cover	 0	 0	
Water	 distance	 0.4	 0.7	
Bridges	 distance	 5.8	 5.6	
Road	class	 categorical	 53.5	 51.3	
Road	density	 continuous	 1.4	 8.6	
Slope	 continuous	 7.3	 7.7	
Agricultural	land	 percent	cover	 2.7	 3.9	
Dry	eucalypt	forest	 percent	cover	 1.1	 1.4	
Non-eucalypt	forest	 percent	cover	 1	 0.4	
Highland	treeless	vegetation	 percent	cover	 0.7	 0.8	
Moorland,	sedgeland,	rushland,	&	
peatland	

percent	cover	 0.5	 0.6	

Native	grassland	 percent	cover	 1	 2.1	
Permanent	easement	 percent	cover	 0.2	 0.6	
Plantations	for	silviculture	 percent	cover	 0.1	 0	
Rainforest	&	related	scrub	 percent	cover	 0.1	 0	
Regenerating	cleared	land	 percent	cover	 0.2	 0.2	
Saltmarsh	and	wetland	 percent	cover	 0.1	 0.1	
Scrub,	heathland	&	coastal	complexes	 percent	cover	 7.7	 3.7	
Urban	areas	 percent	cover	 10.8	 4.2	
Wet	eucalypt	forest	 percent	cover	 0.8	 1.4	
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4.3.3. Analysis 

Methods for this analysis are adapted from predictive roadkill risk modeling 

methodology developed in Chyn et al. in review, and methods are explained below. 

However, this study focuses on one species of conservation need and tailors the model 

covariates to its life history and ecology accordingly.  

We related roadkill records to environmental covariates to predict roadkill 

distributions, or “roadkill risk,” across a road network, using methodology adapted from 

Chyn et al. (2019). Methods for quantifying roadkill patterns generally fall within 

aggregation (or clustering) and predictive modeling (K. Gunson & Teixeira, 2015). As 

species distribution models can both identify the variables that best explain presence of 

roadkill and extrapolate predictions of relative roadkill rates into areas without 

observations, we believe it demonstrates advantages over hotspot and clustering roadkill 

analyses which can only highlight spatially clustered data. Previous studies have used 

various models for predicting roadkill risk (Gomes, Grilo, Silva, & Mira, 2008; K. E. 

Gunson, Mountrakis, & Quackenbush, 2011; Malo et al., 2004; Ramp, Caldwell, 

Edwards, Warton, & Croft, 2005), but few studies have employed MaxEnt for vertebrate 

road mortality (K Chyn et al., in review; Garrote, López, López, Ruiz, & Simón, 2018; 

Ha & Shilling, 2017; Kantola et al., 2019; Y.-P. Lin et al., 2019; Yue et al., 2019).  

We chose to use MaxEnt (Phillips, 2005), one of the most widely used SDMs 

(Elith et al. 2011), for our predictions as it can be applied to presence-only datasets, like 

roadkill, and incorporates regularization to reduce overfitting, which facilitates the use of 

a large number of covariates (Merow, Smith, & Silander, 2013). We used the R package 
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‘zoon’ (v0.6.3) (Golding et al., 2017) to create a reproducible workflow for our SDM 

analyses. MaxEnt uses maximum entropy estimation to fit a model to data (for details, 

see Merow et al., 2013). We employed all available MaxEnt feature types (linear, 

quadratic, hinge, threshold, and product) as more than 80 devil presence points were 

available (Merow et al., 2013). MaxEnt is a presence-background modeling method, so 

we generated 10,000 background points using a bias layer to account for sampling bias 

(Dudík, Phillips, & Schapire, 2006; Phillips et al., 2009). As the nature of roadkill 

confounds the state and observation processes we could not estimate sampling effort 

across the landscape directly, thus we used data on roadkill for all species across the 

road network to generate a bias layer (Jane Elith, personal communication, 7 May 2018) 

(Merow et al., 2013). Our bias layer was created using a two-dimensional kernel density 

estimate based on the coordinates of roadkill presence points of all wildlife species, 

including devils, to account for sampling bias. This was then masked to the road 

network. This means that our background samples were generated with the same biases 

inherent in the wildlife presence data. By accounting for sampling bias we assure the 

same environmental biases in both presence and background data (Dudík et al., 2006; 

Phillips et al., 2009). We also selected additional options for jackknife and variable 

percent contribution analyses as measures of variable importance.  

