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ABSTRACT 

 

The Oligocene-Miocene carbonate successions around the world are fundamental targets for 

hydrocarbon exploration and production. New findings indicate the importance of the red algae 

and large benthic foraminifera (LBF) association for this geological time, proposed as the main 

carbonate producers worldwide, accompanied by the scattered and small coral colonies. This 

skeletal domination also occurs in the Baturaja Formation, one of the prolific reservoirs in the 

Northwest (NW) Java Basin, Indonesia. This Early Miocene unit was deposited on a ramp setting 

governed by a north-south fault system. Previously, a classic barrier-reef to lagoon model, was 

applied to this formation, with corals as major carbonate factory which is a common setting for 

modern environments. 

The Early Miocene is characterized by global conditions of warm temperature and higher carbon 

productivity and higher CO2. The abundace of the red algae and LBF association might be related 

to their ability to adapt to these specific conditions. Contrastingly, corals tend to have difficulties 

in the euphotic zone and to build rigid and wave-resistant reefs to sea level in this setting. A 

regional paleogeography and depositional model are proposed for the Baturaja Formation using 

this skeletal association scheme. The ramp configuration also was controlled by the pre-existing 

topography and might be responsible for the facies variety across the ramp, facies distribution, 

stratigraphic architecture, and geometry of its carbonate mounds. 

The Baturaja Formation reservoir porosity have been known to be influenced by meteoric 

diagenetic processes, especially in its carbonate mound settings. Evidences of this meteoric 

dissolution events occur as dissolution voids and 13C-depleted intervals. Subaerial exposure 

episodes are indicated by the negative-shifts of δ13C. Acidic meteoric water flushing and soil-
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derived CO2 are responsible for the dissolution of mainly ellipsoidal red algae and perforated LBF, 

that produced extensive moldic porosity with a fabric selective dissolution texture. This dissolution 

was then followed by precipitation of calcite cement while retaining its moderate strontium 

content. Meanwhile, pore spaces resulted by a possible burial dissolution are inferred by higher 

CO2 contaminants in the reservoir intervals at the well located at the deeper inter-mound 

depositional setting; an area unaffected by meteoric dissolution events. Mantle degassing- and 

magmatic-derived CO2 are likely the sources for this gas. The upward pathways for this corrosive 

CO2 are facilitated by deep-seated faults to the basement and intrusion-related faults formed in the 

area. Non-fabric selective dissolution texture is resulted by burial dissolution processes and it cuts 

across all the carbonate components. The burial dissolution porosity generation suggests to the 

shifting of the hydrocarbon exploration play from the well-known carbonate mound to the deeper 

inter-mound depositional target. Red algal-LBF packstone-grainstone facies with good moldic and 

vuggy porosity are expected. 

Meanwhile, fieldwork in the Mason County, central Texas, on the Early Cretaceous Fort Terrett 

Formation shows that the subtidal to peritidal succession consists of mud-dominated facies with 

minor intervals of grainy bioclastic facies. Dolomite beds are observed throughout this formation, 

in addition to the matrix-replaced dolomite layers in the Hensel Formation. Dolomite formations 

in these units resulted from the progressive development and recrystallization of the dolomite type. 

Interconnected fenestral porosity is proposed to have had a significant impact on initial 

permeability within the muddy succession of Fort Terrett Formation and provided the pathways 

and conduits for Mg-rich dolomitizing brines. A density head driven-mechanism, generated by 

dense hypersaline fluids from an evaporating lagoon, was responsible for the downward movement 

of the dolomitizing fluids. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 General introduction 

Carbonate reservoirs, worldwide, typically are heterogeneous in their depositional textures 

and reservoir properties including porosity and permeability. This type of reservoirs usually is 

characterized by highly variable hydrocarbon production because it has some complex porosity 

formed and controlled by diagenetic processes. Therefore, determining the controls that 

characterize these reservoirs for successful hydrocarbon exploration, reservoir development and 

hydrocarbon production are challenging and problematic.  

The most prolific Oligocene-Miocene carbonate reservoirs play a significant role in 

hydrocarbon exploration and exploitation globally. In the case of SE Asia basins, these rocks have 

significant economic impact in the region, contain reserves of possible tens of billions barrels of 

oil-equivalent hydrocarbons, that make them very attractive for this business. However, many of 

the successions in SE Asian basins are poorly documented and geologically barely understood. 

This is also the case of the Early Miocene Baturaja Formation; previously referred to Middle 

Cibulakan Formation.  

The Baturaja Formation is a thick carbonate succession and one of the main reservoirs in 

the northwest (NW) Java Basin. Lithologically, the Baturaja formation can be divided into lower 

and upper members. The Baturaja Formation was deposited in a marine transgression on a shallow 

marine ramp above mainly siliciclastic synrift deposits of the Talang Akar Formation and locally 

paleotopographic basement. Baturaja Formation consists of a wide range of carbonate textures 

from mudstone to rudstone. Even though various attempts have been made to describe and 
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characterize these units for their sedimentology, facies and reservoir geometries (e.g. Burbury, 

1977; IIAPCO, 1986; Wicaksono et al., 1995; Satyana, 2005; Clement and Hall, 2007), they 

mostly apply the classic coral barrier-reef to lagoon model. Based on this model, corals were the 

main carbonate factory; an interpretation that is not accurate in the case of the Baturaja Formation. 

During the Oligocene-Miocene, red algae and LBF were flourished globally (Pomar et al., 2017), 

hence these skeletal grains were the most significant rock volume of the successions deposited at 

this time.   

In addition, the hydrocarbons produced from the Baturaja Formation are mainly from 

moldic and vuggy pores. This type of porosity was widely interpreted to result from dissolution of 

aragonitic skeletal grains and lime mud in a meteoric diagenetic setting (e.g. Larue, 1976; Ardila, 

1982; IIAPCO, 1986; Tonkin et al., 1992; Park et al., 1995; Wicaksono, 1995). Contrastingly, 

subsurface data from the Melandong field shows that mostly meteoric dissolution processes 

leached red algae, and LBF resulting in more fabric-selective dissolution texture and more 

abundant moldic porosity in the carbonate mound area. The shallow ramp setting where the 

Baturaja Formation was deposited was susceptible to occasional meteoric exposure. Additionally, 

moldic and vuggy pores also occur in the inter-mound areas; deeper depositional settings in which 

subaerial exposure was very unlikely. Hence, burial dissolution process likely generated these 

pores through the dissolution of the limestone by aggressive fluids containing CO2 from mantle 

degassing (i.e. Dai et al., 1996; Cooper et al., 1997; Noble et al., 1997) and possibly intrusive 

magma as the Baturaja reservoirs contain CO2 ranging from 16 to 92% in the study area. Major 

faults, as a result of extensional tectonism during the early rifting system in the study area, formed 

favorable upward conduits for this corrosive gas as these faults connect the mantle CO2 sources 

with the Baturaja reservoirs. The burial dissolution tends to produce non-fabric selective texture 
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in which the CO2 leached and cut across red algae, LBF, calcite cements, and carbonate mud. 

Overprinting of the pore volumes from previous meteoric events is very likely especially at the 

carbonate mound area.  

This burial dissolution porosity generation implies to the new concept of hydrocarbon 

exploration for the Baturaja Formation, as the conventional carbonate mounds were discovered 

(Netherwood, 2000). A new play to a deeper structural area with reservoirs expected to have burial 

dissolutions is proposed. In addition, an area adjacent to the major deep-seated faults likely has a 

good chance to have CO2 discharge from mantle and magmatic sources to dissolve the rock and 

create secondary porosity. 

1.2. Objectives 

This study attempts to integrate facies and diagenetic models of the Baturaja Formation 

with the Early Miocene global events in the onshore blocks of the NW Java Basin to provide a 

comprehensive reservoir characterization. The results will contribute to reduce uncertainty and 

enhance exploration and production activities on carbonate reservoirs, which are usually 

characterized by a highly variable hydrocarbon production, and propose an exploration play as the 

conventional model of carbonate mound reservoirs were discovered. The objectives of the study 

are: 

 To define the facies types of the Baturaja Formation, its lateral distribution and reservoir 

geometries. All of these are affected by the combined global Early Miocene events controlling 

the paleogeography, facies architecture and depositional model of the Baturaja Formation in 

the region. 
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 To combine petrography with stable isotope and trace element values to construct a diagenetic 

model of the Baturaja Formation. The model will be a key to describe the diagenetic evolution 

controlling porosity generation. 

 To analyze petrographic and geochemical methods to define facies and diagenetic processes, 

especially dolomite typing and the processes of dolomitization for the Early Cretaceous 

succession in central Texas. 

To reach the overall objectives the project will be carried out using two different 

approaches: 1) a detailed study of the Baturaja Formation in a subsurface dataset from the 

Melandong area, onshore portion of the NW Java Basin; and 2) characterization of an outcrop in 

the central Texas, USA using similar methodology used for the Baturaja dataset. 

1.3. Study area 

The main study area is located in the Melandong area, onshore NW Java Basin. This section 

is one of the oil/gas fields operated by Pertamina EP (a subsidiary company of Pertamina: an 

Indonesian state-owned oil and natural gas corporation). It is situated in the Cipunegara sub-basin 

and bordered by the Pamanukan High to the west and the Kandanghaur-Gantar High to the east. 

This study will be complemented with the investigation of a surface fieldwork from the Fort Terrett 

Formation (Lower Edwards Group) in the central Texas. The outcrop is located within the Mason 

Mountain Wildlife Management Area (MMWMA), 17.7 km north of Mason, Texas. Outcrops 

occur on the western flank of the Llano Uplift and the eastern extension of the Edwards Plateau. 

Detailed descriptions of both areas are explained in Chapters 2 and 4. 
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1.4. Thesis outline 

We address our study into three individual chapters written in the style of journal 

publications. Each chapter includes an abstract, introduction, methodology, results, discussion and 

conclusion sections. A common reference section is provided at the end. 

Chapter 2. Carbonate components and facies distribution of the Early Miocene carbonate 

succession, northwest Java, Indonesia: The present is not the key to the past? 

This chapter investigates the importance of red algae and LBF association as the main 

contributors to the carbonate factory of the Early Miocene carbonate succession. This new 

interpretation readdresses a common interpretation that coral reefs are the major reef builder in the 

Miocene carbonate mounds, as observed in modern environments. 

Chapter 3. Origin of porosity and diagenetic evolution of the Early Miocene Baturaja 

Formation, northwest Java basin, Indonesia 

This chapter defines the diagenetic events for the Baturaja Formation right after its 

deposition in marine conditions, during which multiple subaerial exposure events lead to most of 

meteoric vadose and phreatic zones, and burial processes. It discusses the generation of extensive 

moldic and vuggy pores in the reservoir intervals through meteoric and burial dissolution 

processes. In addition, implication of these processes on hydrocarbon exploration and production 

also is discussed. 

Chapter 4. Controls on diagenesis and dolomitization of peritidal facies, Early Cretaceous 

Lower Edwards Group, central Texas, USA 

This chapter presents an interpretation of interconnected fenestral porosity that could have 

had a significant impact on permeability within the muddy succession and provided the pathways 
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and conduits for Mg-rich brines to dolomitize Lower Edwards Group strata. This chapter was 

published in the Facies journal (Widodo and Laya, 2017) and is presented in this thesis as a chapter 

with some editorial modifications. 

Chapter 5. Conclusion 

This chapter gives an overall summary, major findings and conclusion of the study. 

Additionally, an explanation for the future works is also presented. 

Appendix 

Appendix 1. Nomenclature 

Appendix 2. Detailed core descriptions 

Appendix 3. Petrographic analysis of the Melandong dataset using point counting to determine 

microfacies of the samples  

Appendix 4. Porosity measurement of the Mason dataset 

Appendix 5. Stable isotope and trace element analysis of the Melandong dataset 

Appendix 6. Stable isotope and trace element analysis of the Mason dataset 

Appendix 7. Published article on Facies Journal 
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CHAPTER 2  

CARBONATE COMPONENTS AND FACIES DISTRIBUTION OF THE EARLY 

MIOCENE CARBONATE SUCCESSION, NORTHWEST JAVA, INDONESIA:          

THE PRESENT IS NOT THE KEY TO THE PAST? 

 

2.1. Overview 

The Oligocene-Miocene deposits in the Indo-Pacific province are significant targets for 

hydrocarbon exploration and production including carbonate successions such as the Baturaja 

Formation, a thick shallow marine carbonate succession formed in a post-rift setting. In spite of 

several studies on this unit the classic interpretation of the succession is problematic due to the 

major skeletal components building carbonate mounds and implications to the facies distributions. 

The Early Miocene is characterized by globally warm temperatures, high sea levels, higher 

carbon productivity, and higher atmospheric CO2. These conditions favor red algae and large 

benthic foraminifera (LBF) over other carbonate producing organisms. In contrast, corals were 

less able to develop significant buildups within the euphotic zone on top of the paleohighs. 

This study focuses on the significance of the carbonate producers and their facies 

distribution in a highly hydrocarbon productive area. We propose a new regional paleogeography 

map that shows a carbonate ramp model in this area. The main bioclastic components are red algae 

and LBF which are the main constructors to the carbonate sediments for the Early Miocene 

deposits worldwide, accompanied by scattered and small coral colonies.  This explanation differs 

from the common model presented for the region where the carbonate mounds are formed by coral 

reef frameworks. In addition, this interpretation might have global implication since the same 

model was repeated in different Neogene carbonate platform around the world. 
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2.2. Keywords 

Northwest Java, Indonesia, Baturaja Formation, carbonate ramp, Early Miocene, red algae, 

large benthic foraminifera. 

2.3. Introduction 

Early Miocene carbonate successions are identified in many basins worldwide and they are 

very well documented especially in the hydrocarbon producing areas. Several examples of great 

importance can be highlighted in the literature including Nido Limestone of Malampaya (Fournier 

et al., 2004), Central Luconia carbonate (Epting, 1980), Zhujiang carbonate of Pearl River Mouth 

Basin (Turner and Zhong, 1996), Arun Limestone of North Sumatra (Wilson, 2002), and Kais 

Formation of Papua (Gibbson-Robinson & Soedirdja, 1986) from south east (SE) Asia among 

other localities such as Bombay Limestone of offshore India (Rao and Talukdar, 1980), Asmari 

limestone reservoir of Iran (van Buchem et al., 2010), Oligo-Miocene carbonate of Perla Field 

Venezuela (Pomar et al., 2015), and Nukhul carbonate of Gulf of Suez (Alsharhan, 2003).  In 

Indonesia, large oil and gas fields represent more than 1-trillion-cubic-feet (TCF) gas and 80-

million-barrel oil (MMBO). Within those reserves Oligocene-Miocene carbonate rocks provide 

remaining recoverable reserves of 1.5 MMBO and 64 TCFG (Wilson and Hall, 2010). 

Many of these Early Miocene carbonate successions were described and interpreted by 

applying the classic barrier-reef to lagoon model (Pomar et al., 2015). However, many cases in the 

geological record show that “the present is not the key to the past” due to the different dominant 

carbonate components indicating biotic community replacements throughout different geological 

times. This is also the case for the Early Miocene deposits of the Baturaja Formation in Indonesia; 

previously referred to the Middle Cibulakan Formation. This thick carbonate succession is one of 

the main reservoirs in the northwest (NW) Java Basin and is the main focus for this study (Figure 
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2.1). The Baturaja Formation was deposited during a marine transgression on a shallow marine 

ramp that mostly onlaps the clastic synrift deposits of the Talang Akar Formation and locally 

basement highs. The Baturaja Formation consists of a wide range of carbonate textures from 

mudstone to rudstone. 

Bioclastic to coral-rich packstone-grainstone and mudstone was described as major facies 

in the basin (Larue, 1976; Ardilla, 1982; Bishop, 2000; Satyana, 2005). However, their 

descriptions show that the red algal and LBF association dominates the succession. These skeletal 

grains form carbonate mounds, where topographic relief resulted from the colonization of the pre-

existing topographic high above the sea floor. These mounds were interpreted to be reefal buildups 

constructed by corals, but, we demonstrate that these biostructures are mainly formed of red algal 

facies and LBF bioclastic components. Thus, the coral-rich facies, previously defined as the main 

reef builder (Djuanda, 1985; IIAPCO, 1986; Tonkin et al., 1992; Park et al., 1995; Wicaksono et 

al., 1995), is spatially limited and did not form framework structures to form a sensu stricto defined 

reef (Lowenstam, 1950; Riding, 2002). 

Red algal and LBF facies, especially packstone, grainstone and floatstone comprise a 

significant rock volume of the carbonate mounds at the middle ramp. These facies contribute to 

improve reservoir quality by their extensive diagenetic porosity. Low-relief mound geometry is 

observed while relatively flat morphology is common for inter-mound deposits, parallel to the 

southward gently-dipping basin (Figure 2.2).  

This study indicates the difficulty to interpreting all carbonate mound deposits using direct 

modern analogs as coral reef structures. We suggest that corals did not form reefs or buildups, 

instead the main carbonate producers of the Early Miocene mounts of this area are red algae and 

LBF. This is similar to many other Miocene successions worldwide (e.g. Jones and Hunter, 1994; 
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Corda and Palmiotto, 2015; Pomar et al., 2004; 2015; 2017). These skeletal grains form widely 

variable facies belts along the Baturaja Formation ramp. In addition, we suggest that global 

conditions of warmer temperature, higher CO2 concentrations and moderate nutrients are the main 

controls for these carbonate components.   

This study defines facies type, lateral distribution and reservoir geometries of the Baturaja 

Formation affected by the combined global Early Miocene events. We also present new 

paleogeography map, facies architecture and depositional model of the Lower Miocene deposits 

in the region.  

2.4. Geological background 

The NW Java Basin evolved in four distinct tectonic stages: a) Late Cretaceous to Early 

Paleogene, b) Oligocene to Early Miocene, c) Early to Late Miocene, and d) Plio-Pleistocene (Ben-

Avraham and Emery, 1973; Netherwood, 2000). These stages are strongly linked with the tectonic 

evolution of SE Asia (Figure 2.3). 

Initially during the Late Cretaceous to Early Paleogene, the older successions (Paleozoic 

and Mesozoic rocks) were metamorphosed and deformed into large structural blocks, which then 

were intruded by igneous rocks (Ben-Avraham and Emery, 1973). These igneous and metamorphic 

rock belts constitute the basement core of the Sundaland; the southeastern promontory of the 

Eurasian continental plate formed as a mosaic continental blocks or microplates rifted from 

Gondwana margins and constructed the continental part of the SE Asia (Netherwood, 2000; Hall, 

2012; Zahirovic et al., 2014).  
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Figure 2.1. a. An Indonesian map showing structural features (subduction zones, strike-slip faults) 

and the Sundaland block as southeastern promontory of the Eurasian Plate. Shaded relief map, 

coastal line and country boundaries were taken from the GeoMapApp 

(http://www.geomapapp.org). Structural features were modified from Hall (2002). Note to the 

orange line used for a cross-section in Figure 2.2a and purple line for schematic diagram in Figure 

2.9. b. The Melandong field is located at the NW Java area, a prolific hydrocarbon basin. Note to 

the blue line for regional west to east cross-section in Figure 2.2b. c. A basemap of 3D seismic 

(red rectangle) and wells data from the Melandong field. 
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Figure 2.2. a. North to south cross-section of the NW Java Basin. Baturaja Formation was 

deposited on the mainly siliciclastic synrift deposits and is overlain by thick shale dominated 

deposits. Morphological differences between NW Java and Bogor Through to the south are 

interpreted as controlled by the Baribis Fault (modified from Martodjojo, 1984). b. West to east 

cross-section showing the Baturaja Formation mainly consisting of carbonate mounds developing 

on paleo-topographic highs and a relatively continuously carbonate beds on top of syn-rifting 

deposits, controlled mainly by N-S growth-faults. Study area is located at the Pamanukan High 

and Cipunegara sub-basin (Modified from Suyono et al., 2005). 
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Figure 2.3. Column of regional stratigraphy and tectonic events for NW Java Basin. Global events, stable isotopes, eustatic curve, pCO2 

and seawater Mg/Ca are presented to correlate the stratigraphic succession on the global dimension. The Baturaja Formation is 

highlighted. MMCO: Mid-Miocene Climatic Optimum, SST: sea surface temperature. Adapted and modified from Soeria-atmadja et al. 

(1994), Netherwood (2000), Soeria-atmadja and Noeradi (2005), Suyono et al. (2005), and Wibowo (2013).  



 

14 
 

 

During the Early to Middle Eocene, the north-northeastward movement of the Australian 

plate slowed down from 18 to 3 cm/year (Hall, 2002) and resulted in a higher subduction angle 

and roll-back movement inducing back-arc rifting (Satyana and Purwaningsih, 2013). The NW 

Java Basin at this stage was southward dipping towards back-arc basin, with dominantly north-

south (N-S) half-grabens (Netherwood, 2000). During the Early Miocene, the Sundaland 

experienced a gentle tilting and uplift to the north. Following this, an open marine environment 

was established to the south allowing deposition of shallow marine carbonates to deep marine 

deposits (Netherwood, 2000). It was during this transgression that Baturaja Formation was 

deposited (Wicaksono, 1995; Sukmono et al., 2006) on a gently dipping but faulted ramp.  

Regionally, Baturaja Formation shows limestone units with shale breaks common in the 

lower portion of the formation. These mixed beds aggrade upwards into more massive limestone 

beds. Facies associations vary within the basin. Baturaja Formation in offshore areas is sub-divided 

into three informal members: lower, middle, and upper members (IIAPCO, 1986; Wicaksono et 

al, 1995). The lower member comprises of argillaceous carbonate mudstone-wackestone at the 

base, transitioning upward to branching coral dominated facies that are capped by thin coal seams 

that represents multiple rapid deepening-shallowing cycles (Wicaksono et al., 1995). Upwards, the 

middle member is formed of thin grey to brown marly shale to claystone (IIAPCO, 1986). 

Contrastingly, the upper member contains abundant branching coral debris and less clay content 

that represent a series of slower deepening processes characterizing highstand stage (Wicaksono 

et al., 1995). An exposured horizon is observed at the top of this upper member (Park et al., 1995; 

Wicaksono et al., 1995) indicating subaerial exposure events. Facies association of the Baturaja 

Formation at this offshore area includes coral-rich facies, skeletal-rich carbonate sands (packstone-

grainstone) and mudstone-wackestone (Djuanda, 1985; IIAPCO, 1986; Doust and Noble, 2007). 
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Fossil assemblages are LBF, coral fragments, red algae (rhodoid), with lesser to minor amount of 

echinoids, molluscs, bryozoans, miliolids, sponges, gastropods, and planktonic foraminifera 

(Larue, 1976; Djuanda, 1985; IIAPCO, 1986; Park et al., 1995; Wicaksono et al., 1995). The 

Baturaja Formation is poorly developed and thins into the Asri sub-basin, an area very close to the 

Sundaland as a siliciclastic provenance region. At this location, interbedding of mud-rich 

carbonate and sandstone occurs (Young et al., 1991). 

Three distinctive units (lower, middle, and upper members) also can be distinguished for 

the Baturaja Formation in the onshore portion of the NW Java Basin (Figure 2.4). Lower member 

is characterized by the intercalation of limestone and shale (0.5 to 8 m thick). Middle member 

consists of thin layers of shale and locally glauconitic sandstone. Upwards in the succession, upper 

member comprises of thick limestone beds (up to 200 m thick). It is also widely accepted, 

practically, that the Baturaja Formation has two distinctive facies: reefal-related and non reefal-

related facies or “platform limestone” (Clements and Hall, 2007). Facies variations are similar to 

the offshore equivalent deposits: locally coral-rich floatstone-rudstone, skeletal packstone-

grainstone, and mudstone-wackestone. Skeletal grains are composed of LBF, coral fragments, 

encrusted and fragmented red algae, echinoids, bryozoans, molluscs, and planktonic foraminifera 

(Setyowiyoto et al., 2007).  

This study focuses on the Early Miocene carbonate succession located in the Melandong 

area, onshore NW Java Basin (Figure 2.1b). This section is one of the oil/gas fields operated by 

Pertamina EP. It is situated in the Cipunegara sub-basin and bounded by the Pamanukan High to 

the west and the Kandanghaur-Gantar High to the east. 

The Melandong area is a part of a series of half-grabens bounded by normal faults. The 

Baturaja Formation displays slightly thinning in the inter-mounds depositional area (S-1 well) but 
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shows thicker strata with topographic relief, characterizing a carbonate mound, on the Pamanukan 

High (Figure 2.4). The north-south (N-S) trend of normal and growth faults observed in the seismic 

section was a product of a tectonic inversion during the Late Miocene-Pliocene which form dextral 

strike-slip faults with distinctive flower structures. Basement’s positive morphology with 

relatively chaotic reflectors and is bounded by strike-slip fault could be possibly magmatic 

intrusion or uplifted-lift block. 

2.5. Age constraint 

The age for the Baturaja Formation was determined mainly based on the biostratigraphic 

analysis of planktonic foraminifera and calcareous nannoplankton (e.g. Geoservices, 2013). Here, 

we use the 2016 version of International Chronostratigraphic Chart (Cohen et al., 2016) to define 

the time frame of the Early Miocene (23.03 Ma and 15.97 Ma).  

The Baturaja Formation deposition varies in NW Java from the Late Oligocene to late Early 

Miocene. In the offshore area, it was deposited from the Chattian (Late Oligocene) to Langhian 

(early Late Miocene), i.e. 23 to 16 Ma (Djuanda, 1985; IIAPCO, 1986; Wight et al., 1986; 

Wicaksono et al., 1995; Noble et al 1997; Wight et al., 1997; Bishop 2000). Meanwhile, the 

onshore area shows the late Aquitanian to early Langhian (21-14 Ma) in the Early to Middle 

Miocene (Arpandi and Patmosukismo, 1975; Suyono et al., 2005). Interestingly, strontium isotopic 

dating in the offshore area provides an age of 27-21 Ma or the Chattian to Aquitanian in the Late 

Oligocene to Early Miocene (Miller and Kaldi, 1990).  

All of these data show that the Baturaja Formation was deposited mainly in the Early 

Miocene range and its depositional age is diachronous throughout the basin. Hence, we prefer to 

define the depositional time of the Baturaja Formation from the beginning to the end of the Early 

Miocene (e.g. Djuanda, 1985; IIAPCO, 1986; Tonkin et al., 1992; Ageng et al., 2014). This 
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depositional time range then is correlative to the global eustatic curve (Figures 2.3; Haq et al., 

1987). 

2.6. Methodology 

To achieve our objectives a large dataset was used including 420 km2 of 3D pre-stack time 

migration (PSTM) seismic data, well-logs, and samples from conventional and side-wall cores 

from seven wells. At the Baturaja Formation interval, the dominant frequency of the seismic data 

shows 40 to 43 Hertz and velocity ranges from 4.500 to 5.000 m/s (derived from sonic log) so that 

vertical resolution reaches 28 to 31 m. Horizontal resolution ranges from 840 m to 1185 m at the 

top and basal of Baturaja Formation, respectively. Conventional core descriptions were performed 

on three wells of B-1, C-1, and P-1 (Figure 2.1) with a total length of 27 m. Carbonate rock textures 

were described using Dunham’s (1962) classification modified by Embry and Klovan (1971). 

