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ABSTRACT

A radiation detector’s sensitivity is important when designing survey plans. A measure of

sensitivity is minimum detectable activity (MDA) which is the lowest amount of activity required

for a signal to be distinguished above background. It has been known for some time that the ef-

ficiency of a moving detector can be improved by slowing the speed of travel. This decreasing

efficiency at higher speeds results in higher MDAs and thus less sensitive detectors. The ef-

fect of speed on detector efficiency was mentioned in the Multi-Agency Radiation Survey and

Site Investigation Manual (MARSSIM). However, the relationship between speed and efficiency

was not quantified in this manual. This research derived this relationship by modeling detector

efficiency as a function of detector travel speed and fitting a modified four parameter logistic

function (M4PL) to the data. The M4PL function was then verified in a controlled laboratory

setting using a 2 x 2 in sodium iodide (NaI) detector at speeds between 20-120 cm s−1 and in a

parking lot using a 2 x 4 x 16 in NaI detector at speeds between 10-40 mph. Finally, the M4PL

function was validated using a priori gathered gamma radiation survey data from two aerial sys-

tems. The M4PL function begins with a region of relatively high detector efficiency and ends

with a region of relatively low detector efficiency. In between is a transition region of decreasing

detector efficiency. This decrease is gradual within initial speeds but, quickly steepens, and then

shallows out at higher detector speeds. This general shape was observed for all modeled sys-

tems. The M4PL function was used to develop a relationship between speed and MDA. There

are three uses of the M4PL function. The first is to verify the accuracy of current survey plans.

The second is to optimize survey plans for speed and accuracy. The third is to identify the limits

of detection accuracy based on operational speed. This foundational relationship between detec-

tor speed and detection efficiency has the potential to improve detector performance in various

applications for both the academic and operational fields.

ii



DEDICATION

For Dad

iii



ACKNOWLEDGMENTS

I would like to first thank Dr. Marianno for his unwavering enthusiasm in completing this

degree in the very short time-frame the Navy allowed me. From my very first conversation

with him to the final push to defend his only attitude was "Hell Yeah! Let’s do this!" A special

thank you to Matt Grypp. He was the person that introduced me to Dr. Marianno, and without

his implicit endorsement I’m sure Dr. Marianno’s enthusiasm would not have been so effusive.

Thank you to my committee for providing feedback along the way.

I would also like to thank the Navy for allowing me this opportunity and funding my tuition.

Thank you to CAPT John Cardarelli in the CBRN Consequence Management Advisory Division

at the Environmental Protection Agency and Dr. Piotr Wasiolek in the Aerial Measuring System

group at the Remote Sensing Laboratory for providing field data to test my findings. Thank you

to the ASPECT team for allowing me to fly with you and see how the aerial data sausage is

made.

Thank you to Derek and Matt in Radiation Safety at A&M. Their assistance in getting per-

mission to run experiments and then carry those experiments out was invaluable. Thank you

to Dr. Evans Kitcher for helping me optimize the MCNP simulations. Especially thank you to

Katie, Rainbow, and Barb for helping me gather field data.

Finally and most importantly thank you to my wife, Pamela. Those that have done this before

with a family know what a truly supportive spouse means to accomplishing your academic goals.

Without a doubt her love, support, and encouragement were vital during this process. Whether

it was taking the kids to the park so I could work in peace, staying up late and editing with me,

or even just kicking me out of bed in the morning she was there every step of the way.

iv



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professors Craig Mari-

anno, advisor, Sunil Chirayath, and John Ford of the Department of Nuclear Engineering and

Professor Dylan Shell of the Department of Computer Science and Engineering.

The data collected for Chapter 4 was provided in part by Captain John Cardarelli of the

Environmental Protection Agency and Dr. Piotr Wasiolek of the Remote Sensing Laboratory.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

This work was supported by Navy Medicine Professional Development Center as part of my

Duty Under Instruction program.

Disclaimers

The views expressed in this article reflect the results of research conducted by me and do not

necessarily reflect the official policy or position of the Department of the Navy, Department of

Defense, nor the United States Government.

I am a military service member of the United States government. This work was prepared as

part of my official duties. Title 17 U.S.C. 105 provides that ‘copyright protection under this title

is not available for any work of the United States Government.’ Title 17 U.S.C. 101 defines a

U.S. Government work as work prepared by a military service member or employee of the U.S.

Government as part of that person’s official duties.

v



NOMENCLATURE

AMS Aerial Measuring System

ASPECT Airborne Spectral Photometric Environmental Collection
Technology

DOE Department of Energy

EPA Environmental Protection Agency

M4PL Modified Four Parameter Logistic Function

MARSSIM Multi-Agency Radiation Survey and Site Investigation
Manual

MCS Multi Channel Scaler

MDA Minimum Detectable Activity

MDC Minimum Detectable Concentration

NaI Sodium Iodide

RPM Radiation Portal Monitor

RSL Remote Sensing Laboratory

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 MARSSIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Addressing MDA Changes Via Integration Times . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Modeling Scan MDCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Efficiency Vs. Speed Depicted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Define Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 MDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Limits of Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 Efficiency (Total, Geometric, Intrinsic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2. MODELING MINIMUM DETECTABLE ACTIVITY AS A FUNCTION OF DE-
TECTOR SPEED. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Methods and Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Results and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



3. EXPERIMENTALLY VERIFYING MINIMUM DETECTABLE ACTIVITY TO DE-
TECTOR VELOCITY RELATIONSHIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Methods and Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Results and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4. VALIDATING MINIMUM DETECTABLE ACTIVITY TO DETECTOR SPEED RE-
LATIONSHIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Methods and Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Field Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.1.1 Vehicle Trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.1.2 Flight Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Results and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Vehicle Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 Aerial Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5. CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

APPENDIX A. DATA TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.1 Coordinate locations for point source modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.2 Masket, Python, and MCNP point source results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.3 Python and MCNP line source results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.4 Source Speed Cohort Linear Fit Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.5 Robot Source Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

APPENDIX B. CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B.1 Sample MCNP Input Deck for 2x2 Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.2 Sample MCNP Input Deck for RSL Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
B.3 Python script used to calculate solid angle of a right circular cylinder . . . . . . . . . . . . . . 99
B.4 Python script used in MCS analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

viii



LIST OF FIGURES

FIGURE Page

1.1 MDA depending on the integration time (off axis distance 2.5m) (Schroettner,
Kindl, & Presle, 2009). Reprinted from Applied Radiation and Isotopes, 67(10),
Schroettner, T., Kindl, P., and Presle, G., "Enhancing Sensitivity of Portal Moni-
toring at Varying Transit Speeds", 1878-1886, 2009 with permission from Elsevier. 3

1.2 Conceptual parameters, assumptions and geometries used to model the total in-
tegrated counting efficiency of a NaI detector while scanning over a contami-
nated volume of soil. Reprinted from Health Physics, 111(2), Alecksen, T., and
Whicker, R., "Scan MDCs for GPS-Based Gamma Radiation Systems", S123-
S132, 2016 with permission from Wolter Kluwer Health, Inc. . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Theoretical FIDLER scanning efficiency for a point source as a function of depth
and scanning speed. As speed increases, efficiency decreases. Reprinted from
Marianno, C., Higley, K., and Palmer, T., 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 FIDLER theoretical static detection efficiency for 60 keV photons as a function
of depth and distance. For a point source, as depth and distance from the detector
increases, detection efficiency rapidly decreases. Reprinted from Marianno, C.,
Higley, K., and Palmer, T., 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 FIDLER experimental and theoretical detection efficiencies for a 60 keV pho-
ton surface source as a function of distance. The theoretical and experimental
results match well with one another. Reprinted from Health Physics, 109, Mari-
anno, C., "Signal Processing and its Effect on Scanning Efficiencies for a Field
Instrument for Detecting Low-Energy Radiation", 78-83, 2015, with permission
from Wolter Kluwer Health, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 FIDLER scanning efficiency for 60 keV photon surface source as a function of
speed. As speed increases the scanning efficiency of the FIDLER decreases.
Theoretical results, which base their efficiency on analog methods, are higher
than experimental efficiencies resulting from signal processed data. Reprinted
from Health Physics, 109, Marianno, C., "Signal Processing and its Effect on
Scanning Efficiencies for a Field Instrument for Detecting Low-Energy Radia-
tion", 78-83, 2015, with permission from Wolter Kluwer Health, Inc. . . . . . . . . . . . . . . 9

ix



1.7 Scheme to explain the various measurement limits. Reprinted from Analytical
Chemistry, 40(3), "Limits for Qualitative Detection and Quantitative Determina-
tion", 586-593, 1968, with permission from the American Chemical Society. . . . . . 11

1.8 Schematic showing what solid angle represents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.9 Schematic showing the different solid angles an object presents as it moves past
an observer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Schematic showing what solid angle represents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Schematic showing the different solid angles an object presents as it moves past
an observer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Schematic showing the different solid angles an object presents as it moves past
an observer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Schematic showing the different solid angles an object presents as it moves past
an observer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Schematic showing the different solid angles an object presents as it moves past
an observer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Figure showing the imaginary cylinder and solid cylinder used to calculate the
side solid angle in region II. Reprinted from Masket et al., 1956. . . . . . . . . . . . . . . . . . . . 25

2.7 Figure showing both portions of the solid cylinder used to calculate the side solid
angle in region III. Reprinted from Masket et al., 1956. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Plot and fit of Masket solid angle values versus Python solid angle results for the
point source locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9 Plot and fit of Python solid angle results versus MCNP efficiency results for the
point source locations and line source trials.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.10 Plot and fit of MCNP efficiency versus speed.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.11 Plot of MDA model using a generic detection limit and yield. . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Photo of robot used during experiment. Shown are the detector, mca, optical
sensor, and remote control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 The hallway were the robot experiments were conducted. Visible are the starting
position and distance markings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

x



3.3 Plot of typical static background count profile shown for illustration purposes.
Counts in gray region were used to calculate the background count rate. . . . . . . . . . . . 43

3.4 Plot of typical source count profile shown for illustration purposes. Counts in
gray region were used to calculate the peak count. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Results for two example trials are shown for illustration purposes. . . . . . . . . . . . . . . . . . 46

3.6 Plot of robot data and M4PL fit as a function of speed. The fit and data show the
characteristic shape of efficiency starting at a relative high, ending at a relative
low, and exhibiting a transition region of rapid change in between. . . . . . . . . . . . . . . . . . 49

3.7 Plot of robot data and MDA fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.8 Plot of robot data and linear fits. Each dashed line represents a different speed,
listed to the right. The plots are the average trial at each source strength at each
speed. The solid line is the calculated detection limit based on the background. . . . 51

3.9 Plot of robot data and model fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Vehicle with detections system mounted on roof rack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Diagram of field where truck trials were conducted. Red arrow is general loca-
tion of where sources were placed. White lines indicate lanes on either side of
sources that truck was driven. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Plot of typical MCS background count profile is shown for illustration purposes.
The target speed of this trial was 30 mph but the profile is indicative of all back-
ground trials, regardless of target speed. Counts in gray region were used to
calculate the background count rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Plot of typical MCS source count profile shown for illustration purposes. This
trial used two 0.4 mCi sources and a target speed of 20 mph but the shape of
the profile is indicative of all source trials. Counts in gray region were used to
calculate the peak count rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Aircraft used to gather the data provided. The left aircraft was used by the DOE
and the right aircraft was used by the EPA. Reprinted from AMS, 2018 and EPA,
2018. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Detectors used to gather the data used in this research. The left detector is an
RSX-3 used by the DOE and the right detector is an RSX-4 used by the EPA.
Reprinted from RSI, 2018.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xi



4.7 Representation of flight data. Purple dots represent all data provided. Yellow
dots represent data selected in this research to construct individual passes. Axes
are superimposed for reference. The long axis represents distance along track.
The short axis represents offset from the track.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Identified tracks from both datasets provided. The left plot is the lateral offset of
each trial. The right plot is the height profile for each trial.. . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.9 Two example truck profiles are shown for illustration purposes. The left profile
used one 0.4 mCi source and a target speed of 10 mph. The right profile used
three 0.4 mCi sources and a target speed of 30 mph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.10 Two example aerial profiles are shown for illustration purposes. The left profile
is for DOE data. The right profile is for EPA data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.11 Model fit and experimental results for truck trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.12 Model fit and experimental results for the DOE aerial trials. The lines represent
the simulated results and the data points with error bars are the experimental
values. All experimental values are within two standard deviations of a model or
are between two models accounting for lateral and height offsets. . . . . . . . . . . . . . . . . . . 75

4.13 Model fit and experimental results for EPA trials. The lines represent the simu-
lated results and the data points with error bars are the experimental values. The
experimental values are generally within two standard deviations of a model or
are between two models. The data points outside the model fits can be accounted
for by lateral and height offsets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.14 MDA for 137Cs based on experimental parameters from truck data. . . . . . . . . . . . . . . . . 79

4.15 MDA for 137Cs based on experimental parameters from AMS data. . . . . . . . . . . . . . . . . 81

4.16 MDA for 137Cs based on experimental parameters from EPA data. . . . . . . . . . . . . . . . . . 82

xii



LIST OF TABLES

TABLE Page

1.1 Dependence of the MDA on the integration time at various speeds. Reprinted
with permission from Schroettner et al., 2009. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Throttle settings and the corresponding average robot speeds. . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Parameters of the M4PL model used to compare simulation and experimental
results, (Falkner & Marianno, in prep 2018a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Average peak integration count for each throttle/source cohort are shown. . . . . . . . . . 46

3.4 Throttle settings and the corresponding average background count rate. . . . . . . . . . . . 47

4.1 Equipment used in the vehicle portion of experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Equipment used by AMS and ASPECT to gather data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Various detector/source configurations that were modeled. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Background counts for the truck trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Parameters of the 4-Parameter Logistic Function used to fit the various model
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.1 Coordinate locations for point sources used in modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.2 Modeling results from Masket table, MCNP simulations, and Python calcula-
tions for point sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.3 Modeling results from MCNP simulations and Python calculations for line sources. 94

A.4 Linear fit parameters for various robot speeds as a function of number of sources
counted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.5 Parameters of the 4-Parameter Logistic Function used to fit the various model
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.6 Gross peak counts, net peak counts, and efficiencies for robot source data. . . . . . . . . 96

xiii



1. INTRODUCTION

1.1 Motivation

Radiation detectors are used in several applications, many of which often involve a dynamic

source-detector geometry. Traditional applications range from decontamination and decommis-

sioning of commercial facilities to the screening of nuclear medicine patients. Increasingly, they

are being used for the search for illicit material through the use of radiation portal monitors

(RPMs) and roving vehicle detectors. As detectors were increasingly used on mobile platforms

it was noticed that detector efficiency would decline as detector speed increased. Trade-offs in

detector design must be made between performance, cost, and ease of use. A detector can be

inexpensive to build and perform sweeps in a short time-frame but have questionable results; can

perform sweeps quickly with very accurate results but be prohibitively expensive to construct;

or can be inexpensive to build and have a high accuracy but require prohibitively long survey

times. A measure of a detector’s sensitivity is its minimum detectable activity (MDA). The mo-

tivation for this research was to derive a function between a detector’s speed and its achievable

MDA. This relationship will then allow surveyors to tailor their survey plans or purchase the

appropriate detector to meet their mission objectives.

1.1.1 MARSSIM

The concept of detector sensitivity was addressed in the industry standard for performing

site surveys, the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM),

(U.S. NRC, 2000). MARSSIM describes a scanning technique for assessing survey-site contam-

ination and calculating a detector’s minimum detectable concentration (MDC) based on those

scan parameters. Here MDC and MDA are synonymous. The scan is conducted at a set speed

by the surveyor with the detector maintained at a defined height above the surface for the dura-

tion of the survey. With this information detector efficiency can be calculated and a MDC for
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that survey deduced. The efficiency of the detector used is assessed by obtaining a static count

of a reference source. MARSSIM’s efficiency variables include detector size (probe area) and

source-to-detector distance and source geometry, (U.S. NRC, 2000). Each of these effect the

solid angle of the detector and are influenced by a detector’s speed.

MARSSIM obtains MDC by using a conversion factor, C, that is a function of a detector’s

area and efficiency. It discusses scanning sensitivity as a surveyor’s ability to detect predeter-

mined levels of contamination. It does not explicitly define MDC in terms of a variable effi-

ciency but does state that detection sensitivity "can be improved by 1) selecting an instrument

with higher detection efficiency or a lower background [such as through the use of shields], 2)

decreasing scanning speed, and 3) increasing size of the effective probe area." Only the second

improvement is a reference to a variable MDC as a function of speed. This effect is not quanti-

fied thus surveyors are left to trial and error to determine the best speed to conduct their surveys.

This research derived a mathematical expression for a detector’s efficiency as a function of its

travel speed.

1.2 Previous Work

1.2.1 Addressing MDA Changes Via Integration Times

Schroettner et.al. investigated the detector sensitivity as a function of source travel speed

by experimentally determining a relationship between the speed of a moving source and the

integration time for static RPMs (Schroettner et al., 2009). In this case a source was first shuttled

past a single detector and then later multiple detectors at various constant speeds. Speeds chosen

ranged from 1 to 50 m s-1 and approximated the speeds at which a train might pass through

the monitor. The aim of their research was to develop a way to calculate the optimal detector

integration time to achieve the lowest MDA based on the speed of the source, Fig. 1.1.
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Figure 1.1: MDA depending on the integration time (off axis distance 2.5m) (Schroettner et al.,
2009). Reprinted from Applied Radiation and Isotopes, 67(10), Schroettner, T., Kindl, P., and
Presle, G., "Enhancing Sensitivity of Portal Monitoring at Varying Transit Speeds", 1878-1886,
2009 with permission from Elsevier.

The approach in Schroettner is very similar to this present research, however their correction

method for speed effects is very different. Schroettner chose to alter the integration time of

the detection system to maximize detection efficiency, Table 1.1. This is undesirable for two

reasons. First, the ability to change integration time, either automatically or by the operator, must

be manually coded into the detection system’s software. Second, the speed of the object being

surveyed must be assessed and again input manually into the detection system. This approach

of changing integration time based on each counting scheme, although technically feasible, is

needlessly complicated.
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Table 1.1: Dependence of the MDA on the integration time at various speeds. Reprinted with
permission from Schroettner et al., 2009.

Speed MDA in kBq depending on the integration time

km h−1 m s−1 10 ms 25 ms 50 ms 100 ms 250 ms 500 ms 1 s 3 s

5 1.4 440 278 196 140 91 71 64 81

10 2.8 440 278 198 142 100 90 100 156

20 5.6 440 280 201 151 127 141 182 305

50 14 318 288 223 200 239 318 442 761

80 22 446 302 256 266 363 500 703 1215

100 28 450 315 283 314 449 314 886 1521

160 44 465 362 376 468 708 994 1403 2430

1.2.2 Modeling Scan MDCs

Alecksen and Whicker extended the MARSSIM approach to calculate MDCs for various

combinations of detectors, source materials, and source geometries (Alecksen & Whicker, 2016).

Their work comprised modeling a detector as it passed over a source placed in soil, Fig. 1.2. They

then calculated the detector’s total efficiency. The results for their simulations are collected in a

database they maintain and which are freely available for download.
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Figure 1.2: Conceptual parameters, assumptions and geometries used to model the total in-
tegrated counting efficiency of a NaI detector while scanning over a contaminated volume of
soil. Reprinted from Health Physics, 111(2), Alecksen, T., and Whicker, R., "Scan MDCs for
GPS-Based Gamma Radiation Systems", S123-S132, 2016 with permission from Wolter Kluwer
Health, Inc.

