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ABSTRACT 

K+ channels are widely conserved among all species. Although bacterial K+ 

channels are often used in structural and biophysical assays as models for their 

eukaryotic homologs, little is known about their physiological role in bacteria. In vivo 

characterization of bacterial channels has been difficult because an obvious phenotype is 

not always associated with a null mutant. The E. coli genome contains one K+-selective 

channel, Kch, which remains poorly understood despite attempts at characterization. In 

order to elucidate the physiological function of Kch, we performed a large-scale 

computational protein co-evolution analysis to predict protein interaction partners of 

Kch. We hypothesized that determining which proteins the K+ channel was predicted to 

interact with could reveal insight into its function. Linking the channel to proteins with 

known biological functions would allow for targeted experimental validation of the 

predicted interactions and further in vivo characterization. Our analysis revealed that 

Kch was predicted to co-evolve with proteins involved in oxidation-reduction processes, 

cell division, and metabolism.  

We first asked if loss of the channel resulted in a growth defect in various media. 

In rich media, the Δkch strain exhibited a slight growth defect upon entering mid-

exponential phase, which could be rescued by the addition of a fermentable, but not an 

oxidizable, carbon source. Replacement of the Δkch mutation with a functional kch gene 

failed to rescue the growth defect, and whole genome sequencing revealed additional 

mutations in the background, including a point mutation in ubiH (ubiHV223G). UbiH is 
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required for biosynthesis of the electron carrier molecule, ubiquinone, which functions in 

the aerobic electron transport chain (ETC). Characterization revealed that the ubiHV223G 

mutation acts to reduce the overall efficiency of the aerobic ETC, leading us to 

hypothesize that Kch was involved in modulation of the membrane potential (ΔΨ). 

CRISPR interference (CRISPRi)-mediated kch depletion results in growth defects and 

ΔΨ fluctuations, indicating that the native function of Kch is rapid modulation of ΔΨ. 

Using a variety of novel approaches, we demonstrate that Kch is important for 

adaptation to conditions that promote rapid growth, expanding our limited understanding 

of the physiological functions of microbial K+ channels.  
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NOMENCLATURE 

ΔΨ Membrane Potential  

ΔpH Proton Gradient  

PMF Proton Motive Force 

RCK Regulator of K+ Conductance  

PPI Protein-Protein Interaction(s) 

SCA Statistical Coupling Analysis  

Q8 Ubiquinone  
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CHAPTER I 

INTRODUCTION 

The cytoplasm of cells is protected from the external environment by semi-permeable 

lipid bilayers. K+ channels are transmembrane proteins that allow for the selective movement of 

K+ ions across lipid membranes. These proteins are highly conserved and can be found in all 

domains of life1,2. In higher organisms, K+ channels are well-characterized for their role in action 

potentials and electrical signaling in excitable cells, but they have additional critical roles in the 

physiology of both excitable and non-excitable cells. A few examples of known functions are the 

involvement of K+ channels in K+ recycling for electrolyte balance in renal epithelial cells3, the 

hyperpolarization events required for mitogenesis and proliferation of T and B cells4, the 

secretion of insulin from pancreatic beta cells5, and the regulation of cell volume and shape in 

erythrocytes6. The extensive understanding of the physiological role of K+ channels in various 

cell types led to an increased appreciation for how mutations or disruptions to K+ channels 

contribute to human disease. Many renal, cardiac, and metabolic disorders are rooted in channel 

dysfunction, making K+ channels attractive and effective pharmacological targets to alleviate 

pathologies7–9. Despite the ubiquitous distribution of K+ channels, our understanding of the 

physiological role of K+ channels has come primarily from studies of higher eukaryotic 

organisms and much remains to be learned about the role of K+ channels single-celled organisms 

and viruses.  
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Discovery of Prokaryotic K+ Channels 

In contrast to the wealth of functional information available for eukaryotic K+ channels, 

the physiological role for bacterial K+ channels is poorly understood. Because of the early 

characterization of K+ channel involvement in neuronal action potentials, it was thought that K+ 

channels were present only in eukaryotic organisms10. In fact, the identification of bacterial K+ 

channels did not occur as a result of an active search for them, but rather as a serendipitous 

discovery. Nearly twenty years ago, Kch (for K+ channel) was discovered in Escherichia coli by 

Roger Milkman11. Interested in the trp operon in E. coli, he sequenced through the surrounding 

region for comparison, and in doing so identified an open reading frame with significant 

sequence identity to known voltage-gated K+ channels11. The unexpected discovery of Kch was 

soon followed by reports of K+ channels in other bacteria, archaea, and even viruses2,12. The 

explosion of whole genome sequencing technologies has revealed that K+ channels are widely 

conserved in single-celled organisms (eukaryotic, prokaryotic, and archaeal) and viruses. In fact, 

the genome of the single-celled ciliate, Paramecium tetraurelia, contains ~3x the number of K+ 

channels as the human genome13,14. Instead of being restricted to neurons or even eukaryotic 

systems, K+ channels are ubiquitously found, highlighting their critical importance to cellular 

physiology.  

Key Characteristics of K+ Channels 

Topology of Prokaryotic and Eukaryotic K+ channels  

The primary sequence of viral, prokaryotic, and eukaryotic K+ channels reveal similarities in the 

topology of K+ channels (Fig 1). The simplest arrangement is that of the Chlorella virus K+ 

channel, Kcv, which contains an N-terminal transmembrane domain (S1), a pore helix (P), a K+ 
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selectivity filter sequence, and a C-terminal transmembrane domain (S2). Four of these subunits 

would come together to form a functional channel. This basic structure is found in many 

prokaryotic and eukaryotic K+ channels with some variation (Fig 1).   

Figure 1. Topology of Prokaryotic and Eukaryotic K+ channels 

Examples of known Prokaryotic and Eukaryotic K+ channel subunits. Functional channels would 

result after multimerization of subunits, typically as homotetramers. A notable exception is the 

two-pore-domain K+ channels found in mammals (TWIK). Each subunit has two pore domains 

that dimerize to form a functional channel15. Adapted from Kubalski et al10.  

Selectivity 

Eukaryotic and prokaryotic K+ channels share many common structural features. In fact, 

the first structures of K+ channels, which gave insight into their function, were of bacterial 

channels16,17. The structure of Streptomyces lividans KcsA revealed that the pore of the channel 
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was comprised of four subunits, with each subunit contributing two transmembrane α-helices and 

a pore helix to create a path for ion conduction. The pore helix spans nearly half the membrane 

and ends in a large, water-filled cavity. Selectivity for K+ ions over Na+ ions is mediated by a 

selectivity filter sequence located near the extracellular side of the pore16,18. This overall 

architecture is conserved in K+ channels (Fig 2). The selectivity filter is highly conserved, and 

drastic variation from the consensus TVGYG sequence is rare18. The selectivity filter creates 

four binding sites for K+, and the carbonyl oxygens mimic the eight water oxygens that surround 

a K+ ion in aqueous solution. On average, there are two K+ ions located within the selectivity 

filter at a given time occupying either sites 1 and 3 or sites 2 and 4 with a water molecule 

separating them. This configuration sets up an ion conduction cycle where a K+ ion enters from 

one side of the filter and a different K+ ion exits from the opposite side, with the direction of ion 

movement dependent on the electrochemical gradient for K+16,18.  

The KcsA structure revealed how K+ channels can be both highly selective for K+ over 

other cations and highly conductive: the carbonyl oxygens in the selectivity filter mimic the 

normal hydration state of a K+ ion, and having multiple ions in the filter causes repulsion 

between the ions that overcomes the affinity of the ion for the binding site16,18. 
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Figure 2. Structure of slo1 BK K+ Channel 

The pore domain is shown in red, the selectivity filter in yellow, 

voltage-sensing domains in blue, and RCK domains in cyan19.  

Gating 

In Eukaryotes, sub-families within the broad K+ channel family are based largely on the 

physiological stimuli that cause the K+ channel to open. For example, some K+ channels are 

voltage-gated, which means that the opening of the channel pore is coupled to the movements of 

a membrane-integrated voltage sensor that senses changes in voltage across the membrane20. 

There are also ligand-gated K+ channels that depend on the binding of a nucleotide, an ion, or 

another protein to a regulatory domain for pore opening18. One type of regulatory domain is the 

Regulator of K+ Conductance (RCK) domain, which is present in some eukaryotic, Ca2+-

activated K+ channels and is commonly found in prokaryotic K+ channels21,22. Electrophysiology 

data for Prokaryotic channels is limited, and given the difficulty in obtaining this information, a 

characterization of bacterial K+ channels based the number of transmembrane helices (TM), the 

type of regulatory domains, and homology to known K+ channels has been proposed. This type 

of organization has resulted in ~10 different categories for bacterial K+ channels1 (Fig 3).  
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Figure 3. Topology of known Prokaryotic K+ channel forming subunits 

All topologies contain the K+ selectivity filter in the pore region, but vary in the number of 

transmembrane domains, the presence of voltage-sensing domains, and the type (if any) of C-

terminal regulatory domains. Circles represent Regulation of K+ Channels (RCK) domains, 

squares represent Cyclic Nucleotide Binding Domains (CNBDs), and lines represent unknown 

domains. Adapted from Kubalski et al.10. 

The Importance and Transport of K+ in Prokaryotes 

In all cells, K+ represents the major intracellular monovalent cation. The intracellular K+ 

concentration is highly regulated as K+ is involved in many critical biological processes. It serves 

as an osmo-protectant and is rapidly accumulated in response to hyperosmotic stress23–25. K+ is 

important for protein synthesis, as it is required for proper structure and function of the 

ribosome26. Additionally, the gradients established by the intracellular sequestering of K+ and 

exclusion of Na+ are important for transport of other molecules as well as maintenance of proper 

membrane potential27. Because of the importance of K+, there are a number of widely-conserved 

K+ transport systems in bacteria.  
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Figure 4. K+ transport systems in E. coli 

The K+ transport systems in E. coli are illustrated (see text for description of each system). Arrows 

indicate the direction of K+ transport.  

In E. coli, K+ transport and homeostasis are mediated via dedicated K+ transport systems: 

Trk, Kdp, and Kup (Fig 4). The Trk system (Transport of K+) is a constitutively expressed 

system that contains two transporters: TrkH and TrkG28. TrkG, which shares 41% amino acid 

sequence identity with TrkH, was likely introduced to the genome via a rac prophage as it has an 

unusual codon usage and low overall GC content29 . Disruption of both trkH and trkG resulted in 

disrupted K+ transport in a strain also lacking the other transport systems30. TrkH and TrkG are 

both dependent on a cytoplasmic, RCK domain-containing protein, TrkA, for function. Another 

cytoplasmic regulatory protein, TrkE, also has been shown to be required for TrkH function and 

to alter the kinetics of K+ transport by TrkG31.  

While the Trk proteins were originally identified during screens for proteins involved in 

K+ transport30, the characterization of Trk as a K+-selective transport system has been challenged 

by recent work. Structural and in vitro work on TrkH/A from Vibrio parahaemolyticus suggests 

that TrkH/A functions as a non-selective channel, conducting both K+ and Na+, with only a slight 
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preference for K+32,33. The high sequence similarities of the TrkH selectivity filter sequence 

between V. parahaemolyticus and E. coli suggest that this may also be true in E. coli, but further 

work will be needed to determine this.   

The Kdp system (K+ dependent protein) is comprised of a P-type ATPase encoded by 

kdpFABC, whose expression is regulated by the two-component system KdpDE34,35. This system 

is a high affinity transporter that is induced under conditions of limiting extracellular K+ or 

osmotic stress, although the exact stimulus is still debated. Initial studies suggested that the Kdp 

system responded to changes in turgor pressure, but extracellular K+ concentration, intracellular 

ionic strength, and ATP levels have also been suggested as possible stimuli36–38. In vitro work 

has demonstrated that under high salt concentrations the universal stress protein, UspC, is able to 

bind to the sensor kinase, KdpD, resulting in increased levels of phosphorylated KdpE. This 

provides a possible mechanism for increased KdpFABC expression under conditions where the 

intracellular K+ concentration is high, such as under osmotic stress39. In enterohemorrhagic E. 

coli (EHEC), KdpD/E have been implicated in pathogenesis, as they control expression of 

several virulence factors40.  

The Kup (K+ uptake) system is a constitutively expressed, low-affinity K+ transport 

system30. Under hyper-osmotic stress in low external pH (5.5), the uptake of K+ is eliminated in 

the presence of a protonophore, suggesting that Kup functions as a K+:H+ symporter41,42. Kup is 

comprised of a single protein with two domains: an integral membrane domain with 12 

transmembrane helices and a cytoplasmic C-terminal domain. Plasmid-encoded kup allows for 

growth of a mutant lacking functional Trk, Kdp, and Kup systems in low K+ medium (0.1 mM 

K+)43. Kup is thought to be the primary K+ uptake system under acidic hyper-osmotic conditions. 
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An additional system that is absent in E. coli, but commonly found in other bacteria is the 

Ktr (K+ transport) system. In Bacillus subtilis, Ktr transporters are critical for K+ uptake and 

response to osmotic shock44. Additionally, the Ktr transport system is important for virulence, as 

a Staphylococcus aureus strain with a disrupted Ktr system was more sensitive to antibiotics and 

was out-competed by a wild-type strain in a mouse bacteremia model45.  

In addition to K+ uptake systems, bacteria also possess K+ efflux systems that serve to 

export K+. The Kef (K+ efflux) systems are conserved in E. coli and other Gram-negative 

bacteria46–48. The Kef system is comprised of two independent K+ efflux systems, KefB and 

KefC, which are regulated by cytoplasmic RCK domains. In E. coli, KefB and KefC function as 

homodimers with KefG and KefF respectively. With the Kef system, export of K+ is coupled 

with H+ import, which serves to protect the cells against electrophilic compounds by 

acidification of the cytoplasm49,50. 

K+ transport systems are widely conserved in both Gram-negative and Gram-positive 

bacteria, highlighting the importance of K+ to cellular physiology. The multiplicity of K+ 

transporter systems has complicated the understanding of K+ channels. It is difficult in many 

cases to distinguish if K+ channels function primarily as another K+ uptake system and this 

activity is masked by the functionally redundant transport systems in the cell, if channels have 

K+ uptake activities under specific conditions, or if they have functions that are separate or in 

addition to K+ homeostasis. The growing interest in bacterial ion channels has resulted in some 

clarification of these possibilities for K+ channels in certain bacterial species.  
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Physiological Functions of Bacterial K+ Channels 

Prokaryotic K+ channels have contributed greatly to our understanding of the biophysical 

properties of K+ channels. Information regarding how K+ channels are both highly selective and 

highly conductive came from the first crystal structures of bacterial K+ channels18,21. However, 

this structural and biochemical information has not greatly contributed to our understanding of 

cation channel function in bacteria. While most bacterial genomes contain a readily identifiable 

K+ channel, there remains little functional characterization of these proteins.  

The limited reports of functional characterization for specific bacterial K+ channels tend 

to be in organisms that lack well-characterized K+ transport systems. For example, the genome of 

the Gram-positive bacterium, Corynebacterium glutamicum, does not contain any homologues of 

the Trk, Ktr, or Kdp systems, but it does possess a Kup-like transporter and a putative K+ 

channel, CglK. Disruption of CglK resulted in severely diminished K+ transport and an impaired 

response to acid stress51. Similarly, the Gram-negative pathogen, Helicobacter pylori, lacks any 

obvious Trk, Kdp, Kup, or Ktr homologues, but has a putative K+ channel, HpKchA. Disruption 

of HpKchA altered K+ uptake and drastically reduced host colonization in a murine stomach 

infection model52. These data suggest that in the absence of known K+ transport systems, one 

function of K+ channels in these organisms is to mediate K+ uptake and maintain K+ 

homeostasis.  

However, in bacteria whose genomes contain dedicated K+ transport systems as well as a 

K+ channel, it is much less clear what physiological function the channel plays. E. coli, which 

possesses Trk, Kdp, and Kup K+ transport systems, also possesses a poorly characterized K+-

selective channel, Kch. It is unlikely that the primary function of Kch is K+ transport or K+ 

homeostasis, as several screens for proteins involved in K+ transport failed to identify kch30, and 
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a null kch mutant failed to generate any observable K+ transport phenotypes13. The lack of 

observable phenotypes for channel deletion strains has complicated the study of K+ channels. 

Signaling Roles for Bacterial K+ Channels 

In higher eukaryotic organisms, K+ channels are involved in modulation of membrane 

potential, the difference in electrical charge between the intracellular and extracellular sides of 

the membrane. Changes in concentrations of charged species, such as K+, across the membrane 

result in alterations to the membrane potential. The membrane potential (ΔѰ), along with the 

proton gradient across the membrane (ΔpH), compose the proton motive force (PMF)53. In 

bacteria, the PMF is required for nutrient transport, ATP production, flagellar rotation, and other 

critical biological processes54–57. The strong conservation of eukaryotic and prokaryotic K+ 

channels in both sequence identity and structure suggests that prokaryotic channels would also 

have roles in signaling, but there are few clear examples of such behavior. However, there is 

emerging evidence for signaling roles for bacterial K+ channels.  

In the Cyanobacterium, Synechocystis sp. PCC 6803, deletion of a Ca2+-dependent K+ 

channel, SynCaK, resulted in depolarization of the cells, indicating that the channel alters the 

membrane potential58. Recent work in B. subtilis has revealed that bacterial K+ channels are 

important for electrical signaling and long-range communication within biofilms. The Süel 

laboratory demonstrated that, upon reaching a threshold size, continued growth of a B. subtilis 

biofilm occurs in periodic cycles59. This oscillatory growth was due to metabolic conflict 

between interior cells and peripheral cells. The metabolically active peripheral cells rapidly 

consumed glutamate, starving the interior cells. In turn, the glutamate starvation of the interior 

cells reduced their production of ammonium, which was needed for growth of the peripheral 
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cells. Replenishment of glutamate to the interior cells restored ammonium production and 

growth of the peripheral cells. Intracellular maintenance of both glutamate and ammonium 

concentrations is dependent on membrane potential60,61; therefore, the role of electrical signaling 

in the communication of metabolic stress was evaluated.  

Measurement of membrane potential using a voltage-sensitive dye revealed that there 

were periodic fluctuations across the biofilm, and that these oscillations were quenched by the 

addition of glutamate. Further investigation revealed that K+ efflux was correlated with changes 

in membrane potential, suggesting that K+ was involved in propagation of signals within a 

biofilm community. Consistent with previous observations that YugO was critical for biofilm 

formation62, disruption of yugO reduced the propagation of electrical oscillations under 

glutamate limiting conditions. YugO-mediated K+ release results in transient depolarization of 

nearby cells, altering their nutrient (glutamate) uptake and retention (ammonium); propagation of 

this signal throughout the biofilm can be used to communicate metabolic stress to distant 

sites59,63. 

Electrical signaling from Bacillus biofilms, mediated by YugO, attracted motile, 

planktonic cells of diverse species (B. subtilis and Pseudomonas aeruginosa) to the biofilm. The 

YugO-mediated electrical signaling resulted in modulation of the planktonic cell’s membrane 

potential, which altered the PMF and subsequently motility, and resulted in an attraction to the 

biofilm64. Together, these data suggest that bacterial K+ channels are able to participate in 

electrical signaling, reminiscent of eukaryotic K+ channels in excitable cells. 
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Introduction to the E. coli K+ Channel, Kch 

Despite being the first identified bacterial K+ channel, very little is understood about the 

in vivo role of Kch. Identified due to its sequence identity to known voltage-gated eukaryotic K+ 

channels, Kch has a Shaker-like topology comprised of six transmembrane ɑ-helices (S1-S6) 

with a pore region and K+ selectivity filter between S5 and S6, and a cytoplasmic RCK domain 

linked to S614 (Fig 3). However, the traditional voltage sensing motif in S4 is degenerate so it is 

unlikely that Kch responds to voltage changes11. The traditional genetic approach to dissecting 

the function of bacterial genes is to generate a null mutation and then examine the changes in 

behavior associated with the mutation. However, this approach yielded little insight regarding the 

role of Kch, as most studies found no discernable phenotypes for Δkch strains 13,14,65. The lack of 

apparent phenotypes for kch null strains resulted in a shift towards kch over-expression for 

characterization of the protein.  

