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ABSTRACT 

 

 Ultrasound and photoacoustic imaging techniques can benefit greatly combined 

with MEMS scanning mirror technology. Such mirrors can be designed with small enough 

form factors to fit into handheld imaging probes and the study presented in this thesis goes 

into (1) analyzing the performance of such a single-axis scanning mirror, (2) improving 

its design to function more robustly at higher scanning angles, (3) allow for precise 

monitoring and control of the angle using magnetic sensor. 

The scanning mirror consists of an aluminum deposited silicon mirror plate on top 

of a laser-cut flexible polymer double hinge structure and two permanent magnets, which 

allow for single-axis movement through electromagnetic actuation. This mirror’s 

operation was tested to verify its reliability. Through the tests, it was determined that the 

device could reliably operate at ±3° scanning angles without any degradation in 

performance, but at ±6° showed a steady decline in performance. 

Following these results, the mirror design was modified by doubling the length of 

the polymer hinges to generate twice the scanning angle. The redesigned mirror’s 

operation was tested ±6° scanning angle and proven to no longer go through performance 

degradation. The resonant frequency under water of the new mirror was also boosted by 

replacing the rectangular mirror plate with an elliptical one, fabricated using reactive ion 

etch.  
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A linear-Hall effect sensor was also later added to the device and calibrated 

accordingly to allow for more precise monitoring of the scanning angle and hence, further 

improve the reliability of our final mirror device package. 
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1. INTRODUCTION 

 

1.1  Background 

 Ultrasound and photoacoustic imaging technologies are used in a variety of non-

destructive and in-vivo biomedical imaging applications. Traditional ultrasound imaging 

works by sending pulses of sound waves in the 1-5 megahertz range using a transducer, 

and by picking up the waves reflected back from different boundaries of the biological 

target, an image of the internal structures can be generated. Photoacoustic imaging works 

by utilizing the photoacoustic effect which results from the absorption of electromagnetic 

waves such as pulsed laser or radio-frequency waves to induce vibrations in the target 

biological sample and generate acoustic waves in the ultrasound range, which is then 

picked up through receivers to construct an image.  

 Such imaging techniques when combined with the precision of scanning mirror 

devices can be used to obtain high spatial resolution microscopic images of deep tissues, 

internal organs, vascular morphology and gather important physiological and biochemical 

information such as blood oxygenation levels to detection of tumors and cancer [1-2]. 

Microelectromechanical systems (MEMS) mirrors allow for precision steering of the 

involved optical and acoustic waves and fast scanning of the target samples.  

However, conventional silicon-based MEMS mirrors are ineffective in such 

microscopic imaging applications since a liquid medium is necessary for efficient 

transmission of ultrasound waves. Silicon structures are often too fragile in liquid 

environments and are prone to breakage and degradation from turbulence, excessive 
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damping and surface tension forces as compared to operation in air. MEMS mirrors that 

can operate readily in water as in air is crucial in such imaging systems which signals the 

need for an innovative mirror design utilizing materials outside silicon to form the 

actuating parts. 

 

1.2  Summary of work 

 In chapter 2 of this thesis, analysis and reliability testing of a single-axis polymer 

hinge-based water-immersible MEMS scanning mirror design is carried out. Extensive 

testing is done using this mirror in both air and water medium and at two different scanning 

angles in water. The results of these tests concluded that, at the higher scanning angle, a 

degradation in performance occurs in the mirror with continued operation. 

 Chapter 3 goes into the process of improving the mirror design to tackle this 

degradation issue and the fabrication of the new mirror. The length of the polymer hinges 

is doubled in the new design and the rectangular mirror plate is changed out for an 

elliptical one to reduce the fluid damping resistance during operation. This new mirror is 

then characterized in air and water and then afterwards run through the same reliability 

testing process. The testing results concluded that the performance degradation issue had 

been solved with the new changes in design. 