4.3.4. Model Evaluation 

We ran 10-fold cross-validation (k = 10) on the model and used the Area Under 

the Receiver Operating Characteristic Curve (AUC) evaluation metric to assess model 

performance. Cross-validation is especially helpful for SDMs when there is no 
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independent dataset available to validate model predictions. In our analysis, the data was 

split into 10 dataset folds, and we fit a model to every possible combination of 9 folds, 

known as the training dataset, and then evaluated the model’s predictions on the 

remaining hold-out fold, known as the testing data. The continuous projections of the 10 

MaxEnt training set models were combined by averaging to create a training set 

ensemble (TSE) model. The AUC was used as a metric to evaluate performance for all 

models when data was cross-validated as it is a threshold-independent and scale-

invariant metric that can be used for presence-only models. We calculated the test AUC, 

training AUC, the overfitting statistics of AUC difference (AUCdiff = training AUC – test 

AUC) and the minimum and 10th percentile training presence threshold omission rates 

(Radosavljevic, Anderson, & Araújo, 2014; Warren & Seifert, 2011) to test for 

overfitting. We chose to report variable importance as a measure of permutation 

importance rather than percent contribution, as permutation importance has been shown 

to be a more accurate and reliable predictor for variable selection accuracy (Halvorsen, 

2013; Searcy & Shaffer, 2016).  

For all above analyses, we used the following programs and R packages: R 3.5.1 

(Team, 2017), QGIS 3.6 (QGIS Development Team , 2019), ArcGIS 10.61, MaxEnt 

3.4.1 (Steven J. Phillips, Miroslav Dudík, & Schapire, 2017), ‘zoon’ (Golding et al., 

2017), dismo (Robert J. Hijmans, Steven Phillips, John Leathwick, & Elith, 2017),  and 

‘caret’ (Max Kuhn. Contributions from Jed Wing, Engelhardt, & Lescarbeau, 2018). 
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4.4. Results 

The 213 Tasmanian devil roadkill records were spread sparsely across Tasmania 

(Fig. 4.1), likely due to a large area and an equally sparse road network. We produced a 

predictive roadkill risk map for the endangered Tasmanian devil (an interactive version 

of this figure, which allows users to zoom in on specific regions is available in Appendix 

B). We also identified several environmental variables that best explained the presence 

of roadkill for devils.  

The predictive map for devils showed road sections with higher risk of road 

mortality were not concentrated in any particular geographic region (Fig. 4.2). Instead, 

the high-risk areas were spread sparsely throughout Tasmania, with few specific areas 

indicated as high-risk (Fig. 4.3). Highest roadkill risk areas were predominately 

ununiformly distributed across Tasmania’s national and state highways. The following 

covariates had the highest permutation importance: road class, road density, slope, 

bridges, and urban areas (Table 3). We are choosing to place emphasis on permutation 

importance over percent contribution, as permutation importance has been shown to be a 

more accurate and reliable predictor for variable selection accuracy (Halvorsen, 2013; 

Searcy & Shaffer, 2016). The model had the following performance metrics: test AUC = 

0.918, training AUC = 0.944, and the AUCdiff = 0.026. The minimum and 10th percentile 

training presence threshold omission rates were 0.000 and 0.099, respectively. As they 

were not higher than the theoretical expectation for the respective thresholds, 0% and 

10%, they do not indicate overfitting for the model. 
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The road class variable had the highest permutation importance. As road class is 

a categorical variable, the classes of roads that most strongly influenced roadkill 

probability devils were national/state highways, arterial roads, and sub-arterial roads, 

respectively (Table 2). Additionally, the model had a very high AUC and low overfitting 

statistic, which suggests the high AUC metric was not due to overfitting. 

Clear associations between environmental variables and road mortality of devils 

were revealed in the MaxEnt model. Overall, the environmental variables with the 

highest permutation importance to road mortality points across taxa were related to 

characteristics of roads and urbanization.  



 

114 

 

 
Figure 4.1 Map of Tasmanian devil (Sarcophilus harrisii) 213 roadkill occurrences 
and inset with the extent of x (1800000, 1808000) and y (-2962000, -2956000) in the 

Asia South Albers Equal Area Conic projection. Black dots represent devil roadkill 
occurrences, dark gray lines in the inset represent the road network, light gray 

lines represent the map grid. 
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Figure 4.2 Tasmanian devil (Sarcophilus harrisii) predictive roadkill risk map and 
inset with the extent of x (1800000, 1808000) and y (-2962000, -2956000) in the Asia 

South Albers Equal Area Conic projection. Yellow values denote predicted high 
roadkill risk and purple values denote predicted low roadkill risk. 
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Figure 4.3 Histogram of model roadkill probability predictions. 