Their effort, while extensive across multiple configurations of sources and detectors, was

only conducted for one speed, 1.5 m s-1. This does not address the phenomenon of decreasing

efficiency with increasing speed. Another shortcoming of Alecksen’s research is that it was not

experimentally verified or tested against field data.

1.2.3 Efficiency Vs. Speed Depicted

An example of the decrease in efficiency as speed is increased is provided by Marianno et al.,

(Marianno, Higley, & Palmer, 2000; Marianno, 2015). This work consisted of modeling a Field

Instrument for the Detection of Low Energy Radiation (FIDLER) response, gathering data from

the detector in experiments, and then comparing the two together to show the real world operates

in much the same way that the modeling world works. His results show a decreasing trend in

efficiency with increasing speed, Fig. 1.3. He modeled the FIDLER passing over a 241Am source

at different speeds and with the source at different depths within soil. All trend lines show an
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initially rapid decrease that shallows out around 50 cm s-1 to a flat profile. The trend is similar

at all depths modeled but the influence of depth is beyond the scope of this current research.

Figure 1.3: Theoretical FIDLER scanning efficiency for a point source as a function of depth
and scanning speed. As speed increases, efficiency decreases. Reprinted from Marianno, C.,
Higley, K., and Palmer, T., 2000.

The reason for this trend is hinted at in further results in his work, Fig. 1.4. He modeled

the same detector over the same source (and source depths) as their moving detector but in static

configurations at defined offsets away from the source. The trend is for the efficiency to decrease

as the detector is moved away from the source, and for that decrease to sharpen the farther from

the source the detector is moved. This implies that it is the detector/source orientation that is

critical in determining the efficiency/speed relationship. The fraction of a count’s integration

time the detector will spend near the source decreases as the speed of the detector increases and

result in successively smaller fractions of photons to be incident upon the detector.
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Figure 1.4: FIDLER theoretical static detection efficiency for 60 keV photons as a function
of depth and distance. For a point source, as depth and distance from the detector increases,
detection efficiency rapidly decreases. Reprinted from Marianno, C., Higley, K., and Palmer, T.,
2000.

Experimental FIDLER results were then compared to simulated results (Marianno, 2015).

Both data sets show a decrease in efficiency correlated with an increase in detector speed, as ex-

pected. In all cases the simulation results are approximately 10% higher than the experimental

results, Fig. 1.5. Marianno attributes this difference to signal processing. With the exception of

the 20 cm and 30 cm data points, all results are within two standard deviations of each other.

Marianno proposed that the reason for the difference at those offsets is the topographical in-

fluence in source placement with 60 keV photons being easily attenuated by soil. The source

prevented consistent distancing in source placement as found in the simulation. Additionally,

ground irregularities resulted in the source being placed on the backside of a small mounds of

soil which provided a small amount of shielding when the detector was in certain locations.
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Figure 1.5: FIDLER experimental and theoretical detection efficiencies for a 60 keV photon
surface source as a function of distance. The theoretical and experimental results match well
with one another. Reprinted from Health Physics, 109, Marianno, C., "Signal Processing and
its Effect on Scanning Efficiencies for a Field Instrument for Detecting Low-Energy Radiation",
78-83, 2015, with permission from Wolter Kluwer Health, Inc.

The experimental results are lower than the model results for moving detectors due to signal

processing but show the same general trend, Fig. 1.6. Error bars for the model results are inside

the markers. The decrease is not linear but starts out sharply and then tapers off to a flat level.

This relationship was not quantified.
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Figure 1.6: FIDLER scanning efficiency for 60 keV photon surface source as a function of speed.
As speed increases the scanning efficiency of the FIDLER decreases. Theoretical results, which
base their efficiency on analog methods, are higher than experimental efficiencies resulting from
signal processed data. Reprinted from Health Physics, 109, Marianno, C., "Signal Processing
and its Effect on Scanning Efficiencies for a Field Instrument for Detecting Low-Energy Radia-
tion", 78-83, 2015, with permission from Wolter Kluwer Health, Inc.

1.3 Define Terms

1.3.1 MDA

The desired quantity MDA, or that amount of activity of a particular radioactive substance

which can be detected above background, can be calculated by a simple conversion, Eq. 1.1

(Knoll, 2010).

MDA =
LD
Y εT

, (1.1)

Here LD is the detection limit of the environment in which the count occurs, Y is the photon

yield of a particular radionuclide, ε is the efficiency of the detector, and T, integration time, is
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the length of time the detector sums signals to produce a count usually dictated by the survey

design. A typical integration time in mobile detection systems is 1 s. For the purposes of this

research the radionuclide selected for study was 137Cs with a yield of 0.85 per disintegration

and integration times were either set at 1 s or normalized to 1 s. The parameters LD and ε are

discussed further below.

1.3.2 Limits of Detection

The MDA of a counting system was quantified by Currie for radio-chemistry (Currie, 1968).

Prior to experiments being conducted, the researcher chooses the acceptable level of two types

of errors: 1) determining the presence of a signal when there is none, "false positive", α and 2)

determining the absence of a signal when a source is present, "false negative", β. These values

do not have to be the same, however a typical value for both is 5%.

Using these values a critical level, LC, and determination level, LD, can be calculated, Eq. 1.2.

Here σ0 and σD are the standard deviations assuming radiation is and is not present, respectively.

LC is the critical level, defined as that number of counts above which a source is present. LD

is the detection limit, defined as that number of counts above which the detector will reliably

detect a source. A third limit, quantification limit (LQ), is the limit above which the amount of

material present can be quantified. It is not considered in this research and thus is not discussed

here. The limits and their relation to α and β are shown in Fig. 1.7.

LC = kα ∗ σ0

LD = LC + kβ ∗ σD
(1.2)
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Figure 1.7: Scheme to explain the various measurement limits. Reprinted from Analytical
Chemistry, 40(3), "Limits for Qualitative Detection and Quantitative Determination", 586-593,
1968, with permission from the American Chemical Society.

When k values corresponding to 5% errors are used and the source present is considered

to be nearly equal to background the detection level becomes LD = 4.65σB + 2.71 which is

known as the "Currie Equation". The concept is applied to gross counts but can be extended to

energy bins if a multichannel analyzer is used to gather count data. This is particularly useful

when attempting to measure the presence of suspected radionuclides. However, in most cases

the reason for analysis is not to determine the amount of radiation but to identify the amount
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of the radionuclide that is producing the radiation. The Currie Equation was the basis for all

detection limits used in this research.

1.3.3 Efficiency (Total, Geometric, Intrinsic)

Total detector efficiency is the ratio of photon interactions in a detector to photons emitted by

a source, Eq. 1.3. It is made up of two components, intrinsic efficiency and geometric efficiency.

Intrinsic efficiency is the ratio of photons interacting in the detector to photons striking the

detector, εI. Geometric efficiency, εG, is the ratio of photons striking the detector to photon

emitted by a source. The fraction of photons striking a detector can be calculated from the solid

angle, Ω, which is a function of source/detector configuration, Fig. 1.8.

εT = εG ∗ εI =
photon strikes

photons emitted
∗ photon interactions

photon strikes
(1.3)

Figure 1.8: Schematic showing what solid angle represents.
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Solid angle is the angle an object subtends from an observer at the center of an imaginary

sphere containing both the observer and the object. The solid angle depends on the shape of the

object and the distance between the observer and object. As the object moves past the observer

its solid angle will first increase to a maximum and then decrease, Fig. 1.9. In this research the

source is the observer and the detector is the object.

Figure 1.9: Schematic showing the different solid angles an object presents as it moves past an
observer.
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1.4 Research Objective

This research determined how the speed of a detector relative to a source affects detection

efficiency. This work included modeling various source/detector arrangements, laboratory tests

with well constrained experimental parameters, and testing against field data to account for real

world confounders. This research sought to create a tool for surveyors to 1) validate already

designed survey plans, 2) produce a method for determining either ideal detector speed based on

required precision, as in the case of meeting regulatory requirements, or 3) produce a method of

calculating the MDA based on detector speed as constrained by operational requirements such

as those found in the case of mobile detectors for security sweeps.

This research was organized as below. The robot experiments were done in a laboratory so

that confounders such as variable background or nuisance sources could be minimized and that

detection scheme parameters such as detector speed and orientation could be tightly controlled.

The vehicle experiments were done in a field to bridge controlled experiments with real world

environments. A conclusion ties the research together and outlines ways in which this work can

be used.

1. Simulate the detection system and develop a model that describes the relationship

1.1. Establish a link between a detector’s solid angle and its efficiency

1.2. Establish a link between a detector’s efficiency and its speed

1.3. Identify a model that explained the relationship between efficiency and speed

2. Verify under controlled laboratory conditions that the relationship holds for the modeled

detection system

3. Test this relationship against data collected in real world surveys

4. Identify constraints on the relationship
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2. MODELING MINIMUM DETECTABLE ACTIVITY AS A FUNCTION OF

DETECTOR SPEED

2.1 Introduction

Previous research has shown that a detector’s efficiency varies with increasing speed, (Marianno

et al., 2000; Marianno, 2015). Although noted in research, and even discussed in the Multi-

Agency Radiation Survey and Site Investigation Manual (MARSSIM), this effect has never been

quantified, (U.S. NRC, 2000). Understanding this effect on radiation detectors will improve en-

vironmental surveys (Whicker, Cartier, Cain, Milmine, & Griffin, 2008; Abelquist & Brown,

1999; Altshuler & Pasternack, 1963). It can also be used in security applications to help de-

termine whether detection systems are appropriate for the operational constraints to which they

are held, (Pöllänen et al., 2009; Lepel, Geelhood, Hensley, & Quam, 1998; Runkle, Mercier,

Anderson, & Carlson, 2005; De Geer, 2004; Ayaz-Maierhafer & DeVol, 2007). Knowing how

speed effects detector efficiency could even be used in medical physics to improve count times

thereby reducing stress on patients and allowing for increased throughput of radiological clinics,

(Kramer, Burns, & Guerriere, 2002; Warner & Oliver, 1966).

This research modeled a simple right circular cylinder detector to derive a relationship be-

tween the detector’s speed and its efficiency. The right circular cylinder was chosen as it is the

shape of the standard sodium iodide (NaI) detector used to compare the performance of all other

scintillator detectors.

One method of assessing a detector’s performance is to calculate its reportable minimum

detectable activity (MDA), Eq. 2.1. MDA is that amount of activity required to be detected

above background. The components of Eq. 2.1 are yield Y, integration time T, limit of detection

LD, and efficiency ε. Emission yield converts the activity of the source present to the number of

emitted particles/photons. Integration time is the amount of time that the detector is recording
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a signal to produce a count. Detection limit is a function of the background field in which the

count is made.

MDA =
LD
Y εT

, (2.1)

A detector’s total efficiency is dependent on its intrinsic efficiency (detector properties) and

its geometric efficiency (solid angle), Eq. 2.2. The detector properties do not change under

typical survey conditions. The aim of this research was to derive a relationship showing how

a detector’s speed impacts its geometric efficiency. The number of photons striking a detector,

εG, can be calculated from the solid angle, Ω, which is a function of source/detector geometry,

Fig. 2.1. Understanding this relationship, allows survey plans to be better optimized based on

regulatory, operational, and/or economic requirements.

εT = εG ∗ εI =
photons striking
photons emitted

∗ photons interacting
photons striking

(2.2)
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Figure 2.1: Schematic showing what solid angle represents.

Solid angle is the angle an object subtends from an observer at the center of an imaginary

sphere containing both the observer and the object, Fig. 2.2. The solid angle depends on the

shape of the object and the distance between the observer and object. In this research the source

is the observer and the detector is the object. A detector system records a signal over a set period

of time (integration time) and reports the summed value (count). The detector’s total efficiency

is calculated as this count divided by the total emission during the integration time.
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Figure 2.2: Schematic showing the different solid angles an object presents as it moves past an
observer.

Masket (1956) derived equations to calculate the solid angle at various positions around a

right circular cylinder, Eq. 2.3. Masket chose a right circular cylinder because it is the shape

of the industry standard scintillation detector. Masket divided the space around the detector

into three regions where Eq. 2.3 is applied in different combinations, Fig. ??. For example, if

the source is located in region I, Ω1(r,h) would be calculated by referring to Eq. 2.3a. Masket

constructed his equations in units of detector radius so that they could be applied to different

cylinder sizes, the only modification being that source height and offset need to be accounted for
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using the normalized unit. In Eq. 2.3, ρ is the source distance away from the cylinder axis, z is

the source height above the reference plane defined as the top of the cylinder, S1 and S2 are rays

from the source to the farthest and closest point on the detector, respectively, and φ is the angle

swept across the detector face.

Ω1(ρ, z) = 2π − 2z

∫ π

0

dφ√
z2 + S2

1

(2.3a)

Ω2(ρ, z) = 2z

∫ arcsin(1/ρ)

0

[(z2 + S2
2)

−1
2 − (2.3b)

(z2 + S2
1)

−1
2 ] dφ

Ω3(ρ, z) = 2z

∫ arcsin(1/ρ)

0

(z2 + S2
2)

−1
2 dφ (2.3c)

S1, S2 = ρ cosφ±
√

1 − ρ2 sin2 φ (2.3d)
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Figure 2.3: Schematic showing the different solid angles an object presents as it moves past an
observer.

2.2 Methods and Materials

This research bridged the gap between Masket’s solid angle equations for stationary sources

and the proposed effect of detector speed on efficiency. This research consisted of Python calcu-

lations and MCNP simulations. Masket’s solid angle equations were coded using Python 3.6.1,

(Rossum, 2017). Detector efficiency was simulated using MCNP6.1, (Goorley et al., 2012). For

this research all values were reported to six decimal places in keeping with Masket’s precision.

Twenty point source locations around the detector were chosen for evaluation. Five of the

points were example locations from Masket’s original report used to illustrate his process. Five

of the points were arrayed vertically between 1-5 detector radii away from the top face. These

were chosen to depict the change in solid angle in region I as a function of distance from the

reference plane. Five of the points were arrayed horizontally between 1-5 detector radii away

from the middle of the side face. These were chosen to depict the change in solid angle in region
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III as a function of distance from the detector side. Five of the points were arrayed horizontally

between 1-5 detector radii offset from the detector corner. These were chosen because to depict

the change in solid angle in region II as a function of distance from the top and side of the

detector. The points in region II also depict a similar solid angle profile as that modeled for the

line sources. The ρ and z values for the point sources modeled are listed in Table A.2 and shown

in Fig. 2.4. All twenty point source locations are found directly in Masket’s table of results and

were chosen to verify the accuracy of the Python script.

Figure 2.4: Schematic showing the different solid angles an object presents as it moves past an
observer.
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Line source configurations were modeled at 10 cm centered above the top face of the detector,

Fig. 2.5. Line sources were used to approximate a moving detector over a stationary source

because the MCNP version used does not model dynamic configurations. A line source emits

photons with equal probability along the entire length of the source. In this way the tally response

approximates the detector moving past the stationary source. The length of the line source is

equal to the distance the detector would have traveled during the integrated period of interest.

For these simulations an integration time of one second was used. Velocities simulated were

between 10-100 cm s-1 in increments of 10 cm s-1. These represent the best case scenarios for

count configurations where the integration time occurs such that the detector is centered over the

source.
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Figure 2.5: Schematic showing the different solid angles an object presents as it moves past an
observer.

Masket’s values were originally calculated using the ORACLE programming language. This

research was conducted using the Python programming language because it could produce ac-

ceptable results in a reasonable computational time and because the results could be analyzed

in the same language. The Python script used to calculate the solid angle based on Masket’s

formulas was divided into three parts: 1) a sorter function which determined which region to

use in calculating the solid angle, 2) the calculation portion which applied the selected Masket

formula to each case, and 3) a function to calculate the integrals in Masket’s formulas. The solid
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angles for the individual point sources were calculated individually. The line sources were each

divided into ten equally spaced sections and the solid angle calculated at each division point. The

integral of the ten solid angles was then calculated, normalized to one integration time interval

(1 s). This became the composite solid angle for that line source.

The sorter function works to determine which region around the detector the source is lo-

cated. If z is above the reference plane and ρ is less than or equal to the detector radius the

source is in region I. If z is above the reference plane and ρ is greater than the detector radius

the source is in region II. If z is between the reference plane and the length of the detector and ρ

is greater than the detector radius the source is in region III. The regions around the detector are

shown in Fig. 2.3.

In region I, only the top of the cylinder contributes to the solid angle because the source is

directly above the detector. Therefore, only ΩI is calculated in Eq. 2.3. In region II, both the

top and side of the detector contributes to the solid angle. Here, ΩII is calculated to account

for the top of the detector. To account for the side contribution, the ΩIII for the imaginary

cylinder from the top of the detector to the height of the source is subtracted from the ΩIII for

the imaginary cylinder and the detector combined, Fig. 2.6. In region III, only the side of the

detector contributes to the solid angle because the source is located between the top and bottom

planes of the detector. ΩIII is calculated twice and summed, Fig. 2.7. The first calculation is the

ΩIII for the cylinder between the top of the detector and the plane of the observer point. The

second calculation is the ΩIII for the cylinder between the plane of the observer point and the

bottom of the detector.
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Figure 2.6: Figure showing the imaginary cylinder and solid cylinder used to calculate the side
solid angle in region II. Reprinted from Masket et al., 1956.

Figure 2.7: Figure showing both portions of the solid cylinder used to calculate the side solid
angle in region III. Reprinted from Masket et al., 1956.

The integrals in Masket’s formulas for ΩII and ΩIII are discontinuous over the φ domain.

This is because the S1,2 rays incorporate the square root of a term that can become negative if
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ρ is large enough and are thus impossible for Python to calculate. To accommodate this in the

Python script, a 16th order Taylor series approximation of the rays was used to estimate the

integrand value at each φ. The Riemann Sum integration method was used to further simplify

the calculation. The number of intervals in the Riemann Sum was chosen to give the most

precise estimate within the computing power available. The integrand was evaluated at each of

ten million points between the φ limits of integration and summed. This result was then fed back

to the Masket formula to calculate the solid angle at that specific source location.

The solid angles for the point source configurations were calculated individually. Moving

sources were modeled using line sources. To calculate the solid angle for the line source a solid

angle profile was first calculated. This profile is the solid angle at discrete locations in the x-

direction of travel at a constant z height above the detector. This profile was then sampled in the

interval of each line and normalized to one integration time unit, Fig. 2.5.

The Masket table values and Python results for the point sources were compared to establish

the Python calculations are accurate. The Masket values were plotted along the x-axis and the

Python results along the y-axis. A linear regression was then fit to this plot. A slope of 1 for

this regression fit represents perfect agreement between the Masket table values and the Python

script.

The MCNP simulation modeled the source configurations as described above. The modeled

cylinder was 2 in x 2 in (5.08 cm x 5.08 cm), made out of sodium iodide (NaI), wrapped in

aluminum and aluminum oxide, and oriented vertically with the top face located at the x=0

plane. The wrapping was to approximate a real world detector, simulating the attenuation of

low energy photons through a detector’s casing. The entire arrangement was placed in a vacuum

universe 10 cm above a brick floor. The mean free path of photons in air at the energy modeled

is orders of magnitude larger than the modeled distances between source and detector.

