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ABSTRACT 

 

A rollover is defined as any vehicle rotation of 90 degrees or more about a longitudinal or 

lateral axis, according to NASS CDS. Rollover crashes are still represented highly in terms of 

frequency and fatalities when compared to other crash categories. Even though there are various 

vehicular technical innovations that act as a preventative or protective improvement, rollover 

crashes and subsequent loss of life and injuries are still prevalent in crash statistics. In 2015, 

rollovers represented 33% of occupant fatalities. Existing research on rollover as it relates to 

highway safety is often based on crash data analysis. Limited studies have investigated the 

initiating mechanisms contributing to vehicular propensity to rollover. Hence, there is a gap in 

knowledge to understand initiation factors that affect rollover events. Herein, vehicle dynamics 

simulations will be utilized to examine several vehicle rollover crash scenarios.  A second aspect 

of this research is to develop a metamodel of vehicle roll angle as a function of 

initiation/influencing factors. A total of 282 vehicle rollover scenarios were created and data 

from the simulations was used to build metamodels. The vehicle rollover scenarios were split up 

into 16 categories. The surface metamodel, accuracy model, and global sensitivities were 

analyzed. These models show that for all the categories, speed had the greatest influence on the 

vehicle’s propensity to roll over. Friction held a greater influence on the deviation from the 

centerline of the right lane.  
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INTRODUCTION  

 

Motivation 

The rollover crash is one of the most fatal forms of crashes among passenger vehicles. 

These types of crashes account for 33% of all occupant fatalities in 2015. Table 1 summarizes 

crash data from 2012 to 2016 for the state of Texas. In 2015, there were a total of 32,166 fatal 

crashes in the US. Of these 32,166 crashes, there were a total of 35,092 fatalities. 48% of these 

crashes occurred in rural areas, 45% occurred in urban areas and 8% of the crashes happened in 

unknown areas [1].38% of rural crashes involved vehicle rollovers and 24% of rollover crashes 

happened in urban areas. The percentage of fatalities in rollover crashes was highest for SUVs 

(36%), followed by pickup trucks (30%), vans (22%), and passenger cars (20%) [1]. Fatal 

crashes have declined by 16.8% over the past decade, but have increased by 7% in the last year. 

Fatality rate per 100 million vehicle miles traveled was 2.6 times higher in rural areas than in 

urban areas. Table 2 shows the passenger vehicle occupant deaths in single-vehicle rollover 

crashes [2]. Occupant deaths have fluctuated over the years. Deaths in car drivers has had an 

overall decrease since 1978 while deaths in SUV drivers has increased significantly since then. 

Although much research has been done on the topic, there is still a gap in knowledge to 

understand initiation factors that affect rollover events. Many factors contribute to a vehicle’s 

roll angle. Vehicle type, vehicle center of gravity, speed, roadway characteristics, and driving 

behaviors are just a few that influence a vehicle’s roll angle.  

The type of vehicle and its corresponding center of gravity greatly influence the vehicle’s 

propensity to rollover. A vehicle with a low center of gravity (CG) is less likely to topple over 

than one with a higher CG. So, a Full-size SUV is more likely to roll over than a sedan since the 
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SUV has a higher center of gravity than the sedan. Table 3 shows deaths in single-vehicle 

crashed as a percent of all occupant deaths in 2015 [3]. The largest percentage in single-vehicle 

rollovers were large SUVs’. For this reason, the SUV was chosen as one of the vehicle types 

studied. The primary goal of roadside design is to limit the amount of serious injuries and 

fatalities associated with ran-off road crashes. Roadside geometrics and safety features have a 

strong influence on the severity and frequency of crashes. To design optimum roadside 

geometrics and to determine which roadside safety features are adequate, it is vital to identify 

impact characteristics associated with serious injury and fatal crashes. It is important to have 

definitive data on whether there are real relationships between the selected test impact conditions 

and actual crashes involving serious injuries and fatalities. The safety performance of roadside 

features is evaluated primarily through full-scale crash testing. Testing is used to observe and 

evaluate the performance of safety features under impact conditions that are either similar or 

more severe than those associated with real world crashes resulting in serious injuries or 

fatalities. Even though full scale crash test data provides a small window into the nature of ran-

off road crashes, it does not provide sufficient data to identify the impact conditions associated 

with serious injury and fatal crashes. American Association of State Highway and Transportation 

Officials (AASHTO) current policy states that shoulder slopes that drain away from the paved 

surface on the outside of a super-elevated horizontal curve should be designed to avoid too great 

a cross-slope break, calculated as the algebraic difference between the cross-slope of the traveled 

way and shoulder [4]. To avoid large pavement/shoulder cross-slope breaks, it may be desirable 

that all or part of the shoulder be sloped upward at about the same or lesser that the super-

elevated traveled way. The Roadside Design Guide [5] indicates the roadside should be rounded 
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because it reduces the chances of an errant vehicle becoming airborne. This also affords the 

driver more control over the vehicle. A superelevation of 6% was assumed for this study.  

Side-slopes and ditches have been identified as the primary tripping mechanism in single 

vehicle ran-off-road (SVROR) rollovers [6]. Side-slopes refer to the slopes of areas adjacent to 

the shoulder and located between the shoulder and the right-of-way line, according to TxDOT. A 

relatively flat area adjacent to the travel-way is desired so that out-of-control vehicles are less 

likely to turn over, vault, or impact the side of a drainage channel. Steeper slope ratios (3:1) are 

negotiable by drivers. However, recovery on these steeper slopes is less likely. Where conditions 

are favorable, it is desirable to use flatter slopes to increase roadside safety. The front slope is the 

slope adjacent to the shoulder. The front slope should be 6:1 or flatter. Slope rates of 3:1 may be 

used in constrained conditions. Since recovery is less likely on 3:1 and 4:1 slopes, fixed objects 

should not be present in the vicinity of the toe of the slopes. The intersections of slope planes in 

the highway cross section should be well rounded for added safety, increased stability, and 

improved aesthetics. Two slopes were considered for this study; 3:1 and 4:1 slopes. Slopes were 

purposely made long to understand how the slope and not the ditch affected a vehicle’s roll 

angle.   

  Using the vehicle dynamics code, CarSim, several vehicle rollover scenarios were created 

to assess how roadway characteristics and driver inputs affect the vehicle’s roll angle. Data from 

CarSim will be input into LS-OPT to create different metamodels. Metamodeling is the analysis, 

construction, and development of the frame, rules, constraints, models, and theories applicable 

and useful for modeling a predefined class of problems. A metamodel of vehicle roll angle as a 

function of speed, friction, curvature, encroachment angle, and ditch slope is to be developed and 

discussed.  
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Research Objectives 

The objective of this research is to: 

1. Enhance our understanding of rollover propensity giving certain roadway designs, 

vehicle types, vehicle speed and and maneuvers. 

2. To use vehicle dynamics simulations to examine several vehicle rollover crash scenarios.  
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BACKGROUND INFORMATION 

 

Fundamentals of vehicle dynamics 

The first practical automobiles that were powered by gasoline engines came in 1886 by 

Karl Benz and Gottlieb Daimler. Over the following decade, automotive vehicles were 

developed by others pioneers with familiar names such as Henry Ford and Ransom Olds. By 

1908 the automotive industry was well established in the United States of America with Henry 

Ford manufacturing the Model T. The General Motors Corporation was also founded around this 

time. By 1909, over 600 makes of American cars had been identified [7].  