 Chapter 4 details the incorporation of a linear Hall-effect sensor into our mirror 

device to further improve the reliability and repeatability of its performance. The 

sensitivity curve of the Hall sensor is first acquired through experimentation and then 

added to our mirror device. The readings of the Hall sensor are then calibrated to the 



 

3 

 

 

respective scanning angle of the mirror, and following that, any change in the scanning 

angle could be reliably picked up by a corresponding change in the Hall sensor reading, 

allowing for precise control and monitoring of the angle in our final mirror device. 
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2. RELIABILITY TESTING OF POLYMER HINGE-BASED SCANNING MIRROR 

 

2.1  Mirror design and operation summary 

 The schematic design of the single-axis polymer-based scanning mirror is given in 

Figure 2.1 [3].  The mirror plate is attached atop the biaxially oriented polyethylene 

teraphtalate (BOPET) hinge structure and is actuated by passing an AC signal through the 

inductor coil which interacts with the magnetic field produced by the permanent magnet 

configuration and generates the oscillating motion of the mirror plate. 

 

 

Figure 2.1 (a) Schematic side view of mirror and (b) 3D model of mirror. Modified 

from [3] 

 

2.2  Characterization of scanning mirror device 

The characterization of the mirror was done using a laser-tracing method [3-4]. An 

acrylic holder piece was taped to a mounting stand first, and the mirror device is set on the 

acrylic holder piece using screws. The screw holes on the acrylic holder was placed along 

a 45° line to the horizontal which holds the mirror at the same angle and reflect the 
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horizontally incident laser beam to bounce off the mirror plate straight down onto the ruler. 

The distance between the mirror and the ruler on the bottom is 19.5 cm and through 

trigonometry, the scanning angle of the mirror could be determined by the length of the 

laser trace incident on the ruler. 

 

 

Figure 2.2  Laser tracing setup. Modified from [3] 

 

 An AC signal generator was used to generate the driving signal which is passed 

through the inductor coil, and a parameter analyzer connected in series reads the driving 

current passing through the coil at the respective signal voltage amplitude. To characterize 

the performance of the mirror versus the frequency of the driving signal, a driving current 

of 20 mA was passed through the inductor coil and the frequency of the signal was swept 

from 50 Hz to 250 Hz. The obtained scanning angle versus the frequency plot is given in 

Figure 2.3 and from it the resonant frequency of the device was determined to be 218 Hz, 
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producing a scanning angle of ±8.89°. All angles mentioned hereon are actually half-

angles, meaning the device’s maximum angular displacement from the center axis. 

  

Figure 2.3  Device characterization in air, signal frequency vs. scanning angle 

 

The 218 Hz resonant frequency was then used as our signal frequency in the next 

experiment to determine the scanning angle produced versus the driving current. The 

angles of operation of concern for this device are ±3° and ±6° which were attained at 9.45 

mA and 14.2 mA, respectively, as could be determined using the plot shown in Figure 2.4. 

The response also seemed to be fairly linear. 
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Figure 2.4  Device characterization in air, driving current vs. scanning angle 

 

 The same characterization experiment was carried out in water medium, with the 

mounting stand holding the device placed underwater along with the ruler. The frequency 

characterization determined the resonant frequency of the device now to be 183 Hz. 

 

 

 

 

 

 

 

 

 

Figure 2.5  Device characterization in water, signal frequency vs. scanning angle 
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The current characterization provided us values of 22 mA and 60 mA for ±3° and 

±6°, respectively. The response was again linear.  

 

 

 

 

 

 

 

 

Figure 2.6  Device characterization in water, driving current vs. scanning angle 

 

2.3  Reliability testing of mirror in water, continuous run 

Following the characterization of the device, the next test was done to determine 

the device’s operating lifetime at ±3° scanning angle in water. The experimental setup was 

the same as that used during characterization. The operating frequency was kept fixed at 

183 Hz throughout the whole test and the driving current was adjusted to keep the scanning 

angle at ±3°. The mirror was kept underwater for the whole duration of this testing phase. 