The photon energy for all MCNP simulations was 662 keV, the energy of 137Cs which is

a standard radionuclide used for detector calibration. An F8 tally over the cylinder was used
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to approximate detector efficiency. The energy range of the F8 tally was 0-2 MeV to simulate

a multichannel scalar signal. The F8 tally measures the energy deposited in the the detector

volume and reports the value as efficiency. Each simulation modeled 1x107 particles. A direction

bias was applied to the source definition card. The number of particles modeled and the direction

biasing was necessary to produce results with relative errors less than 10%.

The Python results and MCNP results for the point sources and line sources were then com-

pared to establish that solid angle does explain the change in efficiency. The Python results were

plotted along the x-axis and the MCNP results along the y-axis. A linear regression was then fit

to this plot. The slope of this fit represents the intrinsic efficiency of the modeled detector. This

is because the Python results are the geometric efficiencies and the MCNP results are the total

efficiencies for each trial.

The MCNP efficiencies were then plotted as a function of the speed simulated. A fit of this

plot was made to establish the relationship between efficiency and speed. The desired shape

of this curve is the previously observed efficiency phenomenon. The fit of this plot will then

explain how efficiency is dependent on speed and is the tool that can be used by the surveyor to

tailor their survey plan.

Finally, a generic MDA for the modeled system was then calculated by inserting the effi-

ciencies calculated above into Eq. 2.1. The other variables are normalized so that the effect of

efficiency on MDA can be extracted and highlighted. Because the other variables are assumed

to be static during counts the shape of the MDA curve will remain the same and only the values

will shift based on count setup.

2.3 Results and Discussion

If the integration time is kept constant and detector speed is changed, the amount of the solid

angle profile that is swept over during a count is different. When normalized for integration time

the composite solid angle of the count decreases as speed increases. This is what causes the
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change in efficiency of a detector relative to detector speed.

A plot of Masket table values versus Python results is shown in Fig. 2.8. They were fit to a

linear regression where a slope of 1 represents perfect equivalence between the two datasets. The

slope of Fig. 2.8 is 1.000422 ± 0.000222 with an r-squared value of 0.999999 meaning that the

Python script calculated the same values in Masket’s table. These results affirm that Masket’s

equations were properly coded in Python and can be relied upon to give accurate results for

source locations not listed in Masket’s table.

Figure 2.8: Plot and fit of Masket solid angle values versus Python solid angle results for the
point source locations.
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A plot of Python, Ω, results versus MCNP, ε, results for the modeled point sources is shown

in Fig. 2.9. The MCNP tally was used as a proxy for the total efficiency while the Python solid

angle calculation was used as a proxy for geometric efficiency. Therefore, the ratio of MCNP

values to Python values is a proxy for the intrinsic efficiency of the material. The plot is linear

with a slope of 0.079491 ± 0.000041 and an r-squared of 0.999995. Analysis of these model-

ing results suggests that the 2x2 NaI has an intrinsic efficiency of approximately eight percent,

which compares favorably to experimentally determined values of actual detectors, (Sakai, 1987;

Holl, Lorenz, & Mageras, 1988). This result validates that these simplified MCNP simulations

were an accurate representation of the more complex scenario in the real-world. Additionally,

it strengthens the argument that a change in solid angle is the driving force behind a change in

detector efficiency. If the ratio between Python and MCNP values was not linear then it would

mean that the intrinsic efficiency was not constant and that some other physical process was

taking place.
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Figure 2.9: Plot and fit of Python solid angle results versus MCNP efficiency results for the point
source locations and line source trials.

The above plot shows that the total efficiency of a detector is dependent on its solid an-

gle to a source, not only for static point sources but also line sources approximating a moving

detector. Therefore, the MCNP efficiencies can be plotted as a function of speed, Fig. 2.10.

The shape of the plot is the characteristic decrease exhibited in previous research, (Marianno et

al., 2000). This plot was fit with a modified four parameter logistic function (M4PL), Eq. 3.1,

(Sittampalam et al., 2004). The maximum efficiency of the curve, A, is 0.018961 ± 0.000058.

The minimum efficiency of the curve, D, is 0.000936 ± 0.000492. The slope of the curve,
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B, is 1.468228 ± 0.038920. The speed which results in 50% of the maximum efficiency, C,

is 60.487853 ± 2.344416 cm s-1. This speed is similar to the MARSSIM target scan rate of

50 cm s-1 indicating that this simplified detector system would be a good candidate for perform-

ing surveys according to that standard, (U.S. NRC, 2000). This fit of efficiency data has never

been identified before.

ε = D +
A−D

1 +
(
x
C

)B (2.4)

Figure 2.10: Plot and fit of MCNP efficiency versus speed.
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The MDA can now be assessed by inserting Eq. 2.4 into Eq. 2.1 to yield Eq. 2.5. The

detection limit and yield were normalized to 1 to show the full effect of efficiency on the MDA

as a function of detector speed, Fig. 2.11. The composite MDA model starts at 0 cm s-1 with a

minimum MDA of 52.77 normalized units. It slowly rises until approximately 40 cm s-1 with

an MDA of 79.33 general units. From there it appears to rise with a linear slope until the end

of the plot at 100 cm s-1 with an MDA of 147.77 general units. This figure can be referenced

when seeking to find the maximum speed possible while remaining below a required MDA.

Conversely, the lowest MDA achievable can be determined if speed is the dependent variable.

For example, if regulations require that the MDA be 105 in normalized units the fastest speed

the detector would move is approximately 64 cm s-1. If the operational constraints require the

speed to be 75 cm s-1 then the MDA would be 117.16 in normalized units.

MDA =
LD

Y

(
D + A−D

1+( x
C )

B

)
T

(2.5)

32



Figure 2.11: Plot of MDA model using a generic detection limit and yield.

2.4 Summary

MDA is a function of background, yield, efficiency, and time of count. Efficiency is the

quantity the surveyor has most control over. Efficiency is the combination of how many photons

impact the detector (geometric efficiency) and how many of these photons interact and produce

a signal inside the detector (intrinsic efficiency). Under typical survey conditions intrinsic ef-

ficiency is unchanging. This research showed how geometric efficiency quantifies MDA as a

function of speed. Geometric efficiency can be calculated by considering the solid angle of the

detector. Solid angle is the angle subtended by an object from a point. In this research the source
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is the point and the detector is the object. MCNP results were correlated to solid angle calcula-

tions using point and line sources. The solid angle results were then fit with the M4PL model to

calculate efficiencies.

The M4PL model was used to develop a relationship between speed and MDA. This rela-

tionship is a first of its kind. There are three uses of this relationship 1) verify the accuracy of

your current survey plans, 2) optimize survey plans for speed and accuracy, 3) identify limits of

detection accuracy based on operational speed. It will be useful in allowing surveyors to design

site surveys to be conducted as quickly and cost effectively as possible while still meeting reg-

ulatory requirements. This relationship is also invertible which will allow surveyors to derive

MDAs their detection systems can achieve given operational constraints.

This is the desired relationship between speed and efficiency which can now be used to

tailor survey plans to fit operational, logistical, regulatory and fiscal needs. This foundational

relationship has the potential for many large and small applications in both the academic and

operational fields. It can be used to improve survey accuracy when used in a way to identify a

single source with an unknown location. Slower speeds within a given survey field will produce

a more accurate pinpoint of source location at lower activities. The speed which results in 50%

of the maximum efficiency, 60.12 ± 2.34 cm s-1 is similar to the MARSSIM target scan rate of

50 cm s-1. This means that variations in speed will have immediate effects on detector efficiency.

Depending on the size of the survey field, robotic systems or other means of transporting the

detector that can travel at consistent speeds might be necessary to achieve desired results.
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3. EXPERIMENTALLY VERIFYING MINIMUM DETECTABLE ACTIVITY TO

DETECTOR VELOCITY RELATIONSHIP

3.1 Introduction

In the last few decades mobile detection systems have expanded in prevalence in the field of

radiation detection. This change in paradigm has brought new challenges to the survey world.

Determining appropriate survey patterns, variable background fields, operational constraints,

and accounting for any impact speed may have upon detector performance form the bulk of

these challenges, (U.S. NRC, 2000).

This last challenge, the effect of speed on detector performance, was noted in the 1997

Multi-Agency Radiation Survey and Site Investigation (MARSSIM) manual, (U.S. NRC, 2000).

Marianno identified the phenomenon in his data when evaluating the performance of a Field In-

strument for the Detection of Low-Energy Radiation, (Marianno et al., 2000; Marianno, 2015).

Schroettner, et. al., sought to address this problem through varying the integration speed,

(Schroettner et al., 2009). However, the relationship between speed and efficiency has not been

quantified until recently, (Falkner & Marianno, in prep 2018a). The relationship was identified

by fitting MCNP results to a modified four parameter logistic (M4PL) equation, (Sittampalam et

al., 2004). The original logistic function starts at a minimum and rises to a maximum. The rise

is gradual at first, quickly steepens to a maximum slope, and then tapers off. The modifications

made to the logistic function were to mirror the shape but start at a maximum and progress to

a minimum. In this equation the speed of the detector is x, the maximum efficiency is A, the

minimum efficiency is D, the slope of the equation is B, and the speed at which the efficiency is

half that of the maximum is C.

ε = D +
A−D

1 +
(
x
C

)B (3.1)
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This current research sought to reproduce in a laboratory setting the modeled relationship

with as few outside confounders as possible. A robotic system was used to carry a detection sys-

tem at various speeds. This allowed for reproducing consistent trial conditions for the duration

of this study. The parameters held constant from trial to trial included track length, radionuclide,

source location, background, detector height, and integration time. The parameters that varied

from trial to trial included speed and source strength.

One method of assessing a detector’s performance is to calculate its reportable minimum

detectable activity (MDA), Eq. 3.2. MDA is the lowest level of activity present which can be

detected with statistical confidence. The components of Eq. 3.2 are yield (Y), integration time

(T), limit of detection (LD), and efficiency (ε). Solving Eq. 3.2 for efficiency while fixing the

limit of detection, integration time, and yield enabled the derivation of a relationship that can

be used by field surveyors to quickly tailor their survey plans to be as accurate as needed while

remaining cost effective.

MDA =
LD
Y εT

, (3.2)

3.2 Methods and Materials

The robot used in this experiment was an LT2 Tracked ATR Robot Platform purchased from

SuperDroidRobots (Super Droid Robots, 2017). It consisted of an aluminum body frame, two

motors, a battery to power each motor, a wireless receiver to connect the robot to the remote con-

trol, and a controller module that received input from the handler, Fig. 3.1. The robot measured

67.31 cm long by 17.78 cm tall by 41.91 cm wide and with a shipping weight of 19.1 kg. The re-

mote control used for this experiment was a Spektrum Dx6E hobby airplane remote control that

had already been programmed and paired with the robot by SuperDroidRobots prior to delivery.

The remote control was programmed to set the robot throttle at a preset fraction of maximum

motor power for the duration of each trial.
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Figure 3.1: Photo of robot used during experiment. Shown are the detector, mca, optical sensor,
and remote control.

The detection system consisted of a 2 in x 2 in (5.08 cm X 5.08 cm) sodium iodide detector,

model 802 from Canberra, connected to a Canberra Osprey. The unit was U-bolted in a down-

ward orientation to a steel frame extending from the robot with the face of the detector 10 cm

from the floor. There was noticeable vibration in the detector/MCA assembly at the higher trial

speeds. The amplitude of the vibration was significantly less than the diameter of the detector

and thus did not have an effect on the experimental result. The vibration did cause the MCA

to work itself loose from the detector. The MCA was taped to the detector to prevent it from

disconnecting during trials.
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The detector was operated through scripts written in Python 2.7, (Rossum, 2015) using the

Canberra Software Development Kit, (Canberra Industries Inc., 2011). The Python script con-

trolled when the count started, how the count was conducted, when the count ended, and how the

resulting data was collected and stored. The multichannel scaler (MCS) function on the MCA

was used to gather count information for the entire energy range of the detector. The MCS func-

tion is the "acquisition of time-correlated data in an MCA. Each channel is defined as a time

window; all pulses are stored in one channel, then stepped sequentially to the next", (Gilmore,

2011). This means the count information is binned by time in the available channels instead of

by energy as in a typical count spectrum. The integration time used was 0.02 s. This resulted in

collecting enough data points per trial to sufficiently capture the source peak. The timing resolu-

tion of the Python script was determined to be 4.1026x10−7 seconds. Timing resolution impacts

the precision of any timestamps used in calculations. This value is several orders of magnitude

below the integration time and thus has no impact on the timing used.

Prior to conducting trials the detector was calibrated and settings input. Energy calibration

was conducted using 241Am, 137Cs, and 60Co on a 2 MeV scale because they represent the low,

middle, and high end of the energy spectrum of interest in this research. The course gain and

fine gain were set to 2 and 3.38, respectively, in the Python script. The operating voltage for the

photomultiplier tube (PMT) was set to 750 V as suggested in the Python script example for an

MCS count provided in the SDK. However, the Canberra manual for the detector sets the op-

erating voltage to 800-1100 V. The operating voltage determines the potential difference across

the dynodes in the PMT which determines the final size of the PMT output pulse. Increasing

voltage across the detector will increase the count recorded by the MCA. Although the SDK rec-

ommended value of 750 V was used in the trials, the higher voltage recommended would have

been more appropriate to use. The integration time was set to 0.02 s in the Python script using

the SDK. The full energy range was counted to simplify analysis and to mimic less sophisticated

detectors to broaden the applicability of this research.
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An ROS-P remote optical sensor coupled with a SPSR-IM interface module, both from

Monarch Instruments, was used to trigger the detector to start and stop counting during each

trial. The optical sensor would trigger when it crossed a strip of reflective tape at the start of the

track and again at the end of the track. After each trigger the interface module would send a 5 V

time-to-live pulse via a BNC connection to a General Purpose Input/Output (GPIO) connection

on the MCA. The MCA then used the GPIO signal to start and stop the count acquisition. Due

to limitations in signal transmission between the various components, there would be a minimal

delay on the order of 0.5 s between crossing the tape and the count beginning.

The optical sensor was mounted on the steel frame preceding the detector and angled back-

wards to approximately 15 degrees, as specified in the unit’s manual, (Monarch Instruments,

1995). The angle served to trigger the detector as accurately as possibly as it crossed the reflec-

tive tape. The laser was aimed such that it impacted the ground directly underneath the leading

edge of the detector. The angle also minimized scattering of the optical signal while the robot

was traveling down the track.

The track was re-purposed from a previous experiment with already established distance

markings. The track measured approximately 600 cm in length. It was situated in a basement

hallway approximately 180 cm wide. The floor of the track was brick and the walls of the

hallway were concrete. Reflective tape was placed at the start and end of the track. The time

of each trial and the length of the track was then used to calculate the average speed the robot

traveled in each trial. The robot was started a short distance before the beginning of the track

so as to gain its target trial speed and to settle out any vibration in the detection system due to

the sudden acceleration of the robot. This length needed to be extended further as the target trial

speed increased but never exceeded 0.5 m. No counts were recorded during this pre-track length

and this distance was not included in the speed calculation. All distance measurements were

made from the leading edge of the reflective tape strips.
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Figure 3.2: The hallway were the robot experiments were conducted. Visible are the starting
position and distance markings.

The sources used for this experiment were 137Cs buttons. In total, five button sources were

used in increments of one. The activity of each button source was 1 ± 0.1 µCi. The sources

were all assayed in Jan 2013 and decay corrected to the dates of the experiment. The sources

were placed at approximately 250 cm from the start of the track. This source location was used

to ensure that the entire radiation field was captured; it was feared that the radiation field after

the source would be cut off if placed too close to the end. The first two sources were placed next

to each other perpendicular to the track and then subsequent sources were stacked on this pair

so as to minimize the height above the track the sources ended up being.
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The velocity of the robot was an important parameter of this research. Throttle settings used

in the experiment were 50%, 75%, 100%, 125%, and 150% of a preset power level determined

by SuperDroidRobots. The maximum throttle setting was a limitation imposed by the remote

control. The minimum throttle setting was the lowest setting that still produced smooth and

consistent forward motion. Below this throttle setting, at around 40%, the robot would jerk

forward slowly. The rest of the throttle settings were chosen to produce trial results in distinct

clusters of speeds since the actual speeds achieved in the trials depended on battery level. A

total of ten trials were conduced at each throttle setting. The average speed of the robot for all

trials at each throttle level is shown in Table 3.1. The relationship between throttle and speed is

linear between settings 50 to 150. The intercept of this relationship is at a throttle setting of 34%,

consistent with the observed behavior in the lab. The throttle setting with the highest variation,

as indicated by the standard deviation in Table 3.1 is 100%. This is likely because trials were

conducted in increasing or decreasing throttle cohorts each day. The battery was charged during

changes between cohorts and the trials immediately after would have more power than the trials

prior to the break. This break sometimes occurred before the 100% trials and sometimes after

the 100% trials leading to a larger variance in power levels.

Table 3.1: Throttle settings and the corresponding average robot speeds.

Throttle Setting Robot Speed (cm s−1)

50 19.08 ± 0.68

75 39.90 ± 1.04

100 63.58 ± 3.50

125 86.28 ± 0.08

150 120.67 ± 0.14
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To produce robust statistics, ten trials were conducted at each throttle setting for each source

strength. In each trial the robot always traveled in the same direction. Throttle setting would

progress from low to high or vice versa and then the number of sources was increased from 0

to 5 incrementally by 1. In addition to trials being conducted at various throttle settings, data

was collected for a static detector directly over the source location for approximately 30 seconds

per count for all source strengths. Static counts had to be triggered manually by passing a strip

of reflective tape under the optical sensor to start and stop each count. The 0 source strength

trials were conducted to test whether or not background is affected by speed. This is important

because if it is, there are two terms dependent on speed in Eq. 3.2, the LD and the ε.

A typical background count is shown in Fig. 3.3. The portion of the count in the gray box

was used to calculate the average background count per integration time. The first and last

ten counts were disregarded to further ensure only data gathered at desired settings was used.

This average count per integration time was used to calculate a background count rate in units

of count per second (cps). This was done for all trials, static and dynamic, with zero sources

present. The average and standard deviation for the remaining data was calculated. These values

were for 0.02 s integration periods and needed to be multiplied by 50 to calculate an average 1 s

background count rate for each trial. The average background count rate and standard deviation

was then calculated for each throttle setting. For the rest of the experiment, the background count

rate for the static trial was used when calculating net values because it was viewed as equivalent

to current standard practice when conducting radiation surveys. The detection limit, LD, for each

throttle cohort was calculated using Currie’s Equation, Eq. 3.3. The σB is the standard deviation

of the background.
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Figure 3.3: Plot of typical static background count profile shown for illustration purposes.
Counts in gray region were used to calculate the background count rate.

LD = 4.65 ∗ σB + 2.71 (3.3)

For trials where sources were present, the maximum count recorded was assumed to be the

peak signal indicating the location of the source. A typical source count is shown in Fig. 3.4.

The portion of the count in the gray box illustrates what was used to calculate the peak count

per integration time. Each count in the experimental trial was conducted over 0.02 seconds

and consisted of a total count at all energies. Therefore, in order to compare the experimental

results to modeling results, all peaks were normalized to one second by summing fifty counts

centered on the maximum. A net peak count was then calculated by subtracting the background

43



count value. The peak counts were then averaged within each throttle setting and source strength

cohort. The efficiencies for each throttle and source strength cohort were calculated using the

decay corrected activity of the sources used and then plotted against the model fit from previous

work, (Falkner & Marianno, in prep 2018a). The static trials for each of the source strengths

directly over the source were gathered to show the static detector’s efficiency as a baseline for a

comparison to the speed trials. Errors were propagated throughout the calculations.

