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ABSTRACT 

The energy crisis has gradually become an important issue facing the world. There 

are limited reserves of coal, oil, natural gas and other resources. Furthermore, fossil-fuel 

combustion can cause environmental problems such as global climatic changes. In recent 

years, there has been a growing attention to energy cascade utilization and waste heat 

recovery. There has also been a recognition that energy and water issues are intertwined. 

Addressing the shortages of water and energy in an integrated manner is key to economic 

development and social progress.  

 

Upon the use of once-through cooling water in power plants and industrial facilities, 

the discharged water may be too hot for immediate discharge to the surrounding water 

bodies and may cause thermal pollution. This work proposes to extract excess heat from 

the cooling water leaving the power plant and to effectively use it to drive a heat pump. 

The net result is the mitigation of thermal pollution and the reduction of external-fuel usage 

in heat pumps. A theatrical analysis is carried out for the proposed configuration. To 

illustrate the validity of the recommended system, a case study is solved and a techno-

economic analysis is carried out.  
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1 INTRODUCTION 

1.1 Water-energy nexus 

 

Figure 1. Water-energy nexus [1] 

 

Figure 1 shows the relationship between water and energy. With the 

development of science and technology, many countries pay more and more attention 

to energy conservation and emission reduction. The energy crisis has gradually become 

an important issue across the world. Due to the limited reserves of coal, oil and natural 

gas, heat recovery has been paid more and more attention in recent years.  

 

Water and energy are both important natural resources, and the relationship 
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between them is very close. At present, almost all energy exploitation and utilization 

are inseparable from the water, and the use of water resources always be energy-driven. 

However, with the growing demand for water and energy from economic and social 

development, water and energy are two major factors that may constrain future 

economic and social sustainable development. The United Nations set the theme of 

World Water Day on March 22, 2014 as "Water and Energy", which fully demonstrates 

the great importance attached to water and energy issues at the global level. The 

international attention on water resources and energy is gradually increasing, and some 

researches on water-energy nexus are carried out. The water-energy nexus is of great 

importance to the world's water and energy security. [1] For the United States, Water-

energy nexus is mainly influenced by the following factors. First, climate change has 

already begun to affect precipitation and temperature patterns across the United States. 

Second, U.S. population growth and regional migration trends indicate that the 

population in arid areas, such as the Southwest, is likely to continue to increase, further 

impacting the management of both energy and water systems. Third, introduction of 

new technologies in the energy and water domains could shift water and energy 

demands. [2] 

 

 

Figure 2. Water consumption of energy production 

（Source: iopscience.iop.org） 

 

Figure 2 shows that thermoelectric power accounts for 80% of global electricity 
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production, which is a big water user. In the United States and several Western 

European countries, 15.5% of the water is used to produce thermoelectric power. The 

consumption of water by thermoelectric production depends mainly on the choice of 

cooling technology, not on whether the fuel is coal, natural gas, nuclear energy or oil. 

In addition, hydroelectric power also needs abundant water resources. 

 

In water-energy nexus, renewable resources are also an important part. At 

present, 15% of the world's electricity comes from hydropower. Hydropower is being 

used as a major renewable energy source all over the world. This will result in 

competition for water resources between different sectors and the environment. After 

the dam is established, the surrounding land become a lake. This will have an impact 

on the local rainfall and temperature. In addition, changes in the river may cause the 

death of local creatures. From a water-saving perspective, the most sustainable source 

of energy comes from wind and solar, but both are intermittent and the manufacturing 

process of these devices consumes a lot of water. On the other hand, the exploitation 

and utilization of water resources consumes energy. The collection and transportation 

of water resources are inseparable from energy. In general, the relationship between 

water and energy is complex, and they depend on each other. 

 

Recycling the cooling water heat of the power plant can effectively reduce the 

energy consumption of the power plant. Besides, this measure can improve the power 

plants’ economic benefits and energy efficiency. This will make the power plant more 

environmentally friendly. 
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1.2 Eco-Industrial Park 

 

Figure 3. An eco-industrial park's structure [3] 

 

Figure 3 shows an eco-industrial park’s structure. An eco-industrial park's goal 

is to increase its economic efficiency while minimizing the environmental impact of 

participating businesses. These approaches include green design, cleaner production, 

pollution prevention, improving energy efficiency and intra-firm cooperation. The 

biggest difference between the eco-industrial park and the traditional industrial park is 

that, guided by the theory of eco-industry, the eco-industrial park focuses on the 

construction of ecological chain and eco-net in the park to maximize the efficiency of 

energy using and reduce the emission of pollutants. Different from the traditional 

"design-production-use-disposal" mode of production, eco-industrial park follows the 

recycling economy model of "Recycling - Reuse - Design - Production". It is modeled 

on the natural ecosystem material circulation, so that different enterprises form a 

symbiotic combination of industries that share resources and exchange by-products. 