 In the early 1900s, most of the engineering in the automotive industry went into invention 

and design that would yield faster, more comfortable, and more reliable vehicles. In general, 

motor vehicles achieved high speed capability well before good paved roads existed on which to 

use them. With higher speeds the dynamics of vehicles assumed greater importance as an 

engineering concern. One of the first engineers to write on automotive dynamics was Frederick 

William Lanchester. Steering shimmy problems were prevalent at that time as well. The 

understanding of both turning behavior and the shimmy problems was hampered by a lack of 

knowledge about tire mechanics in these early years. In 1931, a test device was built which could 

measure the necessary mechanical properties of the pneumatic tire for the understandings to be 

developed. Only then could engineers develop mechanistic explanations of the turning behavior 

of automobiles which lays the groundwork for much of our understanding today. Engineers have 

achieved dramatic advancements in the technologies employed in automobiles from the Model t 

to the Taurus. More than ever, dynamics plays an important role in vehicle design and 

development.  
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 A knowledge of the forces and moments generated by pneumatic rubber tires at the 

ground is essential to understanding highway vehicle dynamics. The motions accomplished in 

accelerating, braking, cornering, and ride is a response to forces imposed. The dominant forces 

acting on a vehicle to control performance are developed by the tire against the road. Therefore, 

it becomes necessary to develop an understanding of the behavior of tires, characterized by the 

forces and moments generated over the broad range of conditions over which they operate.  

 Understanding vehicle dynamics can be accomplished at two levels; the empirical and the 

analytical. The empirical understanding derives from trial and error by which one learns which 

factors influence vehicle performance, in which way, and under what conditions. However, the 

empirical method can often lead to failure. Without mechanistic understanding of how changes 

in vehicle design or properties affect performance, extrapolating past experience to new 

conditions may involve unknown factors which may produce a new result, defying the prevailing 

rules of thumb. For this reason, engineers favor an analytical approach. The analytical approach 

attempts to describe the mechanics of interest based on the known laws of physics so that an 

analytical model can be established. In the more simple cases the models can be represented by 

algebraic or differential equations that relate forces or motions of interest to control inputs and 

vehicle or tire properties. These equations then allow one to evaluate the role of each vehicle 

property. The existence of the model thereby provides a means to identify the important factors, 

the way in which they operate and under which conditions. It should be noted that the analytical 

methods also are not foolproof because they usually only approximate reality.   

 Before, many of the shortcomings of analytical methods were a consequence of the 

mathematical limitations in solving problems. Before computers, analysis was only considered 

successful if the problem could be reduced to a closed form solution. This limited the 
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functionality of the analytical approach to solution of problems in vehicle dynamics. The 

existence of large numbers of components, systems, sub-systems, and nonlinearities in vehicles 

made comprehensive modeling virtually impossible, and the only utility obtained came from 

rather simplistic models of certain mechanical systems. The simplicity of the models can often 

constituted deficiencies that handicapped the engineering approach in vehicle development. 

Now, with the computational power, a major shortcoming of the analytical method has been 

overcome. It is now possible to assemble models for the behavior of individual components of a 

vehicle, allowing simulation and evaluation of its behavior before being rendered in hardware. 

These models can calculate performance that could not be solved for in the past. In cases where 

the engineer is uncertain of the importance of specific properties, those properties can be 

included in the model and their importance assessed by evaluating their influence on simulated 

behavior. This provides the engineer with a new tool as a means to test our understanding of a 

complex systems and investigate means of improving performance. 

 The subject of vehicle dynamics is concerned with the movements of vehicles on a road 

surface. The movements of interest are acceleration and braking, ride, and turning. Dynamic 

behavior is determined by the forces imposed on the vehicle from the ties, gravity, and 

aerodynamics.  The vehicle and its components are studied to determine what forces will be 

produced by each of these sources at a particular maneuver and trim condition, and how the 

vehicle will respond to these forces. It is essential to establish an approach to modeling the 

systems and the conventions that will be used to describe motions.  

 A motor vehicle is made up of many components distributed within its exterior envelope. 

For many of the elementary analysis applied to it, all components move together. Under braking, 

the entire vehicle slows down as a unit. Thus, it can be represented as one lumped mass located 
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at its center of gravity. For acceleration, braking, and most turning analysis, one mass is 

sufficient. For single mass representation, the vehicle is treated as a mass concentrated at its 

center of gravity (CG). The point mass at the CG, with appropriate rotational moments of inertia, 

is dynamically equivalent to the vehicle itself for all motions in which it is reasonable to assume 

the vehicle to be rigid.  

 

The vehicle motions are defined with reference to a right-hand orthogonal coordinate 

system which originates at the CG and travels with the vehicle, as follows: 

• X= forward and on the longitudinal plane of symmetry 

• Y= lateral out the right side of the vehicle 

• Z= downward with respect to the vehicle 

• P= roll velocity about the x-axis 

• Q= pitch velocity about the y-axis 

• R= yaw velocity about the z-axis.  

Vehicle motion is usually described by the velocities with respect to the vehicle fixed 

coordinate system, where the velocities are reference to the earth fixed coordinate system.  

Vehicle attitude and trajectory through the course of a maneuver are defined with respect to a 

right-hand orthogonal axis system fixed on the earth. The coordinates are: 

• X- forward travel 

• Y- travel to the right 

• Z- vertical travel (Positive downward) 

• Ψ- heading angle ( the angle between x and X in the ground) 
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• γ- Course angle (the angle between the vehicle’s velocity vector and X-axis) 

• β- sideslip angle (the angle between x-axis and the vehicle velocity vector) 

Forces and moments are normally defined as they act on the vehicle. A positive force in 

the longitudinal direction on the vehicle is forward. The force corresponding to the load on the 

tire acts in the upward direction and is therefore negative in magnitude. The SAE J670e “vehicle 

dynamics terminology” gives the name normal force as that acting downward and the vertical 

force as the negative of the normal forces. Therefore, the vertical force is the equivalent of the 

tire load with a positive convention in the upward direction.  

The fundamental law from which most vehicle dynamics analysis begin is the second law 

formulated by Sir Isaac Newton. The law applies to both translational and rotational systems. 

Translational systems are the sum of the external forces acting on a body in a given direction is 

equal to the product of its mass and the acceleration in that direction (assuming the mass is 

fixed). 

𝐹! = 𝑀 ∗ 𝑎! (1) 

where: 

• Fx= Forces in the x-direction 

• M= Mass of the body 

• Ax= Acceleration in the x-direction 

Rotational systems are the sum of the torques acting on a body about a given axis is equal to the 

product of its rotational moment of inertia and the rotational acceleration about that axis 

𝑇! = 𝐼!! ∗ 𝛼! (2) 

where: 
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• Txx= Torques about the x-axis 

• Ixx= Moment of inertia about the x-axis 

• αx= Rotational Acceleration about the x-axis 

Determining the axle loading on a vehicle under arbitrary conditions is an application of 

Newton’s Second Law.  

