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ABSTRACT 

 

The primary public health concern related to fecal waste contamination in recreational 

waters is exposure to pathogens. Noroviruses, a viral pathogen, are a leading cause of illness 

outbreaks in recreational waters and presence of Campylobacter spp. has risen globally. Primary 

contact recreation including body immersion, head immersion, and splashes to the face increase 

exposure to contaminated water at coastal recreational beaches. In addition, the public is 

vulnerable to pathogenic illnesses during and after extreme weather events since flood waters are 

contaminated with pathogens. 

A forecasting model framework was developed and assessed against the persistence 

method of beach management currently used at Sylvan Beach. Forecast model’s sensitivity was 

at least 10% better than the persistence method for 12 of 15 models. All models, except the 2015 

recreational season, had specificity greater than 80%. 87% of models were determined to be 

greater than 30% sensitivity. Based on a threefold assessment criterion, 71% of models passed 

validation. The use of forecasting models can reduce management uncertainty at Sylvan Beach. 

 Site-specific QMRA was performed to estimate total probability of illness for scenarios 

based on the population exposed, microbial source, recreational period, type of recreation, and 

ambient or elevated microbial conditions. Total probability of median illness was highest for 

primary contact during the recreational beach season. The 100% human source loads consistently 

accounted for highest illness probability. Predicted probability of illness for child scenarios was 

marginally elevated compared to adult scenarios suggesting risk may not differ between the two 

populations. Lastly, elevated scenarios had higher overall total illness probabilities compared to 
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ambient scenarios. However, the human load sources did not differ substantially between the 

ambient and elevated scenarios.  

Potential health risk during extreme weather was estimated utilizing forecasting and 

QMAR models. The results suggest that overall total probability of illness is higher for event 

scenarios compared to expected typically ambient conditions. Concentrations of ENT were 

shown to be elevated during wet years compared to dry years. This could have negative 

repercussions on human and environmental health as the region is expected to be impacted 

intensifying rain events. 
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CHAPTER I                                                                                                                      

INTRODUCTION AND LITERATURE REVIEW 

Introduction 

The Lower Galveston Bay Watershed, predominantly situated in the Texas Gulf Coastal 

zone, encompasses a portion of the nine county Metropolitan Statistical Area (MSA) known as the 

Houston-Galveston region. The Houston-Galveston MSA is home to 6,490,180 (U.S. Census 

2010) people mostly residing within the City of Houston; the fourth largest U.S. city by population. 

The Galveston Bay Watershed contains nine percent of the state’s land area - including the Dallas-

Fort Worth metroplex - which drains to Galveston Bay, the largest Texas estuary. The western and 

northern shores of Galveston Bay are highly developed while the eastern watersheds encompass 

rural agricultural lands and small municipalities.  

Galveston Bay harbors productive oystering and seafood fisheries that account for one-

third of the state’s commercial fishing revenue (Lester and Gonzalez 2011). Based on the 2014 

Texas Integrated Report of Surface Water Quality (formerly Texas Water Quality Inventory and 

303(d) List) of impaired waterbodies, 39% of stream segments in the Lower Galveston Bay 

Watershed are impaired for contact recreation due to elevated levels of bacterial indicators (Figure 

1). Portions of nine Galveston Bay segments are currently closed for direct to market oyster 

harvesting because contamination conditions pose a significant risk to public health (TCEQ 2014). 
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Figure 1 Lower Galveston Bay Watershed contact recreation and oyster waters impairments. 

 

 

 

In U.S. surface waters, outdoor recreational activities such as swimming, boating, and 

fishing have been estimated to account for four billion recreational contact events annually 

(DeFlorio-Barker et al. 2018). The popularity of water-related outdoor recreation, in part due to 
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increased ecotourism, is an economic driver for coastal and lakeside communities supporting 

jobs and commerce (Houston 2013). However, an estimated ninety million contact events result 

in the contraction of a gastrointestinal, respiratory, ear, eye, or skin related infection or illness 

ranging from mild to severe (DeFlorio-Barker et al. 2018). Indirect exposure, such as secondary 

contact recreation, also contributes to an elevated risk of gastrointestinal illness (Dorevitch et al. 

2012). The primary human health concern related to fecal waste contamination in recreational 

waters is exposure to pathogens, such as bacteria (e.g., Campylobacter and Salmonella), protozoa 

(e.g., Cryptosporidium and Giardia), and viruses (e.g., noroviruses and adenoviruses) (Castro-

Hermida et al. 2009, Gibson 2014, Hellein et al. 2011, Sinclair et al. 2009).  

High concentrations of pathogens in surface water where recreational activity occurs has 

significant economic implications (DeFlorio-Barker et al. 2017, Johnson et al. 2008, Machado 

and Mourato 2002, Rabinovici et al. 2004, Ralston et al. 2011, Remoundou and Koundouri 2009, 

Shuval 2003), as well as detrimental consequences to public health (Dorevitch et al. 2012, Given 

et al. 2006, Ralston et al. 2011, Schwab 2007). Waterborne pathogen infections incurred by 

recreationists results in an estimated $2.2 to $3.7 billion encumbrance per year in national health 

care costs (DeFlorio-Barker et al. 2018). Furthermore, the number of direct exposure events 

resulting in illness at U.S. beaches is estimated to be greater than five million costing nearly 

$300 million per year (Ralston et al. 2011). 

The Beaches Environmental Assessment and Coastal Health Act of 2000 (BEACH Act) 

amended the Clean Water Act (CWA) to require pathogen and pathogen indicator monitoring, 

the establishment of associated criteria for contact recreation, and development of state beach 

monitoring programs to reduce public exposure to microorganism contamination in coastal 

recreational waters (U.S. Congress 2000). According to the U.S. Environmental Protection 
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Agency (U.S. EPA), enterococci (ENT) are the preferred indicator bacterium in marine and 

estuarine coastal waters used for recreation (U.S. EPA 2012). Samples of ENT are interpreted to 

determine the level of public health risk from fecal waste contamination (U.S. EPA 2012). The 

Texas General Land Office’s (TGLO) Beach Watch Program has installed 164 routine 

monitoring stations covering 62 recreational beaches along the Texas coast (Figure 2) (TGLO 

2018). Public contamination advisories are issued for beaches when fecal indicator bacteria 

(FIB) are detected at concentrations higher than the recommend single sample maximum primary 

contact criterion of 104 MPN/100 mL (TGLO 2018). The persistence method of beach 

management which associates public health risk to the concentration of the last collected ENT 

sample is most utilized for recreational beach management (U.S. EPA 2007).  

 

Figure 2 Texas Beach Watch Program at Sylvan Beach Park. 
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However, public contamination advisories, based on the persistence method, are 

reactionary opposed to preventative due to a one to several day lag time between sample 

collection, processing, and reporting (Brooks et al. 2016, U.S. EPA 1997). At Texas beaches, 

FIB samples are collected once per week during the recreational season and bi-weekly the 

remainder of the year (exception for Spring Break when additional samples are collected). If a 

sample exceeds the recreational beach standard, daily sampling is conducted until a non-

exceedance is detected (TGLO 2018). However, differences in FIB concentrations at daily and 

weekly time intervals are large and highly variable (Boehm 2007); indicating the need for a less 

patchy temporal framework to guide beach management and public health decisions. A 

preemptive framework implemented prior to exposure could better serve illness prevention by 

advising the public to not recreate when beach water quality has a higher probability of 

impairment. 

Fecal Indictor Bacteria 

FIB are utilized to monitor the level of potential public health risk in recreational 

waterbodies because they are known to be associated with pathogens that can cause gastrointestinal 

disease, respiratory, ear, eye, or skin related illness (Byappanahalli et al. 2012). Indicator bacteria 

such as ENT are an effective alternative monitoring strategy because they are enteric in nature, 

residing in the gastrointestinal tract of warm-blooded animals, and therefore are capable of alerting 

resource managers that associated harmful pathogens may be present in the environment 

(Byappanahalli et al. 2012). Since the 2000 adoption of Escherichia coli (E. coli) and ENT in the 

Texas Administrative Code Title 30, Chapter 307, Texas Surface Water Quality Standards, these 

bacterial indicators have been favored over conventional fecal coliforms because they were shown 

to more strongly correlate with and have a higher sensitivity to potential pathogens (McElyea 
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2003). The Texas Commission on Environmental Quality (TCEQ) began modern FIB (E. coli and 

ENT) monitoring during the early 2000’s. In 2003, the TGLO Texas Beach Watch Program was 

launched to provide targeted recreational beach bacteria monitoring (ENT) along the Texas coast 

and in select coastal bays (TGLO 2018). In 2018, the State of Texas single sample primary 

recreation contact criterion was updated from 104 MPN/100 mL to 130 MPN/100 mL (Texas 

Administrative Code, Title 30, Chapter 307 §307.7). 

Enterococci 

A large body of work has been generated describing environmental sources, fate, transport 

(Byappanahalli et al. 2012, Gao et al. 2013, Hack et al. 2003), and virulence (Betancourt et al. 

2014, Jett et al. 1994, Molale and Bezuidenhout 2016) of the genus ENT. There are five distinct 

groups of Gram-positive Enterococcus spp. consisting of E. faecalis, E. faecium, E. avium, E. 

gallinarum, and E. cecorum (Byappanahalli et al. 2012). The E. faecalis and E. faecium species 

groups are of concern to recreational public health because they are often the major ENT species 

detected in surface water (Byappanahalli et al. 2012, Hack et al. 2003). Their tendency to be found 

in surface waters places E. faecalis and E. faecium in the direct path of humans recreating in 

Galveston Bay and surrounding watersheds. However, ENT are thought to decrease in 

concentration or deactivate the longer they are outside of their animal host. 

A primary environmental ENT inactivation pathway is ultraviolet (UV) light exposure 

(Kay et al. 2005a, Maraccini et al. 2016). UV light is absorbed by ENT DNA which renders ENT 

inactive, preventing replication (Byappanahalli et al. 2012, Fujioka et al. 1981, Sassoubre et al. 

2012). In addition, inactivation is a function of starvation, predation, competition, diurnal sag, 

seasonal variance, disinfection, and unfavorable physical and chemical water quality conditions 
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which can lead to reduced survival time of ENT in the environment (Byappanahalli et al. 2012, 

Rochelle-Newall et al. 2015).  

However, suspended solids (i.e. particles) in the water column provide shading and 

protection from sunlight for suspended as well as particle-attached bacteria (Anderson et al. 2005, 

Graml et al. 2014). Deposition of particle attached ENT to bottom sediments has been well 

documented (Fries et al. 2006). Bottom sediments are an important reservoir and source of ENT 

during storm events or other physical disturbances that cause their resuspension into the water 

column (Bai and Lung 2005, Fries et al. 2006, Yamahara et al. 2009). Presence of organic matter 

in the form of fecal waste is also thought to increase the rate of ENT survival in the marine 

environment (Byappanahalli et al. 2012). However, ENT are known to survive longer at lower 

salinities typical of estuarine and freshwater environments rather than at the average 35 ppt salinity 

of open ocean seawater (Anderson et al. 2005). 

ENT bacteria are not only indicators of potential health risk; they can cause infection. 

Most enterococcal infections are caused by Enterococci faecalis (80-90%) and a majority of the 

rest by Enterococcus faecium (Jett et al. 1994). This is a concern because E. faecalis and E. 

faecium can comprise a majority of the ENT community isolated in surface and waste water, 

20% and 63.5% respectively (Said et al. 2015). Direct human illnesses caused by ENT include 

urinary tract and abdominal infections, wound infections, gastrointestinal distress, and 

endocarditis (Arias and Murray 2012, Byappanahalli et al. 2012, Jett et al. 1994). Due to the 

ability of ENT to persist on the hands of health care workers, many of these infections are 

nosocomial. ENT are increasingly becoming more resistant to antibiotics (Arias and Murray 

2012, Macedo et al. 2011), making the presence of ENT and associated fecal waste in the 

estuarine environment a principle concern for contact recreational use (Ahmad et al. 2014, 
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Santiago-Rodriguez et al. 2013). Humans who were randomly assigned to bathe in ENT-

contaminated marine waters, reported an increase in gastrointestinal, respiratory, and skin 

illnesses when compared to non-bathers (Fleisher et al. 2010).  

Quantitative Microbial Risk Assessment 

Despite the ramifications of misidentifying risk, current beach management protocols do 

not effectively characterize pathogen based public health risk with the probability of contracting 

an illness. The implementation of a Quantitative Microbial Risk Assessment (QMRA) beach 

management approach could more effectively serve to estimate the public health risks related to 

specific pathogens resulting in enhanced management measure implementation and better 

protection of public health (Ashbolt et al. 2010, Olivieri et al. 2014). At its core, QMRA is a tool 

used to estimate risk associated with contracting an infection from a microorganism.  

More specifically, QMRA is a risk-based approach that can be applied to derive a risk 

probability of acquiring an illness or infection when recreating in pathogen impaired waterways 

by taking into consideration exposure duration and dose. The QMRA approach is commonly 

applied to determine primary contact recreation risk in recreational waters and can be used to 

determine site-specific risk-based water quality standards. The QMRA process can be attributed 

to four phases, including problem formulation, exposure assessment, dose response, and risk 

characterization. These processes combined can characterize the contamination source, 

determine a probability of swimming associated risk, and provide pathogen specific insight. 

These endpoints can more effectively inform beach and natural resource managers when making 

public health advisory decisions (Ashbolt et al. 2010).  

The first phase of the QMRA identifies and characterizes the hazard and pathogens of 

interest. It is common for risk managers to select a package of reference pathogens and the QMRA 
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might consist of multiple exposure pathways. Reference pathogens are typically used because they 

represent the worst-case scenario of infection. The second phase, exposure assessment, consists of 

determining the pathogen dose received by recreationists under a predetermined exposure scenario 

and subsequently determining the rate at which the dose is ingested. Phase three defines a dose 

response relationship per each reference pathogen selected in phase one. The dose response helps 

to define the exposure characteristics. The fourth and final phase serves to aggregate the tasks 

performed in the first three phases to determine risk characterization. Risk characterization 

provides an estimation of risk as total probability of infection. The beneficial and improved 

qualities of QMRA can be highlighted through an examination of relevant case studies.  

Kundu et al. (2013) applied QMRA to estimate the risk associated with environmental 

concentrations of adenovirus in a mixed-use coastal watershed. Despite the QMRA process 

requiring several assumptions to determine model variables, the authors were successful in 

determining that a QMRA framework can be applied to protect public health in recreational waters 

(Kundu et al. 2013).  Ashbolt et al. (2010) applied QMRA to describe its potential to provide beach 

managers with a higher level of detailed information to protect recreationists from fecal waste 

pollution. Betancourt et al. (2014) utilized QMRA to identify water-based recreation risks and 

pollution sources associated with Cryptosporidium and Giardia in tropical marine waters. This 

paper provided evidence that QMRA can be applied to better understand risk probabilities, 

distribution, and ecology of two specific waterborne pathogens associated with sewage 

(Betancourt et al. 2014). However, adequate pathogen monitoring data is rarely available to 

conduct a site specific QMRA; some studies have used ENT geometric mean criterion (35 

MPN/100 mL) as a static estimate of risk (Schoen and Ashbolt 2010, Soller et al. 2010b) while 

others coupled a randomized ENT concentration, ingestion rate, and exposure time to determine 
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the dose (Lim et al. 2017, Tseng and Jiang 2012) and used different fecal sources to calculate daily 

ENT geometric means across four recreational beaches. 

These are important findings because the results indicate that QMRA techniques inform 

management decisions such as prioritizing specific beaches for management measures 

implementation to reduce risk. Management of coastal systems where people are exposed to 

waterborne pathogens through recreation and consumption of commercial seafood could be 

improved by performing QMRA to mitigate risk and inform public health management. As coastal 

populations continue to grow, and climate change increases uncertainty, more accurate 

quantification of microbial risk will be required to ensure surface water quality is suitable for 

drinking and recreation.  

Study Site 

The study site is Sylvan Beach, a popular recreational beach park that offers swimming 

and fishing opportunities. The site is located on the northwest shore of Upper Galveston Bay in 

the urbanized North Bay Watershed (Figure 3). The watershed has a total area of 64.3 km2; as of 

2011 15.6 km2 (24%) of the watershed is impervious ground cover (Homer et al. 2012). Based on 

2010 Coastal-Change Assessment Program (C-CAP) land use data, 31.5 km2 (49%) of the 

watershed is developed land cover, 4.3 km2 (7%) remains forested, with 10.2 km2 (16%) of 

predominantly palustrine wetlands (NOAA 2010). The main stream segment, the only of 

significance, is the tidally influenced Little Cedar Bayou, which empties to Upper Galveston Bay, 

1.3 km from the study site. Based on the 2014 Texas Integrated Report, Little Cedar Bayou is not 

impaired for contact recreation. The North Bay Watershed is hydraulically connected to the 

Galveston Bay system which is hydrodynamically described as a shallow micro-tidal 

impoundment that is heavily influenced by wind and freshwater inflows from the Trinity and San 



 

11 

 

Jacinto Rivers (Rayson et al. 2015). The bay exhibits a high degree of temporal and spatially 

variable salinity; over a 5-year period from 2007 to 2012 salinity ranged from 15-35 psu at the 

Bolivar Peninsula inlet and from 0-30 psu in Trinity Bay (Rayson et al. 2015).  

 

 

 

Figure 3 Sylvan Beach Park North and South on Galveston Bay near Houston, Texas. 

 

 

 

 As part of the Beach Watch Program – two bacteriological monitoring stations are located 

at Sylvan Beach, one at the Northern and one at the Southern swim beaches (Figure 4). ENT 

(MPN/100 mL) are routinely monitored at North and South Sylvan Beach stations once per week 

during the recreational beach season (May to September) and bi-weekly throughout the remainder 

of the year. Samples are collected at a depth of 0.61 meters to best represent knee height; a common 
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depth recreationists may be exposed to pathogens (TGLO 2018). If an exceedance of the primary 

recreation contact standard (104 MPN/100 mL) is detected, monitoring is conducted daily until 

the ENT concentration falls below the criterion.  

 
 

 

Figure 4 Sylvan Beach North (above) and South (below) swim beaches where ENT samples are collected; 

A dog is present on the southern swim beach. 
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In the North Bay Watershed fecal waste contamination stems from two primary 

mechanisms known as nonpoint and point sources of pollution. Point sources directly release 

pathogens into receiving waterways of the watershed from Wastewater Treatment Facility 

(WWTF) effluents, sanitary sewer overflows, and boater waste discharge events. Nonpoint 

sources stem from indirect sources such as stormwater runoff containing pet, wildlife, and 

agricultural waste as well as malfunctioning on-site septic systems (OSSF). In the heavily 

industrial and residential North Bay Watershed, potential mechanisms for dispersion of 

pathogens include nonpoint sources of pollution, typically associated with the urban environment 

such as human (OSSF), wildlife (seagull), and domestic animals (dogs) (Figure 5). Most of the 

watershed is serviced by wastewater collection infrastructure therefore a limited number of 

OSSF are present which does not exceed 30 per square mile. Permitted WWTF outfalls are 

located within the watershed, which represent a potential point source of pollution.  
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Figure 5 Evidence of dog presence and seagulls at Sylvan Beach Park. 

 

 

 

The author conducted a site visit to Sylvan Beach Park on 01/08/2019; dogs and high 

concentrations of gulls were observed. At the study site dogs were observed on the beach, in the 

waters of the swim area, and in surrounding residential neighborhoods in proximity to the swim 

park. The neighborhoods are serviced by open vegetated roadside swales which is a concern 

because stormwater drainage systems can serve as conduits transporting nonpoint sources of 

fecal bacteria (Falbo et al. 2013). The direct presence of dogs at the study site is a concern 

because a source characterization study at a subtropical marine recreational swimming beach 

near Miami, Florida identified dogs to be the largest contributor of animal microbial load to 

beach waters (Wright et al. 2009). In addition, dog fecal events contribute substantially to beach 
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microbial load compared to birds; at an equivalent factor of one dog fecal event to 7,000 bird 

fecal events (Wright et al. 2009).  Furthermore, a microbial source tracking study conducted in a 

California coastal watershed concluded that dogs were a significant, yet manageable, source of 

fecal waste at a marine recreational beach (Ervin et al. 2014). 

