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ABSTRACT 

 

Ultrasound (US) has recently emerged as an attractive imaging modality for applications like 

accurate epidural placement and intraoperative guidance during surgeries. However, operators like 

anesthesiologists or surgeons untrained in US have difficulty interpreting the anatomy in noisy 

spinal US images. This problem is exacerbated by presence of fractures which is integral to the 

assessment of spinal cord injuries and stability. A method to automatically isolate and perform a 

3D rendering of the spine anatomy from scanned US images is proposed. In the case of fractures, 

ultrasound elastography techniques are proposed by assessing the mechanical response to a 

uniaxial compression at the posterior vertebra-soft tissue boundary. 

 

Experiments are performed by scanning the lumbar and thoracic vertebrae of 17 healthy volunteers 

BMI ranging from 19.5 to 27.9. A local phase-symmetry technique is applied to the US B-mode 

images for enhancement of bone-like ridges and the spine blobs are subsequently classified. The 

segmented spine surface from the blobs is compared against the radiologist’s manual delineation 

of the spine surface. This performance assessment analysis is also consequently extended to 3D 

surfaces. For investigating spine fractures, experiments are performed on ex-vivo rabbit lumbar 

spine samples. 3D finite element models of the vertebra-soft tissue complex are generated to 

simulate axial normal and shear strains. Also, experiments on the same samples are performed to 

corroborate simulation findings. The numerical characteristics of axial strain’s spatial distribution 

are further used to construct two shape descriptors to make inferences on spinal abnormalities.  
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The proposed techniques accurately generate a 3D surface rendering of multiple vertebrae 

specifically showing landmarks like the laminae, ligamentum flava, spinous, transverse and 

articular processes. These techniques are also extended for bone regeneration applications which 

has implications for the monitoring of postoperative bone healing. Results from studies on spine 

fractures indicate that the disruption of axial strains manifest as distinct patterns around intact and 

fractured vertebrae. These along with the shape descriptor features resulting from the surrounding 

soft tissue deformation can serve as a useful adjunct to B-mode images in uniquely determining 

the location of fracture sites.   
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 OBJECTIVE 
 
This thesis is concerned with detection, localization and three-dimensional (3D) visualization of 

structural information about the spine using volumetric ultrasound data. This can be useful for 

medical personnel untrained in ultrasound in easily interpreting spinal anatomy for inferring 

fractures, abnormalities or in providing guidance for intraoperative imaging. This work focuses 

on the automated extraction of the 3D spine surface and highlights spinal abnormalities by 

utilizing information from surrounding soft tissue deformations. Although the clinical utility of 

this work is demonstrated for the spine, there are potential implications for this work by 

extension to long bones. These could serve as a useful addendum to a software framework within 

a portable ultrasound imaging system. This could also serve as part of a larger workflow in 

computer assisted surgery systems for which surgical instruments can be guided using precise 

real-time feedback from visualizing the 3D spine volume. 

 

1.2 THE NEED FOR SPINAL ULTRASOUND IMAGING 
 
The spinal cord is the central communication link between the body and the brain. Pain is one 

such signal that is linked to the brain. Administration of regional anesthesia before surgical 

procedures suppresses the pain by numbing this link. However, needle placement is hindered by 

a protective bony cage known as the spine or vertebral column. Anesthesiologists generally 

palpate to find an intervertebral portion of the back between two protruding spinous processes 

(the backbone that can be felt). Such anatomical landmarks can be challenging to obtain from 

obese or pregnant patients. Thus, medical imaging plays a critical role in identifying such 
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structures. Clinical diagnosis of spinal cord injuries, spinal fractures or abnormalities is achieved 

through the use of imaging modalities. Spinal imaging methods are used for the localization of 

the injury or the fracture, the assessment of diagnostically relevant details, the assessment of risk 

or probability of injury, the monitoring of bone healing or regrowth and the evaluation of 

treatment outcomes [1-3] . In several of these applications, imaging plays a critical role to 

improve the diagnosis and treatment of the spinal pathologies, monitor the associated tissue 

response to the underlying etiology, and provide anatomical insight before or during spinal 

procedures. 

 

Spinal fractures and abnormalities are typically evaluated using computed tomography (CT), 

while magnetic resonance imaging (MRI) is used to assess soft tissue trauma and spinal cord 

injuries [4-7]. The strength of these modalities lies in their superior sensitivity and specificity; 

the weaknesses in their requirement of large, often structurally fixed, machinery, the need for 

specially trained technicians to take and develop images, the high costs and, in the case of CT 

imaging, the reliance upon radiation for image generation [8, 9]. While these methods are 

currently the gold-standard for spinal imaging applications, some of their drawbacks make them 

unattractive for applications such as pediatrics, military and regeneration studies using stem cells 

[10]. The effects of radiation exposure in patients from fluoroscopy (c-arm), computed 

tomography (CT) and nuclear medicine have been well documented. CT scans of the spine are 

associated with substantial exposure compared to extremities (dosage of 18 and 19 mSv for 

thoracic and lumbar CT scans respectively) [11-13]. 
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Spinal ultrasound imaging has emerged as an important player for image-guided procedures due 

to its real-time imaging feedback in addition to the modality being highly portable. Moreover, it 

is known for not producing ionizing radiation and being relatively cost-effective. An area where 

a lot of work has been concentrated on is the use of ultrasound in guiding epidural placement. In 

Fig 1.2, the graphic demonstrates epidural administration at the L3-L4 interspace. The objective 

of an anesthesiologist is to identify the appropriate interspace followed by an estimation of the 

optimal puncture depth i.e. the distance from the skin to the epidural space. US facilitates exact 

identification of the epidural spaces within which optimal puncture depth can be determined.  

 

 
Fig 1.1. The process of planning the epidural with needle visualization shown in the US image. 

The transverse view is shown on the right and the paramedian view on the left. [Printed with 

permission from The New York School of Regional Anesthesia (NYSORA) 

(http://www.nysora.com)]. 

 

US has been successfully used in addressing the need for accurate epidural placement [2,3,6,7].  

However, the learning curve for anasthesiologists has not been established to fruition [7].  There 

are two approaches to performing spinal US scans. Scanning along the transverse plane involves 

placing the US probe perpendicular to the long axis of the vertebral column, and the paramedian 
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plane involves placing the US probe parallel to the long axis of the vertebral column while tilted 

at an angle.  These methodologies are shown in Fig 1.1. The anesthesiologist/operator would first 

identify the appropriate interspace level using the paramedian approach and then place the 

transducer along the transverse plane when administering the epidural or spinal. Most of the 

related literature has focused on using the paramedian approach for identifying lumbar interspace 

levels [14-17]. However, the transverse plane approach, which is predominantly used in 

obtaining the US images for this paper, has been found to be preferred method for the accurate 

estimation of the insertion point [18].   This is due to easy identification of the depth from the 

skin to the ligamentum flavum. Despite its potential advantages, US has not yet become the 

standard-of-care due to the difficulty interpreting spinal anatomy by anesthesiologists untrained 

in ultrasound [19].  

 

Fig 1.2. Epidural administration at the L3-L4 interspace. The needle is punctured onto the 

epidural space to induce numbness generating pain relief. [Reprinted from Wikimedia Commons 

licensed under the Creative Commons Attribution 4.0 

(https://commons.wikimedia.org/wiki/File:Epidural_Anesthesia.png)] 
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Another area for which US is gaining traction are in spinal fusion surgeries involving pedicle 

screw fixation for stabilizing the spine. Fusion surgeries are performed for a wide spectrum of 

indications, including correction of degenerative disc deformities, spondylolisthesis, trauma, 

infection, tumor, and congenital anomalies such as scoliosis [20-21].  It works by fusing two 

vertebral segments (adjacent vertebrae) with a bone graft material which acts as a scaffold to 

promote bone growth. Spine surgeons also use bone graft for spine fracture reduction.  These 

procedures require fluoroscopic image guidance in establishing the locations for implanting the 

screws. But fluoroscopy poses a radiation risk to everyone inside the operating room. Also, 

depending on the experience of the surgeon multiple fluoroscopic planes may be captured to 

determine anchor point positioning compounding this risk. In practice, a significant degree of 

uncertainty arises in determining the pose of 3D objects from 2D projection images and under 

some circumstances this can lead to inaccurate navigation [22]. 

 

Position tracked US images obtained intraoperatively can be aligned with the preoperative CT in 

determining precise location for screw placement. Consider the important example of 

posterolateral gutter fusion surgeries, which are procedures in which the screws are placed at the 

posterolateral sides to help align the spinal anatomy and restore normal movement of the 

vertebrae. Fig 1.3 shows a posterolateral aspect of the procedure with screws on the sides. Bone 

graft material from either the patient’s body or a cadaver is then placed posterior to the screws to 

fuse the vertebral segments. It also shows grafting at the empty space in place of the removed 

disc between the vertebral segments to account for cases like degenerative disc disease. The 

assessment of bone integrity and growth facilitated by the grafting postoperatively can have 

important implications in bone healing applications. 
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Fig 1.3. Spine fusion surgery with implanted screws on the sides for stabilization. Bone graft is 

placed on top to fuse the vertebral segments and in between for disc repair. [Reprinted from “L4-

L5 and L5-S1 TLIF for Multi-level Bilateral Foraminal Stenosis” by Henry Dimaano 

(https://vimeo.com/88443576)] 

 

Fig 1.4 shows the manner in which a cross-sectional portion of the US image is obtained (Fig 

1.4a) from an L3 level of the lumbar vertebrae and fed back to the system (Fig 1.4b) in the form 

of a “brightness” mode or B-mode image. Note that the posterior, middle and anterior columns is 

a simple division of the vertebral column proposed by Dennis for classifying the types of spinal 

fractures [23]. The middle and anterior columns represent the vertebral body of the spine. Each 

lumbar vertebra (Fig 1.4a for instance) has four protrusions facing the ultrasound transducer: The 

spinous process (SP) located at the midline, two articular processes on the left and right of the SP 

and two transverse processes on the left and right at the extremes. The laminae constitute the 

relatively level regions between these protrusions. Each articular process (AP) lies at the junction 
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between the respective transverse process (TP) and the bottom pedicle that connects to the 

middle column. The superior AP of one vertebra is connected to the inferior AP of the successive 

vertebra using facet joints. 

 

Acoustic waves from the transducer are emitted, which are then absorbed and reflected by 

multiple interfaces including connective tissues, fat and muscle layers below the skin.  Bony 

regions, proportional to the material density, almost completely reflect the acoustic waves 

indicated by a bright hyperechoic line. This results in a dark region underneath the strongly 

reflective bone surface producing what is known as acoustic shadowing (seen below the SP, AP 

and TP in Fig 1.4b and below SP and laminae in Fig 1.5). Thus, US limits image visibility to the 

surface of the posterior column of the spine and the posterior side of the middle column surface 

within the interspaces. In other words, what the image ends up showing is the top boundary of 

the posterior column (where the arrows touch in Fig 1.4a) above each vertebra and the top 

surface of the middle column (shown in light blue) in between vertebral segments. 
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(a)                                                                          (b) 

Fig 1.4. (a) 3D cross-section of a single vertebra. (b) Associated US image at the L3-L4 with 

protrusions highlighted. 

 

Epidural placement, pedicle screw placement and monitoring of postoperative bone growth 

require the identification of structural landmarks from the spine surface. But the spine has a 

peculiar geometry compared to the smoother, more curvilinear, bones in the body. The posterior 

column anatomy varies its geometric structure across multiple slices taken in the transverse plane 

within a single vertebra.  So, such structural landmarks can be incredibly challenging to interpret 

for an operator untrained in ultrasound physics and spine anatomy. For example, Fig 1.4 and 1.5 

are displaced 0.5 mm apart in the elevational direction but have varying geometries.  More to the 

point, US imaging generally has a poorer visual quality and a low SNR compared to other 

modalities. Obese and/or muscular patients may have multiple layers of fat, dense connective 
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tissue and muscle posterior to the vertebra exacerbating problems in image interpretation. This 

could result in not all structures being evenly distributed by high intensity line profiles. Contrast 

variations may occur with increased depth. This can be seen in Fig 1.4b and Fig 1.5 which do not 

show bright intensities at the SP region and this is obtained from a healthy patient of BMI 22.5.  

 

Diagnostic ultrasound is generally disseminated in the form of 2D cross-sectional views of the 

3D anatomy. A 2D viewpoint may be insufficient in capturing the anatomy comprehensively. 

Ultrasound artifacts present in the image also cloud the operator’s judgments in inferring the 

existence of certain structures. For example, it is unclear from the 2D slices exactly how much 

acoustic shadowing has to be present in an image to judge the existence of a bone surface above 

it. An operator may interpret any amount of shadowing within an image as evidence for 

existence of the SP. In these cases, a 3D spine rendering can provide the operator with multiple 

viewpoints. Thus, the operator can have a better understanding correlating the anatomy with a 

typical spine model. 
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Fig 1.5. US image at the L3-L4 interspace.  

 

Spinal fractures complicate the above issues even further. Based on the fracture orientation and 

gap size, the low resolution and brightness may not be sufficiently capture it. Spinal cord injuries 

are often associated with spinal fractures and musculoskeletal abnormalities. Initial mechanical 

trauma for spinal cord injury includes traction and axial compression forces, hyperflexion and 

rotational stresses, which may result in vertebral column fractures, lower extremity fractures and 

dislocated bone fragments. Post-traumatic imaging of the spine and the soft tissue in proximity 

of the spine provides essential information for accurate diagnosis and prognosis of spinal and 

spinal cord injuries and may be used to assess treatment efficacy. In most cases, spinal injury due 

to fracture, often resulting from trauma or conditions such as osteoporosis, are associated with 

changes of mechanical properties of the tissue at the bone interface [25]. However, there is a no 

available literature investigating fractures in the context of US imaging.  
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The above applications stress the need for extracting structural information from the vertebrae to 

paint a clear picture of the anatomy. Such information could serve as landmark points in 

preoperative surgical planning, intraoperative surgery and postoperative monitoring of the bone 

healing process. This thesis serves to convert noisy spinal US images to an interpretable form for 

any medical personnel with minimal US training.  

 

1.3  APPROACH 

As mentioned above multiple factors can affect an observer’s interpretation of bone in US 

images. Automatic delineation purely based on some function of brightness can be limiting 

especially with the variations that can arise from different contrast levels, transducer physics-

based artifacts and inherent noisy conditions.  We make a case for the isolation of important 

anatomical features that are invariant to such conditions. A prominent approach to the problem 

of bone segmentation has been the use of phase-based estimation [22, 26]. The approach has 

gained a lot traction due to the robustness offered by invariant measures such as local phase 

symmetry and phase congruency particularly for applications involving extraction of low-level 

features. The following paragraph provides a rationale for using this technique. 

 

Consider the US image in Fig 1.4. Each column represents the signal output of an acoustic wave 

that has had “interactions” (reflections, refractions etc) with each tissue layer starting its path 

from the transducer on top. This signal has both energy and structure. We can achieve separation 

of energy and structure in a real-valued signal ݂(ݐ) by virtue of its analytic signal ௔݂(ݐ). This is 

done by introducing the purely imaginary part of the signal which is its Hilbert transform 

௛݂(ݐ) such that: 
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௔݂(ݐ) = (ݐ)݂ + ௛݂(ݐ)                       (1) 

 

This allows us to decompose the signal into local amplitude (energy) and local phase (structure): 

(ݐ)݂ = .|(ݐ)ܣ|  exp൫߮(ݐ)൯            (2) 

Where, local amplitude is given by: 

(ݐ)ܣ =  ඥ݂(ݐ)ଶ + ௛݂(ݐ)ଶ             (3) 

And local phase is given by: 

(ݐ)߮ =  tanିଵ ൬ ௛݂(ݐ)
(ݐ)݂

൰                  (4) 

 

Energy and structure are independent information contained in a signal unless the signal is a 

combination of partial signals with different local phases on different scales [27]. In other words, 

the polar decomposition in Eqn (2) makes it possible to separate the original signal into partial 

signals due to band-pass filtering that removes signals with non-linear phase and in turn 

preserves the invariance property. We will use the Log-Gabor filter consistently in this thesis to 

provide band-pass filtered local amplitude and phase information. More details are provided in 

Chapter 1. 

 

The phase information will in turn be used to extract structural information about the signal or 

rather local phase will enable us to use the signal’s features as opposed to the signal intensity. 