W is the weight of the vehicle acting at its CG with a magnitude equal to its mass times 

the acceleration of gravity. If the vehicle is accelerating along the road it is convenient to 

represent the effect by an equivalent inertial force known as a “d’Alembert force” acting at the 

center of gravity opposite to the direction of the road. The tires will experience a force normal to 

the road representing the dynamic weights carried on the front and rear wheels. Tractive forces 

or rolling resistance forces may act in the ground plane in the tire contact patch. DA is the 

aerodynamic force acting on the body of the vehicle. It may be represented as acting at a point 

above the ground indicated by the height or by a longitudinal force of the same magnitude in the 

ground with an associated moment equivalent to DA times hA.  

The influence of grade on axle loads is also worth considering. Grade is defined as the 

rise over the run. The ratio is equal to the tangent of the grade angle. Common grades on 

interstate highways are limited to 4 percent wherever possible. Primary and secondary roads 

occasionally reach 10 to 12 percent grades.  

Amongst the dynamic maneuvers a vehicle can experience, rollover is one of the most 

serious and threatening to the occupants. Rollover may be defined as any maneuver in which the 

vehicle rotates 90 degrees or more about its longitudinal axis such that the body makes contact 

with the ground. Rollover may be precipitated from one or more combination of factors. It may 
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occur on flat and level surfaces when the lateral accelerations on a vehicle reach a level beyond 

that which can be compensated by lateral weight shift on the tires. Cross-slope of the road 

surface may contribute along with disturbances to the lateral forces arising from curb impacts, 

soft ground, or other obstructions that may trip the vehicle. The vehicle rollover is one that 

involves a complex interaction of forces acting on and within the vehicle. The forces are 

influenced by the maneuver and roadway. This process has been investigated analytically and 

empirically using models that cover a range of complexities. The rollover process is most easily 

understood by starting with the fundamental mechanics involved in a quasi-static case and 

progressing to the more complex models.  

The most basic mechanics involved in rollovers can be seen by considering the balance of forces 

on a rigid vehicle in cornering. In a cornering maneuver the lateral forces act in the ground plane 

to counterbalance the lateral acceleration acting at the CG of the vehicle. The difference in the 

position at which these forces act creates a moment on the vehicle which attempts to roll toward 

the outside of the turn. Taking moments about the center of contact for the outside tires yields: 

!!
!
=

!
!!!!!

!!"
!"!

!
 (3) 

On a level road, 𝜑 = 0 with no lateral acceleration.  

In a highway design, cross-slope is used in curves exactly for this purpose. Given the 

radius of turn and an intended travel speed, the cross-slope will be chosen to produce a lateral 

acceleration in the range of zero to 0.1 g’s. As the lateral acceleration builds up, the load on the 

inside wheels must diminish. Through this process the vehicle acts to resist or counterbalance the 

roll moment in cornering. The limit cornering condition will occur when the load on the inside 

wheels reaches zero. At that point, rollover will begin because the vehicle can no longer maintain 
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equilibrium in the roll plane. The lateral acceleration at which rollover begins is the rollover 

threshold and is given by:  

!!
!
=

!
!!!!

!
 (4) 

With no cross-slope the lateral acceleration that constitutes the rollover threshold is  

!!
!
= !

!"
 (5) 

This value is also known as the static stability factor or SSF [8]. The rollover threshold differs 

amongst the various types of vehicles on the road. Typical values fall in the following ranges 

listed in Table 5.  

The rigid-vehicle model suggests that the lateral acceleration necessary to reach the 

rollover of passenger cars and light trucks exceeds the cornering capabilities arising from the 

friction limits of the tires. It is possible for a car to spin out on a flat surface without rolling over. 

From this, one may conclude that rollover with these kinds of vehicles should be rare. However, 

accident statistics prove otherwise. This motivates a more in depth analysis of rollover 

phenomenon. In the case of heavy trucks, it is possible to reach the rollover threshold within the 

friction limits of the tires.  

 Rigid body rollover can be illustrated by plotting the lateral acceleration as a function of 

roll angle for the equilibrium of the vehicle. While at a zero roll angle, the lateral acceleration 

can be any value up to the rollover threshold. Once this threshold is reached, the inside of the 

wheel will lift. The vehicle then begins to roll and the equilibrium lateral acceleration decreases 

with angle because the center of gravity is lifting and shifting toward the outside of the wheels. 

Consider a vehicle tipped on two wheels in a turn. The vehicle roll angle must be at the precise 

value where the equilibrium lateral acceleration matches the actual lateral acceleration in order to 
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be in equilibrium. A reduction of the equilibrium lateral acceleration can be caused by a slight 

disturbance that increases the roll angle. The excess lateral acceleration produces a roll 

acceleration that further increases that angle driving away from the equilibrium point. If this 

continues, the vehicle roll attitude accelerated rapidly to complete the rollover in a matter of a 

second or two.  

 It is appropriate to consider wheel lift-off as the beginning of rollover because of the 

inherent instability of the vehicle when the inside wheels leave the ground. However, it is 

possible for a driver to halt the action by quickly steering out of the turn, thereby reducing the 

lateral acceleration to a level that will return the vehicle to an upright position. A fast response is 

necessary because of the speed with which rollover proceeds. Rollover becomes irreversible only 

when the roll angle becomes so large that the center of gravity of the vehicle passes outboard of 

the line of contact of the outside wheels. The limit corresponds to the point in the graph where 

the equilibrium lateral acceleration reaches zero. Stunt drivers can take a vehicle up to this point 

and drive on two wheels for extended distances despite the instability. But, it is a rare event for a 

typical motorist to avoid rollover if the vehicle should inadvertently roll to this position.  

 

Driver Behavior 

 In 1977, the Society of Automotive Engineers conducted a study in which they observed 

a sedan traveling at 60 km/hr faced with an emergency that is 1.3 seconds to collision. The 

severity of the emergency forced the driver to perform an emergency maneuver without braking. 

During the test, the drivers were told to avoid the emergency by performing a lane change 

through a 3.66 meter lateral displacement. The common maximum steering angle of all the 

drivers was between 210 and 230 degrees. Although the Society of Automotive Engineers’ study 
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was a useful reference, it did not provide guidance for the behavior of a driver returning to the 

travel lane. Braking was not applied during emergency avoidance situations [9].  

 With the use of a Computer Assisted Virtual Environment driving simulator, Kim et al. 

recorded driver response to an emergency that is 1.3 seconds to collision [10]. The driving 

simulator tested a sedan at 50 km/hr driving behind a truck that suddenly stops. The simulation 

maneuver occurred on a straight urban road with a friction coefficient of 0.8. The braking was 

determined to be zero due to the severity of the emergency and the necessity for avoidance rather 

than stopping. This simulation scenario included data for the vehicle to return to the travel lane.  

 

Vehicle Dynamics Code 

Vehicle dynamics models serve a variety of purposes on simulations [11]. A model must 

have sufficient complexity for the given application but should not be too complicated. In 

stability and handling simulations, various modes must be properly represented, including 

lateral/directional and longitudinal degrees of freedom. Limit performance effects of tire 

saturation that lead to plow out, spin out, and skidding require adequate tire force response 

models. Steering and braking subsystem characterization are necessary to represent important 

handling and stability requirements. A comprehensive set of vehicle dynamics model elements 

are listed below. 