Standard petrography was completed for one hundred and eleven thin sections using an 

Olympus BX53MTRF petrographic microscope. Alizarin-red S was used to stain the thin-sections 

for mineralogical identification. Thin sections were scanned using a Nikon CoolScan 8000 and 

scanned images were used to complete digital point counts using the JMicroVision v1.2.7 software 

with a random grid applying a minimum of 300 points counted on each slide (Appendix 3).  

Scanning electron microscope (SEM), examined by Phenom XL device operating at accelerated 

voltage of 15 kV and low (60 Pa) vacuum, was used to define micro-texture and morphology of 

grains and lime mud. High-resolution elemental composition was determined using energy-

dispersive X-ray (EDX) spectroscopy. Spot, line and mapping scans were conducted to 

characterize chemical component of the samples. 

Facies analysis was constructed based on the lithological features, such as composition, 

grain size, bedding characteristics, sedimentary structures, and fossil content assembled on both 
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core description and petrographic analysis. A depositional model was constructed using the facies 

scheme defined in this article (Figure 2.5 and Table 2.1) and correlated well-logs across the field 

for the Baturaja Formation. 

Petrel 2016 was used to map top and base horizons of the Baturaja Formation and fault 

network in order to analyze the stratigraphic architecture and structural style controlling the 

development of the formation in the study area. The 3D seismic is used primarily in this study to 

define inter-well geometric distribution. Reflector terminations and internal characteristics are 

described to show ramp development and drowning-related geometries. Seismic attribute analysis 

of amplitude and variance was utilized to interpret several geologic features. Variance cube was 

generated to guide fault interpretation, to predict facies distribution and to define depositional 

setting. Such parameters i.e. 3x3 inline and cross-line range, vertical smoothing, dip correction, 

and dip guided smoothing are used.  

A regional paleogeographic map was constructed by combining published data (Ardilla, 

1982; IIAPCO, 1986, Hall, 2013) and the Melandong field interpretations. The literature review 

includes the Baturaja Formation isochron map of offshore NW Java Basin (Burbury, 1977), and 

regional well-to-well correlation from the offshore to onshore portion of the basin (PHE ONWJ-

Pertamina EP, 2015). All the information was incorporated on a regional structural map from 

Noble et al. (1997). Facies distribution throughout the basin is extrapolated from the interpretation 

on the local scale and literature compilation. 

2.7. Facies analysis 

Six sedimentary facies are described for the Early Miocene Baturaja Formation (Figure 2.5 

and Table 2.1). Facies were assigned based on lithological features such as bioclastic components, 

foraminiferal assemblages, grain size, and sedimentological features acquired during full-core 
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descriptions (Figures 2.5, 2.6), cutting reports from mudlogs, and petrographic analyses (Appendix 

2). Overall, the Baturaja Formation shows intercalation of carbonate facies and thin shale for the 

lower member, shale with locally glauconitic sandstone for the middle member and massive 

limestone with occasionally thin shale beds for the upper unit.  

2.8. Baturaja depositional geometry and stratigraphic architecture 

The Baturaja Formation has a thickness varies from 30 to 570 m across approximately 

20,000 km2 (IIAPCO, 1986; Adnan et al 1991; Woodling et al., 1991; Tonkin et al., 1992; Bishop 

2000). Thickness is dependent on the position of the field or well in the basin, commonly thicker 

at the paleo-highs because of higher carbonate production and vertical aggradation at the mounds 

morphology and thinner in basinal areas. Mound extensions vary from less than 6 km2 in the Sunda 

sub-basin to more than 300 km2 at the Pamanukan area. Meanwhile, the Baturaja Formation in the 

Melandong area has a thickness of 300 m at the Pamanukan High, slightly thickening to the J-2, 

K-1, and K-2 area and thinning basinward to S-1 well area to ~120 m.  

The top Baturaja horizon in the Melandong 3D seismic dataset is a relatively strong and 

continuous reflector whereas its basal horizon has low continuity; both can be traced throughout 

the 3D seismic data (Figure 2.6). Subtle changes in amplitude variation occurred laterally, 

especially in the inter-mound depositional settings. Divergent reflector patterns occur from the S-

1 well area to the east, which terminates against the Kandanghaur Fault. Onlapping reflectors onto 

the basal Baturaja Formation horizon in the lower member record a retrogradational stacking 

pattern, while downlapping occurs basinward at the S-1 well area. Meanwhile, the upper member 

shows aggradational to slightly progradational stacking patterns. Talus deposits are identified at 

the fault margin of the Pamanukan High (Figure 2.7).  
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2.9. Discussion 

2.9.1. Regional paleogeography 

Several Early Miocene paleogeography maps of the NW Java Basin were constructed 

(Pertamina-BEICIP, 1985; Burbury, 1997; Clements and Hall, 2007). These previous authors 

suggested a widespread shallow marine setting for Early Miocene deposits that was initiated with 

coral reef buildups and muddy-platform interior carbonate rocks (Park et al., 1995; Clements and 

Hall, 2007). However, these earlier versions used local field to sub-basin scale data and modified 

a traditional coral-reef rimmed platform model (e.g. IIAPCO, 1986). 

The paleogeography map that we propose shows inner, middle, and outer ramps 

depositional areas, carbonate mound structures, the emergent of Seribu Platform and several local 

basement topographies, in addition to the exposure of the Sundaland terrane (Figure 2.8). To the 

south, a deepened slope to the Bogor Trough developed.   

The carbonate facies distribution on the paleogeography map is as follows: mudstone-

wackestone of inner ramp, rhodoid and LBF-rich facies of rudstone-floatstone interbedded with 

rhodoid and LBF-rich grainstone to wackestone-packstone with locally mudstone-skeletal 

wackestone especially at the mounds of middle ramp, and possible mass-transport deposits of 

lithoclastic rudstone in outer ramp facies. The mound morphology is interpreted from the 

topographic relief and thickening carbonate succession. A N-S trend of growth faults controlled 

deposition, distribution, and geometry of these mounds as Burbury (1997) suggests.  
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Figure 2.4. West to east well to well correlation, flattened on the MFS (Maximum Flooding Surface), in the Upper Cibulakan Formation. 

Gamma-ray and spontaneous potential logs are shown on the left tract as a lithology log. Four cored-intervals are shown in four wells 

along with side-wall core (SWC) data for petrography and geochemical analysis. PMK: Pamanukan. 

 

 



 

22 
 

 

 

Figure 2.5. Full core photography of J-2 well showing sedimentary facies from rhodoid/red algal-LBF packstone-grainstone (RPG), fine 
rhodoid-LBF floatstone-rudstone (RFR), and coarse rhodoid-LBF and coral floatsone-rudstone (CFR) (modified from Geoservices, 
2013). 
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Figure 2.6.  Full core photography of C-1 well showing sedimentary facies from rhodoid/red algal-LBF packstone-grainstone (RPG), 
fine rhodoid-LBF floatstone-rudstone (RFR) (modified from Lemigas, 1990). 
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Figure 2.7. Sedimentary facies of the Baturaja Formation. a. Coarse rhodoid (rho) floatstone-

rudstone (CFR) in red algal-large foram packstone-grainstone matrix and locally cemented by 

blocky calcite. Photo was taken from the upper part of B-1 well core. b. Rhodoid (rho)-LBF 

floatstone-rudstone (RFR) in red algal-large foram packstone-grainstone matrix. Rhodoids are 

mostly encrusted by Acervulina sp. Mio: Miogypsina sp. c. Rhodoid (rho)/red algal-LBF 

packstone-grainstone (RPG), a dominated facies in the samples. d. Red algal-LBF wackestone 

(RLW) facies, associated with plangtonic foraminifera. e. Very fine glauconitic quartz sandstone 

(GQS) showing poorly sorted, subrounded to subangular quartz grains, and grain supported with 

the lack of matrix. Glauconite pellet is indicated by red arrow. Bitumen (black) fills some pores. 

f. Coral fragment, possibly Porites sp., associated with CFR facies. Photo was taken from the upper 

part of B-1 well core. 

Higher terrigenous material influx likely accumulated as deltaic deposits and they were 

identified in the subsurface data within the northern part of the basin at the offshore Asri sub-basin 

(IIAPCO, 1986). Hence, thin mixed siliciclastic-carbonate deposits occurred (Young et al., 1991) 

as this area was prone to possible decreased water transparency caused by terrigenous clay 

materials and algal blooms, which reduced photosynthetic efficiency. 

2.9.2. Origin of carbonate ramp morphology 

Two platform types were proposed for the Early Miocene deposits in NW Java Basin. 1) 

fault-block (Bosence, 2005) and 2) land-attached platform (Wilson, 2002; Satyana, 2005). Here, 

we suggest a fault-controlled distally-steepened ramp (Figure 2.9), based on several lines of 

evidence including seismic interpretation, published and non-published reports and studies by 

Burbury (1977), IIAPCO (1986), and PHE ONWJ-Pertamina EP (2015).  
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Table 2.1. A summary of the main facies of the Baturaja Formation from the Melandong data: sedimentologic features, skeletal 

components, and interpretation of light penetration zone and depositional environment. 

  

 

 

 

No Facies Name Description Components
Light Penetration 

Zone
Interpreted Depositional 

Environment
1 Coarse rhodoid-LBF 

and coral floatstone-
rudstone (CFR)

Dark brown, poorly sorted, coarse rhodoid and LBF-rich floatstone to 
rudstone in red algal-large foram packstone-grainstone matrix and locally 
cemented by blocky calcite. Corals occur scattered. The common porosity 
types are vuggy, intra- and interparticle, fracture, and shelter. 2-13.5% 
porosity.

LBF: Assilina sp. (<12%), Lepidocyclina sp. (<14%), Miogypsina sp.
(<6%), and rare Miliolid and Operculina . Red algae: Neogoneolithon  sp. 
(14%), Lithothamnion sp. (12%), fragmented geniculate red algae (6%).
Coral fragment (10%), few mollusc, echinoiderm, lithoclast, and stylolite. 

Euphotic

Mound                          
middle ramp

 Subtidal2 Fine Rhodoid-LBF 
floatstone-rudstone 
(RFR)

Tan in color with rhodoid, red algal and LBF-rich floatstone-rudstone in red 
algal-large foram packstone-grainstone matrix cemented by blocky, syntaxial-
overgrowth, bladed to dogtooth cements. Porosity types are vuggy, intra-, 
and inter-particle porosities with vuggy and interparticle porosities occur 
very intensive in some of the floatstone facies. Bitumen occurs lining pore 
spaces in the intensive intra-porosity in some floatstone samples. 1.2-29.7% 
porosity.

Red algae: Neogoneolithon sp. (16%), Lithothamnion sp. (10%),
fragmented geniculate red algae (5%), Lithoporella sp. (4%), Sporolithon 
sp. (2%). LBF: Miogypsina sp. (56%), Lepidocyclina sp. (30%),
Amphestigina sp. (9%), Assilina sp. (8%), few Operculina, and rare
Miliolid (56%).Coral fragments (5%), few mollusc, echinoderm, and rare
planktonic foram.

Meso-oligophotic

3 Rhodoid/red algal-LBF 
packstone-grainstone 
(RPG)

Tan to dark brown with rhodoid, red algal and LBF-rich facies cemented by 
blocky, syntaxial-overgrowth, bladed to fibrous cements. Dissolution-made 
voids such as vuggy, intra- and inter-particle are dominant porosity types 
with rare fractures. Bitumen occurs lining in the dissolution pores. Stylolites 
are common and very intensive for packstone facies. 2.5-44.9% porosity.

LBF: Miogypsina sp. (65%), Lepidocyclina sp. (29%), Discocyclina  sp. 
(27%), Assilina sp. (11%), Operculina sp. (10%), Amphestigina sp.
(7%), Miliolid (6%). Red algae: Neogoneolithon sp. (10%), Lithothamnion
sp. (8%), fragmented geniculate red algae (6%). Echinoderm (12%), coral
fragment (4%), lithoclast (7%), and rare mollusc and planktonic foram.

Meso-oligophotic

4 Red algal-LBF 
wackestone (RLW)

dark brown with red algal- and LBF-rich facies cemented by blocky, 
syntaxial-overgrowth, and bladed cements. Stylolite is common for the 
wackestone facies. Vuggy, intra-, inter-particle and fracture porosities are 
common. 0.9-23.6% porosity.

Red algae: Neogoneolithon sp. (12%), Lithothamnion sp. (10%),
fragmented geniculate red algae (4%). Planktonic foram (28%). LBF:
Lepidocyclina sp. (5%) and few Assilina sp. and Discosyclina sp. (4%).
Few echinoderm, and rare mollusc.

Meso-oligophotic

5 Very fine glauconitic 
quartz sandstone 
(GQS)

Light gray in color, poorly sorted, subrounded to subangular quartz grains, 
and grain supported with the lack of matrix content. Bitumen fills some pore 
spaces. 15.2% porosity.

The grains  are very fine quartz (83%) and glauconite pellets (17%).

6 Shale (SHL) Dark gray to dark brown, calcareous, brittle and clay to silt grain size

Intermound                    
middle ramp
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Figure 2.8. Traverse seismic section through the wells. Relatively N-S growth and normal faults are shown that evolved to strike-slip 

faults with distinctive flower structure. Possible magmatic intrusion or uplifted fault block is identified based on the positive intruded 

morphology beneath S-1 well. CPN sub-basin is located at the inter-mounds deeper depositional area. Zoom in cross-section in the red 

box is shown for the Figure 2.7. Red arrows point to downlapping reflectors. PMK: Pamanukan, CPN: Cipunegara, KDH: Kandanghaur, 

BSMT: basement, VJTB: Jatibarang Formation, TAF: Talang Akar Formation, BRF: Baturaja Formation, MFS: Maximum Flooding 

Surface, UCBL: Upper Cibulakan Formation, PRG: Parigi Formation, CSB: Cisubuh Formation, div: divergent reflectors. 
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Figure 2.9. Detailed view of the seismic section from the red box of Figure 2.6 flatten on the MFS. The Baturaja Formation is 

characterized by semi parallel reflectors. Onlapping reflectors (black arrows) on to top Talang Akar Formation horizon (yellow) are 

identified as a product of rapid sea-level rise of transgressive system depositing the lower member. Purple horizon displays the highest 

transgressive stage of the Baturaja Formation depositing the middle shale member (green shade). Slower sea-level rise in highstand 

tract, intermittently interrupted by sea-level drops (red horizons), occurred depositing upper Baturaja Formation. A rapid sea-level rise 

flooded and drowned the ramp characterized by onlapping (red arrows) on to top Baturaja Formation (dark blue) which eventually, a 

thick shale succession of the Upper Cibulakan Formation covered the succession. Talus deposit is identified related to a sediment by-

pass to the Pamanukan (PMK) Fault escarpment. BSMT: basement, TAF: Talang Akar Formation, BRF: Baturaja Formation, UCBL: 

Upper Cibulakan Formation, MFS: Maximum Flooding Surface.
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Figure 2.10. Paleogeography of the NW Java during the Early Miocene Baturaja Formation 

deposition. The area shows a southward gently tilting of the fault-controlled ramp that abruptly 

deepened to the Bogor Trough controlled by the Baribis Fault. North-south normal faults shown 

on the map possibly control the geometry and distribution of the Baturaja Formation mounds. 

Adapted and modified from Burbury (1977), Ardilla (1982), Martodjoyo (1984), IIAPCO (1986), 

and Noble et al (1997). 

The Baturaja Formation is a carbonate succession deposited during a continuing 

transgression of the Early Miocene. Marine transgression started from the south of NW Java since 

the opening of the basin in the Late Eocene-Early Oligocene (Koesoemadinata and Pulunggono, 

1974; Sudarmono et al., 1997; Bishop, 2000). The underlying topography of relatively flat areas 

with locally low hills and gently incised valleys, inherited from the Talang Akar Formation, 
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provided a shallow marine setting for the transgressive carbonate facies (Park et al., 1995) in which 

red algae and LBF thrived. 

During the Late Oligocene and Early Miocene, the volcanic arc, at the southern end of the 

modern Java island, became emergent and the shelf edge rapidly subsided. The Bogor Trough 

formed between this arc and shelf margin in response to loading by the conglomeratic volcanic-

volcaniclastic deposits of the Jampang and Citarum formations (Figure 2.2) in the Late Eocene 

(Clements and Hall, 2007). This loading process likely triggered the W-E trend of the Baribis Fault 

(Satyana et al., 2002), which separates the NW Java Basin from the steeply southward dipping 

Bogor Trough (Ponto et al, 1988; Wu, 1991; Bishop 2000; Netherwood, 2000), thus forming a 

gently southward dipping distally-steepened carbonate ramp for the Baturaja Formation 

succession. 

Southward of the NW Java Basin to the Bogor Trough margin, the east-west trend of 

Baribis normal fault formed a steep slope accommodating mass-transport deposit sedimentation 

with sediment material from the northern provenance (NW Java area) during the Oligocene to 

Pliocene (Satyana et al., 2002). The Baturaja Formation sediments were likely easily winnowed 

away by the currents and shed down-shelf to the slope area. On the other hand, conglomeratic 

volcanic-volcaniclastic deposits of the Jampang and Citarum Formations filled the Bogor Trough 

and the turbiditic sediment source was from the emergent volcanic arc to the south (Satyana et al., 

2002; Clements and Hall, 2007). The intermixing of these sediment materials were then deposited 

along the fault escarpment as likely Cinambo Formation. The Baribis Fault was then inverted to 

become a back-arc thrust in the Pleistocene (Satyana et al., 2002; Clements et al., 2009). 
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Figure 2.11. Schematic diagram of the Early Miocene Baturaja Formation ramp. The distally-steepened portion of the ramp was likely 

controlled by the Baribis Fault. Carbonate mounds were developed on the paleotopographic highs and uplifted fault blocks.  
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2.9.3. Local scale depositional model: Baturaja Formation development and its facies 

distribution 

Development of the transgressive Baturaja succession, especially in the Melandong field, 

can be interpreted from the internal characteristic and reflector terminations of the seismic section 

(Figure 2.7). Semi-parallel reflectors and low-relief mounded characteristics are observed that is 

likely related to the sea-level fluctuations and a change in system tracts. Several onlapping 

reflectors onto the basal Baturaja Formation horizon are identified as a product of rapid sea-level 

rise reflecting a transgressive system tract. This process resulted in nearly flat lying strata of the 

lower member thinning on to the Pamanukan High. The middle shale member reflects a maximum 

marine flooding where a deposition of excessive fine-grained material occurred. This clay input is 

caused by continental weathering and runoff that was probably related to increasing precipitation 

in exposed Sundaland areas to the north. Slower sea level rise of highstand system tract was 

dominated when the upper member was deposited. Occasionally, slightly progradational 

geometries are observed in this member and formed by sea level falls. 

It seems that during upper member deposition, an escarpment along the margin of the 

Pamanukan Fault influenced carbonate sediment-transfer in the area. In this post-rift setting, 

sediment loads could subside an area at the hanging-wall side of the fault. This event likely formed 

a deeper inter-mounds region and deceasing carbonate production at this area. Meanwhile, 

carbonate production at the footwall of the Pamanukan Fault was still active as the condition of 

optimum light at this higher structural area was maintained. Excess of the carbonate materials at 

the footwall area in addition to the elevation difference supported deposition of talus at the fault 

escarpment. 
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We propose a new depositional model to explain our facies distribution. Our field scale 

model is based on the morphology of the Baturaja Formation that corresponds to depositional 

environment shown in the structural map of the Melandong area (Figures 2.10b and 2.11) in 

combination with the facies map. This area is located at the middle ramp belt and is characterized 

by carbonate mounds at the Pamanukan High and inter-mounds depositional area at the slightly 

deeper meso-oligophotic zone. Morphologically, the topographically higher carbonate mounds 

were susceptible to the sea level fluctuation, therefore meteoric diagenesis was likely producing a 

good porosity-permeability system by dissolution processes. Hence, the mound morphology is a 

common hydrocarbon exploration target. Facies belts in this field are mainly controlled by their 

position relative to the light penetration zones. A southward gently-dipping middle ramp and 

deeper area is dominated by an association of finer rhodoid/ red algae and LBF. Increasing 

planktonic foraminifera percentage is observed with respect to an increasing depth to the south. 

Based on the small benthic foraminifera zonation, maximum depth at this area was 40 m 

(Geoservices, 2013). 

In this model, carbonate mounds are dominated by coarse rhodoid/articulated red algal and 

LBF floatstone-rudstone facies (CFR). This facies consists mainly of red-algal and LBF floatstone-

rudstone and packstone-grainstone and were probably located on the euphotic zone of the most 

upper part of the mounds. Red algae occur in the forms of rhodoid, articulated, encrusted and 

fragmental. Corals occur as fragments while insitu corals are absent. This suggests that small and 

scattered corals are common but were unable to build a structural barrier up to sea level (i.e. Pomar 

(2014). 

The inter-mounds facies are rhodoid-LBF floatstone-rudstone (RFR), rhodoid/red algal-

LBF packstone-grainstone (RPG) and red algal-LBF mudstone-wackestone (RLW); correspond to 
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the increasing depth of the meso-oligophotic zone in a relatively low-energy environment. The 

latter facies shows an association with planktonic foraminifera as greater interaction with open 

seawater occurred.  

Glauconitic quartz sandstone (GQS) occurs as thin submarine sandsheets. This GQS only 

occurs locally (only in J-2 well) and is very thin (less than 2 m). It is possible that the provenance 

of the very fine quartz is derived from the exposed Sundaland to the north. This facies likely 

formed by reworking and re-transportation of terrigenous deposits during high magnitude of the 

marine flooding. 

2.9.4. The Early Miocene events controlling carbonate productions 

Globally, the Early Miocene was characterized by an overall global warming trend (Figure 

2.3) that was occasionally interrupted by minor glaciations (Mi1 to Mi6 events), up to the Mid-

Miocene Climatic Optimum or MMCO (Miller et al, 1991; Zachos et al., 2001; Brandano et al., 

2017). Positive shifts of the δ13C, occur at the Oligocene-Miocene boundary associated with the 

Mi-1 event, is known as the Early Miocene Carbon Maximum (EMCM). The second is a long-

term positive δ13C excursion known as the Monterey Carbon Isotope Excursion and correlated to 

the MMCO (Zachos et al., 2001; Brandano et al., 2017). These positive excursions reflect carbon 

cycle perturbations due to increased primary productivity of seawaters and higher rates of organic 

carbon storage (Flower, 1999; Brandano et al., 2017). These global events likely affected and 

controlled the evolution of the reef builders and carbonate producers, especially during Cenozoic 

(Pomar et al., 2017).  
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Figure 2.12. a. Overlay of the top Baturaja Formation time structure map on a variance slice 

through the top Baturaja Formation horizon. North to south alignments are interpreted as normal 

faults. Growth-faults separated lower structural area (inter-mound) and higher areas (mounds) of 

Pamanukan and Kandanghaur highs.  Fractures and faults are clearly visible possible resulted from 

the magmatic intrusion beneath S-1 well. b.  Interpreted facies map showing distribution of the 

facies belts in the Melandong area, dominated by association of red algae and LBF. 
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In addition, during the Early Miocene time, NW Java was positioned at the equator ~5 S 

latitude (Hall, 2002; 2013) within a warm, tropic, and humid climate (Wilson, 2008). Terrestrial 

runoff bringing nutrient input to the ocean was stable and expected to have abundant accumulation 

of nutrient (Wilson, 2008). 

 

Figure 2.13. The Baturaja Formation depositional model for the Melandong Field. Facies belts are 

shown dominated by the red algae and LBF. Decreasing skeletal grain size coincidence with depth. 

Association of planktonic foraminifera occur in a deeper setting. CFR: coarse rhodoid-LBF 

floatstone-rudstone, RFR: fine rhodoid-LBF floatstone-rudstone, RPG: rhodoid/red algal-LBF 

packstone-grainstone, RLW: red algal-LBF mudstone-wackestone, and GQS very fine glauconitic 

quartz sandstone. 
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2.9.4.1. Temperature and carbon productivity 

During the Early Miocene, red algae and LBF were dominant skeletal assemblages of 

carbonate successions (Figure 2.3). These assemblages possibly were controlled by global 

environmental settings during Cenozoic, including temperature, carbon cycle interpreted from 

deep-sea global oxygen and carbon isotopic records (Pomar et al., (2017), and pCO2 (Zachos et 

al., 2001).  

Based on the global deep sea stable isotopes data (Zachos et al., 2001), large coral buildups 

were likely to occur below temperature and productivity thresholds as explained by Pomar (2017). 

The temperature threshold is at 20 C for deep sea temperature that coincides with 190 C of sea 

surface temperature (SST). Meanwhile, the productivity threshold is at ~1‰ VPDB. Where coral 

reefs were small and scattered, the red algae and LBF association dominated instead.  

Extensive distribution of LBF correlates with lower δ18O values, which correspond to 

warmer temperatures.  On the other hand, the red algae, as eurythermal organism able to tolerate 

a wide range of temperatures, dominated during this time corresponds to the positive excursion of 

the δ13C, above the value of the productivity threshold. Small, scattered coral colonies occur in the 

Early Miocene carbonate rocks. The corals become the main carbonate builder (Figure 2.3) 

developing large build-ups when the temperature and productivity declined below threshold valves 

(e.g. at the Late Eocene-Early Oligocene, Late Oligocene, and Late Miocene-Recent). The diagram 

also shows that the onset of the large buildups of modern coral reef started in the Tortonian as the 

temperature and carbon productivity declined at the same time (Pomar et al., 2017) meaning that 

carbonate successions dominated by coral reefs could not be applied to the Early Miocene setting.  
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2.9.4.2. Tectonics 

During the early Paleogene time, major continental area in the western Indonesia was 

formed, extending to the southeast from Asia, as a consequence of microplates, blocks, and 

accreted terranes reorganization (Daly et al., 1991; Hall, 1996; Metcalfe, 2011). Faulted blocks 

and paleo-basement highs were then covered by carbonate rocks in the quiescence post-rift tectonic 

setting in the Early Miocene. Creation of accommodation space for this carbonate succession 

allowed relatively steady subsidence during high sea-level periods. 

2.9.4.3. Sea-level 

Third-order sea level cycles occurred during the deposition of the Baturaja Formation 

(Satyana, 2005). Rapid sea-level rise occurs in a transgression system depositing the lower member 

then reaching the maximum flooding during deposition of the middle shale unit and finally the 

upper member deposited during highstand system tract.  

In addition, the Baturaja Formation depositional and early diagenetic events show a close 

correlation to the global-eustatic curve. Increasing sea level is correlated to the transgressive phase 

at 23.03 Ma whereas several sea level drops are observed at 22, 21 and 16.5 Ma. The latter event 

at 16.5 Ma, correlated to the onset of the Mi2 glaciation in Antarctica (Miller et al., 1991), is likely 

responsible for the development of the meteoric diagenesis which formed extensive vuggy and 

moldic porosity for the prolific hydrocarbon reservoirs in this unit.  

2.9.4.4. Photic zones 

The role of light-dependent symbiont, water transparency, and bathymetry were identified 

as an important influence on the skeletal grain association distribution dominated by the red algae 

and LBF (Pomar et al., 2004; Wilson and Vecsei, 2005). Carbonate producers need light either to 

photosynthesize for red algae or to maintain the metabolism of photosynthetic endosymbionts for 
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LBF and corals. There appears to be a close correlation between depth-related zonation of euphotic 

and oligophotic to the light-dependent symbiosis of dinoflagellate-housed corals and diatom-

sheltered LBF (Pomar, 2004, Wilson and Vecsei, 2005). The coral-dinoflagellate symbionts absorb 

violet-blue and red wavelengths that are abundant in shallower depths of the euphotic zone. 