 

4.5. Discussion 

As Tasmanian devil genetic diversity is considered low (Jones et al., 2004), and 

devils have seen a total population decline of 85%, each remaining individual is 

important to the conservation of the species. Cutting the loss of individuals due to 

preventable deaths, such as roadkill, is a paramount conservation priority. We modeled 

the predictive roadkill risk for the endangered Tasmanian devil across the Tasmanian 

road network. This work highlights the utility and importance of collecting devil roadkill 

data, as it can greatly contribute to informing immediately applicable conservation 

action. A tangible outcome of this research is a predictive mapping tool for conservation 

practitioners and transportation managers for immediate use in actionable mitigation of 

the impacts of WVCs on Tasmanian devils.  
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Our study resulted in novel findings on areas of predicted high and low risk of 

WVCs for devils and identified which environmental variables, including variables 

about the roads themselves, contributed most to high roadkill predictions. As 

hypothesized, we also found that road classes were the most important variable in 

predicting Tasmanian devil roadkill and that the national/state highway class had higher 

risk than other classes. Road class serves as a proxy for traffic speed and volume data 

and broadly defines those traffic characteristics. Of the seven road classes included in 

our analyses (Table 2), the national/state highway class had the highest capacity for 

vehicular traffic and speed. The second and third most important road classes were 

arterial and sub-arterial road classes, which are also the second and third largest road 

classes, respectively. This pattern suggests that roads with high traffic volume and speed 

exhibit greater risk of devil roadkill, which is corroborated by previous studies (Hobday, 

2010). 

Surprisingly, the presence of other wildlife roadkill and proximity to a forest-

grassland ecotone both did not greatly influence the presence of devil roadkill risk 

(Table 3). These variables, though important to devil ecology (Andersen et al., 2017; 

Rose et al., 2017), did not have a large effect on the model relative to other factors, such 

as road class. This, however, does not suggest that the variables are not important to 

devil road mortality, as devil prey species use these ecotones for cover while foraging 

and devils use them to ambush live prey (Andersen et al., 2017). Prey fleeing from open 

grassland to forest cover on roads in this ecotone are also susceptible to WVCs, which in 

turn provides an attractive food source for devils. However, though ecotones are 
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ecologically attractive to devils, they may not change devil behavior enough to effect 

roadkill risk and it holds relatively less importance than other variables. Additionally, 

the ecotone variable included may be too coarse to pick up small but ecologically 

relevant ecotones – for instance, a thick shelter-belt along a roadside in an otherwise 

pastured region could function like an ecotone with respect to animal behavior (forage 

on one side of the road, covered shelter on the other), but would not be represented in the 

coarser resolution ecotone variable. 

Due to the low overfitting statistic and minimum and 10th percentile training 

presence omission rates within the theoretical expectation for the thresholds, there was 

no indication of overfitting for the devil roadkill risk model. Additionally, the histogram 

of the predicted roadkill risk probabilities (Fig. 3) contains the range of values from 0 to 

1, also indicative that the model was not overfit. The histogram also suggests that most 

Tasmanian roads are not likely to have high Tasmanian devil roadkill risk relative to the 

rest of the Tasmanian road network, as a large proportion of predictions were zero. This 

is a potentially encouraging finding and means that conservation efforts can be focused 

on the small proportion of areas that we found to have high roadkill risk. 

Though important, predictive modeling based on SDMs is not without its caveats 

(Araujo & Guisan, 2006; Barry & Elith, 2006; Jarnevich et al., 2018) . Due to the nature 

of presence only and opportunistic roadkill data, variability in detection of roadkill may 

occur which can introduce spatial, taxonomic, or temporal bias. Our dataset was also 

filtered with stringent standards, so the data used for modeling was a subset of a large 

database, which may also introduce sampling bias. Opportunistic datasets are incomplete 
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and do not comprehensively cover geographic and/or environmental space, so predicting 

roadkill probability in areas without observations is especially valuable. We accounted 

for these potential issues by using biased background points in the models to capture the 

nature of sampling bias. Datasets on effort to collect roadkill data would allow further 

enhancement of predictive roadkill models, however, like most other roadkill data, our 

dataset did not quantify sampling effort. Additionally, roadkill often goes unnoticed or 

unreported for a variety of reasons that are dependent on observer, the environment, and 

other ecological sources (Kristina Chyn, Lin, Chen, Chen, & Fitzgerald, 2019; S M 

Santos, Carvalho, & Mira, 2011; Skórka, 2016). Other studies showed correlations 

between traffic volume and traffic speed with devil roadkill (Hobday & Minstrell, 2008); 

however, we were unable to acquire this data for the entire Tasmanian road network. We 

believe covariates such as road class and human population estimates could serve as 

proxies for these covariates in future studies.  