In addition to dogs, common wildlife sighted in proximity to the beach, on the beach, and 

in near-shore waters within the swim zone includes a high concentration of seagulls. The 

presence of gulls at the beach degrades water quality due to the high density of FIB and potential 

pathogens contained in their fecal waste and a positive association between animal presence and 

increased FIB concentration (Converse et al. 2012, Fogarty et al. 2003, Shibata et al. 2010). The 

contribution of ENT, by groups of birds such as gulls and pigeons ranked second, to dogs, of six 

categories at a beach in Miami-Dade County, Florida. (Wright et al. 2009). 

The morning after the 01/08/2019 site visit two ENT samples were collected by the 

TGLO Beach Watch Program at Sylvan Beach Park North and South monitoring stations. The 

two samples resulted in exceedances of the primary contact recreation standard of 104 MPN/100 

mL, as reported by the Beach Watch Program. Rainfall had not occurred in the last four days 

prior to sample collection (on 01/05/2019 at 0.44 inches) indicating that localized sources likely 

have a bearing on the concentration of FIB and associated pathogens present in swim waters at 

Sylvan Beach. 

In the North Bay watershed, a WWTF discharges effluent via an external outfall to Little 

Cedar Bayou upstream from Sylvan Beach. Between 01/31/2016 to 04/30/2019 the facility 

released detectable concentrations of ENT with a daily maximum geometric mean of 6.7 and a 

daily average ranging from 1 to 5.8 MPN/100 mL (35 MPN/100 mL limit) (data obtained from 

EPA’s Enforcement Compliance History Online database (EPA ECHO)). In addition, the facility 
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has had at least one noncompliance violation for exceedance of the daily maximum ENT limit 

(104 MPN/ 100 mL) (EPA ECHO). 

Detectable concentrations of ENT are an indication that norovirus could be present 

because wastewater treatment process may imperfectly remove norovirus (Hewitt et al. 2011). 

Furthermore, viruses have a higher resistance than bacteria to secondary treatment (Garcia-

Aljaro et al. 2018). Although, norovirus is frequently detected in treated effluent, releases from 

raw or untreated wastewater pose substantial public health concerns (Eftim et al. 2017, Garcia-

Aljaro et al. 2018, Haramoto et al. 2018, Hewitt et al. 2011, Kitajima et al. 2014, Qiu et al. 

2015). Potential loads from human derived bather shedding is not a significant source of concern 

at Sylvan Beach because dogs and birds generate a higher microbial load even during crowded 

beach usage days (Zhu et al. 2011).  

Expected Results 

This dissertation research addresses one of the most pervasive coastal threats to humans 

and the environment (Quigg et al. 2009). Our understanding of waterborne pathogen 

contamination’s impacts to coastal resources, economies, and public health is evolving. This 

research seeks to contribute to the present state of knowledge by further developing an 

understanding of how extreme weather events affect human health risk and by associating human 

health to pathogen concentrations in the Galveston Bay system. This dissertation is expected to 

provide enhanced resilience planning insights while highlighting the need of reducing nonpoint 

and point source contributions of fecal waste.  

This research could have impacts beyond the local population and economy due to the 

export of commercial oyster fisheries catch and the large influx of tourists who visit the 

Houston-Galveston region on an annual basis. In addition, this project seeks to reduce the 
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vulnerability of coastal communities to natural hazards and extreme weather events with respect 

to pathogen distribution and human health. This dissertation is expected to provide resource 

managers with results to enhance the protection of human, environmental, and economic health 

within coastal regions.  
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CHAPTER II                                                                                                                              

IMPROVING TEMPORAL RESPONSE TO WATERBORNE PATHOGEN IMPAIRMENT IN 

A COASTAL ESTUARY 

Introduction 

To overcome challenges associated with the persistence method, the use of alternative 

management strategies such as forecasting models has increased (Brauwere et al. 2014). 

Forecasting models are a quick and cost-effective way to predict FIB concentrations when 

compared to time intensive direct monitoring (Brooks et al. 2013, Francy 2009, Gonzalez et al. 

2012, Gonzalez and Noble 2014, U.S. EPA 2007). Forecast models have been developed that 

outperform the persistence method of beach management (Brooks et al. 2013, Francy and Darner 

2007, Frick et al. 2008). Despite prevalence of risk, there is no FIB forecasting system in 

Galveston Bay, or the Texas coast, to inform recreationists of potential human health concerns 

prior to exposure with contaminated recreational waterways and beaches.  

The objective of this Chapter was to develop and assess the feasibility of applying a 

forecasting model that can outperform the persistence method of beach management at Sylvan 

Beach Park on Galveston Bay, Texas. To meet this objective, best fit regression models were 

identified by two variable selection techniques and integrated with multiple linear regression 

(MLR). A validation framework comprised of threefold assessment criteria was utilized to verify 

results and determine the practicality of implementing a beach management forecasting system at 

Sylvan Beach Park. 
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Methods 

Study Site 

The study site, Sylvan Beach Park, was selected based on the availability of continuous 

data sources, a seven-year historical record of bacteriological data, and because it is a popular 

recreational location that offers contact opportunities at a recreational swimming beach. The site 

is located on the northwest shore of Upper Galveston Bay in the urbanized North Bay Watershed 

(Figure 6). The watershed has a total area of 64.3 km2; as of 2011 15.6 km2 (24%) of the 

watershed is impervious ground cover (Homer et al. 2012). Based on 2010 Coastal-Change 

Assessment Program (C-CAP) land use data, 31.5 km2 (49%) of the watershed is developed land 

cover, 4.3 km2 (7%) remains forested, with 10.2 km2 (16%) of predominantly palustrine 

wetlands (NOAA 2010). The main stream segment is the tidally influenced Little Cedar Bayou 

which drains to Upper Galveston Bay, 1.3 km from Sylvan Beach Park. The North Bay 

Watershed is hydraulically connected to the Galveston Bay estuary which can be 

hydrodynamically described as a shallow micro-tidal estuary heavily influenced by wind and 

freshwater inflows from the Trinity and San Jacinto Rivers (Rayson et al. 2015). 
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Figure 6 Sylvan Beach Park and locations of monitoring gages used to acquire data for model 

development. 

 

 

 

Data Sources 

Historical bacteriological, meteorological, physiochemical water quality, and physical 

oceanographic data were obtained for the study period (01/01/2011-12/31/2017). Variables of 

interest were acquired from quality assured local, state, and federal data sources in proximity to 

Sylvan Beach (Figure 6). The TGLO Beach Watch Program database was queried for ENT 

(MPN/100 mL) at two monitoring stations, North and South Sylvan Beach monitoring stations 

(TGLO Beach Watch Program Manager, personal communication). The Texas Beach Watch 
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Program collects ENT samples at 0.6 meters (m) in depth to represent recreational contact at 

knee height and samples are enumerated using EPA method 1600 (TGLO 2018, U.S. EPA 2006). 

Wind direction (degree[º]), speed (meter per second [m/s]), and peak gust (m/s), atmospheric 

pressure (hectopascals [hPa]), air temperature (degree Celsius [°C]), water temperature (°C), 

conductivity (millisiemens per centimeter [mS/cm]), water level (m), tide prediction (m), and 

tide stage (high/low) were downloaded from the National Oceanographic and Atmospheric 

Association’s  (NOAA) Tides and Currents Morgan’s Point Station (8770613). The Harris 

County Flood Warning System Little Cedar Bayou at 8th Street gage provided daily 15-minute 

rainfall (millimeter [mm]). The daily regional clear sky ultraviolet index (UVI) archived during 

the solar noon hour for the City of Houston was downloaded from the National Weather Service 

(NWS). Lastly, solar radiation (langley per minute [ly/min]) was acquired from the TCEQ 

Houston Regional Office maintained Seabrook Friendship Park weather monitoring station (EPA 

site 482011050). Data processing, validation, and management was conducted in Microsoft 

Office Professional Excel ® 2016 prior to import into statistical software.  

Variable Computations 

Seven variables were generated from raw 15-minute rainfall data obtained from the 

Harris County Flood Warning System: 1, 2, 3, 5, and 7 total daily rainfall accumulation prior to 

day of ENT sample collection, number of prior days since last rain event (DSLR), and pre-

sample rainfall (total rainfall on sample day up to time of ENT collection). A categorical variable 

was created from solar noon UVI data by assigning Low, Moderate, High, Very High, and 

Extreme identifiers based on an interval scale (Farouk et al. 2012). A second binary categorical 

variable was assigned to records dependent on collection in the recreational (May-September) or 

non-recreational (October-April) beach season. A new variable consisting of estimated salinity 
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was generated from associated water temperature and conductivity based on a conductivity ratio 

to practical salinity conversion algorithm (Fofonoff and Millard 1983). In addition, two study 

variables were derived from TCEQ hourly solar radiation measured in ly/min: 1) maximum solar 

radiation on the day prior to ENT sample collection and 2) solar radiation related to time of ENT 

sample collection. Lastly, wind direction, wind speed, and gust speed from the NOAA Morgan’s 

Point monitoring station were utilized to generate two meteorological components containing 

four variables: 1) alongshore (A) wind/gusts and 2) offshore/onshore (O) wind/gusts. A 35° 

angle was utilized to represent the orientation of Sylvan Beach for the component calculations 

with D and S defined as direction and wind/gust speed, respectively (Cyterski et al. 2013): 

 

𝑊𝑖𝑛𝑑/𝐺𝑢𝑠𝑡 𝐴 = −𝑆 ∗ 𝑐𝑜𝑠𝑖𝑛𝑒 ((𝐷 − 35°) ∗
3.1416

180
) 

𝑊𝑖𝑛𝑑/𝐺𝑢𝑠𝑡 𝑂 = 𝑆 ∗ 𝑠𝑖𝑛𝑒 ((𝐷 − 35°) ∗
3.1416

180
) 

 

The remaining candidate variables not requiring computation were selected for analysis 

by pairing the closest data point (6-minute, 15-minute, or 1-hour time interval) to time of ENT 

sample collection. The reported procedures resulted in a study database containing 584 records 

and twenty-five candidate variables. 

Statistical Procedures 

The study database comprised of 584 records was developed for model building and 

statistical analysis. All statistical analysis was performed using JMP Pro 14.1.0. Prior to model 

development, candidate variables were determined to have linear relationships with the 

dependent variable (ENT) through a multivariate scatterplot matrix assessment. Records 

containing an observed value of zero for the dependent variable (ENT) along with candidate 
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variables NOAA wind speed and NOAA wind gust were logn (x+1) transformed (Bradshaw et al. 

2016, Telecha et al. 2009). Sea level pressure was logn transformed to reduce skewness. To 

determine interannual variability, seven years of historical ENT data were compared across 

groups using a nonparametric Kruskal-Wallis test with significance determined at 95% 

confidence (α=0.05). A Mann-Whitney test (95% confidence α=0.05) was performed to 

statistically investigate whether data between North and South monitoring stations could be 

utilized to generate one prediction output or if independent models per each station should be 

developed. Additional Mann-Whitney tests were performed to compare ENT across groups of 

recreational/non-recreational beach season and wet/dry sampling day. The number and percent of 

exceedances for each dataset were calculated based on the primary recreation contact criterion of 

104 MPN/100 mL. 

Model Building 

Dataset Creation 

It is known that optimum forecasting models can be achieved by limiting the temporal 

period of data used for calibration (Frick et al. 2008, Gonzalez et al. 2012) and by grouping 

based on bi-phase seasonal aggregations (Brooks et al. 2013, Francy and Darner 2007, Thoe et 

al. 2015). In addition, early results from this study suggested that bi-phase models can yield 

models with increased prediction performance and reduced error threshold. A bi-phase attribute 

was assigned to each record using the binary recreational/non-recreational categorical variable. 

The overall study database (584 records) was subdivided amongst recreational (347 records) and 

non-recreational (237 records) beach seasons. Datasets were further refined by creating annual 

bi-phase aggregations based on recreational and non-recreational beach season. The 

recreational/non-recreational identifier served as a proxy for separating seasonal influence of 
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varying meteorological, physiochemical, and oceanographic conditions on ENT abundance, at 

the study site, reducing inter-annual and sub-annual variability. The studies sub-annual datasets 

are representative of beach management best practice which bases forecasting models on rolling 

short term calibration periods to make near term FIB predictions (Frick et al. 2008). The 

restructuring of the overall database resulted in seventeen datasets for use in model calibration 

and validation. The overall model was calibrated with 71% (5 years) while 29% (2 years) of the 

study dataset was withheld for validation. 

Variable Selection 

To identify independent explanatory variables for inclusion in model development, 

stepwise regression and all best model variable selection procedures were compared. Prior to 

variable selection, candidate variables determined to be collinear were withheld from further 

assessment. The JMP stepwise regression platform enables evaluation of Forward Selection, 

Backward Elimination, and Mixed Effect directions. Multiple stopping rules for variable 

selection were considered for each direction. An F-test at p-value threshold of <0.25 (Mixed 

Effect only), minimum Bayesian Information Criterion (BIC), and minimum Akaike Information 

Criterion corrected (AICc) were applied as rules. The resultant best fit model for each direction, 

rule, and dataset were compared amongst themselves and against best fit models selected by the 

all best variable selection procedure.  

The generation of all best models was applied using a ten-term limit. The three best 

models with one to ten independent variables were evaluated. The best fit models were selected 

when adjusted R2 was maximized while AICc and RMSE were minimized. The adjusted R2 was 

utilized over R2 because this metric allows for cross-model comparison and does not inflate with 

an increased number of model terms. AICc was utilized for model selection because bias is 
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reduced providing an improved representation of model optimism compared to the classical AIC 

(Kletting and Glatting 2009, Murtaugh 2009). In addition, AICc is appropriate for models with 

limited sample sizes (Hurvich et al. 1998). RMSE is a valuable model selection criterion because 

it is representative of predictive performance. The all best model platform was determined to be 

optimal for selection of candidate variables because this procedure consistently resulted in 

equivalent or improved models compared to stepwise variable selection. These procedures 

allowed seventeen best fit models, representing overall, overall bi-phase, and annual bi-phase 

subsets, to be selected for inclusion in MLR. 

Multiple Linear Regression 

MLR was performed for each best fit model from overall, overall bi-phase 

recreational/non-recreational, and annual bi-phase recreational/non-recreational beach season 

subsets. The Variance Inflation Factor (VIF) provided a secondary screening for collinear terms. 

A VIF greater than ten indicated further evaluation was required (Belsley et al. 2005). If 

determined to be unacceptable the collinear term(s) were forced from the model based on highest 

VIF, lowest log worth, and least degree of significance. Variables with low log worth, non-

significant terms, or unrealistic representations of functional relationships with the dependent 

variable were also considered for exclusion. Once model terms were finalized, a twofold 

assessment was undertaken. First, regression diagnostics including adjusted R2 (goodness-of-fit), 

RMSE (predictive capability), and AICc (model optimism) were evaluated (Kletting and Glatting 

2009, Murtaugh 2009). Secondly, residual by predicted plots and residual normal quantile (Q-Q) 

plots were assessed to assure model assumptions were supported. In addition, actual by predicted 

plots provided graphical insight further illustrating the model’s predictive performance. Once 
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models were determined satisfactory MLR equations were used to compute predictions per each 

database record along with 95% prediction intervals for use in validation. 

Validation 

Several studies have advocated for the use of beach forecasting evaluation criteria 

frameworks consisting of specificity (%) (true negatives/observed and predicted ENT indicate a 

beach advisory should not be issued), sensitivity (%) (true positives/observed and predicted ENT 

indicate a beach advisory recommendation should be issued), and  total correct predictions (%) 

(sum of sensitivity and specificity divided by  total number of samples) (Brooks et al. 2016, 

Brooks et al. 2013, Francy 2009, Gonzalez et al. 2012, Telecha et al. 2009, Thoe et al. 2014, 

Thoe et al. 2015). Thoe et al. (2014), suggested a threefold assessment matrix to determine 

practicality of applying forecasting models in a beach management system: 1) model sensitivity 

greater than 30%, 2) model sensitivity 10% greater than the persistence method, and 3) model 

specificity above 80%. To determine model error, false positives (predicted ENT 

exceedance/observed ENT non-exceedance) and false negatives (predicted ENT non-

exceedance/observed ENT exceedance), are a frequently utilized. In order to derive validation 

criteria, observed ENT and predicted ENT values for the overall model validation period (29% - 

2 years) were cross-compared. Similarly, overall bi-phase models were validated by cross-

comparing predicted ENT and observed ENT values corresponding to recreational/non-

recreational records in the validation period. Predicted ENT values from annual bi-phase models 

were validated against observed ENT values from the subsequent year of data corresponding to 

the correct recreational/non-recreational period, except for the study year 2017 which utilized 

observed ENT 2016 records for hindcast validation. The indicators of validation success were 

calculated independently of calibration datasets used in model development. 
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To allow comparison between the current and proposed beach management strategies the 

persistence’s method sensitivity (%) was calculated for each study dataset by cross-comparing 

observed ENT with the subsequent sampling days observed ENT value. The average percent 

sensitivity for all persistence periods was 20% and the overall persistence model sensitivity was 

found to be 26%. Although, sensitivity of the persistence method at the study site tended to be 

lower than 30%, the sensitivity criterion of 30% was kept as a conservative estimate of forecast 

success. Specificity (%), total correct predictions (%), false positives (%), and false negatives 

(%), were also calculated based on the persistence method. Thirteen and fourteen samples were 

withheld from overall recreational and overall non-recreational validation computations, 

respectively, as a result of temporal breaks causing non-consecutive data points. 

Results 

Nonparametric 

A one-way analysis nonparametric Kruskal-Wallis test, significance determined at 95% 

confidence (α=0.05), was conducted to discern differences of ENT amongst sample years (Figure 

7). The Chi-Square Approximation rejected the null hypothesis that all group ENT medians are 

equal (p=<0.0001); triggering post hoc testing that utilized nonparametric comparisons for each 

year level under the Wilcoxon method. Ten levels of twenty-one were determined to be 

significantly different (α=0.05); sample years 2016 & 2011 (<0.0001), 2016 & 2012 (0.0001), 

2016 & 2013 (0.0007), 2016 & 2014 (<0.0001), 2015 & 2011 (0.0100), 2015 & 2012 (0.0173), 

2015 & 2013 (0.0356), 2015 & 2014 (0.0003), 2017 & 2014 (0.0074), and 2017 & 2016 

(0.0077). A one-way analysis Mann-Whitney test (95% confidence α=0.05) was applied to 

compared ENT concentration between North and South groups resulting in a failure to reject 

(p=0.6120) the null hypothesis that group means are equal. This result indicated that ENT data 
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from the two stations could be combined and utilized to generate one prediction output. A one-

way analysis Mann-Whitney test (95% confidence α=0.05) for ENT across recreational and non-

recreational beach seasons was performed. No difference in median concentrations of ENT was 

detected between the recreational and non-recreational beach seasons (p=0.1320). However, wet 

sampling days were determined to have greater ENT concentrations than dry sampling days 

(p=<0.0001) by an order of 1.65 to 2.97 (log10 MPN/100 mL) (α = 0.05).  

 

 

Figure 7 Boxplot of interannual ENT variability across seven study years at Sylvan Beach Park. Boxplots 

represent 25th, 50th (median), and 75th percentiles while whiskers are 0 (minimum) and 100th (maximum) 

percentiles of ENT concentration.  