Over-expression studies confirmed that Kch localized to the inner membrane as expected 

for an ion channel66,67. Ungar et al. reported that over-production of kch drastically altered the 

intracellular K+ concentration via increased K+ leakage, but this K+ leakage could not be blocked 

by known K+ channel inhibitors13. Munsey et al. reported that uninduced leaky expression of kch 

alone was lethal to E. coli. The authors observed that the lethality of kch over-expression could 

be overcome by the addition of 50 mM K+ to the growth medium. Additionally, they 

demonstrated that the lethality could be suppressed by the addition of K+, Rb+, or NH4
+ but not 

by the addition of Na+, consistent with the selectivity of a K+ channel65. However, Kuo et al. 

found a conflicting result: that over-expression of kch was unable to be rescued by excess K+ in 

the medium (200 mM K+). The detrimental effects of kch over-expression were exacerbated by 

ionic strength and were not compensated for by mutations that disrupt the K+ selectivity filter, 
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arguing that the growth defects were due to over-expressing a membrane protein - not kch 

specifically14. Discrepancies among the overexpression studies make it difficult to interpret any 

conclusions drawn from them. Attempts at studying the electrophysiological properties of kch 

have also proven unsuccessful. Expression of kch in Xenopus oocytes failed to elicit any 

detectable currents65. A second attempt by creating a chimeric Shaker protein with a kch pore 

sequence also failed to generate a detectable current65.  

The best evidence that Kch forms a K+ channel in vivo comes from a gain-of-function 

screen14. The Kch coding sequence was cloned into vectors under control of an IPTG-inducible 

promoter, randomly mutagenized, and then screened in a Δkch background for increased 

sensitivity to 200 mM extracellular K+. This screen was done in the absence of inducer to reduce 

any toxicity effects. Seven mutants that were able to grow on LB but unable to grow in the 

presence of 200 mM K+ were explored further, as these are expected to represent channels that 

have a higher open probability (gain-of-function). These mutants were not sensitive to 

extracellular Na+ or sorbitol, and the phenotype was retained when the mutagenized channels 

were placed under native promoters. Mapping of these mutations revealed that they were all near 

the C-terminal end of the protein, likely affecting the RCK regulatory domain and subsequently 

the gating of the channel (Fig 3). If the loss of viability in the presence of 200 mM K+ was due to 

mis-regulated K+ flux through these mutant Kch channels, then disruption of the K+ selectivity 

filter should rescue this growth defect. The GYG portion of the selectivity filter sequence was 

targeted for mutagenesis. Forty-one suppressor mutants were isolated, and all contained 

mutations that disrupted the selectivity filter, while mutations that failed to rescue the phenotype 

were those that retained the structure of the filter (TVGFG). This result strongly suggests that 

Kch selectively transports K+ in vivo14,65.  
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In addition to the conflicting results surrounding the kch over-expression studies, 

contradictory results have been reported for the viability of kch null mutants. Initial studies of 

kch reported that there were no obvious growth defects or observable phenotypes for a Δkch 

strain13,14. In a modified transposon screen, kch was identified as a gene required for growth at 37 

°C in rich media but dispensable for growth in minimal media or at cold temperatures68. 

However, under similar growth conditions (37°C in rich media) a viable null kch mutant was 

generated during the creation of the Keio collection, marking the gene as non-essential in these 

conditions69. Despite a series of attempts at functional characterization, much remains to be 

learned about the functional role of Kch in E. coli.  

Using Protein Co-Evolution to Identify Functional Interactions 

Despite the attempts of several independent laboratories using a variety of traditional 

biochemical and genetic approaches, little progress has been made in understanding the role of 

Kch and other bacterial K+ channels. An alternative and complementary method that could aid in 

understanding the function of Kch is protein co-evolution. The ability of co-evolution to predict 

functional interactions between amino acids within proteins has been well-established70,71. Here 

we expand this concept to detect interactions between proteins. As proteins rarely function in 

isolation, understanding which proteins within the cell are interacting yields valuable information 

regarding the organization and cooperativity of biological processes within the cell. However, 

detecting protein-protein interactions is not a trivial task, and many current methods have 

undesirable technical issues72.  

The protein co-evolution analysis, detailed in chapter 2, is based on the concept that 

proteins interacting directly or indirectly should experience a selective pressure at the residues 
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responsible for maintaining that interaction. Our sequence-based analysis is utilized to detect 

networks of co-evolving amino acid residues between proteins. The presence of these 

functionally connected amino acid networks between proteins allows us to determine proteins 

that are co-evolving and, therefore, interacting with each other in some capacity. This method 

will allow us to identify well-characterized interactions as well as predict novel interactions that 

can be further validated experimentally.  

A potentially useful application of coevolutionary analysis is to proteins that have limited 

or no characterization information. Uncharacterized proteins can be challenging to study, as it is 

difficult to design experiments without a predicted function. Additionally, a null mutant may fail 

to show clear phenotypes because of functional redundancy or because the correct conditions 

were not used during screening. Having a list of predicted interactions for uncharacterized 

proteins allows for connections to be drawn to proteins and possibly protein networks with 

known functions. These predictions will provide a starting framework for targeted experimental 

design and in vivo characterization studies. Protein co-evolution could be a powerful tool for 

characterization of proteins such as Kch, where traditional experimental methods did not yield a 

clear understanding of the in vivo function. The results of this analysis will be useful in guiding 

experimental design for validation of novel interactions and networks, ultimately leading to a 

better understanding of how biological processes interact within the cell.  

In Chapter II, I will discuss my work on extending the co-evolution approach to predict 

protein-protein interactions on a genome-wide level. The results of this analysis will be used to 

design assays and experiments that will aid in determining the functional role of Kch. Chapters 

III details the in vivo approaches used to characterize Kch, revealing a novel function in 
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membrane potential modulation. In Chapter IV, I describe a swimming pattern formation first 

identified in a ∆kch mutant.  
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CHAPTER II  

USING EVOLUTIONARY INFORMATION TO IDENTIFY NOVEL PROTEIN-PROTEIN 

INTERACTIONS 

Introduction 

Protein interactions are responsible for mediating nearly all biological processes; 

therefore, identifying novel interactions on a genome-wide scale is essential to understanding 

how biological systems function. Understanding how a multitude of pathways and reactions are 

integrated together at the cellular level remains a major challenge, even in extensively studied 

model organisms. Identification of protein-protein interactions on a genome-wide scale will 

provide a more comprehensive view of the evolution and maintenance of signaling networks and 

other pathways critical to cellular communication. However, reliably detecting in vivo 

interactions is not a trivial task.  

Current methods employed for the detection of protein-protein interactions (PPI) may be 

able to detect high affinity physical interactions, but it is unclear how sensitive they are to 

transient, low affinity, or functional interactions73. These types of interactions are wide-spread 

and highly valuable for regulating cellular processes. Any type of protein modification (i.e., 

phosphorylation, glycosylation, etc.) is mediated via a necessarily transient protein-protein 

interaction74–78. Additionally, many proteins, such as enzymes within the same biosynthetic 

pathway, may have genetic or indirect interactions mediated through a biosynthetic intermediate, 

a small molecule, or another protein. Many such interactions may go undetected because most 

techniques require a strong physical interaction between proteins for the interaction to be 

detected. Protein co-evolution is an attractive method for predicting protein-protein interactions 
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as it is based on the evolutionary history of the proteins and is not dependent on a strong physical 

interaction between proteins; it could be used to identify interactions between proteins and 

systems that are inherently difficult to detect with current methods79–81. 

Statistical coupling analysis (SCA) is a method to predict functional interactions between 

amino acids within proteins70. SCA has been successfully applied to protein families and has 

revealed the presence of functionally coupled networks of co-evolving amino acids that serve to 

connect the active sites to spatially distant allosteric sites in the proteins70,71. These co-evolving 

amino acid networks are sparse and reflect the requirement for communication between spatially 

distant regions of the protein. Here, we show that the application of SCA can be expanded to 

identify functionally connected networks of co-evolving amino acids between proteins. The 

presence of amino acid co-evolution between proteins would predict that those proteins are 

interacting either physically or functionally. 

Materials and Methods 

Creation of a large protein dataset 

The Orthologous Matrix (OMA) database was utilized to obtain high quality orthologous 

protein sequences (December 2012 release)82. For a given protein, a multiple sequence alignment 

was generated by obtaining all the protein sequences within the OMA group that the protein is 

found in, along with all the sequences in the close groups. To automate this process for every 

protein in the E. coli genome, the OMA SOAP::API was queried using an in-house Perl script. 

To avoid ambiguity, the OMA close groups for each protein were compared and any shared 

groups were eliminated. The MSA was generated using the t-coffee quickaln function. Any MSA 
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containing fewer than 150 sequences was eliminated from the dataset. The final dataset 

contained MSAs for 1,717 proteins out of a total of 4,263 MSAs generated.  

Large-scale co-evolution analysis 

An all-against-all alignment step was performed for all 1,717 proteins in the dataset, 

where an MSA was concatenated to every other MSA to create a joint MSA. The concatenation 

step was performed in a species-dependent manner, meaning that the E. coli sequence in the first 

MSA was joined to the E. coli sequence in the second MSA, etc. Any protein sequences with 

>80% sequence identity were removed from the joint alignment to reduce the possibility of false

positives. The joint MSAs were again screened for size, and any joint alignments with fewer than 

150 sequences were discarded. The remaining joint MSAs were imported into Matlab for 

processing and analysis. Additionally, joint MSAs were further removed from analysis if 1) 

positions/perturbations were only found in one of the MSAs and 2) if the number of 

positions/perturbations in one MSA was less than 10% of the total number of 

positions/perturbations in the MSA. The co-evolution analysis was performed with the following 

occupancy and conservation parameters. Occupancy: All positions within the joint alignment 

were evaluated and any positions with >20% gaps were eliminated from the alignment. 

Conservation: The conservation parameters were set such that an informative site has a specific 

amino acid present 40-80% of the time. The program will perturb every position where the 

occupancy and the conservation requirements are met. With each perturbation, changes in the 

amino acid frequencies at all other sites were evaluated and recorded. The results of the analysis 

were reported as a matrix of free energy values and visualized as a heat map.  



21 

To automate the evaluation of joint alignments for co-evolutionary signal, the clustered 

heatmap is divided into nine sections and the mean signal in each section is calculated. The 

section with the most signal is used to determine if the joint alignment is positive or negative for 

co-evolution by evaluating the distribution of amino acid positions from each protein that cluster 

together. If the two proteins are co-evolving, positions within the second protein will respond to 

perturbations made in the first protein and vice versa and therefore cluster together. However, if 

two proteins are not co-evolving, positions in first protein will not respond to perturbations made 

to positions in the second protein and these will not cluster together. The statistical significance 

of the mixing of positions from both proteins is determined by an unpaired t test, with p values 

closer to 1 indicative of co-evolution and a p values closer to 0 indicative no co-evolution. 

Pairwise comparisons with P values =/> 1.0 x 10-12 were considered positive for co-evolution.  

Comparison of known protein-protein interactions 

The PDB database was downloaded from https://www.rcsb.org/ (accessed October 2014). 

The database was filtered to obtain PDB ids that represent co-structures and complexes of 

proteins that were also in the final co-evolution dataset of 1,717 proteins, and from that a list of 

unique protein-protein interactions was generated. Protein interaction data was downloaded from 

the MPIDB database http://www.jcvi.org/mpidb/ (accessed April 2015). The unique protein 

interactions were filtered to include proteins that were present in the final co-evolution dataset. 

For both sets of interaction data, the number of known protein interactions predicted to co-evolve 

was calculated, along with the number of interactions we were unable to evaluate and the number 

of interactions that were negative for co-evolution.  

https://www.rcsb.org/
http://www.jcvi.org/mpidb/(accessed
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The PDB co-structures were filtered against the co-evolution dataset of 1,717 proteins to 

filter unique interactions. The PDB interaction data was separated into two sets: one set of 

unique PPI that excludes the ribosome and one set that includes the ribosome. For the non-

ribosomal set, there were 78 co-structures that contained proteins in the co-evolution dataset. Of 

those 78 interactions, only 38 of the interactions could be evaluated by the co-evolution analysis. 

Thirty of the thirty-eight interactions were predicted to co-evolve. With the PDB dataset 

including the ribosome, every protein in the structure was evaluated. A total of 1,019 unique PPI 

were obtained from the PDB data. Of these 1,019 PPI, 134 interactions were unable to be 

evaluated, resulting in 885 interactions. Of the 885 interactions, 861 interactions were predicted 

by co-evolution. Of the 2,102 unique interactions from the MPIDB dataset, 724 interactions 

involved proteins in the co-evolution dataset. Of the 724 PPI, 438 interactions were unable to be 

evaluated, resulting in 286 PPI that could be analyzed. The SCA analysis found that 235 PPI 

were predicted to co-evolve. These results demonstrate that proteins with known interactions can 

be recovered using SCA.  

GO term enrichment analysis 

Broad classification of the proteins in the final dataset was obtained by mapping the 

proteins to a custom GO slim subset using the Map2slim.pl script 

[https://metacpan.org/pod/distribution/go-perl/scripts/map2slim]. The enrichment analysis was 

performed using custom Matlab scripts. For the protein of interest, the total number of evaluated 

proteins was calculated and compared to a subset of proteins with strong co-evolution scores 

(Ncoevolve, P value =/> 1.0 -6). A 1,000 randomization trials were performed where we randomly 

selected the number of proteins equal to Ncoevolve from the total proteins that were evaluated. For 

https://metacpan.org/pod/distribution/go-perl/scripts/map2slim
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each trial, the number of proteins that mapped to each specific GO slim term was noted. The 

averages and standard deviations were determined for each group based on the randomizations 

and were used to calculate a Z-score to determine significance. GO slim terms with a Z-score of 

1 or greater were considered to be biological processes that were enriched.  

Results 

Detection of co-evolving amino acid networks 

Functionally connected sites within a protein can be identified through mutagenesis 

approaches83, but the drawback to this method is that it requires significant time and resources to 

complete and is not feasible for large-scale analysis. Instead of relying on mutational 

experiments, we utilize a sequence-based approach to detect functionally interacting residues. 

We exploit the fact that evolutionary pressures lead to constraints within protein sequences, and 

that these evolutionary signatures can be detected and used to determine which sites within a 

protein communicate with each other70,71.  

Likewise, if two (or more) proteins are interacting in some capacity, there will be a 

mutual evolutionary constraint at the amino acid positions required for maintaining that 

interaction. Networks of co-evolving amino acids between proteins should impose a constraint 

such that changes within the networks of one protein would result in compensatory changes in 

the other protein. This constraint is detectable in a sufficiently diverse multiple sequence analysis 

(MSA). In order to evaluate two proteins for evidence of co-evolution, we must first generate a 

large, diverse multiple sequence alignment for each protein that accurately represents its 

evolutionary history. Orthologous protein sequences are used to create each MSA, as protein 

orthologs arise out of a speciation event and tend to retain similar evolutionary pressures and the 



24 

same function in other organisms. This is in contrast to paralogous sequences that arise out of a 

gene duplication event and tend to experience weaker selective pressures and diverge and evolve 

new functions84. 

 Next, the two individual MSAs are joined together in a species-dependent manner, 

meaning that the E. coli K-12 sequence in the first protein MSA is joined to the E. coli K-12 

sequence in the second MSA and so on (Fig 5). The resulting joint alignment is then evaluated 

for informative sites. If an amino acid position is not contributing to the overall structure or 

function of a protein, the lack of evolutionary pressure at that position should result in a more 

random distribution of amino acids70, indicating that there is no strong selection for a specific 

amino acid at that site. However, if an amino acid position is important for the structure or 

function of a protein, there is expected to be a strong selective pressure, resulting in a preference 

for a specific amino acid(s) at that site. Thus, positions within the joint MSA whose amino acid 

distributions vary from a mean distribution (i.e., have a strong preference for a specific amino 

acid at that site) are considered informative sites if they meet these occupancy and conservation 

thresholds. 
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Figure 5. Generation of joint MSAs 

The final dataset included MSAs for 1,717 individual proteins. These proteins were compared in 

a pair-wise manner. To create the joint alignment, the two individual MSAs are joined in a species-

specific manner. The final joint MSA must have a minimum of 150 sequences to be further 

evaluated. 

Once informative sites are identified, we next needed to determine which positions are 

co-evolving with each other (Fig 6). To accomplish this, a perturbation is made to an informative 

site by shifting the amino acid distribution. Any functionally interacting sites will experience a 

shift in their amino acid distributions in response to that initial perturbation. The response of the 

amino acid distributions at all other positions to a perturbation is recorded, and the next 

informative site is perturbed. Thus, making perturbations to all informative sites within the joint 

alignment and recording the responses to those perturbations, networks of co-evolving amino 

acids between proteins can be detected.     
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Figure 6. Detecting networks of co-evolving amino acids 

For positions vital to the structure or function of a protein, it is expected that there would be 

evolutionary constraints at those sites, meaning amino acid frequencies would vary from the mean 

value. When site A is perturbed by selecting sequences with a H at that position, we observe a shift 

in the amino acid frequency at sites C and E. This indicates that those sites share a mutual 

constraint and are co-evolving with each other. Whereas site D is evolutionarily constrained but 

evolving independently of site A. Adapted from Süel et al71.  

Amino acid co-evolution can be detected between proteins with known interactions 

We first asked if we could detect co-evolutionary signal between proteins by applying 

our method to two different sets of proteins known to physically and functionally interact: a 

subset of structural flagellar proteins and the Uvr endonuclease (Fig 7). These systems were 

selected for several reasons, the first being that both systems contain well-characterized 

functional and physical interactions. The biosynthesis and regulation of flagella is a complex 

biological process that includes more than 50 genes in E. coli 85. Several of the Flg proteins were 

selected for analysis as they have critical structural roles in anchoring the flagella to the 
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membrane. The Uvr endonuclease is a multi-protein complex that mediates the response to UV-

induced DNA damage86,87. The three Uvr proteins, UvrA, B, and C, interact in a pair-wise 

manner. First, UvrA-UvrB form a complex that scans DNA looking for DNA lesions. When a 

lesion is located, UvrA leaves, UvrC is recruited, and the UvrB-UvrC complex cleaves the DNA 

upstream of the damaged site86,88. These two control systems allow us to test the ability of SCA 

to detect both physical and functional interactions.  

The second benefit of these systems is that they represent different gene arrangements. 

The Flg proteins are arranged within an operon and are subject to regulation by a common 

promoter. However, the Uvr proteins are not located within operons and are found in different 

regions of the chromosome. The genomic arrangement of the control proteins allows us to 

confirm that the presence of co-evolutionary signal is due to the presence of an interaction and 

not an artifact of being located within an operon. CorA, a magnesium transporter was selected 

for comparison with the control proteins, as it has no known or expected interactions with either 

of these systems89.  
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To test the effectiveness of our method at predicting co-evolution between proteins, sets of proteins 

with known physical and functional interactions were selected as controls. (A) The UvrABC 

endonuclease is involved in the Nucleotide Excision Repair (NER) pathway, and (B) the Flg 

proteins are structural flagellar proteins. These systems also allow us to determine if we can predict 

protein interactions between proteins encoded at both nearby and distant regions of the 

chromosome, as genes encoding flg proteins are arranged within an operon, but genes encoding 

the Uvr endonuclease are in distant regions of the chromosome. (C) We find evidence of co-

evolution between all Uvr proteins and between all flagellar proteins, and none between any 

proteins and CorA (negative control). 

Figure 7. SCA can detect known protein interactions 
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The proteins in each system were analyzed in a pairwise manner. We were able to detect 

evidence of co-evolution between all of the tested Flg proteins as well as between all three Uvr 

proteins (Fig 7 & 8), consistent with the known interactions between these proteins. No evidence 

of co-evolution was detected between CorA and any of the other proteins (Fig 9). These results 

indicate that we can detect co-evolutionary signal between proteins that have a physical 

interaction, as well as between proteins that are involved in the same complex but may not have 

direct physical connections (i.e., several of the Flg proteins and UvrA-UvrC). Importantly, this 

signal is not dependent on the genomic organization of the proteins. Next, we wanted to perform 

a large-scale analysis to predict PPIs on a genome-wide scale.  
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Figure 8. Co-evolution signal for proteins with known interaction- UvrA-UvrB 

A heatmap is used to visualize protein co-evolution results. The left-most panel is the visualization 

of the signal from the linear sequence, where the X-axis represents the perturbations made in the 

joint alignment and the Y-axis represents all positions in the joint alignment. Perturbations and 

positions flanked by red are those found in UvrA, and perturbations and positions flanked by blue 

are found in UvrB. The middle panel is the raw data after a round of two-dimensional hierarchical 

clustering. If two positions are co-evolving with each other, they will have similar coupling 

patterns to all perturbations and will be clustered together. Likewise is true for two perturbations, 

if they have similar patterns of coupling to all positions they would be clustered together. We can 

visually capture the strength of the interaction based on the color scale (low=black high=copper). 

The right-most panel is a subset of the clustered dataset. The clustering together of positions and 

perturbations from both proteins (designated by the respective colors) indicates that these two 

proteins are co-evolving.  
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Figure 9. Co-evolution signal for proteins with no known interactions - UvrA-CorA  

CorA was used as a negative control because there were no known or expected interactions 

between our control proteins and CorA. An example of the signal seen with with CorA is shown 

here in the UvrA-CorA joint alignment. The left-most panel is the visualization of the signal from 

the linear sequence, where the X-axis represents the perturbations made in the joint alignment and 

the Y-axis represents all positions in the joint alignment. Perturbations and positions flanked by 

red are those found in UvrA, and perturbations and positions flanked by blue are found in CorA. 