Population density of devils may have biased roadkill in areas with healthier 

populations of devils. However, the claim of faunal density affecting roadkill levels has 

not been tested on a landscape scale. In one study where live faunal density was 

surveyed to test for a relationship with roadkill density, there were no significant trends 

between density of live Tasmanian fauna and roadkill at local scales, though faunal 

density varies widely across Tasmania (Hobday & Minstrell, 2008). Lastly, as devils are 

nocturnal, we expected most WVC incidents occurred at night and did not include 

activity period as a variable. However, Hobday (2010) did show that in some cases 

darkness did increase risk of devils being hit due to lower driver reaction time. 
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Additionally, large, fast, industrial vehicles with low visibility (logging trucks, milk 

tankers) often travel between dusk and dawn.  

Our recommendations for mitigation and prevention of Tasmanian devil WVCs 

echo many recommendations from the broader roadkill mitigation literature (Smith, Van 

Der Ree, & Rosell, 2015; van der Ree, Gagnon, & Smith, 2015; van der Ree, Smith, & 

Grilo, 2015). As the variable that contributed the most to devil roadkill was road class, 

most mitigation measures should focus on roads themselves. Because the national/state 

highways with high traffic speed and volume had the most roadkill, we suggest that 

Tasmania reduce driver speeds in the areas where our model and maps show devil 

roadkill is predicted to be highest, especially at night. It has been shown that areas with 

vehicle speed limits that exceeded 80 km/h contained more than 50% of the state’s 

roadkill (Hobday, 2010), and many highways in Tasmania have speeds up to 110 km/h. 

Additionally, an essential component of mitigation for all WVC mitigation is fencing 

paired with crossing structures (e.g. culverts) (van der Ree, Gagnon, et al., 2015). High-

risk areas highlighted by the model can be amended with fencing along both sides of the 

road leading to a culvert or overpass for devils to be funneled into. Specifically, small 

underpasses (300-450 mm diameters) are recommended for Tasmanian mammals with 

smaller body sizes that use burrows, such as devils (Magnus, Kriwoken, Mooney, & 

Jones, 2004). However, structures to allow for escape from between fencing need to be 

provided as devils often travel along roads. Currently, several local councils have also 

installed “virtual fencing,” a system of devices designed to alert devils and other wildlife 

to oncoming vehicles with sensory alarms (Lawrence & Wiersma, 2019). These have 
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been successful in reducing roadkill in regions of Tasmania (Fox, Potts, Pemberton, & 

Crosswell, 2019), and further testing in high roadkill risk areas should be considered. 

We suggest at minimum that the above WVC mitigation strategies can be implemented 

on high risk areas targeted by our model in conjunction with an adaptive management 

plan. Additionally, the lack of systematically collected roadkill data across the entire 

Tasmanian road network makes it difficult to ground-truth the model prior to mitigation 

implementation. Future studies on ground-truthing predicted high devil roadkill risk 

areas, continued monitoring, and adaptive management are necessary in Tasmanian devil 

roadkill mitigation.  

There is a necessity for large landscape-scale roadkill research in road ecology 

(van der Ree, Jaeger, van der Grift, & Clevenger, 2011). This first island-wide predictive 

roadkill risk model for Tasmanian devils will help in the tremendous conservation 

efforts for this enigmatic and endemic species. This modeling methodology is not 

limited to location, species, or even ecological hierarchy (K Chyn et al., in review), and 

can be tailored to a range of ecological questions. The utility of this model for other 

species of conservation concern is only restricted by the quality of roadkill data, which is 

relatively accessible and easy to collect. 
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5. CONCLUSIONS