Meanwhile, LBF-diatom symbiosis allows photosynthesis under a broad light spectrum in any 

substantial depth range from euphotic to oligophotic zone (Wilson and Vecsei, 2005; Pomar et al., 

2017). It is likely that the growth and development of coral-dinoflagellate symbionts are hindered 

at their shallower euphotic setting in the Early Miocene as the warmer temperature and higher 

solar irradiance can lead to photo-oxidative stress and bleaching (Pomar and Hallock, 2007). 

Hence, this situation favors the development of abundant red algae-LBF facies. 

Heavier rainfalls triggering terrigenous material runoff might be a threshold factor limiting 

coral development while red algae and LBF are able to tolerate a slightly higher terrigenous influx 

(Wilson, 2000; Wilson and Lokier, 2002). A higher terrestrial influx corresponds to eutrophication 

near river mouths as deltaic deposits were identified within the offshore Asri sub-basin (IIAPCO, 

1986). Consequently, water clarity decreases when more argillaceous materials are in the seawater, 

added by algal bloom phenomena influencing light penetration limiting development of red algae 

and LBF (Wilson and Vecsei, 2005) especially in the inner ramp setting. 

2.9.4.5. Carbon dioxide (CO2) 

The Early Miocene (Figure 2.3) is characterized by higher pCO2 values, in the range of 

300-400 parts per million by volume/ ppmv (Pagani et al., 2005; Triparti et al., 2009). The higher 

atmospheric CO2 is absorbed by the ocean to increase seawater pCO2 causing changes in seawater 

chemistry, known as ocean acidification (Johnson and Carpenter, 2012). This process reduces 

seawater pH causing carbonate dissolution and declining species diversity while promoting 
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photosynthesis and higher metabolism rate (Johnson and Carpenter, 2012; Noisette et al., 2013; 

Allen et al., 2017).  

2.9.5. The Baturaja carbonate producers and reef builders: significant contribution and their 

paradox 

The Baturaja Formation was previously described as a carbonate succession consisting of 

coral-reef and bioclastic facies (Doust and Noble, 2007). The reefal facies (related to the 

development of fringing reefs) was deposited in suspected higher energy environments around the 

submerged paleo-structural highs, such as Mela, Duma-Onny, Indriati, and Bima in the offshore 

Sunda sub-basin (IIAPCO, 1986). The facies vary from coral boundstone-bafflestone to coral 

fragment mudstone-grainstone and lesser amounts of red algae (Kovacs, 1982; Djuanda, 1985; 

Wicaksono et al., 1995). In contrast, many mounds developed on the paleohighs the coral-rich 

facies are mainly isolated, small and scattered. Massive corals in their living position are absent 

from the core descriptions, but coral fragments are common (Djuanda, 1985; Wicaksono et al., 

1995). Interestingly, red algal and LBF rich wackestone-packstone facies dominate the cores taken 

on the palohighs with red algae and LBF as the main skeletal grains. 

Therefore, we propose that the red algae and LBF skeletal association dominated the Early 

Miocene carbonate successions with minor and scattered corals rather than coral-rich facies that 

were traditionally described. The red algal-LBF skeletal association also was inferred at the 

Baturaja Formation type locality (Hadi and Simbolon, 1976). The facies formed by the red algae 

and LBF contribute to significant rock volume of the mound-like structures and inter-mound areas 

at the middle ramp, that consequently support to the potentially high-quality reservoirs in many 

other areas of the basin.  
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The non-framework builders and light dependent-biotas of red algae and LBF skeletal 

association were well-developed in non-tropical, cool-water depositional realms at 10-200 C 

(James and Jones, 2016). This grain association is classified as a “C” carbonate factory (Schlager, 

2005) and is suggested to thrive in a zone with less light (oligophotic) from 20 to 100 m depth 

(Pomar 2001; 2004; James and Jones, 2016). The term rhodalgal was previously stated to describe 

mainly these red algae and LBF assemblages (Carannante et al. 1988; Halfar and Mutti, 2005; 

Wilson and Vecsei, 2005). A paradox occurs as this grain association is observed abundantly in 

the tropical, presumably warm waters of Oligocene-Miocene carbonate successions worldwide, 

such as in the Caribbean (Jones and Hunter, 1994; Pomar et al., 2015); western Mediteranean 

(Pomar et al., 2004; 2017), central Atlantic (Corda and Palmiotto, 2015) and, in this case, in our 

samples from equatorial Indonesia. Global temperature from isotopic signal of δ18O (Zachos et al., 

2001) and sea-surface temperature or SST (Bosellini and Perrin, 2007) indicate that warm water 

conditions occurred globally at the time of the deposition of these carbonate rocks, instead of 

cooler water temperatures. Hence, the red algae and LBF assemblages were well-developed and 

deposited in warm temperatures which prevented the optimum growth of corals (Wilson and 

Vecsei, 2005). 

Furthermore, warm temperatures are likely not the only parameter controlling the 

abundances of red algae and LBF association globally. Increasing δ13C significantly above 

productivity threshold (Figure 2.3) characterize the Early Miocene that might suggest global 

increased surface water productivity, organic carbon burial and higher nutrient conditions (Pomar 

et al., 2004; Halfar and Mutti, 2005). Possible evenly distributed mesotrophic conditions might 

have occurred where carbonate production is extensive, especially at the carbonate mounds; hence 

favorable for development of red algae (Halfar and Mufti, 2005). The intermediate-nutrient level 
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occurs as the organisms reuse almost all the dissolved inorganic elements in the water column. 

This condition leads primary carbonate producers to have photosymbionts to provide additional 

energy and promote calcification (James and Jones, 2016), especially for the LBF and its diatom 

symbiont (Pomar et al., 2017). These symbioses are extremely sensitive to high nutrient levels as 

higher nutrients could promote the growth of symbionts and might overtake the holobionts or hosts 

(James and Jones, 2016). In addition, higher nutrients may promote other organism populations 

and diversity that in turn increasing competition to survive. 

Carbonate mounds are inferred to have the highest carbonate production in the euphotic to 

oligophotic zones. This setting allows the highest calcification produced by autotrophic and 

mixotrophic organisms of red algae and LBF, respectively. Mesotrophic to slightly eutrophic 

conditions are expected in this setting (Halfar and Mutti, 2005). The carbonate production process 

represents a balance between food resources and water transparency. The mounds are located on 

the middle ramp quite a distance from siliciclastic resources of the exposed Sundaland; hence it 

has clear water for their photosynthesis. This condition was ideal for optimum growth of the red 

algae. In a consequence of clear water, nutrient resources at this location were decreased in which 

the LBF, known as sediment detritus feeder (Pomar et al., 2017), adapts to its light-dependent 

symbiont.  

Red algae and LBF were favored in the most environments during the Early Miocene due 

to the global environmental conditions. Red algae are recognized as major carbonate producers in 

a wide range of environments mainly in shallow and warm tropical waters (Goreau, 1966; Adey 

and Macintyre, 1973; Steneck, 1986; Semesi et al 2009; Quaranta et al., 2012; Nash et al, 2015). 

These organisms are light-dependent and autotrophy/ producers (organisms able to produce 

complex organic compounds using mainly sunlights) that thrive under high- to low-nutrient 
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conditions (Goreau, 1963; Adey and Macintyre, 1973; Halfar and Mutti, 2005). They play a major 

role in the ecology and expansion of benthic organisms throughout the world. In addition, their 

diversity peaked in the Early Miocene (Braga et al., 2017). Several survival strategies of red algae 

including space competition, biomineralization, and organic shielding were reported. Space 

competition involves an increase in growth (Adey and Macintyre, 1973; Steneck, 1986) to prevent 

other organisms occupying available spots. Dolomite-rich red algae were identified through their 

biomineralization and show lower dissolution rates under lower pH conditions by reducing 

skeleton wall porosity due to dolomite infilling (Nash et al., 2013). Meanwhile, the organic coating 

may protect the more soluble phases CaCO3 of their HMC skeletal walls from being dissolved in 

the acidic seawater (Ries, 2011).  

LBF, as mixotrophic organisms, adapted to these Early Miocene conditions by three 

different approaches (Pomar et al., 2017). One strategy is to involve symbiosis with diatoms that 

were capable of photosynthesizing in a broad light spectrum and thereby a large range of depths 

thus allowing them to provide energy in nutrient-deficient environments (Hallock, 1999; Pomar et 

al., 2017). The second adaptation is the shape of the tests as shown by rotalids that have flat and 

thin tests to adapt to low light intensities in low-energy environments (Mateu-Vicens et al., 2009; 

Pomar et al., 2017). The third approach is to produce organic sheaths, carbohydrate rich substrate, 

as an attachment mechanism to anchor tests in stronger hydrodynamic regimes. These sheaths are 

used as a source of energy for bacteria, fungi and algae; additional supplements in low-nutrient 

conditions (Hallock, 1999; Pomar et al., 2017). 

The Early Miocene Indo-Pacific equatorial carbonate province, represented by this study, 

is dominated by light-dependent biota of red algae and LBF. These results are comparable to the 

studies by Wilson (2002; 2008) and Park et al. (1992; 1995) for their work on the Miocene 
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carbonate successions in other Indonesian areas. This dominance of red algae and LBF is 

somewhat similar to the western Mediterranean carbonate province that the middle ramp, at meso-

oligophotic zones, was the most prolific for carbonate production (Pomar et al., 2014; Pomar et 

al., 2017). The difference is the lack or non-existence of seagrass and green algae (Halimeda) in 

the inner ramp in the study area. This absence could be related to the lack of the well data from 

this area as it is thinner succession and does not have good hydrocarbon potential (Young et al., 

1991). The other difference is that the Indo-Pacific province has a good development of carbonate 

mounds on the middle ramp with greater abundance of the red algae-LBF association.  

Overall, the combination of all the global events in the Early Miocene favored preferential 

development of the red algae and LBF association. This association, as the main carbonate 

producers in the Indo-Pacific carbonate succession, thrived because they had the ability to tolerate 

and adapt to environmental conditions as opposed to aragonitic corals (Wilson and Lokier, 2002; 

Pomar et al., 2017).  

2.10. Conclusions 

1. This study provides arguments and evidence that the main carbonate builders for the Early 

Miocene carbonate successions in the Baturaja Formation, NW Java Basin, are dominated by 

assemblages of the red algae and LBF while small, scattered and possibly solitary coral 

colonies formed in this area instead of massive and rigid corals. The abundance of red algae 

and LBF could be associated with the lower capability of corals to thrive in the euphotic zone 

and to build three-dimensional wave-resistant reefs to sea level. The red algae and LBF-rich 

facies globally contribute to significant rock volumes and high-quality Early Miocene 

reservoirs.  
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2. The Early Miocene Baturaja Formation of the NW Java was deposited on a southward gently 

dipping ramp in which facies belts, dominated by red algal-LBF skeletal grains, vary across 

this ramp. High terrigenous influx possibly from the exposed Sundaland northward occurred 

in the inner ramp resulting in mixed siliciclastic-carbonate strata. Meanwhile higher carbonate 

production with good development of thick carbonate mounds, controlled by N-S trending 

basement-involved normal to growth faults, occurred in the middle ramp. Outer ramp is an 

area where mass-transport deposits formed along the steep slopes of the Baribis Fault. 

3. The Early Miocene was a time of global warm temperature, concomitant with higher carbon 

productivity and pCO2. The combination of these factors and the ability of the red algae and 

LBF skeletal association to adapt to these specific conditions favored its abundance and 

temporarily replaced rigid and framework corals. The key to the red algae and LBF association 

at this time is their ability to adapt and survive to changes in their environment. 
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CHAPTER 3  

ORIGIN OF POROSITY AND DIAGENETIC EVOLUTION OF THE EARLY 

MIOCENE BATURAJA FORMATION, NORTHWEST JAVA BASIN, INDONESIA 

 

3.1. Overview 

The Early Miocene Baturaja Formation is one of the most prolific hydrocarbon reservoirs 

in the northwest (NW) Java Basin, Indonesia. This formation has complex porosity systems created 

by complex diagenetic events, dominated by moldic and vuggy porosity with minor intraskeletal, 

intercrystalline, and fractures porosity.  

It was widely accepted that the porosity system in the Baturaja Formation pay zones was 

affected by meteoric-dissolution processes. Our core samples collected within the carbonate 

mounds that developed on pre-existing topographic highs were vulnerable to occasional subaerial 

exposure. Evidence for subaerial exposure events were interpreted from dissolution voids and 13C-

depleted intervals. Meanwhile, samples from deeper water on inter-mound localities have similar 

dominant moldic and vuggy pore types. For this location, burial dissolution is invoked as the driver 

of porosity creation as this region has deep-rooted faults which serve as vertical conduits for 

mantle- and magmatic-derived corrosive CO2 gas; a dominant contaminant for gas production in 

the area. This interpretation is supported by the presence of cement-filled stylolite, and very 

negative values for carbon isotopes. Overprinting of the solution-enlarged voids and isotopic 

signals from previous freshwater leaching events is thought to occur as the carbonate mounds were 

buried and interacted with CO2 via fault conduits, thus comingling the dissolution pores and 

isotopic compositions and leading to a similar end product from very different diagenetic regimes.  
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More intensive exploration to a deeper inter-mound area could be more encouraged by 

assumption that burial dissolution is responsible for porosity creation. Vertical conduits must be 

present to this dominant mud-rich facies area. The presence, geometry, and distribution of the 

burial pores could be accurately predicted by integrated study and complete subsurface datasets 

including gas analysis and fluid geochemistry. 

3.2. Keywords 

Baturaja Formation northwest Java Indonesia, diagenetic model, moldic, vuggy, burial 

dissolution, meteoric diagenesis 

3.3. Introduction 

Carbonate rocks are formed mainly from biochemical and biological process in primarily 

marine environments and they are prone to rapid diagenetic alteration that can change their 

mineralogy pore type and pore size. Porosity in carbonate rocks is mostly diagenetic in origin 

which adds complexity in classifying and quantifying porosity system (Choquette and Pray, 1970; 

Tucker and Wright 1990). Interpreting and understanding of the diagenetic processes are essential 

to describe and predict pore heterogeneity trends for hydrocarbon exploration and production 

(Longman, 1980). Pore type distribution, characterization and analysis allow for a more detailed 

reservoir models for optimum production and development phases of the mature oil field. This is 

the case for the Early Miocene Baturaja Formation, one of the main reservoirs in the NW Java 

Basin, Indonesia. This carbonate succession can be divided into lower, middle shale and upper 

members in the study area. 

This study aims to distinguish different types of porosity within the Baturaja Formation, 

dominated by moldic and solution-enlarged vuggy pore spaces. These pore types in the formation 

were widely interpreted as meteoric-derived through the dissolution of aragonitic skeletal grains 



 

48 
 

 

and lime muds (Larue, 1976; Ardila, 1982; IIAPCO, 1986; Tonkin et al., 1992; Park et al., 1995; 

Wicaksono, 1995). The dissolution reaction between carbonate minerals and meteoric waters 

(James and Jones, 2016) is simply expressed by the equation of: 

                                           𝐶𝑎𝐶𝑂ଷ + 𝐶𝑂ଶ + 𝐻ଶ𝑂⇔ 𝐶𝑎ଶା + 2𝐻𝐶𝑂ଷ
ି                                        (1) 

in which this reaction is reversible. The CO2 influx into and out of the water determines this natural 

process. Addition of CO2 will drive reaction to the right or dissolution while the opposite process 

results in carbonate precipitation (James and Choquette, 1984).  

Occasional meteoric exposures of the lower and upper members of the Baturaja Formation 

from the onshore Melandong field is indicted by the extensive moldic pores forming fabric-

selective dissolution texture and 13C-depleted intervals within the mound area developed on 

paleotopographic high. In addition, burial dissolution processes could be applied to the moldic and 

vuggy pores i.e. by deeply originating aggressive fluids (e.g. Giles and Marshall, 1986; Choquette 

and James, 1987; Tucker and Wright, 1990; Mazzullo and Harris, 1992; Park et al., 1995; Moore, 

1989; Machel, 2005; Shen et al., 20016). Such stylolite enlargement partly filled by calcite cements 

is an evidence for the burial dissolution processes by mantle- and magmatic-derived CO2. Deep-

seated faults in the Melandong area were the likely updip pathways for the delivery of this acidic 

gas. 

We hypothesize that there are two possible scenarios of the origin of this dominant 

dissolution porosity in the Baturaja Formation: 1) meteoric dissolution or 2) burial dissolution 

based on CO2 degassing originated in the mantle and moving upwards through deep-seated faults. 

The deeper inter-mound areas adjacent to major deep-seated faults is likely contain reservoirs with 

abundant burial dissolution-derived porosity.  The dissolution processes leached the red algal-large 

benthic foraminiferal (LBF) rich facies of packstone-grainstone in the middle ramp setting. In 
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addition, areas adjacent to major deep-seated faults are proposed to have more porosity created by 

mantle-derived acidic gases to dissolve the rock and create secondary porosity. 

This paper describes the diagenesis of the Early Miocene Baturaja Formation in NW Java 

Basin. We used petrography combined with stable isotope geochemistry and trace element analysis 

to determine the diagenetic processes of this unit. In addition, we constructed a diagenetic model 

of the Baturaja Formation to identify the spatial and temporal influence of these processes that 

created this diagenetic history. These new ideas of the origin of the porosity in the Baturaja 

Formation may have implications on play concepts and prospect evaluation for hydrocarbon 

exploration in other Early Miocene carbonate sections. 

3.4. Methodology 

Core samples from the Melandong field used in this study were provided by PT. Pertamina 

EP. The fragmental samples were utilized for both petrography and geochemical analysis whereas 

powdered samples were for geochemical analysis only.  

Conventional plane light petrography was used to describe 111 blue-impregnated thin 

sections using an Olympus BX53MTRF microscope. High-resolution photomicrographs were 

obtained to illustrate sedimentological and diagenetic features. Thin sections were scanned using 

a Nikon CoolScan 8000 and images were used to measure total thin-section porosity using ImageJ 

with the jPOR plug-in (Grove and Jerram 2011). In addition, we utilized this software to measure 

and calculate pore properties such as area and roundness to define micro-porosity (has pore area 

of less than 7.85 µm2), moldic (more elongated and rounded) and irregular shape of vuggy pores. 

Alizarin-red S was used to partially stain the thin-sections to distinguish dolomite (unstained) from 

calcite (red-stained). Cathodoluminescence (CL) petrography was performed using a Technosyn 

Cold Cathode Luminescence Model 8200 MKII to determine dolomite compositional variations. 
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A scanning electron microscope (SEM) Phenom XL from Nanoscience technology was used to 

define micro-textures and morphology of grains and lime-mud in high magnifications from 300 to 

1000X. Additionally, elemental compositions of specific particles were determined in thin-section 

samples using energy-dispersive X-ray (EDX) spectroscopy. Phenom XL SEM instrument was 

used operated at accelerated voltage of 15 kV and low (60 Pa) vacuum.  

For stable isotope analysis, 173 powdered whole-rock samples were analyzed for carbon 

(δ13C) and oxygen (δ18O) isotopes in a Kiel IV carbonate device coupled to a Thermo-Scientific 

MAT 253 isotope ratio mass spectrometer in the Stable Isotope Geosciences Facility at Texas 

A&M University. The results are reported in VPDB standard with analytical precision of 0.04‰ 

for δ13C and 0.08‰ for δ18O. Major and trace element analyses of 178 samples including 

magnesium (Mg), strontium (Sr), manganese (Mn) and iron (Fe), reported in parts per million 

(ppm) were determined by an Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) in the 

Radiogenic Isotope Geosciences Laboratory of Texas A&M University. Precision of major and 

trace element analysis was 0.0015 ppm for Mg, 0.001 ppm for Sr, 0.003 ppm for Mn and 0.03 ppm 

for Fe.  

Petrel 2014 was used to correlate logs from eight available wells. The cross-section was 

then flattened on the maximum flooding surface (MFS) to show the development of the Baturaja 

Formation shortly after its deposition. A neural network method was utilized, using the same 

software, to predict depositional facies of the formation. This method was used to address limited 

core data as we have sparse cored intervals. Defined depositional facies from core description and 

petrography were used as supervised input that each facies correlates to the specific gamma-ray 

(GR), resistivity, density and neutron log values as training data. The training processes, including 

1000 iterations, 40% error limit, 60% cross validation and 0.2 probability threshold, allows the 
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application recognizes the pattern between the input and the training data that then predict 

lithofacies in the un-cored intervals throughout the succession.  

3.5. Facies analysis and dolomite 

We described six facies (Table 2.1) in the Baturaja Formation: coral floatstone-rudstone 

(CFR); rhodoid-LBF floatstone-rudstone (RFR); rhodoid/red algal-LBF packstone-grainstone 

(RPG); red algal-LBF mudstone-wackestone (RLW); very fine glauconitic quartz sandstone 

(GQS); and shale (SHL). Lithological features, such as bioclastic components, foraminiferal 

assemblages, grain size, and sedimentological structures, were recorded from full-core 

descriptions, cutting reports from mudlogs, and petrographic analyses. 

Dolomite occurs as a minor portion (observed in less than 2%) of the succession, occurring 

primarily in partially dolomitized samples of mudstone-wackestone of RLW facies (Figures 3.1a, 

b). Dolomite crystal size ranges from 6-55 µm with a mean of 21 µm (very fine to fine crystals), 

clear to cloudy, non-planar anhedral to planar euhedral, and mimetic fabric preservation. CL 

petrography (Figures 3.1c, d) shows that dolomite crystals have non- to red ambience 

luminescence. Brighter red luminescence of thin and slightly discontinuous rim also occurs.
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Figure 3.1. a. Partially dolomitized LBF wackestone showing dolomites with very fine to fine 

crystal size and non-planar anhedral crystal boundaries (red arrows). Green arrow shows partially 

dolomitized Discocyclina sp. b. Coarser dolomite with fine crystal size, cloudy, and planar 

euhedral to subhedral. c. Finer dolomite under CL shows non-luminescence for calcite crystal and 

moderate to bright orange luminescence for the dolomite (red arrow). d. Coarser dolomite has a 

red luminescence for the dolomite crystals and planar euhedral rhombs are visible. Moderate red 

luminescence is framed by brighter red outer thin and slightly discontinuous rim (white arrows). 
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3.6. Geochemistry 

3.6.1. Stable Isotope Geochemistry  

Isotopic composition of the Baturaja Formation (Figure 3.2) varies laterally with the δ18O 

values ranging from -10.5 to -0.2‰ and δ13C from -9.8 to +1.2‰. Grouped by the unit, the lower 

member has more negative in δ18O (-10.5 to -0.2‰) and more enriched in 13C (-4.7 to 1.2‰) than 

the upper section (-7.5 to -4.5‰ for δ18O and -9.8 to -0.1‰ for δ13C). 

Isotopic data show clustering values which can be assigned to three groups. Group 1 is 

depleted in 18O (-7.0‰ to -0.2‰), slightly enriched in 13C (0.0‰ to +1.2‰), and consists of all 

samples from J-2, most samples from K-1 and K-2, and a small fraction of samples from the B-1 

well. Group 2 is comprised of more scattered negative values in δ18O (-10.5‰ to -3.1‰) and more 

disperse in δ13C (-4.7‰ to -0.1‰). It involves all samples from S-1, C-1, and P-1, most samples 

from B-1, along with the majority samples from K-1 and K-2 wells.  

Vertical plot of these stable isotopes shows variations of δ18O and δ13C with depth on B-1, 

J-2 and K-1 wells (Figure 3.3). δ18O values are almost all negative while δ13C values are mostly 

negative for sample from the mound area (C-1 and B-1 wells) and a more scattered distribution 

from negative to positive values for inter-mound areas (P-1, J-2, K-1, K-2 and S-1 data). J-2 well 

displays entirely positive values for δ18O while S-1 well has completely negative values for both 

δ18O and δ13C.  



 

54 
 

 

 

Figure 3.2. Whole rock stable isotope distribution plot from the Baturaja Formation dataset. 

Clustering of the data is shown by polygons. Group 1 in green polygon shows depleted in 18O and 

slightly enriched in 13C. Group 2 in red polygon displays more scattered negative values in δ18O 

and δ13C. Red arrow illustrates burial diagenetic effect for negative δ18O whereas green arrow 

displays meteoric diagenetic influence for the samples with negative δ13C. 

3.6.2. Major and Trace Elements Data 

The Baturaja Formation has a wide range of Fe and Mn concentrations from 1 ppm to 

34,750 ppm of Fe and 2 ppm to 1,100 ppm of Mn (Figure 3.4). The concentrations generally show 

increasing values toward the lower member. There is more than double the Fe concentrations in 

the lower member (11 to 34,750 ppm with an average of 1,404 ppm) as compared to the upper 

member (0.5 to 4,470 ppm with an average of 625 ppm. Mn concentrations of the lower member 

(5 to 1,100 ppm with average of 157 ppm) are three and a half times larger than the upper member 

(1.4 to 378 ppm with average of 43 ppm).  

The differences are also significant for Mg and Sr. Mg concentrations observed for the 

lower member (5 to 1,100 ppm with average of 157 ppm) are an order of magnitude lower than 
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the upper member (2096 to 35,973 ppm with average of 8,812 ppm).  For Sr, the difference of the 

lower (20 to 1,831 ppm with average of 370 ppm) is marginal than the upper members (265 to 

1,429 ppm with average of 583 ppm). Sr concentrations are in the range of 20 to 855 ppm (for the 

CFR, RFR, RLW, RPG, and SHL facies) with an average value of 473 ppm, with outliers up to 

1429 ppm present. Plotting Sr against Fe+Mn concentrations suggests an enrichment of Sr 

concentration for the RPG and RFR facies starting at 951 ppm to 1429 ppm (Figure 3.5).  

Variations of these trace element data with depth shows that higher Mg contents (above 80 

Kppm) are observed in several horizons of lower member for B-1 and K-1 wells. An increasing 

trend in Fe with depth occurs in the B-1 well and mostly coincides with increased values of Mn. 

Sr enrichment above 700 ppm occurs at multiple depths for both upper and lower members for C-

1 and B-1 wells. 

3.7. Porosity types and distributions 

The predominant porosity types for the succession are moldic (or biomoldic) and vuggy 

porosity in 74% of samples (Figures 3.6a, b). Intraskeletal, interparticle, intercrystalline, 

microporosity, fracture and enlarged stylolite porosities are minor to rare. Total porosity of the 

Baturaja Formation from the imageJ analysis shows 0.2 to 44.8% with an average of 12.5%. 

Extensive moldic and vuggy porosity occurs in CFR, RFR, RPG, and RLW facies from the B-1, 

P-1, C-1, J-2, and K-1 wells.  

Moldic porosity is indicated by selective dissolution of LBF, red algae, and minor corals, 

resulting in mainly ellipsoidal shape of dissolved skeletal walls. The moldic pores are up to 2 cm 

in diameter. Conversely, vuggy porosity forms irregular openings by the dissolution of skeletal 

grains, carbonate mud, early cements and likely the result of expansion of earlier moldic pores. 

