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ABSTRACT

Facial rigs are essential to facial animation in movies, games and virtual reality applications.

Among various facial models, blendshape models are widely adopted in many applications because

artists can easily create complicated facial expressions through linear interpolation. However,

creating high quality blendshapes for a specific subject is still a challenging task. It typically

requires hours of manual work of a well trained artists to create hundreds of blendshapes in order

to achieve good visual quality. Several semi-automatic and automatic systems have been proposed

to generate personalized facial rigs previously; however, such systems usually requires specialized

hardware (e.g., laser scanner) or specific input(e.g., well-lit high resolution video). This thus limits

the application of such systems to a wider audience.

We present an automatic facial rigging system for generating person-specific 3D facial blend-

shapes from images in the wild (e.g., Internet images of Hillary Clinton), where the face shape,

pose, expression, and illuminations are all unknown. Our system initializes the 3D blendshapes

with sparse facial features detected from the input images using a mutli-linear model and then

refines the blendshapes via per-pixel shading cues with a new blendshape retargeting algorithm.

Finally, we introduce a new algorithm for recovering detailed facial features from the input images.

To handle large variations of face poses and illuminations in the input images, we also develop a

set of failure detection schemes that can robustly filter out inaccurate results in each step. Our

method greatly simplifies the 3D facial rigging process and generates a more faithful face shape

and expression of the subject than multi-linear model fitting. We validate the robustness and ac-

curacy of our system using images of a dozen subjects that exhibit significant variations of face

shapes, poses, expressions, and illuminations.
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1. INTRODUCTION

Blendshape models [5] have been widely used to animate 3D faces of virtual characters in

movies, video games, and visual simulations. As an intuitive and generative facial rigging scheme,

blendshape models can easily synthesize complicated facial expressions through linear interpola-

tion(Figure 1.1). However, creating a high quality blendshape basis for a specific subject is still a

challenging task. A major problem for facial rigging is to make the rigging method robust and scal-

able against extremely challenging inputs, such as images in the wild. This thesis addresses how

to generate high quality blendshapes directly from a set of unconstrained, unstructured images.

Figure 1.1: Synthesizing facial expressions using blendshape models. Top: blendshapes basis
of the person. Bottom: synthesized face model(left) that matches the expression in input im-
ages(right) using the blendshapes above. Photograph reprinted from [AL2].

Many facial rigging methods have been proposed previously. A straightforward method for

creating facial rigs is to directly capture the personalized blendshapes via dedicated device setups

[6, 7]. Although these methods can obtain high fidelity blendshapes, they require expensive de-

vices and considerable manual work in capturing and data processing. Example based face rigging
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[8] simplifies the hardware requirement for blendshape acquisition by transferring a set of generic

blendshapes to a new subject. However, it still requires a high fidelity neutral 3D shape and aligned

3D expressions of the new subject for generating high quality results. A video based facial rigging

method [1] further simplifies the capturing process and generates personalized 3D facial rigs with

fine-scale details from a monocular video sequence. Their system requires high resolution, well-lit

video as input and represents the resulting facial rigs with a non-traditional multi-layer represen-

tation, which limits its application to more general situations. Other real-time 3D facial tracking

systems [9, 10, 11, 12, 13, 14, 2, 15, 16] construct personalized blendshapes for tracking 3D facial

expressions from monocular RGB/RGBD video input. Unfortunately, the resulting blendshapes

are derived from a multi-linear model built upon a small group of people, which may not faithfully

represent the facial geometry of the target subject.

Figure 1.2: We propose the first fully automatic system that generates high fidelity blendshape
models from images in the wild. From a collection of unconstrained images, our system produces
blendshapes with faithful large-scale deformation. Top Row: Input in-the-wild images(left) and
face reconstructions with the blendshapes generated with our method(right). Bottom Row: Blend-
shapes generated with our proposed system. Photographs reprinted from [HC1], [HC2], [HC5],
[HC6], [HC8], [HC12], [HC11], [HC9].
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We present a facial rigging system for generating high quality personalized blendshapes from

a set of images in the wild, i.e., real world images of human faces obtained from personal albums

or downloaded from Internet. Given face images of a subject with variant yet unknown poses,

expressions, and illuminations, as well as a 3D blendshape template, our method automatically

generates personalized 3D blendshapes from the input images(Figure 1.2). The resulting blend-

shape basis follows the canonical expressions in the blendshape template, while their combinations

can faithfully represent the expressions and facial shapes exhibited in the input images.

Figure 1.3: Images in the wild typically have large variations in head poses, facial expressions and
illumination. Photographs reprinted from [BW1], [BW2], [BW3], [BW4], [BW5], [BW6], [BW7].

Automatic facial rigging from images in the wild is a non-trivial task due to two technical

challenges. First, existing facial feature detection and reconstruction algorithms are prone to

fail on images with sharp lighting(Figure 1.3), significant occlusions(Figure 1.4), or extreme face

poses(Figure 1.3) and result in poor blendshape results. However, automatically detecting these

outlier images from the input is very difficult. Second, the faces in different images need to be

aligned for modeling personalized blendshapes. Existing methods either depend on continuous

video frames or face shape priors to build the correspondence between images. In our scenario,

building correspondence between images is a difficult task because the input images are sparse

while the underlying blendshapes are unknown.

To tackle these technical challenges, we develop a three-step solution for constructing high

quality blendshapes from input images. In the first step, we leverage the multi-linear model to

reconstruct an initial blendshape. For this purpose, we detect sparse facial feature points from the
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input images and then reconstruct initial blendshapes with multi-linear models. A set of outlier

detection schemes have been developed to automatically identify good results and remove the

outliers in this step. In the second stage, we refine the blendshapes from per-pixel image values

of detailed facial geometry. To this end, we first reconstruct the high resolution 3D point clouds

of the face from each input image with the help of current blendshapes and then optimize the

personalized blendshapes from the recovered 3D point clouds with a new blendshape retargeting

algorithm. We repeat this process to iteratively update the blendshapes and point clouds until they

are consistent with each other. Finally, we extract the fine-scale geometric details from the point

clouds and integrate them into the generated blendshapes using a normal-based representation.

Figure 1.4: Occlusion caused by facial hair and make up makes reconstructing facial models di-
rectly from images more difficult. Non-face images such as cartoon also makes building a fully
automatic pipeline very difficult. Photographs reprinted from [BW7], [BW8], [BW9], [BW10],
[ZZ1], [OP1], [GB1], [GB2].

Our system is not a trivial combination of existing components. The three key technical con-
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tributions of our system are outlier detection schemes, the blendshape retargeting algorithm, as

well as the fine-scale facial geometry reconstruction algorithm. The outlier detection schemes

make our system robust to images with extreme illuminations, face poses, and occlusions. Also,

the blendshape retargeting and detail reconstruction algorithms generate personalized blendshapes

consistent with the input images. Our method is robust and fully automatic, generating higher

quality personalized blendshapes than the methods that are based on multi-linear models.

Our method simplifies the input for facial rigging to the greatest extent possible, making the

tool universally accessible to general users. Compared to previous systems such as direct capturing

and the video-based method[1], our system does not require any extra hardware and removes all

constraints previous systems impose on the input. Our system therefore enables facial rigging from

previously unusable sources, such as legacy images of historic figures. We validate our method

on both synthetic and real world datasets and evaluate the effectiveness of our new modules in

improving blendshape quality. We also test our methods on images collected from the Internet and

demonstrate its robustness and accuracy for input images with various challenging combinations

of head poses, facial expressions and illuminations.

1.1 Contributions

Our fully automatic facial rigging system contributes a set of algorithms to advance the state-

of-the-art in facial rigging in the wild.

• We introduce several quality control modules to make the system very robust. Automatic

facial rigging in the wild is extremely challenging and our system is the first one capable of

constructing high quality blendshapes from a sparse set of unconstrained images.

• We develop a novel example based facial rigging algorithm using high resolution point

clouds as intermediate representations for facial geometry. The intermediate representation

decouples the geometry recovery and blendshapes generation step, which simplifies solu-

tion space and allows our system to identify confident image regions used for blendshapes

generation.
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• We design a normal-based fine-scale detail recovery algorithm to integrate fine-scale geom-

etry into our final blendshapes. The normal-based representation is well-suited for our case

because it does not suffer from the bas-relief effect typically appear in displacement based

representations. Our system is not a trivial combination of existing components.

1.2 Organization

In the next chapter, we review related work on facial model, with a focus on blendshape mod-

els. Chapter 3 provides an overview for our system, and Chapter 4 to Chapter 6 describe key

components, including facial reconstruction in the wild, point cloud based blendshape retargeting

and fine-scale detail recovery, in our system. Chapter 7 and Chapter 8 show results and evaluation

of our system. Chapter 9 concludes the discusses future work.
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2. LITERATURE REVIEW

Face model has been an active research topic since the early days of computer graphics. Vari-

ous methods have been proposed for face modeling over the years. These models include low-level

mesh-based models[17, 18], parameterized models[19], physically-based muscle models[20, 21,

22] data-driven models[23, 24] and blendshapes[5]. While low-level mesh-based models are the

most straight forward approach in representing human faces, they usually lack the flexibility of

synthesizing novel face shapes with complex expressions. Parameterized models[19] provides

flexible control over the facial geometry and expression through a set of tunable parameters. How-

ever, a huge set of parameters are required to produce realistic facial appearance with this model.

Physically-based muscle models work well for creating realistic facial expressions, but they are

often difficult for artists to control. Blendshape models[5] offer a good balance between easiness

of control and realism of synthesized shapes, and have become de-facto standard in animating

characters. However, it remains a major challenge to construct high quality blendshapes since

hundreds of blendshapes are usually required to capture realistic facial expressions. Data driven

models such as the PCA-based models[23] and the multi-linear models[24] are linear models sim-

ilar to the blendshape models, but they are represented with a compressed orthogonal basis which

is not intuitive for controlling facial animation. Data driven models are also limited by the sam-

ples included in their databases, leading to limited generalization ability of such models. Thus

far, blendshape model is the most popular choice for facial animation in animation studio, game

development and movie industry.

2.1 Face Modeling with Blendshape Models

In this section, we focus our discussion on methods and systems developed for acquiring facial

blendshape models. For a comprehensive survey of facial rigging and blendshape techniques, we

refer the reader to [25] and [26].
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2.1.1 Rigging by Capturing and Modeling

Rigging by capturing and modeling directly acquires 3D blendshapes from various 3D data

sources. Artist-crafted blendshapes [7] have been successfully used in movie making [27, 28].

However, manually creating high quality blendshapes is time consuming and requires specially

trained experts. Acquiring facial rigs from 3D capturing provides a high precision alternative

to manual crafting. A straightforward approach directly captures facial performances with high

resolution laser scans [24, 29, 6]. Structured lighting systems [30, 31] and multiple-view stereo

[18, 32, 33] recover high quality facial geometry via 3D reconstruction. These systems often

involve complicated system setups and a controlled environment. [16] proposed to use mobile

devices as low cost alternatives for scanning human faces, and their method is able to produce

visually appealing avatars. Nonetheless, their method only works in situations where the person of

interest is accessible. Recent advances in consumer depth cameras have made it possible to obtain

3D scans with a simplified setup at low cost [34, 10, 13, 35]. However, the 3D scans are usually

very noisy and require a substantial amount of post-processing. By contrast, our system only uses

a set of unconstrained images as input and is fully automatic, thus offers an extremely low cost

option for facial rigging.

Suwajanakorn et al.[36] reconstructed 3D facial animations from video clips by combining

shape from shading and optical flow techniques. However, the unstructured meshes recovered

by this method cannot be easily used for generating new facial animations. Recently, Garrido et

al. [1] proposed a multi-scale performance capture system that builds highly detailed, personalized

3D face rigs from a monocular video clip. Given a high resolution, well-lit video clip, their sys-

tem generates a multi-layer blendshapes model, where the large-scale blendshape is modeled by

a multi-linear model, and the personalized shape and expressions are represented by a corrective

field and per-triangle deformation gradients that are derived from each input frame using expensive

online regression. Different from this approach, our method takes images in the wild as input for

high quality blendshape generation. For this purpose, our method has to handle challenging issues

typically arise only from our input images in the wild, such as illumination change and significant
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occlusion. Moreover, we cannot follow the method in [1] designed for dense video sequences to

reconstruct a dense middle-level representation from sparse images. Instead, we model the person-

alized shape and expressions out of the multi-linear model space with personalized blendshapes

and introduce a new optimization method for reconstructing personalized blendshapes from sparse

input images.

2.1.2 Rigging by Retargeting

Rigging by retargeting generates personalized blendshapes by adapting a blendshape template

to a specific subject’s face. Early approaches create blendshapes by fitting a generic face model

to sparse 2D feature points [37] or 3D mocap data [38, 39]. While these methods successfully

create personalized blendshapes with sparse constraints, the resulting blendshapes generally lack

fine-scale details compared to manually crafted blendshapes. Later methods resolve this issue by

adapting blendshapes with dense correspondence. Noh et al. [40] cloned expressions of a source

face model to a target face by transferring the vertex motion vectors of the source mesh to the

target mesh. Orvalho et al. [41] introduced a facial rig transfer system using a combination of

landmark-guided dense correspondence and attributes transfer. Xu et al. [42] decomposed detailed

facial expressions at different scales and transferred them separately. Although these approaches

only require one 3D neutral face of the target subject for retargeting, the generated blendshapes

may not always appear as expected. As a result, at artist’s input is always required to control the

blendshape’s quality. Li et al. [8] proposed a method for generating blendshapes from an aligned

neutral 3D face and several 3D expressions of a subject using a constrained deformation transfer

algorithm. Although this method significantly improves the blendshape quality, it needs a neutral

3D face and well established correspondence between 3D input poses for facial rigging. The new

example based facial rigging scheme introduced in our system eliminates these constraints and

enables high quality blendshapes retargeting directly from unaligned and noisy point cloud data.

Cashman et al. [43] proposed a method for constructing blendshapes of deformable 3D objects

(e.g dolphin or pigeons) from images in the wild, where the 2D object contours labeled in each

image are used to deform the 3D template mesh. Unfortunately, this method cannot be used for
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automatic facial rigging. Different from our method that aims to recover personalized facial anima-

tions using per-pixel shading cues, their method can only derive large-scale object animations from

contours and ignores the difference between different identities. Moreover, their method needs a

lot of manual work for labeling contours in the input images, while our method is fully automatic.

2.1.3 Rigging with Statistical Models

Rigging with statistical models derives the blendshapes from various inputs by fitting a statis-

tical model of face shapes and expressions, such as the PCA model[23] or the multi-linear model

[24, 35]. Bouaziz et al. [10] created personalized blendshapes by transferring expressions from

template blendshapes to a neutral shape obtained with a PCA identity model. Real time video-

based 3D facial tracking systems [11, 14, 15] generated user-specific blendshapes using shape

regression in a multi-linear model, while other offline 3D expression reconstruction approaches

[2, 44] also derive personalized blendshapes by fitting the 2D face image detected in video frames

with a multi-linear model. Since these models are constructed from a relatively small group of

people, they are only able to generate facial rigs within the model space and thus may not faith-

fully reflect the true facial geometry. Our system overcomes this limitation by fitting the point

clouds recovered from per-pixel visual cues in the input images with free-form deformed blend-

shape templates. As a result, the blendshapes generated by our system are both visually appealing

and geometrically closer to the true facial shape.

Recently, Ichim and colleagues proposed to use physics-based simulation to improve realism of

blendshape models under different physical interaction status[45]. Their combine muscle control,

volumetric deformation energy and rigid bone structure constraints in their simulation to produce

visually plausible facial movements. However, their method requires very expensive physics-based

simulation that limits its application scenario. Li et al proposed to learn a statistical model using

4D scans[46], i.e. 3D scans that capture the continuous facial movements within certain time span.

Their method is able to produce high quality blendshape models by utilizing both the accurate 3D

geometry and space-time continuity in the 4D scans. Despite the impressive results, their method

requires a much more complicated data collection setup which is not applicable to our case of
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creating blendshape models from images in the wild.

Figure 2.1: The USC light stage[47]. The light stage is an expensive hardware setup with multiple
cameras and precisely controlled light sources. Photograph reprinted from [OP2].

2.2 Facial Reconstruction in the Wild

Face reconstruction has long been an active research topic in computer vision community.

The general goal of face reconstruction is to recover accurate 3D facial geometry from 2D in-

puts(images or video). Multiple-view stereo based facial geometry reconstruction is a well studied

topic and related technologies have been widely used in industry to create metrically correct human

face models. However, multi-view based facial reconstruction usually requires an expensive setup

with many high resolution cameras and specialized lighting equipments[48, 7, 49](Figure 2.1).