5.1. Conclusion 

The central theme of my doctoral dissertation was the intersection of ecological 

and anthropologic structures through the lens of the effects of roads on wildlife in insular 

systems. I followed the precedent of descriptive studies by quantifying the magnitude of 

roadkill in Chapter 2 for Taiwan, as well as developed a novel use of an SDM utilizing 

citizen science data to predict relative road mortality risk in Chapters 3 and 4, for 

wildlife in Taiwan and Tasmania, respectively. In describing patterns of roadkill in 

Taiwan, I elucidated important insights, as there are groups and species that are highly 

and disproportionately affected by roads. For example, my work showed snakes are 

particularly vulnerable to roadkill, and my results hopefully inspire others to begin 

taking the threat of roadkill to snakes very seriously. In the predictive roadkill risk 

studies, the models ranged in ecological scale from species to functional guild. I’ve 

demonstrated that the predictive roadkill risk models I’ve developed can be tailored for 

ecological questions and scaled accordingly. I have also demonstrated the global 

scalability of this predictive roadkill risk methodology, which is only dependent on 

accumulation of quality roadkill observations and widely available environmental data. 

As such, this research has highlighted the importance and utility of roadkill data 

collection for conservation, especially through large citizen science programs.  

Accumulation of well-organized roadkill data are especially important for 

threatened guilds, such as terrestrial turtles (Chen, Lin, Lin, & Yang, 2017; Lin, Wu, 

Lin, Mao, & Chen, 2010; Zhao, 1998; Zhihua Zhou & Jiang, 2008) and semi-aquatic and 

132
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aquatic snakes in Taiwan (Chen et al., 2017; Mao, 2004). Moreover, roads and roadkill 

are a specific threat to the survival of certain species of great conservation concern, such 

as the endangered Maki’s Keelback snake (Hebius miyajimae) (Z. Zhou, Lau, Jiang, & 

Lin, 2016) and Tasmanian devil (Sarcophilus harrisii) (Grueber et al., 2017). Roadkill 

data collected through volunteer citizen scientists has multiple benefits for researchers 

and the public: larger sample size, ecological education for citizens, national data-sets 

across multiple landscapes, and national governmental involvement with local expertise. 

I studied the patterns of roadkill in Taiwan and Tasmania, Australia for several 

reasons. Firstly, they are both islands separated by narrow straits from a larger mainland, 

and they both host many threatened endemic wildlife species. In Taiwan, I elucidated the 

disproportionate effect of roads on threatened endemic species and groups (e.g. snakes) 

(Kristina Chyn, Lin, Chen, Chen, & Fitzgerald, 2019; K Chyn, Lin, Wilkinson, Tracy, & 

Fitzgerald, in review). I also focused my research on the Tasmanian Devil, an endemic 

species that also experiences large threat from roads, due to depleted populations 

(Lawrence & Wiersma, 2019). 

Taiwan and Tasmania also differ in many important ways that could affect 

roadkill and predictive roadkill modeling; Taiwan has high road density (1.2 km of 

roads/km2) and population density (approx. 667 people/km2), and Tasmania has 

relatively low road density (0.106 km of roads/km2) and population density (7.24 

people/km2) (CIA, 2017). These differences created apparent differences in patterns of 

predicted roadkill risk from Chapters 3 and 4; high roadkill risk areas for devils were 

sparsely distributed across the island’s low density road network (Fig. 4.2, Appendix B1) 
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and mainly occurred along stretches of highways, whereas high roadkill risk areas for 

guilds in Taiwan were spread widely across multiple road types (Figs. 3.2, 3.3, 3.4, 

Appendix A2), which may make it more difficult to identify areas for mitigation. 

Additionally, relative to Taiwan, Tasmania did not have as robust or established of a 

roadkill monitoring program, which adds challenges to the roadkill risk modeling 

process. The devil occurrences were not verified, so heavy filtering was required to 

obtain accurate (<50 m) and reliable data. Compared to the roadkill models for guilds 

and species of conservation concern in Taiwan, there may be sampling bias introduced 

from heavy filtering of devil data. As designed, these differences allowed me to test the 

applicability of my predictive models in contrasting systems. Understanding the powers 

and pitfalls of modeling in, in many ways, juxtaposing systems, tested the model for 

global adaptability. As we were successful in developing predictive roadkill risk models 

with high performance in both island systems and across ecological scales, these models 

have wide global applicability. 