 

 

Model Performance 

The best fit models resulted in the inclusion of five to ten terms. As expected, the overall 

model and overall bi-phase models performed poorly indicated by high RMSE, low adjusted R2, 
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and high AICc (Table 1). Due to an increase of sampling during the recreational season 

recreational models were calibrated with a higher number of records. However, an increased 

number of records was not associated with improved model performance. Model RMSE ranged 

from a minimum of 0.86 in the non-recreational period of 2017 to a maximum of 1.9 during the 

recreational season of 2011. Adjusted R2 peaked in the 2013 non-recreational model (0.84) and 

was the lowest in the 2017 recreational model (0.19). The models were able to explain between 

19% and 84% of ENT variance; the least amount of ENT variance was described by the overall 

models 21%, 23%, and 33%, except for the 2017 recreational period (19%). The 2011 non-

recreational model had the lowest AICc (105.75) while the overall model had the highest 

(1,663.23). However, all models were significant at 95% confidence (α=0.05). 
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Table 1 Regression diagnostics including RMSE, Adjusted r2, AICc, Prob>F, and the number of records 

(n) by temporal period for recreational (rec) and non-recreational (non-rec) forecasting models. 

 

 

Temporal 

Period
Model RMSE

Adjusted 

r²
AICc

Prob 

> F
n

No. of 

Terms
Terms*

Rec 1.90 0.36 215.86 0.0005 49 7
SR Sample, Wind A, Water Temp, Air Temp, 

Water Level, DSLR Prior, Clear Sky UVI

Non-rec 0.94 0.68 105.75 <0.0001 30 9

7 Day, Conductivity, Wind O, 1 Day, Log[Sea 

Level Pressure], 3 Day, SR Sample, Clear Sky 

UVI, SR Max Day Prior

Rec 1.47 0.48 175.07 <0.0001 44 8

5 Day, Log[NOAA Gust Speed], Clear Sky 

UVI, SR Sample, 1 Day, Wind A, Water 

Temp, SR Max Day Prior

Non-rec 0.91 0.76 110.03 <0.0001 33 9

Wind A, Air Temp, DSLR Prior, Wind O, SR 

Sample, Water Temp, SR Max Day Prior, 

Water Level , 1 Day

Rec 1.43 0.57 179.64 <0.0001 46 8

Water Level, DSLR Prior, SR Sample, 

Conductivity, Log[Sea Level Pressure], 

Log[NOAA Gust Speed], Clear Sky UVI, 

Water Temp

Non-rec 0.88 0.84 113.61 <0.0001 34 10

Tide Prediction, Log[Sea Level Pressure], 

Clear Sky UVI, 5 Day, Wind O, Conductivity, 7 

Day, Log[NOAA Gust Speed], 1 Day, 3 Day

Rec 1.28 0.58 163.90 <0.0001 46 5

1 Day, Log[Sea Level Pressure], Tide 

Prediction, Log[NOAA Wind Speed], DSLR 

Prior

Non-rec 1.30 0.47 110.02 <0.0001 29 5 2 Day, Air Temp, 7 Day, Conductivity, Wind A

Rec 1.32 0.57 207.05 <0.0001 56 9

SR Sample, Conductivity, 7 Day, Wind O, 1 

Day, SR Max Day Prior, 2 Day, Log[Sea 

Level Pressure], Water Level

Non-rec 0.96 0.85 119.82 <0.0001 38 7
Pre-sample, 1 Day, 3 Day, Water Level, Wind 

O, SR Sample, Log[Sea Level Pressure]

Rec 1.66 0.50 239.90 <0.0001 58 9

Pre-sample, Water Level, Wind A, Wind O, 

Clear Sky UVI, DSLR Prior, Tide Prediction, 

Conductivity, Air Temp

Non-rec 1.37 0.71 143.78 <0.0001 37 7

Air Temp, 2 Day, Clear Sky UVI, 3 Day, Wind 

O, Log[NOAA Gust Speed], Log[Sea Level 

Pressure]

Rec 1.03 0.19 148.88 0.0480 45 9

Air Temp, SR Sample, 1 Day, Wind O, Tide 

Prediction, SR Max Day Prior, 3 Day, 7 Day, 

Wind A

Non-rec 0.86 0.69 106.84 <0.0001 36 7
5 Day, Wind A, 3 Day, Pre-sample, Wind O, 

Water Level, Conductivity

Rec 1.89 0.23 1002.01 <0.0001 242 5
1 Day, SR Sample, 2 Day, Pre-sample, 

Log[Sea Level Pressure]

Non-rec 1.72 0.33 941.27 <0.0001 237 7
1 Day, SR Sample, Tide Prediction, Water 

Level, Pre-sample

All 1.89 0.21 1663.23 <0.0001 403 5
Pre-sample, 1 Day, Conductivity, Air Temp, 3 

Day, 7 Day, SR Max Day Prior

* Listed by Log Worth Rank

2016

2017

Overall

2011

2012

2013

2014

2015
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Validation 

Model sensitivity ranged from 0% (no observed or prior sample primary contact 

recreation criterion exceedances were correctly forecasted) for 2013 and 2016 non-recreational 

forecast models as well as 2011 recreational and 2017 non-recreational persistence models to 

100% (all observed or prior sample primary contact recreation criterion exceedances were 

correctly forecasted) for 2012, 2014, and 2016 non-recreational forecast models (Figure 8). 

Model sensitivity was greater for the forecasting method in all cases except for the study years 

2015, 2016, the overall recreational, and the overall model. In one instance, 2013 non-

recreational forecast and persistence were equivalent at 0% sensitivity.  

Specificity ranged from a minimum of 68%, which indicated that observed or prior 

sample primary contact recreation criterion non-exceedances were correctly forecasted, for the 

2015 non-recreational persistence model to 100% (all observed or prior sample primary contact 

recreation criterion non-exceedances were correctly forecasted) for the overall recreational and 

non-recreational models (Figure 8). Percent specificity was greater for forecasting compared to 

persistence in all cases except for the 2015 recreational model (77% forecast to 87% 

persistence).  
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The percentage of total correct predictions, an indication of model success, was greater 

for the forecasting models in all cases except for the 2015 and 2017 recreational periods. The 

highest percentage of false negatives was recorded for the 2014 non-recreational persistence 

model (26%). Similarly, the 2014 persistence model for recreational and non-recreational periods 

had the highest false positive rate (21%). The forecasting models performed exceedingly well 

generating predictions with a low percentage of false positives ranging from 0% to 7% except for 

the 2015 recreational and non-recreational models which scored 18% and 16%, respectively 

(Figure 8). 

The forecast model’s sensitivity was at least 10% better, indicating a higher rate of 

correctly predicted exceedances, than the persistence method for 12 of 15 models (Table 2).  
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Figure 8 Non-recreational and recreational validation results (sensitivity specificity, and total correct predictions) for forecasting and persistence 

models 
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All models, except the 2015 recreational model (77% specificity), had specificity greater than 

80%. The percent sensitivity for 13 of 15 models was determined to be greater than 30%. Based 

on the threefold assessment criteria utilized as a decision matrix, 12 of 17 models (71%) passed 

validation. 

 

 

Table 2 Final status of validated models based on the threefold assessment matrix. 

Temporal 

Period 
Model 

plus 10% 

sensitivity 

Specificity 

> 80% 

Sensitivity 

> 30% 
Pass/Fail 

2011 
Rec Yes Yes Yes Pass 

Non-rec Yes Yes Yes Pass 

2012 
Rec Yes Yes Yes Pass 

Non-rec Yes Yes Yes Pass 

2013 
Rec Yes Yes Yes Pass 

Non-rec No Yes No Fail 

2014 
Rec Yes Yes Yes Pass 

Non-rec Yes Yes Yes Pass 

2015 
Rec No No Yes Fail 

Non-rec Yes Yes Yes Pass 

2016 
Rec No Yes No Fail 

Non-rec Yes Yes Yes Pass 

2017 
Rec Yes Yes Yes Pass 

Non-rec Yes Yes Yes Pass 

Overall 

Rec No Yes No Fail 

Non-rec Yes Yes Yes Pass 

All No Yes No Fail 
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Discussion 

Most FIB modeling studies have been conducted in freshwater environments (Brooks et 

al. 2016, Brooks et al. 2013, Francy 2009, Francy and Darner 2007, Frick et al. 2008, Heberger 

et al. 2008, Nevers and Whitman 2005, 2011, Paule-Mercado et al. 2016, Telecha et al. 2009, 

Zhang et al. 2018). Fewer forecasting models have been developed for marine coastal 

environments (Bedri et al. 2016, Hou et al. 2006, Shibata et al. 2010, Thoe et al. 2014, Thoe et 

al. 2015, Zhang et al. 2012) and even less for estuarine coastal environments (Gonzalez et al. 

2012, Gonzalez and Noble 2014). As a result, forecast systems to alert the public of potential 

health risk have been largely developed for swimming beaches on freshwater bodies such as the 

Great Lakes. A limited number of estuarine models (Gonzalez et al. 2012) are available and no 

forecasting models have been successfully developed at Texas coastal beaches. Variability of 

physiochemical water quality, geomorphological, and hydrological abiotic processes in estuarine 

coastal waters influences pathogens and, therefore, the associated microbial health risk, 

differently than marine and freshwater beaches. It is important to reduce uncertainty related to 

public health risk in estuarine waters because tourists and residents alike are drawn to swimming, 

fishing, boating, and engaging in water-related recreational activities in Texas coastal bays due 

to their abundant natural resource features. 

Explanatory Variables 

Limiting the included number of candidate variables was not a primary concern in this 

study because all study data can be obtained at minimal cost by automating data retrieval; rather, 

models with stronger prediction power were preferred to align with the study’s objectives. 

Nineteen of 25 candidate variables were selected for model development in at least one 

forecasting model. The selected explanatory variables included macro-ambient and physical 
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meteorological, oceanographic, and water quality conditions. Various computations of 

precipitation, wind direction and speed, wave height, water level, tide type, water temperature, 

salinity/conductivity, dissolved oxygen, turbidity, air temperature, cloud cover, and solar 

insolation have been included in the calibration of FIB forecasting models (Francy 2009, 

Gonzalez and Noble 2014, He and He 2008, Jennings et al. 2018, Nevers and Whitman 2011). 

Many of these variables are publicly available because state environmental quality and federal 

agencies including NOAA, NWS, and the United States Geological Survey (USGS) collect the 

data as part of routine monitoring networks. 

The three most often included variables were total rainfall per day prior to ENT sample 

collection (1 Day), solar radiation (SR Sample), and offshore or onshore wind (Wind O) at the 

time of ENT sample collection. Wet weather events can result in elevated concentrations of ENT 

in nearshore waters due to stormwater runoff (Thompson et al. 2012). A primary environmental 

ENT inactivation pathway is solar deactivation from ultraviolet (UV) light exposure (Kay et al. 

2005b, Maraccini et al. 2016, Zhu et al. 2011). UV light is absorbed by ENT DNA preventing 

replication (Byappanahalli et al. 2012, Fujioka et al. 1981, Sassoubre et al. 2012). Wind is a 

predominate influence linking coastal physical processes that governs the processes controlling 

ENT fate and transport such as increased wave activity (Feng et al. 2013). Bottom sediments are 

an important reservoir and source of ENT during storm events or other physical disturbances that 

cause their resuspension into the water column (Bai and Lung 2005, Fries et al. 2006, Yamahara 

et al. 2009).  Suspended solids (i.e. particles) in the water column provide shading and protection 

from sunlight for suspended as well as particle-attached bacteria (Anderson et al. 2005, Graml et 

al. 2014). The influential process, one day total rainfall, solar radiation, and offshore/onshore 
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prevailing winds, highlighted by this study play principle roles in determining ENT fate and 

transport. 

Model Performance 

The interannual variability of ENT concentration detected between study years diluted 

performance of the overall models. To overcome interannual variability, the study database was 

aggregated to bi-phase sub-annual bins. This data processing step greatly enhanced model 

performance due to increased uniformity amongst individualized subsets. This association was 

particularly distinct for non-recreational beach season group models which consistently 

performed better than recreational season models, except for the study year 2014. The 

recreational models associated with study years 2015 and 2016 resulted in two of three failures 

for the sub-annual bi-phase models. Study year 2015 was found to have statistically significant 

differences between concentrations of ENT compared to four of six study years (2011, 2012, 

2013, 2014) while 2016 had significant differences amongst ENT for all study years (2011, 

2012, 2013, 2014, and 2017) except 2015 (Figure 7). This is an important distinction because the 

recreational periods of these two years contained the highest amount of rainfall, 104 mm in 2015 

and 86 mm in 2016, except for the 2017 recreational period (164 mm) due to Hurricane Harvey. 

The annual and bi-phase subdivision of the study database allows for a high degree of resolution 

that could be applied to hindcast potential health risk during extreme weather events 

corresponding to a specific model’s calibration period whence the event occurred by applying 

the regression equation to recreate event conditions.  

The third model to receive a fail rating was the non-recreational period of 2013. 

However, this failure was caused by a minute variation between observed (4.98 log MPN/100 

mL) and predicted (4.42 log MPN/100 mL) ENT values; resulting, in 0% sensitivity because this 
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period had a single primary contact recreation criterion (4.64 log MPN/100 mL) exceedance. The 

majority (70.6%) of forecasting models outperformed the persistence method despite elevating 

percent sensitivity by a 10% correction factor and using a conservative 30% sensitivity 

benchmark. The results of this study can be interpreted to mean that forecasting models are able 

to more accurately predict a true exceedance of the contact recreation criterion indicating a beach 

advisory or action should be issued. Forecasting models were also less likely to produce a false 

negative or false positive than the persistence method for the same temporal period. Recreational 

beach closure due to issuance of a public health risk advisory is estimated to cause a net 

economic loss of $1,274 to $37,030 per day to local communities as a result of missed 

recreationist opportunity (Rabinovici et al. 2004). Although recreation is not restricted at Texas 

beaches, the issuance of a false public contamination advisory could still have negative economic 

impacts on the surrounding communities.  

The all best variable selection and MLR forecast models calibrated for this study had a 

RMSE ranging from 0.86 to 1.9 and adjusted R2 between 0.19 and 0.85. Other studies that 

developed MLR forecasting models in coastal marine or estuarine environments produced a 

RMSE of 0.75 and an adjusted R2 of 0.64 (Gonzalez et al. 2012), adjusted R2 ranging from 0.89 

to 0.90 and RMSE 0.89 to 0.82, respectively, (Gonzalez and Noble 2014), and an R of 0.48 and a 

RMSE of 0.50 (Thoe et al. 2014). Although most models in this study are well within the range 

of performance indicators for models developed in marine and estuarine environments, there is 

room to improve the performance of forecast models at Sylvan Beach, due to the limitation of 

site-specific data. The collection of additional and/or site-specific explanatory variables, not able 

to be included in this study, such as turbidity can enhance model performance (Frick et al. 2008, 

Telecha et al. 2009). Turbidity has a significant effect on controlling irradiance (Kay et al. 



 

39 

 

2005b) and is a proxy representing resuspension of particle associated ENT (Fries et al. 2008). 

These factors could substantiality influence the presence of waterborne pathogens at Sylvan 

Beach Park; ultimately, explaining more variation and reducing uncertainty of model outputs. 

Management Applications 

This study suggests that forecasting FIB concentrations and, therefore, the potential 

public health risk at Sylvan Beach is feasible. The models produced by this study were calibrated 

using readily available inputs in proximity to the study site. All data sources are continuously 

collected and could be acquired in real-time through an automated program interface to support 

the operation of a beach management system at Sylvan Beach Park. The implementation of a 

Sylvan Beach forecasting model could improve beach safety for recreationists compared to the 

persistence method. This Chapter detailed data sources, model development and selection 

procedures, and a model validation framework that could form the bases of a beach management 

forecasting system. To mitigate interannual variability and poor performance of multi-year 

models, a rolling calibration period, including up-to-date data, for the most current or previous 

recreational or non-recreational period, should be utilized to develop future models. The 

generation of a daily health risk estimate could more effectively reduce exposure with pathogen-

contaminated water because recreationists would be notified prior to exposure. Due to the high 

rate of ENT and associated pathogens natural variability, health risk estimates could be 

formulated for multiple daily periods such as morning and afternoon. This Chapter determined 

that monitoring data from Sylvan Park’s North and South swimming beaches could be combined 

to derive one forecast. In addition, model usefulness was improved by reducing temporal bins to 

sub-annual bi-phase aggregations resulting in refined models compared to comprehensive 

models developed with seven years of data. If the collection of weekly or bi-weekly ENT 
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samples by the TGLO were to continue in conjunction with a forecast model beach management 

system, the samples could be used to cross-validate forecast outputs for days when observed 

monitoring occurs. 

Conclusion  

Despite prevalence of public health risk, feasibility testing had not been conducted prior 

to this study to determine if a FIB forecasting model could improve beach management and 

reduce public exposure to pathogens in the Houston-Galveston region. This study collected 

readily available historical data to develop and evaluate eight sets of models split between 

recreational and non-recreational beach seasons and an overall model. The studies ENT 

forecasting models can reduce uncertainty at Sylvan Beach Park by outperforming risk estimates 

made by collecting weekly or bi-weekly grab samples, known as the persistence method. 

Overall, most FIB forecasting models developed by this study performed better than the 

persistence method. Beach managers should consider adopting a forecasting model-based 

management system because models have the potential to improve the issuance of erroneous 

public health contamination advisories and serve as an early warning system reducing public 

pathogen exposure. Based on the methodology developed in this study, additional sites along the 

Texas coast should be evaluated for forecasting feasibility. The potential economic and public 

health implications of recreating in pathogen contaminated waters at Texas coastal beaches 

remains unknown but is expected to be substantial.  
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CHAPTER III                                                                                                                  

QUANTITATIVE MICROBIAL RISK ASSESSMENT TO ENHANCE RECREATIONAL 

BEACH MANAGEMENT IN A COASTAL ESTUARY 

Introduction 

The primary pathogen-related pollutant of concern in recreational waters is fecal waste, 

which may contain infectious agents such as bacteria (e.g., Campylobacter and Salmonella), 

protozoa (e.g., Cryptosporidium and Giardia), and viruses (e.g., noroviruses and adenoviruses) 

(Castro-Hermida et al. 2009, Gibson 2014, Hellein et al. 2011, Sinclair et al. 2009). Noroviruses 

are a leading cause of illness outbreaks in recreational water due to a high potential to survive 

environmental stressors and remain infectious, and a high likelihood of causing infection in the 

human population (Fong and Lipp 2005, Gibson 2014, Seitz et al. 2011, Sinclair et al. 2009). In 

addition, contamination resulting in infection from Campylobacter spp. has been on the rise 

globally (Kaakoush et al. 2015). Potential infection risk from Campylobacter spp. is suggested to 

be on the rise because the pathogen was detected in 60% of river water samples (Savill et al. 

2001). The daily risk for a gastrointestinal illness (GI) per individual from Campylobacter jejuni 

was found to be higher than Giardia and Salmonella in a freshwater environment (Sunger et al. 

2018). 

Norovirus presence is an indication of fecal waste contamination from human sources 

such as faulty WWTF effluent, malfunctioning OSSF, and direct boater discharge events. 

Norovirus from human sources can remain viable in stormwater runoff from urban watersheds 

which can negatively impact nearshore water quality (Soller et al. 2017). As a result, viruses are 

a predominate driver of risk in recreational waters where wastewater is a contamination source of 

concern (Farkas et al. 2018, Sunger et al. 2018). In addition, two sources - birds and dogs - 
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which are commonly present near recreational beach waters, can be major contributors of fecal 

waste and associated pathogens including Campylobacter spp. posing a risk to public health 

(Ervin et al. 2014, Hatch 1996, Shibata and Solo-Gabriele 2012, Wright et al. 2009). In marine 

and estuarine coastal waters, the FIB (ENT) are monitored because they are known to be 

associated with pathogens that can cause gastrointestinal disease (Byappanahalli et al. 2012, 

Wade et al. 2010). According to the U.S. EPA, ENT are the preferred indicator bacterium to 

determine the level of public health risk from fecal contamination in marine and estuarine coastal 

waters used for recreation (U.S. EPA 2012). 