In contrast to the multi-view stereo face reconstruction under well-controlled environment,

using a few unconstrained images, and to the very extreme of only a single image, to recover facial
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Figure 2.2: Illustration of face reconstruction with deep neural network. The neural network acts as
a black box function approximator that mimics the highly non-linear facial reconstruction process.
Photograph reprinted from [BO8].

geometry remains a highly challenging problem to date. Recent work of face reconstruction in

the wild models a static 3D human face with neutral expression from a set of images [4, 3] using

a combination of 3D morphable models and photometric stereo. However, these methods only

recover the personalized 3D face identity and ignore facial expressions.

The rapid advancements in machine learning using deep neural network also inspire a series

of work on facial reconstructions and face modeling using convolutional neural networks[50, 51,

52]. These methods attempt to model the facial reconstruction process as an inverse mapping

from 2D images to 3D facial geometry via highly non-linear functions encoded in deep neural

network(Figure 2.2). However, such method typically requires a large amount of high quality

training data to achieve similar level of reconstruction quality of previous methods such as[4, 3].
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Figure 2.3: The pipeline of our automatic blendshapes generation system. We first detect facial features for all input images. Failed
cases in facial feature detection are automatically identified and excluded. We then reconstruct large-scale facial deformation using a
multi-linear model. We include a subset selection scheme to obtain consistent facial reconstructions. Next, we recover high resolution
point clouds utilizing the large-scale reconstruction and per-pixel visual cues. A set of high fidelity blendshapes are then generated from
the point clouds using deformation gradients prior from template blendshapes. We also feed the generated blendshapes back into our
pipeline to iteratively improve the quality of the generated blendshapes. Lastly, we recover detailed geometry using the point clouds
and the generated blendshapes and integrate it into the final blendshapes. The blue boxes highlight our novel modules in the proposed
system. Photographs reprinted from [AL1], [AL2], [AL7], [AL10], [AL22], [AL8], [AL47], [AL26] .

13



3. OVERVIEW

Our system aims at generating high quality blendshape models directly from images in the

wild. Given a set of input images Ii(i = 1, 2, · · ·N) of a subject with unknown head poses (i.e.

translations Ti and rotations Ri) and illuminations Li, as well as a set of template blendshapes Bt,

our goal is to construct a set of personalized blendshape bases B for the subject that follow the

template blendshapes and can well reconstruct the facial appearance in the input images. Ideally,

this can be achieved by optimizing

argmin
B,wi,Ri,Ti,α,Li,ci

N∑
i=1

‖Ii − Ĩi(B,wi, Ri, Ti, α, Li, ci)‖2

+ λ‖B −D(Bt)‖2

(3.1)

wherewi is the blendshape weights for the facial expression in image Ii, ci is the camera parameters

of image Ii, and α is the face albedo of the subject. Ĩi is the rendered image of the reconstructed

3D face using the generated blendshapes B and estimated parameter set {wi, Ri, Ti, α, Li, ci}, and

D(Bt) is the deformation of the blendshape templates. Directly solving all unknown parameters

from the input images is a highly ill-posed problem(Figure 3.1). As shown in Figure 2.3, we

instead derive the blendshapes from the input images in two steps: a facial reconstruction in the

wild step and a point cloud based blendshape retargeting step.

3.1 Facial Reconstruction in the Wild

In this step, we reconstruct a 3D face for each input image and initialize the blendshapes us-

ing the 2D sparse features in each image and the multi-linear model. To this end, our system

first detects 2D facial feature points from the input images and then removes inaccurate detection

results with a new failure detection algorithm (Section 4.2). We then reconstruct the 3D head

pose and facial expression for each input image by fitting the feature points with a multi-linear

facial model. The variety of head poses, facial expressions and ambiguity due to the loss of depth
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information in the 3D to 2D projection could lead to failure in facial reconstructions. We thus

develop an algorithm for automatically identifying a consistent image subset for obtaining good

facial reconstructions(Section 4.4). Given the selected image subset, our system performs 3D face

reconstruction separately for each image and jointly for all images with the multi-linear model in

an iterative way to mitigate 3D-2D ambiguity.

Figure 3.1: Comparison of direct blendshapes optimization and point cloud based blendshapes
retargeting. Top: blendshapes generated by direct optimization. Bottom: results by our method
using point cloud based blendshapes retargeting. Note that solving the highly ill-posed problem
directly via optimization can easily get stuck at local minima and result in incorrect geometry.

3.2 Point Cloud Based Blendshapes Retargeting

The previous step filters out outlier images from the inputs and provides a good estimation

for head poses (Ti and Ri) and camera parameters ci. However, the blendshapes and 3D faces

reconstructed with the multi-linear model cannot faithfully resemble the true face geometry due to

the limited generality of the multi-linear model. In this step, we refine the blendshapes by fitting

the per-pixel facial appearance in the input images with the retargeted blendshape template as in
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Equation 3.1. However, this problem is still ill-posed even with known Ti, Ri , and ci. Moreover,

the occlusions in the facial region such as from hair and eyebrow have to be detected and removed

from the image for this optimization. To tackle these challenges, we introduce the 3D point cloud

Pi of a face as an intermediate representation and perform the optimization iteratively in three steps.

We first recover a high resolution point cloud Pi for each input image using shape-from-shading

by optimizing

argmin
Pi,α,Li

‖Ii − Ĩi(Pi(B,wi), Ri, Ti, α, Li, ci)‖2 (3.2)

where the 3D point cloud is constrained by the 3D face modeled by current blendshapes and

weights to resolve the bas-relief ambiguity (Section 5.1). A novel region selection method is then

applied to automatically detect confident regions in the point clouds and exclude undesired noise in

the point cloud caused by occlusions. Finally, we significantly extend the retargeting algorithm in

[8]. For generating personalized blendshapes (Section 5.2), we fit the high resolution point clouds

with the retargeted blendshape templates

argmin
B,wi

∑
i=1...N

‖Pi −B ⊗ wi)‖2 + λ‖B −D(Bt)‖2 (3.3)

Here B⊗wi is the linear combination of blendshape basis B using the weights wi. After this step,

we use the resulting blendshape to update the point cloud reconstruction in the next iteration. The

optimization is executed until the resulting blendshapes are not changed.

3.3 Detail Recovery

Finally, our system recovers fine-scale facial geometry using a novel algorithm based on surface

normal regression. Deformation/displacement based representations of the geometric details are

commonly used in video-based methods[2, 15, 1]. However, this method does not work well in

our case due to the extremely challenging input. Typically, displacement-based methods typically

suffer from over-smoothing and undesired distortion caused by the bas-relief effect. We develop a

surface normal based representation to address this issue. We build a PCA model of the difference

between the surface normal of the high resolution point clouds and the synthesized shapes by the
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generated blendshapes. An optimal mapping from expression weights to PCA coefficients is then

computed with ridge regression and used to synthesize detailed normal maps for new expressions

(Chapter 6).
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4. FACIAL RECONSTRUCTION IN THE WILD

Given a set of input images, we recover the head poses and reconstruct the 3D facial model

using the multi-linear model in this step. To this end, we first detect the 2D facial feature points

from input images using a recently developed regression-based face alignment technique[53]. This

technique iteratively refines an initial estimate of feature point locations using random regression

forests with local binary features. Although this algorithm generally is robust for a wide range of

head poses and facial expressions, it still fails in some challenging cases(Figure 4.2 (b)). These

inaccurate detection results will lead to poor facial reconstructions. We thus apply a new robust

PCA based algorithm to evaluate the quality of the detected 2D features and automatically exclude

images with inaccurate detection results.

We then fit the detected 2D feature points with a multi-linear facial model for reconstructing

head poses and 3D face shapes modeled by multi-linear weights. Without depth information, the

sparse 2D features in a single image can be explained by different combinations of head poses, ex-

pressions or identities and thus lead to inconsistent reconstruction results (as shown in Figure 4.1).

To tackle this challenge, our key idea is that all input images share the same identity. Therefore, we

can identify good candidates from all possible reconstruction results by estimating their identity

weights.

To this end, we develop a progressive algorithm for reconstructing 3D facial models from the

input images. Our algorithm consists of three steps: individual reconstruction, subset selection and

joint reconstruction. We first reconstruct face shapes for each input image individually by solving

a non-linear optimization problem. Specifically, we follow the method in [2] to seek the head poses

(rotation R and translation T ), camera parameters c, and identity and expression weights(wid and

wexp) of a multi-linear model that best fit the detected 2D features of the input image. We perform

the optimization without the constraint of uniform identity weights to maximize our exploration of

the potential identity weights. The estimated parameters are then used to initialized the unknowns

in the joint reconstruction step. However, the individual reconstruction results are not always
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Figure 4.1: Inconsistent identity weights from direct reconstruction of 100 images of Andy Lau.
The horizontal axis represents the 50 dimensions of the identity weights. Each polyline in the plot
represents an identity weight vector of a reconstruction.

reliable due to the inherent ambiguity of estimating 3D shape from 2D constraints. We thus filter

these results with a subset selection step to find a consistent subset suitable for joint reconstruction.

During joint reconstruction, we solve a unified optimization similar to [2] over the selected subset

with common identity weights w∗id. We then use these common identity weights as the initial guess

for per-image identity weights, and iterate the reconstruction process a few times to achieve the

best reconstruction results.

In the following sections of this chapter, we introduce the technical details of the key compo-

nents in our system: parametric 3D face models, facial feature points detection and robust PCA

based failure detection, face reconstruction with multi-linear model and subset selection.

4.1 Parametric 3D Face Models

Estimating 3D facial geometry from 2D images is a typical ill-posed problem because of the

goal to recover 3D shape in the absence of depth information. Prior knowledge about the 3D

facial shape, which provides strong constraints for viable solutions, is thus crucial in solving this

problem. Previous work typically encode such prior knowledge in the form of some parametric
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models, such as the PCA model used in 3D morphable model[23] and the multi-linear models in

[24]. With the prior model, the problem of recovering 3D face shape can be simplified to estimating

model parameters. For example, given a PCA shape model {Aj}, a 3D shape S can be represented

using the mean shape A0 and principal components Ai:

S = A0 +
∑
i

wiAi

where {wi} is the model parameters, while S and {Ai} are the vector formed by stacking the

coordinates of all vertices together. Recovering 3D face shape using a PCA model can then be

formulated as estimating the model parameters {wi}.

PCA models are typically used to model neutral face shape[23], but it can also be extended to

include facial expressions using extra components:

S = A0 +
∑
i

wiAi +
∑
j

wejA
e
j

where {wej} are the weights for interpolating the expression components {Aej}

PCA models provides a compact representation of 3D face shapes and allows synthesizing

different face shapes through linear interpolation. However, PCA models are typically difficult

to interpret and manipulate. The principal components form an orthogonal shape space that each

principal component encodes independent shape variations that could combine changes in several

different region on the face. For example, different sizes of nose and chin could be combined into

a single principal component so that the PCA model is more compact. This makes it difficult to

directly control the model parameters to achieve desired face shape using PCA models. Similarly,

each expression component in a PCA model could encode the motion of several facial muscles

simultaneously, making it difficult to support fine grain expression control.

Blendshape models, on the other hand, provides a linear representation of 3D face that is easy

to interpret and manipulate. Similar to PCA models, a 3D face can be synthesized by linearly
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interpolating the basis in a blendshape model:

S = B0 +
∑
j

wj(Bj −B0)

where B0 is the neutral face shape and {Bj} are the face basis with different expressions. The

above formulation is the so-called additive formulation since the difference between neutral face

and a specific expression Bj is added to the neutral face with weight wj .

The linear basis in a blendshape models is a set of predefined expressions with clear semantics,

e.g., mouth open, eye closed, etc. Artists can easily adjust the linear combination weights to

achieve specific facial expression with blendshapes because of it. Similar to PCA-based models,

we can recover the 3D face shape of a person using a set of blendshapes built for the person by

estimating a proper combination of expression weights.

A major difference between blendshapes and PCA-based model is that a set of blendshape

models a single person only. Multi-linear models generalizes blendshapes to model face variations

in several separable attributes simultaneously. For example, bi-linear models with variations in

both identity and expression is formed by stacking multiple sets of blendshapes with consistent

expression variations together. Intuitively, the 3D face shapes in a bi-linear model are organized in

a matrix where each element is a single face shape for a specific person and expression:

Expression 1 Expression 2 . . . Expression M

Person 1 S11 S12 . . . S1M

Person 2 S21 S22 . . . S2M

...
...

...
...

...

Person N SN1 SN2 . . . SNM

where Sij is the face shape for the i-th person and the j-th expression. With a multi-linear model,

a face shape can be generated by linear interpolation in all attributes. For example, a face shape

can be generated through interpolation in both identity and expression dimensions.

Formally, a multi-linear model is typically represented as a high order tensor T = (ti1i2...iN )
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that can be linearly interpolated to produce a specific face shape[24]. Different modes of the tensor

are used to encode different attributes of the data. For example, Vlasic et al.[24] constructed a

multi-linear model with 3 modes, i.e. “identity”, “expression” and “viseme”, and store the data as

a 3-tensor.

A specific face shape can be synthesized with a multi-linear model through linear interpolation.

The interpolation operation can be expressed as mode-n product. Specifically, the interpolation

of an attribute is expressed as a mode product of the mode associated with that attribute. For

example, the interpolation of the “identity” attribute can be expressed as T ×id wTid, where wid is

the interpolation weights. Given a 3 modes multi-linear face model with “identity”, “expression”

and “viseme”, a face shape can be synthesized as

S = T ×id wTid ×exp wTexp ×vis wTvis

where wexp and wvis are the interpolation weights for expression and viseme, respectively.

The size of a high order tensor representing a multi-linear face model can grow rapidly with

the increase of data samples in the tensor, while the new information contained in the new data

samples may be incremental. It is therefore very common to perform tensor decomposition to

compress a large tensor T into a much more compact core tensor Cr. This can be achived by

performing N-mode SVD on the original tensor T [54].

Since multi-linear model is parameterized by several attributes, recovering 3D shape using

multi-linear model boils down to estimating proper combination of the weights for all relevant

attributes. In the case of bi-linear model, we need to estimate both identity and expression weights

to recover a 3D face shape.

4.2 Feature Point Detection and Robust PCA Based Failure Detection

Reconstructing 3D face shape from 2D image in its essence is determining 3D location of each

pixel in the 2D image. This is an ill-posed problem since 2D images typically do not provide

any depth information. With a prior model, recovering 3D face shape reduces to the problem of
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estimating proper model parameters, along with camera parameters and head poses. To find out

the model parameters, we need to determine the correspondence between the 3D model and the

pixels in 2D images and use them as constraints.

Given a 3D shape prior model, the correspondence between 3D points on the model and 2D

pixels is unknown. Without extra knowledge, it is impossible to establish dense correspondence

between the 3D model and 2D pixels. On the other hand, it is relatively easy to identify several

distinct facial feature points in the 2D image and their corresponding 3D points on the face model.

For example, mouth corners, eye corners, nose tip are distinct feature that could be identify with

significantly less effort in 2D images and on the 3D model. To this end, we utilize the correspon-

dence between important 2D and 3D facial feature points to estimate the parameters in the prior

model.

The 3D facial feature points can be manually labeled since all the 3D meshes in the prior

model have identical topology, i.e. the location of 3D facial feature points are fixed on the 2D

manifold of the 3D face regardless identity and expression change. For 2D facial feature points, we

use the random forest based cascading regression method[53] to detect them in the input images.

Facial keypoints detection techniques improved significantly in recent years since the introduction

of cascaded regression method[55]. Cao and colleagues adapted the cascaded pose regression

algorithm to work on facial feature points detection and achieved impressive results. Supervised

decent method proposed by Xiong et al.[56] formalized the cascaded regression method in the

supervised gradient descent framework. Ren and colleagues [53] further improved both detection

quality and speed of the detection algorithm with combination of random forests and local binary

features. Generally, the facial feature detection algorithms initialize the face shape with a template

shape S0 inside the detected face region, and compute a series of shape incremental {∆St} in a

cascade of several stages:

∆St = W tΦt(I, St−1)

where Φt is a function that extracts useful features from input image I using the predicted face

shape in the previous stage St−1, and W t is a matrix that maps the feature vectors extracted by Φt
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to shape incremental ∆St. The final prediction of the face shape is the summation of the initial

face shape S0 and all the shape incrementals:

Sfinal = S0 +
T∑
t=1

∆St

where T is the total number of stages in the cascade.

Despite the improvements in the detection quality of facial feature points detection algorithms,

these detectors can still fail on challenging input images. The input images our system handles

usually contains extreme head poses, facial expressions and illuminations, all of which are very

likely to cause failure in the facial feature points detection algorithm. As shown in Figure 4.2, the

facial feature detection may fail for some input images.

(a) (b)

Figure 4.2: Examples of facial feature points detection. (a) successful cases; (b) failed cases: inac-
curate eyes, nose and contour points(left) and drifted contour points(right). Photographs reprinted
from [AL1], [OP3], [AL38], [OP4], .