The data recorded are presented below in Figure 2.7. 
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Figure 2.7  Reliability testing data in water, continuous run 

 
 

 

 

Figure 2.8  Reliability testing resonant frequency data in water, continuous run 

 

 The resonant frequency at the start of the test was 178 Hz and required current 23.4 

mA. This increased to the 62.3 mA when measured on the second day, with the resonant 

frequency now being 166 Hz. Around here seems to be the normal region of operation, 



 

10 

 

 

with all subsequent current readings close to the 60-70 mA range and resonant frequency 

hovering around 165 Hz. With these results, it could be surmised that the polymer hinge 

structure needs to go through a process of ‘break-in’ at the start of operation to a more 

stable value. The shift in resonant frequency over the break-in process seem to be around 

12-15 Hz in water, with an increase of around 40-50 mA in current required if operation 

frequency is kept unchanged. The lifetime of the device also exceeded expectations, with 

the device performing normally over 500 hours of continuous runtime. The test was 

stopped once the run exceeded 500 hours. 

 

2.4  Reliability testing of mirror in water, cycles 

 The mirror was run in 8 hour cycles each day; this was to better simulate heavy 

but practical running conditions for the device in industry. The device was taken out of 

water at the end of a cycle and put back in the next day to do the following run. The data 

collected over 15 such cycles is presented in Figure 2.9. 

 



 

11 

 

 

 

 

 

 

 

Figure 2.9  Reliability testing data, cycles 
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 Starting from the first cycle (0-8 hours), it can be seen that the driving current 

required for ±3° was higher, 31.2 mA, than in the characterization test, 22 mA; however, 

it fell back down to around 25 mA in the second cycle (8-16 hours). It is from the third 

cycle (16-24 hours) that the break-in pattern began to emerge. A significant increase in 

driving current was required over the third cycle, with almost double the current was 

required by the end at 46.9 mA to keep the scanning angle at ±3°, compared to the start at 

26.4 mA. This would normally indicate a degradation taking place in the device but, at the 

start of the next cycle (24-36 hours), it was observed that the driving current required for 

±3° was 27.6 mA, similar to the measurement at the start of the previous cycle. This lead 

to the hypothesis that a form of temporary degradation and restoration might be taking 

place in the device’s polymer hinge structure. 

 Looking at the data, it can be safely affirmed that there is no general discernable 

upward or downward trend in readings over the 120 hour test run. However, the required 

driving current does vary over a significant range of values within a run cycle. The 

required current can be close to 20 mA at the start of a cycle and increase threefold to 60 

mA driving current required to maintain ±3° angle at the end. This change is also 

correlated to the change in resonant frequency of the device. The resonant frequency was 

also measured alongside the driving current over one of the test cycles, this data is 

presented in Figure 2.10. It can be observed that the required current increases in part of 

the resonant frequency shifting further and closer to the operating frequency of 183 Hz. 
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Figure 2.10  Resonant frequency vs. driving current shifts 

 

 The device seems to undergo a process of ‘break-in’ at the start of most cycles. 

The required current is always lower at the start and then gradually increases to a higher 

stable value which could possibly be considered the device’s normal region of operation 

over a longer runtime cycle. 

 

2.5  Reliability testing of mirror in air, cycles 

 The next reliability test the mirror underwent is for ±3° scanning angle with 8 hour 

run cycles in air. From this test, it was hoped to determine if the polymer structure behaved 

the same in air as in water. The resonant frequency in air for the mirror was determined to 

be 218 Hz during the characterization tests and that value was used as the driving signal 

frequency throughout this phase of the tests.  
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Figure 2.11  Reliability testing data in air, cycles 

 

 

 

 

Figure 2.12  Reliability testing resonant frequency data in air, cycles 

 

 

The data collected is presented in Figure 2.11, and it can be observed that the 

pattern of ‘break-in’ in between cycle are present here as well. From the first few cycles 



 

15 

 

 

the driving current values seemed to have been following a downward trend, but it did not 

continue to hold firmly past the fourth cycle, with current values going back up. The 

current values stayed within the 12-16 mA range, and resonant frequency staying within 

the 208-211 Hz range over this test. It could be concluded that the mirror operates similarly 

in both mediums at ±3° scanning angle. 