Figure 3.4: Plot of typical source count profile shown for illustration purposes. Counts in gray
region were used to calculate the peak count.

The experimental data were compared to Eq. 3.1 using parameters derived in previous re-

search, (Falkner & Marianno, in prep 2018a). The parameters of the M4PL used are listed in
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Table 3.2. The model was plotted and the experimental data superimposed to show how well

the two data sets compare. The model and experimental data were then input into Eq. 3.2, with

an integration time of 1 s, a yield of 0.85, and the limit of detection determined above, and the

MDAs plotted.

To validate whether the model applies to this experimental setup, the MDA for each throttle

cohort was independently calculated. First the count totals for each speed cohort were plotted

as a function of source strength. Each speed cohort was then fit to a linear regression of counts

as a function of source strength. The linear regression was rearranged to be source strength as

a function of counts. The regression parameters and the detection limit determined above were

then used to calculate the MDA for each speed cohort. These calculated MDAs were then plotted

as a function of speed along with the model MDAs.

Table 3.2: Parameters of the M4PL model used to compare simulation and experimental results,
(Falkner & Marianno, in prep 2018a).

Parameter Value

A 0.0149 ± 0.0000

B 1.5475 ± 0.0257

C 52.2784 ± 0.8991

D 0.0014 ± 0.0002

3.3 Results and Discussion

Representative samples of trials at different speeds and different source strengths are shown

in Fig. 3.5. Since all data points were taken in 0.02 s intervals and the track distance is the same

length for all trials, the number of data points collected decreased as robot speed increased. The

increased data density on the left is due to slower robot speed acquiring more counts over the
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course of the track. The difference in peak count is due to different source strengths being used

for each trial. The count times were converted to track distance to compare different throttle

cohorts. The peak of each trial is at approximately at 250 cm, as expected. The max count value

of each peak increases with source strength but is constant with throttle setting, Table 3.3.

Figure 3.5: Results for two example trials are shown for illustration purposes.

Table 3.3: Average peak integration count for each throttle/source cohort are shown.

Throttle

Sources
1 2 3 4 5

0 28 ± 5.3 38 ± 6.2 52 ± 7.2 63 ± 7.9 75 ± 8.7

50 18.4 ± 1.7 30.3 ± 3.1 41.2 ± 3.3 48.9 ± 2.9 59.9 ± 4.5

75 16.9 ± 1.7 27.7 ± 2.4 38.3 ± 3.9 49.5 ± 3.9 59.1 ± 5.0

100 16.6 ± 1.8 27.6 ± 1.8 36.2 ± 2.9 46.6 ± 3.1 57.9 ± 6.5

125 15.0 ± 1.5 26.1 ± 3.6 34.9 ± 4.9 46.4 ± 3.9 55.6 ± 4.4

150 14.0 ± 1.8 23.2 ± 2.3 32.6 ± 4.1 43.0 ± 5.5 52.8 ± 4.2
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Characterizing the background environment is important because it defines what the limit of

detection is for your count. The average backgrounds and standard deviations for each throttle

setting are listed in Table 3.4. The backgrounds are all within two standard deviations of each

other. This shows that the velocity of the detector does not have an affect on background count

rate.

This is important because it means that the detection limit in the MDA calculation is a func-

tion of the environment, and thus static, rather than a function of the detector. This can be seen

in Eq. 3.2. Here the limit of detection (effect of background) and the efficiency of the detector

(effect of speed) are two separate components. Using Eq. 3.3 and the static background count

rate standard deviation the detection limit for the laboratory environment can be calculated as

59.44 cps.

Table 3.4: Throttle settings and the corresponding average background count rate.

Throttle

Setting

Background Count

Rate (cps)

0 148.0 ± 12.2

50 153.0 ± 12.3

75 164.7 ± 12.8

100 155.2 ± 12.4

125 161.1 ± 12.7

150 155.9 ± 12.4

The source trial efficiencies are shown in Fig. 3.6. The experimental data demonstrate a

general decreasing trend as speed increases similar to the modified 4-parameter logistic function

relationship (M4PL) derived in (Falkner & Marianno, in prep 2018a). There appears to be two
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trend lines in the experimental data. The data begins at 0 cm s−1 with calculated efficiencies

of approximately 0.016 and decrease sharply until approximately 60 cm s−1 with efficiencies

of approximately 0.007. From there the trend trend line continues to decrease with a shallower

slope until 120 cm s −1 with efficiencies of approximately 0.004. Plotted with the experimental

data is the model derived by Falkner et al. Error bars on the experimental data extend two

standard deviations. Thus there is significant agreement between the shape of the M4PL and the

experimental data. However, the experimental values are greater than two standard deviations

below the M4PL owing to the lower high voltage used during the trials. This confirms that the

M4PL relationship is an accurate model for the influence of speed upon efficiency.

Features in the M4PL, such as the increasing slope change at approximately 15 cm s−1 and

the decreasing slope change at approximately 70 cm s−1, are not captured in the experimental

data because the robot used for this experiment could not differentiate speeds any finer. Even so,

the relationship between detector speed and detector efficiency is validated.
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Figure 3.6: Plot of robot data and M4PL fit as a function of speed. The fit and data show
the characteristic shape of efficiency starting at a relative high, ending at a relative low, and
exhibiting a transition region of rapid change in between.

A plot of the MDA as a function of speed for this experimental setup demonstrates that as

speed increases, MDA also increases, Fig. 3.7. As in Fig. 3.6, there appears to be two trend-lines

in the experimental data. The data begin at 0 cm s−1 with calculated MDAs of approximately

0.114 and increase slowly until approximately 20 cm s−1 with MDAs of approximately 0.144.

From there the trend line continues to increase with a sharper slope until 120 cm s −1 with MDAs

of approximately 0.465. Plotted with the experimental data is the efficiency model derived by

Falkner et al. input into the MDA equation. Error bars on the experimental data extend two
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standard deviations. For example, if regulations require that the MDA be 0.2 µCi of 137Cs the

fastest speed the detector would move is approximately 65 cm s−1. If the operational constraints

require the speed to be 100 cm s−1 then the MDA would be 0.28 µCi of 137Cs.

Figure 3.7: Plot of robot data and MDA fit.

Another way of estimating MDA as a function of speed is to plot the count totals for each

source and speed cohort and then fit a linear regression to each data set. The result of this analysis

is shown in Fig. 3.8. The minimum number of sources that this experiment’s detector could see

at a particular speed (MDA) is where each line crosses the limit of detection determined above.
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The MDA is directly calculated using this method as opposed to being derived by theoretical

calculations as in the previous method. This independently verified that the MDA calculated

from the efficiency model fit the experimental data and lends credence to the results discussed

above.

Figure 3.8: Plot of robot data and linear fits. Each dashed line represents a different speed, listed
to the right. The plots are the average trial at each source strength at each speed. The solid line
is the calculated detection limit based on the background.

The experimentally derived MDAs along with the M4PL model calculated MDAs are plotted

in Fig. 3.9. Similar to Fig. 3.7 there appears to be two positive phases with differing slopes. The
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first trend starts at 0 cm s−1 and ends at approximately 20 cm s−1 and is the shallower of the two.

The second trend-line starts at 20 cm s−1 and extends to the end of the plot at 120 cm s−1 and is

steeper than the first. The model MDAs are within two standard deviations of the experimental

data and again confirms that the model is applicable to this laboratory setting.

Figure 3.9: Plot of robot data and model fit.
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3.4 Summary

It has been known for some time that the efficiency of a moving detector can be improved

by slowing the speed of travel. The effect of speed on detector efficiency was mentioned in

the MARSSIM manual for conducting environmental site surveys for the decommissioning of

facilities. Marianno identified the phenomenon in his data when evaluating the performance

of a Field Instrument for the Detection of Low-Energy Radiation. This phenomenon also has

real world ramifications for conducting security sweeps using mobile detection systems. There

are three main reasons for addressing this issue. First, a surveyor may want to validate the

detection system for surveys he performs. The detector uses either an efficiency defined by

the manufacturer or more likely an efficiency needs to be calculated. Either way it is most

likely an efficiency calculated in a static configuration. However, when using the detector in a

mobile configuration the efficiency degradation due to speed may invalidate the results. Second,

a surveyor can use this relationship to improve his survey plan. A surveyor has a detector and

needs to survey a site as part of a job. It is known how efficient the detector is when static

but how fast the detector can move and still meet the designed survey parameters is not known.

Finally, a surveyor can use this relationship to identify the limits of the detection system being

used due to constraints outside the control of the surveyor. The surveyor has the same detector

as the first two cases with a known efficiency, however it is on a flying drone that has a minimum

cruising speed it must maintain. The surveyor is interested in knowing what the lowest amount

of radiation is that can be seen with this detector on the drone.

This current research sought to reproduce in a laboratory setting the modeled relationship

with as few outside confounders as possible. Confounders here includes variable backgrounds,

presence of multiple sources, and presence of excess attenuators (tall grass, shrubs, trees, walls,

buildings, etc.) or terrain (broken soil, undulating hills, culverts, etc.) that would inhibit an

isotropic source. The robotic system allowed for reproducing consistent trial conditions for
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the duration of the study. Most critically this included operating at a consistent desired speed

for each trial but it also allowed for detector to be held in the same place relative to the robot

for every trial. This allowed the trial results to be as consistent to the modeling as possible.

The parameters held constant from trial to trial included track length, radionuclide selected as

a source, source location, background, detector height, and integration time. Track length was

critical because it was used, along with precise timing of each trial, as the means of determining

trial speed. The source location and detector height were defined by the modeled parameters.

The source used, background, and integration time used were analogs for parameters in Eq. 3.2.

The parameters that varied from trial to trial included speed and source strength. Source strength

was varied to provide an alternate means of verifying model results. The speed varied because

it was the parameter of interest in this research.

The experimental data demonstrate a general decreasing trend as speed increases similar to

the modified 4-parameter logistic function relationship (M4PL) derived in (Falkner & Marianno,

in prep 2018a). Two portions in the episodic data align well with the general shape of the curve

in the model. Additionally, the model falls within two standard deviations of all data points.

Thus there is significant agreement between the M4PL and the experimental data. This confirms

that the M4PL relationship holds true under experimental conditions and is an accurate model

for the influence of speed upon efficiency. The M4PL can then be inverted and placed in Eq. 3.2

to generate an MDA curve. It is this curve that a surveyor would be most interested in. In

general the MDA curve starts low and as speed increases rises. The slope of the MDA curve

starts shallowly at first but very quickly becomes quite sharp. The data points from this research

match the modeled fit very well. This is the first time this relationship has been experimentally

confirmed. The Marianno data has the shape of this relationship but that work did not identify

the model needed to reproduce it. Utilizing this fundamental relationship allows surveyors to

validate current survey plans, design more efficient surveys, or understand survey limitations

based upon operational constraints.

54



4. VALIDATING MINIMUM DETECTABLE ACTIVITY TO DETECTOR SPEED

RELATIONSHIP

4.1 Introduction

Radiological surveying occurs in a wide variety of situations with multiple applications. Ex-

ample surveys include laboratory assessments of reference sources, decommissioning surveys

performed to meet regulatory requirements, and identifying source locations and concentrations

via vehicle or aircraft mounted systems. It has been observed that detector efficiency is nega-

tively impacted by increasing detector speed, (Marianno et al., 2000; Marianno, 2015). Previous

research fit a modified four parameter logistic (M4PL) function to modeling and laboratory re-

sults of a 2 x 2 in (5.08 x 5.08 cm) right circular cylinder NaI detector to explain this effect,

(Falkner & Marianno, in prep 2018a, in prep 2018b). While standards for performing surveys

have been developed, (U.S. NRC, 2000), the varying demands of these applications require a

variety of detector types besides right circular cylinder detectors to best achieve the necessary

results.

The modified function, Eq. 4.1, is a form of the four parameter logistic function (M4PL)

commonly found in biochemistry, (Sittampalam et al., 2004). The original function starts at a

minimum value and curves to a maximum value. The M4PL modifies this so that the shape

of the curve is mirrored and begins with a region of relatively high efficiency and ends with a

region of relatively low efficiency. In between is a transition region of decreasing efficiency.

This decrease is gradual at first, quickly steepens, and then shallows out. In this function the

speed of the detector is x, the maximum efficiency is A, the minimum efficiency is D, the slope

of the equation is B, and the speed at which the efficiency is half that of the maximum is C.

ε = D +
A−D

1 +
(
x
C

)B (4.1)
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Previous experiments to verify the M4PL were conducted in an indoor laboratory environ-

ment on a small scale in terms of detector size, vehicle speed, and distance from the source,

(Falkner & Marianno, in prep 2018b). This current research was conducted on a larger scale

using a slab detector mounted to a truck. The truck traveled at higher speeds on an outdoor track

that was longer and located farther from the source. This was done to extend results to a more

realistic scenario while maintaining control over vehicle speed and allowing for multiple trials

at each speed/source cohort for reproducibility.

In addition to large scale vehicle trials conducted by the researcher, aerial data was pro-

vided by two government partner groups. Air surveys are regularly being conducted as a part

of various government agency programs. For example, the Aerial Measuring System (AMS)

is operated by the Department of Energy (DOE) to provide radiological support services for the

purposes of national security and radiological response, (AMS, 2018). They operate a multi-slab

detector system mounted on a rotary-wing aircraft designed to respond to radiological emergen-

cies. Additionally, the Environmental Protection Agency (EPA) operates the Airborne Spectral

Photometric Environmental Collection Technology (ASPECT) to provide emergency response

capabilities of a radiological nature, (EPA, 2018). The EPA system employs a similar multi-slab

detector system mounted on a fixed-wing aircraft. This research evaluated survey data from each

of these agencies and compared this real-world data to the M4PL.

This current research extended the M4PL to larger, more complex systems and environments

to validate its use in real world survey plans. To do this final results were converted to minimum

detectable activities (MDA) to assess performance of the different detection systems, Eq. 3.2.

MDA is the lowest level of activity present which can be detected with statistical confidence.

The components of Eq. 3.2 are yield Y, integration time T, limit of detection LD, and efficiency

ε. Evaluating Eq. 3.2 for efficiency while fixing the limit of detection, integration time, and yield

enabled the derivation of a relationship that can be used by field surveyors to quickly tailor their

survey plans to be as accurate as needed while remaining cost effective.
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MDA =
ND

Y εT
, (4.2)

4.2 Methods and Materials

4.2.1 Field Trials

4.2.1.1 Vehicle Trial

This current research looked at vehicle data collected at a normal driving speed and at greater

distances from sources than previous work, (Falkner & Marianno, in prep 2018b). Due to the

larger scale an optical sensor to trigger the start and end of each trial was impractical. To counter

this challenge, manual initiation and termination of the count was necessary. This resulted in

variable count times within a range of target speeds. The count information was gathered in a

similar process to previous research, (Falkner & Marianno, in prep 2018b).

To imitate a vehicle mounted monitoring system similar to the ones used by homeland se-

curity or a police force, a simple detector setup was mounted on a pickup truck with no special

modifications. The detection system was a 2 x 4 x 16 in (5.08 x 10.16 x 40.64 cm) sodium

iodide (NaI) slab detector mounted in a polyvinyl chloride (PVC) holder filled with polystyrene

foam. The detector was strapped to the passenger side roof rack with the long axis of the detec-

tor parallel to the direction of travel and approximately 2 m above the ground. It was connected

to a Canberra Osprey Multichannel Analyzer (MCA) in MCS mode with an integration time of

0.02 seconds and operated using the Canberra Software Development Kit via Python script. The

equipment used in this experiment are list in Table 4.1 and shown in Fig. 4.1.
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Table 4.1: Equipment used in the vehicle portion of experiment.

Equipment Description

Vehicle Truck with roof rack

Detector 2x4x16 NaI slab detector

MCA Canberra Osprey

Software Python w/ SDK

Sources 0.4 mCi 137Cs sealed sources (x5)

Figure 4.1: Vehicle with detections system mounted on roof rack.
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The vehicle field trials were conducted at Fan Field located near the Bush School at Texas

A&M University, College Station, TX, Fig. 4.2. Fan Field is a gravel overflow parking lot only

used during football games and other high attendance events. The track consisted of two lanes

approximately 5 m wide each and extended approximately 300 m. A 60 m section in the middle

of the of the 300 m length was marked out using orange cones. As the truck passed the cones the

timer would be manually started and stopped. Due to the inexactness of speed control and the

short distances available, the speeds varied for each pass. The truck was driven at target speeds

of 10, 20, 30, and 40 mph. The truck drove up one lane and down the other in such a manner

that the detector was always on the side towards the source location.

Figure 4.2: Diagram of field where truck trials were conducted. Red arrow is general location
of where sources were placed. White lines indicate lanes on either side of sources that truck was
driven.
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The 0.4 mCi 137C sources used in this experiment were placed in the middle of the 60 m

timing section of the track. Four trials were conducted at each target speed for each source

strength. Dynamic trials started with background counts and the number of sources increased by

one to a maximum of five sources.

A typical background total count is shown in Fig. 4.3. The portion of the count in the gray

box is what was used to calculate the average background count per integration time. The first

and last fifty counts were disregarded to further ensure only data gathered at desired speeds was

used. These values were for 0.02 s integration periods and needed to be multiplied by 50 to

calculate an average 1 s background count rate for each trial. The average background count rate

and standard deviation was then calculated for all target speeds. This average background count

rate was used when calculating net values for the rest of this experiment.
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Figure 4.3: Plot of typical MCS background count profile is shown for illustration purposes.
The target speed of this trial was 30 mph but the profile is indicative of all background trials,
regardless of target speed. Counts in gray region were used to calculate the background count
rate.

For trials where sources were present, the maximum count recorded was assumed to be the

peak signal indicating the location of the source. A typical source count is shown in Fig. 4.4.

The portion of the count in the gray box illustrates what was used to calculate the peak count per

integration time. In order to compare the experimental results to modeling results, all peaks were

normalized to one second by summing fifty 0.02 s counts centered on the maximum. Each count

was the total photons recorded during the integration time. A net peak count was then calculated
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by subtracting the background count value. The peak counts were averaged within each throttle

setting and source strength cohort. The efficiencies for each throttle and source strength cohort

were calculated using the decay corrected activity of the sources used and then plotted against

the M4PL model.

Figure 4.4: Plot of typical MCS source count profile shown for illustration purposes. This trial
used two 0.4 mCi sources and a target speed of 20 mph but the shape of the profile is indicative
of all source trials. Counts in gray region were used to calculate the peak count rate.
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4.2.1.2 Flight Data

The DOE provided rotary wing aircraft flight survey data consisting of date, time stamp,

latitude, longitude, altitude, and count rate in counts per second (cps). The data provided was

collected in 2009 at an undisclosed testing facility and was collected using a total of twelve

NaI slab detectors in four RSX-3 systems mounted on a Bell-412 helicopter, (RSI, 2018; AMS,

2018). The detection system was turned on at the beginning of the flight, operated continuously

for the duration of the flight, and turned off prior to landing. Trials consisted of flying over a

line of point sources at a target speed of 70 knots and a target height of 100 ft. Sources used

were 5.8 mCi 60Co, 27 mCi 137Cs, 8.2 mCi 133Ba, 19.1 mCi 241Am at approximately 500, 1000,

1500, and 2000 m along the track, respectively. Only the 137Cs source was considered for this

research. The equipment used by these groups are list in Table 4.2 and shown in Figs. 4.5,4.6.