The quality of the predicted facial feature points are critical for obtaining good large-scale

reconstruction results. Inaccurate facial feature points directly lead to failure in large-scale facial

reconstruction, and such error would propagate through our system causing disastrous results.

While improving the quality and robustness of the detection algorithm could reduce the failure

rate, it is extremely difficult to make sure the detection algorithm generate good results given

arbitrary images in the wild. To make our large-scale facial reconstruction work for images in the
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wild, we need to filter out failure cases in feature points detection results.

Our key idea of finding the failed detection results is based on the observation that for failed

detection, either the face shape (i.e. the polygonal shape defined by the feature points) or the

texture inside the face shape are significantly different from that of a good detection. However, it

is impractical to compare the detected face regions in different images directly because of the large

variations of head poses, expressions and illuminations. We therefore construct a statistical model

for the detected face shape and texture simultaneously, and compare the detection results using the

model. Similar to the active appearance model[57], our model consists of a shape modelMs and

a texture modelMt. These two models are constructed by performing PCA on the input data.

Algorithm 1 Failure detection for facial feature points

Input: Source image and feature points pairs {Ii, {pij}}
Output: Set of inliers O = {ik}

1: inliers← {Ii, {pij}}
2: while not converged do
3: Mt,Ms ← RobustPCA(inliers)
4: for all Input Image and feature points pair (Ik, {pkj}) in current_set do
5: I ′k,p

′
kj ← PCAReconstruction(Mt,Ms, Ik, {pkj})

6: ek ← wtRMSE(Ik, I
′
k) + ws

∑
j ‖pkj − p′kj‖2

7: end for
8: µ, σ = ComputeMeanAndStd({ek})
9: inliers← inliers− {ik for ek > µ+ ωσ}

10: end while
11: return inliers

A key difference in our model is that the input data are corrupted with outliers, i.e. failed

detection results. A straightforward PCA model will capture the noise from the outliers and the

model would not be able to distinguish good detections from bad ones. We instead use robust

PCA[58] to factor out the outliers and construct a model for the denoised data. Consider the texture

model Mt, we know the input texture data Xt is corrupted with failure cases. The uncorrupted

texture data is the facial texture under different illumination, which can be well approximated with
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PCA[59]. The texture data Xt therefore can be decomposed into a low-rank component Lt and a

sparse noise component St:

Xt = Lt + St

To find out outliers in current texture data Xt, we need to estimate the low-rank component Lt

from the corrupted texture data Xt. Classical PCA is able to achieve similar goal since it seeks a

low-rank approximation L̂t of Xt by solving the following optimization problem

minimize ‖Xt − L̂t‖

s.t. rank(L) ≤ r

where r is the a number smaller than rank(Xt). However, the noisy component St is not excluded

in the low-rank representation L̂t in classical PCA method. In our case, the classical PCA captures

the noisy texture information from the failed feature point detection results, which defeats our

purpose of using the PCA model to identify outliers.

Robust PCA[58], on the other hand, models the sparse noise explicitly in its optimization that

seeks the low-rank representation Lt:

minimize ‖Lt‖∗ + λ‖St‖1

s.t. Lt + St ≈ Xt

(4.1)

where ‖Lt‖∗ is the nuclear form of L, i.e. the sum of the singular values of L. λ controls how much

information we intend to encode in the sparse noise component St. Note in this formulation, the

noisy texture information can be encoded into St so that Lt closely approximates the uncorrupted

texture information. We choose λ = 1/
√

max(Nr, Nc) following [58], which is shown to be the

optimal choice that gives exact solution of the optimization problem in Equation. 4.2 and produces

reasonably good results. Nr and Nc are the number of rows and columns in Xt, respectively.

We construct both the texture and shape PCA model by first performing a low-rank decompo-

sition of the data matrix X∗ to obtain its low-rank representation L∗, which is the denoised data
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matrix. A regular PCA model is then constructed directly using the denoised data matrix. We then

use the constructed PCA model to fit the input data vectors, and the noisy input data vectors can be

identified as the ones with large reconstruction error. Since we do not have any information about

how much corruption is in the data at the beginning, we use an iterative approach to gradually

remove outliers. We stop the outlier removal process when no more outliers can be identified. The

failure detection algorithm is summarized in Algorithm 1.

(a) (b)

(c) (d)

Figure 4.3: Results by our failure detection algorithm. For (a) to (d): the left image is input
images with green dots marking the detected facial feature points, and the right image is the fitted
face region by our texture model. (a) Failure due to occlusion by hand; (b) Failure due to drifted
contour points; (c) Failure due to facial hair: feature point around the nose are inaccurate; (d)
Failure due to occlusion by glasses: feature points for eyes are inaccurate. Photographs reprinted
from [AL10], [AL22], [OP5], [BW11].

This robust model contains personalized face shape and texture information that captures rea-

sonable variations in head poses, expressions and illuminations. It is able to fit the good detection

results nicely but not for failed detections (Figure 4.3). We measure the difference between the

detection results and reconstruction results, and use it to determine whether the detection failed

for a specific image/feature points pair. We experimentally set wt = 1.0 and ws = 0.1, and the
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algorithm converges after 3 to 5 iterations. Figure 4.8 shows a typical case of the outliers detected

by the robust PCA based method.

4.3 Face Reconstruction with Multi-linear Model

With the images selected in the previous step, we create the initial facial shape reconstructions

using multi-linear models [24, 35] as 3D shape prior. We generate the shape reconstructions us-

ing a 2 dimensional multi-linear model with variations in “identity” and “expression”. The model

used in our experiments is created using the facial data from FaceWarehouse[35], which consists

of 150 identities and 47 facial expressions. Our bi-linear model is a reduced model with 50 iden-

tity parameters and 25 expression parameters created by performing HOSVD[54] for the original

tensor. In this model, a face shape can be represented as a linear interpolation in the "identity" and

"expression" dimensions:

S = R(Cr ×id wTid ×exp wTexp) + T

= R(Cr ×id wTid ×exp UexpŵTexp) + T

(4.2)

where S is the face shape generated with the multi-linear model Cr, identity weights wid and

expression weights wexp. Uexp is the expression weights mapping matrix from the original 47

dimensional expression space to the 25 dimensional orthogonal expression space, and ŵexp a 47

dimensional expression weights vector. R and T depict the rigid transformation of the face shape.

4.3.1 Shape Reconstruction Algorithm

To recover large-scale facial deformation, we need to estimate the camera parameters ci, head

poses (Ri, Ti), identity weights wid and expression weights wexp,i for all input images. Using the

detected 2D facial features and their corresponding 3D vertices, we formulate the shape reconstruc-

tion as a non-linear optimization problem to minimize the reprojection error of the facial feature
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points:

arg min
ci,Ri,Ti,wid,wexp,i

(
N∑
i

(Efeat(ci, Ri, Ti, wid, wexp,i) + w1Eexp(wexp,i) + w2Esp(wexp,i))

+ w3Eid(wid))

(4.3)

The main cost function term in the above optimization problems is the reprojection error term

Efeat, which measures the distance between the reprojected location of the labeled 3D vertices and

the corresponding detected 2D facial feature points. We also include several regularization terms,

Eid, Eexp and Esp to stabilize the optimization process.

Reprojection Error Term Assuming a weak perspective camera model, the 2D locations of the

facial feature points {p(k)} can be generated by projecting their corresponding 3D vertices {v(k)}

to the image plane:

p(k)(c, R, T, wid, wexp) = π(c)R (Cr ×id wid ×exp wexp)(k) + T

= π(c)R (Cr ×id wid ×exp Uexpŵexp)(k) + T

(4.4)

where π(c) is the weak perspective projection that is a function of camera parameters c. The

reproject error for the facial feature points is therefore

Efeat(c, R, T, wid, wexp) =

Nk∑
k=1

‖p(k)(c, R, T, wid, wexp)− q(k)‖2 (4.5)

where q(k) is the 2D location of the k-th feature point obtained from the face alignment step, and

Nk is the number of facial feature points available in an image.

Regularization Terms Due to the sparsity of the constraints from the facial feature points, it is

necessary to regulate the non-linear optimization with extra constraints to avoid local minima and

overfitting. The regularization terms we used are two prior terms to minimize the deviation of the
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reconstructed identity weights and expression weights from their prior values, respectively:

Eid(wid) = (wid − wpriorid )TΣ−1
id (wid − wpriorid )

Eexp(wexp) = (wexp − wpriorexp )TΣ−1
exp(wexp − wpriorexp )

= (Uexpŵexp − wpriorexp )TΣ−1
exp(Uexpŵexp − wpriorexp )

(4.6)

Eid is the regularization term for identity weights andEexp is the for expression weights. wpriorid and

wpriorexp are the mean identity and expression weights are the mean identity and expression weights

for all people, while Σid and Σexp are the covariance matrices for identity and expression weights.

We additionally introduce a sparsity term for the 47 dimensional expression weights to im-

prove robustness of the optimization process, since the 47 dimensional expression space is not

orthogonal:

Esp(ŵexp) = ‖ŵexp‖1 (4.7)

Algorithm 2 Face Shape Reconstruction. Siniti = (Ri, Ti, ci, wid,i, wexp,i) is the set of parameters
representing the reconstructed shape for i-th input image, and w∗id is the identity weight for the
target person.

Input: Source image and feature points pairs {Ii, {pij}}
Output: Parametric reconstruction results {Sinitk }

1: w∗id ← w̄id
2: while not converged do
3: for all Input Image and feature points pair (Ii, {pij}) do
4: wid,i ← w∗id
5: Siniti ← IndividualReconstruction(Ii, {pij})
6: end for
7: K ← SelectGoodReconstructions({Si}, {Ii}, {{pij}})
8: w∗id ← JointReconstruction({Sk}, {Ik}, {{pkj}}), k ∈ K
9: end while

10: for all k ∈ K do
11: Sinitk ← IndividualReconFixedIdentity(w∗id, Ik, {pkj})
12: end for
13: return {Sinitk }
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The optimization problem defined in Equation. 4.3 is very difficult to solve without good ini-

tialization. This is because it seeks to minimize the cost function in a high dimensional space with

limited number of constraints. In a typical case with 100 input images, the solution space has 5650

dimensions, while the number of available constraints is 7400. Since the dimensionality of the

solution space is so large and the number of available constraints is similar to the dimensionality

of the solution space, solving the optimization directly is very challenging and could easily ends up

with poor solutions. In this case, constraining the problem to a lower dimensional solution space

could significantly simplify the problem and could potentially lead to feasible solutions.

To this end, the initial reconstruction is done iteratively with 3 major steps: individual recon-

struction, subset selection and joint reconstruction, as is outlined below. In the individual recon-

struction step, we recover the 3D face shape for each input image individually. The purpose of

initial reconstruction is to produce an initial face shape estimation for the input images, as well

as an estimation of a common identity weights that fits best with all input images. For individual

reconstruction, the solution space is much more manageable since the number of unknowns is only

106. Even with only 74 facial feature points as constraints in each input image, the optimization is

still well-behaved with proper regularization. The individual reconstruction step produces a series

of reconstruction results, each with a unique identity weights vector. Due to the inherent ambigu-

ity of recovering 3D shape from 2D images, some individual reconstructions results may not be

reliable. Including such results in the joint reconstruction step could pollute the joint optimization

process and lead to worse reconstructions. The individual results are therefore filtered in the subset

selection step that finds out a consistent subset of reconstruction results suitable for joint recon-

struction. In joint reconstruction, all selected inputs are included in a single optimization problem

that solves for the identity weights best explains the input data. The three steps are repeated several

times until convergence.
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4.3.2 Individual Reconstruction

We first reconstruct a face shape for each input image individually by solving the following

non-linear optimization problem:

arg min
R,T,c,wid,wexp

(Efeature(c, R, T, wid, wexp)+w1Eid(wid)+w2Eexp(wexp)+w3Esparsity(wexp)) (4.8)

The weights for the cost function terms are determined experimentally that strike a good balance

among the these terms. Their values decreases gradually in the optimization process. We initialize

w1 = 10, w2 = 5 and w3 = 10 in all of our experiments.

(a) (b)

Figure 4.4: Individual reconstruction results. For both (a) and (b): input images (left) and result of
individual reconstruction (right). The face shape and expressions matches the input image gener-
ally, but facial geometry is apparently different from the input images. Photographs reprinted from
[AL26] and [ZZ2].

The main purpose of individual reconstruction is to obtain good initial guess for the joint re-

construction. We achieve this by reconstructing face shapes for each input image without the

constraint of uniform identity weights. This maximizes our exploration of the potential identity

weights region in the weight space and gives us a series of reconstructions that best fit the detected

facial feature points. The individual reconstructions provide good initial guesses for the joint opti-

mization both for the identity weights and the expression weights. The initial estimation for head

poses is also obtained in this step since they are easier to optimize for individual image.
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When generating the initial reconstructions in the first pass, the prior value for both identity

weights and expression weights are set to the mean value in the multi-linear model. In the subse-

quent passes, the prior value for identity weights is set to the value computed by joint reconstruction

in previously. Since the reconstruction for each image is solved individually, we have M sets of

parameters after this step, each has its own identity and expression weights. Note that the identity

weights are different for each input image.

4.3.3 Joint Reconstruction

We perform joint reconstruction to estimate a common identity weights after individual recon-

struction. Before performing joint reconstruction, we introduce a subset selection step to address

the issues of the naïve reconstruction method. The details of the subset selection method is dis-

cussed in Section 4.4.

Once a consistent subset is selected, we use the selected reconstruction results to solve the

following optimization problem:

arg min
wid,{R,T,c,wexp}k

∑
k∈K

(Efeature(ck, Rk, Tk, wid, wexp,k)+w1Eexp(wexp,k)+w2Esparsity(wexp,k))+w3Eid

(4.9)

where K is the selected subset from previous step. The main purpose for joint optimization is to

enforce uniform identity weights for all reconstructions. The prior value for identity weights used

in this step is set to the centroid weight vector computed in the subset selection step. The weights

w1 and w2 are chosen similar to that in the individual reconstruction step.

4.3.4 Progressive Reconstruction

A naïve optimization with all input images simultaneously produces poor reconstructions due

to issues such as 2D-3D ambiguity. We address this issue by selecting subsets of inputs for joint

optimization and reconstructing the face shapes progressively. We start with reconstructing for

each input image individually, then select a good subset of individual reconstructions to perform

joint optimization. The joint optimization produces a uniform identity weights closer to the true
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(a) (b)

Figure 4.5: Joint reconstruction results. For both (a) and (b): input images(left) and result of
joint reconstruction(right). The results by joint reconstruction significantly improves the facial
geometry compared to individual reconstruction, however, their appearance is still limited by the
generalization ability of the multilinear model. Photographs reprinted from [AL26] and [ZZ2].

identity weights since it is the weights that best explains multiple input images. We then use the

estimated identity weights from joint optimization as a stronger prior to repeat the entire recon-

struction process again to obtain better reconstructions. This iterative reconstruction process is

repeated several times until convergence is reached. In our experiments 3 iterations are sufficient.

We experimentally set the fraction of individual reconstructions chosen for joint reconstruction to

0.4, 0.6 and 0.8 in each iteration. Note that we have a set of per-image shape parameters and a

uniform identity weights after the initial reconstruction.

4.4 Subset Selection

While the failure detection algorithm described in the previous section successfully excludes

failed facial feature detection results, the 2D-3D ambiguity issue could still cause poor reconstruc-

tion results. On the other hand, the failure detection algorithm itself may not exclude all non-ideal

detections. For example, skin-tone occlusions caused by hands can deceive the failure detection,

while slight drift of feature points caused by extreme lighting could similarly escape detection.

Such bad detection results could hurt the reconstruction quality if we simply use all images with

“good” detection for joint reconstruction. We therefore need to carefully select a good subset of

individual reconstructions for joint estimation of the identity weights.

We developed a dynamic subset selection method to choose a subset of individual reconstruc-
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Figure 4.6: Progressive reconstruction results. From left to right: input image, reconstruction
result after 1, 2, and 3 iterations. Progressive reconstruction fine-tunes the head poses, identity and
expressions simultaneously. Photographs reprinted from [AL26] and [ZZ2].

tion results for joint reconstruction. Our key idea is that a good subset should be consistent in

terms of identity weights and have good photo-consistency. We formulate the subset selection as

a ranking problem: given a list of individual reconstruction results, we select the best k results for

joint optimization. We use the following metrics for ranking the individual reconstruction results:

• Identity weights fitness Fid computed as the distance between wid,i from the individual re-

construction and the mean identity weights w̄id of all reconstructions:

Fid,i = (wid,i − w̄id)TΣid(wid,i − w̄id) (4.10)

Here Σid is the covariance matrix of the current estimations of identity weights.

• Photo-consistency Ftex is the RMSE of the face region between the input image and the

reconstructed image using a dynamic texture model.