 

2.6  Reliability testing of mirror in water, large angle, cycles 

The next and final test performed on this version of our mirror device is ±6° 

scanning angle in water, with 8 hour operation cycles. The data collected is given in Figure 

2.13. 

 

Figure 2.13  Reliability testing data in water, large angle, cycles 

  

The signal frequency was tried to be kept at 183 Hz like the previous test, but the 

device quickly failed to register ±6° scanning angle within 10-15 minutes of operation 

with driving currents less than 100 mA, which is the maximum amount of current our 
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signal generator could output to the device. Hence, a new signal frequency was chosen at 

170 Hz and proceeded forward with the testing. 

 

Figure 2.14  Reliability testing resonant frequency data, large angle, cycles 

 

For the first two cycles of this test, it can be observed that an increasing trend in 

the required driving current is needed for ±6° angles, requiring 47.7 mA at the start of the 

first cycle and 77.4 mA at the end of the second. The resonant frequency also dropped 

from 170 Hz to 162 Hz. But during the third cycle, the device could no longer reach ±6° 

scanning angles at a signal frequency of 170 Hz, and it had to be decreased to match the 

new resonant frequency of the device at 161 Hz.  

The third and fourth cycles showed the same trend in driving current increase, the 

third cycle needing an average of 62 mA and the fourth cycle needing 83 mA. Upon the 

start of the fifth cycle, the mirror could still reach ±6° at 161 Hz signal frequency with a 

required driving current of 93.3 mA; but an hour into this cycle, the signal frequency 

needed to be changed to 158 Hz as it could not reach ±6° under less than 100 mA current. 

The mirror managed to scan at ±6° angle for the next 2 hours at a driving current of 87.8 



 

17 

 

 

mA, but again failed to reach ±6° after. The signal frequency was again tried to be adjusted 

to make the mirror reach ±6° scanning angle, but this time it did not manage to reach the 

desired angle at any signal frequency with a driving current of less than 100 mA, at which 

point the test was stopped. 

 

2.7  Conclusion 

The mirror had a total operation runtime of 659 hours; 120 hours in the ±3° 

scanning angle in 8 hour cycles, 504 hours in the ±3° continuous run test, and 35 hours in 

the ±6° 8 hour cycle test. From the tests, it could be concluded that the single axis mirror 

using polymer hinge structure design is able to reliably operate at ±3° scanning angles and 

has a long lifetime more than satisfactory for use in the photoacoustic and ultrasound 

imaging industry. However, it could not hold up the same integrity in performance when 

operated at ±6° scanning angles, quickly deteriorating and unable to reach said scanning 

angle.  
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3. DESIGN AND FABRICATION OF NEW MIRROR DEVICE AND FURTHER 

RELIABILITY TESTING 

 

3.1  Improvements to mirror device design and fabrication overview 

 In the previous chapter, the reliability of the polymer hinge structure based design 

water-immersible scanning mirrors was proven, given it operates under certain scanning 

angles and is not subject to shear strain enough to cause permanent degradation over time. 

The shear strain on the polymer hinges can be determined by, 

𝛾 =
∅𝜌

𝐿
 

where 𝛾 is the shear strain, ∅ is the scanning angle, 𝜌 is cross-sectional area, L is the length 

of the hinges. 

 Doubling the scanning angle from ±3° to ±6° doubles the amount of shear strain, 

which the hinges cannot sustain without resulting in degradation. So, to keep the strain 

same at ±6° scanning angle, the length of the polymer hinges can be doubled . 

 Based on this theory, a new design for the polymer structure was created. The 

length of the hinges in this new design is double that of the previous one, and the outer 

shape has also been made into an ellipse to accommodate for an elliptical mirror plate that 

would reduce damping resistance in water. The computer-aided design (CAD) drawing of 

the previous and new polymer structure are given in the Figure 3.1. 
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Figure 3.1  (a) Previous hinge design and (b) new hinge design 

 

The length of the hinges in the previous design was 0.5 mm and has been doubled 

to 1 mm in the new design. An elliptical shape was also chosen over a circular one to allow 

for more incidence area to steer laser beams and ultrasound waves. 