The vuggy pore spaces range to 5 cm in diameter.  
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Figure 3.3. a. Well-to-well correlation of B-1, J-2, and K-1 to show physical (GR and effective porosity/PHIE) and geochemical (stable 

isotopes and trace elements) properties within two different morphologies: carbonate mound and inter-mound areas. Normal faults are 

shown to indicate structural control to the rock properties. B. Vuggy and moldic distribution for the three wells based on the roundness 

of the pore geometry. The B-1 well shows domination of moldic pore type while J-2 and K-1 wells have slightly similar distribution of 

moldic and vuggy porosity. 
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Figure 3.4. Crossplot of Fe and Mn showing increasing value toward the lower member of the 

Baturaja Formation. 

 

Figure 3.5. Plot of Sr against Fe+Mn concentrations. An enrichment of Sr concentration occurs in 

the portion of RPG and RFR facies, up to 1429 ppm. 
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Figure 3.6. Porosity types observed in the Baturaja Formation succession. a. Moldic porosity 

(green arrows) resulted from dissolution of skeletal grains. Red arrow points to bitumen lining the 

moldic pore. b. Solution-enlarged vuggy pores (white arrows). Late blocky calcite mosaic cement 

is indicated by red arrow. c. Preserved intraskeletal porosity in the Discocylina sp. test chambers 

(white arrow). d. Microporosity shown with back-scattered electron (BSE) pointed by black 

arrows. e. Intercrystalline porosity occurs between type 2 dolomite crystals (red arrow). This BSE 

image shows that light grey is dolomite and white-spotted crystals are low-Mg calcite (LMC) 

based on the elemental mapping in the area indicated by dashed line. 

Intraskeletal porosity occurs mostly within LBF (Figure 3.6c). This type of porosity is 

observed in skeletal-rich RFR and RPG facies from C-1 well. It has 7.5 to 25.7% porosity with an 

average of 14.2%.  

Microporosity is seen in the SEM images within the microspar and carbonate mud for the 

muddy-sequence including wackestone (RLW) and packstone (RPG) facies. The diameter of this 
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pore space ranges from 2 to 10 µm (Figure 3.6d). Microcrystalline texture is granular-subhedral 

based on the classification by Kaczmarek et al. (2015) characterized by a framework of calcitic 

microcrystals with curvilinear boundaries. Based on their microporosity typing, this granular-

subhedral texture could have correlated to the highest porosity and permeability values.  

Intercrystalline porosity occurs between planar dolomite crystals with 8.6 to 15% of pore 

volumes for W-1 and K-1 wells, respectively (Figure 3.6e). Dolomites in our samples is very rare, 

hence, it is considered to be an insignificant component for this succession (Tonkin et al., 1992; 

Carnel and Wilson, 2004). Consequently, its importance to the hydrocarbon exploration and 

production is negligible compared to the undolomitized carbonate as it has a low portion of 

expected intercrystalline porosity.  

3.8. Discussion 

Our data indicate that the hydrocarbon bearing intervals are dominated by dissolution 

porosity such as moldic and vuggy (Figures 3.6a, b). This result is similar to the Baturaja 

Formation study by Ardila (1982) and Djuanda (1985) for the offshore area. Porosity measurement 

from core samples results in the average of 15% (some intervals are up to 38%), with permeability 

between 5 and 300 mD (Djuanda, 1985; IIAPCO, 1986, Park et al., 1995). Additionally, minor 

occurrence of intercrystalline, interparticle-intraskeletal and rare fractures occurred in the 

succession for both offshore and onshore of the NW Java (IIAPCO, 1980; Ardila, 1982; Djuanda, 

1985; Park et al., 1995; Setyowiyoto et al., 2007).   

3.8.1. Paragenesis and diagenetic processes 

We identify a series of diagenetic events in a paragenetic sequence that define diagenetic 

environments and the evolution of the porosity in the Oligocene-Miocene succession through time. 

This paragenetic sequence was created to help identifying porosity creation stages (Figure 3.7). 
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The earliest stage of diagenesis occurred shortly after the deposition of the succession and is 

characterized by marine cementation–micritization. These processes were followed by early 

meteoric diagenesis in vadose and phreatic realms. Sea-level fluctuations were clearly significant 

in the early stages of diagenesis especially in upper part of the succession and at the crest of the 

mounds. In contrast, the late-stage diagenesis is thought to have occurred in the burial diagenetic 

settings. These burial diagenetic events resulted in compaction, fracturing, pressure solution, burial 

dissolution, calcite cementation, and silicification. 

Identification of diagenetic environments also is helped by the interpretation of stable 

isotope distributions (Figure 3.2). Here, negative values of δ18O characterize a burial diagenesis 

while negative δ13C could be related to a meteoric realm (Hudson, 1977; Veizer, 1992, Grossman, 

1999). Clustering of values occurred and two major groups are shown: 1) minor to major burial 

with minor to no meteoric diagenesis, 2) minor to major burial with major meteoric diagenesis. 

The lowest value of δ18O from S-1 well is possibly related to the higher temperature from the 

possible magmatic intrusion (Figure 2.6). Meanwhile, the lowest δ13C from B-1 well is likely that 

the whole rock powdered-samples have a mixture with methane-derived cements (Figure 3.6a). 

3.8.1.1. Marine diagenesis 

Micritization of bioclasts, fibrous to bladed calcite cements filling shells, and the presence 

of dolomite, glauconite and pyrite are the lines of evidence of early marine phreatic diagenesis. 

Micritization (either complete or partial) has preferentially affected red algae, mollusc shells and 

LBF such as Amphistegina sp. by microboring, producing an irregular outline of micrite envelopes. 

This process generally takes place near the sediment–water interface in shallow marine waters 

(e.g. Bathurst 1966; Jacka 1977; Ellis 1986; Flügel 2004; Fournier et al., 2004). Early marine 

cements occur as thin isopachous rims of fibrous to bladed calcite crystals (Figure 3.8a). These 
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cements are the first-generation marine products that were later occluded by late stage blocky 

calcite cements. These cements generally are associated with RPG facies.  

 

Figure 3.7. Schematic paragenesis of the Baturaja Formation. Diagenetic events for the succession 

can be classified to early and late diagenesis. Marine and meteoric diagenesis are categorized as 

early events whereas burial diagenesis is late process. 

Dolomite in the Baturaja Formation is very fine to fine crystal sizes and could be related 

to syn-sedimentary processes. Stable isotope ratios are low negative to slightly positive for δ13C (-

2.1‰ to +1.2‰) that could be related to an organogenic model of dolomitization (Compton 1988; 

Mazzullo 2000). This model is promoted by bacterial sulfate reduction related with organic-matter 
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diagenesis by a local light 12C-enriched CO2 to pore-fluids derived from bacterial degraded organic 

matter (Gregg et al. 1992; Perkins et al. 1994; Budd, 1997; Vasconcelos and McKenzie 1997; 

Mazzullo 2000; Vasconcelos et al. 2005). Trace element concentrations for Fe (151 to 2720 ppm) 

and Mn (55 to 70 ppm) are relatively low, common for this setting (Mazzullo, 2000). Slightly 

higher Sr value (87 to 287 ppm) could be from aragonite dissolution (Budd, 1997) in the previous 

meteoric setting before burial processes. 

Spheroidal glauconite is rare in the Baturaja Formation (Figures 3.9a). This mineral likely 

formed at the sediment-water interface in a low-energy environment, possibly with very low 

detritus accumulation leads to sediment starvation, and high supply of Fe in an oxygenated to 

slightly reducing environment (Triplehorn, 1964; Chamley, 1989; Chafetz and Reid, 2000; 

Banerjee, 2016). The globular shape and absence of angular fragments indicate that this glauconite 

is authigenic (McConchie and Lewis, 1978). The enrichment of Fe in the samples could be related 

the presence of this mineral (Figure 3.10). 

In the Baturaja Formation, pyrite occurs as framboidal and micro-nodule shapes (Figures 

3.9b). This authigenic mineral formed by the reaction of reactive detrital iron with available 

dissolved sulfate produced by sulfate reduction bacteria (under anoxic condition) using 

sedimentary organic matter as reducing agent and energy source (Hudson, 1982; Berner, 1984; 

1985, Wilkin et al., 1996; Brock et al., 2006). The pyrite in the Baturaja Formation likely formed 

a few centimeters below the sea-bed (Berner, 1984; 1985; Baird and Brett, 1986).  

 

 

 



 

63 
 

 

 

Figure 3.8. a. Fibrous cements (red arrows) lining inside an ostracod carapace; precipitated in a 

phreatic marine setting. The void was then occluded by coarse calcite cement precipitated in likely 

phreatic meteoric environment. b. Dogtooth cements (red arrows) grew around Amphistegina sp. 

Pendant-like cement (yellow arrow) also indicates a phreatic meteoric diagenesis. c. Blocky calcite 

mosaic cement (white arrows) with perpendicular to cross-cutting cleavages; occurs as pore filling 

cements. This cement is interpreted to have precipitated in a meteoric phreatic setting. Green arrow 

points to deeper burial calcite cement whereas red arrow indicates microcrystalline silica. d. 

Equant microcrystalline silica (red arrow) under SEM. Blue arrow shows late stage calcite cement. 
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Figure 3.9. a. Globular shaped glauconite in (red arrow). b. SEM photomicrograph showing 

framboidal pyrite (red arrow) under the SEM filling the microporosity (green arrow). c. 

Dissolution processes dissolved skeletal grains of red algae and LBF, calcite cements and 

carbonate muds forming moldic and vuggy pores (green arrow). These non-fabric selective 

dissolution cuts across carbonate components. Calcite cements (red arrow) replaced possibly 

aragonitic bivalve shell. d. Enlargement of stylolite (red arrows) filled by calcite cements (green 

arrow) locally. 
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Figure 3.10. Type log of the Baturaja Formation and vertical composite plot of stable isotopes and major-trace elements. This carbonate 

formation can be distinguished into three members: lower, middle shale and upper. Color codes filling GR log represent facies that were 

predicted by neural network analysis based on the similarity of well log properties correlated to the specific facies defined from the 

sparse core data. A cyclicity of deepening and shallowing upward also is shown. System tracts are inferred from the interpreted relative 

sea level curve (relatively correlative with global eustatic curve). Negative shifts of δ13C and δ18O are related with possible subaerial 

exposure surfaces; supported by moderate Sr content just below these surfaces. Mg peaks represent dolomite content in the bulk samples 

whereas higher Fe could be related to glauconite. Higher Mn concentration indicates sub- to anoxic condition in burial setting. Miocene 

glaciation events of Mi1 and Mi2 are from Miller et al. (1991). 
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3.8.1.2. Early meteoric diagenesis 

The early meteoric diagenesis is inferred from micrite recrystallization, distinctive negative 

shifts of vertical δ13C plot, enrichment of Sr concentration, and cements. This diagenetic setting 

likely occurred occasionally during the deposition of the formation represented by probable 

exposure surfaces and shallowing-upward cycles for both upper and lower members of the 

Baturaja Formation (Figure 3.10). 

Meteoric conditions are a common setting for the dissolution of skeletal grains, mud, and 

early cement in vadose environment and calcite cementation precipitated in the meteoric phreatic 

setting. Extensive meteoric dissolution produces extensive vuggy and moldic porosity that are 

noticeable in our samples (Figures 3.6a, b).  

Aragonite was the original composition of coral skeletons and carbonate mud (Dodd 1966; 

Bathurst, 1971; Adams et al., 1984; Tucker and Wright, 1990) and this was dissolved by meteoric 

water flush and soil-derived CO2 percolating through the rocks. Meteoric calcite cement later filled 

the pores, although in some cases the shells were calcitized and relics of the original aragonitic 

microstructure are still present (Tucker and Wright 1990). The dissolution-reprecipitation 

processes in this diagenetic setting reduces the original high Sr concentration but moderate Sr 

content is retained in the replacement crystals. The RPG and RFR facies, as an example for this 

case, have elevated Sr concentration up to 1429 ppm. Aragonitic coral skeletons were completely 

dissolved and filled by blocky calcite cements. In comparison, modern aragonite-rich mud in 

Florida Bay has ~4000 ppm of Sr whereas modern corals contain ~8000 ppm of Sr (Bathurst, 1971) 

that would likely be reduced during burial diagenesis and recrystallization through time.  

Matrix recrystallization (neomorphism) is very common that the original carbonate mud 

transformed its crystal size, shape and crystal lattice orientation generally into coarser mosaic spar 
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(4-8 µm). This recrystallization is regarded as a product of meteoric diagenesis (Wiggins, 1986). 

Recrystallization of lime-mud matrix generally destroys microporosity (Pittman, 1971). 

The interpretation of an early meteoric diagenetic event also is supported by the presence 

of calcite cements precipitated in this setting, which include dogtooth, syntaxial overgrowths of 

echinoid grains, and blocky cement. Cloudy fringing dogtooth cement (Figure 3.8b) precipitated 

and grew sharp, pointed, bladed calcite crystals around Amphistegina sp. In addition, pendant-like 

cement occurs as an asymmetrical shaped, pointed and thickening downward during precipitation 

by gravitational force. Even though dogtooth cement can be precipitated in a wide variety of 

diagenetic environments from meteoric to shallow burial settings (e.g. Flügel, 2004; Andrieu et 

al., 2018), formation of pendant-like cement leads to the interpretation of the likely meteoric 

vadose zone above the fresh-water table. Additionally, the sample containing this cement occurs 

at the 16 Ma probable subaerial exposure (Figure 3.10). 

Syntaxial overgrowth cement is common for RPG, RFR and in some RLW facies. This 

cement is characterized by cloudy syntaxial calcite cement that grow in optical continuity with the 

substrate (typically echinoderm grains) of the same calcite mineralogy (Flügel, 2004). This type 

of cement is interpreted to be formed rapidly in the freshwater phreatic environment (Longman, 

1980; Kaufman et al., 1988). Meanwhile, grayish cloudy blocky calcite mosaic cement is 

interpreted to have precipitated in meteoric phreatic realm.  

Subaerial exposure events are inferred from our interpretation of depositional cycles and 

relative sea level curve based on the vertical facies association, porosity, and stable isotopic 

signatures especially the increasingly negative δ13C below these surfaces (Figure 3.10). The 

distinctive negative shifts of δ13C occurred episodically in the Early Miocene and are likely related 

to the meteoric affected event of subaerial exposures. Moderate Sr values at and right below these 
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surfaces indicating aragonite dissolution caused by meteoric water flushing and possible 

neomorphism while retaining the moderate Sr values. There are at least three major subaerial 

exposure events, based on these shifts, i.e. at the boundary between lower member and middle 

shale member at 20.3 Ma, at the lower portion of the upper unit (19.2 Ma) and at the top of the 

Baturaja Formation (16 Ma). The latter event coincides with extensive dissolution of vuggy and 

moldic pores.  

3.8.1.3. Burial diagenesis 

A burial diagenesis is inferred from several lines of evidence including distinct trace 

element signatures, calcite cementation, stylolite formation with increasing burial depths, coarse 

calcite cement, silicification, burial dissolution, and calcite cement filling stylolites. Burial 

environments typically are characterized by a change to anoxic conditions after deposition and 

reflected by moderate concentrations of Fe and Mn (Tucker 1986) in the range of more than 

hundreds ppm, as the availability of dissolved Fe and Mn released from clays can easily substitute 

in the calcite lattice at low oxygen states (Budd 1997; Grossman 2012). Moderate values of these 

elements in the lower member support this interpretation (Figure 3.4). 

As sediment overburden and pressure increase, mechanical compaction occurs in the 

succession, followed by fracturing and pressure solution. Deformation of shell fragments, 

cemented micro-fractures, grain re-orientation, and lithification occurred in the Baturaja 

Formation samples suggesting a transition to the burial environment. The compaction produced 

textural changes resulting in originally wackestone facies being altered into packstone as the 

carbonate mud was squeezed, skeletal grains were condensed, and intergranular spaces were filled 

by lime mudstone (Shinn and Robin, 1983; Choquette and James, 1987). 
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Pressure-solution occurs in many samples as stylolites. These irregular, serrated, 

interlocking, and suture-like contacts formed at the grain to grain contacts of mainly red algal and 

LBF (Figure 3.9d). Concentration of black insoluble residues (stylocumulates) along the stylolite 

surfaces are common. Approximately 40% of samples from the Melandong field have stylolite 

structures generally occurring in lime mud-dominated facies. Wackestone (RLW), packstone 

(RPG), and floatstone (RFR) in packstone matrix commonly contain this structure and support the 

interpretation that mud-rich facies were strongly affected by load and stress as the skeletal grains 

were less soluble than carbonate mud (Flügel, 2004). Other factors including clay content, the 

amount of the load/stress, water chemistry, pore-fluid pressure, mineralogy, host-rock porosity and 

permeability, degree of cementation, and rock resistance could also be major factors producing 

stylolites (Bathurst, 1972; Choquette and James, 1987; Buxton and Sibley 1981; Railsback 1993; 

Moore 1989; Flügel, 2004). 

Limpid coarse mosaic calcite cement occurs in the sample (Figure 3.6b) and is expected to 

have negative δ18O values reflecting increasing temperatures of the precipitating calcite 

supersaturated waters (Choquette and James, 1987). Higher Fe and Mn concentrations occurred 

(Figures 3.4, 3.5), as this cement was precipitated in anoxic and reducing conditions where 

significant Fe and Mn in the 2+ valence state formed (Choquette and James, 1987; Budd, 1997; 

Grossman, 2012).  

Precipitation of microcrystalline silica occurs locally (Figure 3.8d). This kind of quartz 

consists of minute and slightly equant microcrystalline aggregates that preferentially replace 

coarse calcite cements. Decreasing pH in pore waters and accompanying decreasing silica 

solubility leads to increasing acidity and results in the silica precipitation (Birnbaum and Wireman, 

1984; Noble and Stempvoort, 1989). Supersaturation of pore water with respect to silica also is 
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considered without any changing saturation of the bulk host carbonate (Maliva and Siever, 1989) 

as there is no sign for carbonate dissolution adjacent to the silica. It seems that silicification in our 

sample occurred by the latter process since there is no evidence of calcite cement dissolution at 

the margin of conjoining silica and calcite cements. 

Porosity and permeability in the carbonate succession normally are reduced significantly 

in response to compaction (both mechanical and chemical) by sediment loading, tectonic pressure, 

and cementation. However, dissolution processes may have occurred in the deeper burial setting 

and either enhanced pre-existing pores created in the previous diagenetic environments or created 

new pores. This diagenetic scenario is proposed to account for the presence of moldic and vuggy 

pores which occur primarily in samples from the inter-mound areas (Figures 3.6a, b). Since these 

inter-mound areas are a deeper depositional setting in the range of 150 to 300 m, it is unlikely that 

they were exposed during times of lower sea level thus rendering meteoric solution-enlargement 

of voids as unlikely. 

Calcitic-rich solutions produced from dissolved carbonate materials by CO2-rich burial 

fluids, precipitated calcite cement and locally filled opened stylolite (Figure 3.9d). The stylolite is 

inferred as a pathway for the movement of the dissolving fluids (Mazzullo and Harris, 1992). This 

cementation process postdates pressure-solution events likely occurred at hundreds of meters of 

burial depth. 

3.8.2. Pore type analysis   

Moldic porosity can form by fabric-selective leaching of skeletal components (Poppelreiter 

et al., 2005), controlled by the mineralogy (Moore, 1997), and possibly micro-structural difference 

between the solubility of individual skeletal grains, cements, and carbonate muds (Flugel, 2004). 

This type of porosity could occur in the meteoric-phreatic and also in burial settings (Flugel, 2004) 
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and is characterized by non-fabric selective dissolution (Choquette and Pray, 1970; Choquette and 

James, 1987; Moore, 1997). Meanwhile, vuggy porosity was likely formed at the later stage after 

mineral stabilization (Moore, 1997). The Baturaja Formation samples show that this type of 

porosity was likely produced after stylolitization as the vugs locally cut across the stylolites in 

some thin sections.   

The dissolution processes in our samples leached red algae, LBF, early calcitic cements 

and carbonate mud that have different crystal sizes, mineral compositions, and micro-textures 

indicating variations in relative solubility (Figures 3.9c, 3.11). The red algae mainly are composed 

of unstable high-magnesium calcite (HMC). LBF tests are mainly LMC calcite while carbonate 

muds might be dominantly aragonite that have changed to LMC calcite during mineral dissolution 

and re-precipitation in burial settings.  

Perforated LBF, such as Amphistegina sp., Assilina sp., Lepidocyclina sp., and Miogypsina 

sp. (Bassi et al., 2007), are abundant in the Baturaja Formation. The distribution of these perforated 

LBF across the ramp is slightly different. B-1 well has more perforated foraminifera (89.1% of 

total LBF) than J-2 and K-1 wells (84.3%). In addition, ellipsoidal test shape of perforated LBF 

(such as Amphistegina sp. and Miogypsina sp.) shows similar trend being more abundant in B-1 

well with 56.2% while J-2/K-1 wells show 46.8%. The richness trend toward more perforated LBF 

in the carbonate mound rather than the inter-mound area might be correlated to the more ellipsoidal 

moldic porosity observed in the B-1 well showing fabric-selective dissolution texture (Figures 

3.3b, 3.11a). The perforated tests of the LBF likely served as micro-permeability conduits for the 

acidic fluids to dissolve the LBF. 
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Figure 3.11. Extensive moldic and vuggy porosity in thin sections. a. Moldic porosity (red arrows) 

is likely produced by fabric-selective meteoric dissolution. Blacken and partially dissolved red 

algae (orange arrow) might indicate subaerial exposure event. Note glauconite indicated by white 

arrow. Sample is taken from B-1 well. b. Vuggy porosity (red arrows) resulted from partially 

dissolved skeletal grains of Amphestigina sp. and Discocylina sp. (white arrow), red algae (orange 

arrow), and calcite cements. Sample is from J-2 well. c. Similar vuggy porosity (red arrows) that 

cross-cut partially leached red algae (orange arrow), Discocyclina sp. (white arrow) and calcite 
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cements. Sample is from K-1 well. Burial dissolution by CO2 was likely responsible for producing 

non-fabric selective pores in b and c. 

At the inter-mound area, non-fabric selective dissolution texture (Figures 3.11b, c) occurs 

with slightly equal distribution of irregular pores of vuggy and ellipsoidal-shape of moldic porosity 

(Figure 3.3b). This texture is related to the water-controlled diagenesis indicating pore-water 

changes by increasing CO2 concentrations (James and Jones, 2016) in a possible burial setting. In 

this diagenetic environment, the dissolution processes of the Baturaja Formation were likely 

controlled by micro-pores and micro-permeability (as in the perforated LBF) and crystal size (as 

in carbonate mud) different than this process being driven by original mineralogy (e.g. Larue, 

1976; Ardila, 1982; IIAPCO, 1986; Tonkin et al., 1992; Park et al., 1995; Wicaksono, 1995).  

The B-1 well from the mound area shows bulk porosity from image analysis of 2.3 to 

26.3% with an average of 13.8% whereas an inter-mound area, represented by the J-2 well, has 3 

to 29.2% porosity with an average of 14.8%. Furthermore, at the reservoir interval from the 

petrophysical analysis reports (Pertamina EP, 2014), B-1 has bigger effective porosity of 5.7 to 

33.67% with an average of 17.2% whereas the J-2 well has 6.1 to 26.4% porosity with an average 

of 15.2%. These differences in the porosity may indicate micro-porosity in the succession that is 

not recognizable by image analysis.  

3.8.3. Origin and evolution of the porosity   

The Baturaja Formation has a quite simple burial history that after deposition, this 

succession was buried to the burial diagenetic setting after its deposition to Recent (Figure 3.12). 

Consequently, there are two possible scenarios of the origin of the moldic and vuggy dissolution 

porosity in the Baturaja Formation: 1) dissolution in meteoric setting or 2) burial dissolution based 

on CO2 degassing from mantle through deep-seated fault conduits. 
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Figure 3.12. Paleobathymetry and burial diagram from B-1 well showing depositional 

environmental depth for the Baturaja Formation was maximum 40 m from paleontology analysis. 

Three subaerial exposure event occurred during deposition. Critical moment when hydrocarbon 

expelled for the well was during the Pliocene-Pleistocene (modified from LAPI ITB, 2012). 

Meteoric diagenetic environments are prone to produce moldic and vuggy porosity that can 

provide high porosity-permeability intervals for hydrocarbon producing zones (Larue, 1976; 

Ardila, 1982; IIAPCO, 1986; Tonkin et al., 1992; Park et al., 1995; Wicaksono, 1995). When the 

carbonate sediments were exposed to meteoric environments during subaerial exposure, they were 

easily dissolved by freshwater that was undersaturated with respect to calcite and subsequently 

precipitate as LMC (Chave et al., 1962; Allan and Matthews, 1977; Tucker and Wright, 1990). 

The freshwater was acidified by atmospheric, soil-derived CO2 and also soil acids (Tucker and 

Wright, 1990). Consequently, meteoric dissolution occurs more extensively in humid and tropical 

conditions where heavy rainfall and vegetation are common. In this diagenetic setting, the 
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freshwater, decayed organic matter, and soils generally are enriched in δ12C giving subaerially-

exposed successions a distinctive negative δ13C signature (Chave et al., 1962; Allan and Matthews, 

1977; James and Choquette, 1984). Fabric-selective dissolution texture resulted from preferential 

dissolution of more soluble skeletal grains i.e. mainly red algae and ellipsoidal-shaped and 

perforated LBF that produced more moldic pores in the B-1 well at the carbonate mound area 

(Figures 3.3b, 3.11a).  

We recognize that the main porous intervals are in the top of highstand upper member and 

are likely associated with a major sea-level fall. The isotopic data from the offshore area shows a 

depleted in 13C for the calcite cement indicating meteoric influence (Park et al., 1995). Our stable 

isotope distribution shows similar trend of negative δ13C values (Figures 3.1 and 3.2) for samples 

from B-1, P-1, C-1, and S-1 wells. The B-1 well located at the mound area on the paleotopographic 

high was most susceptible to sea-level fluctuations and prone to meteoric conditions when sea 

level lowered (Figure 3.2). The meteoric dissolution in this area resulted in moderate Sr 

concentration (Figures 3.3a, 3.10). Contrastingly, samples from the deeper inter-mound areas (J-

2, K-1, and K-2) show more positive δ13C and lower Sr values. This is attributed to the amplitude 

of sea level variations that were insufficient to expose the deeper areas.  

In spite of this meteoric evidence there were variations of CO2 content in gas production:  

92% from B-1 production data at the mound area and 80% and 16% for S-1 and J-2 wells within 

the inter-mound areas. High CO2 abundance could be related to several sources, including 

decomposition of organic material from biogenic processes, thermal breakdown of kerogen, 

mantle degassing, and metamorphic mineral reactions (Dai et al., 1996; Cooper et al., 1997; Noble 

et al., 1997). Data from a nearby well (PMK-2 with ~100% CO2) at the Pamanukan High, located 

less than 3 km from our study area, has a mantle source of CO2 from 3He/4He analysis (Cooper et 
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al., 1997) and can be an analog to our data. Additionally, the position of the wells in the Melandong 

area is adjacent to deep-seated basement-involved faults (B-1 and J-2 wells) and magmatic 

intrusion-related faults (S-1 well) that could be correlated to a mantle- and magmatic-degassing 

interpretation. These faults were likely vertical conduits for CO2 and brought this gas into contact 

with the Baturaja Formation (Figure 3.13). The deep-seated normal faults were produced by 

extensional tectonics (Irwin and Barnes, 1980; Giggenbach et al, 1993; Dai et al, 1996; Pinti and 

Marty, 2000; Liu et al., 2011; Castillo et al., 2017) during the early rifting in NW Java. 