This can achieve the optimal allocation of resources between each other. 
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Circular principle is an important principle of eco-industrial park, including 

four aspects.  

 

(1) The material cycles. The resources that industrial development relies on are 

limited. However, industrial production always consumes these resources continuously, 

and produces wastes in large quantities after production and consumption. The key to 

resolving this contradiction is to achieve the recycling of waste materials. 

 

 (2) Rational use of energy. Although the energy cannot be recycled, it can be 

used according to energy quality to achieve cascade energy. Waste heat recovery 

process or the use of waste energy can increase energy efficiency. This is an important 

way to save energy.  

 

(3) Information sharing and feedback. The flow of information can reduce the 

use of energy. This is the guarantee for the steady development of eco-industry.  

 

(4) Diversity is also one of the important principles of eco-industrial park. The 

principle of diversity is the basis for building the eco-industrial park ecological chain. 

In the construction of eco-industrial park, different products and different enterprises 

can be introduced to make use of their differences in energy needs to achieve energy 

saving. 

 

With the development of industrial system, the structure has become more and 

more complex. While the direction and ways of contact within the system have 

increased, the eco-industrial park has gradually become more and more complete. 

Mutual use of waste between enterprises breaks the original one-way linear model, and 

it forms a multi-directional flow of non-linear structure. The waste produced in the 

company's production process is fully utilized in the recycling process, so there is no 

need to establish a company that specifically deals with pollutants. Compared with the 

early eco-industrial park, the new eco-industrial park not only has ecologically stable, 

but also has high market stability. Even if an enterprise is discontinued due to the 
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market, it will not lead to the destruction of the entire eco-industrial park system. 

 

1.3 Energy system 

 

Figure 4. A type of energy system  

(Source: http://www.renewablegreenenergypower.com/future-

sustainableenergysystems/) 

 

Figure 4 shows the current EU energy system. An energy system is a system 

that primarily designed to supply energy-services to end-users. [4] From a structural 

viewpoint, the IPCC Fifth Assessment Report defines an energy system as "all 

components related to the production, conversion, delivery, and use of energy”. [5] The 

field of energy economics includes the energy market, which regards the energy system 

as a technical and economic system that meets consumer demand for heat, fuel, and 

electricity. Thus, the analysis of energy systems connects the disciplines of engineering 

and economics. Combining knowledge of these two areas is challenging, especially 
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when it comes to Macroeconomic. [6] From the aspect of structure, energy systems, like 

any general system, consist of a series of interacting components located in the 

environment. The composition of the energy system and the determination of behavior 

depend on the environment, purpose, and function. Therefore, the energy system is an 

abstract concept. In the process of solving practical problems, the energy system should 

be designed according to the situation. 

 

1.4 Energy structure 

In today's energy structure, non-renewable resources are still the main sources 

of energy. Fossil fuels impact the environment in two ways. First is global climate 

change. Fuel combustion produces a mountain of carbon dioxide, which can increase 

the concentration of carbon dioxide in the atmosphere and resulting in a greenhouse 

effect. The greenhouse effect will change the global climate and endanger the 

ecological balance. The second is thermal pollution. Waste heat from thermal power 

plants is discharged into rivers, lakes, the atmosphere or the sea, which causes heat 

pollution in most cases. For example, when high-temperature hot water is discharged 

into a lake, creatures in the lake will die because of a sharp rise in temperature. 

Therefore, the original ecological balance was destroyed, and then causes many 

environmental problems. 

 

Figure 5 shows the global energy structure and the Chinese energy structure. It 

shows that coal still accounts for a large proportion in energy using. In China, coal 

accounts for more than 60% of the total energy consumption. Coal mining and 

utilization will consume a lot of water. If the waste heat of fuel combustion is recovered, 

the system can save a lot of fossil fuels every year. Since water is required for the 

exploitation and utilization of energy, waste heat recovery also helps save water. At the 

same time, environmental problems can be alleviated by reducing the amount of fuel 

used. 
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Figure 5. Global and Chinese energy structures 

 

 

So far, the dominant position of fossil fuel in energy consumption remains 

irreversible, but its structure is constantly changing. After entering the 20th century, 

especially since the Second World War, the consumption of oil and natural gas 

continued to increase. Finally, oil replaced coal as the most important energy source. 

 

Although the status of fossil energy as a dominant energy will not change in 

the short term, the future energy structure will change significantly due to the impact 

of factors such as global climate change and the development of new technologies. 