However, phase-based techniques are extremely prone to the influence of noise in the signals. A 

fundamental operation to isolating noise in a signal is thresholding its amplitude.  But, how do 

we create a methodology for thresholding signal structure? One parameter considered in this 

thesis is the width or scale of the band-pass filter used in the phase estimation. And since a US 
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image is a concatenation of the acoustic signal outputs to form a 2D signal, directionality or 

orientation of the filter is also considered. Moreover, isolation of the bony regions in US images 

requires removal of surrounding tissue structures in addition to the noise arising from local 

phase. This now become a classification problem of which feature engineering is a key aspect. 

 

A discriminating aspect of bony regions observable in Fig 1.4 and Fig 1.5 is the shadowing 

feature immediately following the spine surface. This can provide some insight into the overall 

morphology of the spine surface. Therefore, this is an important feature that is incorporated in 

the algorithm for discerning the spine regions from the surrounding tissue structures. Note that 

any amount of shadowing is characterized by its low signal amplitude underneath the bone 

surface. Thus, an intensity-based method should suffice for extracting this information (see 

Chapter 1). 

 

The robustness of the above methods can fail in the presence of fractures due to the further 

complications of the spine geometry and the signal affected as a result. A solution to this 

problem is to look for additional features that can be extracted from the surrounding tissues. 

Investigating the degree of soft tissue deformation around the bone can provide an insight into 

the bone integrity and thereby fractures and abnormalities.  

 

1.4 THESIS OVERVIEW 

 

Chapter 2 reviews the major work done in the field of automatic long bone and spine 

segmentation in US imaging. An important difference from the existing techniques is the 
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applicability of the proposed method to the spine geometry that takes on a complex structure. 

Structural information such as the SP, AP, TP, laminae and epidural space is obtained. Bone-like 

regions are first obtained by a local 2D phase symmetry features and followed by a classification 

of the spine regions.  Overlaying automatically obtained structures onto the ultrasound image can 

help guide an operator in epidural placement. The advantage of the proposed technique is its 

minimal reliance on algorithm parameters and thus generalizes well for the in vivo experiments.  

 

Chapter 3 extends the work in Chapter 2 by obtaining structural information of the spine and 

performing a 3D reconstruction of multiple vertebrae. A survey of the previous literature in 3D 

rendering within the context of visualizing the bone surface is done. The comparison also yields 

evidence that this is the first body of work in extracting the 3D surface rendering of the spine. A 

statistical analysis highlighting the accuracy assessment of the surface rendering against a 

manual surface delineation by an expert has been proposed. Furthermore, the 2D local phase 

symmetry technique has been modified to obtained 3D local phase symmetry features for the 

context of bone regeneration.  

 

Chapter 4 discusses an approach using ultrasound elastography by incorporating surrounding soft 

tissue deformations in localizing spinal fractures. It is important to note that is the first body of 

work done in visualizing posterior spinal fractures within the context of US imaging. Strain-

based shape descriptors constructed from the unique spine geometry are also proposed to make 

inferences on spinal abnormalities and fractures.  
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Finally, Chapter 5 concludes the work and discusses the areas that might be developed for future 

work.  
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CHAPTER 2          

 SPINE SURFACE DETECTION FROM 2D LOCAL PHASE-SYMMETRY ENHANCED 

RIDGES IN ULTRASOUND IMAGES* 

 

2.1 INTRODUCTION1 

Spinal ultrasound (US) has known to offer many potential benefits for intra-operative surgery 

scenarios. This can be attributed to some of the distinctive qualities of US such as portability, 

safety and cost effectiveness.  US has been used as a screening tool for administering spinal 

injections [1].   Epidural anesthesia is performed in 75 percent of all childbirths in the United States 

with a 70 percent failure rate among obese patients [2]. Regional anesthesia for placement of the 

epidural needle relies on palpation of anatomical landmarks, but the optimal puncture depth cannot 

be determined from inspection or palpation especially for obese patients. This can result in patient 

discomfort, accidental dural puncture and potential trauma to the nerves, vessels, bones and 

ligaments [3]. Multiple insertion attempts could result in nerve damage causing epidural abscess 

infection [4]. Other complications of neuraxial anesthesia involve spinal hematomas, bleeding 

diathesis and left ventricular outflow obstruction.  X-ray based fluoroscopy is the only competing 

real-time intra-operative modality with US [5], but it is not portable and uses ionizing radiations.  

 

Spine surface detection in US images requires a robust bone segmentation technique that reduces 

the influence of the soft tissue interface and ultrasonic imaging artifacts (reverberation, speckle, 

etc.). A bone feature is a hyperechoic line profile with a perceivable level of posterior acoustic 

                                                 
*Reprinted with permission from “Spine surface detection from local phase-symmetry enhanced ridges in ultrasound 
images” by Peer Shajudeen and Raffaella Righetti, 2018. Medical Physics, Volume 44, Issue 11, Pages 5755-5767, 
Copyright 2018 by American Association of Physicists in Medicine.   
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shadowing (black region) underneath the feature. Fig. 2.2 shows an ideal segmentation of the 

lumbar spine (bone feature) for an US image obtained using the transverse plane approach.  

This level of continuity in the spine line profile is rarely possible. The intensity along the ideal line 

profile between the laminae and the spinous process is not sufficiently pronounced, which leads to 

a large discontinuity in the automatically segmented image.  

 

US bone segmentation has been extensively investigated in the past. US images of bones usually 

feature non-uniform intensity due to scattering between bone-tissue interfaces. Therefore, simple 

intensity-based thresholding methods are, in general, inadequate for US bone segmentation. Some 

groups have employed intensity information and gradient-based operators for the segmentation.  

However, these methods are sensitized to machine setting parameters (operating frequency, gain, 

and acoustic power), which affect the image contrast and resolution. US artifacts and high 

curvature bone anatomy also affect the hyperechogenecity of the bone surface. For example, 

Kowal et al. proposed a fast-automated bone contour detection algorithm where a higher intensity 

weighting is applied for deeper structures [33]. While the method may be suitable for deep bony 

regions that may have non-uniform intensities, the merging of large area connected components 

may not work for bone fractures or a discontinuous spine line profile. To address this limitation, a 

priori knowledge about the bone appearance has been incorporated into the bone contour modeling 

criteria, but this can be limiting when applied to the complex geometry of a spine especially in the 

transverse view [34-37]. Due to the large discontinuities in the hyperechogenecity of the spine line 

profile, especially between the laminae and the spinous processes, evolving a contour can result in 

it veering out of the spine boundary constraints. Active contour techniques are also susceptible to 
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contrast and intensity variations due to the intensity gradient influence on the external energy term 

in the models.  

 

 

Fig.2.1. Lumbar spine region given in orange on a US image obtained in the transverse plane 

 

Elastography has been suggested as a potential aid to ultrasonography for bone surface localization 

due to the high mechanical contrast between bones and surrounding soft tissue, but it has not been 

investigated for spinal applications yet [38-40]. Strain patterns in proximity of spines may be 

affected by the complexity of the spine geometry as well as adjoining soft tissues, erector spinae 

muscles and ligaments conjoined with the laminae, transverse and articular processes that lie 

deeper down the skin surface. 

 

Local phase-based localization of the bone surface has gained a lot of traction in recent years due 

to its robustness from using intensity invariant measures. Hacihaliloglu et al. and Hacihaliloglu et 

al. used a Log-Gabor filter based phase-symmetry measure to produce a strong response on the 

bone surface [41-42]. The automated parameter estimation technique for Log-Gabor filters 

attempts to suppress non-bone responses elsewhere in the B-mode image but is prone to false 
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positive bone responses at soft tissue interfaces that have similar intensity profiles as the bone 

surface [26, 41-42].  

 

Little attention has been paid to spine surface segmentation in US images especially those obtained 

in the transverse plane. Khallaghi et al., Behnami et al., Rasoulian et al. and Nagpal et al. have 

incorporated statistical shape, pose and scale priors obtained from segmented vertebral CT slices 

co-registered with spinal US images [43-46]. Since the spinal US images have no prior 

enhancement, the quality of the vertebral features used for registration depends on the intensity 

profile of the spine surface. Hacihaliloglu et al.  overcame this limitation by using phase-based 

localization as applied to spine surfaces [47]. Despite the promising results of laminae 

enhancement, the influence of soft tissue was still evident. In some cases, this was reduced by the 

addition of bottom-up ray casting, which could fail in the presence of non-zero intensities 

following the bone surface. Tran and Rohling have proposed the use of a lamina template to detect 

laminae obtained using phase-based localization [14]. Both techniques are restricted to work for 

paramedian plane images. Yu et al. proposed a template-based technique to detect the epidural 

space in transverse plane images, but this technique may be sensitive to contrast and gain 

parameters set in the machine [48]. In addition, template-driven techniques are restricted to work 

for lumbar anatomy and are not scalable to structural changes in the vertebra. Berton et al. 

developed a spine detection algorithm for the transverse plane deriving features like phase 

symmetry, rupture points for shadowing and texture descriptors to classify the spinous process and 

acoustic shadow [49]. This technique is restricted to detecting the spinous process region, which 

is beneficial for scoliosis measurement. The authors did not demonstrate a procedure for extracting 

other anatomical structures characteristic of the vertebrae such as the laminae.   
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A fully automatic spine surface segmentation technique that detects spine surface regions such as 

spinous processes, articular processes, transverse processes, laminae and also dense fibrous tissue 

like the ligamenta flava-dura mater interface (LF) for US images obtained in both the transverse 

plane and paramedian plane has been proposed. The novelty of our method lies in the feature 

development for the design of our classifier that detects the spine surface regions. Potential 

applications of our technique include:  

 Superimposing the detected spine surface line profile on the B-mode image in the transverse 

plane enables easy visualization of the skin to LF distance/puncture depth facilitating 

accurate epidural placement. 

 The 2D images post-spine surface detection along with position coordinates information 

can be stacked together to perform 3D volume reconstruction of the vertebral column. 

 

2.2. METHODS 

2.2.1. Speckle Reduction using a First-order Statistics Filter 

Degradation of US images can rise from speckle, which can be modeled as locally correlated 

multiplicative noise. Speckle is caused by the constructive and destructive interference between 

US waves scattered from tissues. A linear filter using first order statistics such as local mean and 

variance from sliding window operations has been proposed for speckle reduction [50]: 

,ݔ)݂ (ݕ = ௡ഥܫ  + ቂ
ఙ೙

మ ି ఙమ 

ఙ೙
మ ቃ ,ݔ)ܫ) (ݕ − ௡ഥܫ   )        (5) 

where ݂ ,ݔ) ,ݔ)ܫ ,is the speckle reduced pixel (ݕ  is the pixel intensity from the original US image (ݕ

and ߪଶ is the variance of the original US image. Local statistics such as mean and variance of the 

3 × 3 pixel neighborhood of ݔ)ܫ, ௡ഥܫ are given by (ݕ  and  ߪ௡
ଶ, respectively. The speckle-reduced 
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image (an example is shown in Fig. 2.3b) is normalized between zero and one to enhance the 

contrast of the image. The speckle-reduced image is the input to the ridge enhancement and 

classification steps of the algorithm and will be termed as the “US image” in the remaining of the 

paper. 

 

        
(a)                                                           (b) 

Fig. 2.3. (a)  Original 2D US image of a human subject’s lumbar vertebra in-vivo. (b) The 

image after the application of a first order statistics filter on Fig. 3a.   

 

2.2.2. Local Phase-Symmetry based Ridge Enhancement (PSRE) in Spinal US Images 

Our proposed phase-symmetry ridge enhancement (PSRE) algorithm can be applied to surface 

localization of any type of bones in addition to spine. Therefore, we will use the terms “bone” and 

“spine” interchangeably in this section. Bone surfaces in US images are generally described by a 

continuous bright region. In Fig. 2.4, we show an elevation map of an US image depicting a cross-

sectional view of a spine with intensity of the image along the elevational direction in the map.  

The elevation map is analogous to a mountain range. Edges are double line patterns representing 

the upward and downward slopes of each mountain. Their strength is proportional to the steepness 

of the slope of a mountain. Ridges, which capture highly specular surfaces including bone surfaces, 

have maximal strength at the medial axis on each mountain. 
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Fig. 2.4. An elevation map of an US image in which the red regions mark the high intensity 

regions corresponding to spine surfaces. 

 

In our algorithm, bone surface localization is performed using phase symmetry, and it is inspired 

by studies presented in [40] and [41].  Phase symmetry is a contrast and illumination invariant 

ridge detection technique. This invariance is primarily due to the symmetry analysis done in the 

frequency domain [51]. That is, we use Fourier components that are maximally in phase to quantify 

gray level variation instead of the derivative based edge detection in the spatial domain. Extracting 

step features of an image (stepwise discontinuity in the intensity) involves a phase angle of 0 or 

180 degrees. But, ridge feature extraction using Log-Gabor filters helps localize features at any 

phase angle. A Log-Gabor filter bank is used to construct the phase symmetry model. The broad 

bandwidth of Log-Gabor filters provides maximal spectral coverage, and the zero DC value 

ensures maximal spatial localization. Due to the absence of a DC component, Log-Gabor filters 

have to be constructed in the frequency domain. In the frequency domain, these filters are formed 

by the product of the Gaussian radial component that responds to the filter’s spectral bandwidth 

and the angular component that responds to the filter’s orientation, i.e.,  
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,߱)ܩ ߮) = exp ൦− ൮
ln ቚ

߱
߱଴

ቚ
ଶ

 

ln ቚ
ߢ

߱଴
ቚ

ଶ ൲൪ × exp ቈ− ቆ
(ϕ −  ϕ଴)ଶ 

஦ߪ2
ଶ ቇ቉    (6) 

where ߱଴ is the filter’s center frequency given by the reciprocal of the filter scale or 1/ݏ and ϕ଴ 

is the orientation of the filter. In our study, we empirically set the Gaussian angular 

bandwidth ߪ஦ = 50°. The ratio ߢ/߱଴ = 0.33 is obtained as a function of the speckle size’s full 

width half maximum (FWHM) as described in [40].  

 

The local phase of an image is obtained by convolving the US image with the even response and 

the odd response of the Log-Gabor filter. In the frequency domain, this convolution becomes a 

multiplication, and it is given in Eq. (3), with ℱ denoting the respective Fourier transforms: 

,ݔ)ܮ   (ݕ = ℱିଵሼℱሼ݂(ݔ, ሽ(ݕ ∙ ,߱)ܩ  ߶)ሽ                                  (7) 

The 2D phase symmetry measure is the difference between the even filter and odd filter responses 

denoted by the real part and imaginary part of the Log-Gabor filter response, respectively. When 

a feature with medial axis symmetry is encountered, the difference between the even and odd filter 

responses is relatively large resulting in the detection of a ridge in the image. This difference is 

defined in Eq. (4) summed over ௦ܰ = 3 scales, and ఝܰ = 3 orientations and is sufficient to 

enhance a smooth, continuous spine ridge. 

,ݔ)ܵܲ (ݕ = ෍ ෍
|ܴ݁ሼݔ)ܮ, |ሽ(ݕ − ,ݔ)ܮሼ݉ܫ| |ሽ(ݕ −  ܶ

ඥ(ܴ݁ሼݔ)ܮ, ሽ)ଶ(ݕ + ,ݔ)ܮሼ݉ܫ) ሽ)ଶ(ݕ + ߳
    (8) 

ேೞேക

 

Here, ߳ is a small number that prevents division by zero and ܶ is the shrinkage noise threshold 

calculated from the smallest scale filter response. ܶ is computed to be 3 standard deviations from 

the mean of the Rayleigh distributed noise [52]. Inadequate selection of the scale ݏ and orientation 
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ϕ଴ parameters could result in amplification of speckle noise, artifact enhancement or significant 

blurring of the bone feature in the US images.  