Additionally, radial faults around the S-1 well (shown by high variance alignments) might be 

supplementary conduits for CO2 gas expulsion from the magmatic intrusions and contribute to 

diagenetic fluids. The CO2 gas likely affected carbonate sequences and significantly decreased the 

pH of diagenetic fluids and made corrosive brines that promoted the burial dissolution to create 

and expand pores. The dissolution in this burial setting likely result in non-fabric selective 

dissolution textures (Figure 3.11b, c). The very similar products of moldic and vuggy porosity 

might be produced by two distinctive processes of burial and meteoric dissolutions.  

3.8.4. Implication for hydrocarbon exploration and production  

Carbonate mounds were preferentially targeted as the Baturaja Formation hydrocarbon 

exploration play since the 1980s (Longman, 1994; Noble et al., 1997; Bishop, 2000; Suyono et al., 

2005). The mounds, dominantly developed on paleotopographic-highs and uplifted fault blocks, 

show good secondary porosity and permeability and proved to form hydrocarbon producing 

reservoirs; both onshore and offshore. Hydrocarbon producing fields such as Krisna, Rama, and 

Bima in the offshore (IIAPCO, 1986; Woodling et al., 1991; Tonkin et al., 1992), Tugu, Tambun, 

Cilamaya, and Pegaden in the onshore area (Suyono et al., 2005) were targeting Baturaja 

Formation reservoirs. This conventional or traditional carbonate mound play of the Early Miocene 
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Baturaja Formation is largely exhausted (Netherwood, 2000); so, new exploration concepts are 

needed to increase reserve replacement ratio in this highly complex and heterogeneous porosity-

permeability carbonate reservoir system.  

Deeper structural concepts were explored and became vital since the degree of difficulty 

in petroleum exploration of shallow strata is increasing (Shen et al., 2016). Several structures were 

successfully discovered in NW Java Basin, such as Karangbaru (Suyono et al., 2005), and J 

structure at the Melandong complex, applying this deeper structural concept.  

We propose the exploration play of the inter-mound located in the middle ramp setting 

(Figure 3.13). Here, deep-seated faults act as vertical conduits for CO2 corrosive fluids. The J 

structure is proven to have good reservoirs in the Baturaja Formation producing oil and gas from 

this concept. This 3-way dip structure is located in the lower structural area and has deeper 

depositional setting. Bounded by deep-seated faults, this uplifted block was an objective for the 

drilling, at that time, targeting and exploring reservoir with meteoric-derived pores, despite its 

basinward setting. The disadvantage of this concept exploring burial dissolution pores in the lower 

structural areas is higher CO2 content, as shown by well-test data. Corrosive CO2 in the well 

production could signal increasing budgetary spending on downhole and surface facilities to 

prevent corroded pipes and high CO2 removal processing costs.  

While an understanding of the porosity creation mechanism is important, a complete 

subsurface dataset is required in order to accurately predict and describe the presence, geometry, 

and distribution of the secondary pores. High-resolution 3D seismic is a critical consideration for 

the further development phase in the mature field, like the Melandong area, to be able to map 3D 

geometry with its attribute analysis and to predict porosity-permeability system in carbonate 

succession. Integrated study of well data (logs and cores) and rock physics models are being 
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conducted to identify and characterize pore types and their geometry (Agustianto, personal 

communication). The ability to describe pore heterogeneity laterally and vertically will lead to 

increased understanding of rock reservoir quality, especially in areas with limited core coverage. 

 

Figure 3.13. a. Amplitude slice map created by 0 to 10 ms window below the top Baturaja 

Formation horizon showing possible porosity distribution in the study area. Green polygon shows 

the direction of 3D model in b. b. Vertical conduit model for mantle- and magmatic-derived CO2 

affecting this deep buried succession. Moldic and vuggy porosity was created by the dissolution 

of the rock volume by this acidic gas. Inter-mound area is a locality where this porosity creation 



 

79 
 

 

is greatly affected by this burial dissolution process whereas at the mound region, overprinting to 

the porosity created by previous meteoric events should have occurred. 

3.9. Conclusions 

The Baturaja Formation has mixed porosity (moldic and vuggy) that was created by two 

main episodes: meteoric and burial processes, based on the following points: 

1. Paragenesis for the Baturaja Formation succession in NW Java Basin, Indonesia shows early 

stage diagenesis began with marine diagenetic processes that were followed by occasional 

subaerial exposure events to meteoric settings. Rapid changes of diagenetic environments for 

these early events were clearly significant for the porosity creation, especially at the vadose 

meteoric zone. The late-stage burial diagenesis resulted in compaction, fracturing, pressure 

solution, burial dissolution, calcite cementation, and silicification.  

2. Porosity types are dominated by moldic and vuggy secondary porosity. Intraskeletal, 

interparticle, intercrystalline, microporosity, and fracture porosity is minor to rare in the 

Baturaja Formation. More abundant moldic pores in the carbonate mound area are related to 

the fabric-selective meteoric dissolution of ellipsoidal shaped of perforated LBF and red algae 

whereas slightly equal portions of moldic and vuggy pores occurred in the inter-mound area 

related to non-fabric selective burial dissolution. Abundant perforated LBF with their micro-

porosity and also micro-permeability might be factors influencing and controlling the 

differences in dissolution textures across the ramp. 

3. The Baturaja Formation has prolific hydrocarbon reservoirs where its porosity system was 

widely interpreted previously by strong meteoric-dissolution events. Occasional meteoric 

exposures of the succession, for both lower and upper members, are indicated by the extensive 

dissolution of moldic and vuggy pores, in addition to 13C-depleted intervals, caused by 

dissolution through meteoric processes in the succession within the mound area. This locality 
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was vulnerable to episodic subaerial exposure events. In the deeper inter-mound areas, burial 

dissolution might dominate porosity creation by dissolution of the rock volume by mantle-

derived CO2. Deep-seated faults were ascending pathways of these corrosive fluids. It is 

possible that this burial dissolution overprinted previous meteoric processes as the result of 

these two dissolution processes are similar in abundances, especially in the inter-mound area, 

i.e. moldic and vuggy pores.  

4. The burial dissolution model emerges as an inter-mound exploration concept focusses on the 

muddy middle ramp setting. An area with the deep-rooted faults has a larger probability to 

have mantle-derived CO2 to dissolve the rock and create secondary moldic and vuggy pore 

spaces.  
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CHAPTER 4  

CONTROL ON DIAGENESIS AND DOLOMITIZATION OF PERITIDAL FACIES, 

EARLY CRETACEOUS LOWER EDWARDS GROUP, CENTRAL TEXAS, USA*  

 

4.1 Overview 

The Early Cretaceous Fort Terrett Formation of Mason County, central Texas, is a 

succession of subtidal to peritidal mud-dominated facies with minor intervals of bioclastic 

packstone-grainstone, rudist floatstone, and interbedded chert nodules. The strata conformably 

overlie the Hensel Formation, which was deposited unconformably on Precambrian basement. The 

Hensel Formation also contains a significant percentage of dolomite, precipitated within a fine-

grained clayey matrix.  

The Hensel and Fort Terrett Formations were deposited during a transgressive episode, 

which provided the conditions for the extensive shallow-water Comanche carbonate platform. 

Siliciclastic and carbonate sediments were deposited along the coastal margin in subtidal, intertidal 

to supratidal areas. Previous dolomitization models have suggested that high permeability layers 

are required for dolomitizing brines to flow through a carbonate succession. Although, interparticle 

porosity in muddy tidal-flat successions can be significant, it has a limited flow capacity. However, 

interconnected fenestral porosity can allow sufficient fluid flow to move dolomitizing fluids more 

efficiently through the succession. Thus, it is hypothesized that interconnected fenestral porosity 

                                                 
*Reprinted with permission from “Controls on diagenesis and dolomitization of peritidal facies, Early 
Cretaceous Lower Edwards Group, central Texas, USA” by Robet Wahyu Widodo and Juan Carlos 
Laya, 2017. Facies, v. 63, p. 23, Copyright 2017 by Springer-Verlag GmbH Germany 
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could have had a significant impact on permeability within this muddy succession and provided 

the pathways and conduits for Mg-rich brines.  

Four types of dolomite are recognized in the Fort Terrett succession. Three of these 

dolomite types formed largely by replacement and they occur throughout the succession. Features 

such as crystal size, crystal face geometry and zonation reflect the progressive development and 

recrystallization of the dolomite types. Only type 4 dolomite formed as a cement in void spaces 

during a late diagenetic stage. The direction of the dolomitizing fluid movement is difficult to 

determine, but it was likely downward in this case, controlled by a density head driving-

mechanism generated by dense hypersaline fluids from an evaporating lagoon. 

4.2. Keywords  

Early Cretaceous, dolomite, dolomitization model, carbonate diagenesis, fenestral porosity 

4.3. Introduction 

Early dolomitization is a common process in peritidal carbonate deposits (e.g., Permian 

Tansill Formation, Cretaceous Edwards Group and Holocene carbonate sediment in the Bahamas) 

which has been attributed to several mechanisms including microbial activity, tidal pumping, 

seepage reflux and evaporation (Deffeyes et al. 1964; Vasconcelos and McKenzie 1997; Fisher 

and Rodda 1969; Saller and Henderson 2001; Machel 2004; Jones and Xiao 2005). Dolomitization 

models specifically for the Lower Edwards Group in Central Texas include seepage-reflux (Fisher 

and Rodda 1969) and evaporative pumping (Rose 1972). These mechanisms require sufficient 

permeability (minimum 240 millidarcies as calculated through a mass-balance method by Deffeyes 

et al. 1964 for the Pekelmeer lagoon in Bonaire, Netherlands Antilles) so that a Mg-rich brine can 

flow and deliver the large volume of fluid required for pervasive dolomitization (Machel 2004; 

Garcia-Fresca et al. 2012). However, fine-grained facies with few isolated packstone– grainstone 
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layers dominate the Edwards Formation outcrops examined in Mason County; thus, it is difficult 

to see how muddy sediments with low permeability and limited high-permeability layers can allow 

brines to permeate for extensive dolomitization during early diagenesis.  

In peritidal deposits, fenestrae and fenestral fabric are very common (Shinn 1968; Shinn 

and Robbin 1983) and these may have greatly affected primary permeability. However, the 

relationship between fenestral fabrics and dolomitization is poorly documented and understood, 

even though it is very common for dolomite units and fenestral fabrics to occur together in peritidal 

successions (Shinn and Robbin 1983; Abduslam 2012). It is proposed here that fenestral fabrics 

can play a significant role in the dolomitization of mud-dominated facies. 

The Early Cretaceous Lower Edwards Group in Mason County, central Texas, was 

deposited unconformably over a Proterozoic granitic basement (Walker 1992) and is well exposed 

within The Mason Mountain Wildlife Management Area (MMWMA), 17.7 km north of Mason, 

Texas (Figure 4.1). Outcrops occur on the western flank of the Llano Uplift (Figure 4.1a) and the 

eastern extension of the Edwards Plateau (Barker and Ardis 1996; Anaya 2004). 

Reddish conglomeratic sandstone to dolomitic sandstone of the Hensel Formation were 

deposited unconformably on basement rocks (Figure 4.1b) during the initial transgression (Payne 

and Scott 1982; Phelps et al. 2014). A peritidal mudstone to skeletal–fenestral wackestone 

succession of the Fort Terrett Formation contains minor intervals of bioclastic packstone–

grainstone, isolated rudist floatstone, and thin evaporite deposits (Fisher and Rodda 1969; Rose 

1972; Barker et al. 1994; Moore 2010). 
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4.4. Geological setting 

The Llano Uplift region has a simple geological history that can be summarized in three 

major geological events: (1) Precambrian granite intrusion and metamorphism produced by the 

Laurentia and Rodinia collision event (Sellards et al. 1932; Walker 1992; Mosher 1998; Ewing 

2005; Miall and Blakey 2008); (2) Early Mesozoic rifting followed by major Early Cretaceous 

transgression and formation of the shelf system, which led to the deposition of thick siliciclastic 

and carbonate successions; and (3) Late Oligocene-Early Miocene regional uplift along the 

Balcones Fault Zone, which caused the exposure of the Cretaceous strata in this area (Anaya 2004; 

Barker et al. 1994; Collins 1987; Ewing 2005; Lawton 2008; Maclay 1995; Phelps et al. 2014). 

4.4.1. Regional depositional setting and stratigraphy of Early Cretaceous strata 

Central Texas during the Early Cretaceous was located between 25° and 30° north 

paleolatitude, indicating a tropical environment for its successions (Scotese et al. 1999; Phelps et 

al. 2014). Additionally, a semi-arid to arid climatic regime was present (Payne and Scott 1982; 

Phelps et al. 2014). A second phase of tectonic activity led to the formation of a small island 

(Figure 4.1c) on the Comanche Platform (Fisher and Rodda 1969; Moore 2010). As the Early 

Cretaceous transgression covered the low-lying continental margin, the Hensel Formation was 

deposited in fluvial to coastal environments, onlapping the Proterozoic granitic basement (Barnes 

et al. 1972; Walker 1992; Moore 2010). As the transgression continued, carbonate sediments began 

to be deposited along the shoreline including peritidal areas (Moore 2010). 

Sea-level fluctuations resulted in wide-ranging depositional environments including open-

marine, shoals, shallow inner lagoon (known as the Kirschberg Lagoon) and interior peritidal 

systems located behind the Stuart City Reef to the south-southeast, and Central Texas Reef trend 

to the north-northeast. The carbonate succession on the platform is comprised of lime mudstone, 
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miliolid foraminifera packstone-grainstone and rudist floatstone, interbedded with rare evaporites 

in the Fort Terrett Formation of the Edwards Group (Rose 1972; Barker et al. 1994). 

 

Figure 4.1. a. Location of the study outcrops in the eastern extension of the Edwards Plateau and 

the western flank of the Llano Uplift (modified from Bureau of Economic Geology 1992). b. 

Geological map of Mason Mountain Wildlife Management Area (MMWMA). The Early 

Cretaceous succession (in green colours) is surrounded by a Precambrian basement complex 

(modified from Helper 2006). c. Upper figure shows regional depositional setting of Texas during 

the Early Cretaceous-Albian stage (modified from Fisher and Rodda 1969). Study area in red box. 

Lower figure displays a schematic cross section of A–A’ with the Kirschberg Lagoon deposits 

dominated by mudstone to skeletal–fenestral wackestone facies with scattered rudist biostromes 

(modified from Tucker and Wright 1990). 
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4.4.2. Description of the mason exposures in Central Texas 

The Edwards Plateau covers approximately 61,500 km2 and consists of nearly flat-lying 

limestone and dolomite covered by modern soils (Barker et al. 1994). The study area (Figure 4.1b) 

has outcrops exposed along an elongate hill formed mainly of three stratigraphic units that are 

summarized in Figure 4.2. The Proterozoic basement is generally granite and metamorphic units 

overlain by a basal conglomerate and then a fining-upward succession of the Lower Cretaceous 

Hensel Formation (Figure 4.3a). The Fort Terrett Formation was deposited mostly conformably 

on the Hensel Formation with a little evidence of an erosional surface or paleosoil between the 

two. In the study area, the Fort Terrett Formation can be sub-divided into a lower member 

consisting of three, meter-scale depositional cycles (1, 2, and 3); a middle member consisting of 

cycles 4, 5, and 6, and an upper member consisting of cycles 7 and 8. 

4.5. Methodology 

Seven measured sections were described bed-by-bed using Dunham’s (1962) 

classification. Total gamma-ray measurements were determined using a RS-230 handheld gamma-

ray spectrometer at 30-cm increments. In addition, 67 hand-samples were collected for 

petrographic and geochemical analysis. Alizarin-red S was used to partially stain the thin-sections 

in order to distinguish dolomite (unstained) from calcite (red-stained). 

High-resolution photomicrographs were obtained to illustrate sedimentological and 

diagenetic features. Dolomite crystal size was measured to determine textural maturity. ImageJ 

software with jPOR plug-ins was used to measure total thin-section porosity (Grove and Jerram 

2011). Fenestrae observed in thin-section were also measured and quantified to determine initial 

porosity. Cathodoluminescence (CL) petrography was performed using a Technosyn Cold 
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Cathode Luminescence Model 8200 MKII to determine the dolomite compositional variation and 

crystal evolution. 

 

Figure 4.2. Composite measured section of the Mason succession, showing stratigraphy, dolomite 

percentage, initial fenestral porosity, geochemical analysis, and interpreted depositional 

environments and sea-level fluctuations. The frequency of initial fenestral porosity, geochemical 

analysis, and interpreted depositional environments and sea-level fluctuations. The frequency of 

initial fenestral porosity increases upwards in conjunction with an increase in dolomite percentage. 

Partially dolomitized beds are abundant in the lower part of the formation. Upward-decreasing Fe 

and Mn contents are also noticeable.  



 

88 
 

 

For stable isotope analysis, powdered whole-rock samples were analyzed for carbon (δ13C) 

and oxygen (δ18O) isotopes in a Kiel IV carbonate device coupled to a Thermo-Scientific MAT 

253 isotope ratio mass spectrometer in the Stable Isotope Geosciences Facility at Texas A&M 

University. The results are reported in VPDB standard with analytical precision of 0.04‰ for δ13C 

and 0.08‰ for δ18O. 

Major and trace element analyses including strontium (Sr), manganese (Mn), and iron (Fe), 

reported in parts per million (ppm), were determined by an ICP-MS in the Radiogenic Isotope 

Geosciences Laboratory of Texas A&M University. Precision of major and trace element analysis 

was 0.001 ppm for Sr, 0.003 ppm for Mn and 0.03 ppm for Fe. 

4.6. Facies analysis 

Seven facies are described for the Hensel and Fort Terrett Formations based on lithological 

features such as composition, grain size, bedding characteristics, sedimentary structures, and fossil 

content, based on both field observations and petrographic analysis (Table 1). Interpreted 

depositional environments for each facies are presented. 

4.6.1. Hensel Formation facies 

The Hensel Formation is a fining-upward succession of conglomeratic to very fine 

sandstone that was deposited unconformably on the Proterozoic basement. Two facies are defined 

in this formation.  
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Figure 4.3. General view of Hensel and Fort Terrett Formations in Mason County. a. Fining-

upward conglomeratic to dolomitic fine sandstone of the Hensel Formation. b. Burrows (black 

arrows) in shallow marine mudstone, base of the Fort Terrett Formation. C. Chert-nodule (arrows) 

in partially dolomitized mudstone to skeletal–fenestral wackestone facies. d. Rudist floatstone with 

moldic porosity mainly of Exogyra texana (arrows), floating in microcrystalline dolomite matrix. 
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4.6.1.1. Conglomeratic to medium sandstone (near-shore fluvial channel facies) 

The lower member of the Hensel Formation is a brownish-grey, conglomeratic to medium 

sandstone whose thickness ranges from 1 to 1.1 m. Granule to pebble-size granitic and 

metamorphic rock fragments occur at the base of the succession immediately above the contact 

with the basement. The upper part of this unit consists of fine-to-medium, subangular to well-

rounded quartz grains (~30%), floating in sucrosic crystalline dolomite. This facies has 

intercrystalline porosity up to 14% and is interpreted to have been deposited in a near-shore fluvial 

channel setting. 

4.6.1.2. Very fine to medium sandstone (shallow-marine facies) 

The upper member of the Hensel Formation is a brownish-grey, fining-upward unit of 

medium to very fine sandstone whose thickness ranges from 1 to 2.1 m. Petrographically, this unit 

consists of very fine to medium, subangular to well-rounded and poorly sorted quartz grains 

(~20%), floating in a mosaic of sucrosic crystalline dolomite with ~7% intercrystalline porosity. 

This member was deposited in a shallow-marine setting based on the finer grains floating in 

carbonate-mud that was later replaced by dolomite. 
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Table 4.1. Facies analysis, brief description, grain components, and interpreted depositional environments of the Hensel and Fort Terrett 

Formations 

 

 

Facies Name Description Components
Interpreted Depositional 

Environment

Fort Terrett Formation
Rooted mudstone to 
skeletal-fenestral 
wackestone

Light brown colour, partially to completely dolomitised, thickness 10 to 30 
cm. Exposure features common.

Radiolitid rudist (~7%), ostracod (~5%), gastropod (~3%), miliolid (~1%),
dasyclad green algae, planktonic foraminifera, rootlet structures and
variously-sized peloids. 

Intertidal-Supratidal

Skeletal-fenestral 
mudstone-wackestone

Dullish brown, relatively homogeneous with streaks of brownish orange, 
partially to completely dolomitised, thickness 10 to 240 cm. Chert nodules in 
the upper and middle member, bioturbation and parallel lamination on the 
base of the formation.

Radiolitid rudist (~12%), miliolid (~7%), gastropod (~5%), dasyclad green 
algae, equivalved-megalodontid bivalve, foraminiferas, peloids (~10%), 
aggregate grains and very fine to fine quartz (~3%)

 Intertidal-subtidal

 SubtidalRudist floatstone Brownish grey, completely dolomitised, thickness 50 to 200 cm. Exogyra texana  and radiolitid rudist common floating in very fine to fine 
sucrosic dolomite matrix

Subtidal

Skeletal packstone-
grainstone

Dullish to milky brown, thickness 10 to 260 cm and partially to completely 
dolomitised. 

Radiolitid rudist (~15%), ostracod (~10%), miliolids (~7%), echinoderm
(~3%), foraminifera (~2%), peloids (~5%) and aggregate grains (~30%),
intraclasts and very fine to fine quartz (~1%).

 High-energy subtidal shoal

Very fine to fine 
sandstone

Brownish grey with thickness 18 cm, parallel lamination. Very fine to fine quartz (~30%) floating in dolomite microcrystalline cement,
subangular to well-rounded, poorly sorted and loose packing.

Subtidal sand-bar

Hensel Formation
Very fine to medium 
sandstone

Fining-upward, brownish grey to brownish red, subangular to well-rounded 
quartz shape, poorly sorted.

Very fine to medium quartz (~20%), floating in dolomite microcrystalline
cement

Shallow marine

Conglomeratic to 
medium sandstone

Fining-upward, brownish grey, granule to pebble size of granite clasts on the 
contact to the basement. Subangular to well-rounded quartz shape, poorly 
sorted and loose packing.

Fine to coarse quartz grains (~30%), floating in dolomite microcrystalline
cement Near-shore fluvial channel
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Figure 4.4. Photomicrographs of the Fort Terrett Formation facies. a. Fenestrae filled by internal 

sediment and dolomite (delineated by blue polygons) in partially dolomitized wackestone. b. 

Blocky mosaic dolomite cement (white arrows) partially to completely filling moldic pores in 

partially dolomitized skeletal–fenestral wackestone. Micrite-walled miliolid foraminifera (Mil) 

and foraminifera (For) are partially dissolved. c. Skeletal grainstone shows calcitic bivalve shell 

(Biv) fragments with irregular micrite envelopes (white arrows) caused by microboring organisms. 

Void within a rudist shell filled by miliolid foraminifera (Mil) and dolomite cement. Other grains 

are echinoderm (Echi), sponge (Spo), and quartz grains (Qtz) cemented by dolomite. d. Subangular 

to well-rounded, poorly sorted, very fine to fine quartz grains (Qtz) floating in dolomite cement. 

Note that slides c and d are stained by alizarin Red S. Por porosity, dol dolomite, XPL cross-

polarized light, PPL plain-polarized light. 
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4.6.2. Fort Terrett Formation facies 

The Fort Terrett Formation has five carbonate facies dominated by fenestral mudstone–

wackestone that are grouped into five facies associations. It also has minor intervals of bioclastic 

packstone–grainstone. 

4.6.2. 1. Rooted mudstone to skeletal–fenestral wackestone (intertidal–supratidal facies) 

This facies is light brown, partially to completely dolomitized skeletal wackestone, 

consisting mainly of carbonate mud with minor bioclastics such as calcitic radiolitid rudists (~7%), 

ostracods (~5%), gastropods (~3%), miliolid foraminifera (~1%), a few Dasyclad green algae 

(<1%) and planktic foraminifera. This facies also contains variously sized peloids and rootlets. 

This facies ranges in thickness from 10 to 30 cm. Fine to very fine dolomite crystals occur in 

partially dolomitized skeletal wackestone as planar to non-planar porphyrotopic cement, whereas 

completely dolomitized wackestone shows rootlets (~4% by volume) and peloids as grains floating 

in sucrosic dolomite. 

Micrite envelopes and dolomite replacement (partially or completely) of calcitic rudists, 

miliolid foraminifera, ostracods, and planktic foraminifera are common and dolomite cementation 

occurred in some skeletal chambers. The chambers of micritic rootlets were filled by dolomite 

cement. 

Porosity in this facies consists of primary porosity, such as elongate well-connected 

fenestral pores (15%), and secondary porosity including moldic and fracture porosity. Initial voids 

were partially or completely filled by muddy or silty sediment and then cemented by dolomite with 

planar crystal boundaries (Figure 4.4a). Intercrystalline porosity up to 10% occurs in completely 

dolomitized skeletal wackestone.  
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The presence of rare rootlets indicates subaerial exposure long enough to develop terrestrial 

plants with well-established root systems. Bioclastic fragments in this facies indicate that seawater 

intermittently flooded the area. The association of fenestral fabrics, rootlets and assorted bioclastic 

grains suggests that deposition occurred in an intertidal– supratidal setting susceptible to episodic 

dry and wet periods. 

4.6.2.2. Skeletal-fenestral mudstone-wackestone (intertidal-subtidal facies) 

Skeletal–fenestral mudstone–wackestone facies is dullish brown, relatively homogeneous 

with streaks of brownish orange oxidation and partially to completely dolomitized (Figure 4.4b). 

The thickness of this facies varies from 10 to 240 cm. Irregular chert nodules ranging from 4 to 15 

cm in diameter occur in the middle and upper members. Bioturbated mudstone near the base of 

the formation contains rare Teichichnus ichnogenera in addition to rare parallel lamination. Moldic 

(14%) and fenestral (12%) porosity is common in this facies. 

The skeletal grains in this facies include calcitic rudist fragments (~12%), miliolid 

foraminifera (~7%), gastropods (~5%), and minor (<1%) dasyclad green algae, calcitic bivalves, 

and multi-chambered-uniserial foraminifera. Non-skeletal grains consist of variously sized peloids 

(~10%), aggregate grains, and fine quartz grains (~3%) in a muddy carbonate matrix. Very fine to 

coarse dolomite crystals (5–250 μm) with planar to non-planar porphyrotopic crystal boundaries 

are scattered in the mud. The depositional environment of this facies is interpreted to have been a 

low-energy, intertidal to shallow subtidal zone with a muddy substrate (Flügel 2004). 

4.6.2.3. Rudist floatstone (subtidal facies) 

Rudist floatstone is brownish-grey, completely dolomitized and occurs as an isolated unit, 

50–200 cm thick. Common Exogyra texana and radiolitid rudists occur as the main bioclasts in 

this facies, floating in a fine to very fine sucrosic dolomite matrix (Figure 4.3d). Porosity types in 
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this facies are predominantly moldic (~12%) and intercrystalline (13%). Biomoldic porosity was 

formed by rudist shell dissolution with molds locally filled by dolomite cement. The distribution 

of this facies indicates that the rudist colonies grew in relatively small, isolated, and scattered areas 

in a shallow subtidal setting within a lagoon with a water depth probably no more than 5 m; this 

resulted in an isolated biostromal facies. 