Primary contact recreation including body immersion, head immersion, and splashes to 

the face results in an increased exposure for ingesting contaminated water (Colford et al. 2012, 

Suppes et al. 2014). Primary contact recreation (direct exposure such as swimming or surfing) at 

65 California beaches was estimated to result in 689,000 to 4 million GI and 693,000 respiratory 

illness per year with a higher summer rate of infection due to increased bather presence (Brinks 

et al. 2008). Indirect exposure in pathogen contaminated waters (secondary contact recreation) 

also contributes to an elevated GI risk (Dorevitch et al. 2012). At the sub-coastal scale a regional 

assessment revealed that cases of GI were estimated to range from 627,800 to 1.48 million per 

year with economic implications up to $51 million (Given et al. 2006). In addition, local 

recreational beach exposure to coastal waters impaired by fecal waste has been estimated to 

cause hundreds of thousands of illnesses per year resulting in an approximate $3.3 million 

economic setback to public health (Dwight et al. 2005). 

QMRA can enumerate contact recreation risk when epidemiological data are lacking and 

pathogenic microbial contamination stems from point or nonpoint sources (Schoen and Ashbolt 

2010, Soller et al. 2015, Soller et al. 2017, Soller et al. 2010b, Soller et al. 2014, U.S. EPA 
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2010). The probability of acquiring an infection or illness when recreating in pathogen impaired 

waterways is a common QMRA endpoint. Human derived pathogens typically result in a higher 

proportion of risk to the target population, compared to agricultural and wildlife sources, with the 

exception of cattle (Schoen and Ashbolt 2010, Soller et al. 2010a, Soller et al. 2010b, Soller et al. 

2014). Current beach management protocols based on the persistence method do not effectively 

associate risk with health endpoints. The application of a QMRA framework to inform risk-based 

decision-making can result in enhanced management measures promoting microbial protection 

of public health (Ashbolt et al. 2010, Olivieri et al. 2014). The objective of this Chapter was to 

perform site-specific QMRA for human and nonhuman sources of fecal waste at Sylvan Beach 

Park on Galveston Bay, Texas. Total probability of risk, defined as the probability of 

gastrointestinal infection and subsequent illness, for adults and children engaging in primary and 

secondary contact recreation, during recreational and non-recreational beach seasons was 

estimated for a variety of exposure scenarios. 

Methods 

Study Site 

The study site, Sylvan Beach Park, was selected due to it being a popular recreational 

swimming beach that offers secondary contact opportunities including pier fishing, wading, and 

non-motorized boating. To initiate the QMRA, source characterization included a site visit, 

investigative research, and quantitative analysis of historical ENT data (01/01/2011-12/31/2017) 

from two monitoring stations at Sylvan Beach. In the heavily industrial and residential North 

Bay Watershed, predominant mechanisms for dispersion of pathogens are those typically 

associated with the urban environment. Potential human sources of microbial contamination that 

may influence pathogen concentrations at Sylvan Beach Park are WWTF effluent, boater waste 
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discharge events, sanitary sewer overflows (SSO), and bather shedding. The composition of non-

human sources includes a domestic animal represented by dogs (Canis lupus familiaris) and 

wildlife e.g. seagulls (laughing gull [Larus atricilla]). During the site visit, dogs and direct 

evidence of dog presence was observed on the swim beaches in proximity to the shoreline. 

Similarly, a high number of seagulls were observed near the swim beach, directly on the swim 

beach, and in the water within the designated swim zone (Figure 9). Direct deposition of fresh 

fecal waste from seagulls and dogs at Sylvan’s swim beaches is a significant microbial 

contamination pathway of concern. 
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Figure 9 Seagulls present at Sylvan Beach Park representing a potential source of microbial 

contamination. 

 

 

 

Dose Conversion 

Direct pathogen monitoring data are not available at Sylvan Beach, so ENT concentration 

was converted to a reference pathogen dose. The TGLO Beach Watch Program database was 

queried for ENT (MPN/100 mL), between 01/01/2011 and 12/31/2017, at two Sylvan Beach 

monitoring stations North and South (TGLO Beach Watch Program Manager, personal 

communication). The Texas Beach Watch Program collects ENT samples at 0.6 meters (m) in 

depth to represent recreational contact at knee height and samples are enumerated using EPA 

Method 1600 (TGLO 2018, U.S. EPA 2006). A conversion equation based on concentration of a 

FIB to pathogen dose was developed by (Schoen and Ashbolt 2010, Soller et al. 2014) and 

modified by (Gitter et al. 2016). 
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𝐷𝑅𝑃
𝑆 =

𝐶𝐸𝑁𝑇 ∗ 𝐹𝑠

𝑅𝐸𝑁𝑇 
𝑆 × 100

× 𝑅𝑅𝑃
𝑆 × 𝑃𝑅𝑃

𝑆 × 𝐼𝑅𝑃
𝑆 × 𝑉 

 

For this study, reference pathogen dose (𝐷𝑅𝑃
𝑆 ) was derived based on the following 

coefficients: specified source (S ), concentration of ENT (𝐶𝐸𝑁𝑇), fraction of ENT from specified 

source (𝐹𝑠), concentration of ENT in source waste (𝑅𝐸𝑁𝑇
𝑆 ), wet mass concentration of reference 

pathogen in source (𝑅𝑅𝑃
𝑆 ), prevalence of reference pathogen to source (𝑃𝑅𝑃

𝑆 ), infectious potential 

of reference pathogen in humans (𝐼𝑅𝑃
𝑆 ), and ingested volume of water (𝑉) (Table 3). To estimate 

risk during ambient and elevated periods of exposure, ENT concentration was repeatedly 

sampled from a uniform probability distribution ranging from the 5th to the 90th (ambient) and 

from the 90th to 100th (elevated) percentiles.  

The elevated scenario represents periods of heightened risk, such as wet weather events 

or a concentrated release of fecal waste. For the elevated scenario (90th to 100th percentile) ENT 

concentration ranged from 216 to 19,863 MPN/100 mL (recreational) and from 267 to 24,196 

MPN/100 mL (non-recreational). To allow for comparisons between elevated and ambient levels 

of microbial contamination, the QMRA was repeated by substituting ENT concentrations 

ranging from the 5th to 90th percentile: 0 to 216 MPN/100 mL (recreational) and from 0 to 267 

MPN/100 mL (non-recreational). All percentile ranges were calculated from the seven-year ENT 

study dataset by recreational and non-recreational beach season. The ratio of contributing source 

(𝐹𝑠) was estimated based on three source load scenarios: 1) 100% human derived microbial 

load, 2) 100% non-human derived microbial load (Schoen and Ashbolt 2010), and 3) microbial 

load derived from a composite mixture of sources including 25% human (raw/treated sewage) 

and 75% domestic animal and wildlife (dogs/seagulls) (Soller et al. 2010b, Soller et al. 2014). 
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Table 3 Nonhuman and human load computational variables by scenario, unit values, and distribution 

reported in the literature as utilized in the dose conversion calculations. 

 

 

 

 

Infectivity 

Two types of infectious potential are required as inputs in the reference pathogen dose 

equation; prevalence of infection from reference pathogen to source and infectious potential of 

reference pathogen in humans. Prevalence of norovirus (genogroup I and II) from human sources 

of fecal waste was determined to be 100% in WWTF influent (raw sewage) and 75% in effluent 

(treated sewage) (Kitajima et al. 2014). C. jejuni detection ranges from 27.9% to 36.6% 

prevalence in black-headed gulls with no statistically significant difference amongst age 

(Broman et al. 2002). Campylobacter spp. was detected ranging from 56% to 97% prevalence in 
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dog feces, depending on whether the individual animal was healthy or unhealthy (Chaban et al. 

2010). To capture variability of Campylobacter spp. prevalence in gull and dog feces a uniform 

distribution was assigned ranging from 27.9% to 36.6% for gulls and from 56% to 97% for dogs. 

In addition, the infectious potential of norovirus in humans for five of six groups challenged was 

found to be 100% despite storage in groundwater for up to 61 days (Seitz et al. 2011). An 

assumed 100% norovirus human infection rate aligns with QMRA studies published in the 

literature (Soller et al. 2010b, Soller et al. 2014). The infectious potential of Campylobacter spp. 

exhibits a higher degree of natural variability, in part, depending on the dose. In the current study 

Campylobacter spp. was assumed to have a medium rate of infectivity (40 to 60%) (Tribble et al. 

2010). The potential presence of fresh concentrated sources in the swim zone could raise the risk 

threshold, although, recreationists likely receive a lower diluted dose. To accommodate 

variability of Campylobacter spp., infectious potential upper and lower bound estimates were 

utilized in a uniform probability distribution to generate infectious potential within the percent 

range (40% to 60%). 

Ingestion  

Ingestion via the fecal-oral route was considered the principle waterborne pathogen exposure 

route and transmission pathway, respectively. Recreationists who engage in swimming are 

substantially more likely to contract an illness because risk is positively associated with exposure 

from body immersion, head immersion, and swallowed water (Colford et al. 2012). The 

development of separate ingestion assumptions was required because adults and children behave 

differently when engaging in primary or secondary contact recreation (Dufour et al. 2017). 

Children make contact more often for longer durations and are more likely to engage in 

immersion, ingesting about four times as much water (Dufour et al. 2017, Schets et al. 2011). In 
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addition, children are more likely to ingest higher amounts of water from splashes to the face 

during primary contact (Suppes et al. 2014). Wave action, in coastal beach environments, could 

increase the frequency of splashes to the face.  

The recreational activity being pursued such as surfing vs. swimming can have a bearing on 

illness risk due to potential volume of water ingestion being higher compared to less intensive 

activities (Tseng and Jiang 2012). Furthermore, capsizing during canoeing or kayaking 

significantly increases the chance for and volume of ingestion (Dorevitch et al. 2011). The types 

of secondary contact recreation occurring at Sylvan Beach characterized by this study are based 

on the availability of recreational opportunities, i.e. launching a kayak from the boat ramp, pier 

and shore fishing, and wading in the swim zone without immersion.  

Average hourly water ingestion rates for the adult population during primary contact 

recreation have been found to range from 3.5 to 12.4 mL (Dufour et al. 2017, Suppes et al. 

2014). Average hourly ingestion rates for children engaging in primary contact recreation of 

water range from 23.9 to 25.7 mL (Dufour et al. 2017, Suppes et al. 2014). The maximum 

average ingestion rates, 12.4 mL adult (Dufour et al. 2017) and 25.7 mL child (Suppes et al. 

2014) rates per hour, were selected to represent the upper mean threshold of ingestion for the 

primary contact scenarios. The child primary ingestion rate was doubled to represent prolonged 

chance of exposure from a 2-hour period of recreational activity. Ingestion for secondary contact 

recreation in coastal surface waters including canoeing, kayaking, motorized boating, fishing, 

rowing, and wading has been determined to range from 3 to 4 mL per hour, depending on the 

associated activity (Dorevitch et al. 2011). The ingestion volumes reported for secondary contact 

activities assumed to occur at the study site were averaged resulting in a 3.73 mL per hour 

estimate. The 3.73 mL per hour secondary contact ingestion rate was doubled resulting in an 
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ingestion rate of 7.5 mL per a two-hour secondary contact interval compared to the 3.73 mL per 

hour adult rate (McBride et al. 2013).  

Exposure Scenarios Modeled 

Multiple exposure scenarios were modeled based on contamination derived from 100% 

human, 100% nonhuman, or a mixture (25% human/75% nonhuman) and whether the 

recreationist engaged in primary or secondary contact during the recreational or non-recreational 

beach season (Table 4). The human scenarios assumed a composite norovirus load stemming 

from 80% treated and 20% raw sewage. The nonhuman Campylobacter spp. scenarios assumed a 

70% contribution from gulls and 30% from dogs. Each scenario was modeled for adult and child 

populations. The ingestion route was the predominant exposure pathway in all risk assessment 

scenarios. Monte Carlo simulations (10,000) were conducted using RiskAMP Monte Carlo 

Simulation Engine® add-in for Microsoft Office Professional Excel® 2016. The total probability 

of gastrointestinal illness from human and nonhuman sources per each temporal period and 

adult/child populations was estimated as cumulative risk from each reference pathogen. 

Exposure scenarios were conducted based on bi-phase seasonal aggregations for recreational and 

non-recreational swim seasons to align with beach management protocols and to increase 

assumption accuracy, such as primary contact is less likely to occur in the non-recreational 

season. Recreational period (May through September) risk assessments were conducted based on 

primary and secondary contact and the non-recreational period (October through April) was 

based on secondary contact exposure.  
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Table 4 Exposure scenario models by source, period, population, and type of contact. 

 
 

 

 

Reference Pathogens 

Norovirus, primarily a human pathogen, was selected to represent exposure to 

contamination from fecal waste in treated and raw sewage. The utilization of norovirus as a 

reference pathogen captures a majority of gastrointestinal risk and represents the etiologic agent 

of highest concern (McBride et al. 2013, Soller et al. 2010a, Soller et al. 2010b, Soller et al. 2014). 

The reference pathogen for two nonhuman associated sources, seagull and dog feces, is 

Campylobacter spp. (Table 5) (Schoen and Ashbolt 2010, Soller et al. 2010b, U.S. EPA 2010). C. 

jejuni, C. coli and C. lari are commonly present in the environment (Converse et al. 2012). C. 

jejuni and C. coli can account for 80 to 90% of human infections and are considered primary 

bacterial pathogens of concern from animal waste (Ketley 1997, U.S. EPA 2010). It has been 

estimated that 18% to 46% of healthy adult volunteers became ill with fever or diarrhea after 

ingesting a range of doses inoculated with two different strains of C. jejuni (Black et al. 1988).  
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Table 5 Potential sources of human and nonhuman microbial load to the surface waters of Sylvan Beach 

represented by reference pathogens. 

 

 

 

 

Dose-response Relationships  

A best-fit norovirus dose-response model that can be universally applied to enumerate 

risk for a variety of exposure scenarios has yet to be identified (Abel et al. 2017). Whether or not 

to assume the aggregation or disaggregation of viruses is one assumption preventing the 

application of a single dose-response model because the media will vary according to the 

exposure scenario in question. Studies recommending noroviruses be aggregated (Sunger et al. 

2018), disaggregated (McBride et al. 2013, Schoen and Ashbolt 2010, Soller et al. 2010a), or the 

utilization of both aggregated and disaggregated models to capture a range have been proposed 

(Abel et al. 2017). However, Abel et al. (2017), acknowledges that most studies assume 

disaggregation in surface water. Therefore, the disaggregated dose is assumed to stem from the 

ingestion of single virions and not an aggregate mixture. This study used a disaggregated beta-

Binomial norovirus dose-response curve with model parameters α= 0.04 and β= 0.055 to 

estimate risk (McBride et al. 2013). This QMRA assumed Campylobacter spp. to follow a beta-

Poisson dose-response model with model parameters α= 0.145 and β = 7.59 (Medema et al. 

1996, Soller et al. 2010b, Soller et al. 2014). To translate infection to probability of illness, risk 

estimates were multiplied by a morbidity factor of 0.6 for norovirus (Soller et al. 2017, Sunger et 
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al. 2018) and 0.28 for Campylobacter spp. (Medema et al. 1996, Soller et al. 2017, Sunger et al. 

2018, Teunis et al. 2005). 

Results 

Total Probability of Illness 

This QMRA estimated adult and child risk as total probability of gastrointestinal illness, 

based on three different microbial load scenarios: 1) 100% human (norovirus), 2) 100% 

nonhuman (Campylobacter spp.), and 3) a representative composite mixture of human and 

nonhuman sources (norovirus and Campylobacter spp.). The results are reported as percentiles at 

95% confidence (5th, 25th, 50th,75th and 95th) and comparisons of predicted total probability of 

illness are made using the median value. Results are provided equating to total illness probability 

at a rate of 100 exposed recreationists or the probability of an individual contracting an illness. 

Graphs are provided for 5th to 90th (ambient) and 90th to 100th (elevated) percentiles of ENT 

concentration by adult and child populations.  

In the elevated adult recreationist scenario, the total predicted median probability of 

illness ranged from 0.31 (100% nonhuman recreational secondary) to 0.56 (100% human 

recreational primary) (Figure 10). The highest predicted total probability of median illness for 

the adult population is from 100% human sourced microbial loads while engaging in primary 

contact during the recreational beach season (0.56) followed by secondary contact in the non-

recreational season (0.55), and secondary contact during the recreational period (0.54). The total 

probability of illness for 100% human load had a low degree of variation across the three 

recreational scenarios and total risk was within the same magnitude. Exposure to 100% 

nonhuman microbial loads had the most variable median probability of illness between the 

primary and secondary recreational scenarios. For all three scenarios, estimated total probability 
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of illness for secondary contact during the non-recreational beach season was slightly elevated 

compared to the recreational season. The interjection of a human norovirus load component in 

the mixed scenarios elevated the median probability of illness over the 100% nonhuman source 

loads. However, median probability of illness for mixed sources was less than half of the human 

scenario. 

 

 

Figure 10 Predicted total probability of illness from 100% human, mixed, and 100% nonhuman microbial 

loads for adult recreationists engaging in an hour of primary or secondary contact during the 

recreational and non-recreational beach seasons assuming 90th to 100th (elevated) ENT concentration. 

The upper and lower whiskers represent the 95th and 5th percentiles, respectively, while the box displays 

25th, 50th (median), and 75th percentiles. 

 

 

 

Under the 5th to 90th percentile ENT dose calculation, the range of predicted total 

probability of illness had higher variability; median illness probability ranged from 0.13 (100% 

nonhuman recreational secondary) to 0.49 (100% human recreational primary) (Figure 11). 
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However, total median probability of illness remained high for the 100% human microbial load 

scenarios. The greatest median probability of illness (0.48) occurs during primary recreation with 

microbial loads present from 100% human sources. The 100% human load recreational 

secondary and non-recreational secondary had higher intra-scenario variance, ranging from a 

total illness probability of 0.34 to 0.42, compared to the recreational primary scenario. 

 

 

 

 

Figure 11 Predicted total probability of illness from 100% human, mixed, and 100% nonhuman microbial 

loads for adult recreationists engaging in an hour of primary or secondary contact during the 

recreational and non-recreational beach seasons assuming 5th to 90th (ambient) ENT concentration. 

 

 

 

Predicted total probability of illness in the child population exhibited similar patterns as 

the adult population (Figure 12). The total median probability of illness ranged from 0.32 (100% 

nonhuman recreational secondary) to 0.58 (100% human recreational primary). The 100% 
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human load QMRA resulted in minimal variance of predicted total illness probability across type 

and season of contact; however, total median risk was highest for primary contact in the 

recreational season (0.58). The lowest probability of median illness occurs under the 100% 

nonhuman load assumption for all types of recreation season and contact with lowest total 

probability of illness occurring during secondary contact in the recreational season. The primary 

contact recreational season mixed source scenario had low variance of total illness probability 

while total probability of illness had the highest variance in the recreational and non-recreational 

secondary 100% nonhuman load scenario.  

 

 

Figure 12 Predicted total probability of illness from 100% human, mixed, and 100% nonhuman microbial 

loads for child recreationists engaging in two hours of primary or secondary contact during the 

recreational and non-recreational beach seasons assuming 90th to 100th (elevated) ENT concetration. 
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The total probability of median illness remained elevated for the 5th to 90th percentile 

ENT concentration dose calculation for 100% human load recreational primary, recreational 

secondary, and non-recreational secondary scenarios but was significantly lower for the mixed 

(0.23) and 100% nonhuman (0.09) load scenarios (Figure 13). The highest median probability of 

illness occurs during the recreational season from 100% human load (0.51) followed by the non-

recreational (0.48) and recreational (0.48) beach seasons. The 100% nonhuman scenario had the 

largest difference between the recreational primary and recreational secondary/non-recreational 

secondary scenarios. 
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Figure 13 Predicted total probability of illness from 100% human, mixed, and 100% nonhuman microbial 

loads for child recreationists engaging in two hours of primary or secondary contact during the 

recreational and non-recreational beach seasons assuming 5th to 90th (ambient) percenitle ENT 

concetration. 