 Corresponding elliptical acrylic spacers were also designed to accompany the new 

hinge structure. The designs were then cut using a laser cutting machine (PLS6.75, 

Universal Laser System) with the polymer hinges cut out from 75 µm thick BOPET film, 

and the acrylic spacers cut from 1mm thick acrylic sheet. The new mirror was assembled 

with the redesigned elliptical spacer and hinge replacing the previous ones, but the 

rectangular mirror plate was left as is for now. The purpose of assembling this mirror was 

to test out the new hinge structure, and to verify first if it could solve the reliability issue 

at ±6° scanning angles. 
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3.2  Characterization and testing of new mirror device 

The mirror was characterized at ±6° first in the same process as before and the 

values recorded are provided in Table 1.  

 Resonant frequency Driving current 

Air 126 Hz 26 mA 

Water 90 Hz 62 mA 

 

Table 1  Characterization results of new mirror device 

 

The mirror’s operation was then tested in water with 8 hour run cycles and the data 

collected is presented in Figure 3.2. 

 

Figure 3.2  Test data in water, new device 
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 The signal frequency was kept fixed at 90 Hz, and the current is adjusted to keep 

the scanning angle at ±6°. The mirror started off requiring 92.1 mA of current but quickly 

dropped to the 62 mA probably following the ‘break-in’ process. This pattern repeats for 

all the 4 cycles totaling a run time of 32 hours. The resonant frequency of the device stayed 

constant at 90 Hz throughout the whole run. No deterioration in the performance could be 

observed from these experimental results as was present with the previous polymer hinge. 

 

3.3  Fabrication of elliptical mirror plate 

 The change in design of the hinge seemed to have resolved the issue of degradation 

at ±6° scanning, but the resonant frequency had dropped considerably from 183 Hz to 90 

Hz. Our next objective was to bring up the resonant frequency so that the device could be 

operated satisfactorily at 100 Hz signal frequency. We hence moved on to fabricate the 

elliptical mirror plate to replace the current rectangular one, which would result in reduced 

damping resistance experienced by the device in water, as well as slightly cut down the 

weight of the mirror plate and bring the resonant frequency up. 

 To fabricate the new mirror plate, reactive ion etch (RIE) was used to etch out the 

plates out of an aluminum deposited single-crystal silicon substrate. The photomask layout 

was created using L-Edit and is given in Figure 3.5. The dimensions of the ellipses are 

8.73 mm along the major axis and 6.38 mm along the minor axis. 

 After the photomask was created, the substrate on which the mirrors would be 

etched was readied. Using an electron beam evaporator (PVD 75 Ebeam Evaporator, 

Lesker), a 150 nm layer of aluminum was deposited on to a 2-inch single-crystal silicon 
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wafer. Following the deposition, the photomask pattern was transferred on to our wafer 

using photolithography and an aluminum etch. Following this, we used RIE (Plasmalab 

100 RIE System, Oxford Instruments) to etch away the surrounding silicon and leave us 

with just our aluminum deposited elliptical silicon mirror plates.  

  

Figure 3.3  (a) Photomask layout for elliptical mirrors and (b) etched out mirror 

plates 

 

3.4  Characterization and reliability testing of new device with elliptical mirror 

plate 

 A new mirror was then assembled trading in the rectangular mirror plate for the 

elliptical one and then characterized. The 3D model of the new mirror is given in Figure 

3.4 and the characterization results are provided in Table 2. 
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Figure 3.4  3D Model of new mirror 

 

 

 

 

 

Resonant frequency Driving current 

Air 125 Hz 16.3 mA 

Water 100 Hz 65.1 mA 

 

Table 2  Characterization results of new mirror device with elliptical mirror plate 

 

The resonant frequency with the new mirror plate remained around same in air, 

but an increase of 10 Hz was seen under water, from 90 Hz recorded in the previous mirror 

to 100 Hz. With the bump in resonant frequency achieved as expected, the next phase of 

the reliability testing of this mirror was proceeded to.  