 

We want to ensure that that features that characterize bone anatomy such as shape and orientation 

are accounted for in the parameter selection. The algorithm for the automatic selection of these 

parameters proposed in [41] is employed.  The three initial filter orientations are obtained from 

taking the radon transform of the US image and clustering the highest means. Integration along a 

bone-like feature like bone, muscle, long connective tissue that isn’t bone produces a higher sum 

than integration along non-bone like features like speckle, fat layer and, to some effect, US 

artifacts. The radon transform images are classified into 5 intensity levels, the thresholds of which 

are determined by the proximity of every pixel to the mean of each class. The fifth class represents 

the highest threshold of intensities. The mean of the orientations in the fifth class and two standard 

deviations from it are used for the initial orientations. These initial orientations are used in for 

selection of optimal filter scales. The scale selection procedure is generated by a ridge strength 

measure ܣఊ using the ߛ- normalized eigenvalue difference of the Hessian matrix such that: 

ఊܣ = ଴.଻ହݏ ൥ቆ
߲ଶݔ)ܮ, (ݕ

ଶݔ߲  −
߲ଶݔ)ܮ, (ݕ

ଶݕ߲ ቇ
ଶ

+ 4 ቆ
߲ଶݔ)ܮ, (ݕ

ݕ߲ݔ߲
ቇ

ଶ

 ൩      (9) 

 

The sum of all pixels is computed for each ridge strength image generated from scale values 

ranging from ݏ = 10 pixels through ݏ = 100 pixels. The scale value corresponding to the 

maximum sum is used as the optimal filter scale and is shown in Eq. (10).  

(௜)ݏ = argmax
௦

෍ ,ݏ)ఊܣ ,ݔ (ݕ
௫,௬

                            (10) 
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The radon transform ܴథ of the ridge strength image is computed for each scale such that the 

orientation corresponding to the maximum value of ܴథ is extracted as shown below: 

߶଴
(௜) = argmax

థ
 ܴథൣܣఊ൫ݏ(௜), ,ݔ  ൯൧                            (11)ݕ

The above Log-Gabor filter parameters are used in Eq. (4) for obtaining the PSRE image (Fig. 

2.5a). The PSRE image is then binarized for morphological processing (Fig. 2.5b). 

         
(a)                                                 (b) 

Fig. 2.5. (a) Ridge enhanced image using phase symmetry (PSRE image). (b) The binarized 

PSRE image after morphological area opening with 14 blobs retained.  

 

2.2.3. Feature Space Design for Spine Blob Classification 

For the remaining of the paper, we will be using the term “blobs” for ridge features. The blobs can 

represent spine but also soft tissue that isn’t bone or specular artifacts. We observe that the spinous 

process blobs appear to be the smallest sized blobs in the US images. A simple morphological 

opening operation eliminating connected components below 50 pixels is used to eliminate small 

blobs that can be typified as specular artifacts or the influence of scatterers. The connected 

component threshold of 50 pixels was chosen based on the following observation. A set of 60 

spinous process blobs were randomly chosen from vertebral US images and the lowest areas were 

found to be roughly 100 pixels. The connected component threshold is conservatively set to be 

half the minimum value. From the remaining foreground pixels, which serve as the binarized PSRE 
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image shown in Fig. 5b, we will be extracting features for classifying these pixels into spine or 

non-spine blobs. The non-spine blobs are the ones corresponding to soft tissue or artifacts. We will 

be using two features to perform the spine surface detection of the blobs: 1) Mean Pixel Intensity 

and 2) Sum of Squared residuals of the Shadow region row means signal as detailed below. 

 

2.2.3.1. Mean Pixel Intensity 

The mean intensity of each blob can be obtained by multiplying the binarized PSRE image with 

the US image and calculating the mean of pixel intensities of each blob. Since the non-spine blob 

regions could result in some equal or higher mean values of the spine blob regions, a spinal region 

enhanced US image is necessitated. The enhancement should lead to a higher weighting for the 

shadow region and the blobs immediately above it. A shadow function inspired by is used in which 

each intensity value in the US image is taken to be the average cumulative sum of the previous 

intensity values in each scanline. We then take the image complement of the normalized shadow 

function and square it to get the Acoustic Shadowing Energy (ASE) (Eq. (12)).  The ܰ݉ݎ݋[଴,ଵ] 

operator indicates normalization of image intensities between zero and one.  

,ݔ)ܧܵܣ (ݕ = ቌ1 − [଴,ଵ]݉ݎ݋ܰ ቐ
1

ݏݓ݋ݎ ݂݋ #
෍ ݂(݅, (ݕ

# ௢௙ ௥௢௪௦

௜ୀ௫

ቑቍ

ଶ

         (12) 

         
(a)                                          (b) 

Fig. 2.6. (a) The ASE image. (b) The product between the ASE image and the US image. 
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A non-linear contrast stretching is then performed on the product image (݂(ݔ, (ݕ ∙ ,ݔ)ܧܵܣ  ((ݕ

shown in Fig. 2.6b over a default piecewise value of the midpoint. The transformation is quantified 

as: 

μ(x, y)  =  ቊ
,ݔ)݂]2 (ݕ ∙ ,ݔ)ܧܵܣ ଶ                             0[(ݕ ≤ ,ݔ)ܧܵܣ  (ݕ ≤ 0.5
1 −  2[1 − ,ݔ)݂ (ݕ ∙ ,ݔ)ܧܵܣ ଶ          0.5 [(ݕ < ,ݔ)ܧܵܣ (ݕ ≤ 1

    (13)          
 

 

The mean intensity for each blob  ܤ௡ is computed as: 

(௡ܤ )ܫܯ =  
1

(௡ܤ )ܽ݁ݎܣ
෍ μ(p, q)

(௣,௤)∈ ஻೙

                                                           (14)   

          
(a)                                        (b) 

Fig. 2.7. (a) The fuzzy contrast enhanced image. (b) Result after multiplication with the 

binarized PSRE image. 

 

2.2.3.2. Sum of Squared Residuals of the Shadow Region Row Means (SRRM) Signal 

In order to differentiate the spine blobs from the non-spine blobs, we cannot solely rely on the 

mean intensity of each ridge. For example, muscle can also represent elongated blobs with 

comparable mean intensities. For the selection of the following feature, we will use the notion of 

minimal penetration of the US signal through the bone as evidenced by the acoustic shadowing 

present underneath the bone surface. In-vivo spinal US images usually do not have a completely 

dark region to signify acoustic shadowing but normally have a non-zero signal immediately 

following the spine surface. We quantify this region using the signal formed by progression of row 
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means in the supposed shadow region beneath each blob. The scope of this region starts from the 

sectoral row containing the intensity weighted centroid to the bottom oriented towards the blob’s 

medial axis as seen in Fig. 2.8.   

 

Fig. 2.8. The shadow region for 4 blobs out of 14 is shown here. B, C are spine blobs and A, 

D are non-spine blobs. 

 

The upper side of the region is measured between scanlines containing the two extremes of the 

blob. Bresenham’s line algorithm is used to fit a straight-line pixel approximation to the sides of 

the region [53]. For images obtained from a linear array transducer, these regions become 

rectangular with the last row being the bottom side. The SRRM is given by the mean intensity of 

each row constrained within the width of the region. The local maxima in the signal represent the 

presence of a high intensity, high gradient anatomical structure like bone or connective tissue. The 

SRRM should ideally be a monotonically decreasing function.  
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Fig. 2.9. The SRRM from the center of the blob (depth = 0) to the bottom of the US image 

(depth = 1) for the blobs A, B, C and D shown in Fig. 2.8. 

 

An exponential decay function is modeled to fit the SRRM. The optimal fit for the exponential 

decay function is obtaining by minimizing parameters ߙ௡ and ߚ௡ for each blob ܤ௡ using the 

Levenberg-Marquardt algorithm: 

,௡ܤ )ܴܵܵ ,௡ߙ  (௡ߚ  = min
 ఈ೙, ఉ೙

෍(ݕ௜ − ௡ߙ   ∙ ଶ((௜ݔ௡ߚ −)݌ݔ݁

ே

௜ୀଵ

         (15)  

where ݕ  denotes the SRRM signal with size ܰ and ݔ is the depth in pixels from the intensity-

weighted centroid of each blob. The minimized sum of squared residuals (ܴܵܵ) for each blob will 

be populated in the feature space for spine surface classification. Large residual errors from the 

exponential fit function would indicate, at the very least, the occurrence of a high local maximum 

in the signal. From Fig. 2.9, we observe that the ܴܵܵ values from the exponential fit function for 
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blobs B and C (spine blobs) is relatively small in comparison to blobs A and D (non-spine blobs), 

where the ܴܵܵ is increased due to the presence of high local maxima. Therefore, a lower sum of 

these residual errors would lead to a higher likelihood of the blob corresponding to a spine surface 

region. 

 

2.2.4. Classification of Spine Blobs 

In the classification step, we aim to classify each blob in the binarized PSRE image into being 

either a spine blob or a non-spine blob. Each blob described by the two features is a data point 

populated in the feature space. For every binarized PSRE image given as an input to the algorithm, 

a test set vector in ℝ௡×ଶ is generated for the ݊ blobs in the binarized PSRE image. A 3-nearest 

neighbor classification rule (3NN) is chosen to determine the points in the testing set as being a 

spine or non-spine blob. This is achieved by first storing all the training examples < ܺ(௜) 
, (ܻ௜) >  

and labeling them to be ݃(ܺ(௜) 
, (ܻ௜)) = 1 when the data point is a spine blob or 0 otherwise. When 

a test point < ܺ(௧) 
, (ܻ௧) >  is encountered, the blob can be classified as spine when the majority 

label among the 3 closest training examples is 1 and non-spine otherwise. The Euclidean distance 

metric is used to measure “closeness”. An advantage to using the 3NN rule is that any complex 

decision boundary can be learned, which makes it more adaptable to noisy data. The 3NN 

classification shown in Fig. 2.10 clearly demarcates the spine blobs (green points).   
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Fig. 2.10. Spine blob classfication into spine (green dots) and non-spine blobs (blue dots) with 

the training examples for spine blobs (purple triangles) and non-spine blobs (red stars). 

 

In Fig. 2.11, we show the image before classification (Fig. 2.11a) and a binary image with just the 

spine blobs resulting from the application of the 3NN classification (Fig. 2.11b). Note that only 

the spine blobs are retained after the classification. 

 

           
(a)                                           (b) 

Fig. 2.11. (a) Product of the PSRE image and the binary image after morphogical opening and 

(b) Spine blobs retained after the spinal surface recognition step. 
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2.2.5. Spine Surface Segmentation 

According to [54], the actual bone line profile has an equi-probable likelihood of lying in between 

the point of highest gradient and highest intensity within the spine blob region. Each pixel in the 

line profile is the midpoint between the medial axis and the top boundary point of the spine blob 

for the respective scanline. Boundary points are obtained by the internal gradient. The medial axis 

line profile is obtained by applying the morphological skeleton to the spine blob and tracing the 

geodesic path between the blob endpoints to avoid spurious branches. An isotropic dilation using 

the distance transform is then applied to interpolate midpoint pixels between adjoining columns. 

The resulting spine surface segmentation is shown in Fig 2.12 superimposed on the US image. 

 

 

Fig. 2.12. Spine surface automatic segmentation given by the line profile (in cyan) overlayed 

on the original US image. 

 

2.2.6. Experimental Validation  

In-vivo B-mode images were acquired from the lumbar and thoracic regions of 17 healthy human 

subjects with BMI ranging from 19.5 (normal) to 27.9 (overweight). Data were acquired using a 

Sonix RP diagnostic ultrasound system (Analogic Medical Corp., Richmond, BC, Canada) that 
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uses a convex array transducer with bandwidth between 2-5 MHz. For the reported results, all 

acquisitions were obtained with the center frequency set to either 3.3 MHz or 5 MHz. 

 

The US scans were performed by first seating the subject in an upright position and then, either 

the transverse or paramedian plane approach was taken. The transverse scan is more advantageous 

in that it enables a more comprehensive 2D visualization of a vertebral slice showing the laminae, 

spinous process, articular process, transverse process, LF and the interspaces in between. For the 

paramedian scanning approach, the articular processes, laminae and the interspaces spread across 

three vertebrae. 

 

2.2.7. Statistical Evaluation 

A set of 108 US B-mode images (size: 349×603 pixels; depth: 70 mm) were randomly selected 

from 30 cine-loops to perform statistical evaluation of the spine surface detection. An experienced 

radiologist manually marked the spine and non-spine blobs in the binarized PSRE images 

corresponding to the visible portions of the vertebra in the B-mode images. These regions are 

dorsal to the vertebral foramen in spinal US and include spinous process, laminae, articular 

processes and transverse processes. The blobs from each resulting binarized PSRE image were 

used as the test set for classification.   

 

For the training set in the spine blob classification, we obtained US B-mode images from scanning 

the tibia bone of two sheep, radial bone of one healthy individual and the thoracic and lumbar 

vertebrae of two healthy individuals in-vivo. The different types of bones were chosen to 

encapsulate bone surfaces of various intensity profiles and various shadow regions and  



 

34 

 

histograms. These images were fisrt enhanced by the PSRE algorithm and the blobs from the 

binary image were manually marked as bone or non-bone by the radiologist. The training examples 

were composed of 91 randomly selected blobs from 70 PSRE images. For evaluating the accuracy 

of the spine surface segmentation, the radiologist manually delineated the surface of the laminae 

on the US B-mode images. 

 

2.3. RESULTS 

2.3.1. In vivo results  

Fig. 2.13 shows examples of spine surface automatic segmentation superimposed on a paramedian 

plane US image (top) and a transverse plane US image (bottom) obtained from a human subject in 

vivo. The paramedian plane US image shows the segmented laminae from lumbar vertebral levels 

L4, L5 and the Sacrum. The transverse plane US image from the L1-L2 intervertebral level shows 

the segmented articular processes, transverse processes and the LF. Note also that the skin to LF 

depth can be clearly visualized in the bottom portion of the transverse image.  
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Fig. 2.13. Spine surface automatic segmentation on a 2D US image slice of a human subject’s 

lumbar vertebrae in-vivo obtained in the Paramedian plane (top) and transverse plane 

(bottom). 

 

Fig. 2.14 shows the qualitative performance of the proposed algorithm in three different US images 

across the lumbar and thoracic spines of three human subjects in-vivo. Fig. 2.15 shows the lumbar 

spines of two human subjects in-vivo with the detected LF (highlighted in green). 
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Fig. 2.14. Three original US images of human subjects in vivo obtained in the transverse plan 

(top) and the corresponding images after detection of spine surface regions (bottom). First 

column shows lumbar spine L3 level from human subject with BMI = 24.1. Second column 

shows lumbar spine L1 level from human subject of BMI = 27.5. Third column shows 

thoracic spine T5 level from human subject with BMI = 22.3. 
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Fig. 2.15. Two original US images of human subjects in vivo obtained in the transverse plan 

(top) and the corresponding images after detection of spine surface regions (bottom). First 

column shows lumbar spine L1-L2 interspace level from human subject with BMI = 24.1. 

Second column shows lumbar spine L2-L3 level interspace level. The LF is highlighted in 

green. 

 

2.3.2. Statistical Evaluation Results 

As previously mentioned, an experienced radiologist manually marked the spine and non-spine 

blobs in the binarized PSRE images. For the purpose of illustration, Fig. 2.16 shows our proposed 

spine surface segmentation profile (magenta line) overlaid on the radiologist’s manual 

segmentation (yellow dotted line). Note the remarkable agreement between the automatic 

segmentation results and the radiologist findings. 

 

We validated the spine surface detection by assessing the performance of the 1) Spine blob 

classification and the 2) Spine surface segmentation.  
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Fig. 2.16. Radiologist’s manual segmentation of the laminae line profiles (dotted yellow) 

overlaid on the automatic segmentation (magenta). 

 

2.3.2.1 Performance analysis of the spine blob classification 

The discrimination power of the 3NN classifier in classifying spine blobs is assessed using the 

Geometric mean (G- mean) and Matthews Correlation Coefficient (MCC) performance measures 

derived from the confusion matrix given in Table 2.1. 
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Class Actual Values 

Predicted Values Spine Blobs Non-Spine Blobs 

Spine Blobs ௉ܶ ௉ܨ 282 =   =  151 

Non-Spine Blobs ܨே  =  9 ேܶ  =  2548 

 

Table 2.1. Confusion matrix for evaluating MCC and G-mean measures. 

These measures, defined below, are chosen based on their immunity to imbalanced class sizes:   

 

ܥܥܯ =  ௉ܶ ேܶ  −   ேܨ௉ܨ 

ඥ( ௉ܶ+ܨே)( ௉ܶ+ܨ௉)( ேܶ + )(௉ܨ ேܶ+ܨே) 
                     (16) 

ܩ − ݉݁ܽ݊ =  ඨ൬ ௉ܶ

௉ܶ + ேܨ
൰ ൬ ேܶ

ேܶ + ௉ܨ
൰                                         (17) 

The MCC value ranges from -1(never classifies correctly) to +1 (perfect classification) and the G-

mean values range from 0 to 1(perfect classification). An MCC value of 0 indicates random 

classification. The proposed algorithm achieves an MCC of 0.77 and a geometric mean of 0.96. 