 

 

 

Discussion 

This QMRA is unique because assumption-based scenarios utilized a uniform probability 

distribution to factor natural variability of ENT in dose conversion equation inputs. The ambient 

scenario of this study repeatably sampled (10,000 iterations) lower and upper bound ENT 

concentrations based on site specific observed ENT values from 0 to 216 MPN/100 mL 

(recreational) and 0 to 267 MPN/100 mL (non-recreational) while the elevated scenario ranged 

from 216 to 19,863 MPN/100 mL (recreational) and 267 to 24,196 MPN/100 mL (non-

recreational). Previous QMRA studies held FIB concentrations constant at the U.S. 

recommended criteria for recreational marine waters (35 cfu/100 mL) and derived total 
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probability of illness reflective of dry or average conditions (Soller et al. 2015, Soller et al. 

2010b, Soller et al. 2014). In this QMRA scenarios were designed to compare total probability of 

illness between 1) recreational and non-recreational beach periods, 2) human and non-human 

sources, 3) child and adult recreationists, and 4) ambient and elevated microbial conditions. 

Total Probability of Illness 

Recreational and Non-Recreational Beach Seasons 

The total probability of median illness was highest for primary contact that occurred 

during the recreational beach season when the beach is impaired by 100% human contamination 

for the adult and child populations under both ambient and elevated scenarios. During the 

recreational season, a higher number of patrons are more likely to engage in primary recreation 

as their main activity, further increasing public health risk (Brinks et al. 2008). In addition, a 

higher rate of ingestion for primary over secondary contact was assumed in this study (Dorevitch 

et al. 2011). Total probability of median illness for secondary contact in both populations was 

nearly equal between the recreational and non-recreational beach seasons for all three load 

scenarios. The sub-tropical climate allows for secondary recreation activities such as kayaking, 

canoeing, or fishing to be sustained throughout much of the year although activity is likely 

limited during the winter (December, January, and February) months. Although recreationists 

engaging in secondary contact are less likely to become infected via ingestion, the concentration 

of ENT and potentially associated pathogens is elevated during the non-recreational season 

compared to the recreational season resulting in comparable risk profiles for secondary contact 

recreation (calculated in Chapter II). The total probability of median illness for secondary contact 

remains comparable during the recreational and non-recreational beach season. 

 



 

60 

 

Human and Nonhuman Sources 

The 100% human source scenarios consistently produced the highest total probability of 

median illness ranging from 0.46 to 0.56 while the 100% nonhuman source scenarios resulted in 

the lowest (0.13 to 0.30). A composite mixture of 25% human and 75% nonhuman load resulted 

in total probability of median illness ranging from 0.20 to 0.35. The microbial loads stemming 

from dogs and gulls were expected to have lower infection risk compared to human associated 

norovirus as supported by the high likelihood of norovirus presence resulting in illness, as 

observed in this study (Soller et al. 2010b, U.S. EPA 2010). Norovirus dominated the risk profile 

despite ingestion of a less concentrated dose as represented by the 5th to 90th percentile scenario.  

The contribution of nonhuman microbial load was assumed to stem from two primary 

sources, dogs and gulls, based on direct observations, a cursory land use/land cover analysis, and 

a literature review. Dogs are known hosts of Campylobacter spp. including C. upsaliensis, C. 

canis, C. jejuni, and C. coli (Chaban et al. 2010, U.S. EPA 2010). C. upsaliensis has been 

identified as an important cause of enteric infection amongst humans and is the primary 

Campylobacter spp. detected in and associated with dog feces (Bourke et al. 1998, Chaban et al. 

2010, Figura 1991, Martinez-Anton et al. 2018). Unhealthy dogs were found to harbor a 

significantly higher diversity of Campylobacter spp. compared to healthy individuals, in most 

cases (Chaban et al. 2010). Despite findings that suggest dogs have a substantial impact on ENT 

concentration within hours in localized conditions a limited number of QMRA studies have 

included dogs as a potential source (Zhu et al. 2011). 

In addition to dogs, common wildlife sighted in proximity to the beach, on the beach, and 

in near-shore waters within the swim zone includes a high concentration of seagulls. Fecal matter 

from concentrated flocks of gulls pose a substantial risk to human health because gulls carry high 
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concentrations of C. jejuni and C. coli which are associated with gastroenteritis in humans 

(Hatch 1996). C. jejuni has been found to comprise 95.5% of Campylobacter spp. isolated from 

black-headed gulls (Broman et al. 2002). Localized sources, including gulls and dogs, have the 

potential to impair the water quality of Sylvan Beach during dry weather conditions. Deposition 

on the beach - or within the swash zone - can result in prolonged exposure, even after source 

loading has ceased because wetted beach sands provide refuge and protection increasing survival 

time of pathogens (Halliday and Gast 2011, Hassard et al. 2016).  

Norovirus presence in recreational water poses potential risk to human health and is an 

indication of fecal waste contamination from partially treated WWTF effluent, malfunctioning 

OSSF, direct boater discharge events, SSO, and bather shedding (Campos and Lees 2014, 

Haramoto et al. 2018, Qiu et al. 2015). In urban watersheds, norovirus can remain viable in 

stormwater runoff negatively impacting nearshore water quality (Soller et al. 2017). As a result 

of point and nonpoint source pollution, viruses are a predominant driver of risk in receiving 

waters, particularly when wastewater is a contamination source of concern (Farkas et al. 2018, 

Hassard et al. 2016, Qiu et al. 2015, Sunger et al. 2018).  

Child and Adult Recreationists 

Duration of recreational contact was less sensitive between the adult (1-hour) and child 

(2-hour) populations for norovirus compared to Campylobacter spp. due to the low dose of 

norovirus required to achieve infection illness (Ong 2013, Teunis et al. 2008). Despite scenarios 

assuming a longer duration of recreational activity resulting in an elevated dose, the predicated 

probability of median illness from a human load for children engaging in primary recreation 

(0.51) was not significantly elevated compared to adults (0.49) under the ambient or the elevated 
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scenarios 0.58 (child) to 0.56 (adult). In addition, the high infection rate of norovirus resulted in 

minor variation of total illness probability across recreational periods. 

Ambient and Elevated Conditions 

The elevated scenarios resulted in reduced variability of total illness compared to the 

ambient scenarios. Across all three recreational periods and both adult and child populations the 

total median probability of illness is substantially higher in the elevated scenario compared to the 

ambient. However, the adult and child total probability of illness from human sources during 

primary contact recreation did not substantially differ between the ambient and elevated 

scenarios. This result suggests that a maximum condition is reached where additional human 

derived pathogen input does not increase the risk threshold. During ambient beach conditions 

represented by the 5th to 90th percentile ENT concentrations, human health risk from gulls and 

dogs remains low. In addition, concentrations of Campylobacter spp. have been found to be 

associated with gull colonies, but water ingested during recreation contaminated by gull fecal 

waste had a low infection threshold (Levesque et al. 2000). The infectious potential of 

Campylobacter spp. exhibits a higher degree of natural variability than norovirus, in part, 

dependent on dose. C. jejuni strain 81-176 doses of 105 and 107 CFU resulted in a 40% to 60% 

illness rate while a dose of 109 CFU caused a 92% illness rate for a population of young adults 

(Tribble et al. 2010). Furthermore, an infection rate ranging from 50% to 100% was associated 

with an 800 to 1,000 CFU dose, respectively (Black et al. 1988). However, at a maximum 

detected concentration potentially more than 11 MPN/100 mL of Campylobacter spp., an 

ingested volume of approximately 7.3 liters is needed to consume 800 cells resulting in a 50% 

infection probability (Savill et al. 2001). However, a concentrated delivery of fresh fecal material 

from gulls and dogs as represented by the greater than 90th percentile ENT scenario could have 
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an impact on public health resulting in a total probability of median illness ranging from 0.32 to 

0.36 for children and 0.31 to 0.34 for adults.  

These QMRA results indicate that norovirus dominates the risk profile, driving total 

probability of illness, for two of the three scenarios when the human-specific pathogen - 

norovirus - was included. This aligns with a recent study that concluded total risk probability is 

driven by the most infectious pathogen present (regardless of the microbial load) stemming from 

human or a mixture of human and nonhuman sources (Soller et al. 2014). In this study, the 

human load component has the potential to cause elevated risk during recreation when the 

microbial load is derived from mixed sources compared to the nonhuman load component 

despite the nonhuman proportion of 75%. In a mixed human and nonhuman load scenario, the 

median probability of GI illness was not dependent on the proportion of source, rather, risk was 

higher from gull fecal waste compared to poorly treated sewage only when gulls contributed 

98% of the load (Schoen and Ashbolt 2010). Soller et al. (2014), concluded that waters 

predominantly impacted by nonhuman sources may pose lower recreational risk than waters with 

comparable concentrations from human sources. The risk associated with nonhuman 

contamination sources such as gull, chicken, and pig fecal waste has been found to be lower than 

human sources, as supported by this study (Soller et al. 2010b).  

Management Applications 

The management of coastal systems where the public can be exposed to pathogens during 

recreation and consumption of commercial seafood, could be improved by using QMRA results 

to inform public health decisions, policy, and pollution management (Ashbolt et al. 2010, 

Olivieri et al. 2014). This QMRA concluded that the current recreational contact standard may 

not be adequate to support public health safety when the proportion of microbial load at Sylvan 
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Beach is dominated by human sources. In the human load scenario, risk estimated as total 

median probability of illness occurs when the reference pathogen dose, repeatedly sampled from 

a uniform probability distribution, ranges from 0 to 216 or 267 MPN/100 mL depending on the 

recreational period. In the event of direct release of human derived pollution, beach managers 

may need to intervene by issuing a public health contamination advisory, even if the primary 

contact recreation standard has not been exceeded (Sinclair et al. 2009). However, further 

microbial characterization of the waters surrounding Sylvan Beach should be conducted to fully 

investigate and validate transient risk to the human population.  

The prioritization of management measures geared toward remediating human sources of 

pollution likely has the highest potential to alleviate public health risk at Sylvan Beach. 

However, low cost solutions such as prohibiting dogs from beach access and employing scare 

tactics to displace gulls could help to reduce nonhuman contributions of microbial load to the 

waters of Sylvan Beach (Converse et al. 2012, Ervin et al. 2014, Goodwin et al. 2016). Success 

has been reported in controlling microbial load at a recreational beach impacted by nonpoint 

source pollution stemming from dogs by educating homeowners about the role dogs play in 

degrading water quality (Ervin et al. 2014). A similar outreach and educational campaign 

targeted to residents in the North Bay Watershed (particularly along Little Cedar Bayou) could 

prove successful at reducing microbial load to Sylvan Beach. The reduction of gulls, through 

active management, could improve beach water quality because Campylobacter spp. and FIB 

have been detected at a higher frequency prior to implementation of best practices (Converse et 

al. 2012, Goodwin et al. 2016). The use of dogs as an active measure to scare gulls from swim 

beaches has reported success in controlling the amount of gulls present and therefore reducing 

the associated microbial load (Jordan et al. 2019). 
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Limitations 

It was assumed that children engage in recreation more often and for longer periods of time 

and are, therefore, exposed to higher doses, but did not account for potential higher susceptibility 

of children to infection (Wade et al. 2008). Gulls were considered a primary contributor to 

microbial load, but a high density of other coastal water bird species were observed. Limited data 

are available to support the inputs required for the dose conversion equation including 

concentration of ENT to source waste and wet mass concentration of reference pathogen in 

source for other bird species, which prevented their use in the formation of a risk estimate. 

Another limitation of this study is the inference that a pathogen dose can be derived based on the 

association of ENT is debated in the literature. However, direct associations among ENT 

presence, exposure, and resultant illness have been identified (Wade et al. 2010). These 

relationships are necessary to assume because coastal waters have limited direct pathogen 

monitoring data available and no studies are available that conducted direct pathogen monitoring 

within Galveston Bay or along the Texas coast. Relationships between FIB and associated 

pathogens differ in high-energy coastal waters compared to inland freshwaters; additionally, 

pathogen monitoring in coastal waters can reduce the uncertainty surrounding these parameters 

(Tseng and Jiang 2012).  

Conclusion 

The estimated total probability of infection and subsequent illness was calculated under three 

exposure scenarios that considered the population exposed, sources of microbial load, the 

recreational period during which exposure occurred, and ambient compared to elevated microbial 

conditions. The total probability of median illness was highest for primary contact that occurred 

during the recreational beach season when the largest number of recreationists have the potential 
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to be exposed. For both populations and all recreational periods, the 100% human source loads 

consistently accounted for the highest total predicted probability of illness while the 100% 

nonhuman scenarios resulted in the lowest. Predicted probability of illness for the child scenarios 

where recreational contact occurred for a prolonged two-hour interval was marginally elevated 

compared to the one-hour adult contact scenarios suggesting that risk may not differ between the 

two populations. Lastly, elevated scenarios had higher overall total illness probabilities 

compared to ambient scenarios. However, the human load sources did not differ substantially 

between the ambient and elevated scenarios. The current recreational contact standard may not 

be adequate to support public health safety when the proportion of microbial load at Sylvan 

Beach is dominated by human sources because risk was elevated when the reference pathogen 

dose is assumed to range from 0 to 216 or 267 MPN/100 mL depending on the recreational 

period. 
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CHAPTER IV                                                                                                                     

QUANTITATIVE MICROBIAL RISK ASSESSMENT FRAMEWORK FOR THE 

ESTIMATION OF HUMAN HEALTH RISK DURING EXTREME WEATHER 

Introduction 

The prevention of immediate safety issues, during extreme weather events, including 

drowning and high-water rescues, take precedent over secondary concerns of pathogenic 

illnesses (Hunter 2003). However, the public is vulnerable to pathogenic illnesses since flood 

waters can inundate WWTF and sanitary sewer systems causing raw sewage and pathogen 

contamination (Man et al. 2014). In emergency situations following extreme weather events the 

public undergoes forced contact with contaminated flood waters during evacuation. Extreme 

weather events accelerate coastal physical processes that transport contaminated flood waters 

into communities where residents are exposed to heightened pathogenic risk (Hofstra 2011, 

Rochelle-Newall et al. 2015). Further compounding uncertainty, little information is available in 

the Houston-Galveston region regarding how climatic conditions such as an increased intensity 

of storm events affect the concentration of waterborne pathogens.  

Following extreme weather events governmental agencies are unable to conduct routine 

bacteriological water quality monitoring, creating a lapse of information, when it is needed most 

to protect public health. This lack of knowledge exposes the region to risk uncertainty and raises 

concerns in the face of more frequent extreme storm events (Hofstra 2011, Rose et al. 2001). The 

quantification of risk and identification of pollution emitters is becoming increasingly important 

because the more fecal waste in the environment, the less resilient the coastal system will be to 

increasing storm events (Malham et al. 2014). Precipitation is a primary driver of costal physical 

processes that govern the fate, transport, and waterway concentration of environmental ENT and 
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pathogens driving associated outbreaks (Curriero et al. 2001, Thompson et al. 2012). The impact 

of increased frequency and strength of wet weather and flood events on the concentrations of 

environmental ENT and associated pathogens needs to be determined. These changing coastal 

processes could dampen economic activity and deteriorate public health by increasing the 

number of primary contact recreation exceedances, oyster water impairments, and expose the 

public to infection during natural hazard events (Malham et al. 2014, Man et al. 2014).  

The Houston-Galveston region has undergone several extreme weather events in recent 

years including the 2011 drought, flood events in 2015 and 2016, and Hurricane Harvey in 2017. 

Little information is available to characterize differences in pathogen infection probability 

between excessively wet and dry years or during extreme events which can result in hazardous 

waterborne pathogen conditions. The objective of this phase is to utilize the models developed in 

Chapter II and III to generate estimates of potential health risk during extreme weather events. 

This objective hindcasts the potential human health risk at Sylvan Beach during extreme weather 

event scenarios by retrospectively recreating event conditions with data mined from the 

corresponding temporal period.  

Methods 

This study performed scenario analysis for a range of extreme weather events when ENT 

sampling could not be conducted in real time. To compare years, characterized by excessive 

drought and rainfall, ENT was estimated for two annual periods 01/01/2011-12/31/2011 (dry 

drought period) and 01/01/2015-12/31/2015 (wet high rainfall period) (rainfall data from Harris 

County Flood Control). The 2015 Memorial Day flood (05/25/2015-05/26/2015) and the 2016 

Tax Day flood (04/18/2016) were utilized as event scenarios. The prediction equation from the 

best fit models developed in Chapter II, corresponding to the year and recreational period, were 
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applied to estimate ENT concentration. Input datasets for prediction were compiled consisting of 

explanatory variables selected for the corresponding model of best fit during Chapter II of this 

dissertation research. Daily ENT estimates were made at a set time point of 10 AM to align with 

the time ENT samples are typically collected at the study site. The QMRA modeling procedure 

developed in Chapter III of this dissertation research was applied to establish a quantitative 

measure of risk and determine the total probability of contracting a gastrointestinal illnesses from 

contact with pathogen impaired waters for three event scenarios with varied concentrations of 

ENT: 1) observed ENT concentration collected two days after the 04/18/2016 flood event, 2) 

ENT at the maximum detectable concentration (24,196 MPN/100 mL), and 3) a hypothetical 

ENT concentration ranging from 100,000 to 125,000 MPN/100 mL representing heightened 

microbial contamination. Scenarios were generated assuming primary and secondary contact for 

adult and child populations during the recreational beach season.  

Study variables consisted of the following: wind direction (degree[º]), speed (meter per 

second [m/s]), and peak gust (m/s), atmospheric pressure (hectopascals [hPa]), air temperature 

(degree Celsius [°C]), water temperature (°C), conductivity (millisiemens per centimeter 

[mS/cm]), water level (m), were downloaded from the National Oceanographic and Atmospheric 

Association’s  (NOAA) Tides and Currents Morgan’s Point Station (8770613). The Harris 

County Flood Warning System Little Cedar Bayou at 8th Street gage provided daily 15-minute 

rainfall (millimeter [mm]). The daily regional clear sky ultraviolet index (UVI) archived during 

the solar noon hour for the City of Houston was downloaded from the National Weather Service 

(NWS). Lastly, solar radiation (langley per minute [ly/min]) was acquired from the TCEQ 

Houston Regional Office maintained Seabrook Friendship Park weather monitoring station (EPA 

site 482011050). Records with one or more null values were removed. To validate the estimated 
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ENT concentrations dates when ENT samples were collected at Sylvan Beach Park were cross-

referenced to the prediction estimates. The average concentration of ENT between Sylvan Beach 

North and South stations was utilized. Data processing, validation, and management was 

conducted in Microsoft Office Professional Excel® 2016. 

The TGLO utilizes relative percent difference (RPD) as a data quality indicator to 

interpret precision of field duplicate ENT samples. Due to the natural variability of ENT in 

surface waters the TGLO considers a RPD between duplicate field samples of less than or equal 

to sixty percent as acceptable (TGLO 2018). As a measure of estimated ENT precision, the RPD 

was calculated for all dates with an estimated and observed ENT value. RPD was calculated as 

the absolute value of paired estimated minus observed ENT records divided by the average of the 

estimated and observed values. To assess model performance the data quality indicator threshold 

of sixty percent was applied and interpreted as an acceptable error rate. Temporal scenarios were 

explored by simulation using the regression model and QMRA frameworks. This will help 

identify sensitive time periods when warnings, beach closures, and additional precautionary 

actions may be required (Liao et al. 2016).  

Results 

Estimates 

During the 05/01/2015 to 05/31/2015 analysis period five observed ENT samples align 

with estimated ENT samples. However, 80% (4/5) of the paired samples had an RPD greater 

than 60% and no samples had an RPD less than 10%. In addition, 40% (2/5) of the estimated 

ENT values resulted in false positive errors which occurred on 05/15/2015 and 05/28/2015. The 

model tended to overestimate the concentration of ENT when compared to observed ENT values 
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and exceedance of the primary recreation contact screening level (log 4.64 MPN/100 mL) 

(Figure 14). 

 

 

Figure 14 Observed and estimated ENT values for the temporal period 05/01/2015 to 05/31/2015. 