4.6.2.4. Skeletal packstone-grainstone (high-energy subtidal shoal facies) 

The skeletal packstone–grainstone is dull to milky brown and partially to completely 

dolomitized; bed thickness ranges from 10 to 260 cm. The packstone consists of mixed skeletal 

grains and fragments: rudists (~15%), miliolid foraminifera (~7%), rare benthic–planktic 

foraminifera and non-skeletal grains, peloids (~5%) and a few aggregate grains, within a minor 

carbonate matrix. Selective silica replacement of aragonitic rudist shells occurs in this facies.  

The skeletal grainstone is composed of radiolitid rudists (~12%), ostracods (~10%), 

miliolid foraminifera (~7%), echinoderms (~3%), planktic foraminifera (~2%), and unidentifiable 

skeletal grains. Non-skeletal grains are peloids (~30%), aggregate grains (~5%), intraclasts and 

very fine to fine quartz grains (~1%). All grains are cemented by dolomite. 

Micrite envelopes occur on some bioclasts produced by microborers whereas other grains 

show partially to complete dolomite replacement. Dolomite cement fills some skeletal chambers 

(Figure 4.4c). Peloids are mainly composed of calcitic mud and locally were replaced by dolomite 

whereas others were dissolved to give a moldic porosity. Very fine to coarse dolomite crystals (4–

670 μm) are scattered with planar to non-planar crystal boundaries and a porphyrotopic texture in 

some samples. Common porosity types for this facies are fenestral (14%), intercrystalline (12%), 

moldic (3%), and fracture (<1%), and these pores were partially to completely filled by dolomite 

cement with planar crystal boundaries. These packstone and grainstone facies were deposited in a 
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high-energy subtidal shoal, based on the abundance and diversity of the skeletal grains and the 

lack of mud. 

4.6.2.5. Very fine to fine sandstone (subtidal sand‑bar facies) 

A single bed of brownish-grey sandstone (18 cm thick and less than 15 m in lateral extent) 

contains very fine to fine quartz grains (~30%), floating in a dolomite crystalline matrix. The grains 

are subangular to well-rounded, poorly sorted with a loose packing; there is an intercrystalline 

porosity up to 11% (Figure 4.4d). 

4.7. Dolomite types 

The textural classification proposed by Sibley and Gregg (1987) and adapted by Machel 

(2004) was used to identify different types of dolomite in the Fort Terrett Formation. In addition, 

a modified grain-size scale for authigenic constituents was applied to determine the dolomite 

crystal size (Folk 1974). For consistency in this article, the term aphanocrystalline is modified to 

micro, for crystals less than 0.004 mm or 4 μm. The criteria used to classify dolomite components 

in the Hensel and Fort Terrett Formations are crystal size, distribution and boundary shape. These 

elements were chosen with the purpose of characterizing dolomite crystal maturity (Tables 2 and 

3). 
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Figure 4.5. Dolomite within the Hensel (a, b) and Fort Terrett Formations (c–f). a. Micro- to fine 

dolomite crystals in fine to medium sandstone of the upper member of the Hensel Formation. b. 

Very fine to medium dolomite crystals in conglomeratic to medium sandstone of the Lower Hensel 

Formation. c. Type 1 dolomite shows a micro- to very fine crystal size with calcite cement around 

the fenestrae (white arrow). d. Type 2 dolomite has a very fine to fine crystal size with selective 

preservation of a low-Mg calcitic bivalve (white arrow). e. Type 3 dolomite shows very fine to 

medium overgrowths with multiple internal zones. f. Type 4 dolomite is a cement with a micro- to 

coarse crystal size filling voids inside a high-Mg calcite bivalve (red arrow) and within the lime-

mud. Note that slides b, c, and f are stained with alizarin Red S. PPL plane-polarized light, Qtz 

quartz, dol dolomite. 
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4.7.1. Hensel Formation dolomite 

The Hensel Formation shows very fine to coarse quartz grains floating in a sucrosic mosaic 

dolomite of micro to medium size, a polymodal crystal-size distribution, of planar euhedral to 

subhedral crystal boundaries, locally having cloudy centers and CL-zoning (Table 2). The 

conglomeratic lower Hensel Formation has a fine to medium sandstone and dolomite matrix with 

crystal size ranging from 3 to 30 μm. In contrast, the upper member of the Hensel Formation has 

very similar features but a much coarser dolomite crystal size of 6–80 μm and crystals with cloudy 

centers caused by mineral inclusions and CL-zoning (Figure 4.5a, b). 

4.7.2. Fort Terrett Formation dolomite 

Dolomite in the Fort Terrett Formation can be classified into four types (Table 4.3). The 

main criteria to identify textural maturity is the increasing crystal size (Table 4.3, lower figure), 

which can be interpreted to indicate decreasing saturation state of dolomitizing brines (Sibley and 

Gregg 1987). Type 1 dolomite is the most common and it is normally abundant in fully dolomitized 

facies (Figure 4.2). In contrast, type 3 is scarce in the succession. 
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Table 4.2. Dolomite characterization of the Lower and Upper members of the Hensel Formation. 
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Table 4.3.Upper table of dolomite characterization for the Fort Terrett Formation shows increasing 

maturity of texture and evolution. Lower figure exhibits the distribution of dolomite crystal size 

for all dolomite types; increasing crystal size is shown by the increasing peak of frequency towards 

a coarser crystal size. 

 

4.7.2.1. Type 1: first stage of dolomitization 

The initial dolomite crystals have a micro- to fine crystal size (1.5–35 μm with a mean of 

7 μm), a polymodal size distribution, planar subhedral to non-planar anhedral crystal boundaries, 

and mimetic to non-mimetic fabric preservation (Figure 4.5c). This is the most common dolomite 

type within the succession and is normally associated with mudstone to skeletal wackestone facies. 

This dolomite was likely the initial product of an early replacement dolomitization (cf. Saller and 

Henderson 2001; Jones and Xiao 2005). 

No Category Type 1 Type 2 Type 3 Type 4

1
Dolomite Classification and 
Evolution

Micro to very fine 
dolomite

Very fine to fine 
dolomite

Very fine to medium 
overgrowth dolomite

Micro to coarse 
dolomite cement

2 Crystal size (µm)*
- Minimum 1.5 2 5 2
- Maximum 35 40 65 670
- Mean 7 10 21 50

3 Crystal size category micro to fine very fine to fine very fine to medium micro to coarse
4 Crystal size distribution polymodal polymodal polymodal polymodal

5 Crystal boundary shape
planar subhedral to 
nonplanar anhedral

planar euhedral to 
subhedral

planar euhedral to 
subhedral

planar to nonplanar 
porphyrotopic to 

planar cement
6 Mimetic vs nonmimetic nonmimetic to mimetic mimetic mostly nonmimetic -
8 Cloudy center No No mostly cloudy center No
9 Mean porosity (%)

- Intercrystalline 10 13 13 -
- Moldic 9 4 11 -
- Fenestral 8 9 - 21.5

10 Others
calcite cement around 

the moldic pores
calcitic shell and 

fragment are preserved

zoning (cement 
overgrowth), 

completely dolomitized

pores filled by 
dolomite cement

Fort Terrett Formation
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4.7.2.2. Type 2: second stage of dolomitization 

The second-stage dolomite crystals are very fine to fine crystals (2–40 μm with mean of 

10 μm) that have a polymodal crystal-size distribution, planar euhedral to planar subhedral crystal 

boundaries, and mimetic fabric preservation. Crystal appearance is clean with no cloudy centers 

or zonation (Figure 4.5d). The larger crystal size of this dolomite type is likely the result of the 

continuation of the replacement process of the initial stage (cf. Saller and Henderson 2001; Jones 

and Xiao 2005). 

4.7.2.3. Type 3: overgrowth dolomite 

Overgrowth dolomite has a very fine to medium crystal size (5–65 μm with mean of 21 

μm), polymodal size distribution, planar euhedral to planar subhedral crystal boundaries, and a 

mostly non-mimetic texture. This type of dolomite commonly has recognizable fluid inclusion-

rich cloudy centers with multiple CL-overgrowth zones (Figure 4.5e). This type of dolomite may 

represent a post-replacement or overdolomitization process (cf. Saller and Henderson 2001; Jones 

and Xiao 2005). 

4.7.2.4. Type 4: coarse dolomite cement 

Coarse dolomite cements have a micro- to coarse crystal size (2–670 μm with a mean of 

50 μm), and polymodal crystal-size distribution; they fill voids and pore spaces, mainly 

intraskeletal and fenestrae (Figure 4.5f). This type of dolomite is common in partially dolomitized 

skeletal wackestone to grainstone facies. 
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4.8. Geochemistry 

4.8.1. Stable isotope geochemistry  

δ18O values for the Hensel and Fort Terrett Formations range from −4.7 to +1.7‰ and δ13C 

varies from −5.0 to +2.6‰ (Figure 4.7a). Dolomite crystals from both lower and upper members 

of the Hensel Formation have negative δ13C values of −3.9 to −1.1‰.  

Isotopic data for the Fort Terrett Formation show a distinct clustering of values that can be 

assigned to two groups. Group 1 dolomites (red polygon, Figure 4.7a) have negative values in both 

δ18O (−4.7 to −3.1‰) and δ13C (−5.0 to −0.3‰), and consist dominantly of type 4 dolomite 

(dolomite cement). Group 2 dolomites (blue polygon) show more scattered positive values in δ18O 

(−0.1 to +1.7‰) and a large variation in δ13C (−4.0 to +2.6‰).  

δ13C values of type 1 dolomite range from −2.3 to +1.9‰. Type 2 dolomite is enriched in 

13C with values ranging from +1.1 to +2.5‰. Type 3 dolomite has a broad range of carbon isotopic 

values from −3.6 to +2.6‰. Type 4 dolomite has a narrow range from +1.2 to +1.4‰. 

4.8.2. Major and trace element data 

The dolomites of the Lower Edwards Group have distinct Fe and Mn concentrations from 

36 to 1273 ppm Fe and 62 to 3279 ppm Mn (Figure 4.7b), which in the cross-plot, show a positive 

correlation. On average, there is nearly two times more Fe within the Hensel Formation dolomites 

(average 462 ppm, range 278–842 ppm) compared to the Fort Terrett Formation (average 240 ppm, 

range 36–1273 ppm), whereas nearly three times more Mn in the Hensel Formation dolomites 

(average 1170 ppm, range 754–2224 ppm) than the Fort Terrett Formation (average 363 ppm, 

range 62–3279 ppm). 
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Figure 4.6. a. Photomicrographs from the upper member of Fort Terrett Formation shows 26% 

fenestrae and 100% dolomite. b. Fenestrae filled by mud to silt sediment (darker color in the 

fenestrae) and cemented by dolomite (white to grey in the fenestrae). It shows initial porosity of 

23% with 8% dolomite. c. Photomicrograph of fenestral (light green polygon) and moldic (orange 

polygon) porosity. The red box contains a detailed view of the area for image d. d. Increasing 

dolomite crystal size from 1–4 to 9–25 μm towards the fenestral porosity (pointed by red arrows). 

Note that slides a and b are stained with alizarin Red S. The orange lines are possible flow paths 

of dolomitizing brines through fenestral bodies. PPL plain-polarized light. 

Sr concentrations are in the typical range for dolomite forming from marine fluids which 

is up to 600 ppm (Land 1973), although, there is one high value of 1039 ppm for skeletal packstone 

facies. The average value of the Fort Terrett Formation is 295 ppm, nearly three times that of the 

Hensel Formation (average 109 ppm). Plotting Sr against Fe + Mn concentrations suggests an 
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enrichment of Sr concentration for dolomite type 4, up to 1039 ppm (Figure 4.7c). A negative 

correlation (in red polygons) indicates that Sr was lost during diagenesis (Veizer 1983; Grossman 

2012). 

4.9. Discussion 

4.9.1. Depositional facies and stratigraphy  

A stratigraphic cross section of the Hensel and Fort Terrett Formations (Figure 4.8) in 

Mason County shows westward thickening strata, interpreted cycles, unconformities, stacking 

patterns, facies variations, and a transgressive surface (TS). The Hensel Formation has two fining-

upward sandstone cycles that are differentiated by grain size. These sandstones were deposited in 

a coastal to nearshore marine environment; the carbonate-rich muddy matrix of the sandstone was 

later replaced by dolomite. The basal conglomeratic sandstone of this unit only occurs in local 

topographic lows. 

Eight, mostly shallowing-upward meter-scale cycles (Figs. 2, 8) can be recognized in the 

Fort Terrett succession based on muddy-grainy facies variation and the fluctuation of total GR log. 

These cycles consist of peritidal facies with supra-, inter-, and subtidal deposits. Muddy facies 

contain bioclasts of gastropod, miliolid foraminifera, and other foraminifera. Bioturbation, 

fenestrae, and rootlet structures in this facies indicate deposition in a tidal-flat environment. 
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Figure 4.7. a. Cross-plot of δ18O and δ13C values from the Hensel and Fort Terrett Formations. 

Group 1 (red polygon) relates to Miocene to Recent diagenetic products and group 2 (blue 

polygon) indicates Cretaceous diagenetic effects. b. Fe and Mn cross-plot of Hensel and Fort 

Terrett Formations showing covarying values. The lower member of the Fort Terrett Formation 

(green polygon) is more enriched in Fe and Mn compared to the Middle (red polygon) and Lower 

members (blue polygon). c. Cross-plot of Sr against Fe + Mn showing negative correlation (in red 

polygons) which implies that Sr was being lost with burial. Note the elevated Sr concentrations for 

type 4 dolomite (in red polygon). 

Multiple flooding surfaces in the Fort Terrett Formation suggest that there were numerous 

low-amplitude sea-level variations during deposition of this unit, which is typical for the 

greenhouse times of the Cretaceous. Much of the study area was located within a low-energy 

lagoon, which repeatedly developed supratidal–intertidal facies where fenestral porosity and 

vegetation formed during subaerial exposure. Intertidal facies grade upward to the rudist 

floatstone, suggesting the area was locally deepening to a subtidal setting. Interbedded within the 

succession, a fine-grained sandbar facies is present, indicating a local sea-level fall with sporadic 

siliciclastic sediment input from nearby exposed Precambrian basement. 

4.9.2. Porosity systems 

4.9.2.1. Initial porosity system  

It was not possible to quantify or assess the initial interparticle porosity (microporosity in 

the muddy facies) since most of this type of porosity was lost during compaction or early 

lithification. Fenestrae are common features in peritidal deposits and during deposition and 

shallow burial, before compaction, these structures created significant pore space. In this 

succession, this type of porosity was mostly filled by cement or fine-grained sediment, but locally 

the pore-space remained open (Figure 4.6). Fenestrae have different geometries including laminar-

elongate, spherical and irregular shapes that locally are interconnected (Shinn 1968; Shinn and 
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Robbin 1983; Choquette and Pray 1970; Grover and Read 1978; Bain and Kindler 1994; Scholle 

and Ulmer-Scholle 2003; Mazzullo and Birdwell 1989; Mazzullo 2004; Flügel 2004). It is 

suggested here that fenestral porosity may have had a significant impact in the passage and flow 

of dolomitizing fluids through the sediment. For this reason, image analysis was used to calculate 

initial fenestral porosity to quantify original void percentage; this ranged from 2 to 46%.  

4.9.2.2. Secondary porosity system 

Two main types of secondary porosity, intercrystalline and moldic, occur in the Fort Terrett 

Formation. Intercrystalline porosity was identified in all dolomitic intervals of the Hensel and Fort 

Terrett Formations. The lower member of the Hensel Formation has a porosity from 7.5 to 14%, 

whereas the upper member has 5.5–7%. Conversely, the Fort Terrett Formation has a highly 

variable porosity, ranging from 1 to 22% with an average of 12%. The pore size is also very 

variable from micron-scale to several hundreds of microns. Moldic porosity in the Fort Terrett 

Formation ranges from 1 to 19% with an average of 7%. This type of porosity was a result of the 

dissolution of rudists, gastropods, miliolid foraminifera, and peloids that produced voids with a 

spherical shape, common in the skeletal–fenestral wackestone to grainstone facies. 

4.9.3. Diagenetic processes and paragenesis 

Paragenesis can be interpreted from different approaches including petrography and 

geochemistry, especially stable isotope analysis (Figure 4.7a). The interpretation here is similar to 

previous studies concerning diagenetic alteration of Edwards Group sediments (Mench et al. 1980; 

Ellis 1986). The isotope data show a clustering into two groups, one with positive δ18O and 

relatively scattered δ13C. This group can be interpreted as the result of diagenetic alteration, 

probably during marine to shallow-burial in the Late Cretaceous. The second cluster, with more 

negative δ18O and δ13C, was likely associated with Miocene-Recent burial and subsequent uplift. 
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Figure 4.8. Stratigraphic correlation of the Hensel and Fort Terrett Formations in Mason County. The strata thicken to the west. The 

Fort Terrett Formation is divided into Lower, Middle, and Upper members on the basis of sub-, inter-, and supratidal cycles. These are 

defined by flooding surfaces, which indicate frequent sea-level fluctuations affecting deposition of the various facies and early diagenetic 

processes. The basal conglomeratic sandstone with angular granitic clasts of the lower member of the Hensel Formation only occurs in 

local topographic lows.
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During the Early Cretaceous to Oligocene (before the Balcones Fault Zone uplift), several 

diagenetic processes sequentially affected the strata, beginning with marine cementation–

micritization and initial dolomitization, followed by early meteoric vadose and phreatic and finally 

shallow burial dissolution and cementation. Sea-level fluctuations were clearly significant in the 

early stages, resulting in rapid changes in diagenetic environment (Figure 4.2). 

Late-stage diagenesis of post-Miocene age is linked to the exhumation (telogenesis) that 

resulted in further dissolution, dedolomitization, and production of oxidation features. The 

schematic paragenesis of the Fort Terrett Formation (Figure 4.9) shows the evolution of the strata 

from the Early Cretaceous deposition through burial to post-Miocene to Recent telogenesis. 

4.9.3.1. Marine diagenesis 

The evidence for marine diagenesis includes micritization and bladed calcite cements. 

External layers of rudist, miliolid foraminifera, and gastropod and bivalve shells were affected by 

microboring, producing an irregular outline of micrite envelopes. These features are common for 

skeletal shells and the process generally takes place in shallow-marine waters close to the 

sediment–water interface, in low-energy subtidal to intertidal environments (Bathurst 1966; Jacka 

1977; Ellis 1986; Flügel 2004). Thin isopachous rims of bladed calcite crystals around and within 

bioclasts are the firstgeneration marine products; these were later replaced by dolomite in some 

cases (Figure 4.10b). 
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Figure 4.9. Schematic paragenesis of the Fort Terrett Formation. Early diagenetic processes likely 

occurred during the Late Cretaceous to Paleogene whereas late diagenesis took place in the 

Neogene to Recent. 

4.9.3.2. Early meteoric diagenesis 

Early meteoric diagenesis affected the succession when it was exposed during the Early 

Cretaceous. This diagenetic phase is best preserved in shallowing-upward cycles in the Middle 

Member of the Fort Terrett Formation, which are bounded by subaerial exposure surfaces with 

common evidence of plant roots. These surfaces are marked by dissolution of aragonite and 

probably high-Mg calcite (HMC) grains in vadose and phreatic environments and pore-filling 

calcite cement precipitated in the meteoric phreatic environment (Ellis 1986). 
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Aragonite was the original composition of parts of rudist, gastropod shells, and carbonate 

mud (Dodd 1966; Steuber and Löser 2000; Pascual-Cebrian et al. 2016) and this was dissolved by 

meteoric water flushing. Meteoric calcite spar then filled empty voids, although in some cases the 

shells were calcitized and relics of the original aragonitic microstructure are still present (Tucker 

and Wright 1990). 

Aragonite grains and cements typically have high Sr contents (up to 10,000 ppm), but on 

diagenetic alteration and replacement by calcite (calcitization) these values are reduced. However, 

a ‘memory’ of that high Sr may be retained in replacement crystals in the form of moderate Sr 

values, much higher than in a calcite cement. The type 4 dolomite cement has an elevated Sr value 

reaching 1036 ppm (Figure 4.7c). Early seawater dolomite would be expected to have ~600 ppm 

Sr (Tucker and Wright 1990), but this would likely be reduced on burial recrystallization. The high 

Sr content of type 4 dolomite could indicate replacement of early aragonite cement precipitated in 

the marine setting. 

Plant roots (Figure 4.10a) indicate subaerial exposure (Halley and Rose 1977; Tucker and 

Wright 1990) and a pause in sedimentation, associated with rhizogenic calcretes. Later, calcretes 

were flooded and subjected to meteoric phreatic conditions where the voids were filled by blocky 

calcite cement and then later replaced by dolomite. 

Thin calcitic cement rims around fenestrae (as shown by red-stained rims in Figure 4.5c) 

can be interpreted as meteoric phreatic precipitates. Later, dolomite cements occluded any 

remaining pore space in the fenestrae. These two different cement phases indicate a changing pore-

fluid chemistry from a meteoric to shallow-burial setting. 
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Figure 4.10. a. Rootlet in partially dolomitized skeletal–fenestral wackestone facies. The rootlet 

wall was micritized (white arrow) and the initial void was filled by an early generation of dolomite 

cement. Planar euhedral dolomite can be observed (red arrows). b. Thin rim of marine calcite 

cement (white arrows) lining the inside of a bivalve shell. This cement later was replaced by 

dolomite and the remaining void was filled by a second generation of blocky dolomite cement 

(Cdol). c. Chert-nodules (red arrows) in partially dolomitized mudstone to skeletal–fenestral 

wackestone facies. d. Chert (white arrows) in partially dolomitized skeletal grainstone forming 

selective replacement of calcitic-bivalve shell fragments (rudist). Note that slide d is stained by 

alizarin Red S. PPL plain polarized light. 
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4.9.3.3. Shallow‑burial diagenesis 

The Comanche Platform was submerged in the Late Washita time (Albian) and buried by 

younger sediments of the Segovia Formation (Ellis 1986). In the Mason County area, several 

features suggest a slightly deeper burial diagenetic environment, i.e., the moderate Fe and Mn 

contents indicating a dysoxic environment, presence of fractures and silicification in a form of 

chert nodules, and selective microcrystalline silica replacement of rudist fragments. 

Moderate concentrations of Fe and Mn (Figure 4.7b) indicate a change to sub-dysoxic 

conditions after deposition, and this is typical of a burial environment (Tucker 1986), as the 

availability of dissolved Fe and Mn released from clays can easily substitute calcium in the calcite 

lattice at low oxygen states (Budd 1997; Grossman 2012). Fractures were filled by dolomite 

cement, and the lack of offset along fractures indicates a shallow-burial origin, where limited 

overburden did not have enough pressure to offset the fractures. A shallow burial depth, probably 

to a few tens of meters, is also indicated by the absence of stylolites in the succession. The chemical 

compaction and pressure solution to form stylolites is thought to begin at an overburden of several 

hundred meters and depend on lithofacies, carbonate fabric, mud content, degree of cementation, 

and susceptibility to pressure solubility and resistance (Buxton and Sibley 1981; Railsback 1993). 

Irregular chert nodules range from 4 to 15 cm in diameter and commonly appear in 

skeletal–fenestral wackestone to skeletal packstone facies of the middle and upper members of the 

Fort Terrett Formation (Figure 4.10c). These features indicate that silica-supersaturated fluids 

passed through the different stratal units to form nodules (Jacka 1977), as an event after an early 

stage of dolomitization from the evidence of dolomite rhombs within the chert nodules (Pittman 

1959). 
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Selective silica replacement of calcitic (probably HMC) rudist shell fragments occurs 

locally (Figure 4.10d), with the silica source being either biogenic (such as sponge spicules and 

radiolarians) or inorganic (Pittman 1959; Knauth 1979; Maliva and Siever 1989; Hesse 1988, 

1989). The inorganic silica source is indicated here from dissolved detrital silicates, which consist 

mainly of quartz. Chert precipitation occurs when the pH decreases, which could have been 

induced by organic matter decomposition followed by hypersaline conditions (Hesse 1988, 1989). 

The inorganic model seems appropriate in this case because of the absence of sponge spicules in 

the Edwards Group succession (Pittman 1959). 

4.9.3.4. Telogenesis 

Movement on the Balcones Fault Zone in the Oligo-Miocene uplifted, exposed and eroded 

the Edwards Group including the Fort Terrett Formation after tens to hundreds of meters of burial. 

This process has continued from the Miocene to the present time (Anaya 2004) and resulted in a 

late-stage meteoric diagenesis. Telogenesis in the study area is characterized by several processes 

related to oxidation and exposure. Brownish-orange oxidation bands occur at several horizons. 

The absence of gypsum and other evaporate minerals in this succession indicates their dissolution 

or removal during the initial fresh-water flushing (Fisher and Rodda 1969). 

Geochemical trends, including the negative correlation of Sr against Fe and Mn content for 

type 4 dolomite could be related to decreasing Sr concentration caused by meteoric water flushing 

through time (Figure 4.7c). This contact with freshwater may also have affected the stable isotope 

values, such that the type 4 dolomite has quite negative δ18O (Figure 4.7a), typical for a meteoric 

influence (Hudson 1977; Grossman 2012). 
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4.9.4. Dolomitization and dolomite evolution 

Two dolomitization models, seepage-reflux and evaporative pumping, have been discussed 

for the Edwards Group of Mason County (e.g., Fisher and Rodda 1969; Rose 1972). The seepage-

reflux model hypothesizes that hypersaline fluids flow downwards due to their higher density and 

are recharged by variations in tidal currents and possibly storms, leading to dolomite replacement 

of peritidal and subtidal carbonates (Fisher and Rodda 1969). The evaporative pumping 

mechanism suggests Mg-rich brines were induced to flow through porous sediments by an upward 

decrease of hydrodynamic potential during evaporation (Rose 1972). In this model, the path of the 

fluid-flow is opposite to that in the seepage-reflux model. These two models require an 

understanding of fluid-flow patterns in mud-dominated deposits. Carbonate mud should have a 

permeability of at least 240 mD for fluid-flow (Deffeyes et al. 1964), but this is relatively high 

since modern carbonate mud from the tidal flats of the Bahamas has permeabilities in the range of 

1–100 mD (Gebelein et al. 1980). The average for all Holocene carbonate sediments of Florida 

(and the Bahamas), which includes those dominated by grains, is the order of 230 mD (Enos and 

Sawatsky 1981). Thus, muddy successions need sufficient permeability for the flow of the Mg-

rich brines and for a significant period of time so that the succession can be dolomitized.  

The Edwards Group succession is dominated by mudstone and skeletal–fenestral 

wackestone facies with limited fluid-flow capability and has only scarce and isolated skeletal 

packstone–grainstone facies (Figure 4.8). All units should contain high permeability layers to 

allow dolomitizing brines to flow through the muddy facies (Machel 2004). For this reason, other 

factors may have been involved to provide the additional permeability necessary for the passage 

of brines through this mud-dominated succession. Fenestrae occur throughout the succession, and 

are common in many dolomitized peritidal deposits in the rock record (Figures 4.2, 4.6). It is 
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suggested here that this fenestral structure at the time of dolomitization may have had a significant 

impact on an initial permeability, thus allowing Mg-rich brines to enter the mud-dominated facies. 