The mirror was tested for ±6° scanning angle in water medium, with the signal 

frequency set at 100 Hz matching the resonant frequency characterization result. The 

mirror was run in 8 hour cycles per day, with the mirror taken out to dry between cycles. 

The data collected over 17 cycles of tests done on the mirror are presented in Figure 3.5. 
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Figure 3.5  Reliability test data in water, new device 
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Figure 3.6  Reliability test resonant frequency data in water, new device 
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 From the current value plot, a similarity could be observed between the data for 

this mirror running at ±6° and the first mirror design tested at ±3° scanning angles. The 

driving current required varies over a wide range here as well from the lowest recorded at 

41.9 mA to the highest at 90.8 mA, but no decipherable up or downtrend could be observed 

in the values, meaning no degradation occurred in the device. The resonant frequency 

varied between 93-103 Hz, but the device could be always be operated at reasonable 

driving currents at 100 Hz signal frequency, which was the aim for the elliptical mirror 

plate based design.  

 

3.5  Conclusion 

 Following the identification of the reliability issue faced by the original mirror at 

±6°, modifications were made to the polymer hinge structure, doubling the hinge lengths 

to acquire double scanning angle at the same torque as ±3°. The shape of the hinges was 

also made elliptical to accommodate for an elliptical mirror plate fabricated using RIE. 

The new device managed to operate reliably at our desired ±6° scanning angle in water 

with no sign of degradation over the 136 hour testing run. 
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4. IMPLEMENTATION OF SCANNING ANGLE MEASUREMENT SYSTEM 

 

4.1  Introduction 

There are many forms of magnetic sensing technologies used throughout 

applications in research and industry. From inductive coil magnetometers to MEMS based 

magnetic sensors, each has its own set of pros and cons when it comes to size, sensitivity, 

sensing range and costs. But the most readily available and cost-effective commercial 

magnetic sensors utilize the Hall effect phenomenon to measure magnetic fields. 

From the reliability test data collected from our mirror device, though it could be 

concluded that the new design was able to run at ±6° without degradation in performance, 

the driving current did need to be adjusted to maintain the angle at a fixed value. To further 

the reliability of the device in the sense of keeping the angle stable, the angle of the device 

must first be able to be read accurately and continuously. This chapter details the process 

of implementing magnetic sensing using a Hall sensor to precisely monitor the scanning 

angle and then its subsequent addition to the device package. 

 

4.2  Magnetic field simulation and Hall sensor specifications  

First, the magnetic field of the device configuration is simulated in order to find 

the magnitude of the field and the ranges of concern so as to properly select a Hall effect 

sensor to fit the device’s needs. The simulation was done using FEMM and the results are 

shown in Figure 4.1. 
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Figure 4.1  FEMM simulation of device configuration permanent magnets 

 

 

 

Figure 4.2  Region of interest for Hall sensor placement 

 

Two NdFeB Grade 40 magnets were placed 7.25 mm away with opposite polarity 

directions, and the strongest field reading could be seen to be around 400 mT at the top 

surface along the center. At 1.5 mm away from the top, the field can be seen to range in 
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between 40 mT to 80 mT. This is a reasonable length of distance to place the sensor at so 

to not accidentally come into contact with the mirror during scanning. Based on this, the 

analog linear Hall-effect sensor SS49E from Honeywell was chosen. It operates within 

this magnetic field range and has a package size of 4.1 mm x 1.6 mm x 3 mm, close to the 

range of our mirror device’s dimensions. Having a linear response also will allow for 

easier calibration of the Hall sensor reading to our mirror’s scanning angle. The 

specifications of the Hall sensor are given in Figure 4.3. 