• The basic inertial vehicle dynamics, including the interaction of sprung and unsprung 

masses and the wheel spin modes 

• A comprehensive tire model that includes lateral and longitudinal force response to 

normal load, slip, and camber 
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• Power train including engine torque production and transmission and drive train 

components for transmitting the torque to the drive wheels 

• Steering system with power assist characteristics and compliance that produces 

understeer 

• Braking system including proportioning and antilock characteristics to minimize rear 

wheel lock up 

• Vehicle/ road kinematics that compute vehicle position and orientation relative to the 

roadway and terrain 

• A driver or automatic controller for steering, throttle, and brake control 

• External forces and commands that produce system responses through vehicle motions 

and driver or automatic system control. 

CarSim is a vehicle dynamics code that provides physical predictions of vehicle 

dynamical behavior in a form that can be used by most engineers and technical staff. It includes 

graphic user interface, database management, animation, and plotting.  

 

Metamodeling Software 

LS-OPT is a standalone design optimization and probabilistic analysis package that can 

be linked with several analyses programs or datasets of results of simulations or tests outcomes 

[12]. LS-OPT allows the user to structure the design process, explore the design space, and 

compute optimal designs according to specified constraints and objectives. In the design 

approach, a design is improved by evaluating its response and making design changes based on 

experience or intuition. This approach does not always lead to the desired result since the design 

objectives are often in conflict. Therefore, it is not always clear how to change the design to 
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achieve the best compromise of these objectives. A systematic approach can be obtained by 

using an inverse process of first specifying the criteria and then computing the best design 

according to a formulation. The improvement procedure that incorporates these design criteria 

into a mathematical framework is referred to as design optimization. This procedure is iterative 

and requires multiple simulations. Response surface methodology is a statistical method for 

constructing smooth approximations to functions in a multi-dimensional space.  It is a 

methodology to address optimization. Response surface methodology selects designs that are 

optimally distributed throughout the design space to construct the approximate surfaces. To 

check the adequacy of the model, the equation for the residual sum of squares formula is used. 

The metrics used for the quality of these surfaces are the RMS error and the coefficient of 

determination R2. The surface level of accuracy is improved with R2 is valued at 1 or very close 

to 1 and RMS error is very small or closer to zero. Practical values are dependent on the problem 

at hand and the desired accuracy.  The coefficient of determination R2, and the RMS error values 

are calculated using the equations below.  

 

𝑅! = (!
!!! !!!!!)

!

(!!!!!)!!
!!!

 (6)                                                            

 

𝜀!"# =
!
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(𝑦! − 𝑦!)!!
!!!  (7)                                                     

 

 where: 

P: number of design points 

Y: predicted response 
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Yi: mean of the responses 

Yi: the actual response 

 

Two sensitivity measures are implemented in LS-OPT: Linear ANOVA and GSA/Sobol. 

If a polynomial response surface method is selected, the analysis of variance (ANOVA) of the 

approximation to the experimental design is automatically performed. The ANOVA information 

can be used to screen variables during or at the start of the optimization process. The ANOVA 

method determines the significance of main and interaction effects. The ANOVA results are 

viewed in a bar/tornado chart form. The ANOVA bars show which design variable is important 

for the computation of the response. Figure 4 shows ANOVA calculations. The ANOVA value is 

represented by the blue bar. The red bar indicates the confidence interval. When a red bar is too 

large, the value computed cannot be trusted. When the red bar is small, the confidence interval is 

small and the contribution of that variable is substantial. In this figure the speed held the most 

substantial contribution. A global sensitivity analysis (GSA) is to be performed as well. Each bar 

represents a variable and its contribution of the variable to the variance of the respective 

response. The values sum to 100%. The variance of the response may be written using the 

Sobol’s indices approach.  

𝑓 𝑥!,… . , 𝑥! = 𝑓! +  𝑓!(𝑥!)!
!!! + 𝑓!"(𝑥! , 𝑥!)!

!!!!! +!
!!! … .+𝑓!,!,…,!(𝑥!,… . , 𝑥!) (8) 

Neural networks can be divided into three basic categories: feed-forward, feed-back, and 

self-organizing [13].  Each category is based on a different philosophy and obeys different 

principles, the characterization of a system by the term “neural network” implies an ability to 

learn. Feed-forward neural networks contain one or more layers of nonlinear processing elements 

or units. The elements belonging to neighboring layers are connected by sets of synaptic weights. 
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These neural architectures are called feed-forward since the output of each layer feeds the next 

layer of elements. The Perceptron and the Adaline are the earliest feed-forward neural 

architectures. Multi-layered neural networks include one or more layers of hidden elements 

between the input and output layer. The feed-forward neural network may be seen as a system 

transforming a set of input patterns into a set of output patterns. This type of neural network can 

be trained to provide a desired response to a given input. The network achieves this by adapting 

its synaptic weights during the learning phase on the basis of learning rules. The training of feed-

forward neural networks requires the existence of a set of input and output patterns. This type of 

learning is called supervised learning.  
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PROCEDURES 

 

Through simulation, combinations of key geometric design elements and other critical 

elements were evaluated to assess their impact on vehicle stability when encountering a range of 

frictions between the traveled way and shoulder. These include vehicle type, vehicle speed, 

vehicle path, slope ratio, roadway curvature, and friction of slope ratio. The stability of the 

vehicle will be measured by the vehicle’s roll angle. A rollover is defined as any vehicle rotation 

of 90 degrees or more about any true longitudinal or lateral axis, according to NASS CDS. For 

this study, a fixed superelevation was assumed. After all vehicle rollover scenarios were created 

and data was collected, LS-OPT was used to create metamodels. 

 

Vehicle Dynamics Simulations  

To run simulations on CarSim, several parameters must be specified. Figure 1 shows a 

flowchart on how simulations are created. Figure 2 is an image of the CarSim run control screen. 

From this screen, the vehicle used, the procedure, and the road must be specified. First, the 

vehicle is chosen. In this study, a Class C Hatchback vehicle and a Full-size SUV will be 

utilized. Figures 4 and 5 show images of the two vehicles used. The Class C Hatchback had a 

1270 kg rigid sprung mass and the Full-size SUV had a 2257 kg rigid sprung mass. These masses 

are preset in CarSim and were not changed. The SUV had an ABS breaking system. Next, the 

procedure must be defined. Figure 3 shows an image of the graphic user interface on the 

procedure screen. The driving maneuver was specified in the procedures in CarSim. Plot 

definitions, driver controls, start, and stop conditions were also defined in the procedures. For 

this study, the vehicle has a set initial speed, no braking, and no steering. 8 different speeds were 
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also utilized. The encroachment angle is specified in the miscellaneous data field. The start and 

stop time of the runs is also specified here. Roads with varying slope ratio, and frictions were 

built in CarSim in order to run simulations. Slope ratio ranged from 3:1 to 4:1. The friction of the 

slope ratio ranged from 0.8 to 1.5. The roads used also had two curvatures; a road with a 621.79-

meter radius and a road with an infinite radius. These were achieved utilizing the Road segment 

builder in CarSim. Table 6 shows the variation in design variables utilized in the study. Figures 

10 and 11 show the two roads used in this study. Figures 12 and 13 depict a profile of the roads. 