On the one hand, in the foreseeable future, the proportion of fossil energy will 

continue to decline, while the proportion of renewable energy will continue to rise. 
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On the other hand, due to the development of new technologies, the cost of natural 

gas exploitation is getting lower and lower. And as a relatively clean and low-carbon 

fuel, natural gas will replace coal as the second largest fuel. Although there are certain 

differences in the predictions of different institutions, as long as countries take certain 

measures to solve the problem of climate change, the trend of energy structure 

changes in the future is about the same. The proportion of fossil fuel in primary 

energy consumption has decreased significantly, from the current 85% to about 75%. 

Among them, oil is expected to grow steadily at an average rate of 0.9% per year, but 

its proportion in primary energy is declining. Nevertheless, oil is still the most 

important fuel; natural gas is expected to grow at an average rate of 1.8% per year. 

Natural gas will become the fastest growing fossil fuel and will replace coal as the 

second largest fuel by 2030. In addition, the proportion of non-fossil energy has risen 

rapidly, especially renewable energy. [7] 

 

As the global energy structure gradually changes, the energy structure of 

various regions of the world has also changed. In the future, due to carbon emissions 

constraints, the proportion of coal consumption in Asia will be significantly reduced, 

while the proportion of natural gas and non-fossil energy will tend to rise. Taking 

China as an example, according to the prediction of the China Energy Research 

Association, by 2030, the proportion of coal consumption has dropped significantly to 

49%, which is a decrease of 15% compared to 2015. The proportion of oil 

consumption will drop to 17%. Clean energy (including natural gas and non-fossil 

energy) will account for 34% in total energy using. It can be seen that the 

optimization of China's primary energy consumption structure is consistent with the 

changing trend of the world's energy consumption structure. [8] 

 

In general, North America's "shale gas revolution", the rapid development of 

developing countries, global climate change, and breakthroughs in new energy have 

prompted a significant change in the world's energy landscape. These changes can be 

summarized in the following five aspects: 
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 (1) The rapid development of emerging market countries will drive the 

continuous growth of energy demand.  

 

(2) Natural gas will replace coal as the second largest fuel in the future, and 

the proportion of renewable energy will rise rapidly.  

 

(3) With the development of shale gas, energy supply has become more 

polarized and diversified.  

 

(4) The focus of energy trade has shifted from the Atlantic Basin to the Asia-

Pacific region.  

 

(5) In the future, global energy supply and demand will tend to balance, and 

energy prices will gradually increase. 

 

1.5 Heat pump 

 

Figure 6. Heat pump 

(Source:  El-Halwagi, 2017) 

 

A heat pump is a device that transfers thermal energy from a low temperature 
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source to a high temperature source. Figure 6 shows the schematic of a heat pump. The 

“pump” is a kind of mechanical equipment that can increase the potential energy. For 

example, a water pump can pump water from a low position to a high position. The 

heat pump is a device that can take heat from air, water, or soil and then absorb energy 

from the outside to provide energy that can be utilized. The working principle of the 

heat pump system is consistent with the refrigeration system. 

 

 

Figure 7. A Vapor-Compression Heat Pump 

(Source:  El-Halwagi, 2017) 

 

The composition of the heat pump is shown in Figure 7. Heat pump generally 

consists of four parts: compressor, condenser, expansion valve and evaporator. Its work 

process consists of the following four parts.  

 

(1) The low-temperature and low-pressure liquid refrigerant first absorbs heat 

from the low-temperature heat source and vaporizes into low-pressure steam in the 

evaporator.  

 

(2) The refrigerant gas is then compressed in the compressor and becomes high-

temperature, high-pressure vapor.  
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(3) The refrigerant gas is cooled by the high temperature heat source in the 

condenser and it becomes high-pressure liquid.  

 

(4) After the refrigerant passing through expansion valve, it becomes a low 

temperature and low-pressure liquid refrigerant.  

 

Heat pump performance is generally measured by COP. The coefficient of 

cooling is defined as the ratio of the heat transferred from the low temperature heat 

source to the high temperature heat source and the required extra work. 

 

 

Figure 8. The T-S Mollier Diagram for a Carnot Heat Pump 

(Source:  El-Halwagi, 2017) 

 

The heat pump works on the reverse Carnot cycle. Its principle is shown in 

Figure 8. The inverse Carnot cycle includes the following four steps, and all of them 

are reversible processes.  

 

(1) Adiabatic compression, in which the refrigerant is compressed and the 

temperature rises. 

 

(2) Isothermal compression, the system returns to its original state. During this 



 

13 
 

process, the system releases heat to the high-temperature heat source, and the 

temperature remains unchanged. 

 

(3) Adiabatic expansion. In this process, the system produces work to the 

environment while the temperature of the system decreases. 

 

(4) Isothermal expansion, in which the system absorbs heat from the low-

temperature heat source, but the temperature remains unchanged. 

 

1.6 Economic 

Economic Evaluation is to evaluate the merits of the object by calculating a 

series of economic indicators. The core of economic evaluation is economic benefits. 