 

Figure 4.3  (a) Honeywell SS49E Hall sensor and (b) its response provided in 

specification sheet 

 

4.3  Hall sensor characterization  

After receiving the Hall sensor, the device was first characterized. The output 

voltage of the Hall sensor was measured against its separation from a fixed permanent 

magnet, with the help of a linear translational stage (M403.2DG Precision Translation 

Stage, Physik Intsrumente). The Hall sensor was held in place at the fixed end of the stage, 

and the permanent magnet moved away from the sensor in steps whilst recording the Hall 
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sensor output voltage. The setup schematic is shown in Figure 4.4. The output voltage 

against separation plot is given in Figure 4.5 as well as the corresponding sensitivity in 

Figure 4.6. 

 

Figure 4.4  Experimental setup for Hall sensor characterization 

 

 

Figure 4.5  Hall sensor characterization, output voltage vs. separation 
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Figure 4.6  Hall sensor characterization, sensitivity vs. separation 

 

From the plots, it could be seen that the relationship in both cases is an inverse 

exponential versus the separation due to the magnetic field cutting the Hall sensor area 

decreasing in the same rate. The translation the mirror plate goes through is approximately 

76 µm per 1° scanning angle, so since the objective was to keep the scanning angle fixed 

at ±3° or ±6°, the device would be working inside a linear region of the sensitivity curve 

making calibration simpler. 

 

4.4  3D printing of new holder and device assembly  

Since the Hall sensor had been characterized and shown to meet the specifications 

for scanning angle monitoring, it was then proceeded to be incorporated into our device 

package. The previous 3D printed holder’s design was modified to accommodate for the 

Hall sensor, by adding an elevated extension to serve as a base for the Hall sensor to be 
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put on to. The model of the new holder is given in Figure 4.3. The holder was 3D printed 

with photopolymer resin using an optical 3D printer (Nobel Superfine, XYZPrinting). 

 

 

Figure  4.7 (a) 3D Model of new holder and (b) 3D printed new holder 

For the next step, in order to place the Hall sensor properly on the new holder and 

below the magnet, the Hall sensor was sanded, reducing its thickness down from 1.6 mm 

to 0.8 mm using a file. This allowed the Hall sensor to be placed properly with enough 

space provided for the mirror’s motion whilst being close enough to the magnet to ensure 

good sensitivity. The Hall sensor was glued to the extension of the holder using silicon 

adhesive (RTV 108, Momentive Performance Materials).  
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Figure  4.8 (a) Assembled device package and (b) top view 

 

4.5  Calibration and testing of Hall sensor scanning angle monitoring 

Following the construction of the mirror device with the Hall sensor, it was then 

calibrated and tested to see how accurately the scanning angle could be measured. The 

experiment was done in air medium with the setup being as before in all the reliability 

tests. The Hall sensor output was connected to a digital oscilloscope (TDS 2014B Digital 

Storage Oscilloscope, Tektronix) from which the peak-to-peak amplitude of the oscillating 

output voltage of the Hall sensor could be measured by the oscilloscope. The average 

function of the oscilloscope was also used to remove noise, which averaged 64 sequences 

of waveforms and display the computed waveform. 

The peak-to-peak voltages were first calibrated to corresponding scanning angles 

of the device, determined by using the laser tracing method as in previous tests. The 

scanning angle was decreased in 0.1° steps starting from 3° up to 1°, and the corresponding 



 

34 

 

 

peak-to-peak voltage values recorded. It was then again brought back up to 3° angle in 

0.1° steps to test for repeatability in the peak-to-peak values registered, and the same 

amplitudes were recorded. This was repeated two more times, and peak-to-peak voltages 

values recorded remained same through all three repetitions. The plot of the data collected 

is given in Figure 4.9. 

 

Figure 4.9  Hall sensor data from angle monitoring calibration and test 

The relationship between the scanning angle and Hall sensor output can be seen to 

be linear from the plot, with around 0.1 mV change in output voltage measured for each 

0.1° change. The sensitivity obtained, though less than expected in theory, is still good 

enough to be able to monitor our scanning angle with the desired precision. 