 

 

 

During the analysis period of 04/01/2016 to 04/31/2016 seven paired observed and 

estimated ENT records are available (Figure 15). The maximum RPD occurred on 04/01/2016 

(50%); no paired samples had an RPD greater than 60%. The lowest RPD was 11% 

corresponding to the 4/20/2016 estimated and observed samples. An error rate of 43% occurred 

because three of seven matched records resulted in over or under predictions. Two false positives 

were generated by the model resulting in an overestimation of ENT and one false negative 

occurred underestimating ENT.  
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Figure 15 Observed and estimated ENT values for the temporal period 04/01/2016 to 04/31/2016; to 

improve clarity of the graph one estimated ENT value of 78.29 on 4/21/2016 was left off. 

 

 

 

 

Figure 16 Overall estimated and observed ENT values for the annual period 1/01/2011 to 12/31/2011. 
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The regression equations for the recreational and non-recreational periods of 2011 were 

applied to generate predications for the analysis period 01/01/2011 to 12/31/2011 which was the 

driest year in state history (Figure 16). Over the course of the year 40 observed ENT samples 

aligned with an estimated ENT value. Comparing paired samples, 35% (14/40) had an RPD 

greater than 60% and 12 of 40 (30%) had an RPD of less than or equal to 10%. When paired 

samples where compared to the primary recreation contact screening level of log 4.64 MPN/100 

mL 4 of 40 (10%) samples resulted in a false negative error were the observed ENT resulted in 

an exceedance, but the estimated ENT did not; no false positives were detected (Figure 17).  

 

 

Figure 17 Paired observed and estimated ENT values for the temporal period 01/01/2011 to 12/31/2011. 
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Figure 18 Overall estimated and observed ENT values for the annual period 1/01/2015 to 12/31/2015. 

 

 

 

 

Figure 19 Paired observed and estimated ENT values for the temporal period 01/01/2015 to 12/31/2015. 
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The regression equations developed for 2015 recreational and non-recreational periods 

were applied to generate estimates for the 01/01/2015 to 12/31/2015 analysis period (Figure 18). 

Over the course of the year 43 records had an observed ENT sample with a corresponding 

estimated ENT value. Comparing observed and estimated results 40% (17/43) records had an 

RPD greater than 60% and three records had an RPD less than 10%. The predicted estimates 

resulted in a 30% (13/43) error rate (Figure 19). The model overestimated the concentration of 

ENT more often than underestimated. Eight false positives and five false negatives were detected 

when paired observed and estimated ENT values were compared to the primary recreation 

contact screening level.  

Relative Percent Difference 

To calculate an overall RPD paired estimated and observed ENT values for all analysis 

periods were combined and evaluated. The resultant dataset contained 90 records which were 

cross validated to discern an error threshold. Of the 90 records 31 (34%) had an RPD greater 

than the 60% threshold. However, the largest proportion of estimated and observed records (59) 

were found to be within the acceptable variance threshold of 60%.  

QMRA 

The first QMRA scenario modeled observed ENT from the study site that was collected 

on 04/20/2016 two days after the 04/18/16 flood event. The ENT concentration at Sylvan Beach 

Park ranged from 6,488 MPN/100 mL at the North site to 6,867 MPN/100 mL at the South site. 

The observed ENT concentrations at the study sites were utilized as the upper and lower bounds 

of a uniform probability distribution to generate a random coefficient incorporated in the dose 

conversion equation to represent total probability of risk resultant from the 04/18/16 event. 
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Figure 20 Scenario one - predicted total probability of illness from 100% human, mixed, and 100% 

nonhuman microbial loads for adult recreationists engaging in an hour of primary or secondary contact 

based on the 04/18/16 event conditions (6,488-6,867 MPN/100 mL). 

 

 

 

In scenario one the total predicted median probability of illness for the adult population 

ranged from 0.30 (100% nonhuman secondary contact) to 0.56 (100% human primary contact) 

(Figure 20). The primary contact scenarios resulted in overall higher median probability of 

illness compared to secondary contact. The primary contact median probability of illness from 

mixed and nonhuman sources was 0.35 and 0.33, respectively. The total predicted median 

probability of illness to the adult population during secondary contact assuming the microbial 

load was derived from 100% human sources is 0.54. Secondary contact median probability was 

0.33 for mixed and 0.3 for nonhuman scenarios. The total predicted median probabilities of 

illness for the child population were slightly elevated compared to the adult population (Figure 
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21). The median probability of illness for the 100% human load component remained high for 

primary and secondary contact, at 0.58 and 0.55, respectively. The 100% nonhuman load for 

secondary contact resulted in the lowest median probability of illness (0.32). The mixed 

secondary contact load scenario resulted in a median probability of illness of 0.34. The mixed 

(0.38) and nonhuman (0.36) scenarios for primary contact had higher median values but lower 

variance compared to secondary contact scenarios. 

 

 

 

 

Figure 21 Scenario one - predicted total probability of illness from 100% human, mixed, and 100% 

nonhuman microbial loads for child recreationists engaging in an hour of primary or secondary contact 

based on the 04/18/16 event (6,488-6,867 MPN/100 mL). 
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Figure 22 Scenario two - predicted total probability of illness from 100% human, mixed, and 100% 

nonhuman microbial loads for adult recreationists engaging in an hour of primary or secondary contact 

based on the maximum detectable ENT concentration (24,196 MPN/100 mL). 

 

 

 

The second QMRA scenario modeled total probability of illness at the maximum 

detectable observed ENT concentration of 24,196 MPN/100 mL. Despite a fourfold increase in 

the modeled ENT concentration the maximum total probability of illness for the primary contact 

adult human load scenario increased marginally to 0.57 from 0.56 (scenario one) (Figure 22). 

The adult secondary contact human load scenario resulted in an elevated median probability of 

illness of 0.56. The median probability of illness for the secondary contact mixed (0.35) and 

primary contact nonhuman (0.36) load scenarios were nearly equal. The lowest median 

probability of illness was the nonhuman load component of the secondary contact scenario at 

0.33. The child population for scenario two exhibited similar patterns compared to the adult 
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scenario but had higher overall median probability of illnesses ranging from 0.34 (secondary 

contact nonhuman) to 0.59 (primary contact human) (Figure 23). The range between nonhuman 

primary and mixed secondary median risk contact scenarios was wider than the adult population. 

 

 

Figure 23 Scenario two - predicted total probability of illness from 100% human, mixed, and 100% 

nonhuman microbial loads for child recreationists engaging in an hour of primary or secondary contact 

based on the maximum detectable ENT concentration. 
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Figure 24 Scenario three - predicted total probability of illness from 100% human, mixed, and 100% 

nonhuman microbial loads for adult recreationists engaging in an hour of primary or secondary contact 

based on a theoretical extreme event ENT concentration. 

 

 

 

The third QMRA scenario model total illness probability at a theoretical ENT 

concentration ranging from 100,000 to 125,000 MPN/100 mL to simulate extreme microbial 

conditions. The median probabilities from the human load components were slightly elevated 

compared to scenarios one and two; however, variance was reduced for the mixed and nonhuman 

primary and secondary scenarios. The maximum median probability of illness for the adult 

(0.59) (Figure 24) and child (0.61) (Figure 25) populations occurred under the primary contact 

human load scenario, as expected. Secondary contact human load scenario also resulted in 

elevated median probability of illness for the adult (0.58) and child (0.58) populations. In this 

scenario median risk from the primary recreation scenarios was nearly equal, which is a 
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departure from the expected result that child risk tended to be elevated comparted to adults. The 

child scenarios resulted in reduced variance compared to the adult population for the all 

scenarios occurring during primary and secondary contact.  

 

 

 

 

Figure 25 Scenario three - predicted total probability of illness from 100% human, mixed, and 100% 

nonhuman microbial loads for child recreationists engaging in an hour of primary or secondary contact 

based on a theoretical extreme event ENT concentration. 

 

 

 

Discussion 

This study applied regression equations to estimate ENT concentration for two annual, 

2011 and 2015, and two event analysis periods, 2015 Memorial Day Flood and the 2016 Tax 

Day Flood. In addition, a quantitative measure of total illness probability was estimated for three 

event scenarios: 1) observed ENT concentration collected two days after the 04/18/2016 event, 
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2) ENT concentration at the maximum detectable limit, and 3) a theoretical ENT concentration 

ranging from 100,000 to 125,000 MPN/100 mL representing heightened microbial 

contamination. The study year 2015 was an exceptionally wet year with higher rainfall compared 

to 2011. The year 2011 was the single driest in recorded Texas State history with only 57 cm of 

annual rainfall while 2015 received three times the rainfall totaling 220 cm.  

Regression Estimates 

The maximum ENT prediction from the 2015 annual model was log 32 MPN/100 mL on 

10/25/2015 while the annual 2011 model predicted one value of log 55 MPN/100 mL on 

10/10/2011. The maximum values from observed ENT samples were log 6.1 MPN/100 mL in 

2011 and log 8 MPN/100 mL in 2015. The geometric mean of predicted ENT values for 2015 

was log 2.53 MPN/100 mL compared to the observed geometric mean of log 2.92 MPN/100 mL. 

A difference of log 0.39 MPN/100 mL. The geometric mean of predicted ENT in the study year 

2011 was log 1.4 MPN/100 mL compared to the observed ENT concentration of log 2.15 

MPN/100 mL; a log 0.75 MPN/100 mL difference. Although both annual models resulted in the 

prediction of outliers the overall concentrations of observed and estimated ENT were comparable 

for each study year. In addition, ENT concentrations for 2011 were lower than the 2015 

concentrations. In Chapter II observed ENT concentrations between study years 2011 and 2015 

were determined to be statistically different (α=0.05) under the nonparametric Wilcoxon method. 

The observed concentration of ENT in 2011 is significantly less than 2015. This pattern was 

reflected in the 2011 and 2015 regression models based on estimated ENT concentrations.  

In addition, to estimating annual periods predictions were made for two short term 

periods (05/01/2015 to 05/31/2015 and 04/01/2016 to 04/30/2016) containing the 2015 Memorial 

Day (05/25/2015-05/26/2015) Flood and the 2016 Tax Day Flood (04/18/2016). The maximum 
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estimated ENT concentration from the Memorial Day period was 12.44 log MPN/100 mL on 

5/27/2015 compared to the observed maximum of 6.2 log MPN/100 mL which was collected on 

the same date. Although the model tended to overestimate the concentration of ENT it correctly 

predicted the maximum value which corresponds with the observed maximum on the day after 

the flood event. Because the precipitation variable with the highest resolution was 1-day rainfall 

the model was able to capture a potential high concentration of ENT one day post storm event. 

The maximum estimated ENT value from the Tax Day Flood period was an extreme outlier of 78 

log MPN/100 mL predicted on 04/21/2016 while the actual maximum observed value was 8.8 

log MPN/100 mL collected on 04/20/2016. Despite generating a high outlier, the model was able 

to make a comparable estimate of ENT two days after the 04/18/2016 flood event. On 

04/20/2016 the model estimated a log ENT value of 9.9 MPN/100 mL compared to the 8.8 log 

MPN/100 mL observed value. The lowest level rainfall variable included in this model was for a 

2-day period resulting in a lag between the storm event (04/18/2016) and the comparable 

observed/estimated ENT record. 

The 2011 non-recreational model resulted in the selection of 1, 3, and 7-day rainfall as 

explanatory variables while the recreational model, which represents May through August, did 

not contain any variables describing rainfall except for the number of days since last rain event. 

In comparison, the 2015 non-recreational model resulted in the selection of pre-sample rainfall, 

as well as 1 and 3-day rain as explanatory variables. The 2015 recreational model contained 1, 2, 

and 7-day rainfall. Interestingly, the 2011 models contained more variables describing solar 

radiation and the ultraviolet index compared to the 2015 models. These results suggest that 

rainfall has less influence on the concentration of ENT at Sylvan Beach Park during a drought 

year; especially during the hottest part of the year. In drought years solar radiation is a primary 
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influence on ENT while in years with above average rainfall the amount of precipitation is a key 

driver.  

Bacteriological samples are typically collected as part of long-term monitoring programs 

on a quarterly and routine basis by State agencies such as the TCEQ. Likewise, the TGLO 

collects Beach Watch samples on a routine schedule, unless an exceedance is detected in which 

case sampling is continued until the ENT concentration is below the primary recreation contact 

criterion. Due to current monitoring protocols relatively few storm event ENT samples are 

available for use in model development and training. This causes two issues in terms of 

estimating ENT concentrations: 1) there are not enough ENT samples collected during or shortly 

after extreme weather events that can be included in model development and 2) there aren’t 

enough observed ENT values available to validate model estimates associated with storm events. 

The maximum detection of ENT is limited to 24,000 MPN/100 mL which excludes the 

numeration of higher ENT concentrations. Additional sampling and special studies are needed to 

target and quantify the true upper threshold of ENT during high rainfall periods to gather better 

information for model development and validation corresponding to large events which can 

improve performance of predictive models.  

QMRA 

The highest estimate of total median illness probability (0.61) occurred under the high 

scenario for the child population from human microbial loadings during primary recreation. The 

lowest estimate of median total illness probability (0.30) was generated under the low scenario 

for adult secondary recreationists when microbial contamination is a result of nonhuman sources 

i.e. dogs and seagulls. All QMRA scenarios in this Chapter were generated with a significantly 

higher dose than the assumed ambient conditions of the QMRA in Chapter III. These results 
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suggest that a threshold is reached, and illness probability does not increase exponentially with 

dose. Another pattern evident in the QMRA results is the inverse relationship between the 

simulated ENT dose and variability of total illness probability which decreases indicating that 

uncertainty of achieving illness is reduced at higher dose concentrations. The mixed load high 

scenario for the child population had the lowest variability with a total illness probability range 

of 0.02 and an interquartile range of 0.003. Conversely, the highest variability was recorded for 

the adult secondary recreation human load with a range of 0.023and interquartile range of 0.008. 

Overall the human load scenarios had greater variability compared to the nonhuman and mixed 

scenarios.  

 As seen in Chapter III the total probability of illness is driven primarily by the high rate 

of infection associated with norovirus. This potency results in the 100% human load scenarios 

having substantially elevated illness probability compared to the nonhuman and mixed scenarios. 

As described by Soller et al. (2014) the QMRA results of this study suggest that total illness 

probability is driven by the type and magnitude of source load; higher risk can be ascribed to 

human derived loads, while risk is substantially reduced from mixed and nonhuman sources of 

fecal waste. However, during event conditions represented by QMRA scenarios in this Chapter 

and the elevated scenario in Chapter III nonhuman and mixed loadings can contribute to total 

illness probability.   

 In Veldhuis et al. (2010) urban flood waters impacted by sanitary sewer overflows and 

combined sewer discharges were sampled for FIB and pathogens to quantify microbial risk. The 

pathogen Campylobacter spp. was positively detected in 5/5 samples while ENT ranged from a 

concentration of 500,000 to 3,700,000 cfu 100 mL-1. At Sylvan Beach Park observed ENT 

samples were collected on 5/27/2015 that averaged 6.20 log MPN/100 mL one day after the 
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Memorial Day flood and on 04/20/2016 two days after the Tax Day flood event averaging 8.8 

log MPN/100 mL. These concentrations suggest that Sylvan Beach may have been impacted by 

raw sewage contamination containing human fecal waste during flood events. However, the 

Memorial Day event had a longer duration and higher intensity of rainfall compared to the Tax 

Day episode. The greater volume of rainfall could lead to dilution in the dose associated with the 

Memorial Day event as evidenced by the lower concertation of ENT collected at Sylvan Beach. 

Although, the QMRA scenario assumptions for this Chapter were generated to be 

representative of recreational contact during or shortly after extreme rain events additional 

monitoring needs to be conducted to improve estimates of infection risk related to high intensity 

weather events. To generate results with reduced uncertainty and higher degree of accuracy 

pathogens such as norovirus and Campylobacter spp. should be collected from flood waters 

following periods of intensive rainfall in the Houston-Galveston region.  

Conclusion 

Under normal conditions non-human or mixed microbial scenarios likely approximate the 

microbial burden at Sylvan Beach, but during extreme weather events a heighted human load is 

feasible. Sylvan Beach is likely vulnerable to nonpoint and point source pollution and localized 

high concentrations of ENT and associated pathogens after rain events, but total probability of 

illness likely does not increase exponentially with dose. This QMRA suggests that the overall 

total probability of illness is higher for event scenarios that represent heightened periods of 

microbial contamination compared to expected typically ambient conditions with lower ENT 

concentrations. Similarly, observed and estimated concentrations of ENT were shown to be 

elevated during wet years compared to dry years. The 2015 annual model resulted in higher 

geometric mean ENT concentrations while increased solar radiation has potential to influence 
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ENT during drought years. This could have negative repercussions on human and environmental 

health as the region is expected to be impacted by more intense and frequent rain events. 
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CHAPTER V                                                                                                                             

SUMMARY AND CONCLUSIONS 

Summary 

In U.S. surface waters, outdoor recreational activities such as swimming, boating, and 

fishing have been estimated to account for four billion recreational contact events annually 

(DeFlorio-Barker et al. 2018). High concentrations of pathogens in surface water where 

recreational activity occurs has significant economic implications (DeFlorio-Barker et al. 2017, 

Johnson et al. 2008, Machado and Mourato 2002, Rabinovici et al. 2004, Ralston et al. 2011, 

Remoundou and Koundouri 2009, Shuval 2003), as well as detrimental consequences to public 

health (Dorevitch et al. 2012, Given et al. 2006, Ralston et al. 2011, Schwab 2007). The primary 

pathogen-related pollutant of concern in recreational waters is fecal waste, which may contain 

infectious agents such as bacteria (e.g., Campylobacter and Salmonella), protozoa (e.g., 

Cryptosporidium and Giardia), and viruses (e.g., noroviruses and adenoviruses) (Castro-

Hermida et al. 2009, Gibson 2014, Hellein et al. 2011, Sinclair et al. 2009). Noroviruses are a 

leading cause of illness outbreaks in recreational water due to a high potential to survive 

environmental stressors and remain infectious, and have a high likelihood of causing infection in 

the human population (Fong and Lipp 2005, Gibson 2014, Seitz et al. 2011, Sinclair et al. 2009). 

In addition, contamination resulting in infection from Campylobacter spp. has been on the rise 

globally (Kaakoush et al. 2015).  

Despite prevalence of public health risk, feasibility testing had not been conducted prior 

to this study to determine if a FIB forecasting model could improve beach management and 

reduce public exposure to pathogens in the Houston-Galveston region. Chapter II of this 

dissertation resulted in the collection of readily available historical data to develop and evaluate 
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eight sets of regression models split between recreational and non-recreational beach seasons as 

well as an overall model. The ENT forecasting models can reduce uncertainty at Sylvan Beach 

Park by outperforming risk estimates made by collecting weekly or bi-weekly grab samples, 

known as the persistence method.  

Overall, most FIB forecasting models developed during this dissertation performed better 

than the persistence method. Beach managers should consider adopting a forecasting model-

based management system because models have the potential to improve the issuance of 

erroneous public health contamination advisories and serve as an early warning system reducing 

public pathogen exposure. Based on the methodology developed, additional sites along the Texas 

coast should be evaluated for forecasting feasibility. The potential economic and public health 

implications of recreating in pathogen contaminated waters at Texas coastal beaches remains 

unknown but is expected to be substantial (Figure 26). 
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Figure 26 Recreational swimming zone at a Texas coastal beach park. 

 

 

 

In Chapter III the estimated total probability of infection and subsequent illness was 

calculated under three exposure scenarios that considered the population exposed, sources of 

microbial load, the recreational period during which exposure occurred, and ambient compared 

to elevated microbial conditions. The total probability of median illness was highest for primary 

contact that occurred during the recreational beach season when the largest number of 

recreationists have the potential to be exposed. For both populations and all recreational periods, 

the 100% human source loads consistently accounted for the highest total predicted probability 

of illness while the 100% nonhuman scenarios resulted in the lowest. Predicted probability of 

illness for the child scenarios where recreational contact occurred for a prolonged two-hour 

interval was marginally elevated compared to the one-hour adult contact scenarios suggesting 

that risk may not differ between the two populations. Lastly, elevated scenarios had higher 

overall total illness probabilities compared to the ambient scenarios. However, the human load 
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sources did not differ substantially between the ambient and elevated scenarios. The current 

recreational contact standard may not be adequate to support public health safety when the 

proportion of microbial load at Sylvan Beach is dominated by human sources. In the human load 

scenario, risk estimated as total median probability of illness occurs when the reference pathogen 

dose, repeatedly sampled from a uniform probability distribution, ranges from 0 to 216 or 267 

MPN/100 mL depending on the recreational period. 