At present, there are many economic evaluation indexes and methods put forward 

around the world. There are more than ten methods used in project evaluation. 

According to whether the evaluation index considers the time value of funds, it can be 

divided into static evaluation method and dynamic evaluation method. The static 

evaluation does not consider the time value of funds to calculate the relevant economic 

indicators. The dynamic evaluation method is to consider the time value of funds. The 

dynamic economic evaluation not only considers the time value of funds, but also takes 

the entire life cycle of the project as the economic analysis. Therefore, the dynamic 

assessment method is more accurate and scientific than the static assessment method. 

Dynamic evaluation methods include the dynamic payback period method, the net 

present value method, the net present value rate method, the net annual value and the 

net annual value rate method. [9] 
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2 RESEARCH PROBLEM 

2.1 Problem description 

 

Figure 9. Steam turbines and power plants 

(Source:  El-Halwagi, 2017) 

 

Figure 9 shows the structure of a steam turbine and power plant. In the process 

of energy conversion, power plants require a lot of water. After the steam passes 

through the turbine, the steam changes back to the liquid water and the temperature 

decreases. Besides, during the cooling process, a portion of the water will be lost in the 

form of steam. At present, most of the power plants will directly discharge the cooling 

water. This water, when discharged, still has a certain amount of heat. But the 

temperature of waste water is low, it is difficult to use. Heat Pump is a device which 

can transfer heat from low heat source to the high heat source. Power plants produce 

electricity is generally higher than the actual electricity consumption and excess 
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electricity can drive the heat pump. The heat generated by the waste water through the 

heat pump can be used to heat the equipment or buildings. The remaining water can be 

recycled after filtration. 
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3 SYSTEM INTRODUCTION AND RESEARCH DATA 

3.1 System introduction 

The working principle of the heat pump is similar with the chiller. The heat 

pump and the chiller both work according to the reverse Carnot cycle. The difference 

is that the operating temperature range and the purpose. Heat pump can use low-

temperature water to heat buildings. The heat pump system is mainly composed of four 

parts: the heat pump driving energy (electric energy), the driving device (motor, engine, 

etc.), the heat pump unit, and the low-temperature heat source. The heat pump is 

composed of a compressor, a condenser, an evaporator and an expansion valve.  

 

Figure 10 shows the heat pump’s working mode during winter. In winter, the 

heat pump absorbs heat from the low-level heat source (cooling water tank) and 

releases heat in the condenser. The heating system consumes a small amount of high-

level energy to satisfy the energy demand for heating. 

 

 

Figure 10. Heating mode in winter 

 

Figure 11 shows the heat pump’s working mode during summer. In summer, the 

system operates in cooling mode, the evaporator becomes the condenser, and the 

condenser becomes the evaporator. After the refrigerant gas leaving compressor, it 

enters the condenser and releases heat to the cooling water. 
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Figure 11. Cooling mode in summer  

 

The heating coefficient εh of the heat pump is equal to the ratio of heating 

capacity Q and power consumption P. 

 

 𝜀ℎ =
𝑄

𝑃
=

𝑄0 + 𝑃

𝑃
= 𝜀 + 1 

 

The cooling coefficient ε is the amount of cold that can be obtained when 

consuming one unit of power. 

 

ε =
𝑄0

𝑃
 

 

However, in the actual cycling, the heating coefficient and the cooling 

coefficient are not only related to the temperature of the two heat sources, but also 

related to the type of refrigerant and other factors in the cycle. 

 

3.2 Research data 

The temperature of cooling water in each month is shown in the Table 1. From 

Table 1, it can be seen that the lowest temperature of cooling water in the winter is 

9.8 °C. After water passing the condenser, the temperature rises by about 8 °C. When 

water enters the cooling tower, the temperature is about 17.8 °C. Therefore, during the 

winter, the heat pump unit can obtain warm water of approximately 17 °C and the 

heating coefficient reaches 3.8. When the turbine generator unit stops operating in 
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winter, the heat pump unit also stops operating. 

 

In summer, the highest temperature of the cooling water is 30.3 °C. Therefore, 

whether turbine generators run normally or stop running, the heat pump can obtain 

cooling water with the temperature about 27 °C. The cooling coefficient can reach 

about 4.4. The temperature changes throughout the year are shown in Figure 12. 