The middle panel is the raw data after a round of two-dimensional hierarchical clustering. The 

right-most panel is a subset of the clustered dataset. Clustering of positions and perturbations is 

observed in each protein individually, but the lack of clustering between UvrA and CorA indicates 

that these proteins evolve independently of each other as expected. 

Generation of a dataset of bacterial proteins for SCA analysis 

We selected the E. coli K-12 genome, which encodes ~4,300 proteins, to serve as the 

template genome for a large-scale protein co-evolution analysis. As a model organism, the E. 

coli genome benefits from a high-level of characterization and annotation, but a significant 
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number of proteins (~30%) remain uncharacterized or poorly annotated90. Poorly characterized 

proteins may have unknown roles in characterized biological processes or represent entirely 

novel cellular pathways; information on predicted interaction partners may help link 

uncharacterized proteins to known proteins or pathways. Thus, analysis of the E. coli genome 

will allow for validation of our method by identification of known protein interactions and 

complexes, as well as provide insights into novel interactions through the analysis of poorly 

characterized proteins.  

To create a dataset for analysis, a multiple sequence alignment (MSA) must be generated 

for every protein in the E. coli genome (Fig 10 A). Orthologous protein sequences were used to 

create each MSA to ensure that the evolutionary history of the protein is represented. Because 

orthologous proteins arise out of a speciation event, they tend to retain the same function and 

similar evolutionary pressures in different organisms. In contrast, paralogous proteins arise from 

a gene duplication event, and they often diverge and evolve new functions due to weaker 

selective pressure84. Next, the MSAs for each protein are joined together in a species-dependent 

manner, meaning that the E. coli protein sequence from the first MSA is joined to the E. coli 

protein sequence in the second MSA. Another size threshold is imposed and joint alignments 

with <150 sequences are eliminated. This resulted in 1,717 x (1,717 -1) ÷ 2 = 1,473,186 pairwise 

comparisons. Of all possible comparisons, ~500,000 comparisons had enough sequences to be 

analyzed further (Fig 10B).  
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Figure 10. Generation of a large protein dataset 

In order to perform a large-scale co-evolution analysis, we first had to generate a dataset of proteins 

that could be further evaluated. (A) Workflow to generate large protein dataset.  The E. coli K-12 

genome was used as a template, and MSAs were built for every K-12 protein using orthologous 

sequences obtained from the OMA database. Any proteins with an MSA containing fewer than 

<150 sequences were removed from the dataset. The final dataset contained 1,717 proteins. In an 

all-against-all joining step, all 1,717 proteins were aligned to all other proteins in the dataset. Joint 

alignments were further filtered to remove any sequences >80% identical, and any joint alignments 

with <150 sequences were not analyzed. Within each joint alignment only positions with >80% 

occupancy are evaluated. Joint alignments are evaluated for co-evolution and scored based on the 

coupling pattern. (B) Raw matrix for the n x n comparison. Pairwise comparisons that show no 

evidence of co-evolution have low values (black color) and those that are positive for co-evolution 

have a high value (copper color). 
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Majority of pair-wise interactions are positive for co-evolution 

One of the unexpected results of our large-scale analysis was a large amount of positive 

co-evolutionary signal. On average, a given protein was predicted to co-evolve with ~60-80% of 

the evaluated proteins. This was a much higher number than we anticipated, but several key steps 

were taken to minimize factors that could result in false positive signal. The first step was 

imposing a stringent sequence identity cutoff during the formation of the joint MSAs. The 

bacterial genomes for which whole-genome sequencing is available is heavily biased towards 

model laboratory organisms such as E. coli and B. subtilis91,92. When creating protein MSAs, this 

bias in the sequencing databases can result in an MSA that may have a large number of 

sequences but is significantly biased towards specific species. To avoid signal that would 

erroneously arise from a lack of sequence diversity, we imposed a sequence identity threshold 

and removed highly similar sequences (>80% identity). Secondly, we imposed a size threshold 

for the number of sequences in the joint alignment. To ensure that the joint MSA is sufficiently 

diverse, we required that the final joint MSA contain a minimum of 150 sequences after the 

removal of highly similar sequences. The use of stringent parameters likely reduces the total 

number of interactions that can be evaluated, but drastically increases our confidence that the 

signal obtained is indicative of an interaction. The high amount of positive signal likely reflects 

the highly conserved nature of the proteins included in our final dataset (see Discussion). 

Large-scale co-evolution analysis recovers known PPI networks 

Our initial data suggested that proteins that are coevolving are also interacting in some 

capacity (Fig 7). In order to determine how well co-evolution predicts interactions, we compared 

our results to two datasets of known interactions: the Protein Data Bank (PDB) and the Microbial 
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Protein Interaction Database (MPIDB). Data from the PDB database represents physical 

interactions, and the MPIDB provides curated interactions supported by at least one experimental 

evidence93,94. Interactions from these two datasets were filtered against the proteins in the 

coevolution dataset, and the number of protein-protein interactions predicted by co-evolution 

was calculated. Overall, the overlap in the number of known interactions and those that were 

able to be evaluated in our dataset was low (see methods), but in the subset of known interactions 

evaluated in our analysis, we were able to recover a significant number (235/286 interactions 

from MPIDB and 30/38 from PDB – see methods) (Fig 11). These included well-described 

interaction networks including flagellar and chemotaxis proteins and cytoskeletal proteins. 

Consistent with our preliminary results, this result demonstrates that our analysis can recover 

known interactions and interaction networks in a large-scale analysis.  
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Figure 11. Large-scale co-evolution analysis recovers known PPI networks 

Known protein-protein interactions and interaction networks were recovered in the co-evolution 

analysis. All experimentally reported PPI, as indicated by lines between proteins, were predicted 

to co-evolve.  

GO term enrichment analysis 

Given the large number of predicted interactions generated by this analysis, it can be 

difficult to decipher patterns from a list of protein names that are predicted to interact. In order to 

better understand the cellular role of individual proteins, we wanted to be able to determine what 

broad biological pathways a given protein is interacting with. To do this, we utilized Gene 

Ontology (GO terms) to broadly classify the proteins in our dataset into biological processes95. 

Next, for a protein of interest, we performed a GO term enrichment analysis by determining 

which biological processes are significantly over-represented within the subset of protein 
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partners predicted to co-evolve. This type of analysis allows us to visualize which biological 

systems a given protein is interacting with, yielding insight into its function. For example, 

analysis of UvrB, a protein involved in mediating repair of UV-induced DNA damage, is 

predicted to interact with proteins involved in DNA repair, DNA recombination, DNA 

replication, and Translation consistent with the known biological function of UvrB (Fig 12). Use 

of the gene ontology enables us to quickly determine which pathways the protein of interest may 

be involved in.  

Figure 12. GO term enrichment analysis for UvrB 

Predicted interaction partners are enriched for nucleic acid metabolic processes, DNA 

recombination, DNA repair, DNA replication, regulation of cell shape, Translation, and 

motility/chemotaxis processes. Biological processes with an asterisk have a Z score > 1 and are 

considered significantly enriched.  
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Application of co-evolutionary information to poorly characterized proteins 

One of the most useful applications of the co-evolution analysis is to proteins that lack 

thorough experimental characterization. Of the 1,717 proteins in the final dataset, 394 (~23%) 

are proteins that carry y-names, indicating that they are poorly characterized. Although their 

cellular function may be unknown, the fact that they are highly conserved among bacterial 

species implies that they have significant physiological roles. Prediction of interaction partners 

for y-proteins, links them to biological pathways, allowing for the inference of function. 

Additionally, the use of co-evolutionary information to predict interactions has the potential to 

reveal not just novel interactions, but novel protein complexes and networks. For example, GO 

term enrichment analysis of a y-protein in our dataset, YrbD, revealed that the only biological 

process significantly enriched was Lipid Metabolic processes. YrbD was predicted to interact 

with several other y-proteins as well as proteins involved in lipid metabolism, indicating that this 

may represent a novel pathway (Fig 13). Recent experimental characterization of YrbD revealed 

that it formed a complex with YrbE, YrbF, YrbB, and together with YrbA and YrbC functions as 

a retrograde outer membrane phospholipid trafficking system. These y-proteins were renamed 

MlaA-F for maintenance of outer membrane lipid asymmetry96,97. This result demonstrates that 

co-evolutionary information can be successfully applied to poorly characterized proteins to 

reveal novel interactions that yield insight into their function.  
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Figure 13. Application of co-evolutionary information to uncharacterized proteins  

Characterization of YrbD revealed that the y-proteins were all components of an outer membrane 

phospholipid trafficking system. A small subset of predicted interaction partners are represented 

above. TolC is an outer membrane protein involved in efflux98. LptD is an outer membrane protein 

involved in LPS assembly at the outer membrane99. LspA is a prolipoprotein signal peptidase100.   

Kch is predicted to interact with proteins involved in redox, cell size regulation, and metabolic 

processes 

Results from our analysis indicate that co-evolutionary information can recover known 

interactions as well as be used to predict novel interactions. We next wanted to apply this 

analysis to Kch, a relatively uncharacterized K+ channel in the E. coli genome. Attempts at 

characterization of Kch have had limited success; therefore, many questions remain about the in 

vivo function of this protein. We were able to evaluate Kch with 161 proteins, of which, 94 were 

predicted to co-evolve. GO term enrichment analysis revealed that Kch was predicted to interact 

with proteins in oxidation-reduction processes, cell size regulation, and metabolic processes. 

Information regarding which processes in the cell Kch is predicted to interact with will allow us 

to design more targeted experiments to elucidate the in vivo function of the channel. Subsequent 

chapters of this dissertation present experiments designed to validate these predictions. 
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Figure 14. GO term enrichment analysis for Kch 

Predicted interaction partners are enriched for oxidation-reduction processes, regulation of cell 

shape, cell wall biosynthesis and metabolic processes. Biological processes with an asterisk have 

a Z score > 1 and are considered significantly enriched.  

Discussion 

Protein interactions are vital to carrying out all cellular processes. Identification of 

interacting proteins is important for understanding how the various cellular pathways cooperate 

and how information is propagated within the cell. Detection of PPIs is difficult as some 

interactions may be low affinity, condition-dependent, or transient and are therefore hard to 

capture with traditional methods. Here we applied a sequence-based co-evolutionary analysis to 
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predict protein interactions on a genome-wide scale.   Application of our analysis to a large 

dataset of conserved bacterial proteins (>1,700) both recovered well-established protein 

interactions and as well as predicted novel interactions.  

One unexpected result from the analysis was the high number of pairwise protein 

comparisons that were positive for co-evolution. One factor that likely contributes to the high 

percentage of predicted interactions is the stringent criteria we imposed during the creation of the 

MSAs and subsequent evaluation of joint alignments (elimination of close groups, total number 

of sequences >150, sequence identity of 80 % or less). The final dataset included 1,717/4,263 

proteins (~40%), and these proteins represent a highly conserved subset of the proteome. Critical 

cellular processes must be able to cooperate and communicate with each other in the cell; 

therefore, it would be expected to see a large number of predicted interactions. Additionally, 

because this method is not limited by experimental conditions, we have the ability to predict a 

larger number of interactions than traditional methods. For example, some protein-protein 

interactions may only occur under certain conditions such as specific growth stages, in the 

presence of a specific stressor, certain temperatures or media, or the interactions could require 

the presence of multiple proteins simultaneously. These types of interactions could be missed by 

more traditional PPI detection methods. This approach is also not limited by the strength of the 

interactions, meaning transient or functional interactions will be predicted in this analysis. 

Another factor that could also contribute to the high percentage of positive interactions is that not 

every interaction could be evaluated. This missing information would likely contain interactions 

that would be negative for co-evolution, lowering the number of average connections 

significantly.  
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Using the co-evolutionary analysis, we demonstrated that proteins with known 

interactions were also predicted to co-evolve; we were able to recover known PPI as well as PPI 

networks (Figs 11). Coupling the co-evolution results with a GO term enrichment analysis, 

allows us to predict which biological pathways a given protein is interacting with. Application of 

this analysis to uncharacterized y-proteins revealed novel interactions between YrbD (now 

MlaD) and proteins involved in lipid metabolic processes and other uncharacterized proteins (Fig 

13). Characterization of YrbD (MlaD) by other laboratories revealed that these uncharacterized 

y-proteins represented a novel retrograde phospholipid trafficking complex in the outer

membrane96,97. This result demonstrates the ability of co-evolutionary information to predict 

novel interactions and highlights the value in application of co-evolutionary information to 

predict the function of uncharacterized proteins.  

Future Directions 

We hypothesized that co-evolutionary information could be used to recover known 

protein-protein interactions as well as predict novel interactions. Our large-scale implementation 

of SCA does indeed recover well-characterized protein interactions (Figs 7 & 11). We also 

demonstrated that co-evolutionary information could be useful in predicting both novel 

interactions and potential biological functions for uncharacterized proteins (Fig 13).  Just over 

20% of the proteins in the final protein co-evolution dataset are y-proteins that are widely 

conserved in bacterial genomes but have limited-no-functional information. As was seen in the 

case of YrbD (MlaD), the exploration of uncharacterized proteins will reveal novel protein 

complexes and novel biological pathways, increasing our understanding of bacterial physiology. 
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 Future work will focus on further analysis of y-proteins and other poorly characterized 

proteins. GO term enrichment analysis for y-proteins will be performed to determine which 

biological processes they may be involved in. Y-proteins could be grouped based on which 

biological processes are enriched to facilitate validation. For example, if a subset of y-proteins 

were enriched for protein partners in chemotaxis or other motility processes, deletion strains 

from the Keio collection could be screened for motility defects or altered chemotactic responses. 

If a subset were enriched for protein partners involved in DNA repair, these deletion strains 

could be screened for altered responses to DNA damaging agents. The use of co-evolutionary 

information provides a direction to focus experiments to begin validation of predictions. Further 

investigation of the predictions from this study will no doubt result in a clearer understanding of 

the role of uncharacterized proteins, providing insight into their conservation in bacteria.  
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CHAPTER III  

FUNCTIONAL CHARACTERIZATION OF THE ESCHERICHIA COLI K+ CHANNEL, KCH 

Introduction 

Potassium channels are highly conserved proteins found in all domains of life that allow 

for selective movement of K+ ions across the membrane. The physiological roles of individual 

members of this diverse channel family are best understood in eukaryotic systems, where they 

have critical functions in a variety of cellular processes including signaling, muscle contractions, 

cell size regulation, electrolyte balance, and cardiac function3,7,101. The wealth of functional 

characterization of eukaryotic K+ channels has resulted in a clearer understanding of how 

channel dysfunction contributes to disease states. Indeed, disruption of K+ channel function 

underlies many cardiac, neuronal, renal, and metabolic disorders, and this understanding of how 

channel function affects physiology has led to the successful use of eukaryotic K+ channels as 

pharmacological targets to alleviate pathologies102,103.  

Although many of the initial structural and biophysical studies that gave insight into 

eukaryotic K+ channel function were performed on bacterial homologs, the contribution of K+ 

channels to bacterial physiology remains poorly understood. Historically, bacterial K+ channels 

were hypothesized to function primarily in K+ homeostasis and osmoregulation due to their 

selective transport of K+ and the ability of K+ to serve as an osmoprotectant that can be 

accumulated to high intracellular concentrations63. However, the majority of bacterial K+ 

channels have no demonstrated functional characterization, leaving their physiological role 

unclear. Recently, K+ channels have been implicated in intercellular communication within 
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biofilm communities, suggesting that they may have a more substantial role in bacterial 

physiology than previously expected11.  

E. coli possesses a single K+-selective channel, kch, which has the distinction of being the

first described bacterial K+ channel11.  As a member of the voltage-gated K+ channel 

superfamily, Kch retains several key structural features of eukaryotic K+ channels, including 

monomers with six transmembrane domains that assemble to form a homotetramer, a conserved 

K+-selectivity filter in the pore region, and the presence of a C-terminal RCK domain. However, 

it is unlikely that Kch responds to voltage changes, as the amino acid motif associated with 

voltage-sensing is degenerate66,104. Despite its serendipitous discovery more than twenty years 

ago, initial attempts at Kch characterization were plagued by conflicting results and much 

remains to be understood about how the channel functions in E. coli physiology. 

Early studies demonstrated that the Kch protein localized to the inner membrane and 

displayed behaviors characteristic of K+ channels13. Alteration of channel concentrations through 

overexpression or deletion yielded drastically different results between laboratories. For 

example, one study found that kch overexpression resulted in increased membrane permeability 

for K+, but that known inhibitors of K+ channels failed to block the K+ leakage65. Another study 

found overexpression of kch to be lethal, but supplementation of the media with 50 mM 

extracellular K+ suppressed the lethality of overexpression14. Yet another study found a 

conflicting result that the toxicity of kch overexpression could not be rescued by external K+. In 

fact, both extracellular K+ and Na+, but not equi-osmolar sorbitol, were found to aggravate the 

toxicity phenotype. Additionally, the toxicity persisted even when over-expressing a mutant with 

a collapsed selectivity filter, suggesting an issue with ionic strength and overexpression of a 
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membrane protein and not from kch-specific overexpression14. The discrepancies between 

various studies make it difficult to draw reliable conclusions from these experiments.  

The most direct evidence that Kch forms a K+-selective channel in vivo comes from a 

gain-of-function screen14. Kch was cloned into a plasmid, randomly mutagenized, and then 

screened in a ∆kch background in the absence of inducer to minimize lethal effects from over-

expression.  Mutants were isolated that grew normally on LB, but were sensitive to 200 mM 

extracellular K+, as these likely represent channels with a higher open probability (gain-of-

function). Next, suppressors of this phenotype were selected, and the suppressor mutations were 

mapped and found to reside within the selectivity filter, suggesting that the channel is functional 

in vivo and capable of transporting K+ ions13,14.  

Similarly, attempts at analyzing kch null mutants resulted in opposite phenotypes. Initial 

reports of a ∆kch strain reported no new K+-selective transport phenotypes or any additional 

obvious phenotypes68. A random transposon-mutagenesis screen found that kch was dispensable 

for growth at low temperatures in rich media or in minimal media at 37 °C, but that it was 

required for growth of E. coli in rich media at 37 °C69. However, under similar growth conditions 

(LB, 37 °C), a viable kch null mutant was generated during the creation of the Keio collection, 

marking kch as a non-essential gene105. Similarly, a large-scale transposon screen for essential 

genes also reported kch as a non-essential gene106. 

Given the failure of classical techniques in revealing the in vivo role of kch, we used a 

novel computational assay to gain insight into this cryptic K+ channel. We used statistical 

coupling analysis (SCA) to predict which proteins in the cell Kch was co-evolving with and 

interacting with in the cell. Being able to connect Kch to proteins of known functions could help 
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reveal the biological processes that the channel is involved with, as well as aid in designing 

targeted experiments for further validation. 

Materials and Methods 

Strains and Reagents 

Strains used in this study are listed in Table 1.  The BW25113 ∆kch::kan, ∆ubiH::kan, 

and ∆trpC::kan strains were obtained from the Coli Genetic Stock Center (CGSC). The ∆kch::frt 

strain (SDB6) was generated following transformation of SDB2 with the pCP20 plasmid107. The 

∆kch::kch+ strains (SDB222 & 223) were generated by transducing in a closely linked 

auxotrophic marker, ∆trpC from SDB9. The ∆trpC::kan deletion was rescued via P1vir 

transduction with a wild-type lysate from SDB1, and transductants were selected for growth on 

M9 Glucose media lacking tryptophan. The ∆ubiH::ubiHV223G strain (SDB11) was generated by 

transducing in the ubiHV223G mutation from SDB2 into the ∆ubiH strain. Transductants were 

selected for their ability to grow on minimal media with succinate as the sole carbon source. The 

ubiHV223G::ubiH+ rescue strain (SDB28) was generated by conjugation of SDB11 with the Hfr 

strain EA1005. Exconjugants were selected for on M9 glucose media with chloramphenicol. All 

genotypes were confirmed via both PCR and Sanger sequencing. Independent BW25113 

∆kch::kan isolates were made by using P1vir to transduce the ∆kch::kan cassette from SDB2 

into the SDB1 strain. Each isolate was obtained on selective media from an independent 

transduction, and was PCR checked to confirm the ∆kch::kan deletion prior to WGS.   
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Table 1. Strains and Plasmids used in Chapter III 

Strains were routinely cultured in Luria-Bertani broth (10 g/L tryptone, 10 g/L NaCl, and 

5 g/L yeast extract) or Tryptone Broth (10 g/L tryptone and 8 g/L NaCl). M9 minimal media was 

prepared as described107. EZ rich defined media with glucose or succinate as the sole carbon 

source was obtained from Teknova Inc (https://www.teknova.com/mops-ez-rich-defined-

medium-kit.html). 10X MOPS buffer was prepared using the following recipe: 83.7 g/L MOPS, 

13.6 g/L Sodium Acetate, trihydrate, 3.7 g/L EDTA, disodium dihydrate. NaOH was used to 

adjust the pH to 7.0. Antibiotics were used at the following concentrations: kanamycin, 50 

μg/mL, ampicillin, 100 μg/mL, and chloramphenicol 25 μg/mL.  Membrane potential dyes, 

DiOC2(3) and Thioflavin T, were obtained from Thermofisher and Acros organics, CAS: 2390-

https://www.teknova.com/mops-ez-rich-defined-medium-kit.html
https://www.teknova.com/mops-ez-rich-defined-medium-kit.html
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54-7 respectively. The dyes were used in final concentrations of 30 μM for DiOC2(3) and 10 μM

for Thioflavin T.   