The texture model used here is similar to the previously used model in failure detection. The key

difference here is that we extract the texture from the polygon bounded by the reprojected vertex
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locations rather than the detected 2D feature locations. This way the texture model captures how

well a reconstruction fits the corresponding input image. We then compute the photo-consistency

value and use it in the final ranking score.

We combine these two metrics linearly into a single ranking score:

score(wid, Ftex) = w1Fid + w2Ftex (4.11)

A fraction of the individual reconstruction results are then selected for joint reconstruction based

on the ranking score. We experimentally set w1 = 1.0 and w2 = 10.0 for the combined ranking

score. Figure 4.7 shows some outputs of our selection algorithm.

In our experiments three iterations are sufficient for progressive reconstruction. We experimen-

tally set the fraction of individual reconstructions chosen for joint reconstruction to 0.4, 0.6 and

0.8 in each iteration. This results in 18, 27 and 49 images for a typical case with 93 input images.

Figure 4.9 and Figure 4.10 show a typical example of the subset selected and excluded from joint

reconstruction.
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Figure 4.7: Example of reconstruction result selection. Note that the reconstructions here are
not our final results, but they are intermediate results obtained using multi-linear models only.
Top: Part of the good results selected for joint optimization; Bottom: Part of the results excluded
from joint optimization. They are considered inconsistent because of inaccurate feature point
locations caused by occlusion, cast shadow, or extreme lighting. Note that the feature points are
very close to the correct locations. Our subset selection algorithm successfully identifies these
non-ideal reconstructions. Photographs reprinted from [AL2], [AL5], [AL7], [AL85], [AL88],
[AL13], [AL60], [AL43] .
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Figure 4.8: Outlier detection result of a single person. Images with occlusion by hand and glasses are successfully detected. Other
outliers such as drifting contours and unreliable contour due to extreme lighting are also identified. Photographs reprinted from [AL9],
[AL10], [AL11], [AL12], [AL19], [AL22], [AL25], [AL32], [AL33], [AL36], [AL38], [AL47], [AL48], [AL51], [AL58], [AL59],
[AL62], [AL64], [AL65], [AL66], [AL67], [AL73], [AL74], [AL77], [AL80], [AL81], [AL86], [AL87], [AL89], [AL90] .
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Figure 4.9: Image selected for joint reconstruction by the subset selection algorithm. The 2D feature points in these images are typically
more accurate/reliable compared to other images. Photographs reprinted from [AL1], [AL2], [AL3], [AL5], [AL6], [AL7], [AL8],
[AL14], [AL15], [AL17], [AL18], [AL20], [AL21], [AL23], [AL24], [AL26], [AL29], [AL31], [AL34], [AL37], [AL39], [AL41],
[AL42], [AL14], [AL44], [AL45], [AL46], [AL49], [AL50], [AL52], [AL54], [AL61], [AL63], [AL68], [AL70], [AL71], [AL75],
[AL78], [AL85] .
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Figure 4.10: Images excluded from joint reconstruction by the subset selection algorithm. Typically, these images have less reliable
facial feature points due to extreme lighting or more challenging combination of head poses and expressions, thus are ranked lower by
the subset selection algorithm and excluded from joint reconstruction. Note images excluded from joint reconstruction can still be used
in later steps. Photographs reprinted from [AL4], [AL13], [AL16], [AL27], [AL28], [AL30], [AL35], [AL40], [AL43], [AL53], [AL55],
[AL56], [AL57], [AL60], [AL69], [AL72], [AL76], [AL79], [AL82], [AL83], [AL84], [AL88], [AL91] .
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5. POINT CLOUD BASED BLENDSHAPE RETARGETING

The initial face reconstruction in the last step provides good subset images for facial rigging

and a good estimate of head poses and camera parameters. However, the blendshapes recovered

by the multi-linear model cannot faithfully reconstruct the true facial geometry due to limited

generality of the multi-linear model and the sparse features used for fitting. In this step, we generate

a set of personalized blendshapes by fitting the input images with retargeted blendshapes. To

this end, we introduce the 3D point clouds of the faces as an intermediate representation and

perform the optimization iteratively. We first recover high resolution point clouds from the initial

reconstructions using shape from shading(SfS)[60, 2] with the help of current blendshapes, where

a new point cloud region selection algorithm is used to exclude the noisy and unreliable regions

in the poinft clouds. After that, we fit the point clouds with the retargeted template blendshapes

with an extended example based rigging algorithm [8]. In particular, we introduce a new neutral

face optimization step to reconstruct the neutral face for retargeting and then jointly optimize the

blendshapes, the expression weights, and the correspondence between the point clouds and the

reconstructed 3D faces. We repeat the whole process and use the resulting blendshapes as the

input of the point cloud reconstruction step in the next iteration. Algorithm 3 summarizes our

blendshapes generation approach.

5.1 Point Cloud Recovery and Cleanup

We follow the method in [2] to generate a pixel-level normal map from a single image, then

integrate it to recover a high resolution point cloud of the face region.

5.1.1 Shape from Shading

The generation of high resolution point clouds is achieved by solving an inverse image irradi-

ance problem[61]. Assuming the face is a Lambertian surface with unknown normals n and albedo
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Algorithm 3 Blendshape Generation

Input: Parametric reconstruction results {Sinitk } and template blendshapes {Btemp
i }

Output: Refined reconstructions {S∗k} and high quality blendshapes {B∗i }
1: {Sk} ← {Sinitk }, k ∈ K
2: while not converged do
3: {Pk} ← RecoverPointClouds({Sk})
4: {Bi} ← GenerateBlendshapes({Pk}, {Btemp

i })
5: {Sk} ← PerImageFaceReconstruction({(Ii, {pij})}, {Bi})
6: end while
7: {S∗k} ← {Sk}, {B∗i } ← {Bi}
8: M ← RecoverDetails({S∗k}, {Pk}, {B∗i })
9: return {S∗k}, {B∗i }, M

a under unknown lighting conditions, the reflected radiance at each pixel (x, y) is given by

I(x, y) = a(x, y)R(x, y) = a(x, y)

∫
Ω

l(ωi · n(x, y))dω (5.1)

where I(x, y) is the color of pixel (x, y), l is a approximation function of the intensity of reflected

light, while ωi and Ω represent a solid angle of incoming light and a hemispherical integration

domain centered at 3D position of (x, y), respectively.

Given an image, we can solve the above equation for the unknown surface normals, albedo, and

lighting conditions simultaneously. Note that the surface normals can be equivalently expressed as

the gradient of the surface depth z(x, y):

n(x, y) =
1√

p2 + q2 + 1
(p, q,−1)T (5.2)

where p(x, y) = ∂z(x, y)/∂x and q(x, y) = ∂z(x, y)/∂y. We can therefore recover the depth

information from the surface normals obtained from solving the image irradiance equation, which

could by directly used for generating per-pixel point cloud of the face geometry.

It is shown that the unknown lighting condition can be approximated using spherical harmonics[62],

under the assumption that attached shadows are allowed while cast shadows and inter-reflections
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are ignored. In this model, The Lambertian surface only reflects low frequency components of the

complicated lighting, and the approximation using spherical harmonics can be written as

R(x, y) =
N∑
n=0

n∑
m=−n

lnmαnYnm(x, y) (5.3)

where lnm are lighting coefficients, αn are normalizing factors and Ynm(x, y) are the spherical

harmonic functions at pixel (x, y). The above equation can be equivalently written in a vector

form when a low order approximation is used

R(x, y) = lTY(n(x, y)) (5.4)

In case of a second order approximation,

Y(n) = (1, nx, ny, nz,

nxny, nxnz, nynz, n
2
x − n2

y, 3n
2
z − 1)T

(5.5)

where n = (nx, ny, nz)
T is the surface normal.

5.1.1.1 Objective Function

The point cloud is generated by solving the image irradiance equation iteratively. Algorithm

4 summarize the algorithm for point cloud generation. We solve the image irradiance equation

via non-linear optimization, with a cost function that minimize the per-pixel difference between a

synthesized image and the input image:

arg min
a,n,l

[w1Edata(a,n, l) + w2Ereg(a,n)] (5.6)

where D is the face region in the input image. Both w1 and w2 are set to 1.0 in our experiments.

Data Term This term aims at minimizing the difference between the source image and the

image synthesized with the estimated normals, albedo and lighting. It is the sum of pixel difference
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Algorithm 4 Point Cloud Generation

Input: Input images-feature points pairs {(Ii,pij)} and per-image reconstructions {Sk}
Output: Per-image point cloud {Pk}

1: for all k ∈ K do
2: Rk ← FindFaceRegion(Ik,pij, Sk)
3: Tk ← ExtractTexture(Ik,pij, Sk)
4: end for
5: A ← GenerateInitialAlbedo({Tk}, {Rk})
6: for all k ∈ K do
7: ak,nk ← GenerateAlbedoMapAndNormalMap(Sk,A)
8: end for
9: while not converged do

10: for all k ∈ K do
11: lk ← EstimateLightingCoefficients(nk, ak)
12: ak ← UpdateAlbedoMap(nk, lk)
13: nk ← UpdateNormalMap(ak, lk)
14: end for
15: A ← GenerateAlbedo(Ik, Rk,nk, lk)
16: end while
17: for all k ∈ K do
18: Pk ← RecoverPointCloud(nk, Sk)
19: end for
20: return {Pk}

between the two images.

Edata(a,n, l) =
∑

(x,y)∈D

‖I(x, y)− a(x, y)(lT ·Y(n(x, y)))‖2 (5.7)

Regularization Term Three regularization terms are added to the optimization problem to guide

the solution of the optimization problem: an albedo regularization term, a normal regularization

term and a surface integrability term. The albedo regularization term controls the deviation of the

estimated albedo from the reference albedo, and the normal regularization regulates the estimated

normals similarly. The integrability term is crucial in ensuring the estimated normals form an
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integrable surface, such that the generated surface has C2 smoothness[63].

Ereg(a,n) = walbedoEalbedo(a) + wnormalEnormal(n) + wintEint(n)

Ealbedo(a) = ‖LoG(a)− LoG(aref )‖2

Enormal(n) = ‖LoG(n)− LoG(nref )‖2

Eint(n) = ‖∂
2z(x, y)

∂y∂x
− ∂2z(x, y)

∂x∂y
‖2 = ‖ ∂

∂y

nx
nz
− ∂

∂x

ny
nz
‖2

(5.8)

where LoG is the Laplacian of Gaussian operator. The weights used in our experiments are

walbedo = 100.0, wnormal = 0.1 and wint = 1.0.

5.1.1.2 Point Cloud Recovery

After solving for surface normals, we obtain a dense point cloud by recovering per-pixel depth

values for the face region in the input image. We recover the depth values by solving the depth-

normal equation, i.e. Eqn.(5.2). Using forward difference approximation, the gradients of depth

p(x, y) and q(x, y) can be written as

p(x, y) = z(x+ 1, y)− z(x, y)

q(x, y) = z(x, y + 1)− z(x, y)

(5.9)

This provides a series of linear constraints between the surface depth and surface normal. Since

p(x, y) =
∂z(x, y)

∂x
=
ny
nz

q(x, y) =
∂z(x, y)

∂y
=
nx
nz

(5.10)

we can formulate the recovery of depth as an optimization problem with the following cost function

arg min
z(x,y),(x,y)∈D

(wdepthEdepth(z) + wrefEref (z)) (5.11)

45



where

Edepth(z) =
∑

(x,y)∈D

‖z(x+ 1, y)− z(x, y)− ny
nz
‖2

+‖z(x, y + 1)− z(x, y)− nx
nz
‖2

(5.12)

and

Eref (z) =
∑

(x,y)∈D

‖z(x, y)− zref (x, y)‖2 (5.13)

Figure 5.1 shows a sample SfS results by our system.

Figure 5.1: A sample SfS result. From left to right: input image, initial point cloud, optimized point
cloud, initial normal map, optimized normal map, recovered lighting strength sphere. Photograph
reprinted from [AL1] .

5.1.2 Albedo Generation and Skin Detection

One of the key input to the SfS algorithm is a good albedo map for the face region, which is

not available initially. It is impractical to simply take the texture in the face region as the albedo

because of the diverse variation of shadow and skin color caused by different lighting conditions.

What’s more, occlusion such as hands or microphones, as well as other noise such as hair and

beard, also makes it extreme challenging to create a good albedo map. On the other hand, such

occlusion could cause incorrect deformation in the recovered point clouds because of unreliable

estimation of albedo and normal. We address these issues by generating the albedo map through

skin detection based albedo generation.
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Skin Region Detection We are mainly interested in the skin region of a face image since we need

them for recovering per-pixel point clouds. Non-skin pixels usually lead to unreliable estimation

of albedo and normal, resulting in noisy deformation in the recovered point cloud. We therefore

seek to exclude non-skin regions as much as possible through skin region detection. We formu-

late this as a binary classification problem that labels each pixel as either skin pixel or non-skin

pixel(occluded by hair, beard or other object). Considering the variation of skin color caused by

external factors such as illumination, we use a dynamic mixture of Gaussian (GMM) to model the

skin pixels. We first initialize the GMM with the pixels in the initial face region, then iteratively

remove outliers based on the classification result of the GMM. We iterate the process a few times

and increase the number of Gaussian components in each iteration, so that the GMM adapts better

to the skin color distribution progressively. We convert the input images to YCbCr color space

to exclude the effect of illumination as much as possible. The GMM model is constructed on the

color channels(i.e. Cb and Cr) only. To make the detection algorithm more robust, we also per-

form SLIC segmentation[64] for the input image and exclude outliers segments directly. Figure 5.2

shows the result of our skin detection algorithm.

Figure 5.2: Skin detection examples. Photographs reprinted from [AL8], [OP6] and [OP8] .

Albedo Generation A good albedo map is key to successful recovery of high quality point

clouds. A major challenge in albedo generation is to properly factor out illumination. We create

the initial albedo in two steps to eliminate illumination effects and color difference. The first step is

to iteratively remove illumination effects from the face region. We use a uniform skin color as our

initial guess for the albedo, which can be easily computed by taking the average of all skin pixels
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obtained from skin detection. We then use this as albedo map for the SfS algorithm and optimized

individual albedo maps. The SfS results are then used to perform illumination factorization and

generate new per-image albedo maps. We factorize the illumination by simply dividing the input

image I by the synthesized illumination map Il:

â(x, y) = I(x, y)/Il(x, y),∀(x, y) ∈ R (5.14)

where a is the albedo map andR is the face region.

We then take the average of the new per-image albedo maps and use it as the albedo map.

Algorithm 5 summarizes the albedo generation process. Note that the albedo generation process is

coupled with the SfS process since it requires estimating the per-image illumination maps.

Algorithm 5 Albedo Generation

Input: Input images {Ii}, and face regions {Ri}, normal maps {ni} and lighting coefficients {li}
Output: Optimized albedo map A

1: for all k ∈ K do
2: âk ← FactorizeIllumination(Ik,Rk,nk, lk)
3: end for
4: A ← ComputeMeanTexture({âk}), k ∈ K
5: return A

Figure 5.3 shows the effect of this step. After eliminating the illumination in the initial albedo

map, we perform a color transfer[65] operation to match the albedo’s color with the input im-

age(Figure 5.3).

5.1.3 Point Cloud Region Selection

Since the shape-from-shading method assumes the face to be a smooth Lambertian surface

illuminated with low frequent lighting, hard shadows, specular highlights will make the algorithm

fail. We thus also develop an algorithm for detecting and removing these outlier regions. Our

method determines whether to include a certain point in the point clouds based on two metrics: the
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Figure 5.3: Initial albedo generation. From top-left to bottom-right: mean texture, illumination-
excluded albedo, projected albedo, albedo after color transfer, final albedo after SfS optimization
and input image. Photograph reprinted from [AL1].

SfS image fitting error Esfs and the deformation amount d compared to the reference shape.

inc(x, y) = (Esfs(x, y) < Emax) && (d(x, y) < dmax) (5.15)

where (x, y) is a pixel in the face regionR. We experimentally set Emax = 0.02 and dmax = 0.05.

Figure 5.4 shows an example of the selection result.

5.2 Point Clouds Based Blendshape Retargeting

Given the point cloud recovered in the last step, we follow the method in [8] to generate the

personalized blendshapes from the template blendshapes via deformation transfer,

argmin
B,wi

wdEd(B,wi) + wtEt(B) + wmEm(B) (5.16)

where

Ed(B,wi) =
N∑
i=1

‖Pi −B ⊗ wi)‖2

is the data term that minimizes the difference between the 3D facial expressions reconstructed by

blendshape and the point clouds. The retargeting term

Et(B) =
K∑
j=0

‖Bj −D(B0, B
t
0, B

t
j)‖2
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Figure 5.4: Point cloud region selection. From top-left to bottom-right: input image, synthesized
image in SfS, SfS image fitting error(using jet color scheme), skin mask, large-scale deformation
reconstruction, point cloud by SfS, deformation amount map(red for large deformation and blue for
small deformation), and selected point cloud region. Note that some regions are excluded already
by our skin detection module. Photograph reprinted from [HC5].

enforces the expression similarity between the resulting blendshapes and the template blendshapes,

where K is the number of blendshape bases and D(B0, B
t
0, B

t
j) transfers the deformation between

template blendshape Bt
j and Bt

0 to the neutral face B0 [66]. The third term Em minimizes the

difference between the optimized blendshape and the blendshapes Bm from the previous iteration,

Em(B) =
K∑
j=0

wj‖Bj −Bm
j ‖2 (5.17)

where Bm
j is the j-th blendshape basis generated in the previous iteration.