In Chapter IV regression equations were utilized to estimate ENT concentration for two 

annual and two flood event analysis periods. The overall concentrations of observed and 

estimated ENT were found to be comparable for each study year. In addition, ENT 

concentrations for the drought year 2011 were lower than concentrations from the excessively 

wet year 2015. The models successfully characterized patterns displayed by observed samples 

and were able to generate comparable estimates of ENT concertation shortly after the Memorial 

and Tax Day flood events. The 2015 annual model resulted in higher geometric mean ENT 

concentrations while increased solar radiation has potential to influence ENT during drought 

years. This could have negative repercussions on human and environmental health as the region 

is expected to be impacted by more intense and frequent rain events. 

In addition, a quantitative measure of total illness probability was estimated for three event 

scenarios: 1) observed ENT concentration collected two days after the 04/18/2016 event, 2) ENT 

concentration at the maximum detectable limit, and 3) a theoretical ENT concentration ranging 

from 100,000 to 125,000 MPN/100 mL representing heightened microbial contamination. Sylvan 

Beach is likely vulnerable to nonpoint source pollution and localized high concentrations of ENT 

and associated pathogens after rain events, but total probability of illness does not increase 

exponentially with dose. This QMRA suggests that the overall total probability of illness is 
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higher for event scenarios that represent heightened periods of microbial contamination 

compared to expected typically ambient conditions with lower ENT concentrations.  

 

 

 

 



 

93 

 

REFERENCES 

Abel, N.V., Schoen, M.E., Kissel, J.C. and Meschke, J.S. (2017) Comparison of risk predicted by 

multiple norovirus dose–response models and implications for quantitative microbial risk 

assessment. Risk Analysis 37(2), 245-264. 

 

Ahmad, A., Dada, A.C., Usup, G. and Heng, L.Y. (2014) Occurrence of Enterococcus species 

with virulence markers in an urban flow-influenced tropical recreational beach. Marine Pollution 

Bulletin 82, 26-38. 

 

Anderson, K.L., Whitlock, J.E. and Harwood, V.J. (2005) Persistance and differential survial of 

fecal indicator bacteria in subtropical waters and sediments. Applied and Environmental 

Microbiology 71(6), 3041-3048. 

 

Arias, C. and Murray, B. (2012) The rise of the Enterococcus: beyond vancomycin resistance. 

Nature Review Micrbiology 10(4), 266-278. 

 

Ashbolt, N.J., Schoen, M.E., Soller, J.A. and Roser, D.J. (2010) Prediciting pathogen risk to aid 

beach management: The real value of quantitative microbial risk assesment (QMRA). Water 

Research 44, 4692-4703. 

 

Bai, S. and Lung, W.S. (2005) Modeling sediment impact on the transport of fecal bacteria. 

Water Research 39(20), 5232-5240. 

 

Bedri, Z., Corkery, A., O'Sullivan, J.J., Deering, L.A., Demeter, K., Meijer, W.G., O'Hare, G. 

and Masterson, B. (2016) Evaluating a microbial water quality prediction model for beach 

management under the revised EU Bathing Water Directive. Journal of Environmental 

Management 167, 49-58. 

 

Belsley, D.A., Kuh, E. and Welsch, R.E. (2005) Regression diagnostics–identifying influential 

data and sources of collinearity, John Wiley & Sons, Hoboken. 

 

Betancourt, W.Q., Duarte, D.C., Vasquez, R.C. and Gurian, P.L. (2014) Cryptosporidium and 

Giardia in tropical recreatioanl marine waters contaminated with domestic sewage: Estimation 

of bathing-assocaited disease risks. Marine Pollution Bulletin 85, 268-273. 

 

Black, R.E., Levine, M.M., Clements, M.L., Hughes, T.P. and Blaser, M.J. (1988) Experimental 

Campylobacter jejuni infection in humans. Oxford Journals 157(3), 472-479. 

 

Boehm, A.B. (2007) Enterococci concentrations in diverse coastal environments exhibit extreme 

variability. Environmental Science and Technology 41(24), 8227-8232. 

 

Bourke, B., Chan, V.L. and Sherman, P. (1998) Campylobacter upsaliensis: waiting in the 

wings. Clinical Microbiology Reviews 11(3), 440-449. 

 



 

94 

 

Bradshaw, J.K., Snyder, B.J., Oladeinde, A., Spidle, D., Berrang, M.E., Meinersmann, R.J., 

Oakley, B., Sidle, R.C., Sullivan, K. and Molina, M. (2016) Characterizing relationships among 

fecal indicator bacteria, microbial source tracking markers, and associated waterborne pathogen 

occurrence in stream water and sediments in a mixed land use watershed. Water Research 101, 

498-509. 

 

Brauwere, A.D., Ouattara, N.K. and Servais, P. (2014) Modeling fecal indicator bacteria 

concentrations in natural surface waters: A Review. Critical Reviews in Environmental Science 

and Technology 44, 2380-2453. 

 

Brinks, M.V., Ryan H. Dwight, P., Nathaniel D. Osgood, P., Gajapathi Sharavanakumar, B., 

MPH, David J. Turbow, P., Mahmoud El-Gohary, M., Joshua S. Caplan, B. and Jan C. Semenza, 

P., MPH (2008) Health risk of bathing in southern california coastal waters. Environmental & 

Occupational Health 63(3), 123-135. 

 

Broman, T., Palmgren, H., Bergstro¨m, S., Sellin, M., Waldenstro¨m, J., Danielsson-Tham, M.-

L. and Olsen, B. (2002) Campylobacter jejuni in black-headed gulls (Larus ridibundus): 

prevalence, genotypes, and influence on C. jejuni epidemiology. Journal of Clinical 

Microbiology 40(12), 4594-4602. 

 

Brooks, W., Corsi, S., Fienen, M. and Carvin, R. (2016) Predicting recreational water quality 

advisories: A comparison of statistical methods. Environmental Modelling and Software 76, 81-

94. 

 

Brooks, W.R., Fienen, M.N. and Corsi, S.R. (2013) Partial least squares for efficient models of 

fecal indicator bacteria on Great Lakes beaches. Journal of Environmental Management 114, 

470-475. 

 

Byappanahalli, M.N., Nevers, M.B., Korajkic, A., Staley, Z.R. and Hardwood, V.J. (2012) 

Enterococci in the environment. Microbiology and Molecular Biology Reviews 76(4), 685-706. 

 

Campos, C.J.A. and Lees, D.N. (2014) Environmental transmission of human noroviruses in 

shellfish waters. Applied and Environmental Microbiology 80(12), 3552-3561. 

 

Castro-Hermida, J.A., Garcı´a-Presedoa, I., Almeidab, A., Gonza´lez-Warletaa, M., Costab, 

J.M.C.D. and Mezoa, M. (2009) Detection of Cryptosporidium spp. and Giardia duodenalis in 

surface water: A health risk for humans and animals. Water Research 43, 4133-4142. 

 

Chaban, B., Ngeleka, M. and Hill, J.E. (2010) Detection and quantification of 14 Campylobacter 

species in pet dogs reveals an increase in species richness in feces of diarrheic animals. BMC 

Microbiology 10(73), 1-7. 

 

Colford, J.M., Schiff, K.C., Griffith, J.F., Yau, V., Arnold, B.F., Wright, C.C., Gruber, J.S., 

Wade, T.J., Burns, S., Hayes, J., McGee, C., Gold, M., Cao, Y., Noble, R.T., Haugland, R. and 



 

95 

 

Weisberg, S.B. (2012) Using rapid indicators for Enterococcus to assess the risk of illness after 

exposure to urban runoff contaminated marine water. Water Research 46, 2176-2186. 

 

Converse, R.R., Kinzelman, J.L., Sams, E.A., Hudgens, E., Dufour, A.P., Ryu, H., Santo-

Domingo, J.W., Kelty, C.A., Shanks, O.C., Siefring, S.D., Haugland, R.A. and Wade, T.J. (2012) 

Dramatic improvements in beach water quality following gull removal. Environmental Science 

and Technology 46, 10206-10213. 

 

Curriero, F.C., Patz, J.A., Rose, J.B. and Lele, S. (2001) The association between extreme 

precipitation and waterborn disease outbreaks in the United States, 1948-1994. American Journal 

of Public Health 91(8), 1194-1199. 

 

Cyterski, M., Brooks, W., Galvin, M., Wolfe, K., Carvin, R., Roddick, T., Fienen, M. and Corsi, 

S. (2013) Virtual beach 3.0.6: user’s guide, Wisconsin Sea Grant. 

 

DeFlorio-Barker, S., Wade, T.J., Jones, R.M., Friedman, L.S., Wing, C. and Dorevitch, S. (2017) 

Estimated costs of sporadic gastrointestinal illness associated with surface water recreation: a 

combined analysis of data from NEEAR and CHEERS studies. Environmental Health 

Perspectives 125(2), 215-222. 

 

DeFlorio-Barker, S., Wing, C., Jones, R.M. and Dorevitch, S. (2018) Estimate of incidence and 

cost of recreational waterborne illness on United States surface waters. Environmental Health 

17(3), 1-10. 

 

Dorevitch, S., Panthi, S., Huang, Y., Li, H., Michalek, A.M., Pratap, P., Wroblewski, M., Liu, L., 

Scheff, P.A. and Li, A. (2011) Water ingestion during water recreation. Water Research 45, 

2020-2028. 

 

Dorevitch, S., Pratap, P., Wroblewski, M., Hryhorczuk, D.O., Li, H., Liu, L.C. and Scheff, P.A. 

(2012) Health risks of limited-contact water recreation. Environmental Health Perspectives 

120(2), 192-197. 

 

Dufour, A.P., Behymer, T.D., Cantú, R., Magnuson, M. and Wymer, L.J. (2017) Ingestion of 

swimming pool water by recreational swimmers. Journal of Water and Health 15(3), 429-437. 

 

Dwight, R.H., Fernandez, L.M., Baker, D.B., Semenza, J.C. and Olson, B.H. (2005) Estimating 

the economic burden from illnesees assocaited with recreational coastal water pollution - a case 

study in Orange County, California. Journal of Environmental Management 76, 95-103. 

 

Eftim, S.E., Hong, T., Soller, J., Boehm, A., Warren, I., Ichida, A. and Nappier, S.P. (2017) 

Occurrence of norovirus in raw sewage–a systematic literature review and meta-analysis. Water 

Research 111, 366-374. 

 



 

96 

 

Ervin, J.S., Werfhorst, L.C.V.D., Murray, J.L.S. and Holden, P.A. (2014) Microbial source 

tracking in a coastal california watershed reveals canines as controllable sources of fecal 

contamination. Environmental Science and Technology 48, 9043-9052. 

 

Falbo, K., Schneider, R.L., Buckley, D.H., Walter, M.T., Bergholz, P.W. and Buchanan, B.P. 

(2013) Roadside ditches as conduits of fecal indicator organisms and sediment: implications for 

water quality management. Journal of Environmental Management 128, 1050-1059. 

 

Farkas, K., Cooper, D.M., McDonald, J.E., Malhamd, S.K., Rougemont, A.d. and Jones, D.L. 

(2018) Seasonal and spatial dynamics of enteric viruses in wastewater and in riverine and 

estuarine receiving waters. Science of the Total Environment 634, 1174-1183. 

 

Farouk, H., Hamid, R.H., Elminir, H.K. and Abulwfa, A. (2012) Ground-based measurements of 

UV Index (UVI) at Helwan. NRIAG Journal of Astronomy and Geophysics 1, 159-164. 

 

Feng, Z., Reniers, A., Haus, B.K. and Solo-Gabriele, H.M. (2013) Modeling sediment-related 

enterococci loading, transport, and inactivation at an embayed nonpoint source beach. Water 

Resources Research 69, 693-712. 

 

Figura, N. (1991) Campylobacter spp. isolated from dog faeces. Lancet 338. 

 

Fleisher, J.M., Fleming, L.E., Solo-Gabriele, H.M., Kish, J.K., Sinigalliano, C.D., Plano, L., 

Elmir, S.M., Wang, J.D., Withum, K., Shibata, T., Gidley, M.L., Abdelzaher, A., He, G., Ortega, 

C., Zhu, X., Wright, M., Hollenbeck, J. and Backer, L.C. (2010) The BEACHES study: health 

effects and exposures from non-point source microbial contaminants in subtropical recreational 

marine waters. International Journal of Epidemiology 39(5), 1291-1298. 

 

Fogarty, L.R., Haack, S.K., Wolcott, M.J. and Whitman, R.L. (2003) Abundance and 

characteristics of the recreational waterquality indicator bacteria Escherichia coli and 

enterococci in gull faeces. Journal of Applied Microbiology 94, 865-878. 

 

Fong, T.-T. and Lipp, E.K. (2005) Enteric Viruses of humans and animals in aquatic 

environments: health risks, detection, and potential water quality assessment tools. Microbiology 

and Molecular Biology Reviews 69(2), 357-371. 

 

Francy, D.S. (2009) Use of predictive models and rapid methods to nowcast bacteria levels at 

coastal beaches. Aquatic Ecosystem Health and Management Society 12(2), 177-182. 

 

Francy, D.S. and Darner, R.A. (2007) Nowcasting beach advisories at Ohio Lake Erie beaches. 

Survey, USGS (ed), U.S. Department of the Interior, Reston, Virginia. 

 

Frick, W.E., GE, Z. and Zepp, R.G. (2008) Nowcasting and forecasting concentrations of 

biological contaminants at beaches: a feasibility and case study. Environmental Science and 

Technology 42, 4818-4824. 

 



 

97 

 

Fries, J.S., Characklis, G.W. and Noble, R.T. (2006) Attachment of fecal indicator bacteria to 

particles in the Neuse River Estuary, N.C. Environmental Engineering 132(10), 1338-1345. 

 

Fries, J.S., Characklis, G.W. and Noble, R.T. (2008) Sediment–water exchange of Vibrio sp. and 

fecal indicator bacteria: Implications for persistence and transport in the Neuse River Estuary, 

North Carolina, USA. Water Research 42, 941-950. 

 

Fujioka, R.S., Hashimoto, H.H., Siwak, E.B. and Young, R.H.F. (1981) Effect of sunlight on 

indicator bacteria in seawater. Applied and Environmental Microbiology 41(3), 690-696. 

 

Gao, G., Falconer, R.A. and Lin, B. (2013) Modelling importance of sediment effects on fate and 

transport of enterococci in the Severn Estuary, UK. Marine Pollution Bulletin 67, 45-54. 

 

Garcia-Aljaro, C., Blanch, A.R., Campos, C., Jofre, J. and Lucena, F. (2018) Pathogens, faecal 

indicators and human-specific microbial source-tracking markers in sewage. Journal of Applied 

Microbiology 126, 701-717. 

 

Gibson, K.E. (2014) Viral pathogens in water: occurrence, public health impact, and available 

control strategies. Current Opinion in Virology 4, 50-57. 

 

Gitter, A.C., Karthikeyan, R., Boellstorff, D., Wagner, K. and Mena, K. (2016) Application of 

quantative microbioal risk assessment and bacterial source tracking to assess the assocaited 

human health risks from multiple fecal sources during recreational exposure in the Leon River 

watershed, Texas A&M University, College Station, TX. 

 

Given, S., Pendleton, L.H. and Boehm, A.B. (2006) Regional public health cost estimates of 

contaminated coastal waters: a case study of gastroenteritis at southern California beaches. 

Environmental Science and Technology 40, 4851-4858. 

 

Gonzalez, R.A., Conn, K.E., Crosswell, J.R. and Noble, R.T. (2012) Application of empirical 

predictive modeling using conventional and alternative fecal indicator bacteria in eastern North 

Carolina waters. Water Research 26, 5871-5882. 

 

Gonzalez, R.A. and Noble, R.T. (2014) Comparisons of statistical models to predict fecal 

indicator bacteria concentrations enumerated by qPCR- and culture-based methods. Water 

Research 48, 296-305. 

 

Goodwin, K.D., Gruber, S., Vondrak, M. and Crumpacker, A. (2016) Watershed assessment with 

beach microbial source tracking and outcomes of resulting gull management. Environmental 

Science and Technology 50, 9900-9906. 

 

Graml, W.E., Behle, M., Mueller, C. and Horn, E.H. (2014) Influence of particle association and 

suspended solids on UV inactivation of fecal indicator bacteria in an urban river. Water, Air, and 

Soil Pollution 225(1), 1-9. 

 



 

98 

 

Hack, S.K., Fogarty, L.R. and Wright, C. (2003) Escherichia coli and Enterococci at beaches in 

the Grand Traverse Bay, Lake Michigan: sources, characteristics, and environmental pathways. 

Environmental Science and Technology 37, 3275-3282. 

 

Halliday, E. and Gast, R.J. (2011) Bacteria in beach sands: an emerging challenge in protecting 

coastal water quality and bather health. Environmental Science and Technology 45, 370-379. 

 

Haramoto, E., Kitajima, M., Hata, A., Torrey, J.R., Masago, Y., Sano, D. and Katayama, H. 

(2018) A review on recent progress in the detection methods and prevalence of human enteric 

viruses in water. Water Research 135, 168-186. 

 

Hassard, F., CeriL.Gwyther, KataFarkas, Andrews, A., Jones, V., Cox, B., Brett, H., Jones, D.L., 

McDonald, J.E. and Malha, S.K. (2016) Abundance and distribution of enteric bacteria and 

viruses in coastal and estuarine sediments—a review. Frontiers in Microbiology 7(1692). 

 

Hatch, J.J. (1996) Threats to public health from gulls (Laridae). International Journal of 

Environmental Health Research 6(1), 5-16. 

 

He, L.-M.L. and He, Z.-L. (2008) Water quality prediction of marine recreational beaches 

receiving watershed baseflow and stormwater runoff in southern California, USA. Water 

Research 42, 2563-2573. 

 

Heberger, M.G., Durant, J.L., Oriel, K.A., Kirshen, P.H. and Minardi, L. (2008) Combining real-

time bacteria models and uncertainty analysis for establishing health advisories for recreational 

waters. Journal of Water Resources Planning and Management 134(1), 73-82. 

 

Hellein, K.N., Battie, C., Tauchman, E., Lund, D., Oyarzabal, O.A. and Lepo, J.E. (2011) 

Culture-based indicators of fecal contamination and molecular microbial indicators rarely 

correlate with Campylobacter spp. in recreational waters. Journal of Water and Health 9(4), 695-

707. 

 

Hewitt, J., Leonard, M., Greening, G.E. and Lewis, G.D. (2011) Influence of wastewater 

treatment process and the population size on human virus profiles in wastewater. Water Research 

45, 6267-6276. 

 

Hofstra, N. (2011) Quantifying the impact of climate change on enteric waterborne pathogen 

concentrations in surface water. Current Opinion in Environmental Sustainability 3, 471-479. 

 

Homer, C.G., Fry, J.A. and Barnes, C.A. (2012) The national land cover database, U.S. 

Geological Survey, Reston, VA. 

 

Hou, D., Rabinovici, S.J.M. and Boehm, A.B. (2006) Enterococci predictions from partial least 

squares regression models in conjunction with a single-sample standard improve the efficacy of 

beach management advisories. Environmental Science and Technology 40(6), 1737-1743. 

 



 

99 

 

Hunter, P.R. (2003) Climate change and waterborne and vector-borne disease. Journal of 

Applied Microbiology 94, 37-46. 

 

Jennings, W.C., Chern, E.C., O'Donohue, D., Kellogg, M.G. and Boehm, A.B. (2018) Frequent 

detection of a human fecal indicator in the urban ocean: environmental drivers and covariation 

with enterococci. Environmental Science Processes and Impacts 20, 480-492. 

 

Jett, B.D., Huycke, M.M. and Gilmore, M.S. (1994) Virulene of Enterococci. Clinical 

Microbiology Reviews 7, 462-478. 