Plasmids carrying the CRISPRi systems (Addgene numbers 44249 (dCas9) and 44251 

(sgRNA)) were kind gifts of Stanley Qi.  Seed regions designed to target either kch or araC 

genes were designed as described108. These regions were cloned into the sgRNA plasmid 

(Addgene # 44251) using the IVA cloning method109. Primers were obtained from Integrated 

DNA Technologies (IDT). 

Growth curves 

Overnight cultures were diluted 1:100 into 50 mL of fresh, pre-warmed Tryptone broth 

(TB) in 250 mL flasks and were grown at 37 °C with aeration (250 RPM). OD600 readings to 

monitor growth were taken every 30 minutes. Carbon sources were supplemented to a final 

concentration of 0.4%110.  

H2O2 challenge assays 

Freshly streaked isolates were used to start 3 mL overnight cultures in LB in 15 mL 

round-bottom tubes and incubated at 37 °C. Each overnight culture was diluted 1:100 into two 

independent 125 mL flasks containing 30 mL of fresh LB. Growth was monitored and once they 

reached an OD600 ~= 0.35, cells were challenged with LB + H2O2 (final concentration of 2.5 

mM) or an equivalent volume of LB only. Growth was monitored every twenty minutes using 

OD600.  
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Growth profiles during CRISPRi knockdowns 

E. coli BW25113 (SDB1) strain was transformed with either a dCas9 plasmid or a dCas9

+ sgRNA plasmids. Freshly streaked isolates were used to start 3 mL overnight cultures in LB in

15 mL round-bottom Falcon tubes and were grown for 18 hrs at either 30 °C or 37 °C with 250 

RPM. Overnight cultures were diluted 1:100 into fresh media with either 2 µM anhydrous 

tetracycline (aTc) or EtOH only and aliquoted in 200 μL volumes into a 96-well plate. The 96-

well plate was incubated in the dark at either 30 °C or 37 °C with 250 RPM aeration to protect 

the inducer from light. OD600 readings to monitor growth were taken on a BMG PolarStar 

Omega plate reader (BMG Labtech Inc, USA).  

Oxygen consumption measurements 

Oxygen consumption measurements were performed on an Oroboros oxygraph-2k 

(http://www.oroboros.at, Oroboros Instruments, Innsbruck, Austria) as described111. A volume of 

2 mL of EZ rich defined succinate media (Teknova Inc) was used to fill the chambers prior to the 

addition of cells. Overnight cultures grown in the same media were diluted 1:100 into pre-

warmed fresh media and grown at 37 °C with aeration until early exponential phase (OD600 = 

~0.2). Five milliliters of cells were pelleted by centrifugation at 4,000 RPM for 3 minutes, 

resuspended in 1 mL of 1X MOPS buffer, adjusted to an OD600 = 0.5, and a 100 µL volume was 

injected into the chambers. O2 consumption was monitored for at least 15 minutes. The oxygen 

consumption rate (OCR) was calculated for each strain and normalized to the SDB1 strain.  
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Membrane potential measurements with DiOC2(3) 

Measurements were performed as described previously112. Overnight cultures were 

diluted 1:1000 into pre-warmed fresh LB and grown at 37 °C with aeration until mid-exponential 

phase (OD600 = 0.5-0.6). Cells were harvested by centrifugation at 2,400 x g for 10 mins at room 

temperature and resuspended in 1X PBS. EDTA (10 mM) was added and cells were incubated 

for 5 mins at room temperature to permeabilize the outer membrane. Cells were pelleted by 

centrifugation at 2,400 x g for 10 mins at room temperature and resuspended in resuspension 

buffer composed of 130 mM NaCl, 60 mM Na2HPO4, 60 mM NaH2PO4, 10 mM glucose, 5 mM 

KCl, and 0.5 mM MgCl2. The pH was adjusted 7.0 using NaOH, and the resuspension buffer was 

sterilized using a 0.22 µM filter. Resuspended cells were dispensed into opaque 96-well plates 

along with DiOC2(3) to a final concentration of 30 µM, and membrane potential was monitored 

using a Varioscan Lux plate reader with the following parameters: excitation at 450 nm and 

emission at 500 nm and 670 nm.  

Membrane potential measurements with Thioflavin T during Kch depletion 

Membrane potential measurements with Thioflavin T (ThT) were performed as 

previously described113–116. Briefly, freshly streaked strains were used to inoculate 3 mL of EZ 

rich defined glucose media and grown at 37 °C with aeration until early exponential phase. 

Cultures were loaded into a commercial microfluidics plate (EMD Millipore) and was connected 

to a CellAsic Onix2 device to control media flow. Base media (EZ rich defined glucose media 

with appropriate antibiotics and 10 µM ThT) was flown into each chamber at a rate of 1.5 psi 

throughout the experiment and the chamber temperature was maintained at 37 °C. After a period 

of flowing base media only, 2 µM aTc was added to induce expression of the CRISPRi system. 
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Three different locations in each chamber were imaged every 15 minutes under a 40X objective 

lens using an Olympus inverted microscope with a motorized stage.  

Image analysis and ThT quantification 

Image analysis was performed using Fiji (Image J)117. Cell boundaries were  

automatically detected by using the threshold function on the phase contrast image, with manual 

adjustment of cell boundaries performed as needed. These values obtained were saved to the ROI 

and then applied to the corresponding fluorescent image to obtain cell area and mean ThT 

intensity.  

Statistical analysis 

All experiments were performed with a minimum of three biological replicates. 

Error bars represent the standard error of the mean unless otherwise indicated. Statistical 

differences were determined using T-tests in GraphPad Prism.  

Whole genome sequencing and analysis 

Genomic DNA was prepared as previously described 112. DNA was submitted to AgriLife 

Genomics at Texas A&M University for library preparation and Illumina Novaseq paired-end 

sequencing. Alignment of the fastq paired-end reads to the NCBI BW25113 reference genome 

(NZ_CP009273.1) was performed using Bowtie2 and BWA aligners118,119. Variant calling was 

performed using BCFtools and FreeBayes120. Novel insertion elements were detected using 

ISmapper121,122. All sequence variants were confirmed with Sanger sequencing.  
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Results 

Deletion of kch results in growth defects on non-fermentable carbon sources 

In a previous co-evolution analysis, Kch was predicted to interact with proteins involved 

in redox reactions, cell size regulation, and metabolism. To begin validating the results of this 

analysis, we performed targeted experiments to evaluate the involvement of kch in these cellular 

processes. Because of the predicted connection to metabolism, we first asked if loss of the 

channel resulted in any growth defects in various media. We found that when grown in Tryptone 

Broth (TB), the ∆kch strain (SDB2) exhibited a decreased growth rate when the culture reached 

an OD600 = ~0.5 (Fig 15A). If grown in the presence of a fermentable carbon source, glucose, no 

decrease in growth rate was observed (Fig 15 B). However, if the cells were grown in the 

presence of a non-fermentable carbon source, succinate, a decreased growth rate was again 

observed when the cultures reached an OD600 = ~0.5 (Fig 15C), suggesting that the loss of the 

channel affected aerobic respiration.  

 To test whether loss of the channel was responsible for the observed defects, we created 

a genotypic rescue using P1vir transduction, replacing the deletion cassette with a wild-type copy 

of kch under its native promoter and regulation. However, we found that the ∆kch::kch+ 

(SDB222) strain retained the growth defects seen in SDB2, suggesting that there were additional 

mutations present in the background. We performed whole genome sequencing (WGS) to 

identify what other mutations were present in the background. 
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Figure 15. BW25113 ∆kch (SDB2) shows a slight growth defect 

Strains SDB1, SDB2, and SDB222 were grown as described in methods in (A) Tryptone broth 

(TB), (B) TB + 0.4% glucose, and (C) TB + 0.4% succinate. N=3-6 for each strain, error bars = 

SEM. Significance determined by an unpaired t test, p values **** = < 0.0001, *** = < 0.0005, 

** = <0.005.    

Whole genome sequencing of ∆kch Keio mutant reveals non-isogenic background  

In addition to the ∆kch::kan deletion, WGS of the SDB2 strain revealed two point 

mutations, one in an intergenic region (genomic pos # 1317393) and one in ubiH, and a novel 

IS5 insertion disrupting lrhA. LrhA is a transcription factor that regulates genes involved in Type 

I fimbriae production, and indirectly regulates genes involved in motility and chemotaxis, via 

regulation of the master motility regulator flhDC123.  UbiH is an enzyme required for 

biosynthesis of ubiquinone, a lipid-soluble electron carrier molecule that is critical in the aerobic 

electron transport chain (ETC)124. In both eukaryotes and prokaryotes, the ETC plays a critical 

role in cellular energy production by generating a proton gradient that is used to drive the 

formation of ATP.  Ubiquinone, together with its reduced form, ubiquinol, forms a redox cycle 

that is essential for proper functioning of ETC125. Given the important role that ubiquinone plays 

in aerobic respiration, the ubiH point mutation, which resulted in an amino acid change at 
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position 223 (ubiHV223G), is the likely cause for the metabolic phenotypes observed. Because this 

metabolic SNP arose in the background of the ∆kch strain it could represent a suppressor 

mutation and understanding how the mutation affects growth may yield insight into Kch 

function.  

The ubiHV223G mutation likely decreases intracellular ubiquinone levels 

To understand how the mutation affected ubiquinone levels in the cells, we assayed how 

strains carrying the ubiHV223G mutation grew on succinate as a sole carbon source. Aerobic 

growth on non-fermentable carbon sources such as succinate requires ubiquinone, as succinate 

dehydrogenase (complex II) has a strict requirement for ubiquinone126. A ∆ubiH strain (SDB10) 

fails to grow on succinate as the sole carbon source, but SDB1, which carries a wild-type ubiH, 

is able to grow (Fig 16A). The SDB2 strain, which contains the ubiHV223G, is also able to grow 

aerobically on succinate. Additionally, transduction of the ubiHV223G mutation into ∆ubiH strain 

(SDB10) restores the ability of the strain to grow on succinate (SDB11), indicating that the 

mutation does not result in a full loss of function. 

To further determine if the ubiHV223G was a gain- or reduction-of-function mutation, we 

determined how strains carrying ubiHV223G responded to challenge with exogenous reactive 

oxygen species (ROS) stress (Fig 16B). In E. coli, defects in ubiquinone levels are associated 

with increased sensitivity to exogenous H2O2
127,128. Upon addition of exogenous H2O2 to 

exponential cultures, the parental strain experiences a delay of ~ 70 minutes, but eventually 

resumes growth (red solid circles). However, strains carrying the ubiHV223G mutation (SDB2, 

SDB11) fail to resume growth following the H2O2 challenge, a phenotype that is consistent with 

a reduction in ubiquinone levels. Replacement of the ubiHV223G   with a wild-type ubiH allele 
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(SDB28) returns a wild-type response to exogenous H2O2 (red, open squares). Based on these 

results, we conclude that the ubiHV223G point mutation is a reduction-of-function mutation that 

likely reduces the ubiquinone levels in the cell. 

Figure 16. The ubiHV223G mutation results in decreased intracellular ubiquinone levels 

(A) The ability of the WT ubiH (SDB1), Δkch ubiHV223G (SDB2), ubiHV223G (SDB11) and the

∆ubiH (SDB10) to grow on succinate as the sole carbon source was determined. (B) The

response of strains carrying either WT ubiH or ubiHV223G to exogenous ROS stress. At t=0

(dashed line), either LB only (black lines) or LB + 2.5 mM H2O2 (red lines) was added. Rescue

of the ubiHV223G
 mutation with a WT ubiH (SDB28) returns a WT response to exogenous ROS

stress (red open triangles). N = 3-5 for each strain in each condition. Error bars represent SEM.

The ubiHV223G mutation reduces ETC efficiency and depolarizes the cell 

Based on our result that the ubiHV223G mutation likely reduces ubiquinone levels in the 

cell, we explored the effect this would have on ETC function. As ubiquinone (Q8) functions as an 

electron carrier in the aerobic ETC, a reduction in Q8 levels should slow the transfer of electrons 

to O2, the terminal electron acceptor. To further test our hypothesis that the ubiHV223G mutation 

leads to reduced Q8 levels, we compared the efficiency of ETC in a wild-type strain to a strain 

carrying the ubiHV223G mutation.  

 During aerobic respiration, O2 is the terminal electron acceptor; therefore, O2 

consumption can be measured to assess the overall efficiency of ETC. We measured the rate of 
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O2 consumption of wild-type and ubiHV223G strains during growth on succinate as a sole carbon 

source and observed that O2 consumption was reduced ~20% in a ubiHV223G strain as compared 

to wild-type (Fig 17A).  

Given that subsequent O2 consumption is lowered in the ubiHV223G strain, we 

hypothesized that the membrane potential would also be altered in these strains. If Q8 levels and 

O2 consumption are lowered, then we predicted that H+ translocation across the membrane would 

also be reduced, resulting in a decreased ΔΨ (more internally positive) as compared to the wild-

type strain. To monitor membrane potential in these backgrounds, we utilized DiOC2(3), which 

is a positively-charged, fluorescent dye that acts as a Nernstian membrane potential indicator127. 

The more negatively charged (hyperpolarized) the inside of the cell is, the more dye will be 

taken up and sequestered. At dilute concentrations, DiOC2(3), has a green fluorescence but at 

high intracellular concentrations the fluorescence emission shifts to red; thus, an increase in red 

fluorescence is indicative of hyperpolarization (inside of the cell becoming more negative)129–131. 

Using this approach, membrane potential measurements of wild-type cells and ubiHV223G strains 

during early exponential phase revealed that indeed the  
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Figure 17. ubiHV223G reduces ETC efficiency 

(A) O2 consumption by WT and ubiHV223Gstrains. (B) ΔΨ measurements of WT and

ubiHV223Gstrains using DiOC2(3). For panel A, n = 3-4, and for panel B, n = 4. Error bars represent

SEM. Significance determined by an unpaired t test, p values ** = <0.005. Data in panel B was

collected and analyzed by M.A. Hudson.

ubiHV223G strains were depolarized as compared to the wild-type (Fig 17B). Together this data 

suggests that the ubiHV223G mutation acts to reduce the levels of ubiquinone in the cell, which 

subsequently slows electron flux through ETC reducing the overall efficiency and depolarizing 

the cell.  

Model: Kch is critical for ΔΨ modulation during rapid growth 

Based on our WGS data and characterization of the ubiHV223G mutation, we propose the 

following model for the in vivo function of Kch. During rapid growth, electron flux through ETC 

is high, and the accompanying efflux of H+ from the cell results in a large charge difference 

across the membrane with the inside of the cell being more negative (hyperpolarized). We 

hypothesize that Kch functions to rapidly modulate large variations of the membrane potential, 
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serving as a buffer against extreme hyperpolarization that would occur when strong gradients are 

created during rapid growth.  In the absence of the channel and its buffering capabilities, one 

way for the cell to survive an inability to regulate extreme membrane potential changes would be 

to alter the strength of the gradients themselves. Mutations, such as ubiHV223G, that reduce ETC 

efficiency would result in slowed electron movement and subsequent H+ pumping, reducing the 

likelihood of encountering extreme changes.  

Figure 18. The electron transport chain couples electron flow to H+ pumping 

NADH and FADH2 donate electrons that are shuttled between respiratory complexes by 

ubiquinone (Q8). The flow of electrons through ETC is associated with H+ translocation across the 

membrane. Movement of H+ across the membrane contributes to the PMF, which is used to drive 

a number of biological processes including ATP synthesis. During rapid growth, the electron flux 

through ETC is high and generates strong gradients. One response to the loss of the channel is to 

reduce the efficiency of ETC (ubiHV223G), preventing the cell from encountering strong gradients 

that it cannot recover from.  

Depletion of Kch in rich media at 37 °C results in growth delay 

As a test of our model, we wanted to demonstrate that Kch directly alters membrane 

potential in vivo. CRISPR interference (CRISPRi), a recently developed technology, has been 

used successfully to identify and to characterize the role of essential genes in a number of 

bacterial species129. This technology relies on a single guide RNA (sgRNA) and a catalytically 
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dead Cas9 (dCas9) to target a gene of interest for transcriptional silencing. Targeting a gene 

using CRISPRi causes rapid, selective transcriptional inhibition of that gene, resulting in a 

depletion of the gene product as a function of cell division130,132. Because this method results in a 

reduction of the targeted gene product below optimal levels and not a full loss of the gene 

product, CRISPRi has been used to probe how the cells respond to suboptimal levels of a variety 

of essential genes, including those involved in central metabolism and cell wall synthesis69. We 

utilized this approach to determine how E. coli responded to a targeted knockdown of kch under 

various growth conditions.   

We designed a sgRNA to target kch, and first tested how knockdown of the channel 

altered the growth of the SDB1 strain in a variety of conditions. Our model would predict that 

depletion of Kch in rich media at 37 °C would be detrimental to growth, as we expect that the 

channel is critical to modulating ΔΨ fluctuations under these conditions. However, it would also 

predict that lowering the growth rate either by reducing the temperature or by growth in a 

minimal media would produce less extreme ΔΨ fluctuations, making Kch function less critical 

here. Therefore, Kch depletion is expected to be less detrimental under these conditions.   

In rich media at 37 °C with an induced CRISPRi system, we found that depletion of kch 

resulted in a severe growth defect that was not seen in control cells carrying the dCas9 only (Fig 

19, D). The basal expression alone of dCas9 when coupled with the kch sgRNA was also resulted 

in an ~ 1 hour delay in reaching exponential growth. To further confirm that the growth defects 

seen at 37 °C in LB were a result of the loss of channel function, we designed a sgRNA to target 

araC, a gene known to be non-essential for growth in these conditions59,63 . Knockdown of araC 

in LB at 37 °C did not result in a severe growth defect (Fig 19, C).  Consistent with our model, 

knockdown of the channel under conditions that resulted in a slower growth rate (minimal 
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glucose media at 37 °C or LB at 30 °C) showed no difference in growth from the dCas9-only or 

from the araC sgRNA control strains (Figs 20 and 21).  

The CRISPRi results suggest that Kch is required for growth of E. coli under optimal 

conditions that allow for rapid growth (rich media at 37 °C), but that it is dispensable for growth 

in minimal media at 37 °C or rich media at lower temperatures. This result supports our model of 

Kch functioning to rapidly respond to ΔΨ fluctuations and is also consistent with the transposon 

mutagenesis screen that identified Kch as important for growth at 37 °C in rich media. 
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Figure 19. CRISPRi-mediated depletion of Kch results in growth defect in rich media at 37 

°C 

Growth during CRISPRi-mediated depletion of either kch (green triangles) or araC (blue squares) 

in the absence (top) or presence (bottom) of inducer. Growth curves were performed as described 

in methods. Strains were grown at 37 °C in LB with appropriate antibiotics and 2 µM aTc inducer 

as indicated. N=7-8 for all strains, error bars = SEM.  
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Figure 20. CRISPRi-mediated depletion of Kch in LB at 30 °C does not result in growth 

defect 

Growth during CRISPRi-mediated depletion of either kch (green triangles) or araC (blue squares) 

in the absence (top) or presence (bottom) of inducer. Growth curves were performed as described 

in methods. Strains were grown at 30 °C in LB with appropriate antibiotics and 2 µM aTc inducer 

as indicated. N=4 for all strains, error bars = SEM.  
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Figure 21. CRISPRi-mediated depletion of Kch in M9 glucose media at 37 °C does not 

impact growth 

Growth during CRISPRi-mediated depletion of either kch (green triangles) or araC (blue squares) 

in the absence (top) or presence (bottom) of inducer. Growth curves were performed as described 

in methods. Strains were grown at 37 °C in M9 glucose media with appropriate antibiotics and 2 

µM aTc inducer as indicated. N=4 for all strains, error bars = SEM.  
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Kch modulates membrane potential in vivo 

We next asked if we could detect changes to ΔΨ while Kch is being depleted. In rich 

media, we would expect to see hyperpolarization events upon loss of the channel. To measure 

the ΔΨ in real time, we utilized a different fluorescent dye, Thioflavin T (ThT). ThT is a 

fluorescent, positively-charged dye that will accumulate intracellularly in response to membrane 

potential, so an increase in intracellular ThT signal correlates to a hyperpolarization event 133. 