In the first iteration, Bm
j is generated by the multi-linear model

Bm
j = C ×id wid ×exp Uexpδj.

Here C is a reduced multi-linear model tensor and Uexp is the matrix that maps a unit vector in

the FACS space to expression weights in the reduced multi-linear space [35]. Figure 5.5 shows an
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Figure 5.5: Initial blendshapes generated by multi-linear model.

example of the initial blendshapes generated with the multi-linear model.

In Equation 5.17, wd, wt, andwm are weights of the three terms respectively. Note that different

from [8], we do not have the neutral face of the subject B0 for deformation transfer. We also

lack the correspondence between the input point clouds for optimization. To this end, we first

build the correspondence of the input point clouds by deforming the aligned 3D facial expressions

reconstructed from the current blendshapes and then create a personalized neutral faces B0. After

that, we can optimize the blendshapes and expression weights as in [8]. The whole process is

iterated until convergence. Algorithm 6 summarizes this point cloud based blendshape retargeting

process.

5.2.1 Correspondence Generation

To build the correspondence between point clouds to the 3D blendshapes, we deform the 3D

face shape reconstructed by current blendshape basisMi = B⊗wi to fit the recovered point clouds

via Laplacian deformation [67]. Here the correspondence between the point clouds P and the face
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Algorithm 6 Blendshapes Retargeting

Input: Current blendshapes{Bj}, template blendshapes {Bt
j}, point clouds {Pi} and per-image

expression weights {wexp,i}.
Output: Refined blendshapes {B∗j }

1: while not converged do
2: {M ′

i} ← GenerateCorrespondence({{Bj}, {wexp,i}, {Pi}})
3: B0 ← OptimizeNeutralFace({Bt

j, {Bj}, {M ′
i}, {wexp,i}})

4: {Bj} ← OptimizeBlendshapes({Bt
j}, {Bj}, {M ′

i}, {wexp,i})
5: end while
6: {B∗j } ← {Bj}
7: return {B∗j }

mesh B ⊗ wi is established with an iterative closest point strategy similar to Li’s method[68].

Algoirthm. 7 describes the process for correspondence generation.

Algorithm 7 Correspondence Generation
Input: Point cloud P , blendshapes B, expression weights wi
Output: Deformed mesh M ′

i

1: M ′
i ← B ⊗ wi

2: while not converged do
3: C ← FindPointToTriangleCorrespondance(P,M ′

i)
4: M ′

i ← DeformShapeWithPoints(M ′
i , C, P )

5: end while
6: return M ′

i

After this step, we obtain the deformed meshM ′
i that has the same topology and is aligned with

the underlying blendshape. Therefore, we define Ed =
∑

i=1,N ‖M ′
i −B ⊗ wi)‖2 in the following

optimizations.

5.2.2 Neutral Face Optimization

Given the M ′
i obtained in the last step, we construct the neutral face B0 using optimization in

Equation 5.16, where we fix the blendshape weights and set wd = 1.0, wt = 0.5 and wm = 0.01.

Also, the weights in Equation 5.17 are set to w0 = 1 and wj = 0 (∀0 < j < K). Note that for
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Figure 5.6: Correspondence generation result. From left to right: input image, recovered point
cloud and deformed mesh. Photograph reprinted from [AL1].

neutral face generation, we allow aggressive optimization for all blendshapes, including the neutral

face. This aggressive optimization is likely to cause over-fitting in other blendshapes since we set

wj = 0 (∀i > 0). We keep only the neutral face and discard the other blendshapes obtained in this

optimization.

5.2.3 Blendshape and Expression Weights Optimization

In this step, we fix the neutral face B0 generated in the last step and optimize all other blend-

shapes and weights according to Equation 5.16. For this, we setwd = 1.0, wt = 0.5 andwm = 0.25

for all three terms in Equation 5.16 and wj = 1.0 for all terms in Equation 5.17. We follow the

method in [8] to solve blendshapes and their weights iteratively, where the blendshapes B and the

expression weights wi are updated by solving two linear systems.

5.3 Iterative Blendshapes Refinement

With the refined blendshapes, we can repeat the large-scale facial reconstruction process to

correct the misalignment between the point cloud and the input images, as well as the head pose

error. We therefore repeat the entire blendshapes generation process starting from per-image face

reconstruction, using the generated blendshapes instead of multi-linear models for large-scale face

deformation reconstruction. The improved blendshapes helps the estimation of head poses and

thus further reduces the misalignment between the recovered point clouds and target blendshapes,

which in turn improves the quality of the final blendshapes(Figure 5.7). In our experiments, we

only need to three iterations to achieve the best blendshape quality. Figure 5.8 shows how our
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Figure 5.7: The same set of blendshapes in Figure 5.5 after 1 iteration of optimization.

iterative process improves the blendshapes’ quality.
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Figure 5.8: Iterative blendshapes generation. 4 blendshapes out of 47 are included here. The
first row shows the neutral face shape. In each row of blendshapes, from left to right are: initial
blendshapes from multi-linear models, blendshapes after the first, second and third iterations, and
final output blendshapes. The last two rows show 8 out of 93 images used for generating these
blendshapes, and the reconstructed face using the generated blendshapes. Photographs reprinted
from [KS1], [KS3], [KS4], [KS9], [KS13], [KS15], [KS17], [KS19] .
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6. FINE-SCALE DETAIL RECOVERY

6.1 Motivation

Fine-scale facial features are very important in capturing subtle yet unique characteristics of a

person’s expressions. Without fine-scale detail, the perceived facial expression can be significantly

different. Figure. 6.1 shows a typical example when the missing fine-scale detail leads to mis-

perception of the facial expression. The subtle contempt expression is well captured by the facial

reconstruction with fine detail, while the facial reconstruction without fine detail illustrates a more

neutral expression.

Figure 6.1: Importance of fine-scale detail. From left to right: input image, facial reconstruction
without fine-scale detail, facial reconstruction with fine-scale detail. The expression is relatively
neutral without fine-scale detail. As a contrast, the subtle contempt expression exhibited in the
input image is captured in the facial reconstruction with fine-scale detail. Photograph reprinted
from [HC9].

The blendshapes generated by our system capture personalized facial geometry well with the

point cloud based blendshapes retargeting method. Given unlimited computation resources, our

method can capture fine-scale facial detail by using high resolution meshes, which can model

fine-scale detail in the point clouds recovered from input images. However, generating a large

number of blendshapes directly with high resolution meshes is usually time consuming, since the

complexity of the blendshape generation algorithm is proportional to the complexity of the meshes
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being used for blendshapes.

To strike a balance between realism of the final blendshapes and the time cost for generating the

blendshapes, we use medium resolution meshes for the generated blendshapes and integrate fine-

scale details into the blendshapes by modeling the fine-scale facial features as per-vertex corrective

normal maps. The corrective normal maps are applied to the 3D face shapes reconstructed by the

blendshapes for computing per-vertex normal directions.

6.2 Fine-Scale Detail Regression

The point clouds recovered in the previous stage contain rich information about fine scale facial

features observable from the input images; however, such fine-scale detail is lost because of the

use of medium resolution meshes when generating the blendshapes. Since the blendshapes already

capture personalized large-scale deformation, we can model the fine-scale detail as an additive

component to the blendshapes. To this end, we can use either displacement maps or corrective

normal maps for modeling fine-scale detail. Displacement maps model the per-vertex displacment

in the mesh such that the actual vertex position v̂ of a vertex v in the mesh is given by the sum of

v and the displacement vector δv:

v̂ = v + δv

Corrective normal maps, in contrast, model the per-vertex corrective normal vector in the mesh

such that the actual normal vector n̂ of a vertex is given by the sum of the normal vector n and the

corrective normal vector δn:

n̂ = n+ δn

Different from previous work that utilizes displacement map to represent fine-scale details,

we choose to use normal map in our system because normal maps are less intrusive compared

to displacement maps. Displacement map based method does not work well in our case due to

the very challenging input our system handles. The extreme variations of head poses, expressions

and illumination cause strong ambiguity in fine-scale facial details, and a displacement map based

approach is likely explain the variations in appearance with more drastic geometry changes. This
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Figure 6.2: Comparison of displacement map based and corrective normal maps based fine de-
tail recovery. From left to right: point cloud visualization, reconstruction with fine-scale detail
recovered with displacement maps, reconstruction with fine-scale detail recovered with corrective
normal maps. Note displacement maps based method easiliy leads to over-deformation or under-
deformation, while corrective normal maps based method generates more faithful fine-scale detail.

directly leads to undesired artifacts in the final blendshapes. On the other hand, normal map based

approach models the fine-scale details in the gradient domain. A small change of the normal vec-

tor direction could result in large appearance change. The statistical model of fine-scale details

constructed in the normal vector domain thus is less likely to generate extreme numeric values

compared to displacement map based method. As a result, the normal map based approach gener-

ates a more stable model for fine-scale facial detail. Figure. 6.2 illustrates the advantages of using

corrective normal maps over displacement maps.

Since blendshape model is a linear model, we need to model fine-scale detail with some linear

model in order to maintain the linearity of the blendshape model. Specifically, since we synthesize
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a specific facial expression with blendshapes by linear interpolation:

Fi = wi ⊗B

the fine-scale detail represented by the corrective normal map δni should be synthesized in the

same manner

δni = wi ⊗M(∆N)

whereM(∆N) is the linear model for the corrective normal maps.

In the previous stages, we recover a high resolution point cloud Pi for each input image Ii

and estimate the expression weights wi that fits Pi best by with the generated blendshapes B.

The point clouds Pi and the expression weights {wi} provide rich information about the fine-

scale detail as well as the correspondence between them. We can construct a linear model for

the corrective normal maps using a data driven approach by extracting the relationship between

expression weights wi and the corrective normal map dni.

We therefore formulate the fine-scale detail recovery as a regression problem with the goal of

predicting corrective normal map δni from a given expression weights wi. A naïve approach to

solve this problem is to construct a direct mapping Snaïve from the input data. We first compute the

difference between the normal directions in point cloud Pi and the 3D face shapes reconstructed

by the generated blendshapes Si as corrective normal map δni. Note that all point clouds are

normalized to frontal view in order to exclude the effect of different head poses. Then we stack all

δni together as a single matrix ∆N and stack all expression weights wi together as an expression

weights matrix W . The naïve mapping from expression weights to corrective normal vector can

then be computed by solving a linear least squares problem

arg min
Snaïve

‖∆N −WSnaïve‖
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which has an exact solution of

Snaïve = (W TW )−1W T∆N

However, this naïve approach leads to very noisy result in the recovered fine detail because

the corrective normal vectors computed from the point clouds is usually noisy and may contain

conflicting information. On the other hand, this naïve model is also redundant because there could

be many similar expressions in the input image. To address these issues, we construct a compact

a compact representation of corrective normal maps {δni} with PCA, then compute a linear trans-

formation S that maps an expression weights vector wi to this compact representation of corrective

normal maps. The use of PCA model here serves two important purposes:

1. the PCA model creates a compressed representation for the corrective normals, resulting in

a more compact model;

2. the PCA model allows filtering the noisy part in the corrective normal maps, leading to a

more stable model.

To construct the fine-scale detail recovery model, we first construct a PCA model for the cor-

rective normals:

∆N3|V |×N ≈ PCT
Npc×3|V |LNpc×N

where LNpc×N is a low-dimensional representation of the corrective normals, Npc is the number of

principal components, and PCNpc×3|V | is the matrix of all principal components in the PCA model.

Here, |V | is the number of vertices in the meshes and N is the number of input point clouds. We

experimentally choose the value of Npc to capture 95% of variance in the corrective normals ∆N ,

which varies from 8 to 17 depending on the person being modeled.

A mapping matrix SNpc×K to transform expression weights wi to a normal difference vector is
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then derived using ridge regression:

arg min
S
‖SW − L‖2 + α‖S‖2 (6.1)

where WK×N is the matrix formed by stacking all {wi} together. α in Equation. 6.1 is used to

control regularization strength in the ridge regression. We experimentally set α to 0.0005, which

produces satisfatory results for most cases.

We can then recover the corrective normal vector for a new 3D expression with weights wi′ as

δni′ = (Swi′)
T · PC

and add δni′ to the normals of the 3D face shapes synthesized by wi′ to obtain the final per-vertex

detailed normals. Figure. 6.3 shows examples fine-scale detail recovery results.
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Figure 6.3: Examples of fine-scale detail recovery. From left to right: input image, reconstruction
with generated blendshapes and reconstruction with generated blendshapes plus fine-scale detail.
Photographs reprinted from [BW12], [ZZ5] and [AL91].
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7. RESULTS AND EVALUATION

7.1 System Performance

We have implemented our system on a workstation with an Intel i7-6770K CPU, an Nvidia

GTX 1060 GPU and 32GB memory. Both large-scale reconstruction and the blendshapes gen-

eration modules are written in C++ with OpenMP acceleration, while the point cloud recovery

module is written in MATLAB. For input consisting of 100 images, our system takes about 3000

seconds to generate the final blendshapes: 833 seconds for large-scale reconstruction, 1272 sec-

onds for point clouds recovery, 777 seconds for blendshapes generation, and 34 seconds for detail

generation. Note that the most time consuming module, i.e. point cloud recovery module, could

be significantly accelerated with a C++ implementation.

7.2 Method Validation

7.2.1 Algorithm Convergence

We first test our system to see if the solution converges as expected. This is a crucial step before

doing further evaluation of the system, since the input images our system handles are extremely

challenging and could easily cause instability of the system. This experiment verifies that our

system behaves as expected given the very challenging input images in the wild.

Synthetic Data We evaluate our blendshapes generation algorithm on synthetic data obtain

from FaceWarehouse[35]. We use create a multilinear model with 145 out of 150 person, and

use the remaining 5 persons for testing. We synthesize 20 training shapes for each person by

linearly interpolating their blendshapes and randomly generating head poses. We firstly synthesize

2D feature points by simulating the projection process of related vertices. Facial reconstructions

and initial blendshapes are then created using our progressive reconstruction method. After that,

we create high resolution point clouds from the synthesized training shapes by rendering them to

depth buffers. Finally we generate blendshapes with the initial blendshapes and the synthesized

point clouds. We evaluate the results by two metrics:

63



• Blendshapes reconstruction error EB: we directly compute the difference between the gen-

erated blendshapes and the source blendshapes used for synthesizing the test data. Since all

the input data are perfect, this gives us the lower bound of blendshape generation error in

our system.

• Point cloud fitting error EP : we also use the generated blendshapes to reconstruct facial

shapes with the synthesized 2D feature points. This gives us the lower bound of point cloud

fitting error with the blendshapes generated by our system.

As shown in Figure 7.1, our system successfully reduces error in terms of both metrics on the

synthetic data sets, especially point cloud fitting error. Note that the improvements on the blend-

shapes are partially affected by the adjustments in expression weights, since blendshapes do not

form an orthogonal shape space and the point clouds can be explained by both expression weights

and blendshapes basis.

EB EP

Figure 7.1: Blendshapes reconstruction error(left) and point cloud fitting error(right) on synthetic
data. Each row is from an individual test data set.

Real World Data We also evaluate our system on point cloud fitting error with real world data.

Since we don’t have ground truth in this case, we evaluate our system by looking at the difference

of fitting error between the initial blendshapes and final blendshapes. Figure 7.3 shows 2 examples
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Figure 7.2: Point cloud fitting error of the multilinear models fitting(red curve) and our
method(green curve) on real world data. From top left to bottom right are Andy Lau(93 images),
George Clooney(104), Hillary Clinton(94), and Kevin Spacey(114).

of the point cloud fitting error with real world data. In both examples, the fitting error decreases

significantly with our generated blendshapes. We also show the cumulative distribution curve of

fitting error in Figure 7.2(b) for 4 test data sets we experimented with. In all cases, the fitting error

with our generated blendshapes are much lower compared to the initial blendshapes.

7.2.2 Quantitative Evaluation

We use the 3D models and images in the FaceWarehouse dataset to quantitatively evaluate the

accuracy of the blendshapes generated by our method. This dataset includes images, sparse feature

points, and 3D ground truth meshes of 150 identities. For each identity, the dataset consists of

20 photos with different expressions and their corresponding 2D feature points and ground truth

mesh. We randomly select 4 subjects as the test data and use the rest of the subjects for training

the multi-linear model. For each test subject, we use 20 images in the dataset as the input of our

system for recovering the personalized blendshapes.