One of the most impactful findings from Chapter 2 was of the impact of wildlife-

vehicle collisions on snakes in Taiwan. Snakes are highly and disproportionately killed 

on roads comprising 35% of the total confirmed roadkill observations in Taiwan and 

50% of the protected species roadkill. Relatedly, warmer seasons had higher frequency 

of roadkills, especially for ectothermic taxa. Additionally, a small number of species 

accounted for most of the roadkill, where the top 23 most killed species comprised 50% 

of all confirmed roadkill occurrences. These groups that are highly and 

disproportionately affected by roads are in need of conservation action. This first 
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synthesis of all data from the Taiwan Roadkill Observation Network (TaiRON) provided 

an understanding of the magnitude of roadkill in Taiwan to inform transportation and 

conservation managers in Taiwan and also following work in my dissertation. 

In Chapters 3 and 4, I demonstrated this applicability and scalability of the 

predictive roadkill risk modeling methodology both globally, across the highly 

contrasted systems in Taiwan and Tasmania, and ecologically, across species and guild-

level analyses. An interesting challenge in applying the methodology for the species-

specific Tasmanian devil model from Chapter 4 was that there were fewer roadkill 

observations and they were spread across a comparatively sparse road network than 

Taiwan’s guild-level models in Chapter 3. However, the high model performance in 

predicting devil as well as guild-level roadkill risks suggests global applicability of the 

methodology, even in areas with sparse roadkill data. A few caveats arose in modeling 

roadkill risk. First, though the methodology is scalable to ecological questions of 

interest, individual models must be produced for each species or guild of interest. This 

was demonstrated by the vastly different predicted relative roadkill risks across 

herpetofaunal guilds in Chapter 2. As these guilds were grouped by similar ecological 

function, threat, and conservation need, different environmental covariates, and thus, 

regions, had differing ecological influences on each guild’s roadkill risk. Though this 

may be obvious for species-level models, groups for these models must be chosen 

thoughtfully, especially if they are to translate to successful and meaningful roadkill 

mitigation. This is especially important because this methodology implies that 

conservation and transportation planners and managers can model roadkill risk for 
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mitigation wherever they have roadkill data for whichever species and groups they see 

fit. They can also model future road projections to find the least-cost scenario in terms of 

wildlife roadkill for the inevitable future road planning. Notably, interactive roadkill risk 

maps where users can explore the maps were developed for all guilds and species 

modeled (Appendix A2, B1), and they are an immediately valuable conservation tool for 

researchers and managers. These interactive maps can be downloaded for offline use and 

can be accessed from any computer or smart-device (phones and tablets) to study the 

details of roadkill risk models, also making them practical and functional in the field. 

 For reasons above, my findings revealed the importance of collecting roadkill 

data. As it is relatively low cost and low effort to collect data, especially when projects 

engage citizen science volunteers, roadkill can be an important and accessible source of 

ecological information. I modeled roadkill risk with three databases – one with wide 

participation from citizen scientists across Taiwan and verified data, another with 

structured data collection on a regional scale in Tasmania, and the last with unstructured 

and unverified data and lower participation across Tasmania. The data from TaiRON 

was collected in a structured format that allows for high accuracy of information, and 

data is verified by project managers (Kristina Chyn et al., 2019), so most of the 

opportunistic observations were reliably usable in the roadkill risk models. Similarly, 

structured data from Alistair Hobday (Hobday, 2010) were collected systematically by 

Tasmanian ecologists, so they were reliably usable, but data were only regionally 

collected. Data from the Save the Tasmanian Devil Program (STDP) were 

opportunistically collected by citizen scientists, but the data was unstructured and not 
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always reliable or accurate, as observations were not verified by experts. Due to 

differences in data collection and databasing, a challenge arose when modeling 

Tasmanian devil roadkill risk; after filtering for reliability (expert or trained volunteer 

observations) and locational accuracy (within 50 m of accuracy), there were only 213 

devil observations across Tasmania. Species distribution models may be problematic 

when implemented with species with fewer occurrences, however, these species are 

often those most in need of predictive modeling for conservation action (Gaubert, Papeş, 

& Peterson, 2006; Shcheglovitova & Anderson, 2013), such is the case with devils.  