 

  January February March April May June 

Circulating cooling 

water temperature 

(℃) 

10.67 15.89 18.72 20.72 24.11 28.06 

  July August September October November December 

Circulating cooling 

water temperature 

(℃) 

30.33 29.11 27.01 20.89 16.89 9.83 

Table 1. Temperature of cooling water 

(Source: https://www.weather.gov/fwd/dmotemp) 

 

 

Figure 12. Temperature of cooling water in each month 

 

Table 2 and Table 3 show the investment costs and the useful life period of the 

equipment. The device's quantity and salvage value are also displayed in tables. By 

comparison, it can be seen that the investment cost of the heat pump system is lower. 
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Items Number Useful life period Price ($) Salvage 

value 

(10%) ($) 

Heat pump unit 2 20 190000*2 19000*2 

Circulating water pump 4 20 3200*4 320*4 

Total 6 
 

392800 39280 

Table 2. Heat pump equipment investment 

 

Items Number Useful life 

period 

Price ($) Salvage 

value 

(10%) ($)  

Screw chiller units 2 20 118960*2 11896*2 

Cooling tower 2 20 71380*2 7138*2 

Circulating water pump 4 20 3200*4 320*4 

Heat exchanger 1 20 47600 4760*1 

Recovery device 1 20 13000 1300*1 

Total 10   454080 45408 

Table 3. Screw chiller + heat exchanger equipment investment 

 

If the machine is running at full load, Table 4 shows the energy consumption of 

the heat pump. Assuming that the cooling capacity is 2500kw and the heating capacity 

is 3500kw. When calculating, the standard coal’s calorific value is 7000 kcal/kg (29302 

kJ/kg). The efficiency of power plants is 40%. Table 5 shows the energy consumption 

of a screw chiller + heat exchanger system. Assuming that the steam loss is 10% and 

the power plant boiler efficiency is 95%. By comparison, it can be seen that, heat pump 

has a higher efficiency when under the same conditions. 
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Cooling Mode Heating Mode 

Items Power 

consumption(KW) 

Items Power 

consumption(KW) 

Heat pump unit 290*2=580 Heat pump unit 420*2=840 

Circulating water 

pump 

50*4=200 Circulating water 

pump 

50*4=200 

Total 780 Total 1040 

Primary energy consumption Primary energy consumption 

780/40%=1950kw 1040/40%=2600kw 

 Standard coal consumption rate  Standard coal consumption rate 

1950*860/7000=239.57 kg/h 2600*860/7000=319.43 kg/h 

Table 4. Heat pump energy consumption 

 

Cooling Mode Heating Mode 

Items Power 

consumption(KW

) 

Items Power consumption(KW) 

Screw chiller 310*2=620 Steam 3500/0.9=3888 

Circulating 

water pump 

50*4=200 Circulating 

water pump 

50*2=100 

Cooling Tower 50*2=100     

Total 920 Total 100(Electricity)+3888(Steam

) 

Primary energy consumption Primary energy consumption 

920/40%=2300kw 100/0.4+ 3888/0.95=4342.63kw 

 Standard coal consumption rate Standard coal consumption rate 

2300*860/7000=282.57 kg/h 4342.63*860/7000=533.52 kg/h 

Table 5. Screw chiller + heat exchanger energy consumption 

 

Assume that the system is operating throughout the year. The number of heating 

days per year is 155, and the number of cooling days is 210. During heating mode, the 

average power is 70% of full load. During cooling mode, the average power is 50% of 

full load. Compared to screw chiller + heat exchanger system, the standard coal that is 

saved by using heat pump system during heating is 

 

(533.52 − 319.43) × 24 × 155 × 70% = 557490.36 kg = 557.49 tons 
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The standard coal that is saved during cooling is 

 

(282.57 − 239.57) × 24 × 210 × 50% = 108360 kg = 108.36 tons 

 

The standard coal saved in one year is 

 

557.49 + 108.36 = 665.85 tons 

 

From the above calculation, compared to cooling mode, the heat pump system 

can save more energy in heating mode. Besides, 3500kw can meet the heating demand 

of 40,000 square meters of buildings.  

 

In heating mode, standard coal can be saved annually is 

 

557490.36 ÷ 40000 = 13.94 kg/(yr ∙ 𝑚2) 

  



 

22 
 

4 ECONOMIC ANALYSIS 

4.1  Cash flow analysis 

The composition of equipment investment is shown in the figure 13. 

 

 

Figure 13. The composition of equipment investment 

 

For the heat pump system, fixed capital investment (FCI) is 

 

392800 dollars 

 

Total Capital Investment (TCI) is  

 

392800 ÷ (1 − 15%) = 462118 dollars 

 

Working Capital Investment (WCI) is about 15% of TCI 

 

462118 × 15% = 69318 dollars 

 

Total operating cost (20% of FCI) is 
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392800 × 20% = 78560 dollars 

 

Depreciation is 

 

(392800 − 39280) ÷ 20 = 17676 dollars/year 

 

 Table 6 shows the cost calculation result of each item. 