We measure the result quality with the fitting error EP , which measures the mesh distance

between the ground truth 3D facial expressions and the ones reconstructed from the recovered

personalized blendshapes. Figure 7.4 shows the ground truth 3D expressions of two subjects,

and results reconstructed by our personalized blendshapes and the error maps between them. For

comparison, we also show the multi-linear model reconstruction results and their error maps. Note
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Figure 7.3: Examples of point cloud fitting error. For each section, from top left to bottom right: in-
put image, reconstruction with the generated blendshapes, reconstruction with multi-linear model
using sparse constraints, reconstruction with multi-linear model using dense constraints, point
cloud fitting error for reconstruction with the generated blendshapes, reconstruction with multi-
linear model using sparse constraints and reconstruction with multi-linear model using dense con-
straints. The error bar has a range of [0, 7.5mm]. Photographs reprinted from [KS1] and [AL2].
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that the personalized blendshapes faithfully reconstruct the 3D face geometry of the subjects and

generate much better reconstruction results and lower errors than the multi-linear model. We also

show the cumulative distribution curve of the blendshape error in Figure 7.5 for all four subjects.

Again, the errors of our results are lower than the results generated by multi-linear models.

Figure 7.4: Examples of point cloud fitting error compared to ground truth. From left to right: in-
put image, reconstruction with base multi-linear models, reconstruction with the generated blend-
shapes, point cloud fitting error with base multi-linear models, point cloud fitting error with the
generated blendshapes. The error bar has a range of [0, 10mm]. The input images are reprinted
from the FaceWarehouse dataset[35].

7.2.3 Contributions of Each Component

To evaluate the contributions of our new components to the final results, we construct 5 differ-

ent configurations of our system as in Table 7.1, each of which disables different components. We

tested all 5 systems with the ground truth data of a randomly select person in the FaceWarehouse

database. We compare the results generated by different configurations and measure blendshapes

error.

As shown in Figure 7.6, the novel components introduced in our system play a critical role
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Figure 7.5: Blendshapes error of the multi-linear models fitting(red curve), and our method(green
curve) on FaceWarehouse data. The unit for x-axis is dm.

Figure 7.6: Cumulative distribution of blendshapes error using different configurations. Our sys-
tem performs best when all key components are enabled, and produces inferior results when any
of the key components are disabled.

for generating high-quality results. In particular, the skin detection and point cloud region selec-

tion makes major contributions to the result quality. The feature point failure detection, subset

selection, as well as the progressive reconstruction provide better large-scale facial reconstruction

and improve the alignment between the blendshapes and the point clouds. Finally, neutral face

optimization further improves the quality by extracting geometric features common to the neutral

shape and reduces the risk of over-fitting in individual blendshapes.

7.2.4 Robustness to Number of Images

To test the robustness of our method for different numbers of input images, we tested our sys-

tem using the image data from FaceWarehouse. We randomly select a person from the database
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Configuration FP SS PROG Skin Cloud Neutral
all

no_fp_ss_prog
no_skin_cloud

no_neutral
nothing

Table 7.1: Configurations for testing contributions of each component. FP: facial feature points
failure detection; SS: subset selection; PROG: progressive reconstruction; Skin: skin detection;
Cloud: point cloud region selection; Neutral: neutral shape optimization.

Figure 7.7: Comparisons of the face reconstruction results using blendshapes generated from dif-
ferent number of input images. From left to right: input image, reconstruction from blendshapes
generated using 25, 50, 75 and 100 images. Using more input images helps improve facial details
such as the nasolabial wrinkle. Photograph reprinted from [AL91].

and use 5, 10 and 20 images of that person to generate blendshapes, and measure the error between

the generated blendshapes and the ground truth. As shown in Figure 7.8, as the number of im-

ages increases, the quality of the resulting blendshapes consistently increases. We also tested our

system using real world images, for which we found using around 100 images yields satisfactory

results(Figure 7.7).

7.3 Results for Real World Data

We also tested our system on 10 image sets and 2 videos downloaded from the Internet. The

number of images in each set ranges from 25 to 125. Figure 7.9 demonstrates some input images

and the 3D facial shapes reconstructed with the result blendshapes. Compared to the multi-linear

reconstruction results, the 3D face shapes reconstructed by our blendshapes are visually consistent

with the input images (the second column in Figure 7.9). In contrast, the reconstructions by multi-
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Figure 7.8: Cumulative distribution of blendshapes error using 5, 10 and 20 input images. The unit
of the horizontal axis is dm.

linear models only roughly fit to the input images and lacks personalized face shape features and

expression details. Please refer to Chapter.8 for more examples.

7.4 Discussions and Limitations

7.4.1 Error Accumulation.

The outlier detection modules used in each step of our algorithm helps us to remove poor

quality results and avoid error propagation in our pipeline. Moreover, the iterative algorithms for

personalized blendshape reconstruction also eliminate the error accumulation in our pipeline. As

discussed in the last section, our method is robust to the number of input images and generates

good results.

7.4.2 Shape-from-Shading vs. Photometric Stereo

Our method is based on a shape-from-shading method and solves the albedo, lighting and

depth from input images. Similar to previous methods, our method also leverages the low rank

space of the face shape and albedo to solve this ill-posed problem. A photometric stereo method

as in [4, 3] is helpful to solve this ill-posed problem with more inputs. However, it suffers from

the same the bas-relief ambiguity as the shape-from shading method. In our solution, we use

the same identity prior to solve the blendshapes from the input images and resolve the bas-relief

ambiguity. Compared to photometric stereo based methods, our method significantly reduces the

input requirements for the facial rigging method while preserving the result quality.
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Figure 7.9: Facial reconstructions using our generated blendshapes (column 2), multi-linear model
reconstruction from point clouds(column 3), and multi-linear reconstruction from sparse 2D fea-
tures (column 4). The first column shows the input images. Chapter 8 includes more results.
Photographs reprinted from [HC9], [KS3], [AL2], [ZZ12] .
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7.4.3 Comparisons with Existing Methods

Because our system is the first fully automatic system for generating high-quality blendshapes

directly from images in the wild, we could not compare our method with previous ones with the

same inputs. On the other hand, our method can be applied for solving the video-based facial

rigging problem and facial reconstruction problem from the input images. To demonstrate the

generality of our method for other applications, we compare our method with the methods in [1]

and [2] for video based facial rigging; we also compare our method against [3] and [4] for facial

reconstruction. Results show that our method achieves better or comparable results compared to

previous methods. Please refer to Section B in the supplemental materials for details.

In this section, we compare our system against several related methods to illustrate the ef-

fectiveness of our system. Our system is the first-ever system capable of generating high-quality

blendshapes from images in the wild. Previous systems such as [1] and [2] also produce personal-

ized blendshapes; however, their system are designed to process video data and could not handle

unconstrained images. With the higher degree of complexity in head poses, facial expression and

illumination commonly seen in real world images, our system aims to solve a more challenging

version of facial rigging problem. Nonetheless, our system can also be used to solve the video-

based facial rigging problem. To illustrate the effectiveness of our system, we compare the results

by our system with theirs in this section.

7.4.3.1 Compare with Garrido et al.

We compare our method against state-of-the-art video-based facial rigging method[1]. Their

system is designed specifically to handle video input data, while our system is capable of process-

ing unconstrained images including frames taken from a video clip. Our system therefore can also

be used to generate personalized blendshapes from video input. We test our system with a video

clip used in [1]. The test video (Obama’s speech) is obtained from the public domain. The resolu-

tion is 1920 × 1080 and the total number of frames is . We sampled 1 frame per second from the

first 100 seconds of video for generating blendshapes, then performed per-frame facial reconstruc-
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tion with the generated blendshapes. As shown in Figure 7.10, our method generates results with

more facial details than [1]. Our blendshapes not only capture correct large-scale deformation, but

also some medium scale features such as wrinkles.

Figure 7.10: Comparing the results by our system and Garrido et al.[1]. From left to right: input
frame, our method, [1] with medium scale. Note the face shape generated by our system correctly
captures the lip shape and nasolabial wrinkles while [1] does not. Portraits of Barack Obama are
reprinted from a video downloaded from https://youtu.be/d-VaUaTF3_k.

7.4.3.2 Compare with Shi et al.

We also compare our method against the video-based face capture system by [2]. Their system

captures facial performance with fine details from video input, which utilizes a set of personalized

blendshapes reconstructed using multi-linear model. The personalized blendshapes in their system

suffers from the limited generalization ability, and they alleviate this issue by refining the recon-

structions synthesized with their blendshapes using per-pixel shading cues. Note that their system
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is not able to handle unstructured input images, and their system does not produce high-quality

blendshapes like ours either. However, the blendshapes generated by our system could be directly

used for facial reconstruction, therefore we compare the per-frame face reconstructions by their

system and ours. We test our system using one of the video in [2]. The test video (Bryan’s inter-

view) is obtained from the public domain. The resolution is 1280 × 720 and the total number of

frame is 703. We sampled 100 frames evenly from the video for generating blendshapes, then per-

form per-frame facial reconstruction with the generated blendshapes. As show in Figure 7.11, our

method generates blendshapes with more faithful facial geometry compared to [2]. Although our

method does not produce fine-scale details like [2], we can further extend our method to include

such details using displacement maps or similar techniques.

Figure 7.11: Comparing the results by our system (column 2) and Shi et al.[2](last column). Our
facial reconstructions shows more facial details compared to [2]. Portraits of Bryan Cranston are
reprinted from a video downloaded from http://students.cse.tamu.edu/fuhaoshi/FacefromVideo/
index.htm.
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7.4.3.3 Compare with Roth et al. and Kemelmacher-Shilizerman et al.

Our system generates a set of high-quality blendshapes, while [3] and [4] focus on creating

facial reconstructions. Nonetheless, the personalized blendshapes generated by our system can be

used to perform facial reconstruction for new images of the same person. Note that their methods

could not be used to create blendshapes like ours.

Figure 7.12: Comparing the results by our system (column 2), Roth et al.[3] (column 3) and
Kemelmacher-Shilizerman et al.[4](last column). Note that both [3] and [4] perform shape-from-
shading for the input image to produce facial reconstruction with fine details. Our system recon-
structs 3D faces through linear interpolation of the personalized blendshapes and obtains compa-
rable results. Photographs reprinted from [OP8], [KS18] and [OP9].
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We compare the facial reconstruction results by our generated blendshapes against [3] and [4]

here. Facial reconstruction with our generated blendshapes can be achieved by solving an opti-

mization problem similar to multi-linear reconstruction, and in this case we only need to estimate

head poses and expression weights. As shown in Figure 7.12, our system produces comparable re-

sults, with the additional benefit of generating a set of reusable blendshapes at the same time. Note

that we can simply use the generated blendshapes to perform facial reconstruction for any new

input images without the expensive computation cost required in the other two system. In contrast,

[3] and [4] only generate a static facial reconstruction, which could not be directly used for ani-

mation purpose. In addition, their methods require expensive shape-from-shading computation for

each new images to obtain good reconstruction result.
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8. MORE BLENDSHAPE AND RECONSTRUCTION RESULTS

We include 8 persons’ blendshapes generated by our system in this section (Figure 8.1 - 8.8).

These results clearly show that our system generates highly personalized blendshapes with faithful

facial geometry. The blendshapes also succesfully captures some medium and fine-scale facial

detail. For example, the charateristic wrinkles on both sides the cheeks and the nasolabial wrinkles

in Figure 8.1 are well captured by the generated blendshapes. Similarly, the charateristic wrinkle on

both sides of the cheeks and the under-eye bags are captured by the blendshapes in Figure 8.2. The

nasolabial wrinkles and the bump below the lower lip are modeled by the generated blendshapes in

Figure 8.5, and the rising cheek bones are captured by the blendshapes in Figure 8.7. The selection

of different people across different races and different also shows that our system generalize well

for a wide range of inputs.

We additionally include facial reconstructions of 14 people to demonstrate how the facial re-

constructions improve as a result of the improved blendshapes quality by our system(Figure 8.9

and Figure 8.10). As shown in Figure 8.9 and Figure 8.10, the initial facial reconstruction ob-

tained by multi-linear model (the second column) only captures the large-scale facial deformation

to certain degree. In most cases, such reconstructions do not reflect the true facial geometry of the

person being modeled. With the optimized blendshapes generated by our system, we are able to

create facial reconstructions(the last column) that are much more faithful to the input images.
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Figure 8.1: Automatic blendshapes generation - subject 1. From top to bottom: input images, face reconstruction with the generated
blendshapes, blendshapes generated by our system. We show only 12 out of about 100 input images and 12 out of 46 blendshapes here.
Photographs reprinted from [KS7], [KS9], [KS16], [KS2], [KS14], [KS10], [KS4], [KS5], [KS6], [KS8], [KS11], [KS12].
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Figure 8.2: Automatic blendshapes generation - subject 2. From top to bottom: input images, face reconstruction with the generated
blendshapes, blendshapes generated by our system. We show only 12 out of about 100 input images and 12 out of 46 blendshapes here.
Photographs reprinted from [HC2], [HC3], [HC15], [HC4], [HC6], [HC7], [HC10], [HC16], [HC9], [HC11], [HC13], [HC14].
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Figure 8.3: Automatic blendshapes generation - subject 3. From top to bottom: input images, face reconstruction with the generated
blendshapes, blendshapes generated by our system. We show only 12 out of about 100 input images and 12 out of 46 blendshapes here.
Photographs reprinted from [GB13], [GB3], [GB4], [GB5], [GB14], [GB6], [GB7], [GB8], [GB9], [GB10], [GB11], [GB12].
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Figure 8.4: Automatic blendshapes generation - subject 4. From top to bottom: input images, face reconstruction with the generated
blendshapes, blendshapes generated by our system. We show only 12 out of about 100 input images and 12 out of 46 blendshapes here.
Photographs reprinted from [JS2], [JS1], [JS7], [JS3], [JS9], [JS4], [JS11], [JS12], [JS8], [JS6], [JS5], [JS10].
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Figure 8.5: Automatic blendshapes generation - subject 5. From top to bottom: input images, face reconstruction with the generated
blendshapes, blendshapes generated by our system. We show only 12 out of about 100 input images and 12 out of 46 blendshapes here.
Photographs reprinted from [BO1], [BO5], [BO2], [BO3], [BO6], [BO4], [BO12], [BO7], [BO8], [BO9], [BO11], [BO10].
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Figure 8.6: Automatic blendshapes generation - subject 6. From top to bottom: input images, face reconstruction with the generated
blendshapes, blendshapes generated by our system. We show only 12 out of about 100 input images and 12 out of 46 blendshapes here.
Photographs reprinted from [RD1], [RD2], [RD3], [RD4], [RD5], [RD6], [RD7], [RD8], [RD9], [RD10], [RD11], [RD12].
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Figure 8.7: Automatic blendshapes generation - subject 7. From top to bottom: input images, face reconstruction with the generated
blendshapes, blendshapes generated by our system. We show only 12 out of about 100 input images and 12 out of 46 blendshapes here.
Photographs reprinted from [AL1], [AL2], [AL5], [AL21], [AL15], [AL17], [AL26], [AL40], [AL42], [AL44], [AL72], [AL78].
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Figure 8.8: Automatic blendshapes generation - subject 8. From top to bottom: input images, face reconstruction with the generated
blendshapes, blendshapes generated by our system. We show only 12 out of about 100 input images and 12 out of 46 blendshapes here.
Photographs reprinted from [ZZ9], [ZZ4], [ZZ10], [ZZ3], [ZZ6], [ZZ8], [ZZ14], [ZZ15], [ZZ16], [ZZ13], [ZZ11], [ZZ17].
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Figure 8.9: Facial reconstructions produced in each step of our progressive reconstruction and af-
ter each iteration of blendshapes retargeting - part 1. From left to right: input image, multi-linear
reconstruction, after 1 iteration of blendshapes retargeting, after 2 iteration of blendshapes retarget-
ing, after 3 iteration of blendshapes retargeting, final reconstruction with the output blendshapes.
Photographs reprinted from [AL26], [BW13], [GB6], [OP11], [HC9], [BO8], [RD3].
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Figure 8.10: Facial reconstructions produced in each step of our progressive reconstruction and
after each iteration of blendshapes retargeting - part 2. From left to right: input image, multi-linear
reconstruction, after 1 iteration of blendshapes retargeting, after 2 iteration of blendshapes retarget-
ing, after 3 iteration of blendshapes retargeting, final reconstruction with the output blendshapes.
Photographs reprinted from [OP12], [OP13], [OP14], [OP15], [OP16], [KS9], [ZZ8].
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9. CONCLUSION AND FUTURE WORK

Animating virtual characters with realistic expressions is a long-standing challenge in com-

puter graphics, and facial rigs is the core component in generating high quality facial animation.