 

2.3.2.2. Performance analysis of the Spine surface segmentation 

The line profiles from the automatic segmentation corresponding to the laminae are evaluated 

against the radiologist’s manual delineation of the laminae surfaces. The error metric used for our 

performance analysis is the mean absolute error, which is given by: 

ܧܣܯ  =  
ܪܲ
ܰܵ

෍|ܣ(ܿ) − |(ܿ)ܯ
ேௌ

௖ୀଵ

                                      (18) 

where NS is the length of the lamina line profile in scanlines, PH is the pixel height in mm, A and 

M are the automatic and manual segmentation row value, respectively. The MAE (as shown in 
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Fig. 2.17) is computed between the intersecting pixels of both the manual and automatic 

segmentations with respect to each scanline. The mean value of the mean absolute errors is 0.26 

mm and the 90th percentile of mean absolute errors is 0.44 mm with a maximum possible absolute 

error of 2.01 mm. This is comparable to the mean absolute errors as reported in long bones by 

Berton et al. [0.38 mm between centroids of the spinous process] and Hacihaliloglu et al. [0.31 

mm], Kowal et al. [0.42 mm for cadavers], Foroughi et al. [0.3 mm for cadavers], Daanen et al.  

[0.45 mm for patients and 0.27 mm for cadavers], Jia et al. [0.2 mm] [49, 40, 33, 35, 55, 56].  

 

Fig. 2.18 shows the percentage of automatic segmentation (in length) with respect to the expert 

segmented lamina length. From this graph, we note that the number of false positives far exceeds 

the number of false negatives. This is also visible from the false positive and false negative rate 

boxplots shown Fig. 2.19. These rates correspond to the non-intersecting pixels of the automatic 

and manual segmentations. The mean false positive rate, which computes the proportion of 

incorrectly identified spine pixels, is 4.65 ± 4.94%. We encountered false negative pixels in 6 US 

B-mode images with a maximum false negative rate of 7.14%.  

 

In terms of computational costs, the mean runtime of the algorithm was found to be equal to 7.3 s, 

when the algorithm is run on MATLAB (Mathworks, Natick, MA) in an Intel Core i3 2.3GHz 

CPU with 4GB RAM. We observed a 16% decrease in runtime for images obtained from a linear 

array transducer. 
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Fig. 2.17. Mean absolute error between the automatic and manual segmentation for the 216 

laminae surfaces. 

 

 

Fig. 2.18. Percent of the detected lamina length value (defined as: automatically identified 

lamina length/expert segmented lamina length) for the 216 laminae surfaces. 
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Fig. 2.19. The false positive and negative rate boxplots for the automatic spine surface 

segmentation. 

 

2.4. DISCUSSION 

We have presented a new method to detect spine surfaces in US images. This method was tested 

on human subjects in vivo and validated against the manual measurements of an expert radiologist. 

A statistical analysis of the proposed method suggests its potentials as a new non-invasive tool to 

automatically detect spine surfaces in US images both for the transverse and the paramedian 

approaches. While the performance of our spine surface detection method was found to be 

statistically comparable to some of the proposed methods for long bones, to our knowledge, no 

other spine surface detection algorithm with comparable performance is retrievable in the 

literature. It should be noted that highly accurate detection of spine surfaces in US images is, in 

general, a very challenging task due to the geometry of the spine and the presence of multiple 

artifacts in the US images.  

 

Our proposed technique relies on the robustness of the PSRE algorithm in detecting low-level 

features like ridges in constrained areas of the B-mode image. The PSRE algorithm depends on 
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orientations extracted from the radon transform for detection of line features that describe the bone 

surface. These orientations are used to produce ridge strength images from which the three optimal 

orientations and scales are obtained. The Log-Gabor filters that use these parameters are, in turn, 

aggregated in the phase-symmetry equation. For each blob obtained as a result, we calculate the 

mean pixel intensity feature from the fuzzy contrast enhanced image. The sum of squared residuals 

of the SRRM signal feature provides a measure for the magnitude of posterior acoustic shadowing 

underneath each blob. The classified blobs are segmented in concordance with the most probable 

location of the bone surface. Our proposed technique successfully captures line profiles of the 

laminae, LF, spinous, transverse and articular processes. 

 

A lot of the existing literatures on bone surface segmentation employ cadaveric specimens and 

phantoms for experiments where the acoustic shadowing area has predominantly zero intensity. 

Our proposed algorithm should work for any perceivable shadowing. Since the scale and 

orientation parameter estimation stems from the line feature detection using the radon transform, 

elongated bone regions can also be detected. The use of multiple orientations for the Log-Gabor 

filter accounts for any existing curvature of these bone regions. Filtering for optimal orientations 

enables spine detection even when the transducer is not aligned with the midline in the transverse 

view as seen in Fig 2.16. 

 

In its present form, the proposed spine surface detection method has some limitations that should 

be addressed in the future. The acquisition using the curvilinear transducer limits the view to 

relatively perceivable hyperechoic line profiles corresponding to the top surfaces of the laminae, 

spinous process, articular and transverse processes. This is due to a viewpoint obtained only at a 
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90º angle of insonication. So, the vertebral surfaces that lie nearly parallel to the direction of 

propagation of the ultrasonic beam cannot be interpreted and thereby delineated clearly. This 

results in large intensity discontinuities in the hyperechoic line profile. In the absence of fractures 

or abnormalities, this line profile should extend continuously along the vertebra, but it is not picked 

up by the PSRE algorithm. For example, Fig. 2.12 shows a large acoustic shadow masking most 

of the spinous process’s surface with the exception of the upper surface that has been automatically 

segmented. Without knowledge of the entire surface of the spinous process, catheter placement 

could be misguided during the epidural or spinal.  Note, however, that this is a cause for concern 

only when the transducer is placed above the spinous process as opposed to the interspinous space 

where epidural administration occurs. In the future, this issue could be curbed by acquiring 

multiple spinal US images in the transverse plane at oblique angles of insonication in addition to 

the US image obtained at 90º. These images can then be spatially compounded to obtain a more 

contiguous hyperechoic line profile that represents the entire spine surface dorsal to the vertebral 

foramen. Additionally, statistical shape priors as proposed in [43, 45] from other modalities could 

be incorporated during the epidural to enforce vertebral boundary constraints. The extent of some 

vertebral regions, the spinous process in particular, can be crudely estimated by detecting its 

acoustic shadow formed underneath as explained in [49]. 

 

The false positive rate errors in the spine surface segmentation may be attributed to limited 

elevational resolution. For example, the PSRE algorithm may pick up a ridge corresponding to the 

inferior articular process that is not present in the actual slice being imaged due to the intensity 

invariance of the PSRE algorithm. However, the radiologist may not perceive this because the 

region is construed as being less hyperechoic than the preceding or succeeding slices. This problem 
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may be exacerbated when imaging more closely packed thoracic vertebrae, where more than one 

vertebra can be detected by the transducer in a given plane. The slice thickness artifact may be 

minimized by increasing the operating frequency, acoustic power or with the use of 2D arrays. The 

fuzzy contrast enhanced image (shown in Fig. 2.7a) that boosts the intensity of the hyperechoic 

pixels could be used as the input to the PSRE algorithm so that there is little influence of the 

vertebral column from slices within the vicinity of the one being imaged. However, this may have 

the effect of enhancing hyperechoic regions corresponding to extraneous specular artifacts and 

connective tissue/muscle emulating the bone line profile. Note that the fuzzy contrast enhanced 

image could also be used to boost the low intensity profile of the LF, which may not be 

appropriately captured by the PSRE algorithm. In such cases, the ASE power can also be modified 

(we suggest a range of 1-3) at the expense of masking vertebral regions lateral to LF.  

 

The false positives and negatives in the spine blob classification can also arise from the fact that 

we are only using hyperechogenicity and acoustic shadowing to model spine blob detection. 

Additional features like statistical shape priors could be incorporated into the feature space. 

However, the fact that the algorithm does not require a priori shape information is a strong 

advantage, which makes it suitable to virtually detect any bone surface in an US image. 

Furthermore, by adding more features we run the risk of overfitting the classifier by making it too 

complex when adapting it to different vertebral models. For a larger depth setting covering areas 

beyond the LF, we are able to visualize the posterior longitudinal ligament/vertebral body (PLL) 

with the hypoechogenic dural sac located between the PLL and LF. For such cases, we cropped 

the US images beyond the LF since the sum of squared residuals of the SRRM feature in the spine 

blob classification is constrained to work for blobs that have acoustic shadowing in the US image 
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and can fail when there are hyperechogenic structures below the blob. From the vertebral slice 

geometry, we observe that the LF and PLL are the blobs intersecting the midline in the interspinous 

regions. So, a midline detection approach as mentioned in [48] can be applied after the PSRE 

algorithm to facilitate LF segmentation without cropping the US image.  

 

The PSRE algorithm is constrained by the empirical setting of the angular bandwidth 

 ஦ using Kurtosis ofߪ ஦ parameter. We could resort to the data-driven approach for estimatingߪ

radon transform [41]. There are some cases where the ridge feature strength can be improved upon 

by adjusting ߪ஦ to affect the sharpness or smoothness. But this would increase the computation 

time due to the radon transform calculated for a large set of possible angles and would not deter 

the phase-based localization of the spine surface significantly. The relatively high runtime of the 

proposed method can be alleviated by porting the MATLAB implementation to a GPU. Amir-

Khalili et al. has shown the feasibility of near real-time bone surface extraction on a GPU using 

local phase features [57]. Finally, the availability of data from a larger number of human subjects 

may further help improving the performance of the classifier.   

 

2.5. CONCLUSION 

This chapter aims to provide a fully automated spine segmentation technique for US images. The 

in vivo experimental results demonstrate that spine blobs are detected and that the spine surface is 

segmented with high accuracy. The intensity invariance of the PSRE algorithm results in capturing 

of the full extent of the laminae, LF, transverse and articular processes and the tip of the spinous 

process. The ridge detection using the PSRE algorithm and subsequent 3NN classification allow 

spine surface segmentation in US images acquired in both the transverse and paramedian planes.  
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CHAPTER 3  

AUTOMATED 3D RENDERING OF THE SPINE AND BONE REGENERATION IN 

FREEHAND ULTRASOUND IMAGING 

 

3.1 3D RENDERING OF THE VERTEBRAE 

Intraoperative image guidance is of paramount importance when performing surgical procedures 

on the spine. One of these being spinal fusion surgery where bone is grafted on the sides of the 

vertebrae and pedicle screws are used as anchor points. These are highly dependent on x-ray-

based fluoroscopy which is the preferred real-time imaging modality for spine surgeons. 

However, there is the increased risk of ionizing radiation to the surgeon, patient and operating 

room staff. Visualization of such radiographic images is also restricted to 2D viewpoints which 

can have inherent limitations.   

 

The majority of the work retrievable in the literature on US bone imaging refers to the use of 

low-frequency US methods to assess bone density or detect bone abnormalities [58-59]. Neck 

and back pain attributed to the cervical spine are common ailments experienced by astronauts 

and military aviators. Recently ultrasound has been proposed in measuring the anatomy and 

height of cervical intervertebral disc space in order to identify c-spine disorders in extreme 

acceleration environments [60]. US has also been used as a screening tool for administering 

spinal injections [18]. 

 

Ultrasound imaging is touted as a portable modality capable of provide real time imaging and 

being cost-effective. It is also known for its safety, superior spatial and temporal resolutions and 
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portability. This makes it attractive for military applications and emergency medicine. It is well 

suited for use in settings where traditional radiography and MRI may not be immediately 

available such as in rural areas, military and humanitarian medicine applications, and in the 

prehospital setting. However the three-dimensional (3D) capabilities have been unexplored. A 

large part of this is because ultrasound is plagued with artifacts and is heavily operator 

dependent. These make image interpretation quite difficult. Spinal ultrasound imaging shows 

little penetration beyond the bone surface.  

 

Few studies have been reported to date that investigate the use of 3D US imaging techniques for 

bone applications [62], and none of these studies focuses on spine applications. The studies 

retrievable in the literature that deal with US imaging of spines typically refer to conventional 

2D sonographic applications in a clinical setting, which provide only partial views of vertebral 

abnormalities and a somewhat qualitative assessment of soft tissue changes [29-30]. Scoliosis 

assessment has been addressed using 3D freehand ultrasound imaging for measurement of spinal 

curvature [62, 63]. Visualization of a projection of the spinous processes is sufficient in these 

cases. However, a 3D structure of the vertebrae that included structural information containing 

the spinous process, articular processes, laminae and ligamentum flavum has not been presented.  

To the best of our knowledge, the preliminary data reported in this chapter represent the first 

spinal 3D US images produced to date (with exception to neo-natal images). This paucity of 

spinal US imaging data may be explained by the significant challenges typically encountered in 

spinal US imaging investigations, which are in part due to the peculiar geometry of the spinal 

tissue but mostly due to the inherently low SNR.  
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 Some have proposed to minimize radiation risk by preoperatively planning the surgery using CT 

and using this in conjunction with US image slices during the surgery. Fitchinger et al. proposed 

tracking the 2D US snapshots and registering them to the pre-op CT as part of an integrated 

computer assisted system framework [64]. 3D visualization of spine would facilitate the 

intraoperative administration of epidural anesthesia by providing complete visualization not only 

of the spine but also of epidural needles in all possible viewpoints. 

 

This chapter deals with the 3D reconstruction of the previously obtained enhanced slices 

containing the spinal ridges. Owing to a third dimension containing structural information along 

the elevational direction, there is more to be seen. There will also be an extensive validation 

scheme with regard to the accuracy of the 3D rendering. The performance of the automated 

reconstruction will be assessed against a expert delineated posterior vertebral surface. We will 

also show the feasibility of registering the ultrasound slices to CT preoperative CT. 

 

To generate spine 3D US images in vivo with high image quality, robust image-enhancement 

and acquisition techniques must be provided. The image-enhancement technique of choice 

should be able to automatically and accurately segment a bone surface in each US image used for 

the 3D reconstruction. In the past years, a number of segmentation ad image-enhancement 

methods have been proposed to detect bone surfaces in ultrasonic images [32-42]. After a 

number of preliminary tests and simulations, our conclusion is that none of these methods alone 

would be able to provide accurate and reliable spine segmentation results due to the peculiar 

geometry and the very challenging noise conditions encountered when working with spine US 

images. Thus, we propose to develop a new image-enhancement and segmentation technique for 
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spine applications. The proposed method combines shadow, image intensity, image phase 

information and feature classification to accurately identify the spine surface in noisy US images. 

 

3.1.1. 3D surface rendering of the posterior spine using 2D optimized local phase symmetry 

features and classification. 

Automatic extraction of the vertebrae from 3D US images in-vivo necessitates a robust 

enhancement of the underlying bone surface in each axial slice. As mentioned in the previous 

chapter, intensity-based methods do not perform well under varying contrast and noise 

conditions posed by US images. Discernible ridge-like features are first extracted using the local 

phase-symmetry model. This is followed by classification of the spine ridges that involve feature 

vectors incorporating shadowing and bone intensity. This step removes undesirable artifacts and 

surrounding tissue structures. The algorithm details for extracting the 2D spine is provided in 

Chapter 2. Each phase-enhanced 2D axial slice is stacked together in forming the 3D volume. 

The surface rendering is then performed using the open-source ImageVis3D framework. The 

volume is then scaled according to dimensions concomitant with human spine models. 

 

3.1.2. US-CT registration of 2D point sets 

Ultrasound image guidance is becoming increasingly prevalent in surgery scenario due to its 

real-time accessibility and non-ionizing radiation. However, the modality’s use in orthopedic 

applications has inherent limitations. A major one being the influence of acoustic shadowing 

under the bone which limits visibility in the regions anterior to the vertebral foramen (or the 

posterior arch). A question of the surgeon’s/physician’s interpretation of the spine after our 

proposed spine surface segmentation scheme can also be raised since it does not provide the 
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complete picture of the 2D vertebral slice. The real-time capability of ultrasound for imaging the 

spine surface and the quantification of mechanical behavior of soft tissue surrounding it can be 

complemented by the use of alternate modalities like CT or MRI for missing structural 

information. This calls for an accurate alignment protocol of ultrasound images during surgical 

intervention with pre-operative CT datasets. Our proposed image registration technique aligns 

the spine surfaces captured in ultrasound images to the corresponding vertebral anatomy in the 

CT slices. It also has implications in using the elastographic characterization of the spine/soft 

tissue interface with modalities like CT and MRI.  