Though, ultimately, my methodology produced predictive roadkill risk models 

with good model performance, they likely would be enhanced with more verified devil 

roadkill occurrences. Thus, I suggest modeling roadkill observation programs after 

successful systems, such as TaiRON and others (Shilling, Perkins, & Collinson, 2015), 

and referring to the wealth of literature for citizen scientist data management (Devictor, 

Whittaker, & Beltrame, 2010; Dickinson et al., 2012; Dickinson, Zuckerberg, & Bonter, 

2010; Kosmala, Wiggins, Swanson, & Simmons, 2016), volunteer participant 

engagement (Brossard, Lewenstein, & Bonney, 2005; Miller-Rushing, Primack, & 

Bonney, 2012; Toomey & Domroese, 2013), and specific roadkill methodology and 

projects (Cosentino et al., 2014; Langen et al., 2007; Langen, Ogden, & Schwarting, 

2009; Marsh et al., 2017). These citizen science roadkill observation programs benefit 

both the public and conservation research greatly, and they are a worthwhile investment 

for informing roadkill mitigation. 
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Future studies can build on this research in several important ways. First, 

systematic citizen science roadkill observations, with both presence and absence 

observations, should be explored worldwide, and studies of patterns of wildlife roadkill 

similar to Chapter 2 should be pursued. Secondly, ground-truthing the high predicted 

roadkill risk areas highlighted in Chapters 3 and 4 should be conducted as further model 

validation. Third, once enough systematic presence/absence roadkill data is collected, 

roadkill risk models should be created using both roadkill presence and absence data, 

which is potentially more accurate than presence only modeling as sampling bias is 

accounted for (Phillips et al., 2009). Additionally, with presence/absence roadkill data, a 

new host of species distribution models (SDMs) beyond MaxEnt are available to explore 

(Elith & Leathwick, 2009), and roadkill risk should be modeled using a range of SDMs 

to elucidate those that are best employed in roadkill risk prediction. 

Even during the early advent of cars, ecologists like Joseph Grinnell forecasted 

the impeding impact of roads on wildlife. Regarding road mortality in his Death Valley, 

California field notes, Grinnell stated that “this [roadkill] is a relatively new source of 

fatality; and if one were to estimate the entire mileage of such roads in the state, the 

mortality must mount into the hundreds and perhaps thousands every 24 hours” 

(Grinnell, 1920). [Personal aside: I was a passenger in an SUV that hit and killed a rabbit 

in Death Valley, California during the summer of 2010. We were traveling at the legal 

speed limit between 60-70 mph.] Since the 1920s, cars and roads have only increased in 

volume, density, and speed, and the impacts of roads on wildlife have correspondingly 

grown in magnitude. It is important that our research and efforts to mitigate these 
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impacts of vehicles and roads on wildlife grow at a similar scale. In this dissertation, I 

incorporated both large crowdsourced datasets and predictive modeling methods to 

develop ecologically attuned tools for applied conservation in road ecology on a 

landscape-scale. I quantified patterns of roadkill and elucidated wildlife groups that are 

most heavily impacted in Taiwan and develop a novel methodology to model predicted 

relative roadkill risk across a road network for species and guilds of conservation 

concern in Taiwan and Australia. I tested whether this modeling method was scalable, 

both ecologically (from species to guilds) and globally (in two contrasting systems). My 

research identified recommended areas for mitigation in a spatially explicit and 

predictive context. The outcomes of my research have produced interactive predictive 

roadkill tools for collaborators and managers and will continue to be fruitful for wildlife 

conservation globally. 
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APPENDIX A 

 

Appendix A1 Example of zoon workflow for turtle guild: 

Turtles <- workflow(occurrence = LocalOccurrenceDataFrame(turtles, columns = c(long = 'longitude', lat 

= 'latitude', value = 'value'),  

occurrenceType = "presence"), 

covariate = LocalRaster(rasstack), 

process = Chain(StandardiseCov(exclude = "roadtype_ras_50_msk"), 

Background(10000, bias = occur.bias), Crossvalidate(k = 10)), 

model = MaxEnt(args = c("-J", "-P", "noautofeature"), factors = 

"roadtype_ras_50_msk", path = 'figures/output_ME/turtles/'), 

output = PrintMap) 
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Appendix A2 Predictive roadkill model interactive maps as .html files. All .html files 

can be found in the following GitHub repository 

(https://github.com/kmchyn/2019_TW_roadkill-risk). Each guild and species also have 

the .html file hosted as a website. 

 

A2.1 The Common Venomous Snakes (CVS) interactive predictive roadkill model 

interactive map .html file can be found in the Github repository 

(https://github.com/kmchyn/2019_TW_roadkill-risk/blob/master/com_ven_snk.html) 

and is hosted as a website 

(https://rawcdn.githack.com/kmchyn/TW_risk/94f2b73b85350f54704f6a42e2eaa3d49e4

e49a6/com_ven_snk.html).  