The side-slopes were intentionally created to be very long in order to be able to see how the side-

slope affected the roll angle and not the ditch. All these parameters (vehicle, procedure, and 

roadway) are specified in the Run Control Screen pictured in Figure 2. After all parameters were 

specified, the math model was run. Plots were then analyzed and data was gathered to be input 

into LS-OPT. 

 

Metamodeling 

 LS-OPT allows the user to structure the design process, explore the design space, and 

compute optimal designs according to specified constraints and objectives. A total of 282 

rollover scenarios were created using CarSim. These were divided into different datasheets by 

vehicle type, road curvature, encroachment angle, and side-slope ratio. To use LS-OPT, the 

metamodel type must first be chosen. LS-OPT offers 7 types of metamodels; polynomial, 

sensitivity, feedforward neural network, radial basis function network, kriging, support vector 

regression, and user defined. After several attempts, Feedforward Neural Network was chosen as 

the best metamodel for this study. Global sensitivities were also calculated. After the metamodel 
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type was chosen and the data was imported, the model was run. Figure 10 shows a picture of the 

LS-OPT user interface. 
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RESULTS 

 

Vehicle Dynamics Simulation Results 

A total of 282 rollover scenarios were created on CarSim. Of these runs, 34% (95 

scenarios) resulted in vehicle rollover. A rollover is defined as any vehicle rotation of 90 degrees 

or more about any true longitudinal or lateral axis, according to NASS CDS. For this study, 

vehicles having a roll angle of 65 degrees or greater were labeled as being rolled over. Of those 

95 rollovers, 57 were SUV rollovers and 38 were Class C Hatchbacks.  More vehicles rolled over 

on the curved road than on the straight road. Also, vehicles were more likely to rollover on the 

3:1 slope than on the 4:1 slope.  

 

Metamodeling Results 

 The raw data from CarSim were separated into datasheets to be input into LS-OPT. Each 

data sheet had a varying vehicle type, a side-slope ratio, roadway curvature, and encroachment 

angle. Figure 11 is a flowchart of how the LS-OPT metamodels are categorized. The two 

metamodels discussed are the surface metamodel, and the Global Sensitivity Analysis. The two 

variables discussed will be the vehicles’ roll angle and the maximum deviation from the 

centerline of the right lane.  The results of the analysis are shown as a response surface in figures 

12 through 43. In all the graphs, roll angle is in degrees, maximum deviation is in meters (m), 

speed is in kilometers per hour (Km/h), and friction factor is dimensionless. All the graphs are a 

function of speed and friction.  

Full Size SUV Metamodels  
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Figures 12 through figure 19 show the various metamodels of the roll angle for SUV’s 

travelling on a curved or straight roads with a 3:1 or 4:1 side-slope at a 15 or degree 

encroachment angle. For all 8 cases, speed had a greater influence on roll angle than did the 

friction of the side-slope. The greatest influence that friction had on a scenario was 14%. 

Rollover scenarios on the curved road tend to rollover at a slower speed than those on a straight 

road. This statement also holds true for rollover scenarios with a 25 degree encroachment angle.  

SUV’s would rollover at a lower speed if the side-slope had a greater friction value.  

Figures 20 through 27 show metamodels of the maximum deviation for SUV’s travelling on a 

curved or straight road with a 3:1 or 4:1 side-slope at a 15 or 25 degree encroachment angle. For 

all 8 scenarios, speed had a greater influence on the vehicle’s roll angle. The highest influence 

that friction experienced was 34%. For a majority of the scenarios, the metamodels surface is 

linear. 3 of the figures experience a spike in the surface at a low friction and high speed. 

 

Class C Hatchback Metamodels 

Figures 28 through figure 35 show the metamodels of the roll angle for Class C 

hatchbacks travelling on a curved or straight road with a 3:1 or 4:1 side-slope at a 15 or 25 

degree encroachment angle. Similar to the SUV metamodels, the cars travelling on a curved road 

rolled over at a slower speed than those travelling on a straight road. The cars also had a higher 

propensity to roll over at a higher encroachment angle.  

Figures 36 through 43 show metamodels of the maximum deviation for car’s travelling on a 

curved or straight road with a 3:1 or 4:1 side-slope at a 15 or 25 degree encroachment angle. For 

all 8 scenarios, speed had a greater influence on the vehicle’s roll angle. The highest influence 
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that friction experienced was 16%. For a majority of the scenarios, the metamodels surface is 

linear. 1 of the figures experienced a spike in the surface at a low friction and high speed.  
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DISCUSSION 

 

The most prominent surface for the roll angle created on LS-OPT was one similar to 

Figure 33. For this surface at a speed less than 100 km/hr., vehicles experienced a higher roll 

angle on a higher friction surface. Metamodels for the SUV’s had a steeper transition into the 

higher roll angle than the metamodels for the car. This indicates that SUV’s are more likely to 

roll over than the class C hatchback. This may be due to the static stability factor mentioned in 

the background information under the fundamentals of vehicle dynamics section. The height of 

the center of gravity for an SUV is usually higher than that of a car. A higher CG height yields a 

smaller static stability factor. The lower the stability factor, the more likely the vehicle is to 

rollover. Vehicles with a 15-degree encroachment angle were less likely to roll than those 

traveling at a 25-degree angle. Most vehicles departing the road at a 25-degree angle were able to 

navigate back onto the road successfully. The vehicles were also more likely to roll over on a 3:1 

slope than on the 4:1 slope. This is due to the steeper slope of the 3:1 slope compared to the 4:1 

slope. It is important to study factors of roadway design since these are factors that can be 

changed to create safer roadway conditions. The maximum deviation from the centerline of the 

right lane was influenced more by the speed than by the friction of the road. The highest 

influence that friction experience was 34% for the SUVs. The surface metamodels were mainly 

linear. As the speed of the vehicle increased, the vehicles deviated further from the road. The 

friction of the road was held constant and the friction for the side-slope varied from 0.8 to 1.5. 

For most cases, as the friction increased the vehicle’s propensity to rollover increased as well. 

This may be from the increase in the resisting forces acting on the tires. Wet road conditions 
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have been studied to better understand and help prevent events such as hydroplaning. Wet roads 

make roads less safe to drive on especially at lower temperatures when roads may freeze over.  

NCHRP Project 17-22 on the Identification of vehicular impact conditions associated with 

serious ran-off road crashes was conducted to identify vehicle types, impact conditions, and site 

characteristics associated with serious injury and fatal crashes involving roadside features and 

safety devices [14].  Police reported crashes are the most common type of crash data available. 