 

We have used a point set registration scheme in aligning the vertebral anatomies of the US and 

CT datasets. The US spine surface point set is first obtained by the spine surface segmentation 

method. Sequentially, the method incorporates phase-symmetry based ridge detection, 

classification of the ridges into spine and non-spine regions and spine surface segmentation by 

morphological skeletonization. The CT point set is obtained by segmenting the vertebra from the 

respective CT slice in the axial plane using a marker-controlled watershed algorithm.  In order to 

further represent the spine surface as seen in ultrasound, the top half of the vertebra alone is 

retained in the CT point set.  The respective coordinates from the segmented vertebra in CT and 

US are the point sets being registered. The registration algorithm works by representing each 

point in the US point set as a Gaussian mixture model (GMM) centroid which, as a collective, is 

iteratively fitted to the CT point set by using EM optimization to maximize the likelihood 

function. This is inspired by the seminal work done on point set registration [65]. We set the 

point set alignment to be an affine transformation that incorporates scaling and skewing of the 

US point set to the CT point set in addition to a simple rigid transformation of rotation and 
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translation. Fig 3.1a shows an ultrasound slice of the posterior arch of intact lumbar vertebra and 

the detected spine region after our proposed US spine segmentation algorithm in Fig 3.1b. The 

indices of the segmented region serve as the US point set of GMM centroids.  Fig 14a shows the 

US point set in blue and CT point set in red before registration and Fig 3.2b shows the registered 

point sets. Fig 3.3 shows the transformation applied to the spine surface detected from the US 

image overlayed on the CT slice. Fig 3.4, 3.5 and 3.6 show another example for a more complex 

geometry of the spine that includes the spinous process and laminae. Notice how the point set 

alignment works even when the US and CT images are of different sizes or scale. The 

registration technique is quite robust to noise when compared to a lot of intensity-based 

registration techniques which incorporate intensities of the entire image or feature as opposed to 

our technique that factors in geometry alone. A popular point set registration algorithm called the 

Iterative closest point (ICP) method involves a least square fitting of the closest points between 

point sets. ICP issues hard correspondences between points as opposed to our technique that 

issues soft correspondences between points using probabilities. Since the US elastogram to 

sonogram registration is a simple translation operation, the affine transformation recovered from 

the US-CT point set registration can be applied to the strain patterns in order to align them with 

the CT data to interpret the mechanical behavior of soft tissues surrounding the vertebra.   
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Fig 3.1. a) Ultrasound image of the intact rabbit’s posterior arch. b) Detection of the vertebral 

surface from our proposed spine surface segmentation algorithm.    

 

          

Fig 3.2. a) Ultrasound image of the intact rabbit’s posterior arch. b) Detection of the vertebral 

surface from our proposed spine surface segmentation algorithm.    
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Fig 3.3. a) CT slice of the intact rabbit’s posterior arch. b) The registered US veterbral surface in 

magenta overlayed on the correspoding CT vertebra. 

 

    

 Fig 3.4. a) Ultrasound image of the intact rabbit’s spine surface showing the laminae and 

spinous process. b) Detection of the vertebral surface from our proposed spine surface 

segmentation algorithm.    
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Fig 3.5. a) Ultrasound image of the intact rabbit’s spine surface showing the laminae and spinous 

process. b) Detection of the vertebral surface from our proposed spine surface segmentation 

algorithm.    

 

 

Fig 3.6. a) The registered US veterbra in magenta overlayed on the corresponding CT vertebra. 

The point set registration algorithm becomes incredibly more difficult with more complex 

geometry or ex-vivo fracture cases that could potentially misalign transformation from a 

particular segment.   
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3.1.3. Statistical analysis 

The accuracy of the 3D renditions is assessed by comparing the automatic segmentation with the 

expert delineated manual segmentation of the posterior vertebral surface. In order to obtain the 

automatic segmentation, the enhanced spine ridges are transformed to a pixel-thick line profile 

details of which are given in Chapter 2. Each surface of a single vertebra is manually delineated 

by a medical expert in the form of digitized contour points for each axial slice. Surfaces that are 

parallel or near-parallel to the ultrasound beam are not “seen” by the transducer within the 

transverse view of the vertebra. Such adjoining regions including the lateral sides of the SP and, 

in some cases, the AP are not delineated. The distance between the manual and automatic 

delineations of the surface are obtained using the Hausdorff distance which given as follows: 

,ܣ)݀ (ܯ = max
௫஺

 ቄmin 
௫ெ

‖ܾ௫஺ − ܾ௫ெ‖ቅ                  (19) 

Voxels that are falsely identified by the automatic segmentation are considered false positive 

voxels. Voxels in the manual delineation that are not picked up by the automatic segmentation 

are considered false negative voxels. The Dice coefficient provides an estimate of the 

misidentified voxels: 

ܥܵܦ =  
2ܶܲ

2ܶܲ + ܲܨ + ܰܨ
                                       (20) 

 

3.1.4. Statistical analysis 

3.1.4.1. Qualitative performance assessment of the 3D spine surface rendering 

The 3D rendering of a rabbit’s lumbar vertebrae with one sacral level is shown in Fig 3.7. 

Although the SP is not quite evident the symmetrical articular processes are seen along with the 

interspaces. False positive blobs can also be seen on the sides but they are mostly concentrated 

away from the vertebrae. Fig 3.8 shows the in-vivo results of two human subjects with BMI 21.8 
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and 22.6 respectively. The thoracic vertebrae in Fig 3.8a with 4 levels is clearly visible. Fig 3.8b 

shows the transitional region between thoracic and lumbar vertebrae with 4 levels. Intact cervical 

vertebrae of a human subject with BMI 28.1 is reconstructed in Fig 3.9. 

 

 
Fig 3.7. Ex-vivo sample representing an intact lumbosacral vertebra (L6-S1) of a rabbit ex-vivo 

 

          

(a)                                                                              (b)                           
Fig 3.8. In-vivo 3D rendering of the vertebrae. A) Intact thoracic vertebrae of subject 1 with BMI 
21.8. b) Intact thoracolumbar region of subject 2 with BMI 22.6. 
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Fig 3.9. Intact cervical vertebrae of a human in-vivo with BMI 28.1. 

 

3.1.4.2. Quantitative performance assessment of the 3D spine surface rendering 

Table 3.1 shows the Hausdorff distance obtained for 10 volumes: 

Vertebra volume Hausdorff Distance (mm) Dice similarity score 

Subject 1 0.38 ± 0.97 0.79 

Subject 2 0.41 ± 1.33 0.842 

Subject 3 0.23 ± 0.71 0.864 

Subject 4 0.28 ± 0.68 0.924 

Subject 5 0.24 ± 0.85 0.96 

Subject 6 0.36 ± 1.01 0.81 

Subject 7 0.39 ± 1.6 0.931 

Subject 8 0.34 ± 0.55 0.866                                                                         

Subject 9 0.35 ± 1.44 0.774 

Subject 10 0.39 ± 1.77 0.878 

Table 3.1. Hausdorff distance and dice coefficient for a 10 volume in-vivo human subset. 
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Results show that an average Hausdorff distance of 0.34 ± 0.065 mm. The maximum standard 

deviation is obtained to be 1.77 mm and the average Dice score of 0.864 ± 0.062 voxels/voxels. 

 

3.2 APPLICATIONS TO BONE REGENERATION IN-VIVO USING 3D PSRE 

Bone regeneration is a complex multicellular process of growing new bone to heal fractures or 

bone defects. Scaffolds or bone grafting is used to facilitate bone growth for complicated 

fractures with large non-unions. Scaffolds acts as carriers for bone growth cells and biochemical 

factors or provide suitable mechanical conditions [66]. Imaging modalities are critical in 

monitoring both the integrity of the scaffold and this process of healing postoperatively. 

Although CT and MRI remain the gold standard for fractures and regenerative processes in-vivo, 

there are certain barriers: 1) Ionizing radiation can be a risk factor and better resolution comes 

with the expense of higher dosage levels with regard to CT. Most reproducible experiments show 

that radiation can delay and damage bone remodeling by reducing osteogenic cell numbers and 

altering cytokine capacity [67-68].  2) The scaffold is engineered in such a manner that it is 

radiolucent in CT. 3) Soft tissue detail is invisible in CT which can hinder imaging earlier stages 

of bone ossification.    4) In field applications, for which our technology is intended for, the 

transportation and management of bulky modalities like CT and MRI is infeasible.    

  

US on the other hand offers excellent temporal resolution that is not possible with the above 

modalities.  Although callus formation and differentiation does not convey sonographic contrast, 

most stages of newly formed ossified bone are visible in US imaging. We propose a 3D 

rendering of the bone regeneration process highlighting ossified bone, native bone and the 

scaffold.  Certain studies have explored the possibility of 3D bone surface rendering including 
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ones with non-union fractures [61]. However, to the best of our knowledge, studies incorporating 

bone regeneration in US imaging has not been investigated. The intensity invariant PSRE 

technique employed in the previous chapter is extended to include 3D local phase-symmetry 

features in enhancing the structural information. Bone surface rendering in this scenario is 

performed in such a way that the 2D phase analysis above is extended to 3D. We have also found 

that the incorporation of scale and orientation along the elevational direction this reduces the 

surrounding artifacts and soft tissue significantly. Multiple objects have to be reconstructed 

including the shell, bone graft, ossified bone and native bone. This makes the problem more 

complicated.  

 

3.2.1.  Experiments 

Surgeries were performed by creating a non-union at the tibial bone and placing a scaffold over it 

to facilitate bone formation. Postop experiments were then performed by scanning 10 sheep at 

the lateral side of the tibia. US imaging at the 60 and 90-day time points were obtained to 

monitor the healing process. Volumetric scans were performed by scanning the entire extent of 

the tibia from the proximal side to the joint connecting the tibia and tarsal bones as shown in Fig 

3.10a. The best of three scans were selected the ones that minimized off plane motion.  Fig 3.10b 

shows one associated axial slice with the scaffold on the right and newly formed bone on the left. 

The scaffold is distinguishable in Fig 3.10b by its reverberating layers (repeated reflective 

echoes) that can be seen underneath signifying different material properties from the bone.  
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(a)                                                                              (b)                                                                                                                
Fig 3.10. Postop scan above the tibia at the 90-day timepoint. a) End of the tibia scan with the 

transducer roughly above the joint. b) Ultrasound image from the scan at the mid-shaft. The 

scaffold can be seen on the right (antero-lateral side) by its unique reverberating artifact.    

   

3.2.2. Bone ridge enhancement 

The 3D ridge enhancement for in-vivo long bone experiments is similar in flavor to the 2D PSRE 

algorithm with certain modifications. The three-step bone/scaffold enhancement process 

constitutes: 1) Speckle reduction. 2) Bone fuzzy contrast enhancement. 3) Ridge enhancement 

using the 3D local phase symmetry model: Speckle reduction follows from the linear first-order 

statistics filter specified in Chapter 2. Similarly, the second step involving shadow-based fuzzy 

contrast enhancement is used to reduce the influence of surrounding tissue structures and 

artifacts. The procedure for obtaining this step is the same as mentioned in Chapter 2 for 

obtaining the mean pixel intensity feature for classification. Finally, the 2D local phase analysis 

described in the previous chapter is extended to a 3D PSRE model incorporating the entire 

volume.   
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In this case, the construction of the 3D Log-Gabor filter in the spherical coordinate system is 

given by: 

,߱)ܩ ߮, θ) = exp ൦− ൮
ln ቚ

߱
߱଴

ቚ
ଶ

 

ln ቚ
ߢ

߱଴
ቚ

ଶ ൲൪ × exp ቈ− ቊ
(ϕ −  ϕ଴)ଶ

஦ߪ2
ଶ +

(θ −  θ଴)ଶ

஘ߪ2
ଶ ቋ቉     (21) 

where ߱଴ is the filter’s center frequency given by the reciprocal of the filter scale or 1/ݏ, ϕ଴ is 

the zenith orientation of the filter varying in the axial direction, θ଴ is the azimuthal orientation 

varying in the elevational direction. Empirical parameters were set to be the same as Chapter 2: 

the Gaussian angular filter spread ߪ஦ = ஘ߪ  = 50° and the ratio related to bandwidth ߢ/߱଴ = 

0.33. The band-pass filtered Log-Gabor filter response with spatial coordinates ܠ = ,ݔ) ,ݕ  in்(ݖ

turn is obtained by convolution with the original 3D US volume. The zero DC component 

requires that the analysis be done in the frequency domain and then inverted from the fourier 

space to the spatial domain shown as follows: 

(ܠ)ܮ = ℱିଵሼℱሼ݂(ܠ)ሽ ∙ ,߱)ܩ  ߶, θ)ሽ                                                     (22 ) 

A single scale and single orientation (one each for zenith and azimuthal angles) is used to 

construct filter bank in the phase-symmetry model. The parameters were fixed and did not 

deviate significantly with a larger parameter vector: ϕ଴ = 90°, θ଴ = 180° and ݏ = 50. The 

modified 3D local phase-symmetry model is now denoted by: 

(ܠ)ܵܲ =
|ܴ݁ሼ(ܠ)ܮሽ| − |ሽ(ܠ)ܮሼ݉ܫ| −  ܶ

ඥ(ܴ݁ሼ(ܠ)ܮሽ)ଶ + ଶ(ሽ(ܠ)ܮሼ݉ܫ) + ߳
                                        (23) 

Notice that there is no summation involved here due to single scale and orientation vector. Here, 

߳ is a small number that prevents division by zero and ܶ is the shrinkage noise threshold 

calculated from the smallest scale filter response. ܶ is computed to be 3 standard deviations from 

the mean of the Rayleigh distributed noise as mentioned in the previous chapter. A 
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morphological area opening of 100 pixels is used to eliminate small false positives that could 

stem from specular artifacts. The phase-based ridge enhanced output can be used to reconstruct 

the surface of the scaffold and bone. This results in a large number of gap regions in the output 

due to the transition between native bone – scaffold, newly ossified bone – scaffold and, native 

bone - newly ossified bone.  Along with the minimal possibility of false positives that arise from 

surrounding tissue structures, there is a risk of muddying observer judgement in classifying bone 

among the transition regions. These complications can be alleviated to an extent by filling the 

concave regions below the bone surface to preserve continuity between slices.  

 

3.2.3. Concave region filling and 3D surface rendering 

Region filling of the concavities within each bone or scaffold point set can be accomplished by 

unifying all point sets to a convex set. The definition of a convex set is given as follows:  

Definition 3.1. - Let ܥ ⊆ ℝ௡ be any set. ܥ is convex if ݔߣ + (1 − ,ݔ∀  such that ݕ(ߣ ݕ ∈

ߣ∀ ݀݊ܽ ܥ ∈ [0,1]. 

A convex hull is then used to mask both the bone/scaffold point set and its associated concavity. 

This is then followed by tapering the region above the unified point set.  The convex hull 

(ܤ)ݒ݊݋ܥ ⊆ ℝଷ  is the smallest convex set containing the 3D bone(s) point set of blobs ܤ =

൜ቀܾ௫
(௜)  ܾ௬

(௜)   ܾ௭
(௜)ቁ

்
ฬ ݅ = 1,2, . .  ൠ . This is equivalent to all the possible convex combinations of|ܤ|

points such that.: 

(ܤ)ݒ݊݋ܥ = ൜∑ ௜ߣ . ቀܾ௫
(௜)  ܾ௬

(௜)  ܾ௭
(௜)ቁ

்|஻|
௜ୀଵ ฬ∀݅, ௜ߣ > 0  ܽ݊݀ ∑ ௜ߣ

|஻|
௜ୀଵ = 1 ൠ       (24) 
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In order to fill concave regions below the bone surface, we will add a constraint to the above set. 