The EPA provided flight data for a fixed wing aircraft detection system consisting date, time

stamp, latitude, longitude, altitude, and count rate in counts per second (cps). The particular data

provided was collected in 2010 at an undisclosed testing facility and was collected using a total

of eight slab detectors in two RSX-4 detectors and mounted in a AeroCommander-680FL fixed-

wing aircraft, (RSI, 2018; EPA, 2018). As with the DOE flight, the detection system was turned

on at the beginning of the flight and operated continuously until the end of the survey period.

Sources used by the EPA were 5.0 mCi of 60Co and 26.2 mCi of 137Cs located at approximately

500 m and 2000 m along the track, respectively. Only the 137Cs source was considered for this

research.
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Table 4.2: Equipment used by AMS and ASPECT to gather data.

DOE
Equipment Description
Aircraft Bell-412
Detector RSX-3 (x4)
MCA ADS
Software RadAssist
Sources 5.8 mCi 60Co, 27 mCi 137Cs,
Target Height 20 m
Target Speed 70 kt

EPA
Equipment Description
Aircraft AeroCommander-680FL
Detector RSX-4 (x2)
MCA ADS
Software RadAssist
Sources 5.0 mCi 60Co, 26.2 mCi 137Cs,
Target Heights 30 m and 45 m
Target Speed 110 kt

Figure 4.5: Aircraft used to gather the data provided. The left aircraft was used by the DOE and
the right aircraft was used by the EPA. Reprinted from AMS, 2018 and EPA, 2018.
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Figure 4.6: Detectors used to gather the data used in this research. The left detector is an RSX-3
used by the DOE and the right detector is an RSX-4 used by the EPA. Reprinted from RSI, 2018.

Individual passes in both aerial data sets along the test track were identified by selecting data

points within a rectangle drawn using open-source QGIS and exported for further evaluation,

(Team, 2017). Each individual pass was identified in the exported data by locating time stamp

deviations greater than 5 seconds, Fig. 4.7. Each group of data between these deviations was

considered one pass and was evaluated for pass speed.
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Figure 4.7: Representation of flight data. Purple dots represent all data provided. Yellow dots
represent data selected in this research to construct individual passes. Axes are superimposed for
reference. The long axis represents distance along track. The short axis represents offset from
the track.

The lateral track offsets from the 137Cs source and height above ground of each data point

in the trials were calculated, Fig. 4.8. The maximum count rate from each trial that was within

approximately 60 m of the source was chosen for analysis. The offset of 60 m was chosen to

account for counts not taken directly over the source location and any error in GPS positions.

Some trials in both the DOE and EPA datasets did not have counts that were taken within 50 m

of the source location and were thus discarded. The height varied by about 100 m during each
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trial. The changing height profile is important because in a 1 s count the height would change

approximately 1.4 m and 2.3 m at speeds of 70 kt and 110 kt, respectively. This is not enough

to invalidate the experimental data but will contribute to any variation. In total, four trials were

identified from the DOE dataset and eight trials were identified from the EPA dataset.

Figure 4.8: Identified tracks from both datasets provided. The left plot is the lateral offset of
each trial. The right plot is the height profile for each trial.

4.2.2 Modeling

Similar to previous research a simplified mock up of each detection system was modeled in

MCNP, (Falkner & Marianno, in prep 2018a; Goorley et al., 2012). Detection/source schemes

modeled are shown in Table 4.3. The schemes chosen were as close to experimental arrange-

ments as possible. Due to inconsistencies inherent to field studies, the aerial tracks varied in

survey altitude enough to necessitate the modeling of both a high and low scheme to better

simulate survey parameters.
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Table 4.3: Various detector/source configurations that were modeled.

Setup Description

Truck Height (cm): 200

Speeds (mph): 0, 10, 15, 20, 25, 30, 35, 40, 45, 50

DOE Low Height (cm): 2000

Speeds (kt): 0, 25, 50, 100, 125, 150

DOE High Height (cm): 4000

Speeds (kt): 0, 25, 50, 100, 125, 150

EPA Low Height (cm): 3048

Speeds (kt): 0, 25, 50, 100, 125, 150

EPA High Height (cm): 4572

Speeds (kt): 0, 25, 50, 100, 125, 150

In the case of the vehicle mounted system, a single 2 x 4 x 16 in (5.08 x 10.16 x 40.64 cm) de-

tector was modeled. The detector was wrapped in 0.64 cm of aluminum, approximately 7.62 cm

of polystyrene foam, and then wrapped in 0.64 cm PVC. The entire system was placed in a dry

air atmosphere. The detector was arranged so that the long axis was oriented in the x-axis and

the short axis was oriented in the z-axis. The top plane of the detector was located in the z=0

plane. The source was located 500 cm in the z-axis and 200 cm in the y-axis. This was to mimic

the truck experimental design where the source was on the ground 500 cm away from the truck

and the detector was on the roof-rack 200 cm above the ground.

In the case of both aircraft, a single detector was modeled to represent the multi-detector

systems. The DOE crystal measured 2 x 24 x 32 in (5.08 x 60.96 x 81.28 cm). The EPA

crystal measured 2 x 16 x 32 in (5.05 x 40.64 x 81.28 cm). Both aerial systems were wrapped

with 1.27 cm of aluminum, 7.62 cm of polystyrene, and 0.64 cm of steel to mimic the detector

housing and aircraft frame. Both systems were placed in a dry air atmosphere. Similar to the
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truck simulation, the detectors were arranged so that the long axis was oriented in the x-axis and

the short axis was oriented in the z-axis. The top plane of each detector was located in the z=0

plane.

Line sources were used to approximate a moving detector over a stationary source because

the MCNP version used does not model dynamic configurations. A line source emits photons

with equal probability along the entire length of the source. In this way the tally response

approximates the detector moving past the stationary source. The length of the line source is

equal to the distance the detector would have traveled during the integrated period of interest.

For these simulations an integration time of one second was used. Velocities simulated were

between 0-50 mph in increments of 10 mph for the truck simulation and 0-150 kt in increments

of 25 kt for the aerial simulations.

The photon energy for all MCNP simulations was 662 keV, the energy of 137Cs which is a

standard radionuclide used for detector calibration. An F8 tally over the cylinder was used to

approximate detector efficiency. The F8 tally measures the energy deposited in the the detector

volume and reports the value as efficiency. Each simulation modeled 1x109 particles. A direction

bias was applied to the source definition card. The number of particles modeled and the direction

biasing was necessary to produce results with relative errors less than 10%.

The MCNP results for each system were fit with the M4PL model. The experimental data

was superimposed and comparisons made as to how well the data fit the model. The efficiency

results were then converted to MDAs using the detection limits from above, a yield of 0.85 for

137Cs, and an integration time of 1 s.

4.3 Results and Discussion

4.3.1 Vehicle Results

Representative data for vehicle trials at different speeds and source strengths are shown in

Fig. 4.9. The broad peak on the left indicates the detector spent more time close to the source
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as a result of slower speed. Conversely, the sharper peak on the right is a result of the vehicle

passing more quickly and thus receiving fewer photons. Since all data points were taken in

0.02 s intervals, peak width is a reflection of speed. Higher speeds resulted in a sharper peak

while lower speeds resulted in a broader peak. Normalized counts of 1 s incorporated 25 counts

on either side of the highest value to create a 1-s count. The broader peak of the slower speeds

resulted in a wider spread of higher counts and thus produced a more efficient reading. The

sharper peak of the faster speeds incorporated a wider range of count values in the normalized

1 s count and so resulted in a lower total count value and reduced efficiency.

Figure 4.9: Two example truck profiles are shown for illustration purposes. The left profile used
one 0.4 mCi source and a target speed of 10 mph. The right profile used three 0.4 mCi sources
and a target speed of 30 mph.

Average background counts recorded for each target speed are shown in Table 4.4. The

highest value was 878.63 ± 18.15 cps for the 10 mph cohort. The lowest value was 858.31 ±

14.99 cps for the 20 mph cohort. Backgrounds for all speed cohorts were within two standard

deviations of one another. Thus, as demonstrated in previous research, speed has no effect on

background readings even at higher speeds, (Falkner & Marianno, in prep 2018b). As a result,

the limit of detection is not affected by speed, and therefore any impact on count totals that speed
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may have is only expressed in the efficiency component of Eq. 4.2.

Table 4.4: Background counts for the truck trials.

Speed

(mph)
Gross Peak (cps)

10 878.63 ± 18.15

20 858.31 ± 14.99

30 861.02 ± 11.00

40 866.52 ± 23.19

The final experimental average background value was determined to be 866.84 ± 16.72 cps

and was most likely influenced by the gravel in the parking lot. This value is low for the Texas

A&M campus based upon previous unpublished surveys for laboratory classes. Buildings on

the campus typically are constructed with concrete which contributes to high background count

rate. Fan Field is located in an area with very few buildings nearby and so has a low background

reading. The limit of detection for this experiment was 80.46 counts.

4.3.2 Aerial Results

Examples of the aerial data profiles that were used in this research are shown in Fig. 4.10.

The DOE profile shows the source peaks closer to one another. The EPA profile shows the

source peaks at opposite ends of the track from each other. Variations in the profiles amongst

each system are due primarily to the x-, y-, and z-axis offsets in detection location relative each

source. In other words, the precise location of the detector when each count was made was not

consistent between profiles. Backgrounds for both the DOE and EPA datasets were calculated

by averaging the track counts farthest from the source location. This was because they were most

representative of the survey environment while remaining independent of any source influence.
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The DOE background was 2129.09 ± 346.03 cps resulting in a limit of detection of 1611.75 cps.

The EPA background was 4790.53 ± 321.16 cps with a limit of detection of 1496.10 cps.

Figure 4.10: Two example aerial profiles are shown for illustration purposes. The left profile is
for DOE data. The right profile is for EPA data.

The experiment and simulation results for the truck data are shown in Fig 4.11. The shape of

the simulation results can be very accurately modeled with the M4PL. The plot of the simulation

results starts with a maximum efficiency of 1.0x10-4. It decreases slowly until approximately

15 mph with an efficiency of 8.6x10-5. The slope then steepens until approximately 50 mph with

an efficiency of 4.5x10-5 before shallowly decreasing to a minimum efficiency of 3.6x10-5. The

experimental data is within two standard deviations of the model results for all speed cohorts.

This implies that the model is a good approximation for the truck detector system.
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Figure 4.11: Model fit and experimental results for truck trials.

The experiment and simulation results for the DOE and EPA data are shown in Fig 4.13

and Fig. 4.12, respectively. As expected, the efficiencies of the lower altitude models are larger

than the efficiencies of the higher altitude models for both the DOE and EPA configurations. In

general, the efficiencies of the DOE models are higher than the efficiencies of the EPA models.

This is primarily because the heights of the DOE models were lower than the heights of the

EPA models indicating that height plays a major role in detector performance. Another possible

reason is that the DOE detection system used 4 more slab detectors than did the EPA detection

system.

The plot of the 20 m altitude DOE data starts at 0 kt with a maximum efficiency of 5.8x10-5. It
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begins sloping downward gently until approximately 25 kt where the slope of the curve steepens

until approximately 120 kt with an efficiency of 3.2x10-5 before flattening out for the rest of

the plot. The plot of the 40 m altitude EPA data begins at 0 kt with a maximum efficiency

of approximately 1.4x10-5 to a minimum efficiency of 1.0x10-5. There is very little change in

change in efficiency and almost no curvature in the 40 m altitude plot. A total of four data points

collected for the DOE system are plotted with error bars of two standard deviations. All four data

points are clustered around 70 kt. All of the data points have efficiencies within the bounds of

the two curves or are within two standard deviations of a curve. The variation in the data points

is likely due to the lateral offset from the source and differences from the modeled altitudes.
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Figure 4.12: Model fit and experimental results for the DOE aerial trials. The lines represent the
simulated results and the data points with error bars are the experimental values. All experimen-
tal values are within two standard deviations of a model or are between two models accounting
for lateral and height offsets.

The plot of the 30 m altitude EPA data starts at 0 kt with a maximum efficiency of 1.6x10-5. It

begins sloping downward gently until approximately 40 kt where the slope of the curve steepens

until approximately 120 kt with an efficiency of 1.3x10-5 before flattening out for the rest of

the plot. The plot of the 45 m altitude EPA data begins at 0 kt with a maximum efficiency

of approximately 7.5x10-6 to a minimum efficiency of 5.0x10-6. There is very little change in

change in efficiency and almost no curvature in the 45 m altitude plot. Eight data points collected

for the EPA system are plotted with error bars of two standard deviations. The data points are
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clustered at approximately 115 kt and 140 kt. Five of the eight data points have efficiencies

within the bounds of the two simulation curves. The other three data points have efficiencies

that are larger than the 30 m altitude curve. As with the DOE data the variation is likely due to

the lateral offset and height difference.

Figure 4.13: Model fit and experimental results for EPA trials. The lines represent the simulated
results and the data points with error bars are the experimental values. The experimental values
are generally within two standard deviations of a model or are between two models. The data
points outside the model fits can be accounted for by lateral and height offsets.

The reason for the difference in efficiency profiles for the two altitudes is because the in-

creased distance has an inverse squared effect on solid angle. The size of the detector as seen
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from the source is dramatically reduced at the higher altitude as compared to the lower altitude.

This results in fewer photons being captured. Another effect seen is that the points in the curves

where the slope steepens and then bottoms out appear to get closer to each other as altitude in-

creases. This is important if the speed of the vehicle can not be consistently maintained at a set

speed. The area between these points is the portion of the plot with the highest rate of change in

efficiency with speed and thus shrinking this region results in less volatility, however this stabil-

ity comes at a cost of reduced overall efficiencies for the entire plot. The surveyor must balance

their operational parameters against desired precision in results.

Parameters for the M4PL models used to fit the truck, DOE, and EPA systems are listed in

Table A.5. As expected the truck system has the largest maximum efficiency, an A of 8.38x10-5

± 0.01x10-5, since it is both closest to its source and traveling at the slowest speed. This trend

continues with the aerial systems where both low altitude parameters are larger than their re-

spective high altitude parameters. This implies that smaller detectors will suffice when slower

speeds are desired or the detector will be operated close to the survey field.

Similarly as expected, the speed at 50% of maximum efficiency, C, increases as size of the

detector increases. The smallest detector is the truck system and has a C value of 34.35 ±

0.70 mph. This is approximately one third that of the aerial systems. The low altitude C values

for the aerial systems are approximately equal, but the DOE system is slightly larger at 107.46

± 6.44 kt versus the EPA system at 90.58 ± 12.17 kt. This is reasonable as the DOE system

employed twelve slab detectors and the EPA system employed eight. This implies that a larger

detector system is required if higher speeds are desired. The conversion from mph to kt is 1 mph

is equal to 0.868976 kt.
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Table 4.5: Parameters of the 4-Parameter Logistic Function used to fit the various model results.

Setup A B C D r2

Truck 8.38x10-5 ± 0.01x10-5 1.90 ± 0.03 34.35 ± 0.70 1.58x10-5 ± 0.13x10-5 0.9999

DOE 20 m 5.77x10-5 ± 0.02x10-5 1.88 ± 0.09 107.46 ± 6.44 0.87x10-5 ± 0.03x10-5 0.9998

DOE 40 m 1.39x10-5 ± 0.03x10-5 1.49 ± 0.67 2.51x104 ± 2.37x107 -911.26x10-5 ± 1.28x101 0.9867

EPA 30 m 1.62x10-5 ± 0.74x10-5 3.30 ± 1.30 90.58 ± 12.17 0.94x10-5 ± 0.12x10-5 0.9902

EPA 45 m 0.74x10-5 ± 0.03x10-5 1.30 ± 1.30 4.98x104 ± 9.91x107 -422.73x10-5 ± 1.09x101 0.9397

Although the r2 values are high for all systems, indicating that the M4PL fits the experimental

data, the C and D parameters for both high altitude systems are unrealistic. The speeds at 50%

of maximum efficiency are approximately 2500 kt for the DOE system and 5000 kt for the EPA

system. It is unreasonable to expect radiation surveys to be performed at speeds of thousands

of knots. Similarly, the minimum efficiencies for the DOE and EPA systems are approximately

-900 and -400, respectively. Negative efficiencies are physically impossible. These unrealistic

parameters are due to the height of the systems being far enough above the source that the

inverse square of distance dominates any effect of speed. This explains the flat declines in the

high altitude efficiency plots. Rather than use these parameters to modify survey plans they

should be used as qualitative indicators for when the model breaks down and other factors of the

survey plan dominate.

The MDA curve for the truck system was calculated using Eq. 4.2 and the efficiencies above,

Fig. 4.14. The yield, integration time, and detection limit were as detailed above. The curve

exhibits the shape of the MDA curve from previous research, (Falkner & Marianno, in prep

2018b). The truck curve starts at 0 mph with an MDA of 26 µCi of 137Cs and begins to rise. The

slope of the rise is shallow until approximately 20 mph with an MDA of 34 µCi of 137Cs. The

MDA then rises steeply until 70 mph where the plot ends with an MDA of 76 µCi of 137Cs. The
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MDAs for the experimental truck data is within two standard deviations of the simulated curve

with the exception of the last data point for the 40 mph cohort. For example, if regulations require

that the MDA be 40 µCi of 137Cs the fastest speed the detector would move is approximately

30 mph. If the operational constraints require the speed to be 50 mph then the MDA would be

58 µCi of 137Cs.

Figure 4.14: MDA for 137Cs based on experimental parameters from truck data.

The DOE 20 m altitude curve starts at 0 kt with an MDA of approximately 0.9 mCi of 137Cs.

The curve starts rising imperceptibly until approximately 40 kt and an MDA of 1.1 mCi of 137Cs.
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From there the slope of the curve increases until the maximum MDA of 1.9 mCi of 137Cs. The

DOE 40 m altitude curve starts at 0 kt with an MDA of 3.8 mCi of 137Cs. The curve starts

rising until 80 kt and an MDA of 4.0 mCi of 137Cs. There the slope of the curve increases until

the maximum MDA of 5.4 mCi of 137Cs. Unlike the efficiency curves, the 40 m altitude curve

is a mirror image of the 20 m altitude curve. Similar to the efficiency plot, the experimental

data are clustered near the 20 m curve with a single data point in the middle between the two

curves. All data points are either within the two curves or is within two standard deviations of

the 20 m curve, implying the M4PL can explain the experimental data, accounting for lateral

and height offsets of the data from the modeled parameters. For example, if regulations require

that the MDA be 1 mCi of 137Cs the fastest speed the detector would move at 20 m altitude is

approximately 45 kt. If the operational constraints require the speed to be 140 kt at 20 m altitude

then the MDA would be 2 mCi of 137Cs.
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Figure 4.15: MDA for 137Cs based on experimental parameters from AMS data.

The EPA 30 m altitude curve starts at 0 kt with an MDA of approximately 3.0 mCi of 137Cs.