Police officers are required by law to investigate all reportable crashes and complete police 

accident reports. These reports are usually limited in detail. It was concluded that utilizing 

enhanced police level crash reports using investigating officers to collect supplemental data 

could provide more detailed information on the impact conditions of single vehicle, ran-off road 

crashes. To properly estimate the impact conditions of single-vehicle, ran-off road crashes, an in 

depth level of crash investigation is required. Required data would include vehicle trajectory, 

objects struck, vehicle and damage measurements, and driver and occupant injury levels. The 

Federal Highway Administration’s Rollover study [15] and NCHRP Project 17-11 incorporated 

the same data collection procedures used in NCHRP 17-22. Data from NCHRP 17-11 showed 

that 50% of vehicles rolled over [14]. NCHRP 17-22 showed a 50% rollover rates for cars and 

69% for light trucks. These numbers are similar to the current study in that the Full-Size SUV 

was more likely to rollover than the Class C Hatchback. One cannot control how drivers navigate 

the road but posted speeds, and other roadway characteristics such as side-slope and ditches are 

factors that can be modified for safer roads. There is no set roll angle at which all cars will 

rollover since there are many factors that influence the vehicle’s propensity to rollover. It can be 

inferred that as a vehicle’s roll angle increases, the vehicle’s ability to navigate a road safely 

decreases.  
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CONCLUSIONS 

 

The main goal of this research was to enhance our understanding of a vehicles’ 

propensity to rollover using vehicle dynamics simulations instead of crash data. The rollover 

crash is one of the most fatal forms of crashes among passenger vehicles. In 2015, they 

accounted for one third of all occupant fatalities. 48% of crashes occurred in rural roads and 

45% occurred in urban roads. The percentage of fatalities in rollover crashes was highest for 

SUVs, followed by pickup trucks, vans, and passenger cars. Utilizing CarSim and LS-OPT, 

vehicle rollover scenarios and metamodels were built. For vehicle simulations, a fixed 

superelevation of 6% was assumed. Two road curvatures, two side-slopes, 7 different speeds 

and 2 encroachment angles were used to create the simulations. A total of 282 rollover 

scenarios were created on CarSim. It was deduced that: 

• Side-slopes and ditches have been identified as the primary tripping mechanisms 

in single vehicle ran-off road rollovers.  

• Full Size SUV was more likely to rollover than the Class C Hatchback due to its 

static stability factor. This is similar to data from NCHRP 17-22 showing that 

light trucks are more likely to rollover than cars.  

• Speed has a greater influence on the vehicle’s propensity to rollover.  

• Friction held a greater influence on the vehicle’s deviation from the centerline of 

the right lane.  

• The vehicle’s travelling at a 25 degree encroachment angle are more likely to roll 

over than those travelling at a 15 degree angle.  
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It is important to study factors of roadway design since these are factors that can be 

changed to create safer roadway conditions. One cannot control how drivers navigate the road 

but posted speeds, and other roadway characteristics such as side-slope and ditches are factors 

that can be modified for safer roads. For future work, more variables are to be studied and 

implemented to utilize data analytics. Data analytics has shown great promise and usefulness in 

many sciences and industries where large amount of data (Big Data) has to be analyzed for 

trends, sensitivities and probabilistic prediction of desired responses. Advanced algorithms, 

approaches and tools have been developed in response to the exponential growth of data in many 

fields including transportation. Researchers recommend using a data analytics utility to address 

the desired vehicular responses as functions of roadway and roadside variables. The approach 

recommended is to construct extensive database of the desired responses, design variables and 

encroachment conditions via massive simulation runs. Then, a higher order meta-model 

(response surface) is to be constructed. Subsequently, this constructed meta-model can be used 

for probabilistic analyses to develop sensitivities, trends and probabilities via Monte Carlo 

simulation. Ditches, roadway shoulders, and tire-soil interaction are a just a few that can be 

implemented.  

  



 

29 

 

REFERENCES 

 

[1]. National Highway Traffic Safety Administration. “Rural/Urban Comparison of Traffic 

Fatalities.” April 2017. 

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812393. Accessed Jul. 31, 

2017. 

[2]. Kahane, C.J. 2012. “Relationships between fatality risk, mass, and footprint in model 

year 2000-2007 passenger cars and LTVs — final report.” Report no. DOT HS-811-665. 

Washington, DC: National Highway Traffic Safety Administration. 

[3]. Deutermann, W. 2002. “Characteristics of fatal rollover crashes.” Report no. DOT HS-

809-438. Washington, DC: National Highway Traffic Safety Administration. 

[4]. American Association of State Highway and Transportation Officials. Roadside Design 

Guide. Washington, DC. 2011. 

[5]. American Association of State Highway and Transportation Officials. A Policy on 

Geometric Design of Highways and Streets. Washington, DC. 2011. 

[6]. Viner, J. G. 1995. “Rollovers on Sideslopes and Ditches,” Accident Analysis & 

Prevention 27(4): 483–491.  

[7]. Gillespie, T. D. Fundamentals of Vehicle Dynamics. Thomas D. Gillespie. Warrendale, 

PA : Society of Automotive Engineers, [1992], 1992. 

[8]. Huston, R.L. and F.A. Kelly. “Another Look at the Static Stability Factor (SSF) in 
Predicting Vehicle Rollover.” International Journal of Crashworthiness, vol. 19, no. 6, 
01 Nov. 2014, p. 567-575. EBSCOhost, doi:10.1080/13588265.2014.919730. 

 



 

30 

 

[9]. Aarts, L., and van Schagen, I., “Driving speed and the risk of road crashes: A review.” 

Accident analysis and prevention 38.2 (2006):215-224. Web. 

[10]. Kim, J.-H., S. Hayakawa, T. Suzuki, K. Hayashi, S. Okuma, N. Tsuchida. 
“Modeling of Driver's Collision Avoidance Maneuver Base on Controller Switching 
Model.” IEEETransactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 35 
(6), 1131-1143.IEEE Systems, Man, and Cybernetics Society. New York, NY. 2005. 

[11]. Allen, R. and Rosenthal, T., “Requirements for Vehicle Dynamics Simulation 

Models,” SAE Technical Paper 940175, 1994, https://doi.org/10.4271/940175. 

[12]. LS-OPT User’s Manual Version 5.2, Livermore Software Technology 
Corporation, Livermore, 2015. 

[13]. Karayiannis N.B., Venetsanopoulos A.N. (1993) Neural Network 

Architectures and Learning Schemes. In: Artificial Neural Networks. The Springer 

International Series in Engineering and Computer Science, vol 209. Springer, Boston, 

MA 

[14]. NCHRP Project 17-11, “Recovery-Area Distance Relationships for Highway 

Roadsides,” ongoing study conducted by Texas Transportation Institute, Texas A&M 

University System, College Station, Texas.   

[15]. Mak, K. K., and D. L. Sicking, “Rollover Caused by Concrete Safety Shaped 

Barrier,” Final report, prepared for Federal Highway Administration, U. S. Department of 

Transportation, Washington, D. C., September 1988.  

Supplemental Sources Consulted 

Alvarez, A., et al. “Vehicle Dynamics Simulation at Commercial Vehicle Development.” SAE 

technical paper series Vehicle Dynamics Simulation at Commercial Vehicle Development. 1. 

Web. 



 

31 

 

Farmer, Charles M, Richard A Retting, and Adrian K Lund. “Changes in motor vehicle occupant 

fatalities after repeal of the national maximum speed limit.” Accident analysis and prevention 

31.5 (1999):537-543. Web. 

Garcia, R., October 2014, Roadway Design Manual. 

http://onlinemanuals.txdot.gov/txdotmanuals/rdw/rdw.pdf. Accessed July 31, 2017. 

Kimley-Horn and Associates, May 2013, “Traffic Safety Evaluation for SR 147 MP 7 to MP 

14.” http://www.zerofatalitiesnv.com/wp-content/uploads/2015/10/SR-147-Lake-Mead-

Report.pdf. Accessed July 31, 2017. 