The resulting convex hull (ܤ)ݒ݊݋ܥ =  ൜ቀܿ௫
(௝)  ܿ௬

(௝)  ܿ௭
(௝)ቁ

்
ฬ ݆ = 1,2, . .  ൠ is bounded by bone|ܥ|

points from above (opposite to the direction of the ultrasound beam) such that: 

(ܤ)ிݒ݊݋ܥ = ൜ቀܿ௫
(௝)  ܿ௬

(௝)  ܿ௭
(௝)ቁ

்
ฬ ∀ܿ௭

(௝) ∀ ቀܿ௫
(௝) = ܾ௫

(௜)ቁ , ܿ௬
(௝) ≥ ܾ௬

(௜)ൠ           (25) 

The concave region filled 3D bone point set ݒ݊݋ܥி(ܤ) is then smoothed with an 8×8×8 gaussian 

filter. A 3D reconstruction is performed using the open-source ImageVis3D as mentioned in the 

previous section.    

 

3.2.4. Qualitative Results 

The results from the 3D rendering are generated by scaling the dimensions associated with the 

CT model. The following results show the tibia bone regeneration process at a 60-day time point 

obtained from 3 sheep. The scaffold is highlighted in pale yellow. Since scaffold is radiolucent, it 

is invisible in the CT rendering.   Fig 3.10 represents segmented volumetric data from a single 

sheep. Fig 3.11 represents the same for two other sheep. Fig 3.10a shows the 3D surface 

rendering obtained using 3D PSRE without concave region filling. Fig 3.10b shows the same 

after applying of the concave region filling method. Fig 3.10c shows the equivalent 3D rendering 

obtained using CT. The most prominent characteristics of the US 3D renderings visible in the CT 

are marked with a blue circle. As is evidenced by the images, Fig 3.10b, Fig 3.11a and Fig 3.11c 

shows a smoother output with the primary feature correspondences intact. Notice the 3D US 

renderings do not show the fractured bone underneath the surface of the newly formed bone 

unlike its Ct counterpart due to US limitations mentioned in the above sections. But, all the 

ultrasound 3D renderings show a higher quantity of ossified bone growth on the surface. 
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               (a)                                                        (b)                                                         (c)   

Fig 3.11. Tibia bone regenerating at 60 days from sheep 1. Scaffold is shown in yellow. a) 

Ultrasound 3D rendering with concave region filling. The blue circle marks key feature 

correspondences. b)   Ultrasound 3D rendering with concave region filling. c) Associated CT 3D 

rendering. 

 

 

 

 



 

67 

 

                

(a)                                                        (b)                                                                                                   

                

                                         (c)                                                              (d)                                                                                                   

Fig 3.12. Tibia bone regenerating at 60 days from two sheep. Scaffold is shown in yellow. The 

results are generated by 3D PSRE and concave region filling. The blue circle marks key feature 

correspondences.  a) Ultrasound 3D rendering from sheep 2. b)   CT 3D rendering from sheep 2. 

c) Ultrasound 3D rendering from sheep 3.  d) CT 3D rendering from sheep 3. 
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3.3 DISCUSSION AND CONCLUSION 

This chapter deals with the 3D surface rendering of the intact spine for human in-vivo and 

rabbits ex-vivo. The feasibility of the method can be extended to applications like regional 

anesthesia, pedicle screw fixation and postoperative bone growth. Our study’s results show that 

the posterior surfaces of multiple vertebrae can be automatically reconstructed without any 

manual intervention. Each US image is segmented using the phase-based ridge enhancement and 

classification method mentioned in the previous chapter. The segmented slices are the stitched 

together to form a 3D volume of the vertebrae.  The proposed method is assessed by testing the 

3D automatically segmented surfaces against manual delineation by a radiologist. (Results). The 

width of the curvilinear transducer is also sufficient in covering the entire field of view of the 

posterior vertebrae. Consequently, sophisticated panoramic volume stitching techniques may not 

be required. However, this not true for long bones. US can be important got military applications 

where transportation and management of bulky equipment like CT or MRI can be infeasible. 

While the method does not extract the anterior column or deeper regions of the middle column 

and spinous process, there is much information to be exploited from the posterior side especially 

for the above applications. The results show that vertebrae structural landmarks such as the top 

surface of the SP, AP, TP laminae and interspaces can be reliably extracted and observable in the 

3D reconstruction. This way an anesthesiologist is not restricted to identifying the interspaces 

from either the paramedian or transverse planes alone. Thus, they can guide an epidural needle 

by recognizing that the interspace is mostly a level surface in between structural landmarks like 

the SP and AP. Furthermore, spine surgeons can use the 3D rendering to identify landmarks such 

as the AP and laminae in placing pedicle screws for vertebrae stabilization. Utilization of image 
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phase information also makes the technique not sensitive to the transducer beam orientations or 

contrast conditions.  

 

Although the qualitative and qualitative results are promising, there are some improvements to 

be addressed.  An important disadvantage in our technique is the lack of transducer position 

information. Since US is a heavily operator dependent modality, pose estimation of the 

transducer is a critical step in obtaining accurate 3D renderings. As the number of vertebrae 

increases this becomes more of a necessity. It can also be crucial for estimating kyphotic and 

lordotic angles in scoliosis identification. With regard to the applications mentioned in this 

chapter, tracking positions helps the surgeon in determining the precise location of placing 

anchor points. Knowing the position of the interspace can also guide anesthesiologists in 

accurate epidural placement. However, the most critical quantifiable information that an 

anesthesiologist would require is the depth from the skin to epidural space which the proposed 

technique provides. For an untrained operator, augmenting transducer position information can 

be crucial since there is a high possibility for scanning away from the midline and at oblique 

orientations. The proposed techniques can still be deemed useful by scanning along the midline 

minimizing off plane motion. Besides, multiple studies have proven the feasibility of enhancing 

3D reconstructions by adding transducer positioning hardware within a closed loop framework. 

Position tracked 3D US images are also vital for extracting quantifiable information in validation 

studies involving other modalities like CT or MRI.  Despite having such advantages, the 

additional hardware demanded in such a computer assisted framework can also be infeasible in 

emergency departments, field-based applications or even present itself as a cost burden in 
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developing countries. Such inherent limitations can be possibly evaded with the advent of 

miniatured accelerometer systems that can be cheaply made and shielded onto the transducer.  

 

A promising arena within which the proposed method can be useful for is the postoperative 

surgery scenario. Radiation risk, by employing CT or radiographs, to a bone in the process of 

restoration can be alleviated by the US based methods. Bone healing enabled by the grafts after 

spinal fusion surgeries can be evaluated by 3D reconstruction of the posterior vertebral surface. 

The availability of generalized statistical shape models of the vertebrae can also be used to 

register the spine surface information. This can have important implications in field or 

emergency department scenarios by eliminating the need for extensive positioning hardware. The 

feasibility of visualizing and tracking newly formed ossified tibial bone has also been explored. 

The applicability to bone healing in the context of spine has not been investigated in this thesis. 

 

Optimal log-gabor filter parameter estimations accounts for varying orientations of each 

protrusion on the posterior vertebrae. However, for the bone regeneration scenario, a single scale 

and orientation analysis suffice. This due to the general level surface posited by lone bone 

surfaces. Bone surfaces obeying more complex geometries may benefit from a larger parameter 

space. The computation time has also been significantly reduced. A smoother response can be 

produced with 3D phase features. However, this would require the computation of a 3D radon 

transform to determine the that could compound computation time. However, for a single 

vertebra we expect three azimuthal and one elevational angle to capture the filter orientations. A 

fixed elevational angle is sufficient due to single oblique angles seen in the paramedian plane. 
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These volumes can be sectioned into vertebra and interspace region. Multiple scales and 

orientation also increase the algorithmic complexity and processing times.  

 

One of the drawbacks of optimal parameterization is that it is performed for each image in the 

volume. Thus, the parameter vector may vary across slices in the elevational direction. This can 

be inconsistent for the overall 3D volume. Thus, we extend our 2D to 3D phase analysis in bone 

regeneration. This preserves consistency in the parametrization and thus continuity between 

slices. The proposed method of 3D reconstruction of vertebral and bone surfaces accurately 

captures sufficient structural information on the posterior spine and bone regeneration for 

regional anesthesia, pedicle screw placement and postoperative bone growth evaluation 

applications.  
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CHAPTER 4 

MODELING AND ANALYSIS OF ULTRASOUND ELASTOGRAPHIC AXIAL STRAINS 

IN AIDING SPINE FRACTURE LOCALIZATION 

 

4.1 INTRODUCTION 

Ultrasound (US) imaging modalities are known for their safety, superior spatial and temporal 

resolutions, portability and cost-effectiveness. Spinal ultrasound imaging, due to its real-time 

capability, has been quite well received in the clinical setting for aiding epidural administration 

and scoliosis detection [69-74]. Applying established techniques in bone detection for the spine 

can prove to be challenging due to its complex geometry. Yet there has been a growing body of 

work in the automatic extraction of vertebral surface information. Template driven techniques have 

been used to detect the laminae and epidural space [71]. Berton et al. proposed automatic 

segmentation of the superficial spinous process (SP) and acoustic shadow regions [72]. 2D 

superficial SP detection has also been extended to the entire vertebral column [14]. While this is 

important progress to scoliosis identification for which a 3D projection may be sufficient, it does 

not account for the entire SP surface. In fact, only echoes returning from a small “blobbed” area 

above the spinous process’s tip can produce discernible contrast ([72,74]). But its side edges in the 

sonograms lack a clear definition presumably due to the complex phenomenon of refraction and 

oblique reflection. As a result, a slight tilt in the spinous process may not be apparent when 

observed in the transverse view. Moreover, to the best of our knowledge, the above techniques 

have yet to be contextualized for spinal fractures. The studies retrievable in the literature that deal 

with fracture detection have been devoted to long bone studies [75-76]. This may be partly due to 

the fact that spinal ultrasound imaging permits little to no penetration beyond the bone surface. So, 
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the vertebral body surface cannot be reliably observed thereby limiting the visibility of anterior or 

middle column fractures. That said, fractures at the posterior column which includes bony 

protrusions such as the SP, articular process (AP) and transverse process (TP) can provide 

important diagnostic information. Recognition of these fracture patterns may lead radiologists to 

infer the likelihood of surrounding soft tissue/neurological injuries. For example, spondylolisthesis 

appears strongly associated with the occurrence of SP fracture after interspinous process surgery 

[77]. Also, integrity of the surrounding posterior ligamentous complex is a primary decision-

making criterion in assessing spinal stability along with morphology of the fracture. In addition, 

multiple fractures could contribute to a higher likelihood of spinal instability. Posterior element 

fractures are difficult to detect from two-dimensional B-mode images due to the inherently low 

SNR and spatial resolution particularly between fracture segments. Owing to its unpredictable 

geometry, fractures can be very hard to generalize for statistical shape models obtained from a 

patient population [45]. Techniques including intensity invariant phase-based methodologies 

derived from B-mode images can also be prone to low spatial resolution resulting in merging of 

the fracture sites [47, 71, 75]. We aim to address some of these limitations using ultrasound 

elastography based strain information at the vertebra-soft tissue boundary.    

 

Ultrasound elastography (USE) has been shown to successfully assess changes in mechanical 

properties of tissues such as stiffness due to an underlying pathology [78]. The technique has been 

shown to be feasible in detecting several cancers and liver diseases [79, 80]. According to USE, 

strains experienced by the tissue under compression relate to its underlying mechanical properties. 

While axial normal strain elastography (ANSE) has been customarily used to assess the stiffness, 

other branches of USE have evolved, which aim at measuring new mechanical parameters [81, 



 

74 

 

82]. One such branch is the axial shear strain elastography (ASSE) that estimates the axial 

component of shear strains. The hypothesis for ASSE is that, for a non-homogenous tissue under 

quasi-static uniaxial compression, axial shear strains are produced at the boundaries between the 

different tissue’s components [84]. These shear strains may carry important information, not just 

about the boundary but about the pathology and structure of the region of interest (ROI) itself [83, 

85]. Recently, our lab has presented a study on intact and fractured long bones to obtain 

elastographic patterns of fracture diagnosis relevance at the bone/soft tissue interface [76].  

 

Our objective is to use elastographic techniques to create contrast mechanisms that factor in the 

relative stiffness and slippage of the vertebrae and surrounding soft tissues on application of a 

compressive force. In this study, we use ex-vivo rabbits as our testing specimen. Finite element 

(FE) elastography simulations and actual experiments are then used to independently analyze 

strains that could adequately locate the fracture site. Additionally, we have proposed a method for 

generating strain-based morphological descriptors such as orientation and asymmetry that would 

in turn aid in the fracture detection process. Finally, statistical analyses are performed to evaluate 

the significance of the proposed descriptors. 

 

4.1 METHODS  

4.1.1. Finite Element Modeling 

In order to construct the FE models of bones, an accurate construction of the 3D geometry, 

appropriate material properties and boundary conditions in the form of applied loads and 

constraints as well as the bonding at different constitutive components’ interfaces should be 
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considered and developed. We use a 3D FE model to understand the biomechanical behavior of 

the soft tissue and spine and how it changes in the presence of a fracture.  

 

In the present study, we assume a linear elastic behavior for all constituent materials. The loading 

on the model is assumed to be static. Thus, the problem is governed by 

. 0  σ f  (26) 

σ and f are the total stress tensor and body force vector per unit volume, respectively. The linear 

constitutive behavior is given as 

Eσ ε , (27) 

where ε is the strain tensor and E is a tensor of corresponding elastic constants. By assuming 

isotropic elasticity, E can be fully determined using the constitutive material’s Young’s modulus 

and poisson’s ratio. 

 

The FE modeling procedure for the three-dimensional displacement and strain fields of the 

fractured and intact vertebra-tissue models under compression is shown in Fig 4.1. Axial slices of 

the CT image were obtained from rabbit saddle samples (each in intact or fractured conditions) via 

an Axiom Artis C-arm (d)FC (Siemens Healthcare). Images were then imported into Amira 6.0 

(FEI Visualization Sciences Group, Bordeaux, France and the Zuse Institute Berlin, Germany) for 

vertebra shape segmentation. A solid geometric representation was generated using Rhinoceros 

5.0 (Robert McNeel & Associates, Seattle, WA, USA). This platform was used to convert these 

surface geometries to a non-uniform rational B-spline (NURB) surface. The final solid assembly 

was finished in CAD (SolidWorks, Dassault Systemes SolidWorks Corp., MA, USA) by 

combining the spine model with a soft tissue rectangular parallelepiped (40×40×40 mm3 or 
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50×40×40 mm3) adjusted for the vertebra’s size. Friction behavior at the vertebra-soft tissue 

interface obeyed the exponential decay friction model consisting of static, kinetic friction 

coefficients (ߤ௦ = 0.3, ߤ௞ = 0.05) and decay coefficient (݀௖ = 0.1). For boundary conditions, the 

bottom of the soft tissue region was fixed (the displacements in all directions are zero.) and the 

displacement in axial direction was specified as 0.2 mm (0.5% compression) at the top of the tissue. 

The remaining sides of the tissue were set to be free. Then, each vertebra-soft tissue model was 

discretized into a non-uniform mesh of tetrahedral elements. After modeling, a static stress analysis 

was carried out to obtain displacement and strain fields on the soft tissues. FE simulations were 

performed on the supercomputers located at the Texas A&M High Performance Research 

Computing (HPRC) facility. 

 

Material Young's 

modulus, 

E (MPa) 

Poisson's 

ratio, ν 

Soft tissue 1.53 × 10-

3 

0.46 

Vertebra 4014 0.3 

Reference [86], [87] [86], [87] 

Table 4.1. Material properties of soft tissue and the lumbar vertebra. 
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Create surface geometry 

  

Fractured vertebra Intact vertebra 
 

Assign material properties & boundary conditions / Generate mesh 
 

  
Fractured vertebra-tissue Intact vertebra-tissue 

Finite element analysis 
 
 
 

 

 
 
 

Fractured vertebra-tissue Intact vertebra-tissue 

 
Fig 4.1. Procedure for FE modeling incorporating soft tissue and lumbar vertebra under compression.
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4.1.2 Ultrasound Simulation Framework 

The mechanical simulation tool allows generation of 3D FE simulation models for each 

experiment being performed. The resulting simulated mechanical displacements were then used 

as input to our ultrasound simulation software module as described in [88]. In this model, the 

point spread function (PSF), which is the impulse response of the system, was convolved with 

the scattering function (normal distribution of scatterer amplitudes) to obtain the radiofrequency 

(RF) signals. The simulated transducer configuration follow that in our earlier paper [90]. From 

the simulated RF data, axial normal and axial shear strain elastograms were obtained using cross-

correlation methods. For our study, the length of correlation window for both pre- and stretched 

post-compression RF signal was chosen as 1.2 mm with 80% overlap between consecutive 

windows.  