The curve starts rising imperceptibly until approximately 40 kt and an MDA of 3.5 mCi of

137Cs. From there the slope of the curve increases until the maximum MDA of 1.9 mCi of

137Cs. The EPA 45 m altitude curve starts at 0 kt with an MDA of 6.5 mCi of 137Cs. The curve

rises continuously until the maximum MDA of 8.5 mCi of 137Cs. Unlike the efficiency curves,

the 45 m altitude curve is a mirror image of the 20 m altitude curve. Five of the eight data

points are bounded between the two curves or within two standard deviations of the 30 m curve,
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implying the M4PL is a good fit for the experimental data. The three points that are outside of

two standard deviations of the 30 m curve are below the curve due to variations in height and

lateral offset from the source. For example, if regulations require that the MDA be 3 mCi of

137Cs the fastest speed the detector would move at 30 m altitude is approximately 40 kt. If the

operational constraints require the speed to be 140 kt at 30 m altitude then the MDA would be

4 mCi of 137Cs.

Figure 4.16: MDA for 137Cs based on experimental parameters from EPA data.
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All plots exhibit the inverse relationship between efficiency and MDA, as seen in Eq. 4.2.

This relationship is the reason for the linear slope to the high speed portion of the MDA curves.

Because efficiency is in the denominator of Eq. 4.2, as it gets smaller any relative changes in

efficiency are dwarfed by the magnitude of the efficiency in general. A similar reasoning explains

why the error bars in the efficiency plots change relative size to each other in the MDA plots.

When errors are propagated the efficiency is squared in the denominator of the MDA error. This

causes the relatively high efficiencies at slower speeds to result in small errors in MDA and the

exact opposite at faster speeds.

4.4 Summary

Previous efforts in modeling and laboratory-scale trials show that detector performance is

tightly coupled to detector speed, (Falkner & Marianno, in prep 2018a, in prep 2018b). As

detector speed increases, the performance, as measured by efficiency, drops as represented in the

M4PL curve. While this M4PL relationship held true both in a modeling and laboratory setting,

the question remained of how applicable or valid it is to ’real-world’ environments.

Field-survey plans are subject to regulatory requirements, time constraints and cost consid-

erations, both in terms of detector investment and worker-time. Being able to better design a

survey by considering how speed might affect those considerations would allow surveyors to

verify their chosen detector works for their surveying needs, improves survey plans to better

achieve the results they are seeking, or determine the best performance given the constraints

within which they must operate.

Therefore, to seek to address whether the M4PL is scalable to the real-world environment,

data was gathered from three systems: a truck system, a rotary-wing system, and a fixed-wing

system. These experimental setups were then modeled via MCNP as was done in prior research,

(Falkner & Marianno, in prep 2018a). Data from both the field-trials and simulations were com-

pared and evaluated against the M4PL relationship as well as its associated minimum detectable
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activity (MDA) curve, (Falkner & Marianno, in prep 2018a).

The M4PL fits both the experimental and simulated results, although the simulated results

exhibited a higher degree of fit to the M4PL and its associated MDA plot than did the experi-

mental results. One explanation for this is the lateral offset of the count location relative to the

source. Another explanation is the height difference between count location and the simulated

height of the detector. As these two values deviate from the modeled parameters the divergence

between results will increase.

Ultimately, the MDA curve, as calculated using the validated M4PL curve, will be what is

most relevant to those designing and conducting field-surveys. For a very short window the

change in MDA for surveys will not impact the survey results significantly. If an operator is

concerned with meeting regulatory requirements for MDA and they plan to operate at speeds

beyond this threshold, they would be well-advised to consider their operational speed when

designing their survey plan. Conversely, if survey speed is dictated by operational constraints,

surveyors can utilize this MDA model to determine whether their detection system is a proper fit

for the survey parameters.
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5. CONCLUSION

Radiological surveying occurs in a wide variety of situations with multiple applications.

These include laboratory assessments of reference sources, decommissioning surveys performed

to meet regulatory requirements, and identifying source locations and concentrations in the field

via vehicle or aircraft mounted systems. While standards for performing these surveys have been

generally outlined a relationship coupling detector performance to its speed has not been iden-

tified, (U.S. NRC, 2000). One measure of a detector’s performance is the minimum detectable

activity (MDA) that it can achieve. MDA is the amount of activity above which a detector can

observe with statistical confidence, Eq. 5.1. LD is the limit of a detection, the number of counts

above which a source is determined to have been detected. Y is the yield of the radionuclide in

question. T is the integration time of the count performed. ε is the detector’s efficiency. It is the

dependence of efficiency, and ultimately MDA, on speed that was the focus of this research.

MDA =
LD
Y εT

(5.1)

It has been known for some time that the efficiency of a moving detector can be improved

by slowing the speed of travel. The effect of speed on detector efficiency was mentioned in

the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) for conducting

environmental site surveys for the decommissioning of facilities, (U.S. NRC, 2000). Marianno

identified the phenomenon in his data when evaluating the performance of a Field Instrument for

the Detection of Low-Energy Radiation, (Marianno et al., 2000; Marianno, 2015). Schroettner,

et. al., sought to address a similar problem through varying the integration speed, (Schroettner

et al., 2009). Their approach was for a source traveling through a stationary portal monitor

but is analogous to a moving detector past a stationary source due to reciprocity. However, the

relationship itself between speed and efficiency has not been quantified until recently, (Falkner
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& Marianno, in prep 2018a).

Efficiency is the combination of how many photons impact the detector (geometric effi-

ciency) and how many of the photons that impact the detector interact and produce a signal

inside the detector (intrinsic efficiency). Under typical survey conditions intrinsic efficiency is

unchanging. This research showed how geometric efficiency affects MDA as a function of speed.

Geometric efficiency can be calculated by solid angle of the detector. Solid angle is the angle

subtended by an object from a point. In this research the source is the point and the detector is the

object. MCNP results were correlated to solid angle calculations using point and line sources.

The solid angle results were then fitted with a model to calculate values for any speed.

The first part of this research derived the relationship between detector efficiency and its

speed. First a link between a detector’s solid angle and its efficiency was established. This was

accomplished by calculating the solid angle for various locations around a right circular cylinder

and comparing to similarly modeled efficiencies. The purpose of this step was to confirm that

solid angle is the driving factor in detector efficiency and that the detector properties are not

influenced by source location. A link between a detector’s efficiency and its speed was then

established. This was accomplished by modeling detector efficiency at various speeds as it

passed a source location. The purpose of this step was to reproduce the previously observed

phenomenon. The model explaining the relationship between efficiency and speed was then

defined, Eq. 5.2. This relationship is a modified four parameter logistic function (M4PL). In this

function the speed of the detector is x, the maximum efficiency is A, the minimum efficiency

is D, the slope of the equation is B, and the speed at which the efficiency is half that of the

maximum is C.

y = D +
A−D

1 +
(
x
C

)B (5.2)

The second part of this research verified under laboratory conditions that the M4PL holds
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for the detection system modeled. This was done in a laboratory first so that confounders such

as variable background or nuisance sources could be minimized and that detection scheme pa-

rameters such as detector speed and orientation could be tightly controlled. Confounders here

includes variable backgrounds, presence of multiple sources, and presence of excess attenuators

(tall grass, shrubs, trees, walls, buildings, etc.) or terrain (broken soil, undulating hills, culverts,

etc.) that would inhibit an isotropic source. A robotic system was used to perform all laboratory

trials. This allowed for reproducing consistent trial conditions for the duration of the study. Most

critically this included operating at a consistent desired speed for each trial but it also allowed

for detector to be held in the same place relative to the robot for every trial. This allowed the trial

results to be as consistent to the modeling as possible. The parameters held constant from trial

to trial included track length, radionuclide selected as a source, source location, background,

detector height, and integration time. Track length was critical because it was used, along with

precise timing of each trial, as the means of determining trial speed. The source location and

detector height were defined by the previously modeled parameters. The parameters that varied

from trial to trial included speed and source strength. Source strength was varied to provide an

alternate means of verifying model results. The speed was obviously varied because it was the

parameter of interest in this research.

To validate the M4PL model under real world conditions data was gathered from three sys-

tems, a truck system, a rotary-wing system, and a fixed-wing system. The truck system was a

single slab 2x4x16 detector oriented with the flat paddle face of the detector towards the source.

The rotary-wing system was 12 of the same type of detectors mounted in 4 pods around the

exterior of the aircraft. The fixed-wing system was 8 of the same type of detectors mounted in 2

cases in the interior of the aircraft. Both the rotary-wing and fixed-wing detectors were oriented

so that the flat faces were aimed towards the ground. Data from the three systems were gathered

on different dates. Each vehicle was operated in an oval track manner around their respective

stationary point sources. Gross peak, net peak, and total efficiency were calculated for each
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trial. The efficiencies of these systems was modeled and simulation results were compared to

experimental data. As expected the efficiency of the detector is highly correlated to its solid an-

gle. Additionally, the previously observed phenomenon of decreasing efficiency with increasing

speed was reproduced in the simulation results. This indicates that detector properties do not

vary over the conditions of interest. Thus solid angle explains the effect of speed on efficiency.

The M4PL model begins with a region of relatively high efficiency and ends with a region

of relatively low efficiency. In between is a transition region of decreasing efficiency. This

decrease is gradual at first, quickly steepens, and then shallows out. This general shape was

observed for all modeled systems. Experimental data for all systems agreed with their respective

model results. The degree of agreement was highest for the laboratory data and lowest for the

aerial data owing to the size of the detector, distance from the source, and complexity of the

overall survey environment.

The M4PL was used to develop a relationship between speed and MDA. In general the MDA

curve starts low and as speed increases rises. The slope of the MDA curve starts shallowly at first

but very quickly becomes quite sharp. The data points from this research match the modeled fit

very well. Roughly speaking, the change in MDA for surveys conducted at the lower speeds will

not impact the survey results significantly. If an operator is concerned with meeting regulatory

requirements for MDA and they plan to operate at at higher speeds, they would be well-advised

to consider this plot when designing their survey plan. Conversely, if survey speed is dictated

by operational constraints, surveyors can consult this MDA model to determine whether their

detection system is a proper fit for the survey parameters.

There are three uses of the M4PL model. The first is to verify the accuracy of current survey

plans. The second is to optimize survey plans for speed and accuracy. The third is to identify

limits of detection accuracy based on operational speed. This foundational relationship has the

potential to improve detector performance in many large and small applications for both the

academic and operational fields.

88



REFERENCES

Abelquist, E. W., & Brown, W. S. (1999). Estimating minimum detectable concentrations

achievable while scanning building surfaces and land areas. Health physics, 76(1).

Alecksen, T., & Whicker, R. (2016). Scan MDCs for GPS-Based Gamma Radiation Systems.

Health Physics, 111(2), S123-S132.

Altshuler, B., & Pasternack, B. (1963). Statistical measures of the lower limit of detection of a

radioactivity counter. Health Physics, 9(3), 293–298.

AMS. (2018). Aerial Measuring System. Retrieved 17-Jan-2018,

from https://nnsa.energy.gov/aboutus/ourprograms/

emergencyoperationscounterterrorism/respondingtoemergencies

-0-0

Ayaz-Maierhafer, B., & DeVol, T. A. (2007). Determination of absolute detection efficiencies for

detectors of interest in homeland security. Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,

579(1), 410–413.

Canberra Industries Inc. (2011). Osprey mcaSDK/Communications (1.0.1 ed.). Canberra Indus-

tries Inc.

Currie, L. (1968). Limits for Qualitative Detection and Quantitative Determination. Anal.

Chem., 40(3), 586-593.

De Geer, L.-E. (2004). Currie detection limits in gamma-ray spectroscopy. Applied radiation

and isotopes, 61(2-3), 151–160.

EPA. (2018). Airborne Spectral Photometric Environmental Collection Technology. Retrieved

17-Jan-2018, from https://www.epa.gov/emergency-response/aspect

Falkner, J., & Marianno, C. (in prep 2018a). Modeling Minimum Detectable Activity as a

89

https://nnsa.energy.gov/aboutus/ourprograms/emergencyoperationscounterterrorism/respondingtoemergencies-0-0
https://nnsa.energy.gov/aboutus/ourprograms/emergencyoperationscounterterrorism/respondingtoemergencies-0-0
https://nnsa.energy.gov/aboutus/ourprograms/emergencyoperationscounterterrorism/respondingtoemergencies-0-0
https://www.epa.gov/emergency-response/aspect


Function of Detector Velocity. unpublished.

Falkner, J., & Marianno, C. (in prep 2018b). Experimentally Verifying Minimum Detectable

Activity to Detector Velocity Relationship. unpublished.

Gilmore, G. (2011). Practical Gamma-ray Spectrometry (2nd ed.). John Wiley & Sons, Inc.

Goorley, T., James, M., Booth, T., Brown, F., Bull, J., Cox, L., . . . others (2012). Initial MCNP6

Release Overview. Nuclear Technology, 180(3), 298–315.

Holl, I., Lorenz, E., & Mageras, G. (1988). A Measurement Of The Light Yield Of Common

Inorganic Scintillators. IEEE Transactions on Nuclear Science, 35(1), 105-109.

Knoll, G. (2010). Radiation Detection and Measurement (4th ed.). John Wiley & Sons, Inc.

Kramer, G. H., Burns, L. C., & Guerriere, S. (2002). Monte carlo simulation of a scanning

detector whole body counter and the effect of bomab phantom size on the calibration.

Health physics, 83(4), 526–533.

Lepel, E., Geelhood, B., Hensley, W., & Quam, W. (1998). A field-deployable, aircraft-mounted

sensor for the environmental survey of radionuclides. Journal of radioanalytical and nu-

clear chemistry, 233(1-2), 211b–215.

Marianno, C. (2015). Signal Processing and its Effect on Scanning Efficiencies for a Field

Instrument for Detecting Low-Energy Radiation. Health Physics, 109, 78-83.

Marianno, C., Higley, K., & Palmer, T. (2000). Theoretical Efficiencies for a FIDLER Scanning

Hot Particle Contamination. Radiat Protect Management J Applied Health Phys, 17, 31-

34.

Masket, A., Macklin, R., & Schmitt, H. (1956). Tables of Solid Angles and Activations (ORNL-

2170 ed.). Technical Information Service Extension, Oak Ridge, TN.

Monarch Instruments. (1995). Remote Optical Sensor (1071-4854-118R ed.). Monarch Instru-

ments.

Pöllänen, R., Toivonen, H., Peräjärvi, K., Karhunen, T., Ilander, T., Lehtinen, J., . . . Juusela, M.

(2009). Radiation surveillance using an unmanned aerial vehicle. Applied radiation and

90



isotopes, 67(2), 340–344.

Rossum, G. (2015). Python 2.7.10 reference manual (Tech. Rep.).

Rossum, G. (2017). Python 3.6.1 reference manual (Tech. Rep.).

RSI. (2018). Radiation Solutions, Inc. Retrieved 06-Jan-2018, from http://www

.radiationsolutions.ca/airborne/

Runkle, R. C., Mercier, T. M., Anderson, K. K., & Carlson, D. K. (2005). Point source detection

and characterization for vehicle radiation portal monitors. IEEE transactions on nuclear

science, 52(6), 3020–3025.

Sakai, E. (1987). Recent Measurements On Scintillator-Photodetector Systems. IEEE Transac-

tions on Nuclear Science, NS-34(1), 418-422.

Schroettner, T., Kindl, P., & Presle, G. (2009). Enhancing Sensitivity of Portal Monitoring

at Varying Transit Speeds. App. Rad. and Iso., 67, 1878-1886. (with permission from

Elsevier)

Sittampalam, G., Coussens, N., Brimacombe, K., et al. (2004). Assay Guidance Manual [Inter-

net]. National Center for Advancing Translational Sciences.

Super Droid Robots. (2017). Super Droid Robots. Retrieved 20-Mar-2017, from

http://www.superdroidrobots.com/shop/item.aspx/lt2-tracked

-atr-robot-platform/1513/

Team, Q. D. (2017). Qgis geographic information system (Tech. Rep.).

U.S. NRC. (2000). MARSSIM. NUREG-1575, Rev, 1.

Warner, G., & Oliver, R. (1966). A whole-body counter for clinical measurements utilizing

theshadow shield’technique. Physics in Medicine & Biology, 11(1), 83.

Whicker, R., Cartier, P., Cain, J., Milmine, K., & Griffin, M. (2008). Radiological site charac-

terizations: gamma surveys, gamma/226ra correlations, and related spatial analysis tech-

niques. Health physics, 95(5), S180–S189.

91

http://www.radiationsolutions.ca/airborne/
http://www.radiationsolutions.ca/airborne/
http://www.superdroidrobots.com/shop/item.aspx/lt2-tracked-atr-robot-platform/1513/
http://www.superdroidrobots.com/shop/item.aspx/lt2-tracked-atr-robot-platform/1513/


APPENDIX A

DATA TABLES

A.1 Coordinate locations for point source modeling

Table A.1: Coordinate locations for point sources used in modeling.

Trial ρ z

ex0 -2 4

ex1 -2 3

ex2 -5 0

ex3 -5 -0.5

ex4 -5 4

I1 0 1

I2 0 2

I3 0 3

I4 0 4

I5 0 5

II1 -2 1

II2 -3 1

II3 -4 1

II4 -5 1

II5 -6 1

III1 -2 -1

III2 -3 -1

III3 -4 -1

III4 -5 -1

III5 -6 -1
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A.2 Masket, Python, and MCNP point source results

Table A.2: Modeling results from Masket table, MCNP simulations, and Python calculations for
point sources.

Trial
Masket

Results

Python

Results

MCNP

Results

Python/Masket

Ratio

MCNP/Python

Ratio

ex0 0.159548 ± 0.000001 0.160016 ± 0.000480 0.012663 ± 0.000035 1.002933 ± 0.003009 0.079133 ± 0.000325

ex1 0.240063 ± 0.000001 0.240738 ± 0.000722 0.019048 ± 0.000044 1.002812 ± 0.003008 0.079125 ± 0.000299

ex2 0.173954 ± 0.000001 0.174061 ± 0.000522 0.013855 ± 0.000037 1.000615 ± 0.003002 0.079599 ± 0.000321

ex3 0.184067 ± 0.000001 0.184189 ± 0.000553 0.014657 ± 0.000038 1.000664 ± 0.003002 0.079577 ± 0.000316

ex4 0.100254 ± 0.000001 0.100462 ± 0.000301 0.007921 ± 0.000028 1.002077 ± 0.003006 0.078848 ± 0.000363

I.1 1.840300 ± 0.000001 1.840302 ± 0.005521 0.146365 ± 0.000117 1.000001 ± 0.003000 0.079533 ± 0.000247

I.2 0.663334 ± 0.000001 0.663334 ± 0.001990 0.052834 ± 0.000069 0.999999 ± 0.003000 0.079650 ± 0.000260

I.3 0.322432 ± 0.000001 0.322432 ± 0.000967 0.025647 ± 0.000049 1.000001 ± 0.003000 0.079542 ± 0.000282

I.4 0.187600 ± 0.000001 0.187600 ± 0.000563 0.014943 ± 0.000039 1.000001 ± 0.003000 0.079652 ± 0.000316

I.5 0.122015 ± 0.000001 0.122015 ± 0.000366 0.009729 ± 0.000031 1.000002 ± 0.003000 0.079732 ± 0.000350

II.1 0.609786 ± 0.000001 0.610908 ± 0.001833 0.048345 ± 0.000068 1.001840 ± 0.003006 0.079136 ± 0.000262

II.2 0.374393 ± 0.000001 0.374930 ± 0.001125 0.029674 ± 0.000053 1.001434 ± 0.003004 0.079146 ± 0.000277

II.3 0.242704 ± 0.000001 0.243000 ± 0.000729 0.019260 ± 0.000044 1.001218 ± 0.003004 0.079258 ± 0.000300

II.4 0.165765 ± 0.000001 0.165942 ± 0.000498 0.013147 ± 0.000035 1.001068 ± 0.003003 0.079227 ± 0.000320

II.5 0.118673 ± 0.000001 0.118784 ± 0.000356 0.009448 ± 0.000030 1.000937 ± 0.003003 0.079537 ± 0.000349

III.1 1.389954 ± 0.000001 1.391837 ± 0.004176 0.110487 ± 0.000099 1.001355 ± 0.003004 0.079382 ± 0.000249

III.2 0.573002 ± 0.000001 0.573602 ± 0.001721 0.045642 ± 0.000064 1.001047 ± 0.003003 0.079570 ± 0.000263

III.3 0.304482 ± 0.000001 0.304736 ± 0.000914 0.024252 ± 0.000049 1.000834 ± 0.003003 0.079584 ± 0.000287

III.4 0.187641 ± 0.000001 0.187770 ± 0.000563 0.014916 ± 0.000039 1.000686 ± 0.003002 0.079439 ± 0.000315

III.5 0.126946 ± 0.000001 0.127020 ± 0.000381 0.010083 ± 0.000031 1.000583 ± 0.003002 0.079384 ± 0.000342

Average 1.001005 ± 0.003003 0.079403 ± 0.000304
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A.3 Python and MCNP line source results

Table A.3: Modeling results from MCNP simulations and Python calculations for line sources.