Unlike DiOC2(3), ThT does not require EDTA pre-treatment to be taken up by E. coli (Fig 22). 

Cells were only fluorescent in the presence of ThT, and they were efficiently labeled without 

EDTA treatment (Fig 22, D).  

Figure 22. ThT fluorescently labels E. coli 

SDB1 was grown in rich defined glucose media at 37 °C, and 1.5 μL of culture at 

an OD600 = 0.2 were spotted onto agarose pads with no ThT (A & C) or with 10 uM 

ThT (B & D).  

 The CRISPRi strains were grown in colorless, rich defined media in a microfluidics device that 

allowed imaging of individual cells and monitoring of ΔΨ over time (Fig 23). Within 30 minutes 
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of the addition of inducer to activate the CRISPRi-mediated Kch depletion, an increase in the 

intracellular ThT signal was seen (Fig 23, bottom panels). This increase in ThT signal persisted 

over 240 mins of exposure to the ThT. The response was specific to the kch sgRNA, as an 

increase in intracellular ThT signal was not seen in a strain containing dCas9 only or dCas9 and 

an araC-targeting sgRNA (Fig 24). The significant increase in ThT seen during Kch depletion 

suggests that the native function of Kch is to prevent severe hyperpolarization events during 

rapid growth.    
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Figure 23. Depletion of Kch results in hyperpolarization events 

SDB1 carrying dCas9 only or dCas9 (top panels) and sgRNAs targeting araC (middle panels) or 

kch (bottom panels) were loaded into a microfluidics chamber and imaged before and after inducer 

was added into the chambers. Base media was EZ rich, defined glucose + appropriate antibiotics 

+ 10 μM ThT. Inducer (aTc) was added to a final concentration of 2 μM.
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Determining if Kch is essential 

The unexpected finding of the ubiHV223G mutation in the background of the Δkch strain 

from the Keio collection (SDB2) led us to ask if this mutation or other mutations that reduced the 

efficiency of the ETC were always associated with loss of the channel? Using P1vir transduction, 

we generated seven independent kch null isolates by transducing the Δkch::kan cassette from 

SDB2 into SDB1. Transductants were selected for growth on kanamycin at 37 °C and deletions 

were confirmed by PCR. Confirmed independent Δkch::kan isolates were submitted along with 

our parental strain for WGS analysis. The WGS revealed that the only other mutation identified 

in the seven independent ∆kch::kan isolates was a mutation in a gene called nemA (nemAY359N). 

NemA is a N-ethylmaleimide (NEM) reductase that is also involved in the maintenance of 

intracellular redox by reduction of a wide variety of electrophiles, including quinones134,135. 

Figure 24. Intracellular ThT concentration increases in Kch-depleted cells 

The average intracellular ThT concentration in single cells from Fig 23 was quantified 

before and after induction of CRISPRi. Data from 103 cells were analyzed for each strain 

at each time point. Significance determined by an unpaired t test, p values **** = < 0.0001, 

*** = < 0.0005, ** = <0.005.    
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However, it is unclear if the nemAY359N mutation represents a suppressor mutation, as this 

mutation was also found in the background of our parental strain. Interestingly, our parental 

strain had several mutations compared to the NCBI BW25113 reference genome. One of those 

mutations was the nemAY359N SNP, and the other SNP was in a gene called wrbA (wrbAG96V). 

WrbA is an FMN-dependent NAD(P)H:oxidoreductase that is also thought to be involved in the 

maintenance of intracellular redox by quinone detoxification136. The genomic locations of kch 

and wrbA are not sufficiently close to have a wild-type wrbA allele co-transduced in with the 

∆kch::kan cassette, so it is unclear why only the nemAY359N mutation is present in the 

background. The lack of additional mutations in the independent ∆kch::kan transductants was 

unexpected, given the data that suggest that ubiHV223G is a suppressor mutation in the ∆kch 

background. There are several possible explanations for that observation.  

First, the nemAY359N mutation alone is enough to compensate for the loss of the channel. 

Neither the wrbA nor the nemA point mutations are present in the Keio ∆kch::kan strain, but in 

the absence of those mutations the ubiHV223G mutation was acquired. It is possible that the 

presence of mutations in these redox genes creates an environment where additional suppressor 

mutations are not required to allow for viability in the absence of the channel. The second 

possibility is that the ubiHV223G mutation does not represent a suppressor of ∆kch lethality, and 

instead represents a mutation that arose through strain handling. The modulation of ΔΨ by Kch is 

important to the cell, but its loss can be compensated for through mechanisms other than 

suppressor mutations. The third possibility is that during the genome analysis a structural variant 

(i.e., duplication, inversion, or translocation) within these independent knockouts was missed. 

Further work will be needed to determine which of these possible scenarios is likely correct.   
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Discussion 

Despite many attempts by several different laboratories at characterizing the E. coli K+ 

channel, Kch, it has remained difficult to study and its function poorly understood. In Chapter 2 

we applied a co-evolutionary analysis and found that Kch was predicted to interact with proteins 

involved in redox maintenance, regulation of cell size, and several metabolic processes. That led 

us to perform growth experiments in various media, where we identified a growth defect for the 

∆kch strain when grown on non-fermentable carbon sources. This defect was unable to be 

rescued by a functional channel indicating additional mutations were present in the background, 

and WGS revealed the presence of several unexpected mutations in the background.  

Results from this study highlight the importance of WGS of strains. Single gene knockout 

collection strains are presumed to be isogenic, lacking only the gene of interest, but our 

sequencing result demonstrates that this is not the case. While we report the presence of 

additional mutations in a single strain from a large collection, similar results from other strain 

collections suggest that this is a wide-spread complication137–139. Our sequencing data reiterates 

the extreme caution that should be used in the interpretation of data from high-throughput 

phenotypic screens done on the single-gene knockout strain collections. While working with 

single-gene knockout strains is ideal to parameterize experiments, it is apparent that deletion of 

single genes, even those assumed non-essential, can have large impacts on the genome that may 

confound experimental interpretation.  

One of the mutations identified in the background of the ∆kch strain (SDB2) was the 

ubiHV223G point mutation, which we demonstrated acts to reduce the overall efficiency of aerobic 

ETC and to reduce the membrane potential. Based on the effects of the ubiHV223G mutation, we 

hypothesized that Kch was involved in modulation of ΔΨ to prevent severe hyperpolarization. 
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CRISPRi-mediated depletion of Kch leads to a decreased growth rate and cell 

filamentation. In conditions where growth is slower, either due to lower temperature or minimal 

media, the function of kch appears to be more dispensable and there is no discernable growth 

delay from channel depletion. Using microfluidics devices and fluorescent ΔΨ dyes, 

hyperpolarization of the cell was reported after induction of CRISPRi-mediated kch depletion, 

supporting the hypothesis that the native function of Kch is to prevent extreme hyperpolarization 

during rapid growth.  

Together our data suggest that Kch is important for adaptation to conditions that promote 

rapid growth. During rapid growth, electron flux through ETC is high and the accompanying H+ 

translocation generates strong gradients, where the inside of the cell would be highly negative. In 

the absence of the channel, the reduction in ETC efficiency serves to prevent extreme membrane 

potential fluctuations. This functional coupling of the K+ channel to cellular respiration allows 

the cell to respond to channel disruptions by reducing ETC efficiency, thereby preventing the 

cell from ever encountering situations of extreme hyperpolarization of the membrane that it 

cannot recover from.   

The functional role of bacterial K+ channels has been poorly understood. Recent work in 

Bacillus subtilis revealed that the YugO K+ channel is involved in both communicating 

metabolic stress with the biofilm as well as attracting motile cells to the biofilm via modulation 

of the target cell’s membrane potential140. Here we also demonstrate that the K+ channel in E. 

coli is important for growth in rich media at 37 °C. 

 Given the high conservation of K+ channels in bacterial genomes, it is clear that K+ 

channels play an important role in bacterial physiology. It is possible that one functional role for 

K+ channels is rapid modulation of membrane potential, allowing for adaptation to different 
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growth environments. Our results also suggest bacterial K+ channels could be exploited as 

effective drug targets. Inhibition of bacterial K+ channels in pathogens could lead to impaired 

energy generation, making the cells less capable of competing with the host’s natural 

microbiome or the host’s immune system.  
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CHAPTER IV  

IDENTIFICATION OF A PERIODIC BANDING PATTERN FORMED BY ESCHERICHIA 

COLI MUTANTS  

Introduction 

Despite being unicellular organisms, prokaryotes engage in complex social behaviors that 

resemble those of their eukaryotic counterparts. Well-characterized cooperative microbial 

behaviors include quorum sensing, biofilm formation, and swarming motility, but perhaps the 

most visually striking example of cooperative behavior is the vast array of complex growth 

patterns that have been described in bacteria. Examples include branching dendritic patterns 

formed by gliding Bacillus subtilis cells115, cellular aggregation in soft agar in response to a 

chemoattractant in Escherichia coli and Salmonella typhimurium114,141, and the striking, 

concentric “bulls-eye” pattern created by swarming Proteus mirabilis cells113.  

Pattern formation in single-celled organisms requires coordinated gene expression and a 

variety of intercellular interactions; it represents a distinct transition from autonomous growth 

and function to multicellular-like behaviors. The advantages of such a transition include access 

to nutrients, protection from predation, and increased resistance to antibiotics and other 

stresses142,143. The growing number of bacteria for which a complex growth stage or pattern 

formation has been observed suggests that cooperative growth is more prevalent in the microbial 

world than previously thought. Here we identify and characterize a striking banding pattern 

formed by Escherichia coli mutants during swimming motility.  
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Materials and Methods 

Strains, media, and growth conditions 

The single deletion Keio strains were obtained from the Yale Coli Genetics Stock Center. 

To generate double mutant strains, the kanamycin cassette was excised from the BW25113 

∆kch::kan strain (SDB2), resulting in BW25113 ∆kch::frt (SDB6). P1vir transduction was used 

to transduce the ∆tsr, ∆lsrB, ∆luxS, and ∆qseC mutations individually into MG1655 and then 

into the BW25113 ∆kch::frt (SDB6) strain. Double mutants were selected for on LB + 

kanamycin at 37 °C, and the genotypes were confirmed with PCR and by the loss of the ability to 

grow on arabinose as a sole carbon source. Replacement of the ∆kch::frt with a functional kch 

gene was done by first transducing in the closely linked ∆trpC::kan auxotrophic marker from 

SDB9 into SDB6, and then transducing in a wild-type trpC gene. The final strain was screened 

for its ability to grow on minimal media lacking tryptophan, and all genotypes were confirmed 

with PCR and Sanger sequencing.  
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Table 2. Strains used in Chapter IV 

Routine culturing of strains was done in Luria-Bertania (LB) broth – 10 g/L Tryptone, 10 

g/L NaCl, and 5 g/L Yeast Extract. Kanamycin was used at a 50 ug/mL concentration as needed. 

Tryptone Broth motility media was made with 10 g/L Tryptone, 8 g/L NaCl, and 0.25% w/v 

agar. Standard Motility Media was made with 10 g/L Tryptone, 5 g/L Yeast extract, and 0.25% 

w/v agar with either 0.17M NaCl (SMM-Na) or 0.17M KCl (SMM-K). Media was dispensed in 

25 mL volumes into sterile petri dishes. Sterile toothpicks were used to inoculate a single colony 

into the center of the plate, and plates were incubated at 37 °C for 16 hours unless otherwise 

indicated. Amino acids were obtained from Sigma-Aldrich and were supplemented to SMM-K to 

a final concentration of 10 mM.    
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Whole genome sequencing 

Genomic DNA was prepared as previously described 144,145. DNA was submitted to 

AgriLife Genomics at Texas A&M University for Illumina paired-end sequencing. Alignment of 

the fastq paired-end reads to the NCBI BW25113 reference genome was performed using 

Bowtie2 and BWA aligners118,146. Variant calling was performed using BCFtools and 

Freebayes120. Novel insertion elements were detected using ISmapper143. All sequence variants 

were confirmed with Sanger sequencing.  

Results  

K+ channel mutant exhibits both motility and pattern formation in LB at 37 °C 

E. coli encodes a single K+-selective ion channel called kch. While exploring the effect of

∆kch on swimming motility, we serendipitously discovered that a ∆kch strain exhibited a striking 

pattern formation when swimming through Luria-Bertani (LB) semi-soft agar at 37 °C (Fig 25, 

B). Under these conditions, a wild-type strain is non-motile, but the Δkch strain (SDB2) is both 

motile and pattern-forming. Once the cells start swimming out of the inoculation site, they form 

concentric bands approximately every two hours. The front of cells moving out from the 

inoculation site is followed by an increase in cell division, which sets up an alternating pattern of 

low density (dark) and high cell density (bright) bands. The bands differ from chemotaxis rings 

in that the bands are static and do not move once formed, whereas chemotaxis rings move and 

expand with the cell front.  
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Motility agar (LB + 0.25% w/v agar) was inoculated with either wild-type BW25113 (A) or 

BW25113 ∆kch (B) and incubated at 37 °C for 16 hrs. The white arrow indicates offshoots that 

form and swim without pattern formation.  

We asked how media composition and temperature affected the formation and 

appearance of the bands. While growth in LB at 37 °C are common laboratory growth conditions 

for E. coli, they are non-standard conditions for assessment of motility. Therefore, we explored 

the motility behaviors in Tryptone Broth (TB) and in LB at a range of temperatures from 25-37 

°C. At 37 °C in TB, the ∆kch strain was motile, but failed to form the banding pattern (Fig 26). 

We tested a range of temperatures between 25-37 °C, and we found that decreases in temperature 

were associated with a loss of the banding pattern and a reappearance of chemotaxis rings when 

grown in LB (Fig 27). The conditions in which the patterning arises, which are non-standard for 

motility assays explains why this pattern formation in E. coli has not been described previously, 

given that E. coli is a model organism for the study of chemotaxis and motility.  

Figure 25. BW25113 Δkch mutant forms periodic banding pattern 
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Figure 26. Periodic banding pattern is specific to LB media 

TB motility agar (TB + 0.25% w/v agar) was inoculated with either wild-type 

BW25113 (A) or BW25113 ∆kch (B) and incubated at 37 °C for 16 hrs.  

       Figure 27. Lower temperatures suppress pattern formation 

       The effect of slower cell growth on the banding pattern was determined by lowering 

      the incubation temperature. Strains were grown on SMM-K media for 15 hrs. (37 °C 

 and 35 °C) or 20 hrs (32 °C and 25 °C) prior to imaging. 

Addition of K+ fails to rescue the banding pattern 

To give insight into what processes might be involved in the pattern formation, we asked 

if we could identify conditions that suppress the formation of this banding pattern. Because this 

patterning was identified in a null K+ channel mutant, we first asked if the addition of K+ to the 

media could mask the bands. The salt concentration in Miller LB is ~170 mM, so we replaced 

the NaCl with an equimolar concentration of KCl and assayed the swimming behavior. The ∆kch 

strain still formed concentric bands in the presence of 170 mM KCl (Fig 28). Replacing NaCl in 
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the LB with equimolar concentrations of KCl, results in subtle changes to the patterning, with the 

bands being thicker in the presence of KCl. The ∆kch strain is motile and banding at high molar 

concentrations, but eventually becomes non-motile at salt concentrations above 0.5 M. The 

appearance of banding behaves differently in the two different salt species; it persists even in 

0.5M KCl, but the cells are non-motile at the same concentration of NaCl. The addition of KCl 

results in more obvious banding and is used in all future experiments at a concentration of 170 

mM.   

Figure 28. Supplementation of K+ fails to suppress pattern formation 

The effect of increasing NaCl or KCl on the pattern formation. Increasing concentrations of either 

KCl or NaCl was added to motility media (1% Tryptone, 0.5% Yeast Extract, 0.2 % w/v agar). 

Plates were incubated at 37 °C for 16 hours. 

Hypermotility suppresses pattern formation 

Cells isolated from either the high or low cell density bands reliably reproduce the same 

motility pattern (data not shown); however, we noticed that towards the end of the incubation 

period there were offshoots that would form and swim without the pattern formation (Fig 25 B, 

white arrow). Cells from these offshoots were isolated and re-tested to determine their swimming 

behavior at 37˚C in LB soft agar. Compared to cells isolated from banding regions, cells isolated 
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from the offshoots swam faster and without pattern formation (Fig 29, A). The offshoot isolates 

were renamed ∆kch-HM for their hyper-motile phenotype.  

(A) The isolated hypermotile cells faster and without the 
pattern formation. SMM-K motility plates were incubated for 

~7 hours at 37 °C. Photo taken by K. Hofstetter. (B) PCR 
amplification of the flhDC regulatory region in the WT, ∆kch, 
and ∆kch-HM strains. The size of the band in the ∆kch-HM is 

consistent with that of RP437 which carries an IS5 disruption 

in that region. Extra lanes between the WT and the ∆kch lanes 

were removed for clarity.

In E. coli, it has been reported that mutations that increase motility are often due to novel 

IS elements incorporating upstream of the master flagellar regulator, flhDC143. The disruption of 

negative regulatory sites leads to an overall increase in flagellar gene expression and higher 

flagellar numbers147,148. We compared the flhDC regulatory region of the wild-type strain, the 

∆kch strain, and the ∆kch-HM isolate to that of RP437, a commonly used chemotaxis strain that 

is hyper-motile due to an IS5 insertion upstream of the master regulator149. The ∆kch-HM strain 

had a band size consistent with RP437, indicating that the hyper-motility was due to a novel IS5 

insertion upstream of flhDC (Fig 28B). The loss of pattern formation is associated with the 

acquisition of a novel IS element upstream of flhDC, which results in a hypermotile phenotype. 

Figure 29. BW25113 ∆kch hypermotile isolates swim 

without pattern formation 
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Addition of serine suppresses band formation 

We asked whether the addition of specific nutrients could also mask the banding pattern. 

To assess how the supplementation of amino acids and specific carbon sources would alter the 

banding, we supplemented each of the 19 essential amino acids (Tyrosine was insoluble at all 

concentrations tested) at a 10 mM concentration to the SMM-K motility media (Fig 30). 

Figure 30. Addition of serine suppresses band formation 

The effect of amino acid supplementation on pattern formation was tested. Only All nineteen 

amino acids were tested for their ability to suppress the pattern formation, but only serine was able 

to suppress the pattern formation. No significant alterations to the pattern were seen with any of 

the other tested amino acids. SMM-K plates were incubated at 37 °C for 16 hours.   

The only amino acid that significantly altered the appearance of the banding was serine, 

which resulted in a confluent swimming pattern. A range of serine concentrations were tested, 

and significant alterations were seen at 5 mM serine concentrations (Fig 31).  



Figure 31.The effect of a range of serine concentrations on pattern formation 

A range of serine concentrations was tested its effect on pattern formation. At 1 mM, 

serine does not have a distinct effect on the patterning, but at 5mM serine the pattern 

formation is significantly altered.  Base media is SMM-K, and plates were incubated  

at 37 °C for 16 hours. 

Pattern formation requires intact Tsr 

Because serine was the only amino acid tested that was able to suppress the banding 

pattern, we investigated whether Tsr was required for proper band formation. Tsr is one of four 

methyl-accepting chemoreceptors in E. coli, and it mediates chemotaxis towards serine and away 

from a number of repellents150. We generated a double mutant, ∆kch ∆tsr, and assayed its ability 

to form bands in SMM-K at 37 °C. The double mutant remained motile and swam out from the 

inoculation site, but failed to generate a pattern, indicating that Tsr is required for band formation 

(Fig 32E). In addition to serine chemotaxis, Tsr also mediates the chemotactic response towards 

and the auto-aggregation behavior in response to the quorum sensing molecule, autoinducer-2. 

We next asked if quorum sensing played any role in pattern formation.  

82 
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Figure 32. Tsr is required for pattern formation, but the quorum sensing systems are 

individually dispensable 

Disruption of tsr results in a loss of pattern formation (E). Pattern formation is not dependent 

on either AI-2 production or sensing (F & G) or qseC (H).  SMM-K plates were incubated  

for 12 or 16 hours at 37 °C. 

Individual quorum sensing systems are dispensable for pattern formation 

Organizing social behaviors, such as pattern formation, requires cell-to-cell 

communication and coordinated gene expression. One mechanism for intercellular 

communication in bacteria is quorum sensing. Quorum sensing allows bacterial populations to 

utilize chemical cues to both sense and to respond to increasing cell density through coordinated 

gene expression. Quorum-controlled biological processes are then relegated to being active only 

when the cell density has reached a critical threshold and the behavior is most advantageous150.  