Enabling simple and low-cost creation of facial rigs for both professional artists and common users

has potentally broad impacts in many fields including video games, movies, social and security ap-

plications. The research presented in this thesis addresses the problem of generating high quality

personalized blendshapes using images in the wild.

We proposed an end-to-end system that generates high fidelity blendshapes from a collection

of unstructured, unconstrained images. The key idea of our method is to enable robust generation

of high quality blendshapes from images in the wild by incorporating crucial failure detection and

quality control in our pipeline. The blendshape generation system utilizes a multi-linear model to

provide prior knowledge about 3D face shapes for recovering large-scale deformation with the 2D

facial feature points detected in input images. However, the 2D facial feature points detected from

the challenging input images are usually unreliable and could cause failure in facial reconstruction.

Our system includes a robust PCA based outlier detection module to handle such failure cases, and

further utilizes a subset selection method to make the facial reconstruction process more robust.

The large-scale facial deformation reconstructed using sparse 2D facial features does not cap-

ture all the pixel information in the input images, so the large-scale facial reconstructions do not

reflect the true facial geometry of the person being modeled. To address this issue, our system

recovers per-pixel point clouds from the large-scale facial reconstruction and input images using

shape-from-shading method, which provide per-pixel measurement of the facial geometry. Our

system retargets the point clouds to a template set of blendshapes to generate personalized blend-

shapes. Even with the dense point clouds, the generated blendshapes are still limited by the gener-

alization ability of the multi-linear model. To overcome this limitation, we proposed a point clouds

based blendshapes retarting method that combines the deformation gradients from a template set

of blendshapes and the per-pixel measurements of the point clouds to generate personalized blend-
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shapes.

Fine-scale facial detail is crucial in the perception of certain facial expressions. Due to the

limitation by computational cost, we generate blendshapes using medium resolution meshes, which

do not capture all fine-scale geometric detail. To improve the realism of the final blendshapes, our

system further recovers fine-scale facial detail using a corrective normal maps regression method

to estimates proper corrective normals for a given expression. Our results show that the the system

is able to generate highly personalized blendshapes with plausible visual appearance.

Our system is appealing because it is fully automatic and generates blendshapes with faithful

large-scale deformation and reasonable medium and fine-scale detail. We have tested our system on

images downloaded from the Internet, demonstrating its accuracy and robustness under challenging

combinations of head poses, facial expressions, and illumination.

Creating vivid facial animations requires a complete facial rig including several other compo-

nents in addition to the facial geometry part. For example, the gaze of the virtual character plays

an important part in conveying the emotion of the character, while the tongue and teeth are also

indispensable components for realistic motion of the lower face. Similarly, the motion of ears is

necessary for presenting certain expressions. Finally, hair and facial hair are crucial in creating

distint styles for the virtual characters, though they are not considered as part of a facial rig in gen-

eral. This thesis focused on the core part of a facial rig, i.e. the face geometry and its deformation

model, and ignored all other components. This is a major limitation of this work, and we will

investigate how to integrate different components into a unified facial rig in the future.

Texture is another important aspect of a facial rig that directly affects the realism of the syn-

thesized facial animation. Good texture could help improve the visual appearance of a moderate

quality facial rig, while poor texture could lead to unpleasant perception of the generated facial

animation. In this thesis, we focused on modeling the geometric aspect of the blendshapes and

did not generate texture for the final blendshapes. In the future, we will investigate how to create

high quality texture and generate photo-realistic blendshapes. Since good texture could also help

produce more accurate point clouds in the shape-from-shading algorithm, it is this would improve
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both the accuracy and visual appearance of the generated blendshapes.

Our system consists of several key modules to generate the blendshapes, and the performance

of our system depends on the performance of these modules. For example, the quality of the

2D facial feature points detected in the input images directly affect the accuracy of the large-

scale facial reconstructions. Since the 2D feature points detector inevitably failed on challenging

inputs, we included robust PCA based outlier detection and subset selection method to make the

reconstruction process more robust. Nonetheless, improvements on the 2D facial feature points

detection quality could still improve the large-scale reconstruction quality, which further leads to

more accurate final blendshapes.

(a) (b)

Figure 9.1: Limitations of our system. Our system may neglect slight mismatch of the large-scale
face shape if it is not critical to the quality of the final blendshapes (a); and some fine-scale detail
that is typically inconsistent across input images may be over-smoothed by our fine detail recovery
algorithm. Photographs reprinted from [ZZ7] and [OP10].

The large-scale deformation result obtained with the multi-linear model may be sub-optimal in

some challenging cases and cannot be detected by our system, which may lead to poor face rigging

results. Figure. 9.1 (a) illustrates a typical example of such cases. The slight mismatch of the jaw

is considered a non-critical issue by our system and thus is not excluded in our blendshapes gen-

eration process. Our system uses a dynamic Gaussian mixture model based method to detect skin

region for recovering point clouds. This heuristics method works well for most cases but could fail
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on challenging input images. Recent advances in image segmentation using deep learning based

approaches may significantly improve the performance of this module and we will experiment with

these methods in the future. The shape-from-shading (SfS) method used in our system is a global

method that recovers point cloud for the entire face region at once, which could produce some

undesired artifacts for certain regions. For example, regions with soft shadow could be interpreted

by geometric change in the SfS algorithm, leading to inaccurate geometry. A possible solution to

this problem is to use a region-based local SfS method, which may produce higher quality point

clouds in such cases. The fine-scale detail recovery method in our system cannot recover fine-scale

details that do not consistently appear in different images. We would also like to experiment with

a region-based point cloud recovery approach to better handle non-critical occlusions to maximize

usable images and image regions. Figure. 9.1(b) shows an example of over-smoothed wrinkles on

the forehead. We will explore other methods for recovering fine-scale detail in the future.

The processing time of our system can also be significantly reduced by using a faster C++

implementation instead of the current MATLAB version for point cloud recovery. We plan to

speed up the current system with GPU acceleration and exploit a higher degree of parallelism.

We also plan to explore potential applications of our system, such as generating a personal

avatar directly from a personal or family album. The personalized blendshapes generated by our

system could also be used for facial reenactment similar to [44]. Image and video editing such as

expression cloning and facial geometry manipulation are also possible with our system.
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APPENDIX A

EXTERNAL IMAGE REFERENCES

A.1 Andy Lau

[AL1] https://www.star2.com/entertainment/tv/2014/01/28/andy-lau-to-get-rm166mil-as-judge

-of-the-voice-of-china/

[AL2] http://www.cnbinggui.net/332497-andy-lau.html

[AL3] http://info.51.ca/news/sportent/2018-01/618366.html

[AL4] https://forums.hardwarezone.com.sg/eat-drink-man-woman-16/gpgt-zehzeh-stare-me-lik

e-i-am-andy-lau-5775443.html

[AL5] http://www.xiaoguaiguai.com/tags/mingxingliudehua.html

[AL6] http://www.awc618.com/movielava-bear-to-produce-chinese-action-thriller-the-bodygua

rd-starring-andy-lau/

[AL7] http://www.campaignasia.com/article/osim-launches-udivine-massage-chair-with-andy-

lau/238902

[AL8] https://www.thestar.com.my/lifestyle/entertainment/movies/news/2015/03/14/andy-lau-

matt-damon-to-star-in-the-great-wall/

[AL9] http://www.n63.com/n_chinam/ldh

[AL10] http://top10famous.com/top-10-famous-chinese-movie-actors/

[AL11] https://www.thestar.com.my/news/nation/2014/10/03/andy-lau-to-set-up-production-co

mpany-in-msia/

[AL12] https://hype.my/2013/14368/andy-lau-apologizes-for-his-role-in-film/
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[AL13] http://pinthisstar.com/andy-lau.html

[AL14] http://www.madisonboom.com/2013/09/27/mbtv-andy-liu-stared-cartier-micro-movie/a

ndy-liu-cartier-inarticle/

[AL15] https://mubi.com/cast/andy-lau

[AL16] http://movie.info/andy-lau

[AL17] http://www.scmp.com/photos/1193895/37th-hong-kong-international-film-festival/7th-as

ian-film-awards

[AL18] http://www.chinadaily.com.cn/celebrity/2014-09/29/content_18680418.htm

[AL19] https://reelgood.com/person/andy-lau-1961

[AL20] https://gossipstar.mthai.com/hollywood/inter/50714

[AL21] http://www.zimbio.com/photos/Andy+Lau/Arrivals+Beijing+International+Film+Festiv

al/qM8PvNRHFXv

[AL22] http://www.craveonline.com/site/191049-andy-lau-leaves-the-cast-of-iron-man-3

[AL23] http://www.kklee105.com/april2013toAugust2013.html

[AL24] http://www.czeshop.info/tendency/andy-lau.html

[AL25] http://www.chinadaily.com.cn/celebrity/2014-09/29/content_18680418_4.htm

[AL26] https://www.theepochtimes.com/china-media-authorities-censors-andy-lau-and-chow-yu

n-fat_1023425.html

[AL27] http://www.chinadaily.com.cn/celebrity/2014-09/29/content_18680418_3.htm

[AL28] http://www.zimbio.com/Andy+Lau/pictures/pro/2005

101

http://pinthisstar.com/andy-lau.html
http://www.madisonboom.com/2013/09/27/mbtv-andy-liu-stared-cartier-micro-movie/andy-liu-cartier-inarticle/
http://www.madisonboom.com/2013/09/27/mbtv-andy-liu-stared-cartier-micro-movie/andy-liu-cartier-inarticle/
https://mubi.com/cast/andy-lau
http://movie.info/andy-lau
http://www.scmp.com/photos/1193895/37th-hong-kong-international-film-festival/7th-asian-film-awards
http://www.scmp.com/photos/1193895/37th-hong-kong-international-film-festival/7th-asian-film-awards
http://www.chinadaily.com.cn/celebrity/2014-09/29/content_18680418.htm
https://reelgood.com/person/andy-lau-1961
https://gossipstar.mthai.com/hollywood/inter/50714
http://www.zimbio.com/photos/Andy+Lau/Arrivals+Beijing+International+Film+Festival/qM8PvNRHFXv
http://www.zimbio.com/photos/Andy+Lau/Arrivals+Beijing+International+Film+Festival/qM8PvNRHFXv
http://www.craveonline.com/site/191049-andy-lau-leaves-the-cast-of-iron-man-3
http://www.kklee105.com/april2013toAugust2013.html
http://www.czeshop.info/tendency/andy-lau.html
http://www.chinadaily.com.cn/celebrity/2014-09/29/content_18680418_4.htm
https://www.theepochtimes.com/china-media-authorities-censors-andy-lau-and-chow-yun-fat_1023425.html
https://www.theepochtimes.com/china-media-authorities-censors-andy-lau-and-chow-yun-fat_1023425.html
http://www.chinadaily.com.cn/celebrity/2014-09/29/content_18680418_3.htm
http://www.zimbio.com/Andy+Lau/pictures/pro/2005


[AL29] http://www.straitstimes.com/lifestyle/entertainment/andy-lau-goes-back-to-work-on-aug

-8

[AL30] http://www.tnp.sg/entertainment/andy-lau-says-wife-not-pregnant-just-fat

[AL31] http://www.czeshop.info/tendency/andy-lau.html

[AL32] https://www.elcinema.com/en/person/2028321/

[AL33] https://www.mgientertainment.com/tag/andy-lau/

[AL34] http://movie.info/andy-lau

[AL35] https://www.brilio.net/selebritis/30-tahun-lebih-berkakrier-ini-12-transformasi-penampil

an-andy-lau-170125l.html

[AL36] http://www.contactmusic.com/andy-lau/pictures/1463909#slider-1

[AL37] http://www.boomsbeat.com/articles/10051/20141016/great-photos-of-the-andy-lau.htm

[AL38] http://www.contactmusic.com/andy-lau/pictures/1463909#slider-2

[AL39] http://www.asiaone.com/showbiz/andy-lau-get-63m-voice-judge

[AL40] http://www.boomsbeat.com/articles/10051/20141016/great-photos-of-the-andy-lau.htm

[AL41] http://www.zimbio.com/photos/Andy+Lau/Blind+Detective+Photo+Call+Cannes/BZD3

INCoB6j

[AL42] https://www.gettyimages.com/event/blind-detective-photocall-the-66th-annual-cannes-fi

lm-festival-169201688#/johnnie-to-attends-the-photocall-for-blind-detective-during-the-

66th-picture-id169100923

[AL43] https://www.screendaily.com/news/filmart-fox-working-with-andy-lau-patrick-kong-on-

miniseries/5115814.article

102

http://www.straitstimes.com/lifestyle/entertainment/andy-lau-goes-back-to-work-on-aug-8
http://www.straitstimes.com/lifestyle/entertainment/andy-lau-goes-back-to-work-on-aug-8
http://www.tnp.sg/entertainment/andy-lau-says-wife-not-pregnant-just-fat
http://www.czeshop.info/tendency/andy-lau.html
https://www.elcinema.com/en/person/2028321/
https://www.mgientertainment.com/tag/andy-lau/
http://movie.info/andy-lau
https://www.brilio.net/selebritis/30-tahun-lebih-berkakrier-ini-12-transformasi-penampilan-andy-lau-170125l.html
https://www.brilio.net/selebritis/30-tahun-lebih-berkakrier-ini-12-transformasi-penampilan-andy-lau-170125l.html
http://www.contactmusic.com/andy-lau/pictures/1463909#slider-1
http://www.boomsbeat.com/articles/10051/20141016/great-photos-of-the-andy-lau.htm
http://www.contactmusic.com/andy-lau/pictures/1463909#slider-2
http://www.asiaone.com/showbiz/andy-lau-get-63m-voice-judge
http://www.boomsbeat.com/articles/10051/20141016/great-photos-of-the-andy-lau.htm
http://www.zimbio.com/photos/Andy+Lau/Blind+Detective+Photo+Call+Cannes/BZD3INCoB6j
http://www.zimbio.com/photos/Andy+Lau/Blind+Detective+Photo+Call+Cannes/BZD3INCoB6j
https://www.gettyimages.com/event/blind-detective-photocall-the-66th-annual-cannes-film-festival-169201688#/johnnie-to-attends-the-photocall-for-blind-detective-during-the-66th-picture-id169100923
https://www.gettyimages.com/event/blind-detective-photocall-the-66th-annual-cannes-film-festival-169201688#/johnnie-to-attends-the-photocall-for-blind-detective-during-the-66th-picture-id169100923
https://www.gettyimages.com/event/blind-detective-photocall-the-66th-annual-cannes-film-festival-169201688#/johnnie-to-attends-the-photocall-for-blind-detective-during-the-66th-picture-id169100923
https://www.screendaily.com/news/filmart-fox-working-with-andy-lau-patrick-kong-on-miniseries/5115814.article
https://www.screendaily.com/news/filmart-fox-working-with-andy-lau-patrick-kong-on-miniseries/5115814.article


[AL44] http://www.asiaone.com/showbiz/andy-laus-wife-rumoured-have-secretly-given-birth-bo

y

[AL45] https://www.23yy.com/3940000/3936664.shtml

[AL46] Photograph by Chung Sung-Jun/Getty Images (Octoboer 14, 2006) reprinted from http:

//www.boomsbeat.com/articles/10051/20141016/great-photos-of-the-andy-lau.htm

[AL47] http://www.contactmusic.com/andy-lau/pictures/1463909#slider-8

[AL48] http://picture-xtreme-nice.blogspot.com/2012/05/andy-lau-photos-hot.html

[AL49] http://chinesemov.com/actors/Andy%20Lau.html

[AL50] http://www.jpopasia.com/feed/11489/andy-lau-confesses-past-potential-girlfriends/

[AL51] http://best1-hairstyle.blogspot.com/2015/12/popular-hongkong-artist-andy-lau-hair.html

[AL52] https://ascendcomblog.com/tag/screensingapore/

[AL53] http://chinesemov.com/actors/Andy%20Lau.html

[AL54] http://www.zimbio.com/photos/Andy+Lau/16th+Shanghai+International+Film+Festival