Speed

(cm s−1)

Python Results

(Ω)

MCNP Results

( ph counted
ph emitted )

MCNP to

Python Ratio

0 0.193375 ± 0.000580 0.018380 ± 0.000132 0.079608 ± 0.000311

10 0.179388 ± 0.000538 0.017835 ± 0.000132 0.079715 ± 0.000317

20 0.161888 ± 0.000486 0.015939 ± 0.000126 0.079685 ± 0.000328

30 0.142015 ± 0.000426 0.014181 ± 0.000118 0.080273 ± 0.000335

40 0.123846 ± 0.000372 0.012614 ± 0.000111 0.080745 ± 0.000352

50 0.108638 ± 0.000326 0.011295 ± 0.000106 0.080082 ± 0.000365

60 0.096214 ± 0.000289 0.009983 ± 0.000100 0.080030 ± 0.000376

70 0.086066 ± 0.000258 0.008912 ± 0.000094 0.080171 ± 0.000388

80 0.077720 ± 0.000233 0.008151 ± 0.000090 0.079774 ± 0.000400

90 0.070765 ± 0.000212 0.007404 ± 0.000086 0.080548 ± 0.000413

100 0.064895 ± 0.000195 0.006761 ± 0.000082 0.080129 ± 0.000428

Average 0.080069 ± 0.000111
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A.4 Source Speed Cohort Linear Fit Parameters

Table A.4: Linear fit parameters for various robot speeds as a function of number of sources
counted.

Speed

(cm −1)
Slope Intercept

0.00 ± 0.00 471.12 ± 3.32 -7.84 ± 10.05

19.08 ± 0.68 369.37 ± 2.53 -0.66 ± 7.67

39.90 ± 1.04 284.74 ± 2.50 -7.47 ± 7.56

63.58 ± 3.50 206.46 ± 3.08 -1.91 ± 9.33

86.28 ± 0.09 152.50 ± 2.63 -9.22 ± 7.95

120.67 ± 0.14 118.12 ± 1.33 -5.62 ± 4.01

Modified 4 Parameter Logistic Function Parameters

Table A.5: Parameters of the 4-Parameter Logistic Function used to fit the various model results.

Setup A B C D

MCS 1.26E-4 ± 2.38E-7 1.91E0 ± 3.71E-2 1.57E3 ± 3.64E1 2.39E-5 ± 2.18E-6

EPA Low 2.47E-5 ± 1.56E-7 1.68E0 ± 3.68E-1 8.66E2 ± 3.65E3 -1.12E-4 ± 8.40E-4

EPA High 1.10E-5 ± 4.83E-8 3.17E0 ± 8.04E-1 1.18E2 ± 2.17E1 8.74E-6 ± 6.10E-7

AMS Low 2.83E-5 ± 2.00E-7 2.31E0 ± 3.53E-1 1.31E2 ± 2.50E1 1.08E-5 ± 1.38E-6

AMS High 1.26E-5 ± 1.35E-7 2.70E0 ± 1.01E0 1.09E2 ± 3.23E1 8.85E-6 ± 1.38E-6
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A.5 Robot Source Data

Table A.6: Gross peak counts, net peak counts, and efficiencies for robot source data.

Sources Throttle Gross Peak Net Peak Efficiency

1 0 6.18E+02 ± 2.40E+01 4.70E+02 ± 2.69E+01 1.67E-02 ± 9.53E-04

1 50 5.16E+02 ± 2.27E+01 3.68E+02 ± 2.58E+01 1.30E-02 ± 9.13E-04

1 75 4.09E+02 ± 2.02E+01 2.61E+02 ± 2.36E+01 9.24E-03 ± 8.36E-04

1 100 3.48E+02 ± 1.87E+01 2.00E+02 ± 2.23E+01 7.10E-03 ± 7.90E-04

1 125 2.89E+02 ± 1.70E+01 1.41E+02 ± 2.09E+01 5.00E-03 ± 7.41E-04

1 150 2.56E+02 ± 1.60E+01 1.08E+02 ± 2.01E+01 3.81E-03 ± 7.12E-04

2 0 1.06E+03 ± 3.22E+01 9.16E+02 ± 3.44E+01 1.62E-02 ± 6.09E-04

2 50 8.93E+02 ± 2.99E+01 7.45E+02 ± 3.23E+01 1.32E-02 ± 5.72E-04

2 75 7.18E+02 ± 2.68E+01 5.70E+02 ± 2.94E+01 1.01E-02 ± 5.22E-04

2 100 5.73E+02 ± 2.39E+01 4.25E+02 ± 2.68E+01 7.53E-03 ± 4.76E-04

2 125 4.42E+02 ± 2.10E+01 2.94E+02 ± 2.43E+01 5.21E-03 ± 4.30E-04

2 150 3.77E+02 ± 1.94E+01 2.29E+02 ± 2.29E+01 4.06E-03 ± 4.06E-04

3 0 1.54E+03 ± 3.88E+01 1.39E+03 ± 4.07E+01 1.65E-02 ± 4.81E-04

3 50 1.25E+03 ± 3.54E+01 1.11E+03 ± 3.74E+01 1.31E-02 ± 4.42E-04

3 75 9.99E+02 ± 3.16E+01 8.51E+02 ± 3.39E+01 1.01E-02 ± 4.00E-04

3 100 7.55E+02 ± 2.75E+01 6.07E+02 ± 3.01E+01 7.18E-03 ± 3.55E-04

3 125 5.83E+02 ± 2.41E+01 4.35E+02 ± 2.70E+01 5.14E-03 ± 3.20E-04

3 150 4.92E+02 ± 2.22E+01 3.44E+02 ± 2.53E+01 4.07E-03 ± 2.99E-04

4 0 2.04E+03 ± 4.42E+01 1.89E+03 ± 4.58E+01 1.68E-02 ± 4.06E-04

4 50 1.61E+03 ± 4.01E+01 1.46E+03 ± 4.19E+01 1.29E-02 ± 3.71E-04

4 75 1.28E+03 ± 3.57E+01 1.13E+03 ± 3.77E+01 9.99E-03 ± 3.34E-04

4 100 9.58E+02 ± 3.09E+01 8.10E+02 ± 3.33E+01 7.18E-03 ± 2.95E-04

4 125 7.43E+02 ± 2.73E+01 5.95E+02 ± 2.98E+01 5.28E-03 ± 2.65E-04

4 150 6.21E+02 ± 2.49E+01 4.73E+02 ± 2.77E+01 4.20E-03 ± 2.46E-04

5 0 2.50E+03 ± 4.84E+01 2.35E+03 ± 4.99E+01 1.67E-02 ± 3.54E-04

5 50 2.01E+03 ± 4.48E+01 1.86E+03 ± 4.64E+01 1.32E-02 ± 3.29E-04

5 75 1.56E+03 ± 3.96E+01 1.42E+03 ± 4.14E+01 1.00E-02 ± 2.93E-04

5 100 1.19E+03 ± 3.45E+01 1.04E+03 ± 3.66E+01 7.40E-03 ± 2.59E-04

5 125 9.15E+02 ± 3.02E+01 7.67E+02 ± 3.26E+01 5.44E-03 ± 2.31E-04

5 150 7.32E+02 ± 2.71E+01 5.84E+02 ± 2.97E+01 4.14E-03 ± 2.10E-04
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APPENDIX B

CODES

B.1 Sample MCNP Input Deck for 2x2 Detector

MDA Solid Angle Test 1-1

C

C Surface Cards

1 1 -3.67 -101 IMP:P=1

2 2 -2.70 +101 -102 IMP:P=1

900 0 +102 -999 IMP:P=1

999 0 +999 IMP:P=0

C Cell Cards

101 RCC 0 0 0.16 0 0 5.08 2.54

102 RCC 0 0 0 0 0 5.40 2.85

999 SO 1000

C Physics Cards

MODE P

SDEF POS=0 0 -10 AXS=1 0 0 EXT=D1 ERG=0.662

SI1 -10 10 $Xmin to Xmax for line source

SP1 -21 0 $uniform sampling on line Here x0̂

F8:P 1

E8 0 1E-04 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 &
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0.50 0.55 0.60 0.65 0.655 0.656 0.657 0.658 0.659 0.660 &

0.661 0.662 0.663 0.664 0.665 0.670 0.70 0.75 0.80 0.85 &

0.90 0.95 1.0 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55

FT8 GEB -0.00789 0.06769 0.21159

M1 11000 0.5 53000 0.5

M2 13000 1.0

NPS 1e7

B.2 Sample MCNP Input Deck for RSL Detector

MDA Solid Angle Test 1-1

C

C Surface Cards

1 1 -3.67 -101 IMP:P=1

2 2 -3.97 +101 -102 IMP:P=1

3 3 -2.70 +102 -103 IMP:P=1

4 4 -1.80 -104 IMP:P=1

900 0 +103 +104 -999 IMP:P=1

999 0 +999 IMP:P=0

C Cell Cards

101 RCC 0 0 0.16 0 0 5.08 2.54

102 RCC 0 0 0.05 0 0 5.30 2.805

103 RCC 0 0 0.00 0 0 5.40 2.855

104 RPP -100 100 -100 100 -15.72 -10.01

999 SO 1000
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C Physics Cards

MODE P

SDEF POS=0 0 -10 AXS=1 0 0 EXT=D1 ERG=0.662

SI1 -50 50 XmintoXmaxforlinesource

SP1 − 210 uniform sampling on line Here x0̂

F8:P 1

E8 0 2

M1 11000 0.5 53000 0.5

M2 8000 0.4 13000 0.6

M3 13000 1.0

M4 8000 0.663062 13000 0.003916 14000 0.323140 20000 0.007272 26000 0.002610

NPS 1e6

B.3 Python script used to calculate solid angle of a right circular cylinder

import numpy as np

import m a t p l o t l i b . p y p l o t a s p l t

r0 = np . l i n s p a c e ( 0 . 0 , 0 . 9 , 1 0 ) . t o l i s t ( )

r1 = [ 0 . 9 5 ]

r2 = np . l i n s p a c e ( 1 . 0 , 6 . 2 , 5 3 ) . t o l i s t ( )

r3 = np . l i n s p a c e ( 6 . 5 , 16 , 2 0 ) . t o l i s t ( )

r4 = np . l i n s p a c e ( 1 7 , 36 , 2 0 ) . t o l i s t ( )

r5 = np . l i n s p a c e ( 4 0 , 160 , 2 4 ) . t o l i s t ( )

r6 = np . l i n s p a c e ( 5 0 , 2000 , 4 0 ) . t o l i s t ( )

r = r0 + r1 + r2 + r3 + r4 + r5

r2 = r0 + r1 + r2 + r3 + r4 + r6
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d e t _ r a d = 2 . 5 4

d e t _ l e n = 5 . 0 8

s r c _ h t = 10

s r c _ r h o = [− i f o r i in r [ : : −1 ] [ : −1 ] ] + r

p a r k i n g _ r h o = [− i f o r i in r2 [ : : −1 ] [ : −1 ] ] + r2

p a r k i n g _ h t = 177 .165

t r i a l s = [ [ 2 , 4 , 1 , 2 ] ,

[ 2 , 3 , 1 , 2 ] ,

[ 5 , 0 , 1 , 2 ] ,

[ 5 , −0 . 5 , 1 , 2 ] ,

[ 5 , 4 , 1 , 2 ] ,

[ 0 , 1 , 1 , 2 ] ,

[ 0 , 2 , 1 , 2 ] ,

[ 0 , 3 , 1 , 2 ] ,

[ 0 , 4 , 1 , 2 ] ,

[ 0 , 5 , 1 , 2 ] ,

[ 2 , 1 , 1 , 2 ] ,

[ 3 , 1 , 1 , 2 ] ,

[ 4 , 1 , 1 , 2 ] ,

[ 5 , 1 , 1 , 2 ] ,

[ 6 , 1 , 1 , 2 ] ,

[ 2 , −1 ,1 ,2 ] ,

[ 3 , −1 ,1 ,2 ] ,

[ 4 , −1 ,1 ,2 ] ,

[ 5 , −1 ,1 ,2 ] ,

[ 6 , −1 , 1 , 2 ] ]

def S1 ( x , p ) :

" " "

T a y l o r Expans ion o f rho ∗ cos ( p h i ) + np . s q r t (1 − rho ∗∗ 2 ∗ s i n ( p h i ) ∗∗ 2)

" " "

s1 = p + 1

s2 = ( 1 / 2 ) ∗ ( p ∗ ( p + 1 ) )∗ x∗∗2

s3 = (1/24)∗ ( −3∗ p∗∗4 + 4∗p∗∗2 + p )∗ x∗∗4

s4 = ( 1 / 7 2 0 )∗ ( p∗ (45∗ p∗∗5 − 60∗p∗∗3 + 16∗p + 1 ) )∗ x∗∗6
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s5 = ((−1575∗p∗∗8 + 2520∗p∗∗6 − 1008∗p∗∗4 + 64∗p∗∗2 + p )∗ x ∗∗8) /40320

s6 = ( ( p∗ (99225∗ p∗∗9 − 189000∗p∗∗7 + 105840∗p∗∗5 − 16320∗p∗∗3 + 256∗p + 1 ) )∗ x ∗∗10) /3628800

s7 = ( p∗(−9823275∗p∗∗11 + 21829500∗p∗∗9 − 15800400∗p∗∗7 + 4055040∗p∗∗5 − 261888∗p∗∗3 +/

1024∗p + 1)∗ x ∗∗12) /479001600

s8 = (−(33∗p ∗∗14) /2048 + (21∗ p ∗∗12) /512 − (7∗ p ∗∗10) /192 + (5∗ p ∗∗8 ) /3 78 − (13∗ p ∗∗6) /7560 +/

p∗∗4/20790 − (2∗ p ∗∗2) /42567525 − p /87178291200)∗ x∗∗14

s9 = (−(429∗p ∗∗16) /32768 + (77∗ p ∗∗14) /2048 − (203∗ p ∗∗12) /5120 + (43∗ p ∗∗10) /2304 −\

(457∗ p ∗∗8) /120960 + (31∗ p ∗∗6) /118800 − (5461∗ p ∗∗4) /1702701000 + p∗∗2/1277025750 +/

p /20922789888000)∗ x∗∗16

re turn s1 − s2 + s3 − s4 + s5 − s6 + s7 + s8 + s9

def S2 ( x , p ) :

" " "

T a y l o r Expans ion o f rho ∗ cos ( p h i ) − np . s q r t (1 − rho ∗∗ 2 ∗ s i n ( p h i ) ∗∗ 2)

" " "

s1 = ( p − 1)

s2 = ( 1 / 2 ) ∗ ( p − 1)∗ p∗x∗∗2

s3 = ( 1 / 2 4 )∗ p∗ (3∗ p∗∗3 − 4∗p + 1)∗ x∗∗4

s4 = ( 1 / 7 2 0 )∗ p∗ (45∗ p∗∗5 − 60∗p∗∗3 + 16∗p − 1)∗ x∗∗6

s5 = ( p∗ (1575∗ p∗∗7 − 2520∗p∗∗5 + 1008∗p∗∗3 − 64∗p + 1)∗ x ∗∗8) /40320

s6 = ( p∗ (99225∗ p∗∗9 − 189000∗p∗∗7 + 105840∗p∗∗5 − 16320∗p∗∗3 + 256∗p − 1)∗ x ∗∗10) /3628800

s7 = ( p∗ (9823275∗ p∗∗11 − 21829500∗p∗∗9 + 15800400∗p∗∗7 − 4055040∗p∗∗5 + 261888∗p∗∗3 −/

1024∗p + 1)∗ x ∗∗12) /479001600

s8 = ( ( 3 3∗ p ∗∗14) /2048 − (21∗ p ∗∗12) /512 + (7∗ p ∗∗10) /192 − (5∗ p ∗∗8 ) / 378 + (13∗ p ∗∗6) /7560 −/

p∗∗4/20790 + (2∗ p ∗∗2) /42567525 − p /87178291200)∗ x∗∗14

s9 = ( ( 4 2 9∗ p ∗∗16) /32768 − (77∗ p ∗∗14) /2048 + (203∗ p ∗∗12) /5120 − (43∗ p ∗∗10) /2304 +/

(457∗ p ∗∗8) /120960 − (31∗ p ∗∗6) /118800 + (5461∗ p ∗∗4) /1702701000 − p∗∗2/1277025750 +/

p /20922789888000)∗ x∗∗16

re turn s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9

def T1 ( x , p ) :

# r e t u r n p ∗ np . cos ( x ) + np . s q r t (1 − p∗∗2 ∗ np . s i n ( x )∗∗2 )

re turn p ∗ np . cos ( x ) + (1 − p∗∗2 ∗ np . s i n ( x )∗∗2 )∗∗0 . 5
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def c a s e 1 ( phi , h , p ) :

" " "

T h i s i s t h e s o l i d a n g l e c o n t r i b u t e d by t h e f a c e o f t h e c y l i n d e r

when t h e s o u r c e i s i n s i d e t h e r a d i u s .

" " "

# r e t u r n 1 / np . s q r t ( h ∗∗ 2 + T1 ( phi , p ) ∗∗ 2)

re turn 1 / ( h ∗∗ 2 + T1 ( phi , p ) ∗∗ 2 )∗∗0 . 5

def c a s e 2 ( phi , h , p ) :

# r e t u r n 1 / np . s q r t ( h ∗∗ 2 + 4 ∗ np . cos ( p h i ) ∗∗ 2)

re turn 1 / ( h ∗∗ 2 + 4 ∗ np . cos ( p h i ) ∗∗ 2 )∗∗0 . 5

def c a s e 3 ( phi , h , p ) :

# r e t u r n 1 / np . s q r t ( h ∗∗ 2 + S2 ( phi , p ) ∗∗ 2) − 1 / np . s q r t ( h ∗∗ 2 + S1 ( phi , p ) ∗∗ 2)

re turn 1 / ( h ∗∗ 2 + S2 ( phi , p ) ∗∗ 2 )∗∗0 . 5 − 1 / ( h ∗∗ 2 + S1 ( phi , p ) ∗∗ 2 )∗∗0 . 5

def c a s e 4 ( phi , h , p ) :

" " "

T h i s i s t h e s o l i d a n g l e c o n t r i b u t e d by t h e s i d e o f t h e c y l i n d e r

when t h e s o u r c e i s i n s i d e t h e r a d i u s .