There are two quorum-sensing systems in E. coli, a luxS-dependent system and a qseBC-

dependent system. AI-2 is generated from S-adenosylmethionine (SAM), a methyl donor that 

contributes to many cellular processes and is involved in one-carbon metabolism. Conversion of 
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SAM yields S-adenosylhomocysteine (SAH), which is processed to S-ribosylhomocysteine 

(SRH) and adenine. LuxS converts SRH to homocysteine and 4,5 dihydroxy, -2,3- pentanedione 

(DPD), and spontaneously cyclized DPD is further processed to AI-2. As AI-2 is generated from 

SAM, the autoinducer can serve as both a reporter of cell density and an indicator of the 

metabolic state of the population151,152.  

The luxS-mediated biosynthetic pathway for AI-2 production is highly conserved in 

bacteria, and AI-2 may represent an interspecies quorum sensing molecule. In E. coli, AI-2 

differs from traditional autoinducers in that it the peak extracellular AI-2 concentration occurs in 

mid-to-late exponential phase and drops sharply upon entrance into stationary phase. This sharp 

drop is due to the internalization and subsequent processing of AI-2 via the lsr operon. The 

reason for production, export, and re-uptake of AI-2 remains unclear153. 

The qseBC quorum sensing system has been best characterized in enterohemorrhagic E. 

coli (EHEC), where it has been shown to be a unique system that allows for interkingdom 

signaling. In EHEC, qseBC represents a two-component system, where qseC is a sensor kinase 

that responds to the bacterial quorum sensing molecule, autoinducer-3, as well as host produced 

signals, epinephrine (epi) and/or norepinephrine (NE), and qseB is the response regulator. 

Together qseBC have been shown to positively regulate the expression of flagellar and motility 

genes153. In E. coli K-12, expression of the qseBC operon has also been shown to be activated by 

AI-2, but a direct effect on the phosphorylation state of qseC by AI-2 remains to be 

demonstrated121. 

We asked if either of these two quorum sensing systems were required for the banding 

pattern in E. coli. For the AI-2 system, we tested whether the production of AI-2 or the sensing 

of AI-2 was important for the pattern formation. We generated double mutants that were either 
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unable to synthesize AI-2 (∆luxS ∆kch) or impaired in AI-2 internalization (∆lsrB ∆kch) and 

assayed how their motility behavior was altered. However, the behavior of the double mutants 

was unchanged from that of the ∆kch strain; they remained motile and capable of banding at 

37˚C, indicating that neither AI-2 synthesis or detection were required for pattern formation (Fig 

32 F & G).  

Next, we asked if an intact qseBC two-component system was required for formation of 

the banding pattern by deleting the histidine kinase, qseC. A ∆qseC ∆kch double mutant also 

remained motile and banding at 37 °C (Fig 32, H). Together, these data show that the individual 

quorum sensing systems are dispensable for formation of the banding pattern. It is possible that 

there is some compensation occurring between the two quorum sensing systems, and a triple 

mutant would be required to rule out that possibility.  

Pattern formation in ∆kch strain is not due the channel deletion 

To test whether the pattern phenotype was solely attributable to the loss of the channel, 

we created a genotypic rescue of the ∆kch. Using P1vir transduction, we generated a ∆kch::kch+ 

strain (strains SDB222 & SDB223), replacing the deletion cassette in strain SDB2 with a wild 

type copy of the channel under its native promoter and regulation. However, even with a 

functional K+ channel, the Kch rescue strains still formed a banded motility pattern in SMM-K 

media at 37˚C (Fig 33). This unexpected result led us to perform whole genome sequencing 

(WGS) on the ∆kch strain to identify what additional mutation(s) in the background of this strain 

are responsible for the banding formation. WGS revealed the presence of two SNPs and a novel 

IS5 element insertion event in the background, in addition to the ∆kch::kan deletion (table1&2).  
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Figure 33.Genotypic rescue of the ∆kch mutation with a functional kch gene fails to rescue 

pattern formation 

A functional kch was transduced into the ∆kch::kan background, but this fails to return a wild-type 

motility behavior. Two independently obtained isolates, SDB222 (A) and SDB223 (B), remain 

both motile and pattern forming, indicating that neither phenotype is attributable to the channel 

deletion. SMM-K plates were inoculated in the center with a single colony and incubated at 37 °C 

for 14 hrs.  

A likely candidate for the causative mutation for banding is the disruption of lrhA by an 

IS5 element. LrhA is a transcription factor that is known to negatively regulate motility in E. coli 

through transcriptional repression of flhDC154,155. Loss of the negative regulator, lrhA, results in 

depression of flhDC, allowing for the motility under non-permissive temperatures that we 

observe in this strain background. Further work will be required to determine if the banding is 

due to the lrhA disruption. Screening of other Keio knockout strains revealed additional strains 

that were also capable of pattern formation (Fig 34). It will be interesting to determine if the 

patterning in these backgrounds is due to the primary mutation or if any of the mutations 

identified in the ∆kch strain are present in these strains also.  
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Figure 34.Additional pattern forming mutants 

Several additional Keio mutants were identified that also form motility patterns 

in SMM-K. Plates were incubated at 37 °C for 16 hrs. 

Discussion 

Pattern formation is a ubiquitous phenomenon in nature. We identified a novel concentric 

banding pattern formed by E. coli mutants when swimming in LB soft agar at 37˚C. While it is 

unclear if bacterial pattern formation has a biological advantage or relevance, these patterns 

provide a clear framework for investigation into mechanisms of cell-to-cell communication, 

signal transduction, and physical interactions. The relative ease with which bacterial pattern 

formation can be manipulated and studied has made it a tractable model for understanding 

morphogenesis and scaling in higher organisms154.  Additionally, bacterial patterns can be 

engineered as a result of synthetic gene circuits. For example, Liu et al. created synthetic genetic 

circuits that placed E. coli motility under the control of cell density. At low cell densities, the 

engineered cells are motile, and at high cell density, motility is repressed. This synthetic circuit 
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results in concentric bands of low and high cell density under conditions similar to those used for 

our motility assays (10 mL LB soft agar, 37˚C)156. 

Several E. coli mutants were identified that exhibited a banded swimming motility 

behavior. The formation of this banding pattern was media dependent and only formed in LB 

soft agar. Temperature also had a large impact on the band formation, with formation being more 

prominent at 37 °C. Decreases in temperature reduces the number of bands and widens their 

appearance, until at lower temperatures (25-30 °C) where the bands are not visible and 

chemotaxis rings have reappeared. We demonstrated that the pattern formation does not require 

either the luxS-mediated or the qseBC-mediated quorum sensing systems individually; however, 

a functional Tsr is required for the banding to occur. Tsr mediates chemotaxis towards serine, 

suggesting that detection of serine is required for banding pattern formation.   

Based on our data, we propose the following model: the disruption of lrhA results in cells 

being motile at 37 °C, allowing cells to swim out from the inoculating site. The cell front is 

consistently moving outwards towards higher concentrations of serine, a strong 

chemoattractant114. The cell front rapidly consumes serine and secretes an unidentified molecule. 

The concentration of this unidentified molecule increases above a critical threshold at a point 

behind the cell front. Above the critical threshold, the serine-depleted cells behind the front begin 

to respond to the secreted molecule, which results in lowered motility and an increase in cellular 

aggregation. This type of behavior in response to a secreted molecule has been reported 

previously for E. coli mutants121. These cells continue to divide and aggregate, resulting in the 

formation of a band. The cell front, unaffected by the cells behind it, continues moving outward, 

and the pattern repeats. At lower temperatures the growth rate is slower, and therefore the rate of 

serine depletion and subsequent secretion of the molecule by the cell front is reduced, preventing 
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cell aggregation and band formation. Additionally, hypermotility results in loss of pattern 

formation because the increase in swimming speed reduces cell aggregation. The ability of high 

concentrations of serine to suppress the pattern formation suggests that serine is available in such 

excess it never drops below a critical threshold.   

Future Directions 

In this study, we identified one chemoreceptor, Tsr, that was required for pattern 

formation. Additionally, screening of other Keio mutants revealed that disruption of tar and trg 

also resulted in pattern formation, but it is unclear at this point if these mutations are causative 

for pattern formation. Further work is needed to determine what role other chemoreceptors have 

in the pattern formation. Assaying the effects of single chemoreceptor deletions on pattern 

formation in this background will determine if additional receptors are required for pattern 

formation.  

Because of the coordination required for pattern formation, we investigated the role of 

quorum sensing systems in the pattern formation. We found that neither the luxS-mediated 

quorum sensing system or the qseBC-mediated quorum sensing system was individually required 

for the banding pattern to form; however, there is a possibility of compensation occurring 

between the two systems. To rule out this possibility, a triple mutant (∆luxS ∆qseB ∆kch) will be 

generated to confirm the results that quorum sensing is dispensable for pattern formation.  

Several additional E. coli mutants were identified that were capable of pattern formation, 

but in at least one strain (∆kch), we demonstrated that the motility at 37 °C and the pattern 

formation was not due to the primary deletion. WGS revealed additional mutations in the 

background of the ∆kch strain, one of which was a novel IS insertion event that disrupted a 
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transcription factor, lrhA. LrhA is a global regulator that negatively regulates motility157, and we 

believe that this disruption is what allows motility observed at 37 °C. However, it is unclear if 

the patterning is directly due to the lrhA disruption, a combination of one or both of the SNPs 

and the lrhA disruption, or if the pattern represents some underlying process that is typically not 

observed due to the variation in temperature and media. Transduction of the identified mutations 

in the ∆kch strain into clean strains will be done to determine if any of these mutations 

individually are sufficient to cause pattern formation. All pattern-forming mutants identified will 

be screened to determine if they share any of these background mutations to determine if a 

common mutation(s) is present.  



CHAPTER V  

CONCLUSIONS 

Summary 

The goal of this work was to characterize the functional role of a bacterial K+ 

channel, Kch, from Escherichia coli. Although Kch was the first identified prokaryotic 

K+ channel, it remains a poorly understood protein. Initially, deletion of kch was 

reported to have no obvious phenotypes13,14,65, and subsequent studies focused on over-

expression methods to confirm its role as a K+ channel and to gain insight into its 

function65. However, these studies were plagued by conflicting results, making it 

difficult to interpret results. Attempts at demonstrating that kch was a functional K+ 

channel through electrophysiology experiments were unsuccessful with both kch and a 

chimeric Shaker:Kch channel14. A gain-of-function screen provided the best evidence 

that kch functions in vivo as a K+-selective channel.  Kuo et al. mutagenized kch and 

screened for K+ channels with gain-of-function mutations, resulting in channels with a 

higher open probability. These channel mutants all had mutations that likely affected the 

RCK regulatory domain and were able to grow on normal LB but unable to grow in the 

presence of high K+ (200 mM). This growth defect was rescued only by suppressor 

mutations that likely resulted in collapse of the K+ selectivity filter, arguing that Kch 

does transport K+ in vivo68.  

 While results indicated that kch forms a functional K+ channel in vivo, its 

importance to E. coli physiology was also debated. A modified transposon screen 

91 
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identified kch as a gene required for growth in rich media at 37 °C but dispensable for 

growth in rich media at cold temperatures or in minimal media at 37 °C69. However, a 

kch null mutant was obtained at 37 °C in rich media during the generation of the Keio 

collection, marking kch as non-essential under these conditions78. Despite numerous 

attempts and various methodologies, kch function remained cryptic and poorly 

understood. The purpose of this dissertation was to expand on the limited understanding 

of bacterial K+ channels by using novel approaches to determine the physiological 

function of kch in E. coli.  

The first novel approach was the use of protein co-evolution information to 

predict protein interaction partners of Kch. Given that more traditional methods for 

functional characterization had failed to yield significant insight in Kch function, the use 

of our computational approach could predict which proteins in the cell Kch interacted 

with. By compiling a list of predicted interaction partners, we were able to draw 

connections between the relatively uncharacterized protein, Kch, and proteins with 

known functions. These connections revealed biological processes that Kch was 

predicted to interact with and allowed us to design targeted experiments to better 

understand the in vivo function of Kch. One of the benefits of our approach was that it 

allowed us to evaluate a large number of proteins with Kch, as many commonly used 

methods for PPI detection are difficult to scale significantly130. Using a sequence-based 

analysis allows for predictions of interactions that are transient or even conditionally-

specific. For example, some protein-protein interactions may be heavily influenced by 

environment factors and only occur in certain growth stages, media, temperatures, pH, 
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etc. These types of interactions may be missed by more conventional methods of PPI 

detection, as it is not typically feasible to perform large-scale PPI screens in numerous 

media under a variety of conditions. Additionally, our computational approach could 

detect other types of interactions, such as transient, low-affinity, or functional 

interactions, that would also tend to be missed by other methods that require interactions 

be high affinity and stable in order to be detected.  

The large-scale co-evolution analysis predicted that Kch interacted with proteins 

involved in oxidation-reduction reactions, cell wall synthesis, and metabolism. With this 

information, we were able to design specific experiments to observe phenotypes with a 

kch null strain. Given the predicted interactions with metabolic proteins, we first asked if 

loss of kch resulted in alterations to growth in a variety of media. We found that ∆kch 

strains exhibited a slight growth defect upon entering mid-exponential phase. This defect 

could be rescued by the addition of a fermentable carbon source, glucose, but not by the 

addition of an oxidizable carbon source, succinate, indicating that the loss of the channel 

was altering aerobic respiration. However, after replacement of the Δkch with a 

functional channel, the defect persisted, leading to us perform whole genome sequencing 

to identify the additional mutations present in the background. We identified a point 

mutation in a gene called ubiH, a gene involved in biosynthesis of ubiquinone, the 

primary electron carrier in aerobic respiration. Kch was predicted to interact with a 

number of redox proteins, including proteins involved in ubiquinone biosynthesis, which 

have important roles in respiration and metabolism (Fig 9). In the Keio Δkch mutant 

(SDB2), the presence of the ubiHV223G mutation provides another line of evidence for a 
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functional link between the channel and aerobic respiration. The ability to connect Kch 

to proteins of known function through the co-evolution analysis allowed us to ask more 

focused questions to gain insight into Kch function.  

Another novel approach was the use of CRISPR interference (CRISPRi) coupled 

with a fluorescent ΔΨ-monitoring dye and high-resolution time-lapse microscopy to 

monitor ΔΨ changes during depletion of kch. CRISPRi-targeting of a gene results in 

transcriptional repression, leading to depletion of the protein over time. This method has 

been useful in probing how cells respond to suboptimal levels of essential proteins124. 

Depletion of kch resulted in an increased intracellular ThT signal within 30 minutes of 

CRISPRi induction and persisted throughout the length of the experiment. The goal of 

this work was to better characterize the in vivo function of Kch, and this approach 

allowed us to demonstrate that at least one function of Kch is to respond to and to 

modulate ΔΨ fluctuations during rapid growth. Collectively the approaches taken during 

this work have successfully identified a novel function for Kch in ΔΨ potential 

modulation and demonstrated that Kch function is critical for adaptation to conditions 

that lead to rapid growth.  

Our result that Kch modulates membrane potential in E. coli adds to a growing 

body of evidence that this may be a conserved function for viral and bacterial K+ 

channels. For example, in Chlorella viruses, the Kcv K+ channel was demonstrated to be 

important for depolarization of the host cell, which aids in the delivery of viral DNA into 

the host158. Additionally, deletion of the Ca2+-dependent K+ channel, SynCaK, in the 

Cyanobacterium Synechocystic sp. PCC 6803 resulted in a reduction of membrane 
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potential (depolarization), indicating that the K+ channel is involved in modulation of 

membrane potential. Recent work in B. subtilis biofilms revealed that the YugO K+ 

channel coordinates long-range signaling of metabolic stress within a bacterial 

community140. YugO-mediated release of K+ also results in attraction and incorporation 

of motile cells of diverse species into the biofilm. This attraction appears to be via 

modulation of the membrane potential in the motile cells, which orients swimming 

towards the biofilm 13,14. Current progress in the functional characterization of microbial 

K+ channels has revealed novel roles in modulation of membrane potential for these 

proteins in a diverse number of organisms, indicating that this may be a conserved 

function. The studies performed in B. subtilis biofilms also demonstrated that bacterial 

K+ channels are involved in both intercellular and interspecies communication. These 

results highlight how functional characterization of bacterial ion channels reveals novel 

insights into microbial physiology and communication.  

Discussion 

The results of this work revealed a functional connection between the K+ 

channel, Kch, and aerobic respiration. Whole genome sequencing of the Keio Δkch 

strain revealed a potential suppressor mutation in ubiHV223G. As a critical component of 

the ubiquinone biosynthesis process, ubiH has an important role in aerobic ETC, a vital 

component of energy production in Prokaryotes. We demonstrated that this mutation 

reduces the overall efficiency of the aerobic ETC and propose the following model based 

on our results:  
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In E. coli, under aerobic conditions, the electron donors NADH and FADH2 are 

oxidized by NADH dehydrogenases (nuo, ndh) and Succinate dehydrogenase 

respectively.  The electrons are then transferred to ubiquinone, the aerobic electron 

carrier molecule present in the membrane. Ubiquinol, the reduced form of ubiquinone, 

then transfers electrons to terminal oxidases (cyo, cyd), which in turn donate electrons to 

the terminal electron acceptor, O2, reducing it to H2O. The flux of electrons from donors 

to O2 is accompanied by proton translocation across the membrane by several respiratory 

complexes (nuo, cyo, cyd)134,135. This movement of H+ across the membrane contributes 

to both the pH and ΔΨ gradients that comprise the total protonmotive force (PMF) of the 

cell. In bacteria, the PMF is used to power many critical cellular functions such as ATP 

production, flagellar rotation, protein translocation, and nutrient uptake.  

During rapid growth, electron flux through ETC is high and the accompanying 

H+ translocation generates strong gradients, where the inside of the cell would be highly 

negative. Our data indicate that one physiological role for Kch is to rapidly modulate ΔΨ 

to prevent extreme hyperpolarization.  In the background of the Keio Δkch strain 

(SDB2), the ubiHV223G mutation resulted in lowered concentrations of available 

ubiquinone and reducing electron flux and subsequent H+ transfer, resulting in a 

depolarized state. While reducing energy production may seem counter-intuitive, the 

reduction in efficiency prevents extreme membrane potential fluctuations that the cell is 

unable to respond to in the absence of the channel.  

This model is supported by CRISPRi results where knockdown of kch in optimal 

growth conditions (rich media at 37 °C) resulted in growth defects, consistent with our 
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hypothesis that channel function is critical under these conditions. However, under 

conditions where we anticipated that Kch function was less critical to the cell, such as 

rich media at a lower growth temperature or minimal media at 37 °C, we see that kch 

depletion does not have significantly altered growth. Based on these results, we propose 

the Kch function is important to allow for adaptation to conditions that promote rapid 

growth. Kch modulation of ΔΨ during rapid growth prevents the cell from encountering 

situations of prolonged extreme hyperpolarization that would be detrimental.   

It remains unclear why a highly negative charge would be lethal. The electrical 

and pH gradients generated by the ETC contributes to the overall PMF; therefore, it is 

possible that extreme changes in the PMF could disrupt the many cellular processes that 

depend on PMF. Additionally, extremes in membrane charge could lead to a break down 

in membrane integrity, causing irreversible damage. Further work will be needed to 

determine why severe hyperpolarization is detrimental.  

Future Directions 

Based on our characterization of Δkch strain from the Keio collection (SDB2), 

we hypothesized that the ubiHV223G mutation was a suppressor of the channel deletion. 

To determine if suppressors always arise in response to loss of the channel, we generated 

independent Δkch strains and submitted them for whole genome sequencing. Every 

independent channel knockout also carried a single mutation in a gene called nemA 

(nemAY359N). NemA is N-ethylmaleimide (NEM) reductase that is involved in 

intracellular redox maintenance by reduction of a variety of electrophiles, including 
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quinones40,45. However, sequencing of our parental strain revealed that it also carried this 

nemAY359N mutation along with another SNP in a gene called wrbA (wrbAG96V). WrbA is 

an FMN-dependent NAD(P)H:oxidoreductase that is thought to help maintain proper 

intracellular redox by quinone detoxification134,135 The presence of these mutations in 

our parental strain complicates the interpretation of the independent Δkch strains. We 

anticipated finding suppressor mutations in the background of the independent Δkch 

strains, but it is unclear if the nemAY359N SNP represents a suppressor since it is also 

present in the parental background. There are several possible explanations for these 

results.  