 

4.1.2. Experiments 

Five intact rabbit saddles and five more fractured using blunt force trauma were used in this 

study. Each rabbit was placed in a phantom made with 5% gelatin and 3% agar. The ultrasound 

transducer fixated onto a compressor plate was then placed in contact with the phantom’s top 

surface using a gel that served as a coupling medium. The sonographic data were acquired using 

a 38 mm linear array transducer (Sonix RP, Ultrasonix, Richmond, BC, Canada) while the 

uniaxial compression was being applied via the transducer/compressor combination. The system 

configuration and data processing protocols refer to a previous study in our lab [90]. Correlation 

maps were generated by cross-correlating the pre- and post-compressed RF data. These maps 

indicate the reliability of the strain estimation. Elastograms were further normalized with respect 

to the mean strain value of a patch in the axial normal strain elastogram representing the soft 
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tissue region with high correlation values [76]. The complementary value of the elastograms for 

fracture localization will be illustrated in this paper using composite images. For the purpose of 

comparing the spine surface localization performance, bony regions of the vertebra were also 

automatically extracted from only the B-mode images using a phase-based ridge segmentation 

technique the details of which are described in [74]. 

 

4.1.3. Morphological Strain Descriptors for Spine fracture localization 

4.1.3.1. Axial normal strain description using distribution-wise symmetry 

From our previous study on long bones, it has been demonstrated that the axial normal strains 

have a tendency to localize at the bone-soft tissue interface, and its local distribution changes in 

presence of a fracture [76]. Therefore, if a vertebra contains a fracture at the spinous process, a 

laterally skewed distribution of corresponding strains would be expected, which essentially arises 

from asymmetric boundary conditions posed by the fractured vertebra. In other words, multiple 

fractures can lead to half of the transverse imaging plane along the midline (the line parallel to 

the transverse/axial axis and perpendicular to the axis on which the transducer rests for probing 

vertebrae) appearing “stiffer” than the other half. We will illustrate this effect by “projecting” the 

3D axial normal strain elastogram volumes along the axial direction to help holistically interpret 

the strain profile. This is obtained by computing the median value of each column from the top to 

the vertebra-soft tissue boundary within a stack of axial normal strain elastographic slices. A 

second projection of strain fields on the lateral axis identifies the highest concentration of strains 

for a single vertebra.  
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4.1.3.2. Axial shear strain description using principal orientation 

Axial shear strains have been demonstrated in our past studies to localize the long bone fracture 

sites with high CNR. And this is attributed to the fact that discontinuity in the material 

composition can in general create bidirectional slippage at the interface when compressed 

uniaxially. However, due to the complexity of spine geometry in 3-D, directly obtaining fracture 

information from the slippage becomes difficult. [76, 90]. On the other hand, the posterior 

column of the spine consists of bony protrusions that exhibit unique shape characteristics. An 

orientation descriptor of the SP in particular can be determined by its deviation from the midline 

of the transverse (axial slice) cross-section. We quantify this deviation as being the orientation 

between the straight line passing through the SP and the lateral axis. At the midline, this 

orientation would ideally amount to 90 degrees signifying zero deviation. Since ultrasound 

hardly penetrates bones, this orientation information is almost entirely absent in the B-mode 

images. For axial shear strain elastograms, however, due to the fact that they highlight pointwise 

discontinuities from the side edges of the spine protrusions, we can see that the SP fracture 

morphology is easier to glean from them. 
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Fig 4.2. Principal orientation obtained from the linear model (red) passing through midpoints 

(blue) obtained from the axial shear strain elastogram of an intact case. 

 

Principal orientation of the SP is therefore approximated by the following two steps. First, 

pairwise distances between points in the positive and negative axial shear strain clusters are 

extracted using a Frechet distance measure. The Frechet distance (ܯ pairwise distances) between 

positive and negative shear strain cluster of coordinates ܵା  and ܵି is given by: 

݀(ܵା, ܵି) =  inf
ఈ,ఉ:[ଵ,ெ]→[ଵ,ெ]

max
௫ఢ[ଵ,ெ]

ฮܵା൫(ݔ)ߙ൯ − ฮ((ݔ)ߚ)ିܵ
ଶ

     (28) 

 

where ߙ and ߚ) ߚ >  ିܵ in clusters ܵା and ݔ are curves running through each coordinate (ߙ

respectively. In order to determine the points of both curves that maximize separation between 

the clusters, we use the midpoints of the Frechet distances: 

݉݅݀(ܵା, ܵି) = 0.5 ∙ ቀܵା൫(ݔ)ߙ൯ + ܵି൫(ݔ)ߚ൯ቁ                               (29) 
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                      (a)                                                                                        (b) 
 

                                (c)                                                                                        (d) 
 

Fig 4.3. Principal orientation (green) between positive (red) and negative (magenta) shear strains 

for axial slice surrounding the a) Intact SP from the ultrasound simulation. b) Fractured SP from 

the ultrasound simulation. a) Intact SP from the experiments. b) Fractured SP from the 

experiments. 
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Second, a linear least-squares regression model is applied to fit the midpoints, and the orientation 

can then be computed from the slopes of the fitting lines. Fig 4.2 showcases the midpoints and 

the linear model for an intact SP. And illustrated in Fig 4.3 is the principal orientation of the 

shear strain as the angle of the green line with respect to the lateral axis. Clearly, the Fig 4.3a and 

Fig 4.3c orientations demonstrate a closer angle to the midline. Note that this algorithm does not 

work for unipolar (positive or negative) strains. In such a scenario we compute the eigenvector of 

the covariance matrix encoding the shear strain unipolar coordinates to obtain orientation of a 

single cluster.  

 

4.1.4.3. Statistical Analysis 

Fifty ANSE and ASSE simulation and experiment images were used for the statistical 

assessment of the fractures’ influence on the strains. Thresholding (parameters detailed in [74]) 

was in general performed and test statistics were then constructed from the thresholded images. 

As for the simulation results, Mann-Whitney U tests were performed to evaluate whether there 

were differences in the mean and peak value of the thresholded strains between fracture and 

intact cases. Paired t-tests were performed to test whether there were a higher number of 

bipolar/unipolar patterns in the fracture as a result of the strain disruption. Principal orientations 

of the shear strains around the SP were obtained from both simulations and experiments. A non-

parametric smoothing kernel was used to fit the distributions and estimate orientation thresholds 

for an intact SP. For the experimental data analysis, in addition, Wilcoxon signed rank tests were 

performed to test for the asymmetric strain distribution experienced by fracture cases. The degree 

of asymmetry was obtained by the difference between the peak value of the median strain 

projection from the left and right half of each axial normal strain elastogram.  
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4.3 RESULTS 

                         

                                            (a.1)                                                      (a.2) 

 

                           

                                             (b.1)                                                       (b.2) 

Fig 4.4. Ideal axial strain and axial shear strain maps. 

 

Fig 4.4a shows the ideal axial slice representing normal strains for an intact and fractured 

vertebra respectively. High strain regions are accumulated at the interface of soft tissue and the 

respective bony protrusion (SP in this illustration). Fig 4.4c and Fig 4.4d show the shear strains. 

Shear strains show an existence of bipolar (positive and negative) strain regions accumulated  

around the bony protrusion. It is clear from this depiction that the presence of a fracture site can 

be qualified through the strain concentration region’s abnormal geometry. These characteristics 

can also be observed after application of the ultrasound simulation in Fig 4.5. The first column 

represents one axial slice from an intact spine and the rest correspond to cases obtained from 
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spines with a fractured SP and fractured TP, and a fractured SP and left AP, respectively. A 

common trait among the axial normal strain elastograms of fractured spine columns (Fig 4.4a.2, 

Fig 4.5a.2, Fig 4.5a.3), is the shifting of the higher magnitude portion of strain fields away from 

the midline (middle column). Whereas in the axial shear strain elastograms, bipolar and unipolar 

axial shear strain elastographic patterns in Fig 4.5 are visible around the protrusions and their 

broken fragments. In particular, Fig 4.5b.3 shows a unipolar pattern around the left fragment of 

the left AP. 

 

The 3D distributions in Fig 4.6 represent normal strains around a single vertebra with the sample 

in each column corresponding to that in Fig 4.5a. It is clear from Fig 4.6(a) that the median axial 

normal strain around the SP (roughly at A-line 64) is higher than those around the AP, and strain 

values at the bony regions are in general higher than in the background. Most importantly, it 

indicates symmetrical strain distributed across the spinal protrusions. Fig 4.6c shows the strains 

asymmetrically distributed with the right AP experiencing a majority of the compressive strain 

from above. On the other hand, Fig 4.6b shows an isolated SP fracture. While these strains are 

asymmetrically distributed in both columns b and c, the strains around the SP in Fig 4.6c have 

been significantly compromised compared to Fig 4.6b. In addition, multiple fractures can be 

observed at the SP, left AP and right TP in Fig 4.6c which appears to indicate a very high 

likelihood of spinal instability. This could potentially pave the way for an assessment of stability 

by tracking strain distributions and their large deviation from axial symmetry. Fig 4.7 shows the 

filled contour plot at the median coronal slice for the 3D axial normal strain distribution in Fig 

4.6c. We observe an elevational asymmetry of the distributions in terms of contour line direction. 

Two local maxima around the SP have been highlighted. This can be corroborated with the 3D 
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rendering of the vertebra above in Fig 4.6c showing the SP fracture segments in opposing 

directions.  

 

 

Fig 4.5. Elastograms from the ultrasound simulation showing an axial slice of the intact (first 

column) case, fracture at the SP (second column), fracture at the SP and left AP (third column) 

from three vertebrae. a) axial normal strain elastograms. b) axial shear strain elastograms. 

 

 

   

                                                                   
 
 
 
 
 
 
                                                           (a) 

Fig 4.6. 3D rendering of spines from CT (top) and their associated median projection of axial 

normal strains (bottom). Large local maxima correspond to bony protrusions of the posterior 

spine. a) Intact L3 vertebra. The projection is symmetric in this case. b) L7 vertebra with  
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multiple fracture sites at the SP and left TP. c) L4 vertebra with multiple fracture sites at the SP, 

left AP and right TP. d) L5 vertebra with multiple fracture sites at the SP, left AP and right TP. 

 

 

 

 
 
 

                                                                                    
(b) 

  
 

 
                                                                    
 
 
 
 
 
 

 
 

(c) 
 
 
 
 

 

 

 

 

(d) 
 

Fig 4.6. Continued.
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Fig 4.7. Filled contour plot of the median coronal slice obtained from the spine model in Fig 4.6c 

with multiple fracture sites at the SP and left AP (unstable). 

 

Fig 4.8 shows the principal orientations in simulated axial shear strain elastograms of the 

fractured and intact SP. The histogram in yellow (Median (Med): 89.21˚, Interquartile range 

(IQR): 88.3 - 89.8˚) corresponds to the intact cases and the cyan histogram (Med: 77˚, IQR: 71.8 

– 81˚) corresponds to the fracture cases. From the smoothing kernels, an orientation threshold of 

86.5 degrees was estimated for an intact SP.  
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Fig 4.8. Histograms of axial shear strain elastogram principal orientations with fractured (cyan 

bars) and intact (yellow bars) SP as extracted from the simulations. 

 

Fig 4.9. Histograms of axial shear strain elastogram principal orientations with fractured (cyan 

bars) and intact (yellow bars) SP as extracted from the experiments. 

 

Table 4.2 shows the paired t-test comparing the number of bipolar and unipolar strains in 

simulated axial shear strain elastograms between intact and fracture cases (ܪ௔: ߤ௙௥௔௖௧௨௥௘ >

ߙ) ௜௡௧௔௖௧). The number of bipolar patterns is greater on average for fractured vertebraeߤ = 0.01). 
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Fig 4.10. Boxplot comparison of axial shear strain elastographic features from the simulations on 

intact and fractured vertebrae. 

 

 

Fig 4.11. Boxplot comparison of axial normal strain elastographic features on intact and 

fractured vertebrae. 

 

Mann-Whitney U tests were performed to assess statistical significance in contrasting the intact 

and fractured samples in the form of both axial shear (positive and negative if bipolar) and axial 
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normal strains at the vertebra-soft tissue interface. Our results from the axial shear strain 

elastogram boxplots in Fig 10 show that peak values of positive strains (Z = 4.76, p = 9.7×10-7) 

and negative strains (Z = 3.56, p = 1.8×10-4) from intact cases are higher than the fracture cases. 

Mean values of positive (Z = 4.23, p = 1.2×10-5) and negative strains (Z = 2.92, p = 0.0017) are 

also higher for intact cases. The axial normal strain elastogram boxplots in Fig 4.11 show that 

both peak (Z = 5.1, p =1.7×10-7) and mean (Z = 6.18, p = 3.2×10-10) values are higher for intact 

cases.  

 

Number of 
bipolar/unipolar 

strains 

Mean± Standard 
Deviation (mm/mm) 

p-value 

Intact vertebra 2.67 ± 0.48 2.06 ×10-6 

Fractured 

vertebra 

3.39 ± 0.69 

 

Table 4.2. Paired t-test comparing the total number of bipolar and unipolar strains within each 

axial slice for intact and fractured vertebrae. 
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Fig 4.12: The first column shows an axial slice from the L3 intact vertebra, the second, third and 

fourth columns show vertebra with a fractured L7 SP, fractured L4 SP and left AP and fractured L5 

SP and AP respectively. a) CT axial slices. b) Corresponding ultrasound B-mode images. c) 

Segmented posterior spine from B-mode images. d) Composite axial normal strain and e) 

Composite axial shear strain elastograms with principal orientation highlighted on the B-mode 

images respectively.  
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Fig 4.23. Axial slice of fractured vertebra without the phantom. a) B-mode image b) Composite 

axial normal strain elastogram and c) Composite axial shear strain elastogram on the B-mode 

images respectively. 

 

In Fig 4.12, the first two rows indicate the CT slices and corresponding B-mode images. Bony 

regions segmented from the B-mode images are displayed in the third row. The fourth and fifth 

rows illustrate the respective axial normal and axial shear strains composited onto their B-mode 

images. The first column shows slices obtained from an intact rabbit (vertebra and strain 

projection shown in Fig 4.6a). The second column (vertebra and strain projection shown in Fig 

4.6b) shows a single SP fracture along with an intact illiac crest. Slices corresponding to 

fractures on the SP and left AP are observed in the third (vertebra and strain projection shown in 

Fig 4.6c) and fourth columns respectively. The intact slice in column 1 shows a larger degree of 

symmetrical axial normal strain concentration on the left and right AP. Whereas the tilt 

signifying a fractured SP is quite prominent in the axial shear strain elastograms among columns 

2-4 from which our descriptor can be easily obtained compared to the automatically extracted SP 

in the third row. In particular, Fig 4.13 shows the axial slice of the same sample as present in 

column 3 of Fig 4.12 in the absence of the phantom. In this case, the transducer was coupled 

directly with the soft tissue surface through a gel pad. From the segmented axial shear strain 
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elastogram the orientation estimation of the SP fragment remains consistent with and without the 

gelatin-agar phantom. In general, the strain morphology at the vertebra-soft tissue boundary is 

similar across simulation and experimental results. In fact, the 3rd column of Fig 4.5, 4.6 and 4.12 

and Fig 4.13 correspond to the same vertebra, and the SP orientations reflected by the axial shear 

strain elastograms are in line with each other. Also, oblique axial normal strain around the left 

AP is consistently seen in all the figures. Wilcoxon signed rank test further showed an 

asymmetrical experimental axial normal strain distribution for spine fractures (Intact: p = 0.74, 

Fracture: z = -2.79, p = 0.0052). 

 

4.4 DISCUSSION 

Spine injuries and abnormalities such as fractures have been an active area of research for many 

decades [91]. In most cases, spinal injury due to fracture are associated with changes of 

mechanical properties of the tissue at the bone interface [92]. In this paper, we focus on the 

thoracolumbar posterior column alone for garnering fracture information. Our hypothesis is that 

the distinction between intact and fractured vertebrae can be manifested in the morphology and 

statistics of the strain distribution. As our means of investigation, both FE-based elastography 

simulations and actual experiments were conducted. To the best of our knowledge, this is the 

first study of its kind that employs a mechanical model framework in assessing the vertebra-soft 

tissue boundary. Although a finite element (FE) model-based approach has been employed for 

differentiating intact and fractured long bones, it has yet to be applied for spinal injuries [90]. 