Interconnected fenestral fabrics are abundant in the succession as possible flow-paths for the 

dolomitizing brine (Figure 4.6a, b).  

Coarsening of dolomite crystals (Figure 4.6d) is associated with fenestral porosity with 

overgrowths developed on the parts of crystals that were protruding into the fenestral pores (Figs. 

9, 10). These voids served as initial space within which dolomite could precipitate and grow, fed 

by brine fluids moving through the pores in a similar process suggested by Choquette and Hiatt 

(2008).  

Multiple zones of dolomite cortex overgrowth are distinguishable by cathodoluminescence 

petrography for the Fort Terrett and Hensel Formations (Figure 4.11). Concentric zonation of 

bright orange and then dull red luminescence is a feature of type 3 dolomite. Cyclic zonation in 

dolomites of the Upper Hensel Formation reflects repetitive episodes of Mg-rich brine flushing 

through with different bulk fluid chemistry and variable Fe and Mn contents (Machel 2000). 

Dolomitizing brines should have moved from the source downwards, driven by density and 

producing replacement dolomite in the first stage (Saller and Henderson 1998, 2001; Jones and 

Xiao 2005). Progressively, dolomitizing fronts would have continued but would have become less 

saturated and precipitated less dolomite than the earlier stage. In addition, the sediment closer to 

the brine source would have suffered “overdolomitization”, that is the precipitation of overgrowths 

on dolomite crystals (a cement stage rather than a replacement of original sediment) (Saller and 

Henderson 1998, 2001). 
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The textural evolution of dolomites in Fort Terrett Formation shows a pattern of maturation 

including crystal-size coarsening, crystal face development, and fabric preservation in conjunction 

with decreasing porosity (Figure 4.12). This evolution is also reflected in the geochemical data 

whereby isotope values become increasingly negative and trace element contents are reduced. 

Type 1 dolomite shows a micro- to fine- crystal size related to the first stage of 

dolomitization, which was likely associated with syn-sedimentary processes (Longman and Mench 

1978; Budd 1997; Machel 2004). It was a direct pore-precipitation process resulting from 

evaporitic conditions in a supratidal setting, typical of a warm and arid environment (Warren 2000; 

Machel 2004). This type of dolomite is usually poorly ordered (Figure 4.5c) and mostly Ca-rich 

(Mazzullo 2000; Machel 2004).  

Concentrations of Fe and Mn for this type 1 dolomite are 59–194 ppm and 63–269 ppm, 

respectively (Figure 4.7b). These contents are relatively low compared to the other types of 

dolomite. Low Fe and Mn concentrations could be related to the oxic conditions, which would 

have reduced the availability of Fe (and also Mn) to be incorporated into the crystal lattice 

(Elderfield 1981; Burdige 1993; Mazzullo 2000). 

Stable isotope ratios for type 1 dolomite are low positive for δ18O, between 0.0 and +1.6‰ 

(Figure 4.7a), a typical range for evaporitic conditions (Hudson 1977; Grossman 2012; Swart 

2015). The δ13C values show a range between –2.3 and +1.9‰, which could be linked to an 

organogenic model of dolomitization (Compton 1988; Mazzullo 2000) that is influenced or 

perhaps promoted by bacterial sulfate reduction related with organic-matter diagenesis resulting 

in the depletion of 13C. This model occurs at surface temperature and at the near sediment-seawater 

interface and probably up to tens of meters burial depth. Low Fe, Mn and Sr concentrations are 

common for this model; as seen in Figure 4.7c. The low negative values of δ13C may be caused by 
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the addition of light 12C-enriched CO2 to pore-fluids derived from bacterial degraded organic 

matter (Gregg et al. 1992; Perkins et al. 1994; Vasconcelos and McKenzie 1997; Mazzullo 2000; 

Vasconcelos et al. 2005). This type 1 dolomite may provide nuclei or initial cortex for the next 

stage of dolomites. 

Type 2 dolomite has a slightly increased crystal size (very fine to fine); it also shows 

mimetic fabric preservation and selective calcitic-shell replacement (Figure 4.5d). Mimetic fabric 

forms during dolomitization at a lower saturation state and it may have been controlled by 

mineralogy (Sibley and Gregg 1987). Meanwhile, selective replacement occurs as a result of an 

interplay between dolomitizing brine and mineralogy. Changes in dolomitizing brine from a 

supersaturated to an undersaturated fluid can control rates of precipitation, while a dominantly 

high-Mg calcite sediment could be more prone to replacement (Sibley and Gregg 1987; Tucker 

and Wright 1990). The supersaturated brine replaces precursor carbonate minerals by dolomite 

and the solution, later, becomes undersaturated so that replacement of the remaining carbonate 

minerals does not take place (Murray and Lucia 1967; Tucker and Wright 1990). 

Type 2 dolomite formed in a shallow-burial setting as indicated by slight enrichment in Fe 

and Mn concentrations compared to type 1 dolomite (Figure 4.7b). The concentrations range from 

71 to 251 ppm and 67 to 487 ppm, respectively. These concentrations are attributed to dysoxic 

conditions that are dominant in shallow-burial settings (Tucker 1986).  

In terms of isotopes, the values of δ18O are low negative and δ13C low positive for type 2 

dolomite (Figure 4.7a), in comparison with type 1 dolomite. Increasing temperature during shallow 

burial is the main factor controlling the negative δ18O for this type 2 dolomite. Meanwhile, the 

positive δ13C is a normal-marine signal, with values commonly +1‰ higher than marine calcite 

(Swart 2015).  
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Figure 4.11. Multiple zones within the cortex overgrowth of dolomite crystals in CL. a. Concentric 

zonation of type 3 dolomite of the Fort Terrett Formation. b. Cyclic zonation of dolomite cement 

of the upper member of the Hensel Formation. 
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Type 3 dolomite has extensive crystal coarsening and cortex growth up to medium crystal 

size (Figure 4.5e) and is associated with increasing fabric maturity caused by dolomite 

overgrowths, which record repeated development of the dolomite rhombs. The overgrowths are 

related to constant episodes of Mg-rich brine flushing (Katz 1971; Longman and Mench 1978; 

Sibley and Gregg 1987; Choquette and Hiatt 2008). This type of dolomite is characterized by 

subhedral to euhedral rhombic crystals with the presence of some cloudy residual inclusion-rich 

cores. It is likely that in this stage, dolomitization was occurring during sediment compaction 

resulting from increasing burial depth (Shinn and Robbin 1983; Katz 1971; Longman and Mench 

1978; Choquette and Hiatt 2008). Extensive enrichment of Fe and Mn also indicates increasing 

burial (Figure 4.7b). 

Type 4 dolomite is a cement, which precipitated in bioclast molds, voids, fenestral pores 

and fractures within precursor lime mud (Figure 4.5f). Several episodes of Mg-rich brine flushing 

are responsible for the coarser dolomite crystals in these settings. 

Dolomitizing fluids moving downwards can cause generation of different types of dolomite 

(Saller and Henderson 2001; Jones and Xiao 2005). The initial process produced fine crystalline 

dolomite of types 1 and 2 in this study. Later, the dolomitization front would have continued 

basinwards and the dolomitizing brine would have flowed through the earlier precipitated dolomite 

causing overgrowths (dolomite type 3). Finally, fluids would have kept moving and precipitated a 

dolomite (type 4) cement, filling remaining pore spaces. 
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Figure 4.12. Textural development of the dolomite in the Fort Terrett Formation (adapted and 

modified from Sibley and Gregg 1987; Choquette and Hiatt 2008). The figure shows the stages of 

maturation including crystal-size coarsening within sequences, crystal face development, and 

fabric preservation in conjunction with decreasing porosity from two different precursor carbonate 

rocks. 

The main diagenetic process operating on uplift (telogenesis) of the Edwards Group in 

post-Oligocene–Miocene time, related to movement on the Balcones Fault Zone, is calcitization 

of dolomite (dedolomitization). This was caused by circulating fresh-water dissolving gypsum, 

which elevated the Ca/Mg ratio of the pore-water and resulted in the replacement of dolomite by 

calcite (cf. Evamy 1967; Abbott 1974; Longman and Mench, 1978; Ellis 1986; Barker and Ardis 

1996). Leached dolomite cores (hollow) are observed (Figure 4.5e), since the core would originally 
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have been less stable or poorly ordered and so susceptible to dissolution; the dolomite cortex on 

the other hand is preserved. 

4.9.5. Fluid‑flow mechanism 

This Early Cretaceous succession was deposited above the Precambrian basement and it 

had a very simple burial history; the diagenetic processes are well constrained into a narrow range 

of environments, which make the interpretation of fluid-flow quite simple. There are probably 

three possible scenarios of fluid-flow directions in this succession: (1) dolomitizing fluids that 

flowed downwards (a density head mechanism), (2) fluids that flowed upwards due to evaporative 

pumping, and (3) fluids that flowed upwards from the basement or through the basal Edwards 

layers, which would suggest compaction-driven fluid-flow from the Maverick Basin or a thermal 

component due to the higher thermal conductivity of the granitic basement. 

The most likely scenario for dolomitizing fluid flow in this succession is the downward 

model (Figure 4.13). This model invokes a density-head driving-mechanism whereby evaporation 

generates denser fluids than normal seawater, which then sink within the formation through 

gravity, so facilitating the initiation of dolomitization (Budd 1997; Saller and Henderson 1998; 

Saller and Henderson 2001; Whitaker et al. 2004; Jones and Xiao 2005). Eventually, fluid density 

reaches equilibrium at a certain depth as the Mg-rich brines are mixed with relatively Mg-depleted 

pore water. This situation would have triggered lateral or outward flow of the mixed pore water. 

In this model, dolomite crystal size and maturity should decrease downwards. However, in the 

Fort Terrett Formation, the dolomite crystal sizes show a scattered distribution, perhaps due to a 

more complex flow system controlled by different stratigraphic horizons with different properties. 

Initially, fluid flow may have operated through interconnected fenestral porosity (Figure 4.6) and 

isolated skeletal packstone–grainstone layers operating as permeable pathways. 
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The Fort Terrett Formation is not entirely dolomitized (Figure 4.2, 4.8). Completely 

dolomitized beds dominate in the upper part (dolomite ranges from 12 to 100%), whereas partially 

dolomitized mudstone to skeletal packstone predominate in the lower part of the formation (8 to 

24% dolomite). Although, in the upper part of the succession there is only an average of 15% 

initial fenestral porosity, the fabric appears more commonly, which could have resulted in a higher 

connectivity, allowing fluids to move farther than in the lower part where higher dolomite 

percentages only occur in isolated samples (Figure 4.2). It is suggested here that initial fenestral 

porosity could have provided the permeability pathways for the dolomitizing brines, which moved 

downward from a surface source (such as an evaporating lagoon or evaporative tidal flat), 

developed especially during deposition of the upper part of the formation, into sediments below, 

previously deposited.  

At the base of the succession, the Hensel Formation presents a much simpler porosity-

permeability system and the decreasing crystal size from the top layers downwards toward the 

basement (Figure 4.5a, b) supports the hypothesis of gravity-driven dolomitization. The downward 

flow then became lateral flow when the dolomitizing brines reached the granitic basement as this 

rock has extremely low permeability. This fluid-flow situation allows more extensive dolomite 

cortex overgrowths to be precipitated around the dolomite cores in the Upper Hensel Formation, 

resulting in coarser dolomite crystals in conjunction with decreasing porosity (Figure 4.12). Mg-

rich brines allowed the dolomitizing processes to act from the depositional surface downwards, 

and then for the depleted brines to move farther downward and laterally.  

There are other mechanisms that could have driven dolomitizing fluids upward through the 

succession including geothermal heat (Simms 1985; Land 1985; Budd 1997; Machel 2004) and 

compaction-drive from the nearest basin (Machel 2004; Whitaker et al. 2004). Both mechanisms 
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could produce a burial or hydrothermal dolomite such as saddle dolomite. However, there is no 

evidence that these textures occur in the Edwards Group in Mason County. Another mechanism, 

i.e., evaporative pumping, draws dolomitizing fluids upward but since a decreasing dolomite 

crystal size is observed in the Hensel Formation, it is inferred that this model was unlikely to have 

been operating in the study area. 

 

Figure 4.13. The multiple stages of a downward fluid-flow model or density-head driving-

mechanism through mainly fenestral porosity as the permeability pathway for dolomitization of 

the Edwards Group carbonates in Mason County. Note the decreasing frequency of fenestral 

porosity downwards and the large vertical exaggeration to show the interconnected fenestral 

porosity. 
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4.10. Conclusions 

1. Through detailed analysis including sedimentological, petrographical, and geochemical 

approaches, this study is contributing towards the understanding of porosity types as a control 

on dolomitization and diagenetic evolution of the Early Cretaceous Hensel and Fort Terrett 

Formations in the Edwards Group of Mason County, Texas. 

2. The results of this study suggest that interconnected fenestral porosity could have played a 

major role in the flow of dolomitizing fluids through mud-dominated facies with limited 

permeability. 

3. The Lower Cretaceous Edwards Group in Mason County was subjected to a simple burial 

history followed by uplift related to the Balcones Fault Zone in the Miocene. The diagenetic 

sequence consists of early marine cementation and micritization, meteoric dissolution and 

cementation, and near-surface to shallow moderate burial dolomitization, followed by 

telogenesis, involving dedolomitization. 

5. Four types of dolomite have been recognized and they reflect textural evolution and maturity 

through increasing crystal size from dolomite overgrowth and cementation. Type 1 dolomite 

was the result of direct pore-precipitation and sediment replacement and/or organogenic 

precipitation; type 2 dolomite has a slightly larger crystal size, is a replacement type, and is 

probably linked to a shallow-burial setting; type 3 dolomite has a larger crystal size still, and is 

likely precipitated at a deeper burial depth; type 4 dolomite is a late-stage cement precipitated 

in voids, bioclast molds, and fenestrae. 

6. The interpreted fluid-flow model applicable for the Edwards Group of Mason County is a 

density-driven, downward-flux mechanism related to the sinking of dense dolomitizing brines 

derived by evaporation within the Kirschberg Lagoon. Interaction with lower Mg-saturated pore 
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water to reach an equilibrium initiated outward flow through fenestral porosity. A more 

complex porosity–permeability system in the Fort Terrett Formation resulted in a more scattered 

distribution of dolomite crystal size, whereas a much simpler flow system in the Hensel 

Formation resulted in a decreasing dolomite crystal size towards the underlying Precambrian. 
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CHAPTER 5  

CONCLUSION 

 

We have investigated and defined facies, reservoir geometry and stratigraphy, global Early 

Miocene events, carbonate factory, paleogeography, morphology of the carbonate platform, 

depositional model, paragenetic sequences, porosity types and their evolution for the Baturaja 

Formation. In addition, we have conducted similar methodology and interpretation for the Mason 

data. This chapter compiles all the key findings of our study. 

Main results and implications 

Chapter 2 discussed the facies distribution in which the red algae and LBF dominate the 

skeletal grains in the Baturaja Formation succession as the main carbonate producer. This skeletal 

association contributed to the significant reservoir rock volumes as the Baturaja reservoirs are 

composed of mainly red algae and LBF packstone-grainstone facies. Meanwhile, corals occured 

in small, isolated and scattered colonies. This new fact rejects a common interpretation that 

suggests corals dominated the Oligocene-Miocene carbonate producer and reef builder; as 

common evidence in the modern world. In addition, we have presented several global events 

during the Early Miocene, including an overall global warming trend and higher nutrient level. It 

is suggested that combination of these global events affecting and controlling the abundant red 

algae and LBF. Regional paleogeography has been proposed using this carbonate producers’ 

context to explain facies distribution along the inner, middle and outer ramp. Depositional model 

for the Melandong area has been recommended to improve reservoir distribution and prediction 

capability. This model explains how the distribution of facies belts in the area significantly 

contribute to the reservoir rock volume; in the mound and in the deeper inter-mound areas.  
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Chapter 3 presented paragenetic sequences constructed from a combination of cement 

stratigraphy, diagenetic analysis, and process characterization from petrography and geochemical 

analysis that lead to the interpretation of the diagenetic environment. Extensive leaching of red 

algae and perforated-LBF characterizes early meteoric diagenesis forming extensive moldic 

porosity and showing fabric-selective dissolution.  Several lines of evidence including distinctive 

negative shifts of δ13C, moderate Sr values, and such dogtooth, syntaxial overgrowth of echinoid 

grains, and blocky cements. Possible occasional sea level lows during the deposition of the 

Baturaja Formation were indicated by exposure surfaces and shallowing-upward cycles for both 

upper and lower members. These features were the case for the mound setting develop on the 

paleo-topographic highs which was very likely vulnerable to the sea level fluctuations. Meanwhile, 

in the deeper inter-mound depositional area, the porosity creation pointed out by the presence of 

burial CO2 gas. This corrosive gas leached all the carbonate components forming non-fabric 

selective dissolution texture. We present cements filling late-stage stylolite as evidence for this 

interpretation. This new analysis gives an idea to explore deeper depositional setting as traditional 

carbonate mound play has been discovered. An accurate prediction to identify and characterize 

pore types and geometry of the burial pores are needed using integration of well data (logs and 

cores) and rock physics models for further development of the mature oil fields.  

Chapter 4 investigated fenestrae and fenestral fabric and their relationship to the dolomite 

units; a common case occurred in peritidal deposits that suitable for the Fort Terrett Formation in 

Mason, central Texas. Through facies identification, dolomite typing, and geochemistry analysis 

we could establish an understanding of this correlation to control dolomitization and diagenetic 

evolution. Four dolomite types have been defined showing textural maturity to the increasing 

dolomite crystal size. The formation, dominated by mudstone-wackestone facies, has limited fluid-
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flow capability as it has only scarce and isolated skeletal packstone–grainstone beds. We suggested 

that the interconnected fenestral structure at the time of dolomitization may have had a significant 

impact on an initial permeability; allowing Mg-rich brines to enter the mud-dominated facies. 

Eventually, we were able to define and propose fluid flow mechanism for the succession involving 

dolomitizing fluids that flowed downwards. This model invokes a density-head driving-

mechanism whereby evaporation generates denser fluids than normal seawater, which then sink 

within the formation through gravity, so facilitating the initiation of dolomitization. The process 

itself initially was enabled by the interconnected fenestral porosity and isolated skeletal packstone-

grainstone layers operating as permeable pathways.  

Future Work 

This study presents a new perspective in term of Early Miocene carbonate producers. 

Instead of corals domination, we provide evidence that red algae and LBF are the major carbonate 

producers and reef builders at this time. Our data are compiled from the published papers, 

conference proceedings, and internal reports in combination with the dataset from the Melandong 

area, an onshore part of the NW Java Basin. We realize that it would be constructively important 

to have more dataset within the basin (both onshore and offshore) to strengthen our interpretation. 

It also is useful to have a study in the Baturaja Formation locality in Baturaja, South Sumatra, 

using this new perspective as a starting point to the other Oligocene-Miocene carbonate succession 

around Indonesia and more importantly around the world.  

An interpretation of burial dissolutions in chapter 3 needs gas data analysis, especially from 

the wells producing high content CO2 from the Baturaja Formation reservoirs. The gas analysis, 

including δ13C and 3He/4He, could support our interpretation. Carbon isotope is indicative for 

corrosive gas sources; i.e. –3.41 to –8.44‰ and the helium gas ratio >1 characterize mantle 
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sources. Micro-drilled sampling is also needed to get samples from the calcite cements filling late-

stage stylolite. 
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APPENDIX 1  

NOMENCLATURE 

 

3D three-dimensional 

CFR coral floatstone-rudstone 

CL cathodoluminescence 

CSB Cisubuh Formation 

EDX energy-dispersive X-ray 

EMCM Early Miocene Carbon Maximum 

GQS glauconitic quartz sandstone 

HMC high-magnesium calcite 

ICP-MS inductively-coupled plasma mass spectrometry 

LBF large benthic foraminifera 

LMC low-magnesium calcite 

MFS maximum flooding surface 

Mg magnesium 

Mg/Ca magnesium/calcium ratio 

MMCO Mid-Miocene Climatic Optimum 

Mn manganese 

N-S north-south 

NW northwest 

pCO2 partial pressure of carbon dioxide in the ocean and atmosphere 

pH a figure expressing the acidity or alkalinity of a seawater 
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ppm parts per million 

PRG Parigi Formation 

RFR rhodoid-LBF floatstone-rudstone 

RLW red algal-LBF mudstone-wackestone 

RPG rhodoid/red algal-LBF packstone-grainstone 

SE south east 

SEM scanning electron microscope 

SHL shale 

Sr strontium 

SST sea surface temperature 

SWC side-wall core 

TAF Talang Akar Formation 

UCBL Upper Cibulakan Formation 

VJTB Jatibarang Formation 
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APPENDIX 2  

CORE DESCRIPTIONS OF THE MELANDONG DATASET 

 

Examination on the conventional cores has been done on the 3 wells, C-1, J-2, and P-1, with a total 

length of more than 27 m. Critical information of sedimentological and diagenetic analysis was 

then plotted and noted on a graphic log format, including lithology, type of contact between 

lithologies, thickness, sedimentary structure, skeletal content, facies, fracture, diagenetic feature, 

and relative porosity. The cores are described and classified using Dunham’s (1962) classification 

and expanded one from Embry and Klovan (1971). Figure A1 shows the key symbols for the core 

descriptions. 

 

Figure A1. Legend for the symbols used in the core description logs. 
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APPENDIX 3  

PETROGRAPHIC ANALYSIS OF THE MELANDONG DATASET 

 

A number of 111 blue-impregnated thin sections from the Melandong area are used for this 

conventional petrographic methodology utilizing the Olympus BX53MTRF petrographic 

microscope. Alizarin-red S was used to stain the thin-sections for mineralogical identification. 

Quantitative point-counting approach was conducted on the petrographic image using 

JMicroVision v1.2.7 software. A threshold of 300 counting was set in a random grid selection. 
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B-1 17XX.15 3               18     4 1     19           46 9       

B-1 17XX.4 1   7 1     1   7 1   1 1     2         12 25 41       

B-1 17XX.8 1   8 1         14     2 1     15           27 31       

B-1 17XX.13             1   15     1 1     18           31 33       

B-1 17XX.6       1         13     4 1     23           24 35       

B-1 17XX.03       2         20   4 4 1     12           35 23       

B-1 17XX.5       3       1 10 1 2 5 1     17           26 34       

B-1 17XX.85       1       1 16 4   3       26           28 22       

B-1 17XX.5 1     1       1 8 1 1 1 1     14           31 40       

B-1 17XX.9     62           1             5           32         

B-1 17XX.91 1     1         10 1   3 1     21           26 36       

B-1 17XX.95 1             1 2 1   1       11   1       19 63       

B-1 17XX.2 1   3 2         16 1 1 10       21           19 26       

B-1 17XX.8       1         2 1 26 4 1     44           22         

B-1 17XX.2 1     1         6 1 5 6       57           17 6       
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B-1 17XX.92       1 3 1     3   20 1       51           20         

B-1 17XX.35       1 4 1         25 6       36           16 11       

B-1 17XX.8       1 6 2 1   3   28 4       35           16 5       

B-1 17XX.2 1     1 7 7 1       35 3       19     1     13 11       

B-1 17XX.3                                         13 82 5       
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B-1 17XX       1 9 8     2   31 4 1     9 1         16 17       

B-1 17XX.5       1 6 8     6   28 2       13 1         20 15       

P-1 18XX       3   2 2   6   4         21           10 52       

P-1 18XX.95 1   2 1   1 1   2             13 1         15 63       

P-1 18XX.25       1   3 4   2   1         17           11 62       

P-1 18XX.9           2 2   2             10 1         7 75       

P-1 18XX.1       1   1 1   4             8           6 79       

P-1 18XX.8       1   1 1   4   1         7           5 79       

P-1 18XX.7       4   5 3   22   13         11           6 36       

P-1 18XX       3   4 6   17   31         17 1         10 11       

P-1 18XX.6       5   8 6   20   18         17           7 19       

P-1 18XX       1     6   1   52         15           16 9       

P-1 18XX.55       2   2 5   4   42         18 1         10 15       

P-1 18XX.85 1     1     3   1   65         11           8 10       

P-1 18XX.5       1     1   1   53         12 2         21 8       

P-1 18XX.7 1     1   1 4   1   64         7           8 14       

P-1 18XX.3 1     2     4   1   61         4           7 21       

P-1 1897.25       2     5       56         19 1         7 11       

P-1 18XX       1   1 2   1   48         13 1         16 17       

P-1 18XX.3 1     1   1 1   4   1         30           12 50       

P-1 18XX     4 1   1 1   2   1         23 1         9 57       

C-1 18XX.81                                   91       9         

C-1 18XX.31 4 1 8 1 1 1     1   1   14 1 1 2           12 53       
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C-1 18XX.34     3   1       1 1 1   11   1 1   11   8   10 51       

C-1 18XX       3 3 8 1   30   2     1   18 1         15 19       

C-1 18XX.37     1 2 2 4 12   11   2         27           14 24       

C-1 18XX.3       7   3 21   14   3 1     1 27           10 14       

C-1 18XX.03       3   2 8   1   19 1       44           10 12       

C-1 18XX.1     1 2   1 4   2   2         33 1         6 47       

C-1 18XX.16     1 1     3       1 1       43 2         9 40       

C-1 18XX.46       1     6         1       42 1         8 41       

C-1 18XX.18       2     11         4       47 2         23 12       

C-1 18XX.78       3     3       5 1       52 3         16 19       

C-1 18XX.13       2     3       11 1       52 3         12 16       

C-1 18XX.43 1     1     2 1   1 20         38         2 33         

C-1 18XX.3 1     2   1 2 1 1 6 22         39 1         24         

C-1 18XX.6 1     2   1 27       25         36 2         7         

C-1 18XX.91       3   1 21       33         32 2         8         

C-1 18XX.21       3   4 10   3   17         28 2         11 22       

C-1 18XX.91       1   3 5   1   28         30 1         17 15       

C-1 18XX.05       4   4 10   1   17 1       42           9 12       

C-1 18XX.35     3 3   3 5   3   5 1       48 2         11 16       

C-1 18XX.03       3   1 7 1 6   15         45 1         8 13       

C-1 18XX.6 1     2   1 5   2   14         39 2         14 20       

C-1 18XX.8       5   2 15   2   25         32           9 10       

C-1 18XX.2     1 2   1 5 1 1   26         41 1         10 12       
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C-1 18XX.5       3   4 6   1   32         27 1         10 16       

C-1 18XX 1   1 2     3   2   41         29 1         8 13       

C-1 18XX.3 1   8 2   1 1 1 1   24 1       30 1         11 18       

C-1 18XX.6 1   3 2   1 1 1 2   25         29 1         22 14       

C-1 18XX.2     1 2   2 13 1 6   21         28 1         11 14       

C-1 18XX.04     1 1   1 9 1 3   21         32 1         20 10       

C-1 18XX.34 1   1 1   1 10 1 2 1 22         25           21 16       

C-1 18XX.09 1   1 1     23 1 2   19         26 1         11 14       

J-2 23XX.75       2 1 1 15   1   27         30           8 14       

J-2 23XX.15 1   1 3     3   5 1 17         34 1         19 16       

J-2 23XX.58       1   3 5   5   11         35 3         37         

J-2 23XX 1   1 6     4   17   14         25 2         19 11       

J-2 23XX.35 1     8   1 1   29   20         11 1         8 20       

J-2 23XX.7 1     2   3 1   11 1 9         32 2         24 13       

J-2 23XX.25       4   3 1 1 12   20         30 1         11 17       

J-2 23XX.5       5   1     7   31         29 1         14 11       

J-2 23XX.65       6   7     13   37         15           9 14       

J-2 23XX.4     1 6         9   33         31 1         9 11       

J-2 23XX.8       5   1     12   30         34 2         9 7       

J-2 23XX.4       3   4     19   31         22 1         9 10       

J-2 23XX.65       12   1 6 1 16   23         24           8 11       

J-2 23XX.1       6   11 5   16   19         20 5         6 11       

J-2 23XX.5       5   3 8   10   24         27 1         10 12       
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J-2 23XX.6       5   4 4 1 12   15         35           8 18       

J-2 23XX.2       2   3 11   7   9         36           14 18       

J-2 23XX.7       6   6 8   9   12         34           8 18       

J-2 23XX.85       
  

3   4 7   16   12         34 1         7 16       

J-2 23XX.3     1   3 3 1 6 1 1         33 1         6 44       

J-2 23XX.6 1   35 1   1 1   1   1         8 2         9 39       

J-2 23XX.05     6     12 5   3   1         18           10 46       

J-2 23XX.46     12     3 4   3   1         1           13 65       

J-2 23XX.65     23     7 5   7   2         12   1       12 31       

J-2 23XX.1     12     11 1   8 1           14           7 46       

K-1 23XX     26 1   5 4   8   2         14           17 24       

K-1 24XX                               5           2       93 

K-1 25XX       1   5 5   2             6           20 61       

K-2 24XX                               15         6 46 33       

K-2 24XX       3   2 3   9   6         8           44 24       

K-2 24XX                 5             31           17 47       

W-1 22XX                                               85 15   

W-1 23XX           1 6   1   2                     38       52 
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APPENDIX 4  

POROSITY MEASUREMENT OF THE MASON DATASET 

 

Sample Formation Cycle 
Dolomite 

type 

Dolomite 
crystal 

size    
(µm) 

Porosity 

Inter-
crystalline 

Moldic Fenestral 

01/14 

Upper      
Ft. Terrett 

Fm. 