" " "

# r e t u r n 1 / np . s q r t ( h ∗∗ 2 + S2 ( phi , p ) ∗∗ 2)

re turn 1 / ( h ∗∗ 2 + S2 ( phi , p ) ∗∗ 2 )∗∗0 . 5

def i n t e g r a t e ( f , a , b , h , p , N=10000000) :

x = np . l i n s p a c e ( a , b , N)

fx = f ( x , h , p )

a r e a = np . sum ( fx )∗ ( b−a ) / N

re turn a r e a

def s o l i d _ a n g l e ( rho , z , r , l ) :

rho = abs ( rho )

z = z / r

l = l / r
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i f ( rho < 1) and (− l < z < 0 ) :

p r i n t ( " Th i s s o u r c e l o c a t i o n i s i n s i d e t h e d e t e c t o r " )

e l i f ( rho <= 1) and ( ( z >= 0) or ( z < − l ) ) :

i f z < − l :

z = abs ( z ) − l

ans = 2 ∗ np . p i − 2 ∗ z ∗ i n t e g r a t e ( f = case1 , a =0 , b=np . pi , h=z , p= rho )

re turn f l o a t ( format ( ans , ’ 0 . 6 f ’ ) )

e l i f ( rho > 1) and ( ( z > 0) or ( z < − l ) ) :

i f z < − l :

z = abs ( z )

p a r t 1 = 2 ∗ z ∗ i n t e g r a t e ( f = case3 , a =0 , b=np . a r c s i n ( 1 / rho ) , h=z , p= rho )

p a r t 2 = 2 ∗ ( z+ l ) ∗ i n t e g r a t e ( f = case4 , a =0 , b=np . a r c s i n ( 1 / rho ) , h=z+ l , p= rho )

p a r t 3 = 2 ∗ z ∗ i n t e g r a t e ( f = case4 , a =0 , b=np . a r c s i n ( 1 / rho ) , h=z , p= rho )

ans = p a r t 1 + p a r t 2 − p a r t 3

re turn f l o a t ( format ( ans , ’ 0 . 6 f ’ ) )

e l i f ( rho > 1) and (− l < z <= 0 ) :

z = abs ( z )

p a r t 1 = 2 ∗ z ∗ i n t e g r a t e ( f = case4 , a =0 , b=np . a r c s i n ( 1 / rho ) , h=z , p= rho )

p a r t 2 = 2 ∗ ( l−z ) ∗ i n t e g r a t e ( f = case4 , a =0 , b=np . a r c s i n ( 1 / rho ) , h= l−z , p= rho )

ans = p a r t 1 + p a r t 2

re turn f l o a t ( format ( ans , ’ 0 . 6 f ’ ) )

e l s e :

p r i n t ( " I don ’ t know what you want " )

i f __name__ == ’ __main__ ’ :

" " " s o l i d _ a n g l e s = [ ]

f o r t r i a l i n t r i a l s [ 0 : 4 ] :

ans = s o l i d _ a n g l e ( t r i a l [ 0 ] , t r i a l [ 1 ] , t r i a l [ 2 ] , t r i a l [ 3 ] )

t r i a l . append ( ans )

s o l i d _ a n g l e s . append ( ans ) " " "

" " " d i s t a n c e _ t e s t = [ ]

t e s t s = [ [ r , 0 , 1 , 2] f o r r i n np . l i n s p a c e ( 1 , 1 0 0 1 , 1 0 1 ) ]

f o r t e s t i n t e s t s :
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# ans = s o l i d _ a n g l e ( t e s t [ 0 ] , t e s t [ 1 ] , t e s t [ 2 ] , t e s t [ 3 ] )

ans = s o l i d _ a n g l e (∗ t e s t )

t e s t . append ( ans )

d i s t a n c e _ t e s t . append ( ans ) " " "

" " " s o l i d _ a n g l e s = [ ]

f o r r i n s r c _ r h o :

ans = s o l i d _ a n g l e ( r , s r c _ h t , de t_rad , d e t _ l e n )

s o l i d _ a n g l e s . append ( [ r , s r c _ h t , de t_rad , d e t _ l e n , ans ] )

w i t h open ( ’ s o l i d _ a n g l e s _ m a s k e t _ r a d ={0} _ l e n ={1} _ h t = { 2 } . t x t ’ . f o r m a t ( de t_rad ,

d e t _ l e n , s r c _ h t ) , ’w ’ ) as f :

f . w r i t e ( ’ de t_rad , d e t _ l e n , s r c _ h t \ n ’ )

f . w r i t e ( " { 0 } , { 1 } , {2} \ n " . f o r m a t ( de t_rad , d e t _ l e n , s r c _ h t ) )

f . w r i t e ( ’ r a d i i , s o l i d _ a n g l e ’ )

f o r i i n s o l i d _ a n g l e s :

f . w r i t e ( ’ \ n ’ )

f . w r i t e ( ’ { 0 } , { 1 } ’ . f o r m a t ( i [ 0 ] , i [ −1])) " " "

" " " t e s t _ a , t e s t _ x , t e s t _ y = i n t e g r a t e ( case3 , 0 , np . a r c s i n ( 1 / 5 ) , 2 , 5 , 10)

f i g , ax = p l t . s u b p l o t s ( )

ax . bar ( t e s t _ x , t e s t _ y , t e s t _ x [1]− t e s t _ x [ 0 ] , f a c e c o l o r =’ gray ’ , e d g e c o l o r =’ b l a c k ’ , l i n e w i d t h =1 .0 )

p l t . x l a b e l ( ’ $ \ ph i$ ’ )

p l t . y l a b e l ( ’ Value ’ )

p l t . t i t l e ( ’ Riemann A p p r o x i m a t i o n ’ ) " " "

" " " s o l i d _ a n g l e s = [ ]

f o r i i n p a r k i n g _ r h o :

ans = s o l i d _ a n g l e ( i , p a r k i n g _ h t , de t_rad , d e t _ l e n )

s o l i d _ a n g l e s . append ( [ i , p a r k i n g _ h t , de t_rad , d e t _ l e n , ans ] )

w i t h open ( ’ s o l i d _ a n g l e s _ m a s k e t _ r a d ={0} _ l e n ={1} _ h t = { 2 } . t x t ’ . f o r m a t ( de t_rad ,

d e t _ l e n , p a r k i n g _ h t ) , ’w ’ ) as f :

f . w r i t e ( ’ de t_rad , d e t _ l e n , s r c _ h t \ n ’ )

f . w r i t e ( " { 0 } , { 1 } , {2} \ n " . f o r m a t ( de t_rad , d e t _ l e n , s r c _ h t ) )

f . w r i t e ( ’ r a d i i , s o l i d _ a n g l e ’ )

f o r i i n s o l i d _ a n g l e s :
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f . w r i t e ( ’ \ n ’ )

f . w r i t e ( ’ { 0 } , { 1 } ’ . f o r m a t ( i [ 0 ] , i [ −1])) " " "

B.4 Python script used in MCS analysis

import pandas as pd

import numpy as np

import m a t p l o t l i b . p y p l o t a s p l t

import s c i p y . o p t i m i z e as o p t

def a n g l e _ f u n c ( x , A, B , C , D ) :

# r e t u r n 1 − ( ( A − D) / (1 + ( x / C)∗∗B ) + D)

re turn D + (A − D) / (1 + ( x / C) ∗∗ B)

def cus t_mean ( grp ) :

g rp [ ’ mean ’ ] = grp [ ’ o p t i o n _ v a l u e ’ ] . mean ( )

re turn grp

d a t a = pd . r e a d _ c s v ( ’ mcs_da ta . c sv ’ )

t e s t _ d a t a = d a t a [ d a t a . a c t i v i t y > 1 ] . sample ( 5 )

r e s _ c o l s =[ ’ t h r o t t l e ’ , ’ a c t i v i t y ’ , ’ t r i a l _ t i m e ’ , ’ speed ’ , ’ ind_max ’ , ’ t ime_max ’ , ’ max_x ’ , ’ b k g d _ c n t s ’ ,

’ c u r r i e _ l i m i t _ c n t ’ , ’ c u r r i e _ l i m i t _ 1 s e c ’ , ’ n e t _ p e a k ’ , ’ p e a k _ s i g ’ , ’ D e t e c t e d ’ ]

r e s u l t s = pd . DataFrame ( columns= r e s _ c o l s )

f o r row in d a t a . i t e r t u p l e s ( i n d e x =True ) :

c n t s = [ 1 . 0 0 2∗ i n t ( c ) f o r c in row . c o u n t s [ 1 : −1 ] . s p l i t ( ’ , ’ ) ]

c n t s _ s i g s = [ c ∗∗0 .5 f o r c in c n t s ]

ind_max = c n t s . i n d e x ( max ( c n t s ) )

max_time = ind_max ∗ row . d w e l l _ t i m e

b k g d _ c n t s = c n t s [ 1 0 : 6 0 ] + c n t s [−60:−10]
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b k g d _ s i g s = [ np . s q r t ( b ) f o r b in b k g d _ c n t s ]

bkgd_cn t = sum ( b k g d _ c n t s ) / l e n ( b k g d _ c n t s )

b k g d _ s i g = np . s q r t ( sum ( b k g d _ c n t s ) ) / l e n ( b k g d _ c n t s )

c u r r i e _ l i m i t _ c n t = b k g d _ s i g ∗ 4 . 6 5 + 2 . 7 1

c u r r i e _ l i m i t _ 1 s e c = c u r r i e _ l i m i t _ c n t ∗ 50

n e t _ c n t s = [ c − bkgd_cn t i f c − bkgd_cn t > 0 e l s e 0 f o r c in c n t s ]

n e t _ s i g s = [ ( a∗∗2+ b k g d _ s i g ∗∗2)∗∗0 .5 f o r a in c n t s _ s i g s ]

p e a k _ c n t s = n e t _ c n t s [ ind_max −25: ind_max +25]

p e a k _ s i g s = [ np . s q r t ( p ) f o r p in p e a k _ c n t s ]

p e a k _ c n t = 1 .002∗ sum ( p e a k _ c n t s )

p e a k _ s i g = 1 . 0 0 2∗ ( sum ( [ p∗∗2 f o r p in p e a k _ s i g s ] ) ) ∗ ∗ 0 . 5

d e t e c t e d = True i f p e a k _ c n t − p e a k _ s i g > c u r r i e _ l i m i t _ 1 s e c e l s e F a l s e

max_x = 606 .36 ∗ max_time / row . t r i a l _ t i m e

h o l d e r = pd . DataFrame ( [ [ row . t h r o t t l e , row . a c t i v i t y , row . t r i a l _ t i m e , 606 .36 / row . t r i a l _ t i m e ,

ind_max , max_time , max_x , bkgd_cn t s , c u r r i e _ l i m i t _ c n t , c u r r i e _ l i m i t _ 1 s e c , peak_cn t , peak_s ig ,

d e t e c t e d ] ] , columns= r e s _ c o l s )

r e s u l t s = r e s u l t s . append ( [ h o l d e r ] , i g n o r e _ i n d e x =True )

a v g _ c o l s = [ ’ t h r o t t l e ’ , ’ a c t i v i t y ’ , ’ a v g _ t r i a l _ t i m e ’ , ’ avg_speed ’ , ’ avg_max_time ’ ,

’ avg_max_x ’ , ’ a v g _ n e t _ p e a k ’ , ’ a v g _ e f f ’ , ’ s t d _ n p ’ , ’ s t d _ e f f ’ ]

a v e r a g e s = pd . DataFrame ( columns= a v g _ c o l s )

mas te r_bkgd = [ i n t ( c ) f o r c in d a t a [ ’ c o u n t s ’ ] [ ( d a t a [ ’ t h r o t t l e ’ ] == /

’ \ ’ c e n t e r e d \ ’ ’ ) & ( d a t a [ ’ a c t i v i t y ’ ] == 0 ) ] . t o l i s t ( ) [ 0 ] [ 1 : − 1 ] . s p l i t ( ’ , ’ ) ]

bkgd_1s = 50 ∗ mas te r_bkgd

a n g l e _ o p t = [ 0 . 0 1 4 9 , 1 . 5 4 2 1 , 5 2 . 5 0 4 4 , 0 . 0 0 1 4 ]

a n g l e _ x = np . l i n s p a c e ( 0 , 120 , 121)

a n g l e _ y = a n g l e _ f u n c ( ang le_x , ∗ a n g l e _ o p t )

f o r a in 0 , 1 , 2 , 3 , 4 , 5 :

f o r t in ’ 50 ’ , ’ 75 ’ , ’ 100 ’ , ’ 125 ’ , ’ 150 ’ , ’ c e n t e r e d ’ :
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i f t != ’ c e n t e r e d ’ :

a v g _ t t = r e s u l t s [ ’ t r i a l _ t i m e ’ ] [ ( r e s u l t s [ ’ t h r o t t l e ’ ] == t ) &/

( r e s u l t s [ ’ a c t i v i t y ’ ] == a ) ] . mean ( )

avg_sp = r e s u l t s [ ’ speed ’ ] [ ( r e s u l t s [ ’ t h r o t t l e ’ ] == t ) &/

( r e s u l t s [ ’ a c t i v i t y ’ ] == a ) ] . mean ( )

avg_tm = r e s u l t s [ ’ t ime_max ’ ] [ ( r e s u l t s [ ’ t h r o t t l e ’ ] == t ) &/

( r e s u l t s [ ’ a c t i v i t y ’ ] == a ) ] . mean ( )

avg_xm = r e s u l t s [ ’ max_x ’ ] [ ( r e s u l t s [ ’ t h r o t t l e ’ ] == t ) &/

( r e s u l t s [ ’ a c t i v i t y ’ ] == a ) ] . mean ( )

avg_np = r e s u l t s [ ’ n e t _ p e a k ’ ] [ ( r e s u l t s [ ’ t h r o t t l e ’ ] == t ) &/

( r e s u l t s [ ’ a c t i v i t y ’ ] == a ) ] . mean ( )

s t d _ n p = r e s u l t s [ ’ n e t _ p e a k ’ ] [ ( r e s u l t s [ ’ t h r o t t l e ’ ] == t ) &/

( r e s u l t s [ ’ a c t i v i t y ’ ] == a ) ] . s t d ( )

i f a == 0 :

a v g _ e f f = 0

s t d _ e f f = 0

e l s e :

a v g _ e f f = avg_np / ( a ∗ 33174 .7 ∗ 0 . 8 5 )

s t d _ e f f = s t d _ n p / ( a ∗ 33174 .7 ∗ 0 . 8 5 )

e l i f t == ’ c e n t e r e d ’ :

a v g _ t t = r e s u l t s [ ’ t r i a l _ t i m e ’ ] [ ( r e s u l t s [ ’ t h r o t t l e ’ ] == t ) &/

( r e s u l t s [ ’ a c t i v i t y ’ ] == a ) ] . mean ( )

avg_sp = 0

avg_tm = ’ None ’

avg_xm = ’ None ’

c n t s = [ i n t ( c ) f o r c in d a t a [ ’ c o u n t s ’ ] [ ( d a t a [ ’ t h r o t t l e ’ ] == ’ \ ’ c e n t e r e d \ ’ ’ ) &/

( d a t a [ ’ a c t i v i t y ’ ] == a ) ] . t o l i s t ( ) [ 0 ] [ 1 : − 1 ] . s p l i t ( ’ , ’ ) ]

avg_np = 50 ∗ ( np . mean ( c n t s ) − np . mean ( mas te r_bkgd ) )

s t d _ n p = np . s q r t ( avg_np )

i f a == 0 :

a v g _ e f f = 0

s t d _ e f f = 0

e l s e :

a v g _ e f f = avg_np / ( a ∗ 33174 .7 ∗ 0 . 8 5 )

s t d _ e f f = s t d _ n p / ( a ∗ 33174 .7 ∗ 0 . 8 5 )

h o l d e r = pd . DataFrame ( [ [ t , a , a v g _ t t , avg_sp , avg_tm , avg_xm , avg_np ,

a v g _ e f f , s td_np , s t d _ e f f ] ] , columns= a v g _ c o l s )
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a v e r a g e s = a v e r a g e s . append ( [ h o l d e r ] , i g n o r e _ i n d e x =True )

combined_x = a v e r a g e s [ ’ avg_speed ’ ] [ ( a v e r a g e s [ ’ a c t i v i t y ’ ] != 0 ) ] . t o l i s t ( ) [ 0 : −1 ]

combined_y = [ a / 1 . 0 f o r a in a v e r a g e s [ ’ a v g _ e f f ’ ] [ ( a v e r a g e s [ ’ a c t i v i t y ’ ] != 0 ) ] . t o l i s t ( ) [ 0 : −1 ] ]

combined_ye r r = [ a / 1 . 0 f o r a in /

[ 2 ∗ y f o r y in a v e r a g e s [ ’ s t d _ e f f ’ ] [ ( a v e r a g e s [ ’ a c t i v i t y ’ ] != 0 ) ] . t o l i s t ( ) [ 0 : − 1 ] ] ]

a v e r a g e s = a v e r a g e s [ ( a v e r a g e s [ ’ t h r o t t l e ’ ] != ’ away ’ ) & ( a v e r a g e s [ ’ t h r o t t l e ’ ] != ’ toward ’ ) ]

f , ax = p l t . s u b p l o t s ( )

ax . e r r o r b a r ( combined_x , combined_y , y e r r = combined_yer r , fmt= ’ o ’ , c= ’ k ’ , l a b e l = ’ Robot Data ’ )

ax . p l o t ( ang le_x , ang le_y , c= ’ k ’ , l a b e l = ’ Model F i t ’ )

ax . l e g e n d ( )

p l t . x l im ([ −5 , 1 5 0 ] )

p l t . y l im ( [ 0 , 0 . 0 2 ] )

p l t . x l a b e l ( ’ Speed ( cm s$ ^{−1}$ ) ’ )

p l t . y l a b e l ( ’ E f f i c i e n c y ( $ \ e p s i l o n $ ) ’ )

f , ax = p l t . s u b p l o t s ( )

p a r t i a l _ r e s u l t s = a v e r a g e s [ a v e r a g e s [ ’ a c t i v i t y ’ ] == 0 ] . s o r t _ v a l u e s ( ’ t h r o t t l e ’ , a s c e n d i n g =True )

x = p a r t i a l _ r e s u l t s [ ’ t h r o t t l e ’ ] . t o l i s t ( )

y = p a r t i a l _ r e s u l t s [ ’ a v g _ n e t _ p e a k ’ ] . t o l i s t ( )

y e r r = p a r t i a l _ r e s u l t s [ ’ s t d _ n p ’ ] . t o l i s t ( )

p l t . e r r o r b a r ( x=range ( l e n ( y ) ) , y=y , y e r r =[2∗ i f o r i in y e r r ] ,

l i n e s t y l e = ’ ’ , c= ’ k ’ , marker = ’ s ’ , c a p s i z e =5 , c a p t h i c k =1)

p l t . x t i c k s ( range ( l e n ( y ) ) , x )

p l t . x l a b e l ( ’ T h r o t t l e S e t t i n g ’ )

p l t . y l a b e l ( ’ Counts ’ )
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