Such a framework facilitates a crucial first step in characterizing strain fields that would help 

make inferences about mechanical behavior of vertebra/soft tissue interface and surrounding 

ligaments, muscles and fat regions. The strains in turn enveloped at the vertebra soft tissue 



 

95 

 

interface can be a useful adjunct to B-mode images in detecting fractures and localizing the 

fracture site. Our results report a manifestation of this in the axial strains especially axial shear 

strain patterns. The elastographic axial strain disruption may convey additional structural 

information on the spinal protrusions.  

 

To study the vertebra-soft tissue interface using USE, we designed an FE model and subsequent 

analysis that are specific to the spine morphology. The geometry was imported from the CT of 

rabbit spines and relevant material properties were assigned. Intact and fracture cases were 

simulated to replicate the experimental setup. The importance of the availability of a simulation 

framework in this paper is highlighted by the fact that there are no imaging methods that can be 

used to directly validate the experimental results. In general, simulated elastograms give an 

upper bound of the performance of the proposed techniques, which consider some of the 

limitations inherent to the ultrasonic estimation [93]. The proposed simulation has been shown to 

produce elastographic features which can uniquely distinguish intact from fractured spines. The 

feasibility of spine fracture localization has been quantitatively validated using ex-vivo phantom 

experiments. A qualitative assessment of an experiment without the phantom has also been 

included. The results obtained from the simulation and experiments are shown to be consistent.  

 

From the intact vertebra-soft tissue interface, a bipolar pattern around each bony protrusion in 

the axial shear strain elastograms was observed. Symmetric strain distributions were also 

observed for the same sample in axial normal strain elastograms. On the other hand, complex 

strain disruption patterns were observed in the axial normal and axial shear strain elastograms 

after fracture induction. Results show that fracture sites can be localized based on the quantity of 
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bipolar/unipolar axial shear strains developed around each fracture segment or an altering of the 

normal strain geometry. Also, in the presence of a fracture, both axial normal and axial shear 

strain elastograms show a decrease in the mean/peak strain magnitudes in corresponding 

segmentation areas.  

 

To partially overcome the aforementioned traits’ limitation in characterizing fractures which may 

get complicated by the spine’s intrinsic shape, morphological descriptors were introduced to 

probe some unique strain elastographic features in the vicinity of the fracture zone. Being one 

candidate of them, the asymmetrical axial normal strain distributions motivated from the 3D 

median projections was quantified within the axial normal strains obtained experimentally. Intact 

and fracture cases were demonstrated to have a statistically significant difference in the 

symmetry descriptor. The experimental results also confirmed the validity of another descriptor, 

i.e., the principal orientation of the SP. In the form of the deviation from the midline, this 

quantity becomes minimal for intact cases. And the IQR of the intact experimental cases showed 

a similar spread to those obtained in the simulations. Meanwhile, thresholds of principal 

orientation descriptors obtained for the SP from both simulation and experiments were in close 

agreement. The non-parametric classification used to determine this threshold can be further 

employed in future in-vivo test cases for automatic determination of SP fractures and possibly in 

assessing their severity.  

 

A limitation of the study is the use of FE models with simplified geometry. The vertebrae-soft 

tissue complex involves a network of intrinsic muscles connecting the vertebrae, PLC and at its 

most superficial level, the thoracolumbar fascia. Simulations incorporating these factors in 
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trauma induced soft tissue could provide crucial residual strain information enveloped across 

each tissue layer including the vertebrae-soft tissue interface. This can be helpful in callus tissue 

differentiation for bone healing applications as simulated in [94]. Additionally, the inclusion of 

multiple vertebrae for our FE simulations can help visualize important strain characteristics 

about the PLC (on the sagittal plane) though this imposes a fair amount of structural complexity 

to the model. Hence, they will be left as a future work. Sagittal plane axial strain elastograms 

were not investigated in this study because nearly all multiple fractures were visible in a single 

axial slice from our models. The superior advantages of capturing deeper structural information 

from the axial plane have been reported [18, 74]. The modeling of soft tissue surrounding the 

vertebrae as a cuboid is obviously not representative of the actual tissue geometry. We chose 

such a model to demonstrate feasibility of visualizing axial normal and shear strains in a 

controlled setup compatible with perfect uniaxial compression. For rabbits (or humans) in direct 

contact with the transducer, we use a gel pad spacer to achieve near uniaxial compression. 

However, there could be locations where the transducer plate may not be in complete contact 

with the rabbit’s back which we do not foresee being a problem in humans.  

 

For most US modalities, there is always a concern on the depth of penetration. We used a rabbit 

model in this study, which is known to have a relatively superficial spine. In humans, the ROI 

and depth of spine may vary and could be a concern for obese patients. However, using novel US 

transducers, elastography experiments up to 10 cm have been successfully conducted which we 

believe should cover most of the relevant scenarios, since we are mainly concerned about the 

surface mechanics [95].  

 



 

98 

 

Freehand ultrasound elastography can pose complications even with the use of a transducer plate. 

The compression applied as a result cannot be perfectly uniform without a flat surface contact. 

Moreover, off-plane motion artifacts can also hinder elastographic SNR. One possible solution to 

this problem can be the involvement of real-time feedback from the correlation maps. Optimal 

transducer positioning can in turn be achieved by maximizing correlation that can ensure 

uniaxial compression. Additional hardware in the form of a robotic arm holding the transducer 

can also maximize repeatability of experimental conditions. This can happen in the form of 

automatic control for parameters such as constant force application and strain symmetry 

calibration.  

 

The correlation method for obtaining axial strain elastograms has not been optimized for frame 

selection. We have consistently chosen the middle 50 successive frames for producing the 

averaged elastogram to facilitate a level of automation. Improving frame subset selection can be 

especially critical for in-vivo applications where motion from the animal and operator can 

introduce elastogram artifacts. Estimation of the inter-frame compression factor using dynamic 

frame pairing can be used to alleviate this problem [96]. We can also employ other strain 

estimation techniques such as DPHS [97] and Analytic minimization [98]. But these techniques 

are prone to excessive regularization that could miss finer structural details.  

 

The shear strain bipolar/unipolar pattern corresponding to each fracture segment cannot be 

perceived when adjacent strains from dense connective tissues can be merged with strains 

surrounding bone to form higher strain concentrations. We encounter this possibility in Fig 

4.12(e.4) where the merging happens between the polarities around the two left AP fracture 
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segments. However, we anticipate this happening when the gap between segments fall below the 

spatial pulse wavelength. Also, the axial width of the lumbar vertebral body of humans is 

considerably higher (>= 50 mm) than the rabbit (we measured this to be around 15 mm), 

reducing such a possibility. But, the higher axial width in humans may call for longer width 

linear array transducers or a 2D transducer capturing multiple planes. 

 

Segmenting strains for fusion with the B-mode images cannot always be determined by the 

threshold as a function of applied compression or peak strain. This can especially hold true for 

ex-vivo or in-vivo studies that aren’t based on phantom studies where applied compression 

cannot be approximated. Deeper connective tissue geometries could influence these strain 

distributions to be within the range of vertebra-soft tissue interface strain values. In such cases, 

we can isolate the vertebra-soft tissue interface strains by masking the elastograms with 

attenuation maps derived from the Bmode image as described in our earlier work or using 

confidence map estimation.  

 

The automatically segmented spine ridges only show surface information as “seen” by the 

transducer. However, from slippage conditions it is quite apparent that shear strains show to 

some extent additional quantifiable surface information (from the sides). These are noticeable 

around protrusions or angled surfaces of the spine as a consequence of the non-zero axial 

displacement gradients. By virtue of this, SP deviations from the midline can be observed more 

clearly and thereby reliably quantified from ASSE than a pure B-mode segmentation alone. This 

is evident in Fig 4.12 (columns 2, 3 and 4) where the SP could be mistaken as being intact when 

only observing superficial surface information from the B-mode images or the subsequent 



 

100 

 

automatic segmentation. Multiple studies have used the acoustic shadowing features of the 

spinous process in classifying scoliotic spine [70,73]. However, the tilted spinous process in Fig 

4.12(b.2-4) shows little evidence about the nature of the abnormality owing to the fact that the 

shadowing occurs roughly parallel to the midline similar to Fig 4.12(b.1). 

 

Although principal orientation has been used for quantifying midline deviation in this paper, it 

can be applied for other bony protrusions as well. However, AP and TP can contain a wide range 

of principal orientations among parallel axial slices due to their oblique geometry. As a result, 

comprehensive principal orientations for such complex bony protrusions need to be captured 

using a 2D transducer. Models generalized for different bony protrusions can then be constructed 

using these range measurements. Fracture classification incorporating such models is left for 

future work. In this paper the principal orientation obtained from the shear strains have not been 

validated using the orientations attributed to bony protrusions observed in the CT. This 

necessitates a proper image registration framework for the SP alignment and is also left for 

future work. Also, an aggregate of principal orientations from both axial and sagittal planes can 

have implications for cobb angle measurements for discerning scoliotic spines. 

 

Apart from the morphological descriptors, the strain number, mean and peak strain magnitude 

features were not extracted from experimental elastograms. This is mainly due to the limited 

sample size used for the in vitro experiments. However, we believe the corresponding trends 

observed in the simulation will still hold true in practice. It should be noted that the phantom 

experiments in conjunction with the one conducted on the actual tissue were meant to show in 

vivo experimental feasibility to highlight the difference between fracture and intact cases. Hence 
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the findings of the study are qualitative in nature and encourage a more thorough experimental 

study providing full quantitative assessment. Distinguishing axial normal strain and axial shear 

strain for intact and fractured vertebrae will hence be substantiated with more realistic in vivo 

evidences.  

 

4.5 CONCLUSION 

In this study we present the first attempt to assess the spine fracture using USE. Both intact and 

fracture groups were created, elastographically simulated and assessed using actual experiments. 

Commonly used numerical characteristics were combined with morphological descriptors 

motivated from the spine’s unique 3-D geometry to give a comprehensive evaluation of the two 

groups’ mechanical behavior subjected to the uniaxial compression. The results indicate that it is 

feasible to image the spine-tissue interface using USE and that equipped with proper descriptors, 

axial normal strain and axial shear strain maps may be important media to detect spine fractures 

and make inferences on other spinal abnormalities.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

Ultrasound imaging of the spine is generally accompanied by multiple bright tissue structures 

surrounding it such as muscle, fat and ligaments along with challenging noise conditions. This 

can cloud a physician’s perception of the spinal anatomy. This thesis argued for the importance 

of strongly suppressing the surrounding soft tissue regions and noisy ultrasound artifacts to 

enable easy isolation and interpretation of bony regions from ultrasound images.  The proposed 

enhancement methods have been predominantly demonstrated for the intact spine but the 

applicability towards spinal fractures and tibial bone regeneration has also been explored. 

Although bone surface segmentation and reconstruction techniques have been extensively 

explored in the previous literature, emphasis on algorithm robustness for a variety of bone 

anatomy or spinal fractures is lacking. Moreover, state of the art techniques that employ phase 

information do not emphasize reduction of soft tissue responses.   

 

5.1 CONTRIBUTIONS 

The primary contribution of this work is in the robust 3D surface rendering of the posterior 

vertebral column surfaces. Additionally, ultrasound elastography techniques that exploit 

surrounding soft tissue deformation are used to highlight the presence and location of fractures. 

The ideas around generated around this work can be summarized as follows: 

• The 2D local phase-symmetry model using a Log-Gabor filter bank of optimized scale 

and orientation parameters is employed to extract ridge features. But, regions such as 

dense connective tissues are also extracted as the by-product in this process. Acoustic 



 

103 

 

shadowing present underneath the spine surfaces is a discriminating aspect of bony 

regions. These are used to engineer novel intensity-based features which are in turn 

populated in a feature space for detection of the spine regions. Furthermore, 

morphological techniques are used to extract a pixel-thick spine surface for validation 

against manual delineation.  

• Overlaying the detected spine surface on the US image in the transverse plane enables 

easy visualization of the skin to epidural space distance facilitating accurate epidural 

placement. 

• A majority of the structural information about the posterior spine is extracted by virtue of 

the 3D spine surface rendering. This is generated by the stacking of individual 2D spine 

surface slices obtaining along a straight line centered on the midline (the location of the 

SP).  Quantitative performance assessment of the algorithm is validated the against 

manually obtained 3D spine surface delineation. 

• Applications to 3D visualization of the long bone regeneration process has been 

demonstrated. This is performed by extending the 2D local phase-symmetry model to 3D. 

Further post-processing by concave region filling of the detected bone regions has been 

proposed for superior smoothing effect. Results from the visualization show discernible 

stages of ossification which include surface of the native bone and newly formed bone. 

The scaffold for facilitating bone growth has also been isolated in this process. 

• Ultrasound elastography techniques are realized as a robust mechanism for extracting 

additional structural information from the spine. These are manifested in the form of axial 

normal and shear strain deformations of the tissue structures surrounding the spine. 
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Disruption of axial strains show unique patterns that can be a useful adjunct to US B-

mode images in highlighting fracture sites. 

• Novel strain-based descriptors as a function of the ultrasound elastograms are proposed to 

quantify the presence of a fracture.  Spatial strain distribution asymmetry using axial 

normal strain elastograms can assess the presence of a fracture. The degree of spinous 

process deviation from the midline is assessed by axial shear strain elastograms using the 

principal orientation descriptor.  

 

5.2 FUTURE WORK 

There are bountiful research possibilities that could stem from this work. In order to improve the 

performance of the spine surface segmentation, we will have to revisit the Log-Gabor filter used 

for the phase-symmetry model. The broad bandwidth of Log-Gabor filters provides maximal 

spectral coverage, and the zero DC value ensures maximal spatial localization [63]. Phase-based 

estimation of ridges is robust to intensity variations in the B-mode image but remains 

intrinsically noisy. This results in a less than ideal situation for fracture detection where in some 

cases, the ridges detect an intact surface instead of a fracture. In such cases, it may be worth 

investigating the choice of quadrature filter such as a Cauchy, Deriche, Gaussian Derivative or a 

Difference of Gaussian filter kernel (that also possess zero DC values) used for the phase-

symmetry model. Fixed parameters such as number of scales, orientations, angular bandwidth 

coupled with can be adjusted to improve the spine ridge feature strength. Thus, the study can be 

extended to a general framework that optimizes for the kernel and its associated parameter vector 

based on ridge feature strength mentioned in Chapter 1. The robustness of such a framework can 

be advantageous for identification of both multiple bone anatomies and fractures. This 
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framework can also be extended using 3D local phase symmetry features as demonstrated in this 

thesis for bone regeneration applications. However, a significant computational expense was 

observed for the 3D radon transform computation. Other groups have seemingly tackled this 

computational load problem with a possibility of parallelization by GPUs [57].    

The quantitative assessment of the surface rendering can be better validated using alternate 

modalities with superior resolution rather than reliance on a manual segmentation approach. One 

avenue that can open of plethora of possibilities for accurate 3D reconstruction is pose 

estimation. Scanning for volumetric ultrasound data can be done in conjunction with a position 

sensing device to map the US imaging planes to the alternate coordinate system. This can be 

invaluable for validation studies involving CT by fiducial marker placement [45-46]. Multiple 

studies have also demonstrated a 3D registration scheme for intraoperative scenarios. Position 

sensors can also be important for producing an accurate 3D rendering of the entire vertebral 

column by virtue of volume stitching techniques.  

 

The value of the strain-based shape descriptors from ultrasound elastography can be significantly 

boosted with the advent of 2D transducers. By observing the deviation of the protrusions on the 

posterior spine, various fracture types can be identified. This can be achieved due to principal 

orientation evaluation in both axial and sagittal planes.  Moreover, this also has implications for 

a comprehensive strain distribution symmetry assessment for the stability of the spine. Such 

information can be a boon for surgeons’ decision to undergo surgical intervention.   

 

Finally, an intelligent feature selection strategy involving elastographic deformation gradient 

components, phase-based features, intensity-based shadowing features can be used to compute a 
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probabilistic estimate of the spinal fracture. Such an estimate can be fused with the 3D spine 

surface rendering. This produces an enhanced 3D visualization of the posterior vertebral column 

with highlighted fractures.  
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