8 1 6.03   14.64   

01/15 8 1 7.45 9.13   20.44 

01/16 8 1 6.26 13.06   12.51 

06/9 8 1 4.27 7.34   16 

01/17 8 2 14.46 13.27 12.10   

02/14 8 2 6.49 5.99 4.65   

06/10 8 2 10.52 16.57 3.66   

02/11 7 2 13.04 15.98     

02/12 7 2 6.45 19.34     

02/13 7 2 11.03 16.98   9.98 

01/13 

Middle                   
Ft. Terrett 

Fm. 

6 1 4.58 12.31 1.66   

06/7 6 2 12.41 17.26 6.85 9.02 

01/12 6 3 20.05 21.60 4.82   

06/8 6 3 26.29 14.75 4.14   

01/11 6 4 23.59     9.58 

03/8 6 4 28.98     14.66 

01/9 5 1 4.58 9.31   7.16 

02/7 5 1 6.41 3.63     

02/8 5 1 5.77 12.28   2.05 

02/9 5 1 4.96 7.68     

02/10 5 1 7.59 7.44     

06/4 5 2 6.46 12.52 3.81   
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Sample Formation Cycle 
Dolomite 

type 

Dolomite 
crystal 

size    
(µm) 

Porosity 

Inter-
crystalline 

Moldic Fenestral 

06/5 5 1 5.42 14.9   13.71 

06/6 5 1 2.83 1.15   7.71 

06/2 5 2 7.08 11.77 1.24   

06/3 5 2 9.68 11.85 1.82 5.33 

01/10 5 3 19.2 15.11 19.02   

03/7 5 3 17.87 11.06     

01/7 4 1 8.76 5.12 1.15 3.01 

02/6 4 1 8.32 10.94     

06/1 4 1 6.25 15.33   3.73 

07/8 4 1 5.66 8.65 17.24   

01/8 4 2 5.59 16.53     

01/6 4 4 101.37       

03/4 4 4 28.89     28.63 

03/5 4 4 49.64 12.14     

03/6 4 4 50.65       

01/5 

Lower        
Ft. Terrett 

Fm. 

3 3 24.75 18.57     

02/3 3 4 91.1     46.37 

02/4 3 4 60.47     28.57 

03/3 3 4 45.33     28.54 

02/2 2 4 20.57     24.91 

07/6 2 4 63.52       

07/7 2 4 40.3       

01/2 1 1 13.22 12.25     

07/5 1 1 4.86 5.75 4.86 4.01 

02/1 1 2 13.06 1.04     

07/3 1 3 15.7 11.95     
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Sample Formation Cycle 
Dolomite 

type 

Dolomite 
crystal 

size    
(µm) 

Porosity 

Inter-
crystalline 

Moldic Fenestral 

07/4 1 3 23.56 13.92     

01/1 1 4 49.57     27.37 

01/3 1 4 23.37     28.97 

03/1 1 4 16.14       

01/1C 

Upper Hensel Formation 

19.4 5.54     

21.24 5.85     

07/2 
16.00 7.01     

18.21 6.808     

01/1A 

Lower Hensel Formation 

13.54 14.01     

01/1B 
8.95 11.83     

9.89 12.32     

07/1 12.24 10.92     
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APPENDIX 5  

STABLE ISOTOPE AND TRACE ELEMENT OF THE MELANDONG DATASET 

 

Well 
Depth                 

(m) 
δ13C   

(VPDB) 
δ18O   

(VPDB) 
Mg      

(ppm) 
Sr       

(ppm) 
Fe       

(ppm) 
Mn       

(ppm) 

B-1 17XX.8 -0.79 -5.96 12097.23 1394.39 216.90 65.05 

B-1 17XX -2.63 -4.90 17205.49 736.15 987.25 287.86 

B-1 17XX -3.42 -6.42 6958.99 710.51 2151.41 166.50 

B-1 17XX -3.33 -6.14         

B-1 17XX -3.42 -5.57 4185.89 769.43 215.31 93.50 

B-1 17XX -2.20 -6.99 2656.69 410.55 136.68 46.83 

B-1 17XX -0.81 -5.47         

B-1 17XX.15 -0.75 -5.59 4809.92 951.13 4469.69 39.80 

B-1 17XX.8 -0.84 -5.56         

B-1 17XX.4     4059.55 547.07 67.01 40.24 

B-1 17XX.6 -0.53 -4.78 6019.16 810.63 174.29 54.59 

B-1 17XX.13     6480.52 812.94 685.65 60.83 

B-1 17XX.03 -0.77 -5.32 35972.58 1164.23 186.25 76.59 

B-1 17XX.5 -0.86 -5.05         

B-1 17XX.85 -0.97 -5.72         

B-1 17XX.5 -0.80 -5.41 6276.27 840.46 15.22 28.74 

B-1 17XX.9 -0.81 -4.45 3316.11 345.42 69.06 18.14 

B-1 17XX.2 -0.89 -5.29         

B-1 17XX.2 -0.60 -5.04 10689.71 1428.87 191.27 62.35 

B-1 17XX.52 -0.56 -5.46         

B-1 17XX.92 -0.65 -5.19 15295.16 1240.60 347.74 59.35 

B-1 17XX.35 -0.51 -5.29 14460.02 1060.19 29.96 38.45 

B-1 17XX.8 -0.54 -5.35 7626.07 480.49 167.59 21.82 

B-1 17XX -0.33 -5.08         
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Well 
Depth                 

(m) 
δ13C   

(VPDB) 
δ18O   

(VPDB) 
Mg      

(ppm) 
Sr       

(ppm) 
Fe       

(ppm) 
Mn       

(ppm) 

B-1 17XX.2     12150.98 856.24 340.21 58.37 

B-1 17XX.5 -0.40 -5.38 8468.01 620.87 0.51 24.27 

B-1 18XX.5 -1.44 -7.93 2923.19 923.24 333.71 33.88 

B-1 18XX -4.47 -6.07         

B-1 18XX -1.76 -5.65 3004.96 564.04 2609.03 261.50 

B-1 19XX -0.95 -8.40 11959.96 1830.73 3209.27 759.13 

B-1 19XX.5 -0.89 -6.58 12944.81 1734.73 2399.01 1025.33 

B-1 19XX.5 0.96 -5.22 4326.24 549.21 1584.29 67.51 

B-1 19XX.5 1.13 -4.34 136909.71 435.37 585.39 122.30 

B-1 19XX.5     188264.54 566.20 4941.65 311.37 

B-1 19XX 0.15 -7.87 7533.60 1272.71 1514.30 402.66 

C-1 18XX.81 -0.20 -5.78 3951.10 808.40 1309.97 378.14 

C-1 18XX.31 -0.10 -5.46 3051.16 547.28 2353.66 278.47 

C-1 18XX.34 -0.14 -5.44 2881.08 550.82 1048.78 309.61 

C-1 18XX -0.31 -5.26 15604.36 458.67 256.70 5.91 

C-1 18XX.37 -0.32 -5.27 15741.45 434.56 235.43 6.76 

C-1 18XX.3 -0.19 -5.54 11168.76 542.05 583.59 5.10 

C-1 18XX.03 -0.18 -5.34 14059.93 614.85 546.53 6.77 

C-1 18XX.1 -0.49 -6.74 14168.02 515.16 623.07 28.01 

C-1 18XX.16 -0.64 -6.74 15425.73 533.46 980.93 39.87 

C-1 18XX.46 -0.63 -6.82 8339.93 273.49 411.35 10.98 

C-1 18XX.18 -0.23 -5.61 20616.93 633.04 1266.99 49.10 

C-1 18XX.78 -0.53 -6.59 7021.05 335.25 347.93 24.42 

C-1 18XX.13 -0.52 -6.69 13636.32 532.15 1059.95 49.39 

C-1 18XX.43 -0.53 -6.28 3206.86 436.15 437.30 39.75 

C-1 18XX.3 -0.85 -5.83 2413.81 593.45 126.68 9.78 

C-1 18XX.6 -0.45 -6.27 8075.10 513.00 263.02 27.06 

C-1 18XX.9 -0.40 -6.02 12045.95 515.93 345.09 22.35 
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Well 
Depth                 

(m) 
δ13C   

(VPDB) 
δ18O   

(VPDB) 
Mg      

(ppm) 
Sr       

(ppm) 
Fe       

(ppm) 
Mn       

(ppm) 

C-1 18XX.21 -0.41 -6.16 19103.40 855.34 1151.56 43.14 

C-1 18XX.91 -0.21 -5.30 15134.59 588.91 409.65 26.05 

C-1 18XX.05 -0.17 -5.14 12967.76 654.03 727.52 16.88 

C-1 18XX.35 -0.11 -5.06 32598.93 587.50 755.68 10.85 

C-1 18XX.03 -0.20 -5.35 15213.99 654.76 601.77 6.56 

C-1 18XX.6 -0.20 -5.34 15099.20 605.25 471.49 7.75 

C-1 18XX.8 -0.24 -5.83 12500.12 585.39 512.27 21.83 

C-1 18XX.2 -0.18 -5.47 13535.32 640.45 696.07 22.15 

C-1 1839.5 -0.23 -5.26 15814.98 636.78 884.25 17.36 

C-1 18XX -0.21 -5.37 12653.46 520.59 528.68 6.02 

C-1 18XX.3 -0.15 -5.18 11668.49 601.95 1016.16 5.95 

C-1 18XX.6 -0.26 -5.60 7313.15 515.72 646.63 1.42 

C-1 18XX.2 -0.18 -5.43 8243.44 566.02 809.58 2.20 

C-1 18XX.04 -0.22 -5.38 7810.19 651.42 1175.26 9.73 

C-1 18XX.34 -0.17 -5.42 5886.02 616.28 738.41 13.36 

C-1 18XX.09 -0.20 -5.43 7945.62 655.39 1692.62 11.02 

J-2 23XX.75 0.32 -3.68 4293.58 325.96 151.08 194.67 

J-2 23XX.15 0.24 -4.14 3225.43 269.84 131.86 182.91 

J-2 23XX.58 0.18 -4.28 4174.42 283.28 116.25 128.94 

J-2 23XX 0.09 -4.41 6107.30 382.66 175.44 159.79 

J-2 23XX.35 0.02 -5.33 6236.64 521.65 178.98 123.91 

J-2 23XX.7 0.09 -5.06 8880.30 426.46 183.63 100.12 

J-2 23XX.25 0.14 -4.23 5680.16 469.66 96.70 84.94 

J-2 23XX.5 0.12 -5.13 3124.67 265.10 55.75 55.66 

J-2 23XX.65 0.21 -4.79 3693.37 331.98 81.27 59.65 

J-2 23XX.4 0.18 -4.95 2919.19 260.44 46.72 43.46 

J-2 23XX.8 0.19 -4.61 4823.50 342.57 62.69 63.49 

J-2 23XX.4 0.21 -4.54 4565.73 350.44 52.81 52.43 
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Well 
Depth                 

(m) 
δ13C   

(VPDB) 
δ18O   

(VPDB) 
Mg      

(ppm) 
Sr       

(ppm) 
Fe       

(ppm) 
Mn       

(ppm) 

J-2 2346.65 0.16 -4.92 11253.44 442.53 194.25 67.18 

J-2 23XX.1 0.11 -5.08 5635.85 435.24 73.63 90.73 

J-2 23XX.5 0.23 -4.91 5153.83 354.50 76.88 90.05 

J-2 23XX.6 0.22 -4.73 7343.11 529.21 118.62 109.85 

J-2 23XX.2 0.37 -4.22 6703.10 387.79 202.62 78.19 

J-2 23XX.7 0.85 -0.23 5461.17 422.05 106.03 87.29 

J-2 23XX.85 0.40 -4.01 3780.28 281.95 28.48 60.22 

J-2 23XX.3 0.37 -4.00 4048.71 305.63 14.51 79.85 

J-2 23XX.6 0.63 -3.62 5032.21 366.53 11.24 119.65 

J-2 23XX.05 1.05 -3.52         

J-2 23XX.46 1.15 -3.67 2190.13 166.42 16.86 65.69 

J-2 23XX.65 0.91 -4.26 2247.42 174.82 75.80 61.30 

J-2 23XX.1 0.76 -6.27 3255.75 457.50 272.10 144.78 

K-1 23XX 1.00 -3.24 5666.92 413.49 1590.97 291.39 

K-1 24XX.5 0.92 -5.63 4267.96 297.67 514.20 256.56 

K-1 24XX     4049.61 570.27 2153.76 233.06 

K-1 24XX 1.23 -7.04 94933.66 286.96 2721.10 70.26 

K-1 25XX.5 0.76 -5.04 2387.01 249.31 718.84 55.05 

K-1 25XX -0.45 -6.06 6219.53 613.65 2028.36 235.04 

K-1 25XX 0.72 -5.65 5272.19 656.42 11958.32 250.73 

K-1 25XX -0.59 -6.44 4963.01 340.93 860.19 224.13 

K-1 25XX 0.50 -4.93 3807.71 283.42 291.76 187.36 

K-2 24XX -0.18 -5.30 4093.77 525.16 4552.18 134.28 

K-2 24XX -0.16 -5.10 4758.54 437.48 1794.35 113.13 

K-2 24XX -0.06 -5.93 3979.14 326.93 737.13 144.38 

K-2 24XX 0.56 -6.31 4904.25 415.09 651.28 83.19 

K-2 24XX 0.59 -3.53 5674.60 399.22 770.52 135.95 

K-2 24XX 0.46 -3.32 4418.94 309.40 558.32 286.21 
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Well 
Depth                 

(m) 
δ13C   

(VPDB) 
δ18O   

(VPDB) 
Mg      

(ppm) 
Sr       

(ppm) 
Fe       

(ppm) 
Mn       

(ppm) 

K-2 24XX 0.00 -5.16 5573.41 456.77 1895.44 157.47 

K-2 24XX.5 0.85 -4.45 4029.36 341.46 1028.60 137.55 

K-2 24XX 0.11 -4.26 5497.81 549.82 4757.00 314.22 

K-2 24XX.5 0.92 -6.17 5786.31 313.60 875.43 418.05 

K-2 24XX.5 0.90 -3.93 5661.86 388.56 1756.06 130.09 

K-2 24XX -0.10 -3.94 4490.47 305.88 550.13 186.65 

K-2 24XX 0.90 -3.08 6222.24 393.44 858.07 287.34 

K-2 24XX 0.28 -4.84 3961.37 294.13 759.97 174.65 

K-2 24XX.57 1.07 -4.79 4494.53 283.34 545.25 249.83 

K-2 25XX -0.54 -5.45 11762.35 368.47 5105.94 150.04 

K-2 25XX     6913.26 652.01 812.91 181.78 

K-2 25XX     6765.57 104.31 34750.66 1100.54 

K-2 25XX 0.21 -3.77 823.34 95.61 4767.77 35.75 

P-1 18XX -0.82 -6.21         

P-1 18XX -0.51 -5.55         

P-1 18XX -0.33 -5.73 3533.77 561.58 813.75 5.06 

P-1 18XX -1.30 -7.13 3513.13 473.07 620.16 2.06 

P-1 18XX -0.83 -6.10 3679.38 663.59 2234.28 51.30 

P-1 18XX -0.30 -5.83 4336.58 492.91 251.84 37.35 

P-1 18XX.95 -0.26 -5.94 3824.57 504.81 379.22 48.35 

P-1 1890.25 -0.27 -5.96 3359.95 446.27 981.64 47.94 

P-1 18XX.9 -0.26 -5.83 2622.00 354.00 677.24 38.41 

P-1 18XX.1 -0.31 -5.89 2096.40 272.82 422.26 32.07 

P-1 18XX.8 -0.28 -5.86 2310.03 319.66 588.62 45.98 

P-1 18XX.7 -0.32 -5.30 3708.60 679.03 126.44 8.46 

P-1 18XX -0.33 -5.41 4773.94 380.80 107.50 10.27 

P-1 18XX.6 -0.28 -5.16 3837.09 296.72 145.66 9.72 

P-1 18XX -0.31 -5.65 4928.40 448.77 199.72 4.91 
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Well 
Depth                 

(m) 
δ13C   

(VPDB) 
δ18O   

(VPDB) 
Mg      

(ppm) 
Sr       

(ppm) 
Fe       

(ppm) 
Mn       

(ppm) 

P-1 18XX.55 -0.29 -5.47 5088.87 379.20 121.88 11.16 

P-1 18XX.85 -0.29 -5.35 6656.02 383.43 156.78 3.52 

P-1 18XX.5 -0.37 -5.98 9240.73 459.36 96.96 9.69 

P-1 18XX.7 -0.41 -5.94         

P-1 18XX.3 -0.33 -5.20 4325.10 441.33 219.90 7.39 

P-1 18XX.6 -0.38 -5.79 2322.63 274.66 102.24 4.77 

P-1 18XX.25 -0.58 -6.29 4523.34 412.30 78.17 3.18 

P-1 18XX.55 -0.10 -4.68 2596.73 264.67 401.16 6.91 

P-1 18XX -0.38 -5.32 3225.24 332.24 288.22 6.76 

P-1 18XX.3 -0.11 -5.47 2545.91 315.29 521.78 42.66 

P-1 18XX -0.18 -5.76 2397.87 292.70 993.93 34.16 

P-1 19XX -0.14 -5.61 2582.60 271.51 1260.25 54.70 

P-1 20XX.5 -0.06 -6.38         

S-1 21XX.5 -0.96 -5.00 8833.27 586.69 3387.13 233.51 

S-1 21XX.3 -1.61 -4.60 3549.28 268.09 377.20 163.44 

S-1 21XX.5 -0.84 -4.03 5106.02 217.90 24.96 126.48 

S-1 21XX -4.69 -9.04 964.70 84.30 15.06 38.19 

S-1 21XX -3.02 -7.90 81762.64 252.04 1311.54 269.30 

S-1 21XX -0.60 -4.96 8977.80 35.22 51.93 18.19 

S-1 21XX -3.63 -7.60 70017.74 128.86 2607.41 206.78 

S-1 22XX -0.56 -4.95 9197.26 28.12 28.91 12.61 

S-1 21XX -0.90 -4.21 10801.96 546.46 507.12 64.90 

S-1 22XX -0.80 -6.66 3306.51 156.57 129.99 39.80 

S-1 22XX -1.30 -6.52 3411.29 231.03 111.35 56.40 

S-1 22XX -0.96 -6.55 4271.34 510.57 414.32 58.56 

S-1 22XX.5 -1.00 -5.68 2306.89 201.73 92.40 27.93 

S-1 22XX -3.58 -9.50 6154.29 30.30 75.81 9.60 

S-1 22XX -0.94 -3.57 6277.82 32.16 145.55 17.17 
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Well 
Depth                 

(m) 
δ13C   

(VPDB) 
δ18O   

(VPDB) 
Mg      

(ppm) 
Sr       

(ppm) 
Fe       

(ppm) 
Mn       

(ppm) 

S-1 22XX -2.37 -5.62 7989.35 36.11 46.43 15.93 

S-1 22XX -2.06 -10.54 5308.81 204.81 131.09 104.50 

S-1 22XX -2.02 -5.63 14193.61 434.60 375.82 121.87 

S-1 22XX.5 -1.35 -7.52 5288.26 473.50 409.12 63.34 

S-1 22XX -1.76 -7.86 7684.27 105.31 78.63 38.63 

S-1 22XX -1.38 -7.01 25643.38 269.40 260.42 124.40 

S-1 21XX -1.28 -7.70 10718.83 91.85 349.97 23.45 

S-1 22XX -1.12 -7.49 14136.57 150.88 219.10 29.28 

S-1 22XX.5 -1.81 -8.12 5462.45 222.86 114.08 63.03 

S-1 22XX -0.44 -5.99 3246.62 148.40 183.92 123.99 

S-1 22XX.5 -1.90 -6.11 4879.43 485.52 313.18 49.45 

S-1 22XX -2.94 -7.30 23176.99 46.23 398.41 103.32 

S-1 22XX     1116.23 20.29 240.43 4.81 

W-1 23XX -2.13 -0.21 3512.51 87.42 150.67 55.13 
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APPENDIX 6  

STABLE ISOTOPE AND TRACE ELEMENT OF THE MASON DATASET 

 

Sample Formation Cycle 
Dolomite 

type 
δ13C   

(VPDB) 
δ18O   

(VPDB) 
Sr       

(ppm) 
Fe       

(ppm) 
Mn      

(ppm) 

01/14 

Upper            
Ft. Terrett 

Fm. 

8 1 0.82 1.10 196.00 240.68 147.66 

01/15 8 1 2.57 0.79 113.99 36.30 61.87 

01-16 8 1 1.47 1.19       

01/17 8 2 1.11 0.42 231.88 163.75 269.39 

02/14 8 2 1.65 1.27 159.82 59.13 83.95 

06/10 8 2 1.86 1.30       

06/9 8 1 1.15 1.42 249.31 242.58 85.07 

02/11 7 2 -0.18 0.83 172.12 113.43 142.03 

02/12 7 2 1.81 0.76 207.97 85.86 123.78 

02/13 7 2 2.52 1.11 261.90 131.89 159.31 

06/8 

Middle            
Ft. Terrett 

Fm. 

6 3 2.60 0.76 113.85 342.17 108.24 

01/11 6 4 -0.59 -3.05       

01/12 6 3 -3.85 -4.45 611.98 137.90 149.61 

01/13 6 1 1.59 1.43 218.33 108.56 130.51 

06/7 6 2 1.68 0.38 195.91 103.92 62.62 

03/8 6 4 -1.67 -4.65 485.49 283.66 194.30 

02/10 5 1 -1.21 1.55       

01/10 5 3 1.24 0.52 206.27 190.09 254.47 

01/9 5 1 1.03 1.32 243.42 132.14 215.70 

02/7 5 1 -2.28 -0.03 196.96 143.63 253.23 

02/8 5 1 -1.40 1.05 253.25 186.48 155.07 

02/9 5 1 -0.20 1.33 147.41 85.68 103.97 

06/2 5 2 1.39 0.88 134.44 164.87 196.44 

06/3 5 2 1.85 0.78 132.52 70.93 180.21 
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Sample Formation Cycle 
Dolomite 

type 
δ13C   

(VPDB) 
δ18O   

(VPDB) 
Sr       

(ppm) 
Fe       

(ppm) 
Mn      

(ppm) 

06/4 5 2 1.43 1.07 147.98 156.26 101.63 

06/5 5 1 0.64 1.00 160.80 119.04 216.31 

06/6 5 1 0.12 1.09 174.56 136.18 214.71 

01/6 4 4 -4.69 -4.36 404.37 379.21 274.82 

01/7 4 1 0.52 0.90 177.32 115.22 549.46 

01/8 4 2 -0.18 0.91 201.82 104.21 464.65 

02/4 4 4 -3.24 -4.00 880.38 239.55 341.54 

02/5 4 4 -1.65 -4.10 454.89 339.69 342.87 

02/6 4 1 -0.47 0.89 180.49 133.31 354.77 

03/3 4 4 -3.78 -4.37 633.55 205.03 187.59 

03/4 4 4 -1.26 -3.60 374.97 242.17 316.21 

03/5 4 4 -1.65 -4.08 336.52 169.53 319.90 

03/6 4 4 -2.02 -4.72 659.10 318.92 395.90 

06/1 4 1 -1.60 1.17 156.54 111.95 487.36 

07/8 4 1 1.72 0.94 186.69 80.32 67.30 

01/5 

Lower            
Ft. Terrett 

Fm. 

3 3 -3.57 0.35 119.48 94.76 765.39 

02/3 3 4 -2.45 -4.45 410.66 309.46 251.57 

03/2 3 2 -0.22 -1.09 200.51 194.29 239.46 

02/2 2 4 -3.28 -4.36 852.94 319.59 288.30 

07/6 2 4 -0.58 -3.96 1039.03 376.03 246.43 

07/7 2 4 -0.30 -3.94 501.43 394.31 261.72 

01/1 1 4 -4.98 -3.56 396.87 494.80 528.14 

01/2 1 1 -0.65 1.73 270.14 608.99 3279.06 

01/3 1 4 -3.10 -4.03 503.94 537.83 393.77 

02/1 1 2 -0.25 1.28 225.53 510.17 2009.63 

03/1 1 4 -3.02 0.90 97.98 1273.32 1280.76 

07/3 1 3 -0.65 0.43 111.44 184.70 560.70 
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Sample Formation Cycle 
Dolomite 

type 
δ13C   

(VPDB) 
δ18O   

(VPDB) 
Sr       

(ppm) 
Fe       

(ppm) 
Mn      

(ppm) 

07/4 1 3 -0.93 0.23 198.27 228.93 695.54 

07/5 1 1 -0.49 0.57 160.16 251.07 475.95 

01/1C 
Upper Hensel Formation 

-3.89 -2.87 225.17 320.64 450.57 

07/2 -1.07 1.41 149.35 446.33 2224.09 

01/1B 
Middle Hensel Formation 

-3.97 -0.12 74.00 842.09 753.95 

07/1 -2.95 1.12 61.22 424.53 1597.38 

01/1A Lower Hensel Formation -2.06 0.75 35.88 277.76 824.10 
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APPENDIX 7  

PUBLISHED ARTICLE 
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