Lave, Charles, and Patrick Elias. “Did the 65 mph speed limit save lives?.” Accident analysis 

and prevention 26.1 (1994):49-62. Web. 

Renski, Henry, Asad Khattak, and Forrest Council. “Effect of Speed Limit Increases on Crash 

Injury Severity: Analysis of Single-Vehicle Crashes on North Carolina Interstate Highways.” 

Transportation research record 1665(1999):100-108. Web. 

Rice, R.S. and F. Dell’Amico. “An Experimental Study of Automobile Driver Characteristics 

and Capabilities.” Calspan Report No. ZS-5208-K-1. Calspan Corporation. Buffalo, NY. March 

1974. 

Whitehead, R., et al. “A Study of the Effect of Various Vehicle Properties on Rollover 

Propensity.” SAE Conference Proceedings P, vol. 386, 2004, pp. 205-212. 

Zhen-Feng Wang. et al. “Influence of Road Excitation and Steering Wheel Input on Vehicle 

System Dynamic Responses.” Applied Sciences (2076-3417), vol. 7, no. 6, June 2017, pp. 1-23.  



 

32 

 

Maeda, T., N. Irie, K. Hidaka, and H. Nishimura. “Performance of Driver-Vehicle System in 

Emergency Avoidance.” International Automotive Engineering Congress and Exposition. 

Society of Automotive Engineers. Detroit, MI. 1977. 

CarSim, Mechanical Simulation Corporation, http://www.carsim.com. 

Viano, D. C., and Parenteau, C., Occupant and Vehicle Responses in Rollovers. Warrendale, PA, 

Society of Automotive Engineers, 2004. 

 

 

 

  



 

33 

 

APPENDIX A 

TABLES 

 
Table 1. Texas Fatalities by crash type 
  Crash Type 2012 2013 2014 2015 2016 

Total Fatalities (All Crashes)* 3,408 3,389 3,536 3,582 3,776 

Single Vehicle 55% 54% 54% 52% 52% 

Involving a Large Truck 17% 16% 16% 16% 15% 

Involving Speeding 37% 35% 36% 31% 28% 

Involving a Rollover 30% 30% 31% 27% 27% 

Involving a Roadway Departure 53% 54% 54% 50% 49% 

Involving an Intersection (or 

Intersection Related) 

19% 20% 19% 20% 19% 

	

Table 2. Passenger vehicle occupant deaths in single-vehicle rollover crashes, 1978-2015 

Year Car 
drivers 

Pickup 
drivers 

SUV 
drivers 

All passenger vehicle 
drivers 

All passenger vehicle 
occupants 

1978 3,710 1,140 271 5,323 7,858 
1979 3,610 1,263 329 5,396 8,010 
1980 3,995 1,309 406 5,895 8,673 
1981 3,826 1,291 364 5,687 8,211 
1982 3,222 1,162 312 4,828 6,974 
1983 3,169 1,120 319 4,732 6,951 
1984 3,252 1,226 331 4,964 7,116 
1985 3,076 1,202 360 4,773 6,900 
1986 3,474 1,401 375 5,400 7,954 
1987 3,427 1,535 403 5,528 8,162 
1988 3,675 1,656 447 5,925 8,562 
1989 3,309 1,629 463 5,551 8,060 
1990 3,291 1,563 486 5,477 8,068 
1991 3,092 1,595 470 5,282 7,749 
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1992 2,800 1,492 442 4,848 7,135 
1993 2,664 1,462 494 4,729 7,002 
1994 2,826 1,403 522 4,879 7,268 
1995 3,005 1,556 602 5,284 7,802 
1996 2,932 1,514 720 5,294 7,903 
1997 2,818 1,469 754 5,178 7,712 
1998 2,857 1,545 808 5,328 7,848 
1999 2,866 1,667 999 5,644 8,255 
2000 2,795 1,526 1,035 5,466 8,112 
2001 2,836 1,651 1,063 5,654 8,375 
2002 2,977 1,668 1,224 5,967 8,724 
2003 2,755 1,595 1,331 5,789 8,462 
2004 2,706 1,540 1,490 5,853 8,525 
2005 2,761 1,711 1,478 6,074 8,730 
2006 2,764 1,754 1,555 6,198 8,790 
2007 2,634 1,683 1,516 5,934 8,429 
2008 2,354 1,537 1,398 5,380 7,541 
2009 2,101 1,478 1,273 4,913 6,868 
2010 1,946 1,324 1,226 4,548 6,375 
2011 1,848 1,297 1,218 4,430 6,148 
2012 1,951 1,288 1,287 4,567 6,273 
2013 1,805 1,219 1,112 4,181 5,825 
2014 1,673 1,195 1,185 4,100 5,570 
2015 1,775 1,202 1,205 4,243 5,766 

	

Table 3. Deaths in single-vehicle crashed as a percent of all occupant deaths, 2015 

  

Drivers All occupants 
Single-vehicle 

rollover All crashes 
Single-vehicle 

rollover All crashes 
Number % Number % Number % Number % 

Cars 

Mini 82 15 552 100 102 14 712 100 
Small 538 18 2,985 100 709 17 4,066 100 
Midsize 663 19 3,408 100 928 20 4,726 100 
Large 369 20 1,864 100 497 20 2,542 100 
Very 
large 100 16 626 100 146 15 989 100 
All cars 1,775 19 9,531 100 2,414 18 13,157 100 

Pickups 

Small 304 29 1,043 100 364 29 1,240 100 
Large 599 34 1,787 100 775 34 2,308 100 
Very 
large 253 44 569 100 330 44 748 100 
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All 
pickups 1,202 34 3,523 100 1,532 34 4,467 100 

SUVs 

Small 246 29 855 100 322 29 1,122 100 
Midsize 648 40 1,633 100 934 40 2,354 100 
Large 226 45 504 100 340 44 766 100 
Very 
large 72 42 170 100 112 42 264 100 
All SUVs 1,205 38 3,192 100 1,724 38 4,545 100 

All 
passenger 
vehicles 

All 4,243 26 16,484 100 5,766 26 22,543 100 
	

Table 4. Passenger vehicle occupant deaths in rollover vs. no rollover crashes, 1978-2015 
Year Car occupants Pickup occupants SUV occupants 

Rollover No rollover Rollover No rollover Rollover No rollover 
Number % Number % Number % Number % Number % Number % 