 

A2.2 The Semi-aquatic and Aquatic Snakes (SAS) interactive predictive roadkill model 

interactive map .html file can be found in the Github repository 

(https://github.com/kmchyn/2019_TW_roadkill-

risk/blob/master/semi_aqu_aqu_snk.html) and is hosted as a website 

(https://rawcdn.githack.com/kmchyn/TW_risk/94f2b73b85350f54704f6a42e2eaa3d49e4

e49a6/semi_aqu_aqu_snk.html). 

 

A2.3 The turtle interactive predictive roadkill model interactive map .html file can be 

found in the Github repository (https://github.com/kmchyn/2019_TW_roadkill-

risk/blob/master/turtles.html) and is hosted as a website 
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(https://rawcdn.githack.com/kmchyn/TW_risk/94f2b73b85350f54704f6a42e2eaa3d49e4

e49a6/turtles.html). 

 

A2.4 The Maki’s keelback snake (Hebius miyajimae) (HM) with k=10 cross-validation 

interactive predictive roadkill model interactive map .html file can be found in the 

Github repository (https://github.com/kmchyn/2019_TW_roadkill-

risk/blob/master/A_miyajimae.html) and is hosted as a website 

(https://rawcdn.githack.com/kmchyn/TW_risk/94f2b73b85350f54704f6a42e2eaa3d49e4

e49a6/A_miyajimae.html). 

 

A2.5 The Maki’s keelback snake (Hebius miyajimae) (HM) with k=n=50 cross-

validation interactive predictive roadkill model interactive map .html file can be found in 

the Github repository (https://github.com/kmchyn/2019_TW_roadkill-

risk/blob/master/A_miyajimae-50k.html) and is hosted as a website 

(https://rawcdn.githack.com/kmchyn/TW_risk/94f2b73b85350f54704f6a42e2eaa3d49e4

e49a6/A_miyajimae-50k.html). 
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Appendix A3 Top five contributing variable response curves for Common Venomous 

Snakes, Semi-aquatic and Aquatic Snakes, Turtles, and both Hebius miyajimae models 

(k=10 and k=50), respectively. 

a.  

b.  

c.  
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d.  

e.  

 

A3.1 a-e The top five contributing environmental variable response curves by 

permutation importance for the CVS roadkill risk model: a) road type, b) buildings, c) 

road width, d) virgin mixed forest, e) rice. 
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a.  

b.  

c.  
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d.  

e.  

 

A3.2 a-e The top five contributing environmental variable response curves by 

permutation importance for the SAS roadkill risk model: a) road type, b) ditch, c) road 

width, d) buildings, e) beach wetland. 
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a.  

b.  

c.  
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d.  

e.  

 

A3.3 a-e The top five contributing environmental variable response curves by 

permutation importance for the Turtle roadkill risk model: a) road type, b) buildings, c) 

rice, d) road width, e) fruit trees.
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a.  

b.  

c.  



 

154 

 

d.  

e.  

 

A3.4 a-e The top five contributing environmental variable response curves by 

permutation importance for HM (k = 10) roadkill risk model: a) managed bamboo forest, 

b) fruit trees, c) cistern, d) beach wetland, e) road width. 
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a.  

b.  

c.  
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d.  

e.  

 

A3.5 a-e The top five contributing environmental variable response curves by 

permutation importance for HM (k = n) roadkill risk model: a) managed bamboo forest, 

b) buildings, c) fruit trees, d) beach wetland, e) riverways. 
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Appendix A4 An example of collinear roads in Taiwan. Collinear sections are in red. 

Labels indicate road categories as described in Table 3.4. 
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APPENDIX B 

 

Appendix B1 Predictive roadkill model interactive maps as .html files. All .html files 

can be found in the following GitHub repository 

(https://github.com/kmchyn/2019_TD_roadkill_risk). Each guild and species also have 

the .html file hosted as a website. 

 

B1.1 Tasmanian devil (Sarcophilus harisii) interactive predictive roadkill model 

interactive map .html file can be found in the Github repository 

(https://github.com/kmchyn/2019_TD_roadkill_risk/blob/master/int_risk_map-01.html) 

and is hosted as a website 

(https://rawcdn.githack.com/kmchyn/2019_TD_roadkill_risk/2b8004e0be105d364d3ce5

cc00dfb85e1ac688ae/int_risk_map-01.html)  

 

User must zoom into Tasmania to view predictive devil roadkill risk model. 

 

 