 

Items Cost ($) 

Fixed Capital Investment (FCI) 392800 

Total Capital Investment (TCI)   462118 

Working Capital Investment (WCI) 69318 

Total operating cost (per year)  78560 

Depreciation/annualized fixed cost (per year)  17676 

Table 6. Cost calculation for heat pump system 

 

For a screw chiller + heat exchanger system, Fixed Capital Investment (FCI) is 

 

454080 dollars 

 

Total Capital Investment (TCI) is  

 

454080 ÷ (1 − 15%) = 534212 dollars 

 

Working Capital Investment (WCI) is about 15% of TCI 

 

534212 × 15% = 80132 dollars 
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Total operating cost (20% of FCI) is 

 

454080 × 20% = 90816 dollars 

 

Depreciation is 

 

(454080 − 45408) ÷ 20 = 20434 dollars/year 

 

Table 7 shows the cost calculation result of each item. 

 

Items Cost ($) 

Fixed Capital Investment (FCI) 454080 

Total Capital Investment (TCI)   534212 

Working Capital Investment (WCI) 80132 

Total operating cost (per year)  90816 

Depreciation/annualized fixed cost (per year)  20434 

Table 7. Cost calculation for screw chiller + heat exchanger system 

 

The costs of the two systems is shown in Figure 14. 
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Figure 14. Different costs of the two systems 

 

The above analysis shows that the heat pump system saves 665.85 tons of coal 

annually. The current coal price is about 65.14 dollars per ton. The money that the 

system saves per year is 

 

668.85 × 65.14 = 42714.2775 ≈ 42.7 thousand dollars 

 

Items Income number 

Coal Saving 665.85 tons/year 

Coal Price $64.15/ton 

Total save (per year) $42.7 Thousand 

Table 8. Money saving 

 

Annualized fixed cost(AFC) is 

 

AFC =
392800−39280

20
≈ 17.7 thousand dollars/year 
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The variable annual operating cost at maximum production capacity is obtained as 

follows. 

 

AOCMax = 15 × [(533.52 − 319.43) × 24 × 155

+ (282.57 − 239.57) × 24 × 210] ÷ 1000 ≈ 15 thousand dollars 

 

So, the break-even point analysis as shown in Figure 15. 

 

 

Figure 15. Break-even point analysis 

 

The break-even point analysis indicates that the total saving of the coal should 

be at least 350 tons per year to make profit. 

 

The system's cash flow during 20 years is shown in Figure 16. 

 

 

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800 900 1000

$
/t

h
o

u
sa

n
d

 d
o

lla
rs

Annual coal saving/tons

BREAK-EVEN POINT ANALYSIS

FCI Total saving Total cost Variable charge



 

27 
 

 

Figure 16. Cash flow of heat pump system 

 

In this study, assuming that the discount rate is 10%. The present value is 

 

P = ∑
42.7

(1 + 0.1)N

20

N=1

= 363.53 Thousand Dollars 

 

P −Present value 

N −Time(year) 

 

Return on investment (ROI) is 

 

ROI =
Annual Saving

Total Capital Investment
× 100% =

42.7

462
× 100% ≈ 9.24% 

 

Return on investment (ROI) refers to the value that should be returned through 

investment. ROI is the profit that an enterprise obtains from an investment activity. It 

covers the economic goals of the company. Profits are related to the assets necessary to 

invest in operations. Compared to the screw chiller + heat exchanger system, the heat 

pump system has higher economic benefits.  

 

According to statistics, burning a ton of coal produces about 2.9 tons of carbon 

dioxide. (Source: B.D. Hong and E. R. Slatick, 1994)  

 

So, the annual reduction in CO2 emissions of the heat pump system is 

 

665.85 × 2.9 ton CO2/ton coal =  1,931 tons CO2/yr 
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At present, the carbon credit of carbon dioxide is about $30/ton. (Source: 

https://en.wikipedia.org/wiki/Carbon_credit) 

 

The annual saving is 

 

1931 × 30 ≈ 57.9 Thousand dollars 

 

The ROIco2
 is 

 

ROIco2
=  

42.7 + 57.9

462
× 100% = 21.77% 

 

From the above calculations, it can be seen that the heat pump system has a high 

ROI when considering CO2 emissions. The calculation results show that the heat pump 

system has a good economic potential. The heat pump system is worthy of application. 

 

4.2  Life cycle process 

The life cycle process refers to a design theory that takes into account all aspects 

of the product’s life history at the design stage. All relevant factors are comprehensively 

planned and optimized in the stage of product design. Life cycle cost (LCC) originated 

from the cost management model proposed by GE in the 1940s. Life cycle cost is the 

total cost of ownership, operation, maintenance and demolition over a period of time. 

  

In the design and application process, some traditional design ideas only 

consider the initial investment cost. These methods are only to minimize the initial 

investment. However, operating cost is an important part of the total cost. The operating 

cost of the system cannot be ignored. Because many factors are considered, the results 

of the life cycle cost method are more accurate. Based on this situation, life cycle cost 

analysis method has gradually been used and promoted. 
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For this project, the life cycle cost method is used to analyze the total cost. The 

entire life cycle of the system includes installation, operation, recovery and demolition. 