/1TLbhT9iC5t

[AL55] http://www.pinsdaddy.com/andy-lau_m9oFnCUjId9CysE7uE2RR*7iuF6DJlL0H7%7C

Mye3KPlo/10

[AL56] https://lifeactor.ru/8065-endi-lau.html

[AL57] https://www.wowkeren.com/seleb/andy_lau/berita.html

[AL58] http://www.chinaentertainmentnews.com/2016/03/filmart-andy-lau-boards-action-thrille

r.html

[AL59] http://movie.info/andy-lau

103

http://www.asiaone.com/showbiz/andy-laus-wife-rumoured-have-secretly-given-birth-boy
http://www.asiaone.com/showbiz/andy-laus-wife-rumoured-have-secretly-given-birth-boy
https://www.23yy.com/3940000/3936664.shtml
http://www.boomsbeat.com/articles/10051/20141016/great-photos-of-the-andy-lau.htm
http://www.boomsbeat.com/articles/10051/20141016/great-photos-of-the-andy-lau.htm
http://www.contactmusic.com/andy-lau/pictures/1463909#slider-8
http://picture-xtreme-nice.blogspot.com/2012/05/andy-lau-photos-hot.html
http://chinesemov.com/actors/Andy%20Lau.html
http://www.jpopasia.com/feed/11489/andy-lau-confesses-past-potential-girlfriends/
http://best1-hairstyle.blogspot.com/2015/12/popular-hongkong-artist-andy-lau-hair.html
https://ascendcomblog.com/tag/screensingapore/
http://chinesemov.com/actors/Andy%20Lau.html
http://www.zimbio.com/photos/Andy+Lau/16th+Shanghai+International+Film+Festival/1TLbhT9iC5t
http://www.zimbio.com/photos/Andy+Lau/16th+Shanghai+International+Film+Festival/1TLbhT9iC5t
http://www.pinsdaddy.com/andy-lau_m9oFnCUjId9CysE7uE2RR*7iuF6DJlL0H7%7CMye3KPlo/10
http://www.pinsdaddy.com/andy-lau_m9oFnCUjId9CysE7uE2RR*7iuF6DJlL0H7%7CMye3KPlo/10
https://lifeactor.ru/8065-endi-lau.html
https://www.wowkeren.com/seleb/andy_lau/berita.html
http://www.chinaentertainmentnews.com/2016/03/filmart-andy-lau-boards-action-thriller.html
http://www.chinaentertainmentnews.com/2016/03/filmart-andy-lau-boards-action-thriller.html
http://movie.info/andy-lau


[AL60] https://ko.wikipedia.org/wiki/%ED%8C%8C%EC%9D%BC:LDH061229.jpg

[AL61] http://www.biendao24h.vn/products/Top-20-my-nam-%C4%91ep-nhat-%C4%91ien-an

h-Trung-Quoc..html

[AL62] http://www.contactmusic.com/andy-lau/pictures/1463909#slider-6

[AL63] https://www.pinterest.co.uk/pin/474426141969902619/

[AL64] https://vincentloy.wordpress.com/tag/male/

[AL65] http://www.chinadaily.com.cn/entertainment/2008-04/14/content_6614585.htm

[AL66] http://chinesemov.com/actors2/Andy-Lau-Photos.html

[AL67] http://www.contactmusic.com/andy-lau/pictures/1463909#slider-7

[AL68] http://style.tribunnews.com/2017/01/19/andy-lau-cedera-karena-jatuh-dari-kuda-saat-sy

uting-di-thailand-begini-kondisinya-sekarang

[AL69] http://www.myalt.net/andy-lau.html

[AL70] http://www.epochtimes.com/b5/3/12/13/n428824.htm

[AL71] https://www.gettyimages.co.uk/event/lost-and-love-beijing-press-conference-533899263

#/actor-andy-lau-attends-director-sanyuan-pengs-film-lost-and-love-on-picture-id461949

626

[AL72] http://www.epochtimes.com/gb/4/5/26/n550119.htm

[AL73] http://www.contactmusic.com/andy-lau/pictures/1463909#slider-3

[AL74] http://wwwbuild.net/girlnba/31359.html

[AL75] http://www.brns.com/pages4/andylau4.html

[AL76] http://hktopten.blogspot.com/2015/09/20150930-andy-lau-shares-his-happiness.html

104

https://ko.wikipedia.org/wiki/%ED%8C%8C%EC%9D%BC:LDH061229.jpg
http://www.biendao24h.vn/products/Top-20-my-nam-%C4%91ep-nhat-%C4%91ien-anh-Trung-Quoc..html
http://www.biendao24h.vn/products/Top-20-my-nam-%C4%91ep-nhat-%C4%91ien-anh-Trung-Quoc..html
http://www.contactmusic.com/andy-lau/pictures/1463909#slider-6
https://www.pinterest.co.uk/pin/474426141969902619/
https://vincentloy.wordpress.com/tag/male/
http://www.chinadaily.com.cn/entertainment/2008-04/14/content_6614585.htm
http://chinesemov.com/actors2/Andy-Lau-Photos.html
http://www.contactmusic.com/andy-lau/pictures/1463909#slider-7
http://style.tribunnews.com/2017/01/19/andy-lau-cedera-karena-jatuh-dari-kuda-saat-syuting-di-thailand-begini-kondisinya-sekarang
http://style.tribunnews.com/2017/01/19/andy-lau-cedera-karena-jatuh-dari-kuda-saat-syuting-di-thailand-begini-kondisinya-sekarang
http://www.myalt.net/andy-lau.html
http://www.epochtimes.com/b5/3/12/13/n428824.htm
https://www.gettyimages.co.uk/event/lost-and-love-beijing-press-conference-533899263#/actor-andy-lau-attends-director-sanyuan-pengs-film-lost-and-love-on-picture-id461949626
https://www.gettyimages.co.uk/event/lost-and-love-beijing-press-conference-533899263#/actor-andy-lau-attends-director-sanyuan-pengs-film-lost-and-love-on-picture-id461949626
https://www.gettyimages.co.uk/event/lost-and-love-beijing-press-conference-533899263#/actor-andy-lau-attends-director-sanyuan-pengs-film-lost-and-love-on-picture-id461949626
http://www.epochtimes.com/gb/4/5/26/n550119.htm
http://www.contactmusic.com/andy-lau/pictures/1463909#slider-3
http://wwwbuild.net/girlnba/31359.html
http://www.brns.com/pages4/andylau4.html
http://hktopten.blogspot.com/2015/09/20150930-andy-lau-shares-his-happiness.html


[AL77] https://andylausounds.blogspot.com/2006/08/andys-new-photographs-with-charlene.htm

l

[AL78] http://www.kklee105.com/july2010.html

[AL79] http://www.laineygossip.com/Chow-Yun-Fat-and-Andy-Lau-promote-The-Man-From-M

acau-III/41512

[AL80] http://yellowcranestower.blogspot.com/2011/01/andy-lau-concert-photos-4.html

[AL81] http://yellowcranestower.blogspot.com/2010/05/andy-lau-shanghai-world-expo.html

[AL82] http://www.chinadaily.com.cn/english/doc/2005-02/24/content_419158.htm

[AL83] https://kknews.cc/zh-hk/entertainment/gj9ap8.html

[AL84] https://www.arah.com/article/41431/keren-aktor-film-laga-andy-lau-dapat-gelar-doktor-

kehormatan.html

[AL85] https://www.wethepeoplewiki.com/andy-lau-haircut/

[AL86] http://pinthisstar.com/image-post/38-andy-lau-movies-19.jpg.html#gal_post_38_andy-la

u-movies-19.jpg

[AL87] http://yummycelebrities.com/2006/10/15/andy-lau-honored-at-busan-international-film-

festival/

[AL88] https://www.ctvnews.ca/lau-hopes-sci-fi-film-breaks-new-ground-1.500233

[AL89] Photograph by Junko Kimura/Getty Images reprinted from http://www.zimbio.com/photo

s/Andy+Lau/Entertainment+Pictures+Week+2006+July+27/4vUvH_QWsCE

[AL90] http://english.cri.cn/3086/2008/07/02/1221s375765.htm

[AL91] http://best1-hairstyle.blogspot.com/2015/12/popular-hongkong-artist-andy-lau-hair.html

105

https://andylausounds.blogspot.com/2006/08/andys-new-photographs-with-charlene.html
https://andylausounds.blogspot.com/2006/08/andys-new-photographs-with-charlene.html
http://www.kklee105.com/july2010.html
http://www.laineygossip.com/Chow-Yun-Fat-and-Andy-Lau-promote-The-Man-From-Macau-III/41512
http://www.laineygossip.com/Chow-Yun-Fat-and-Andy-Lau-promote-The-Man-From-Macau-III/41512
http://yellowcranestower.blogspot.com/2011/01/andy-lau-concert-photos-4.html
http://yellowcranestower.blogspot.com/2010/05/andy-lau-shanghai-world-expo.html
http://www.chinadaily.com.cn/english/doc/2005-02/24/content_419158.htm
https://kknews.cc/zh-hk/entertainment/gj9ap8.html
https://www.arah.com/article/41431/keren-aktor-film-laga-andy-lau-dapat-gelar-doktor-kehormatan.html
https://www.arah.com/article/41431/keren-aktor-film-laga-andy-lau-dapat-gelar-doktor-kehormatan.html
https://www.wethepeoplewiki.com/andy-lau-haircut/
http://pinthisstar.com/image-post/38-andy-lau-movies-19.jpg.html#gal_post_38_andy-lau-movies-19.jpg
http://pinthisstar.com/image-post/38-andy-lau-movies-19.jpg.html#gal_post_38_andy-lau-movies-19.jpg
http://yummycelebrities.com/2006/10/15/andy-lau-honored-at-busan-international-film-festival/
http://yummycelebrities.com/2006/10/15/andy-lau-honored-at-busan-international-film-festival/
https://www.ctvnews.ca/lau-hopes-sci-fi-film-breaks-new-ground-1.500233
http://www.zimbio.com/photos/Andy+Lau/Entertainment+Pictures+Week+2006+July+27/4vUvH_QWsCE
http://www.zimbio.com/photos/Andy+Lau/Entertainment+Pictures+Week+2006+July+27/4vUvH_QWsCE
http://english.cri.cn/3086/2008/07/02/1221s375765.htm
http://best1-hairstyle.blogspot.com/2015/12/popular-hongkong-artist-andy-lau-hair.html


A.2 Barack Obama

[BO1] Photograph by Pablo Martinez Monsivais/AP reprinted from https://www.usatoday.com/

story/news/politics/2017/01/19/fact-check-eight-years-trolling-obama/96771984/

[BO2] https://imgur.com/gallery/8Z0tf1C

[BO3] https://www.telegraph.co.uk/news/2016/04/21/as-your-friend-let-me-tell-you-that-the-eu

-makes-britain-even-gr/

[BO4] Photograph by Charles Dharapak/AP reprinted from https://face2faceafrica.com/article/

forbes-most-powerful-people-2016

[BO5] Photograph by Chip Somodevilla (December 16, 2016) by Getty Images reprinted from

https://www.usatoday.com/story/news/politics/2016/12/16/obama-always-feel-responsib

le-aleppo/95523850/

[BO6] http://www.wccbcharlotte.com/tag/obama/page/2/

[BO7] http://freedomessenger.com/en/mullah%60s-nuclear-ambitions/1637-obama-sends-palle

ts-of-cash-to-iran-as-ransom

[BO8] https://www.theblaze.com/contributions/latest-gdp-report-proves-that-obama-is-purpose

fully-destroying-america

[BO9] https://www.huffingtonpost.com/entry/obama-nsa-reform_n_6580702.html

[BO10] http://www.armradio.am/en/2016/09/23/anca-disappointed-with-obamas-letter-on-arme

nias-independence/

[BO11] http://www.dailymail.co.uk/news/article-2151996/Michelle-Obamas-drug-use-He-realis

ed-young-age-life-smoke-pot.html

[BO12] Photograph by Alex Brandon/AP reprinted from https://www.theguardian.com/media/

2016/apr/05/daily-mail-barack-obama-peace-sign-president

106

https://www.usatoday.com/story/news/politics/2017/01/19/fact-check-eight-years-trolling-obama/96771984/
https://www.usatoday.com/story/news/politics/2017/01/19/fact-check-eight-years-trolling-obama/96771984/
https://imgur.com/gallery/8Z0tf1C
https://www.telegraph.co.uk/news/2016/04/21/as-your-friend-let-me-tell-you-that-the-eu-makes-britain-even-gr/
https://www.telegraph.co.uk/news/2016/04/21/as-your-friend-let-me-tell-you-that-the-eu-makes-britain-even-gr/
https://face2faceafrica.com/article/forbes-most-powerful-people-2016
https://face2faceafrica.com/article/forbes-most-powerful-people-2016
https://www.usatoday.com/story/news/politics/2016/12/16/obama-always-feel-responsible-aleppo/95523850/
https://www.usatoday.com/story/news/politics/2016/12/16/obama-always-feel-responsible-aleppo/95523850/
http://www.wccbcharlotte.com/tag/obama/page/2/
http://freedomessenger.com/en/mullah%60s-nuclear-ambitions/1637-obama-sends-pallets-of-cash-to-iran-as-ransom
http://freedomessenger.com/en/mullah%60s-nuclear-ambitions/1637-obama-sends-pallets-of-cash-to-iran-as-ransom
https://www.theblaze.com/contributions/latest-gdp-report-proves-that-obama-is-purposefully-destroying-america
https://www.theblaze.com/contributions/latest-gdp-report-proves-that-obama-is-purposefully-destroying-america
https://www.huffingtonpost.com/entry/obama-nsa-reform_n_6580702.html
http://www.armradio.am/en/2016/09/23/anca-disappointed-with-obamas-letter-on-armenias-independence/
http://www.armradio.am/en/2016/09/23/anca-disappointed-with-obamas-letter-on-armenias-independence/
http://www.dailymail.co.uk/news/article-2151996/Michelle-Obamas-drug-use-He-realised-young-age-life-smoke-pot.html
http://www.dailymail.co.uk/news/article-2151996/Michelle-Obamas-drug-use-He-realised-young-age-life-smoke-pot.html
https://www.theguardian.com/media/2016/apr/05/daily-mail-barack-obama-peace-sign-president
https://www.theguardian.com/media/2016/apr/05/daily-mail-barack-obama-peace-sign-president


A.3 Bruce Willis

[BW1] http://www.imdb.com/name/nm0000246/

[BW2] https://en.wikipedia.org/wiki/Bruce_Willis

[BW3] http://www.filmofilia.com/a-good-day-to-die-hard-gets-r-rating-from-mpaa-132321/

[BW4] https://www.pinterest.com/pin/427067977135033698

[BW5] http://planetterror.wikia.com/wiki/File:Bruce_Willis.jpg

[BW6] https://www.bunte.de/starprofile/bruce-willis.html

[BW7] https://theidleman.com/manual/health/bruce-willis-hair-loss/

[BW8] http://celebritiesmovie.com/celebrities-detail/bruce-willis-phone-number-email/

[BW9] https://www.usmagazine.com/celebrity-news/news/bruce-willis-wears-donald-trump-wi

g-on-jimmy-fallon-20151910/

[BW10] https://www.pinterest.com/pin/11962755244817671/

[BW11] http://wvxu.org/post/bruce-willis-shoot-another-film-here-august#stream/0

[BW12] http://entertainment.ie/trending/news/Pic-Bruce-Willis-wins-Halloween-with-this-amazi

ngly-creepy-costume/398713.htm

[BW13] http://www.ktvb.com/article/news/local/idaho/documents-show-bruce-williss-airport-wi

ll-be-large-busy/277-458503461

A.4 George Bush

[GB1] http://babailov.homestead.com/Bushfront.html

[GB2] https://antifascistnews.net/2017/0/page/5/

[GB3] http://www.nndb.com/people/360/000022294/

107

http://www.imdb.com/name/nm0000246/
https://en.wikipedia.org/wiki/Bruce_Willis
http://www.filmofilia.com/a-good-day-to-die-hard-gets-r-rating-from-mpaa-132321/
https://www.pinterest.com/pin/427067977135033698
http://planetterror.wikia.com/wiki/File:Bruce_Willis.jpg
https://www.bunte.de/starprofile/bruce-willis.html
https://theidleman.com/manual/health/bruce-willis-hair-loss/
http://celebritiesmovie.com/celebrities-detail/bruce-willis-phone-number-email/
https://www.usmagazine.com/celebrity-news/news/bruce-willis-wears-donald-trump-wig-on-jimmy-fallon-20151910/
https://www.usmagazine.com/celebrity-news/news/bruce-willis-wears-donald-trump-wig-on-jimmy-fallon-20151910/
https://www.pinterest.com/pin/11962755244817671/
http://wvxu.org/post/bruce-willis-shoot-another-film-here-august#stream/0
http://entertainment.ie/trending/news/Pic-Bruce-Willis-wins-Halloween-with-this-amazingly-creepy-costume/398713.htm
http://entertainment.ie/trending/news/Pic-Bruce-Willis-wins-Halloween-with-this-amazingly-creepy-costume/398713.htm
http://www.ktvb.com/article/news/local/idaho/documents-show-bruce-williss-airport-will-be-large-busy/277-458503461
http://www.ktvb.com/article/news/local/idaho/documents-show-bruce-williss-airport-will-be-large-busy/277-458503461
http://babailov.homestead.com/Bushfront.html
https://antifascistnews.net/2017/0/page/5/
http://www.nndb.com/people/360/000022294/
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[KS6] Photograph by Jay L. Clendenin / Los Angeles Times reprinted from http://www.latimes.

com/entertainment/movies/la-et-mn-kevin-spacey-20140507-story.html
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[RD4] Photograph by Mireya Acierto/FilmMagic reprinted from https://www.gettyimages.com/
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