First, the presence of nemAY359N is enough to compensate for the loss of the 

channel. It is possible that the presence of SNPs in the redox genes, wrbA and nemA, 

creates an environment where additional mutations are not required to allow for viability 

of Δkch. To test this possibility, I will obtain a BW25113 strain that contains wild-type 

wrbA and nemA genes and to compare to my parental strain, SDB1, using the DiOC2(3) 

mV assay. If the nemAY359N and the wrbAG96V mutations are affecting the cell in a manner 

similar to the ubiHV223G, then I would expect that the SDB1 strain would be depolarized 

compared to a BW25113 strain with wild-type wrbA and nemA genes. Additionally, I 

will generate independent Δkch isolates in the background of BW25113 with wild-type 

wrbA and nemA genes and submit them for whole genome sequencing. If the SDB1 

strain is not depolarized compared to other BW25113 strains and new independent Δkch 

isolates have no other mutations in the background, then these results would indicate that 
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while modulation of ΔΨ by Kch is important to the cell, loss of Kch can be compensated 

for in other ways.  

Monitoring of ΔΨ during kch depletion during growth in rich, defined glucose 

media revealed an increase in intracellular ThT signal after the addition of inducer to the 

chamber. In some cells, there are morphology changes (Fig 23, bottom panel) associated 

with the kch knockdown, where the cell elongates without dividing. Preliminary 

experiments with kch depletion in rich, defined succinate media show a similar response, 

but is also associated with cell elongation (Fig 35).  

Figure 35.Depletion of kch in succinate media 

Kch knockdown in EZ rich, defined succinate media results in hyperpolarization  

Base media was EZ rich, defined glucose + appropriate antibiotics + 10 μM ThT. 

Inducer (aTc) was added to a final concentration of 2 μM.  

Growth on succinate requires aerobic respiration, potentially exacerbating the 

effects of the kch depletion. I will repeat these experiments with the control CRISPRi 
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strains (dCas9 only and dCas9 + araC sgRNA) to confirm their behavior under these 

conditions. I will track single cells to determine if there is a correlation between the 

intracellular ThT signal and cell length. One possible explanation for a cell elongation 

phenotype during loss of Kch is that the severe hyperpolarized state of the cell interferes 

with assembly of cell wall division machinery. An approach to determine this would be 

to perform the CRISPRi-mediated kch knockdown in the presence of fluorescently 

tagged cell division proteins. I would expect to see delocalized signal from the cell 

division proteins that would correlate with severe hyperpolarization events following the 

addition of inducer.  

Based on results from this work, Kch is important for ΔΨ modulation during 

rapid growth. Given the importance of this function and the strong conservation of K+ 

channels in prokaryotes, it would be interesting to explore the role of bacterial K+ 

channels in pathogens. There have been implications for the importance of K+ transport 

systems in a variety of pathogens159, but the role of K+ channels has not been widely 

explored. A transposon screen in Enterohemorrhagic E. coli (EHEC), revealed that 

disruption of kch resulted in impaired adherence to intestinal epithelial cells in vitro, 

suggesting the channel may be important for virulence159. A clean Δkch strain would be 

generated in an E. coli O157:H7 background and submitted for whole genome 

sequencing to confirm the genotype. The fitness costs associated with loss of the channel 

would be determined via ΔΨ measurements and fitness competitions against the parental 

strain. Fitness competitions would be performed by labeling the parental and the Δkch 

strains with different selectable markers. Equivalent starting cell numbers of each 
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labeled strain would be used to inoculate fresh LB broth. The co-culture would able 

allowed to grow for ~4.5 hours or until stationary phase is reached, at which point the 

culture would be serially diluted and plated onto selective media to enumerate the 

number of each strain in the co-culture. This would be repeated in a variety of media 

with supplementation with carbon sources such as glucose (fermentable) and succinate 

(non-fermentable) to see how this altered the ability of the Δkch strain to compete with 

the parental strain.  

 Disruption of kch has been reported to interfere with adherence to intestinal 

epithelial cells. In order to determine if disruption of Kch alters the ability to adhere an 

efface epithelial cells in vivo, I propose utilizing a C. elegans infection model. C. 

elegans has been used successfully as a model system to assess bacterial colonization 

and infection160,161. Parental and Δkch strains will be assessed for their ability to both 

colonize and cause infection in this model. Because C. elegans is transparent, the strains 

can be labeled with fluorescent proteins such as mcherry and GFP and bacterial 

colonization can be quantified microscopically. Additionally, the ability of the parental 

or Δkch strain to adhere to and to colonize C. elegans after 48 hours of exposure will be 

quantified by washing worms with buffer to remove extracellular bacteria followed by a 

treatment with buffer and 1% Triton to disrupt the worms160. The worm lysates will be 

serially diluted and plated onto LB agar to determine CFUs. The ability of the parental 

and Δkch strains to cause disease will be assessed by determining the viability of C. 

elegans over a period of 10 days post-infection. Viability of C. elegans fed a non-

pathogenic E. coli strain (MG1655) will be assessed as a control.  
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APPENDIX A 

CUSTOM MATLAB SCRIPTS FOR GO ANALYSIS 

All custom functions below werre executable in Matlab version 2009b.  

function run_goanalysis(prot_list,prot_info_file,mat_file, term_list, term_def_list) 

%Example: run_goanalysis('high_partners.txt', 'updated_ml_prot_annot.txt', 

'init_gSCA_1100_complete.mat', 'sb_goslim_list.txt', 'sb_goterm_def_list.txt') 

%  Input: prot_list = list of OMA Ids for protein to be analyzed 

%         annot_file = annotation file 

%         mat_file = nxn matrix file 

%         term_list = list of go slim terms 

%         term_def_list = list of go slim term definitions 

% 

%Takes a list of proteins to be analyzed and runs them through the GO 

%Analysis.  

% 

%Author: Sarah Beagle 7/2/14 

names =load_goterms(prot_list);  

[annot, rowheaders]=load_prot_annot(prot_info_file);     

for i=1:length(names) 

    val=names(i,:);  

    char_val=char(val);  

    new_array=sort_by_pval_mat_zscore(mat_file, prot_info_file, char_val);  

    [ min_threshold_struct, max_threshold_struct, min_mapped_goterms_freq, 

max_mapped_goterms_freq, all_mapped_goterms_freq, sorted_pvalues 

]=thresholds_zscore(term_list, term_def_list, new_array, 1.0e-20, 1.0e-6, char_val); 

end 

end 
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function [ annot, rowheaders ] = load_prot_annot( prot_info_file ) 

%Usage: [annot, rowheaders]=load_prot_annot(prot_info_file) 

%   Example: [annot, rowheaders]=load_prot_annot('updated_ml_prot_annot.txt') 

% 

% Reads in a tab-delimited file containing annotation information for each 

% protein in the dataset, and stores info in a structure array (one 

% field/column) 

% Input : tab-delimited file containing annotation information  

% Output : Structure array containing annotation info (one field/column in 

%          the text file)  

%          rowheaders : names of the structure fields  

% author: Sarah Beagle -- 5/26/14 

fid=fopen(prot_info_file);  

c_array=textscan(fid, '%s %s %s %s %s %s %s %s %s', 'delimiter', '\t', 'HeaderLines', 1); 

%Skips the first line of headers 

fclose(fid);  

%celldisp(c_array) 

%Converting cell array to structure array %% 

rowheaders={'OMA_Number', 'Protein_Name', 'UNIPROT_Identifier', 

'UNIPROT_Accession_Number', 'OMA_Annotation', 'UNIPROT_Annotation', 

'Protein_Family','GO_Slim_Term', 'PDB_ID'}; 

annot=cell2struct(c_array, rowheaders, 2);  

end 
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function[mapped_goterms_total_counts,mapped_GOterm_freq,protcounts]=go_slim_ 

counts_zscore( sb_goslim_terms, mapped_GOterms, prot_name, title_name ) 

%  

% example usage: [mapped_goterms_total_counts, 

protcounts]=go_slim_counts('sb_goslim_list.txt', annot.GO_Slim_Term,'ECOLI_91') 

% Determines the number of number of proteins mapped to each GO Slim term. 

% 

% Inputs: sb_goslim_terms = list of terms in the go slim file used for the mapping 

% 

%         mapped_terms = Ex. annot.GO_Slim_Term, field of a structure array that 

contains the mapping info for each protein  

%         

%         prot_name = OMA identifier ('ECOLI_1', 'ECOLI_2', etc) 

% 

%         title_name = string that will allow for unique naming of graphs 

%         and output files, (i.e. 'All', 'minthreshold', etc) 

% Outputs: mapped_goterms_total_counts = matrix containing the counts of each term, 

ordered by the sb_goslim_terms list 

%          

%          mapped_GOterm_freq=vector containing the frequency of each GO term     

% 

%          protcounts = matrix containing the number of GO terms associated with each 

protein, ordered by annot file    

%         

%          - a tab-delimited text file containing the terms and their 

%            associated counts and frequencies 

%          - a bar graph of the goslim_counts 

%          - a histogram of protein counts   

%  

% author: Sarah Beagle--4/28/14  

% edited 5/7/14 to add graphs and counts for the #terms/protein 

% edited 6/4/14 adjusted an error in the input--now handles multiple GO 

% terms per protein (format GOterm1,GOterm2,GOterm3, etc). Added graph 

% annotation.  

%%reads list into cell array 

terms=load_goterms(sb_goslim_terms); 

%creates unique filename--adds date and time to name--processes to remove 

%"- and :" to create a valid filename 

%filename=sprintf('%s_sb_goslim_counts_zscore_%s_%s.txt', prot_name, title_name, 

datestr(now));  

%filename=(strrep(filename,'-','_'));  

%filename=(strrep(filename,':','_')); 
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%filename=(strrep(filename,' ','_')); 

%%counts the number of times a protein maps to a specific term 

%Check dimensions of the mapped_GOterm array and reformat if needed (needs 

%to be in a GO_Slim_Term: {25x1 cell}--added this because reassignment to a 

%new structure can spontaneously switch the original dimensions, which 

%breaks the function 

if(size(mapped_GOterms,2)>1) 

    mapped_GOterms=mapped_GOterms'; 

end     

%Determine the number of times each unique GO term occurrs in the mapped 

mapped_GOterms=regexprep(mapped_GOterms, '^"|"$', ''); % removes the "" that 

bracket some of the strings in the cell array 

mapped_GOterms=regexp(mapped_GOterms, ',', 'split');  % splits the string into 

individual GO terms at the comma delimiter 

for i=1:length(terms) 

   for j=1:length(mapped_GOterms) 

     val=terms{i}; 

     mapped_goterms_ind_count(j)=ismember(val, mapped_GOterms{j}); 

     mapped_goterms_total_counts(i,:)=sum(mapped_goterms_ind_count); 

   end 

end 

%Determine frequencies  

total_counts=sum(mapped_goterms_total_counts); %Determine total number of terms 

mapped (can be higher than the # of proteins in dataset as 1 prot can map to mult. terms) 

mapped_GOterm_freq=(mapped_goterms_total_counts./total_counts)*100; 

%Print text file containing the GO term, actual counts, and frequencies 

%fid=fopen(filename, 'W'); 

%fprintf(fid, 'GO_Term\tActual_Counts\tFrequencies\n');   

%for i=1:length(terms) 

% fprintf(fid,'%s\t%d\t%f\n', terms{i}, mapped_goterms_total_counts(i), 

mapped_GOterm_freq(i)); 

%end 

%fclose(fid);  

%create bar graph of go slim counts 

%Create unique filename to prevent overwriting 

filename2=sprintf('%s_sb_goslim_counts_zscore_%s_%s.png',prot_name,title_name,dat

estr(now));  
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filename2=(strrep(filename2,'-','_')); 

filename2=(strrep(filename2,':','_')); 

filename2=(strrep(filename2,' ','_')); 

%create a horizontal bar graph for easier reading of tick labels 

 figure('visible','off'); 

 barh(mapped_goterms_total_counts);  

% convert cell array containing GO terms to char array  

char_terms=char(terms); 

set(gca,'YTick', (1:33)); 

set(gca, 'YTickLabel', {char_terms}); 

xlabel('Percentage'); 

ylabel('GO terms'); 

name=sprintf('%s_%s_prot_parters_GO_terms',prot_name, title_name); 

title(name,'Interpreter', 'none'); 

print('-dpng', filename2) 

%counting the number of GO terms per protein and creating a histogram 

%can't use regexp_counts(i)=numel(regexpi(mapped_GOterms{i}, string)); 

%because regexp outs an empty 1x1 cell if there is no match and numel 

%counts the number of elements in a cell. So it will count non-matching 

%cells as a 1 and skew the distribution. 

string = 'GO:[0-9]+';  

for i=1:size(mapped_GOterms,1) 

    regexp_counts{i}=regexpi(mapped_GOterms{i}, string); 

end 

for i=1:length(regexp_counts) 

  if (isempty(regexp_counts{i}{1}==1)) 

    protcounts(i)=0; 

  else 

    protcounts(i)=numel(regexp_counts{i}); 

  end 

end 

max_val=max(protcounts(:)); 

nbins=max_val+1; 

hist(protcounts,nbins,'visible','off'); 

xlabel('Number of Terms');  

ylabel('Number of Proteins'); 

name2=sprintf('%s_Number of GO terms per protein_%s', prot_name,title_name); 

title(name2,'Interpreter', 'none'); 

filename3=sprintf('%s_prot_counts_%s_%s.png', prot_name,title_name, datestr(now)); 

filename3=(strrep(filename3,'-','_'));  
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filename3=(strrep(filename3,':','_')); 

filename3=(strrep(filename3,' ','_')); 

print('-dpng', filename3) 

end 
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function [zscores, goterm_std, goterm_avg, no_of_draws,total_pool_size]  = 

significance_zscores(sb_goslim_terms, max_threshold_struct,new_array, 

max_threshold_goterms_counts,  no_of_cycles) 

% Usage:  

%   Example : [output]=significance(annot, new_array, 1000) 

% Input: annot = structure array containing annotation info for all 

%        proteins in the dataset  

%    

%        new_array = structure array containing annotation info for just 

%        protein partners of the protein of interest (output from sort_by_pval_mat.m) 

%         

%        max_threshold_struct = new struct array that contains the annotation 

%        info for all interaction partners greater than/equal to the max 

%        threshold p value 

% 

%        max_threshold_goterm_counts = all_mapped_goterms_freq = frequencies for 

each term for all 

%        evaluated proteins ("background"--ordered by the sb_goslim_terms file) 

% 

%        number_of_cycles = number of times to select random datasets (ie 

%        10, 100, 1000) 

% 

% Output: zscores = vector containing the significance values for each GO term 

%         group, ordered by sb_goslim_terms  

%         

%         goterm_std = vector containing the std values calculcated from  

%         the random trials for each GO term group, ordered by sb_goslim_terms  

%         

%         goterm_avg = vector containing the averages calculated from the 

%         random trials for each GO term group, ordered by sb_goslim_terms 

%         

%         no_of_draws = number of proteins that are randomly sampled, 

%         determined by the number of alignments that are equal/greater 

%         than the max threshold cutoff 

% 

%         total_pool_size = the number of proteins that no_of_draws is 

%         being sampled from--determined by the total number of evaluated 

%         alignments 

% 

% Author: Sarah Beagle--6/9/14 

% edited 8/7/14 --corrected issue with zscore calculation--was taking the 

% actual counts value from the "all" dataset, but it should have been from 

% the "max" dataset.  

% Edited 9/2/14 -- to report no_of_draws/total_pool_size for printing in  
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% thresholds_zscore.m 

%%reads list into cell array 

terms = load_goterms(sb_goslim_terms); 

%Getting frequencies 

actual_counts=max_threshold_goterms_counts; %% actual counts for each term (all 

protein partners that could be evaluated) 

%F_post=max_threshold_goterms_freq; %% freqs for each term after an imposed pval 

threshold 

%Selecting random datasets  

%tic  

no_of_draws=size(max_threshold_struct.OMA_Number,2); 

total_pool_size=size(new_array.OMA_Number,2);  

rand_data=cell(no_of_draws, no_of_cycles); 

rand_vals_ind=zeros(no_of_draws, no_of_cycles); 

%rand_goterms = cell(no_of_draws, no_of_cycles); 

rand_goterms_counts=zeros(length(terms), no_of_cycles); 

for i=1:no_of_cycles 

 rand_data(:,i)=randsample(new_array.OMA_Number, no_of_draws); 

end 

%finding the indices of randomly selected proteins and getting the GO annotation 

%for s=1:no_of_cycles 

for i=1:size(rand_data,2) 

  for j =1:size(rand_data,1) 

   val=rand_data(j,i); 

   rand_vals_ind(j,i)=find(strcmp( val,new_array.OMA_Number));  

   rand_goterms{j,i}=new_array.GO_Slim_Term(rand_vals_ind(j,i));  

   rand_goterms_mat(j,i)=[rand_goterms{j,i}]'; 

   rand_goterms_mat(j,i)=regexp(rand_goterms_mat(j,i),',', 'split'); 

   rand_goterms_mat2{j,i}=regexprep(rand_goterms_mat{j,i}, '^"|"$', ''); 

  end 

end   

%Calculate GO distribution/round 

for i=1:length(rand_goterms_mat2) 

    temp_str=cat(2,rand_goterms_mat2{:,i}); %converts the row from a cell array of cells 

to a cell array of strings 

    for j=1:length(terms) 

        val=terms{j};  

        rand_goterm_counts(j,i)=numel(find(strcmp(val, temp_str))); 
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    end 

end     

% total_counts=sum(mapped_goterms_totcounts); 

%toc 

goterm_avg=mean(rand_goterm_counts, 2); 

goterm_std=std(rand_goterm_counts,0,2);  

%Calculating sig term 

zscores=zeros(size(terms,1),1); 

for i=1:length(terms) 

   zscores(i,:)=(actual_counts(i,:)-goterm_avg(i,:))/goterm_std(i,:); 

end    

end 
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function new_array=sort_by_pval_mat( pval_matrix_matfile, annot_file, prot_name ) 

%Usage: sort_by_pval_mat(pval_matrix, annot, prot_name) 

% Example : new_array=sort_by_pval_mat('init_gSCA.mat', 

'updated_ml_prot_annot.txt', 'ECOLI_91');  

%  

%   Inputs: pval_matrix_matfile = nxn matrix containing the following:  

% 

%               1)p_value_mat = 2D matrix(1717x1717x2) that contains the  

%                  pos p values (1st) and the pert p values (2nd) 

% 

%               2)order_of_aln = vector containing the actual protein order  

%                 (protein names were randomized to hopefully prevent bias) 

%

%           annot_file = tab-delimited text file containing protein annotation info 

%           prot_name = OMA identifier of the protein of interest 

% 

%   Outputs: new_array=structure array containing only the annotation info  

%            for the protein partners that were able to be evaluated 

% 

%            Text file containing a list of protein partners (just the 

%            OMA number i.e. 973 instead of ECOLI_973) 

%

% text file with the annotation information for all interaction 

% partners plus an additional column for the p-values,sorted by 

% p value and filtered to remove alignments with errors  

%  

%  Author: Sarah Beagle 5/4/14 (May the fourth be with you!!!)  

%   

%%%%%%  Edited to take in init_gSCA.mat as input instead of the output of the 

%  compilation.m script. %%%% 

% EDITED 6/6/14--Includes corrected go_slim_counts.m function  

% EDITED 7/9/14--Added the load_prot_annot function to reduce number of 

% lines required to run the GO analysis. Also added the protein of interest 

% (prot_name) to the new_array to facilitate reporting the GO slim terms 

% that prot_name maps to in the final graph.  

% Edited 9/3/14--Now handles proteins which don't have any evaluated 

% alignments (all error codes) 

%Load protein annotation information  

[annot, rowheaders] = load_prot_annot(annot_file); 

% Load pval_matrix.mat file 

   load(pval_matrix_matfile); 
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% Find the TOTMI order of proteins in the matrix 

   for i=1:size(annot.OMA_Number,1) 

     temp=annot.OMA_Number{i,:}; 

     temp=temp(7:end);  

     temp=str2num(temp); 

     totmi_prot_ind(i)=find(order_of_aln == temp); 

   end 

%Find the protein of interest in annotation file and matrix  

prot_name_annot_ind=find(strcmp(annot.OMA_Number, prot_name)); 

prot_name_matrix_ind=totmi_prot_ind(prot_name_annot_ind); 

%creating max_p_value matrix. Compares the pos pval matrix to the pert  

%value matrix, if the pos pval > pert pval, a 1 (true) is placed in that  

%element in the gt_matrix. If pos pval < pert pval a 0 (false) is recorded. 

%The gt_matrix is looped over--every position where a 0 is recorded, the 

%value is retrieved from that location in the pert pval matrix, and every 

%position with a 1 recorded the value is obtained from the pos pval matrix. 

%Cases where the pos pval = pert pval (typically error codes), a 0 will be 

%recorded and the max pval will be obtained from the pert pval matrix.  