This research uses the discount coefficient method to calculate the cost of the system.  

 

The life cycle cost is the sum of the initial investment and operating cost. 

 

CT = Ci + Cc 

 

CT − Total cost  

Ci −System initial investment 

Cc − Operating cost  

 

Cc = PWF × Cy 

 

PWF − Discount factor 

Cy −Annual operating cost of the system 

 

PWF =  [1 − (1 + I)−N]/I 

 

N − usage time 

I − discount rate, % 

 

The two systems are analyzed and the results are shown in Figure 17. 
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Figure 17. The current life cycle cost of two systems 

 

This chapter uses the life cycle cost method to analyze two systems. It is mainly 

analyzed from the perspective of economy. From the above analysis, it can be seen that 

the heat pump system is more suitable for this project. Its operating cost is significantly 

less than the screw chiller + heat exchanger system. In addition, the initial investment 

of the heat pump system is lower. For the economic analysis of the two systems, it is 

not enough to only consider the initial investment.  The result demonstrates that the 

heat pump system has a lower life cycle cost. In this research, the lifetime of the air-

conditioning system is set to 20 years.  From the view of the total cost, the heat pump 

system is more suitable.  
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5 SYSTEM OPTIMIZATION 

5.1 Optimization process 

System optimization is an important part. Optimization is based on demands 

trying to achieve the best performance of the system. The optimization design consists 

of a large number of design options finding a set of solutions to meet a variety of 

constraints (such as the most cost-saving, minimum energy consumption, etc.).  The 

goal of the optimization of the air conditioning system in this paper is to minimize the 

energy consumption of the entire system. Therefore, all the energy consumption 

included in the system should to be considered. System optimization can make the 

system run efficiently. Through the system optimization, the consumption of the system 

can be reduced to achieve the purpose of energy saving. 

 

For an air-conditioning unit, the unit's power is affected by the evaporation 

temperature and the condensing temperature. The evaporation temperature and the 

condensing temperature are related to the cooling water flow. Therefore, the method is 

to control the cooling water flow. Subsequently, the total energy consumption of the 

system can be obtained. 
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Figure 18. A Vapor-Compression Heat Pump 

(Source:  El-Halwagi, 2018) 

 

The flow chart of system optimization is shown in Figure 18. Because water’s 

temperature varies from month to month, system optimization needs to be performed 

according to different circumstances. 

 

5.2 Model 

The model was designed by Yuan Xudong. [10]  

 

In this study, the objective function is  

 

Min(P) = P𝑟 + Ph 

 

P𝑟 − Pumps’ power, k W 
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Ph − Heat pump unit’s power, k W 

P − Total power of the system, k W 

 

The cooling water quantity is the optimized parameter of the water pumps’ 

power.  

 

The condenser’s model is shown in Figure 19. 

 

 

Figure 19. Condenser model 

 

This model is based on the following assumptions. 

 

(1) One-dimensional axial flow in the heat-transfer pipe. 

 

(2) Only consider the radial heat exchange of the refrigerant, tube wall and 

water. Ignoring the axial heat transfer and thermal conductivity of the tube wall. 

 

(3) When the refrigerant is in the two-phase zone, the liquid and gas are evenly 

mixed. 

 

(4) Ignoring the impact of impurities on heat transfer. 

 

(5) The refrigerant and water are both incompressible fluids whose parameters 

do not change with time. 
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(6) Does not consider the pressure loss in the condenser. 

 

(7) The heat transfer process is a reversible process. 

 

When the condenser is under the cooling mode, the formulas are as follows. 

 

Qe = GfCp × (2tc − 2∆tc − 2tc,i) 

 

∆tc = tc −
tc,i − tc,o

2
 

 

Qe = Qcl + Ni 
 

Qcl − System’s cooling load, k W 

Gf − Cooling water flow, Kg/s 

Cp − Specific Heat Capacity, kJ/kg·°C 

∆tc −  Temperature difference of heat transfer in condenser, °C 

tc − Condensation temperature, °C 

tc,i − Cooling water inlet temperature, °C 

tc,o − Cooling water outlet temperature, °C 

Qe − Condenser heat release 

Ni − Compressor’s input power 

 

When the condenser is under the heating mode, the formula is as follows. 

 

Qh = GfCp × (2tc − 2∆tc − 2tc,i) 

 

Qh − Heating load, kW 

 

The evaporator’s model is shown in Figure 20. 
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Figure 20. Evaporator model 

 

Pool boiling is a type of boiling that liquid boiling above the saturation 

temperature. The boiling process is limited by the boiling space and the boiling vapor.  