 

Johnson, E.K., Moran, D. and Vinten, A.J.A. (2008) A framework for valuing the health benefits 

of improved bathing water quality in the River Irvine catchment. Journal of Environmental 

Management 87, 633-638. 

 

Jordan, D.W., Kane, M.E., Gehring, T.M., Sokol, R.L. and Alm, E.W. (2019) Exclusion of ring-

billed Gulls (Larus delawarensis) from recreational beaches using canid harassment. The Condor 

Ornithological Applications 121(1). 

 

Kaakoush, N.O., Castaño-Rodríguez, N., Mitchell, H.M. and Mana, S.M. (2015) Global 

epidemiology of Campylobacter infection. Clinical Microbiology Reviews 28(3), 687-720. 

 

Kay, D., Stapleton, C.M., Wyer, M.D., McDonald, A.T., Crowther, J., Paul, N., Jones, K., 

Francis, C., Watkins, J., Wilkinson, J., Humphrey, N., Lin, B., Yang, L., Falconer, R.A. and 

Gardner, S. (2005b) Decay of intestinal enterococci concentrations in high-energy estuarine and 

coastal waters: towards real-time T90 values for modelling faecal indicators in recreational 

waters. Water Research 39(4), 655-667. 

 

Ketley, J.M. (1997) Pathogenesis of enteric infection by Campylobacter. Microbiology 143, 5-

21. 

 

Kitajima, M., Iker, B.C., Pepper, I.L. and Gerba, C.P. (2014) Relative abundance and treatment 

reduction of viruses during wastewater treatment processes — identification of potential viral 

indicators. Science of the Total Environment 488-489, 290-296. 

 

Kletting, P. and Glatting, G. (2009) Model selection for time-activity curves: The corrected 

Akaike information criterion and the F-test. Journal of Medical Physics 19, 200-206. 

 

Kundu, A., McBride, G. and Wuertz, S. (2013) Adenovirus-assocaited health risks for 

recreational activites in a multi-use coastal watershed based on site-specific quantitative 

microbial risk assesment Water Research 47, 6309-6325. 

 

Lester, L.J. and Gonzalez, L.A. (2011) State of the Bay: A Characterization of the Galveston Bay 

Ecosystem, 3rd edition., Texas Commission on Environmental Quality, Galveston Bay Estuary 

Program. 

 



 

100 

 

Lim, K.-Y., Shao, S., Peng, J., Grant, S.B. and Jiang, S.C. (2017) Evaluation of the dry and wet 

weather recreational health riks in a semi-enclosed marine embayment in Southern California. 

Water Research 111, 318-329. 

 

Macedo, A.S., Freitas, A.R., Abreu, C., Machado, E., Peixe, L., Sousa, J.C. and Novais, C. 

(2011) Characterization of antibiotic resistant enterococci isolated from untreated waters for 

human consumption in Portugal. International Journal of Food Microbiology 145, 315-319. 

 

Machado, F.S. and Mourato, S. (2002) Evaluating the multiple benefits of marine water quality 

improvements: how important are health risk reductions? Journal of Environmental Management 

65, 239-250. 

 

Malham, S.K., Rajko-Nenow, P., Howlett, E., Tuson, K.E., Perkins, T.L., Pallett, D.W., Wang, 

H., Jago, C.F., Jones, D.L. and McDonald, J.E. (2014) The interaction of human microbial 

pathogens, particulate material and nutrients in estuarine environments and their impacts on 

recreational and shellfish waters. Environmental Science: Processes and Impacts 16(9), 2145-

2155. 

 

Man, H.d., Berg, H.H.J.L.v.d., Leenen, E.J.T.M., Schijven, J.F., Schets, F.M., Vliet, J.C.v.d., 

Knapen, F.v. and Husmana, A.M.d.R. (2014) Quantitative assessment of infection risk from 

exposure to waterborne pathogens in urban floodwater. Water Research 48, 90-99. 

 

Maraccini, P.A., Mattioli, M.C.M., Sassoubre, L.M., Cao, Y., Griffith, J.F., Ervin, J.S., 

Werfhorst, L.C.V.D. and Boehm, A.B. (2016) Solar inactivation of Enterococci and Escherichia 

coli in natural waters: effects of water absorbance and depth. Environmental Science and 

Technology 50(10), 5068-5076. 

 

Martinez-Anton, L., Marenda, M., Firestone, S.M., Bushell, R.N., Child, G., Hamilton, A.I., S.N. 

Long and Chevoir, M.A.R.L. (2018) Investigation of the role of Campylobacter infection in 

suspected acute polyradiculoneuritis in dogs. Journal of Veterinary Interal Medicine 32, 352-360. 

 

McBride, G.B., Stott, R., Miller, W., Bambic, D. and Wuertz, S. (2013) Discharge-based QMRA 

for estimation of public health risks from exposure to stormwaterborne pathogens in recreational 

waters in the United States. Water Research 47, 5282-5297. 

 

McElyea, B. (2003) A comparison between fecal coliform, E. coli, and Enterococci, as bacterial 

indicators in southeast Texas surface waters, p. 40, Field Operations Division, Region 12 - 

Houston. 

 

Medema, G.J., Teuni, P.F.M., Havelaar, A.H. and Haasb, C.N. (1996) Assessment of the dose-

response relationship of Campylobacter jejuni. International Journal of Food Microbiology 30, 

101-111. 

 



 

101 

 

Molale, L.G. and Bezuidenhout, C.C. (2016) Virulence determinants and production of 

extracellular enzymes in Enterococcus spp. from surface water sources. Water Science and 

Technology 73.8, 1817-1824. 

 

Murtaugh, P.A. (2009) Performance of several variable-selection methods applied to real 

ecological data. Ecology Letters 12, 1061-1068. 

Nevers, M.B. and Whitman, R.L. (2005) Nowcast modeling of Escherichia coli concentrations at 

multiple urban beaches of southern Lake Michigan Water Research 39, 5250-5260. 

 

Nevers, M.B. and Whitman, R.L. (2011) Efficacy of monitoring and empirical predictive 

modeling at improving public health protection at Chicago beaches. Water Research (45), 1659-

1668. 

 

NOAA (2010) NOAA Coastal Change Analysis Program (C-CAP) Regional Land Cover 

Database, National Oceanic and Atmospheric Administration (NOAA) Office for Coastal 

Management, Charleston, SC. 

 

Olivieri, A.W., Seto, E.Y., Danielson, R.E., Soller, J.A. and Cooper, R.C. (2014) Applications of 

Quantitative Microbial Risk Assessment (QMRA) to Regulatory Decision Making. International 

Congress on Environmental Modelling and Software 59, 1465-1473. 

 

Ong, C.W. (2013) Norovirus: a challenging pathogen. Healthcare Infection 18, 133-142. 

 

Qiu, Y., Lee, B.E., Neumann, N., Ashbolt, N., Craik, S., Maal-Bared, R. and Pang, X.L. (2015) 

Assessment of human virus removal during municipal wastewater treatment in Edmonton, 

Canada. Journal of Applied Microbiology 119, 1729-1739. 

 

Paule-Mercado, M.A., Ventura, J.S., Memon, S.A., Jahng, D., Kang, J.-H. and Lee, C.-H. (2016) 

Monitoring and predicting the fecal indicator bacteria concentrations from agricultural, mixed 

land use and urban stormwater runoff. Science of the Total Environment 550, 1171-1181. 

 

Quigg, A., Broach, L., Denton, W. and Miranda, R. (2009) Water quality in the Dickinson Bayou 

watershed (Texas, Gulf of Mexico) and health issues. Marine Pollution Bulletin 58(6), 896-904. 

 

Rabinovici, S.J.M., Bernknopf, R.L., Wein, A.M., Coursey, D.L. and Whitman, R.L. (2004) 

Economic and health risk trade-offs of swim closures at a Lake Michigan beach. Environmental 

Science and Technology 38(10), 2737-2745. 

 

Ralston, E.P., Kite-Powell, H. and Beet, A. (2011) An estimate of the cost of acute health effects 

from food- and water-borne marine pathogens and toxins in the USA. Journal of Water and 

Health 9(4), 680-694. 

 

Rayson, M.D., Gross, E.S. and Fringer, O.B. (2015) Modeling the tidal and sub-tidal 

hydrodynamics in a shallow, micro-tidal estuary. Ocean Modelling 89, 29-44. 

 



 

102 

 

Remoundou, K. and Koundouri, P. (2009) Environmental effects on public health: an economic 

perspective. International Journal of Environmental Research and Public Health 6, 2160-2178. 

 

Rochelle-Newall, E., Nguyen, T.M.H., Le, T.P.Q., Sengtaheuanghoung, O. and Ribolzi, O. 

(2015) A short review of fecal indicator bacteria in tropical aquatic ecosystems: knowledge gaps 

and future directions. Frontiers in Microbiology 6(308), 1-15. 

 

Rose, J.B., Epstein, P.R., Lipp, E.K., Sherman, B.H., Bernard, S.M. and Patz, J.A.  

(2001) Climate variability and change in the United States: potential impacts on water- and 

foodborne diseases caused by microbiologic agents. Environmental Health Perspectives 109(2), 

211-221. 

 

Said, L.B., Klibi, N., Lozano, C., Dziri, R. and Slama, K.B. (2015) Diversity of enterococcal 

species and characterization of high-level aminoglycoside resistant enterococci of samples of 

wastewater and surface water in Tunisia. Sciene of the Total Environment 530-531, 11-17. 

 

Santiago-Rodriguez, T.M., Rivera, J.I. and Coradin, M. (2013) Antibiotic-resistance and 

virulence genes in Enterococcus isolated from tropical recreational waters. Water and Public 

Health 11(3), 387-396. 

 

Sassoubre, L.M., Nelson, K.L. and Boehm, A.B. (2012) Mechanisms for photoinactivation of 

Enterococcus faecalis in seawater. Applied and Environmental Microbiology 78(21). 

Savill, M.G., Hudson, J.A., Ball, A., Klena, J.D., Scholes, P., Whyte, R.J., McCormick, R.E. and 

Jankovic, D. (2001) Enumeration of Campylobacter in New Zealand recreational and drinking 

waters. Journal of Applied Microbiology 91, 38-46. 

 

Schets, F.M., Schijven, J.F. and Husman, A.M.d.R. (2011) Exposure assessment for swimmers in 

bathing waters and swimming pools. Water Research 45, 2392-2400. 

 

Schoen, M.E. and Ashbolt, N.J. (2010) Assessing pathogen risk to swimmers at non-sewage 

impacted recreational beaches. Environmental Science and Technology 44(7), 2286-2291. 

 

Schwab, K.J. (2007) Are existing bacterial indicators adequate for determining recreational water 

illness in waters impacted by nonpoint pollution? Epidemiology 18(1), 21-22. 

 

Seitz, S.R., Leon, J.S., Schwab, K.J., Lyon, G.M., Dowd, M., McDaniels, M., Abdulhafid, G., 

Fernandez, M.L., Lindesmith, L.C., Baric, R.S. and Moe, C.L. (2011) Norovirus infectivity in 

humans and persistence in water. Applied and Environmental Microbiology 77(19), 6884-6888. 

 

Shibata, T. and Solo-Gabriele, H.M. (2012) Quantitative microbial risk assessment of human 

illness from exposure to marine beach sand. Environmental Science and Technology 46, 2799-

2805. 

 

Shibata, T., Solo-Gabriele, H.M., Sinigalliano, C.D., Gidley, M.L., Plano, L.R.W., Fleisher, 

J.M., Wang, J.D., Elmir, S.M., HE, G., Wright, M.E., Abdelzaher, A.M., Ortega, C., Wanless, 



 

103 

 

D., Garza, A.C., Kish, J., Scott, T., Hollenbeck, J., Backer, L.C. and Fleming, L.E. (2010) 

Evaluation of conventional and alternative monitoring methods for a recreational marine beach 

with nonpoint source of fecal contamination. Environmental Science and Technology 44, 8175-

8181. 

 

Shuval, H. (2003) Estimating the global burden of thalassogenic diseases: human infectious 

diseases caused by wastewater pollution of the marine environment. Journal of Water and Health 

01(2), 53-64. 

 

Sinclair, R.G., Jones, E.L. and Gerba, C.P. (2009) Viruses in recreational water-borne disease 

outbreaks: a review. Journal of Applied Microbiology 107, 1769-1780. 

 

Soller, J., Bartrand, T., Ravenscroft, J., Molina, M., Whelan, G., Schoen, M. and Ashbolt, N. 

(2015) Estimated human health risks from recreational exposures to stormwater runoff 

containing animal faecal material. Environmental Modelling and Software 72, 21-32. 

 

Soller, J.A., Bartrand, T., Ashbolt, N.J., Ravenscroft, J. and Wade, T.J. (2010a) Estimating the 

primary etiologic agents in recreational freshwaters impacted by human sources of faecal 

contamination. Water Research 44, 4736-4747. 

 

Soller, J.A., Schoen, M., Steele, J.A., Griffith, J.F. and Schiff, K.C. (2017) Incidence of 

gastrointenstinal illness following wet weather recreational exposures: Harmonization of 

quantitative microbial risk assessment with an epidemiologic investigation of surfers. Water 

Research 121, 280-289. 

 

Soller, J.A., Schoen, M.E., Bartrand, T., Ravenscroft, J.E. and Ashbolt, N.J. (2010b) Estimated 

human health risk from exposure to recreational waters impacted by human and non-human 

source of fecal contamination Water Research 44, 4674-4691. 

 

Soller, J.A., Schoen, M.E., Varghese, A., Ichida, A.M., Boehm, A.B., Eftim, S., Ashbolt, N.J. 

and Ravenscroft, J.E. (2014) Human health risk implications of multiple sources of faecal 

indicator bacteria in a recreational waterbody. Water Research 66, 254-264. 

 

Sunger, N., Hamilton, K.A., Morgan, P.M. and Haas, C.N. (2018) Comparison of pathogen-

derived ‘total risk’ with indicator-based correlations for recreational (swimming) exposure. 

Environmental Science and Pollution Research, 1-11. 

 

Suppes, L.M., Abrell, L., Dufour, A.P. and Reynolds, K.A. (2014) Assessment of swimmer 

behaviors on pool water ingestion. Journal of Water and Health 12(2), 269-279. 

 

TCEQ (2014) Texas Integrated Report - Texas 303(d) List (Category 5). Texas Commission on 

Environmental Quality Austin, Texas. 

 

Telecha, J.W., Brenner, K.P., Haugland, R., Samsa, E., Dufour, A.P., Wymer, L. and Wadea, 

T.J. (2009) Modeling Enterococcus densities measured by quantitative polymerase chain 



 

104 

 

reaction and membrane filtration using environmental conditions at four Great Lakes beaches. 

Water Research 43, 4947-4955. 

 

Teunis, P., Brandhof, W.V.D., Nauta, M., Wagenaar, J., Kerkhof, H.V.D. and Pelt, W.V. (2005) 

A reconsideration of the Campylobacter dose-response relation. Epidemiology Infection 133, 

583-592. 

 

Teunis, P.F.M., Moe, C.L., Liu, P., Miller, S.E., Lindesmith, L., Baric, R.S., Pendu, J.L. and 

Calderon, R.L. (2008) Norwalk virus: how infectious is it? Journal of Medical Virology 80, 

1468-1476. 

 

TGLO (2018) Texas Beach Watch Program Quality Assurance Project Plan, Texas General Land 

Office, Austin, Texas. 

 

Thoe, W., Gold, M., Griesbach, A., Grimmer, M., Taggart, M.L. and Boehm, A.B. (2014) 

Predicting water quality at Santa Monica Beach: Evaluation of five different models for public 

notification of unsafe swimming conditions. Water Research 67, 105-117. 

 

Thoe, W., Gold, M., Griesbach, A., Grimmer, M., Taggart, M.L. and Boehm, A.B. (2015) Sunny 

with a chance of gastroenteritis: predicting swimmer risk at California beaches. Environmental 

Science and Technology 49, 423-431. 

 

Thompson, M., Milbrandt, E., Bartleson, R. and Rybak, A. (2012) Evaluation of bacteriological 

and nutrient concerns in nearshore waters of a barrier island community in SW Florida. Marine 

Pollution Bulletin 64(7), 1425-1434. 

 

Tribble, D.R., Baqar, S., Scott, D.A., Oplinger, M.L., Trespalacios, F., Rollins, D., Walker, R.I., 

Clements, J.D., Walz, S., Gibbs, P., III, E.F.B., Moran, A.P., Applebee, L. and Bourgeois, A.L. 

(2010) Assessment of the duration of protection in Campylobacter jejuni experimental infection 

in humans. Infection and Immunity 78(4), 1750-1759. 

 

Tseng, L.Y. and Jiang, S.C. (2012) Comparison of recreational health risks assocaited with 

surfing and swimming in dry weather and post-storm conditions at Southern California beaches 

using quantitative microbial risk assesment (QMRA). Marine Pollution Bulletin 62, 912-918. 

 

U.S. Congress (2000) Beaches Environmental Assesment and Coastal Health Act of 2000. Large, 

S.a. (ed), p. 870, Washington D.C. 

 

U.S. EPA (2006) Method 1600: Enterococci in Water by Membrane Filtration Using membrane-

Enterococcus Indoxyl-B-D-Glucoside Agar (mEI), United States Environmental Protection 

Agency, Office of Water, Washington, DC. 

 

U.S. EPA (2007) Critical Path Science Plan for the Development of New or Revised 

Recreational Water Quality Criteria, United States Environmental Protection Agency, Office of 

Water, Washington, DC. 



 

105 

 

 

U.S. EPA (2010) Quantitative microbial risk assessment to estimate illness in freshwater 

impacted by agricultural animal sources of fecal contamination, United States Environmental 

Protection Agency, Office of Water. 

 

U.S. EPA (2012) Recreational Water Quality Criteria United States Environmental Protection 

Agency, Office of Water, Washington D.C. 

 

Veldhuis, J.A.E.t., Clemens, F.H.L.R., Sterk, G. and Berends, B.R. (2010) Microbial risks 

associated with exposure to pathogens in contaminated urban flood water. Water Research 44, 

2910-2918. 

 

Wade, T.J., Calderon, R.L., Brenner, K.P., Sams, E., Beach, M., Haugland, R., Wymer, L. and 

Dufour, A.P. (2008) High Sensitivity of Children to Swimming-Associated Gastrointestinal 

Illness. Epidemiology 19(3), 375-383. 

 

Wade, T.J., Sams, E., Brenner, K.P., Haugland, R., Chern, E., Beach, M., Wymer, L., Rankin, 

C.C., Love, D., Li, Q., Noble, R. and Dufour, A.P. (2010) Rapidly measured indicators of 

recreational water quality and swimming-associated illness at marine beaches: a prospective 

cohort study. Environmental Health 9(66), 1-14. 

 

Wright, M.E., Solo-Gabrielea, H.M., Elmira, S. and Fleminga, L.E. (2009) Microbial load from 

animal feces at a recreational beach. Marine Pollution Bulletin 58(11), 1649-1656. 

 

Yamahara, K.M., Walters, S.P. and Boehm, A.B. (2009) Growth of enterococci in unaltered, 

unseeded beach sands subjected to tidal wetting. Applied and Environmental Microbiology 

75(6), 1517-1524. 

 

Zhang, J., Qiu, H., Li, X., Niu, J., Nevers, M.B., Hu, X. and Phanikumar, M.S. (2018) Real-time 

nowcasting of microbiological water quality at recreational beaches: a wavelet and artificial 

neural network-based hybrid modeling approach. Environmental Science and Technology, A-J 

 

Zhang, Z., Deng, Z. and Rusch, K.A. (2012) Development of predictive models for determining 

enterococci levels at Gulf Coast beaches. Water Research 46, 465-474. 

 

Zhu, X., Wang, J.D., Solo-Gabriele, H.M. and Fleming, L.E. (2011) A water quality modeling 

study of non-point sources at recreational marine beaches. Water Research 45, 2985-2995. 

 
 

 

 

 

(Veldhuis et al. 2010) 

 