%This is faster than looping through each element, comparing them, and 

%writing the larger value to a new matrix.  

max_pval_matrix=zeros(1717,1717,1);  

gt_matrix=(p_value_mat(:,:,1) > p_value_mat(:,:,2)); 

%tic 

for i=1:size(gt_matrix,1) 

 for j=1:size(gt_matrix,2) 

     if(gt_matrix(i,j,1) == 0) 

        max_pval_matrix(i,j,1) = p_value_mat(i,j,2); 

     else 

        max_pval_matrix(i,j,1) = p_value_mat(i,j,1); 

     end; 

  end; 

end;  

%toc 

%Getting p values for all interaction partners of protein of interest 

int_partners_maxpvals=max_pval_matrix(prot_name_matrix_ind,:); 

%Sort interaction partners by max p value (descending order) 

%Find and eliminate alignments that weren't able to be evaluated(NaN error 

%code)  
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[nan_sorted_int_maxpval nan_sorted_int_maxpval_ind]=sort(int_partners_maxpvals, 

'descend'); 

nan_temp_sorted_vals = isnan(nan_sorted_int_maxpval); %returns 1 for all elements 

that equal NaN 

nan_errors=sum(nan_temp_sorted_vals == 1); %returns the number of elements that == 

NaN 

nan_filtered_int_maxpvals=nan_sorted_int_maxpval(nan_errors+1:end); %removes 

NaN values from sorting 

nan_filtered_int_maxpval_ind=nan_sorted_int_maxpval_ind(nan_errors+1:end);%remo

ves NaN value indices from sorting 

%Removing names of alignments that had NaN errors 

nan_sorted_order_of_aln=order_of_aln(nan_sorted_int_maxpval_ind); 

nan_filtered_order_of_aln=nan_sorted_order_of_aln(nan_errors+1:end); 

%Finding and removing all alignments associated with various error codes 

[error_sorted_int_maxpval 

error_sorted_int_maxpval_ind]=sort(nan_filtered_int_maxpvals,'ascend'); 

errors=sum(error_sorted_int_maxpval < 0); %all error codes are negative 

final_filtered_int_maxpvals=error_sorted_int_maxpval(errors+1:end); 

final_filtered_int_maxpval_ind=error_sorted_int_maxpval_ind(errors+1:end); 

%removing names of alignments that had errors 

error_sorted_order_of_aln=nan_filtered_order_of_aln(error_sorted_int_maxpval_ind); 

final_filtered_order_of_aln=error_sorted_order_of_aln(errors+1:end); 

%Finding the interaction partners that were analyzed in annotation file 

%Checks to ensure that there alignments analyzed--if 

%final_filtered_order_of_aln is empty then it prints a txt file with the 

%prot_name, saying that that particular protein has no analyzable 

%alignments. It then returns new_array without any fields (essentially 

%an empty structure), and exits the function.  

 TF=isempty(final_filtered_order_of_aln); 

   if (TF == 1) 

     filename_error=sprintf('%s_thresholds_zscore_%s.txt',prot_name, datestr(now)); 

     filename_error=(strrep(filename_error,'-','_')); 

     filename_error=(strrep(filename_error,':','_')); 

     filename_error=(strrep(filename_error,' ','_')); 

     %figure('Position', [100 100 1250 1100], 'visible','off'); 

     fid=fopen(filename_error, 'w'); 
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     fprintf(fid, 'Evaluated Protein Partners of %s\n', prot_name); 

     fprintf(fid,'%s has no evaluated alignments!', prot_name);  

     fclose(fid);  

     new_array=struct;  

     fprintf('%s has no evaluated alignments!', prot_name); 

     return   

   else 

     header='ECOLI_'; 

     for i=1:length(final_filtered_order_of_aln)   

     val=num2str(final_filtered_order_of_aln(i)); 

     str=strcat(header, val);  

     int_annot_ind(i)=find(strcmp(annot.OMA_Number, str)); 

   end 

end 

%incorporating prot_name into new_array 

int_annot_ind(end+1)=prot_name_annot_ind; 

final_filtered_int_maxpvals(end+1)=1;  

%Creating new array containing annotation info for evaluated protein 

%partners (additional column for p values) 

new_array=struct;  

for i=1:length(int_annot_ind) 

    val=int_annot_ind(i); 

    new_array.OMA_Number{:,i}=annot.OMA_Number{val}; 

    new_array.Protein_Name{:,i}=annot.Protein_Name{val}; 

    new_array.UNIPROT_Identifier{:,i}=annot.UNIPROT_Identifier{val}; 

new_array.UNIPROT_Accession_Number{:,i}=annot.UNIPROT_Accession_Number{v

al};  

    new_array.OMA_Annotation{:,i}=annot.OMA_Annotation{val};  

    new_array.UNIPROT_Annotation{:,i}=annot.UNIPROT_Annotation{val}; 

    new_array.Protein_Family{:,i}=annot.Protein_Family{val};  

    new_array.GO_Slim_Term{:,i}=annot.GO_Slim_Term{val};  

    new_array.Max_Pval{:,i}=final_filtered_int_maxpvals(i);  

end    

%Determining GO counts; 

[mapped_goterms_total_counts, protcounts]=go_slim_counts_zscore('sb_goslim_list.txt', 

new_array.GO_Slim_Term, prot_name, 'all'); 
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%Create unique filename for printing to text file-adds date and time to name to prevent 

any potential overwriting--processes to remove 

%"- and :" to create a valid filename for fopen to write to  

filename=sprintf('%s_prot_partners_annot_info_%s.txt',prot_name, datestr(now)); 

filename=(strrep(filename,'-','_'));  

filename=(strrep(filename,':','_')); 

filename=(strrep(filename,' ','_')); 

%Create and write annotation information to text file 

fid=fopen(filename, 'w'); 

fprintf(fid,'OMA_Number\tProtein_Name\tUNIPROT_Identifier\tUNIPROT_Acesssion

_Number\tOMA_Annotation\tUNIPROT_Annotation\tProtein_Family\tGO_Slim_Term\

tMax_P_Value\n');  

for i=1:length(int_annot_ind) 

  val=int_annot_ind(i); 

  fprintf(fid, '%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%d\n', annot.OMA_Number{val}, 

annot.Protein_Name{val}, annot.UNIPROT_Identifier{val}, 

annot.UNIPROT_Accession_Number{val}, annot.OMA_Annotation{val}, 

annot.UNIPROT_Annotation{val}, 

annot.Protein_Family{val},annot.GO_Slim_Term{val},final_filtered_int_maxpvals(i)); 

end 

fclose(fid); 

%Create and write full alignment information to text file, ordered in 

%ascending p values and filtered to remove the alignments with errors 

filename2=sprintf('%s_evaluated_prot_partners_%s.txt', prot_name, datestr(now)); 

filename2=(strrep(filename2,'-','_')); 

filename2=(strrep(filename2,':','_')); 

filename2=(strrep(filename2,' ','_')); 

fid=fopen(filename2, 'w'); 

fprintf(fid, 'Evaluated Protein Partners of %s\n', prot_name); 

%for row=1:size(final_filtered_order_of_aln,2)  

 %  fprintf(fid, '%s\n', final_filtered_order_of_aln{row,:});  

%end 

dlmwrite(filename2,final_filtered_order_of_aln, '-append', 'delimiter', '\n'); 

fclose(fid);  

end 
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function [ min_threshold_struct, max_threshold_struct, min_mapped_goterms_freq, 

max_mapped_goterms_freq, all_mapped_goterms_freq, sorted_pvalues ] = 

thresholds_zscore(sb_goslim_terms,sb_goslim_defs, 

new_array,min_threshold,max_threshold,prot_name ) 

%usage = [threshold1_array, threshold2_array] = 

thresholds(prot_info_list,sb_goslim_terms) 

% Example: [output_args 

]=thresholds('ECOLI_91_interaction_partners_08_May_2014_17_17_21.txt') 

%  

%   Sorts potential interaction partners (IPs) by p-value. Creates two subsets 

%   of IPs based on the values given by min_threshold(less stringent) and 

%   max_threshold(most stringent). Compares the two subsets to the whole 

%   dataset, and calculates how significant the GO term distribution at the 

%   most stringent threshold is compared to random.  

% 

% Input : sb_goslim_terms = text file containing GO slim terms 

% 

%         sb_goslim_defs = text file containing GO slim term definitions   

% 

%         new_array = structure array containing annot info and p values 

%         for only protein partners that were able to be evaluated - output 

%         from sort_by_pval_mat.m function 

% 

%         min_threshold = first cutoff value (less stringent), given in the following format : 

1.0e-20 

% 

%         max_threshold = second cutoff value (more stringent), given in the following 

format : 1.0e-01 

% 

%         prot_name = OMA identifier ('ECOLI_1', 'ECOLI_2') for use in the figure/file 

names 

% 

% Output : min_threshold_struct = new struct array that contains the annotation 

%          info for all interaction partners greater then/equal to the min 

%          threshold p value  

%         

%          max_threshold_struct = new struct array that contains the annotation 

%          info for all interaction partners greater than/equal to the max 

%          threshold p value 

%

%          all_mapped_goterms_counts = frequencies for each term for all 

%          evaluated proteins ("background") 

% 

%          min_mapped_goterms_freq = frequencies for each term at the min threshold 
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% 

%          max_mapped_goterms_freq = frequencies for each terms at the max 

%          threshold 

% 

% Author: Sarah Beagle 6/6/14 

% Edited: 7/10/14 -- added subplot to display GO Slim categories that the 

% protein of interest mapped to for easier interpretation of graph  

% Edited 9/2/14--added counts for the number of proteins drawn(size of the 

% max_threshold structure--"strongest pvalue alignments)/the total 

% number of proteins available to draw from (number of total evaluated 

% alignments 

% Edited 9/3/14--Now handles proteins which don't have any 

% evaluated alignments (all error codes) 

%%reads list into cell array 

terms=load_goterms('sb_goslim_list.txt'); 

term_defs=load_goterms('sb_goterm_def_list.txt'); 

%Check new_array to see if it is empty--if array is empty, then the protein 

%being analyzed didn't have any joint alignments that could be evaluated. 

%The function will return the normal output as empty structures/arrays and 

%exit. No figures will be generated.  

TF=isempty(fieldnames(new_array));  

if (TF==1) 

    min_threshold_struct=struct;  

    max_threshold_struct=struct;  

    min_mapped_goterms_freq=zeros(1,1); 

    max_mapped_goterms_freq=zeros(1,1); 

 all_mapped_goterms_freq=zeros(1,1); 

    sorted_pvalues=zeros(1,1); 

 return 

end 

%Converts the P value field of the struct. array to a matrix (find function is not easily 

used with structured arrays) 

max_pval_mat = cell2mat(new_array.Max_Pval)'; 

%Determine the GO term distribution for all protein partners 

[all_mapped_goterms_total_counts, all_mapped_goterms_freq, 

all_protcounts]=go_slim_counts_zscore('sb_goslim_list.txt',new_array.GO_Slim_Term,

prot_name,'all_proteins');  

%Select all interaction partners with p values equal to/greater than the min 

%threshold and create a new struct array containing the prot info for those selected 
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min_threshold_ind=find(max_pval_mat >= min_threshold); 

%tic 

    min_threshold_struct=struct; 

for i=1:length(min_threshold_ind)   

    val=min_threshold_ind(i); 

    min_threshold_struct.OMA_Number{i}=new_array.OMA_Number{val}; 

    min_threshold_struct.Protein_Number{i}=new_array.Protein_Name{val}; 

    min_threshold_struct.UNIPROT_Identifier{i}=new_array.UNIPROT_Identifier{val}; 

min_threshold_struct.UNIPROT_Accession_Number{i}=new_array.UNIPROT_Accessi

on_Number{val}; 

    min_threshold_struct.OMA_Annotation{i}=new_array.OMA_Annotation{val}; 

min_threshold_struct.UNIPROT_Annotation{i}=new_array.UNIPROT_Annotation{val

}; 

    min_threshold_struct.Protein_Family{i}=new_array.Protein_Family{val}; 

    min_threshold_struct.GO_Slim_Term{i}=new_array.GO_Slim_Term{val}; 

    min_threshold_struct.Max_Pval{i}=new_array.Max_Pval{val}; 

end 

%toc 

%Determine the GO term distribution for all protein partners with p values 

%>= the min_threshold 

[min_mapped_goterms_total_counts,min_mapped_goterms_freq, 

min_protcounts]=go_slim_counts_zscore('sb_goslim_list.txt', 

min_threshold_struct.GO_Slim_Term,prot_name,'min_threshold');  

%Select all interaction partners with p values equal to/greater than the 

%max threshold and create a new struct array containing the prot info for those selected 

max_threshold_ind=find(max_pval_mat >= max_threshold);  

max_threshold_struct=struct;  

for i=1:length(max_threshold_ind) 

    val=min_threshold_ind(i); 

    max_threshold_struct.OMA_Number{i}=new_array.OMA_Number{val}; 

    max_threshold_struct.Protein_Number{i}=new_array.Protein_Name{val}; 

max_threshold_struct.UNIPROT_Identifier{i}=new_array.UNIPROT_Identifier{val}; 

max_threshold_struct.UNIPROT_Accession_Number{i}=new_array.UNIPROT_Access

ion_Number{val}; 

    max_threshold_struct.OMA_Annotation{i}=new_array.OMA_Annotation{val}; 
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max_threshold_struct.UNIPROT_Annotation{i}=new_array.UNIPROT_Annotation{val

}; 

    max_threshold_struct.Protein_Family{i}=new_array.Protein_Family{val}; 

    max_threshold_struct.GO_Slim_Term{i}=new_array.GO_Slim_Term{val}; 

    max_threshold_struct.Max_Pval{i}=new_array.Max_Pval{val}; 

end 

[max_mapped_goterms_total_counts,max_mapped_goterms_freq, 

max_protcounts]=go_slim_counts_zscore('sb_goslim_list.txt', 

max_threshold_struct.GO_Slim_Term,prot_name,'max_threshold'); 

%Determining significance for each group 

[zscores, goterm_std, goterm_avg, no_of_draws, 

total_pool_size]=significance_zscores('sb_goslim_list.txt', max_threshold_struct, 

new_array, max_mapped_goterms_total_counts, 1000);   

%Grouping the three datasets together 

%All counts are ordered by the input GO slim list so indices will be the 

%same. Sort the counts/freqs for the whole dataset by the significance values 

%and then find the indices of the sorted data. The indices were used to pull the 

%corresponding counts/freqs from the appropriate min/max threshold arrays. 

%This will allow for plotting a graph containing all three datasets.   

%order of the columns in matrices: 1) Whole dataset 2) min thresh 3) max 

%thresh 

%set all NaN values to zero 

zscores(isnan(zscores))=0;  

%Sort counts and frequencies by significance values 

[sorted_zscores, sorted_zscores_ind]=sort(zscores, 'descend'); 

%sorted_goterm_std = goterm_std(sorted_sigs_ind);  

sorted_gocounts_mat=zeros(length(terms),3);  

sorted_gocount_freq_mat=zeros(length(terms),3); 

sorted_terms=terms(sorted_zscores_ind);  

sorted_term_defs=term_defs(sorted_zscores_ind);  

sorted_goterm_std=goterm_std(sorted_zscores_ind);  

sorted_goterm_avg=goterm_avg(sorted_zscores_ind);  

 for j=1:length(sorted_zscores_ind) 

   val2=sorted_zscores_ind(j);  

   sorted_gocounts_mat(j,1)=all_mapped_goterms_total_counts(val2); 

   sorted_gocount_freq_mat(j,1)=all_mapped_goterms_freq(val2);  
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   sorted_gocounts_mat(j,2)=min_mapped_goterms_total_counts(val2); 

   sorted_gocount_freq_mat(j,2)=min_mapped_goterms_freq(val2); 

   sorted_gocounts_mat(j,3)=max_mapped_goterms_total_counts(val2); 

   sorted_gocount_freq_mat(j,3)=max_mapped_goterms_freq(val2); 

 end 

 %Converting zscores to one-tailed pvalues 

 sorted_pvalues=zeros(length(sorted_zscores),1); 

 for i =1:length(sorted_pvalues) 

     sorted_pvalues(i,:)=normcdf(-abs(sorted_zscores(i)),sorted_goterm_avg(i), 

sorted_goterm_std(i));  

 end    

%Creating a unique filename  

filename=sprintf('%s_thresholds_zscore_%s_%s.png',prot_name, datestr(now)); 

filename=(strrep(filename,'-','_'));  

filename=(strrep(filename,':','_')); 

filename=(strrep(filename,' ','_')); 

%Determining which GO Slim terms the protein of interest maps to  

prot_name_ind=find(strcmp(new_array.OMA_Number, prot_name)); 

prot_name_goterms=new_array.GO_Slim_Term(prot_name_ind); 

prot_name_goterms=regexprep(prot_name_goterms, '^"|"$', ''); 

prot_name_goterms=regexp(prot_name_goterms, ',', 'split');  % splits the string into 

individual GO terms at the comma delimiter 

%Checks to make sure the last cell doesn't just contain '' marks--removes last cell if it 

does  

quotes= '';  

YN=strcmp(prot_name_goterms{:}(end), quotes);  

if (YN==1) 

    prot_name_goterms{:}(end) = []; 

end  

for i=1:length(prot_name_goterms{:}) 

    is_a_match= ~cellfun(@isempty, regexp(terms, prot_name_goterms{:}(i), 'match')); 

    vector_of_indices(i) = find(is_a_match); 

end     

prot_name_termdefs=term_defs(vector_of_indices); 

%Graphing frequency data  

fighandle=figure('Position', [100 100 1250 1100], 'visible','off'); 
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subplot('Position', [0.075 0.45 0.75 0.525]);  

width=.99;  

bar(sorted_gocount_freq_mat, width, 'histc') 

hold on;  

x=1:33; 

y=sorted_gocount_freq_mat(:,3);  

%errorbar(x+0.54,y,sorted_goterm_std,'k.');  

hold off;  

char_sorted_goterm_def=char(sorted_term_defs); 

set(gca, 'XTick', (1:33));  

%set(gca, 'YTick', 1:2:25);  

set(gca, 'XTickLabel', {char_sorted_goterm_def}); 

rotateXLabels(gca(), 90); 

xlabel('GO terms');  

ylabel('Frequency');  

titlename=sprintf('%s_GO term distribution for various thresholds (%d/%d)', prot_name, 

no_of_draws, total_pool_size);  

title(titlename, 'Interpreter', 'none');  

figlegend=legend('All','min thresh','max thresh'); 

%figlegend2=legend(ah,'%d/%d',no_of_draws, total_pool_size, 'location', 'NorthWest');  

%Graphing significance values  

subplot('Position', [0.075 0.05 0.75 0.15]); 

bar(sorted_zscores);  

set(gca, 'XTick', (1:33));  

ylabel('zscore value');  

xlabel('GO Terms');  

title('Zscore Values for GO Terms');  

set(gcf, 'PaperPositionMode', 'auto');  

%Inserting textbox with the GO Slim categories that protein of interest 

%mapped to for comparision with bar graph  

subplot('Position', [0.84 0.85 0.15 0.12]); 

hold on 

titlename2=sprintf('%s mapped GOSlim categories' , prot_name); 

title(titlename2, 'Interpreter', 'none', 'FontSize', 10 ); 

title(titlename2, 'Interpreter', 'none', 'FontSize', 10 ); 

annotation('textbox',[0.84 0.85 0.15 0.12],... 

'String', prot_name_termdefs,'FontSize', 12); 

set(gca, 'xtick', []) 

set(gca, 'ytick', []) 

hold off 

print('-dpng', filename); 
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%creates unique filename--adds date and time to name--processes to remove 

%"- and :" to create a valid filename 

filename2=sprintf('%s_zscore_gotermstats_%s.txt', prot_name, datestr(now)); 

filename2=(strrep(filename2,'-','_')); 

filename2=(strrep(filename2,':','_')); 

filename2=(strrep(filename2,' ','_')); 

%Print text file containing the GO term, actual counts, and frequencies 

fid=fopen(filename2, 'W'); 

fprintf(fid, 

'GO_Term\tGO_Term_Def\tAll_Actual_Counts\tAll_Frequencies\tMax_Actual_Counts\

tMax_All_Frequencies\tAverages\tStD\tZscore\tP_values\n');   

for i=1:length(sorted_terms) 

 fprintf(fid,'%s\t%s\t%d\t%f\t%d\t%f\t%d\t%f\t%f\t%f\n', sorted_terms{i}, 

sorted_term_defs{i}, sorted_gocounts_mat(i,1), sorted_gocount_freq_mat(i,1), 

sorted_gocounts_mat(i,3),sorted_gocount_freq_mat(i,3),sorted_goterm_avg(i),sorted_go

term_std(i),sorted_zscores(i), sorted_pvalues(i));     

end 

fclose(fid);  

end 