 

4.6  Conclusion  

In order to further increase the reliability of the mirror device’s operation, a 

scanning angle monitoring feature using a linear Hall effect magnetic sensor was 

introduced. The range of magnetic field strength that our device’s permanent magnet 
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configuration produced was first determined through simulation. Based on the results, a 

suitable linear analog Hall-effect sensor was chosen.  

Sensor characterization was done to obtain the response of its output voltage to 

distance from a permanent magnet, from which the sensor’s linear response in the region 

of interest was determined. To then accommodate the sensor in the device, the 3D printed 

holder’s design was changed to be able to hold the Hall sensor below the magnet, and the 

sensor was also sanded to reduce its thickness by half before adding it to the device 

package. 

Following this sensor’s output was then calibrated to the corresponding scanning 

angle, after which the repeatability of the output voltage measured versus scanning angle 

was tested. It was shown to be perfectly repeatable over three sweeps, and the sensor 

sensitive enough to be able to determine scanning angle up to 0.1° in precision. 
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5. CONCLUSION AND FUTURE WORKS 

 

MEMS scanning mirrors have significant potential in applications of ultrasound 

and photoacoustic microscopy, providing a cost-effective, small form-factor solution to 

beam steering and scanning. Conventional silicon-based MEMS mirrors do not operate 

well in the required liquid medium needed for ultrasound, hence polymer-based designs 

were developed to resolve the issue. However, not much research has been done into 

determining the reliability of polymer material in such applications, which was the 

inspiration and aim of the study done in this thesis. 

Extensive testing was performed on such a single-axis polymer hinge-based 

MEMS scanning mirror, in two different mediums of air and water, and at two different 

scanning angles of ±3° and ±6°. Through the tests it was shown that the mirror could 

operate reliably in both air and water at ±3° scanning angle. A ‘break-in’ phenomenon 

was observed to be taking place at the start of a test run, with shifts in the device’s resonant 

frequency recorded and driving current needing to be adjusted to maintain the desired 

scanning angle. Though this was a pattern, there was no general deterioration seen over 

time in the performance of the device. But, a clear degradation in performance was seen 

when operated at ±6°, and the device quickly failed to reach the desired angle following a 

few test cycles. It was hence concluded that the polymer hinges were reliable given that 

the torque exerted on them did not exceed a certain limit, which if it did, resulted in 

permanent deformation occurring slowly over operation. 
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Based on the results of the tests, changes were made to the polymer hinge structure, 

doubling the length of the hinges to allow for double the scanning angle at the same torque. 

An elliptical shape was also implemented to lessen damping resistance experienced by the 

device operating in water. Following laser-cutting of the new hinge structure and 

fabrication of the elliptical mirror plates using RIE, the new mirror device design was 

assembled and tested. It was shown to operate reliably at ±6°, solving the reliability issue 

at that angle, and though a decrease in resonant frequency of the device was observed, it 

could still be operated at 100 Hz signal frequency which is satisfactory enough for 

scanning purposes. 

To mitigate the effects of ‘break-in’ and required adjustments in driving current 

over a run cycle, a way to precisely monitor the scanning angle is required. Therefore 

magnetic sensing was implemented using a linear Hall-effect sensor added to the device 

package. The Hall sensor was chosen based on magnetic simulation results of the device 

permanent magnets, and then was characterized to determine sensitivity and response of 

the sensor. Following that, a new holder was designed that allowed the Hall sensor to be 

placed below the magnet of our mirror device and then was tested to determine the 

accuracy of the sensor readings. Following calibration, the sensor readings were shown to 

be correctly identify the scanning angle of the device, and highly accurate in its 

measurements. Precision of up to 0.1° monitoring of the angle was achieved. 

For future works, this monitoring system could be utilized to create a feedback 

control system using microcontrollers and maintain a fixed scanning angle through 

automatic adjustments of driving current. The structural integrity and lifetime of the 
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polymer hinge-based design scanning mirrors was proven to be more than satisfactory in 

this study, and upon implementation of a feedback system in the future, the reliability of 

the device can be even more improved for use in applications in and beyond ultrasound 

and photoacoustic microscopy. 
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