During pool boiling, liquid and vapor are mixed together to form a two-phase flow. It 

is also known as limited space boiling or forced convection boiling. 

 

When the evaporator is under the cooling mode, the formulas are as follows. 

 

te =

2tx,i −
Qc

Gfcp

2
−  ∆te 

 

∆te =
tx,i + tx,o

2
− te 

 

Qc − Cold load, kW 

te − Evaporation temperature, °C 

Gf − Cooling water flow, kg/s 

tx,i − Recirculating water inlet temperature, °C 

tx,o − Recirculating water outlet temperature, °C 

∆te − Temperature difference of heat transfer in evaporator, °C 

 

When the evaporator is under the heating mode, the formulas is as follows. 

 

te =

2tx,i −
Qhe − Ni

Gfcp

2
−  ∆te 
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Qhe − Heat load, kW 

 

For a compressor, its power is related to the evaporation temperature and the 

condensation temperature. 

 

When the evaporation temperature changes. 

 

∆Pco = −
Qe × Tc

Te
2

× ∆Te 

 

When the condensing temperature changes. 

 

∆Pco =  
Qe

Te
× ∆Tc 

 

Pco = Pco,0 + ∆Pco 

 

∆Te =  Te − Te,0 

 

∆Tc =  Tc − Tc,0 

 

 

Qe − Heat load 

∆Pco − Change in compressor’s power, kw 

Pco,0 − Compressor’s original power, kw 

Pco − Compressor power consumption, kw 

∆Te − Change in evaporating temperature, K 

Te − Evaporating temperature, K 

Te,0 − Original evaporating temperature, K 

∆Tc − Change in condensing temperature, K 
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Tc − Condensing temperature, K 

Tc,0 − Original condensing temperature, K 

 

The relationship between compressor’s power and evaporating temperature is 

shown in Figure 21. 

 

 

Figure 21. Compressor power and evaporation temperature 

 

The relationship between compressor’s power and condensing temperature is 

shown in Figure 22. 

 

∆
P
co

∆Te
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Figure 22. Compressor power and condensation temperature 

 

Through the above analysis, the conclusions can be reached. When the 

evaporating temperature increases, the compressor power drops. When the condensing 

temperature increases, the compressor power rises. 

 

The flow rate of the cooling water is adjusted through the valve. The schematic 

diagram of the characteristics of the pipeline and the flow characteristic curve of the 

pump is shown in Figure 23. 

 

 

∆
P
co

∆Tc
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Figure 23. Pipeline and pump head curve characteristics 

(Source:  Qiu Yurong, 2012) 

 

The parameters of the pump indicate the performance of the pump. However, 

the parameters are not isolated. For a specific pump, there is a regular pattern between 

the various parameters. The variation between them is usually represented by a curve, 

which is called the pump performance curve. 

 

In the figure 23, S and S’ are the characteristics of the pipeline. When the valve 

is closed, the pipeline characteristic curve changes from S to S’, and the curve becomes 

steeper. The intersection of the two lines changes from A to A’. Therefore, when the 

flow rate changes, the operating point of the pump will change. 

 

5.3  Model analysis 

The model for this study is based on the following assumptions. [11] 

 

(1) During the cooling or heating operation, assuming that the difference 

between the evaporating temperature and the condensing temperature does not change. 
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(2) The return water’s temperature does not change.  

 

(3) When adjusting the flow rate on one side, the flow rate on the other side 

remains unchanged. 

  



 

41 
 

6 CONCLUSION 

This thesis has assessed the feasibility of heat pump systems for recovering 

waste heat from cooling water in power plants. An integrated configuration has been 

proposed to cool the discharged water and to use the excess heat in driving a heat pump. 

A case study has been solved to evaluate the energy saving, environmental benefits, 

and techno-economic performance of the proposed configuration. Besides, this paper 

introduces the structure and operational principle of heat pumps. In addition, this paper 

analyzes the economics of the heat pump system and introduces the system 

optimization model. The following are the key conclusions from the study: 

 

(1) Direct discharge of cooling water from power plants can cause thermal 

pollution.  

 

(2) Heat pumps can serve as effective heat sinks to recover excess heat from the 

discharged cooling water. The recovered heat is sufficient to drive a heat pump which 

can be used for refrigeration or other industrial purposes. Savings in fossil fuels usage 

can be accomplished. In the addressed case study, the heat pump system can save 

665.85 tons of coal per year compared to the screw chiller and a heat exchanger system. 

In addition, a heat pump system can reduce CO2 emissions. When considering CO2 

emissions, the heat pump's return on investment is 21.77%.  

 

(3) Because of the continuous change in the cooling-water temperature, the 

system design and optimization must be handled through a multi-period approach to 

account for the variability in water temperature and heat-pump performance.  
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