1978 6,422 23 21,476 77 1,989 39 3,114 61 520 61 332 39 
1979 6,416 23 21,102 77 2,222 41 3,201 59 630 67 315 33 
1980 6,862 25 20,420 75 2,263 41 3,226 59 735 65 389 35 
1981 6,541 25 19,865 75 2,177 42 3,059 58 663 65 358 35 
1982 5,477 24 17,667 76 1,935 40 2,844 60 571 66 291 34 
1983 5,381 24 17,420 76 1,939 42 2,721 58 609 66 311 34 
1984 5,525 24 17,957 76 2,048 42 2,836 58 587 66 299 34 
1985 5,219 23 17,857 77 2,044 42 2,848 58 671 66 353 34 
1986 5,996 24 18,884 76 2,371 44 2,963 56 737 65 394 35 
1987 5,997 24 19,118 76 2,598 45 3,197 55 824 65 445 35 
1988 6,227 24 19,598 76 2,762 45 3,327 55 815 62 505 38 
1989 5,784 23 19,485 77 2,680 45 3,336 55 847 62 526 38 
1990 5,695 23 18,718 77 2,713 45 3,319 55 910 61 570 39 
1991 5,443 24 17,295 76 2,593 44 3,265 56 934 61 587 39 
1992 4,944 23 16,880 77 2,479 45 2,997 55 879 63 511 37 
1993 4,865 22 17,252 78 2,415 43 3,196 57 971 63 581 37 
1994 5,112 23 17,510 77 2,393 43 3,211 57 1,102 61 707 39 
1995 5,340 23 17,784 77 2,581 43 3,392 57 1,257 63 749 37 
1996 5,323 23 18,104 77 2,539 43 3,389 57 1,429 65 781 35 
1997 5,143 22 18,019 78 2,479 42 3,443 58 1,516 63 900 37 
1998 5,122 23 17,235 77 2,537 43 3,367 57 1,703 63 1,008 37 
1999 5,174 23 16,945 77 2,699 44 3,396 56 1,901 63 1,118 37 
2000 4,997 23 16,988 77 2,529 42 3,467 58 2,067 62 1,270 38 
2001 5,028 23 16,576 77 2,636 43 3,485 57 2,159 61 1,362 39 
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2002 5,243 24 16,764 76 2,715 45 3,343 55 2,474 62 1,548 38 
2003 4,916 23 16,137 77 2,509 43 3,324 57 2,658 60 1,805 40 
2004 4,781 23 15,779 77 2,519 44 3,197 56 2,949 62 1,823 38 
2005 4,830 24 15,062 76 2,773 46 3,267 54 2,909 60 1,938 40 
2006 4,739 25 14,295 75 2,781 47 3,096 53 2,919 59 2,054 41 
2007 4,400 25 13,363 75 2,660 46 3,098 54 2,929 59 2,046 41 
2008 3,982 25 11,709 75 2,368 47 2,653 53 2,510 58 1,840 42 
2009 3,509 25 10,593 75 2,246 48 2,473 52 2,388 56 1,866 44 
2010 3,194 24 10,210 76 2,057 46 2,386 54 2,340 57 1,790 43 
2011 3,058 24 9,653 76 1,973 46 2,272 54 2,259 55 1,836 45 
2012 3,200 24 9,889 76 1,987 46 2,352 54 2,287 55 1,884 45 
2013 2,984 23 9,720 77 1,916 45 2,299 55 2,057 50 2,041 50 
2014 2,815 22 9,714 78 1,871 44 2,352 56 2,070 50 2,033 50 
2015 2,965 23 10,192 77 1,909 43 2,558 57 2,203 48 2,342 52 
	

Table 5. Center of gravity height, rollover threshold 
Vehicle Type CG Height (inches) Tread (inches) Rollover Threshold 

(G) 
Sports car 18-20 50-60 1.2-1.7 
Compact car 20-23 50-60 1.1-1.5 
Luxury car 20-24 60-.65 1.2-1.6 
Pickup truck 30-35 65-70 0.9-1.1 
Passenger van 30-40 65-70 0.8-1.1 
Medium truck 45-55 65-75 0.6-0.8 
Heavy truck 60-85 70-72 0.4-1.6 
	

	

Table 6. Vehicle dynamics simulation matrix 
Variables Example Conditions 
Ditch Geometry 3:1 and 4:1 
Vehicle Speed (km/h) 65, 71, 80, 90, 110, 120, 130 
Coefficient of Frictions for Tire-Terrain 
Friction (to represent soft soil conditions 
and various surface materials) 

0.8, 0.9, 1.0 , 1.5  
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APPENDIX B 

FIGURES 

 

 

	

Figure 1. CarSim Simulation Flowchart 
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Figure 2. CarSim Run Control Screen 

	
Figure 7. CarSim Procedures screen Figure 3 CarSim Procedures Screen	
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Figure 4 Class C Hatchback	

 

Figure 5 Full-Size SUV	
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Figure 6 621.79 meter radius road with a 3:1 side-slope	

	

Figure 7. Straight road with a 3:1 side-slope 
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Figure 8. Road profile of the 3:1 side-slope 

	

Figure 9. Road Profile of 4:1 side-slope 
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Figure 10. LS-OPT user interface 

 

Figure 11 LS-OPT Categories	
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Figure 12. Surface Metamodel and Global sensitivity analysis: SUV, 3:1 curved road, 15 
degree encroachment angle 
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Figure 13. Surface Metamodel and Global sensitivity analysis: SUV, 3:1 curved road, 25 
degree encroachment angle. 
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Figure 14. Surface Metamodel and Global sensitivity analysis: SUV, 3:1 straight, 15 degree 
encroachment angle 
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Figure 15. Surface Metamodel and Global sensitivity analysis: SUV, 3:1 straight road, 25 
degree encroachment angle. 
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Figure 16. Surface Metamodel and Global sensitivity analysis: SUV, 4:1 curved, 15 degree 
encroachment angle. 
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Figure 17. Surface Metamodel and Global sensitivity analysis: SUV, 4:1 curved road, 25 
degree encroachment angle. 
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Figure 18. Surface Metamodel and Global sensitivity analysis: SUV, 4:1 straight road, 15 
degree encroachment angle. 
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Figure 19. Surface Metamodel and Global sensitivity analysis: SUV, 4:1 straight road, 25 
degree encroachment angle. 
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Figure 20. Surface Metamodel and Global sensitivity analysis: SUV, 3:1 curved road, 15 
degree encroachment angle 
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Figure 21. Surface Metamodel and Global sensitivity analysis: SUV, 3:1 curved road, 25 
degree encroachment angle 
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Figure 22. Surface Metamodel and Global sensitivity analysis: SUV, 3:1 straight road, 15 
degree encroachment angle 
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Figure 23. Surface Metamodel and Global sensitivity analysis: SUV, 3:1 straight road, 25 
degree encroachment angle 
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Figure 24. Surface Metamodel and Global sensitivity analysis: SUV, 4:1 curved road, 15 
degree encroachment angle 
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Figure 25. Surface Metamodel and Global sensitivity analysis: SUV. 4:1 curved road, 25 
degree encroachment angle 
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Figure 26. Surface Metamodel and Global sensitivity analysis: SUV, 4:1 straight road, 15 
degree encroachment angle 
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Figure 27. Surface Metamodel and Global sensitivity analysis: SUV, 4:1 straight road, 25 
degree encroachment angle 
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Figure 28. Surface Metamodel and Global sensitivity analysis: Class C hatchback, 3:1 
curved road, 15 degree encroachment angle. 
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Figure 29. Surface Metamodel and Global sensitivity analysis: Class C hatchback, 3:1 
curved road, 25 degree encroachment angle. 
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Figure 30 Surface Metamodel and Global sensitivity analysis: Class C hatchback, 3:1 
straight road, 15 degree encroachment angle.	
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Figure 31 Surface Metamodel and Global sensitivity analysis: Class C hatchback, 3:1 
straight road, 25 degree encroachment angle.	
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Figure 32 Surface Metamodel and Global sensitivity analysis: Class C hatchback, 4:1 
curved road, 15 degree encroachment angle.	
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Figure 33 Surface Metamodel and Global sensitivity analysis: Class C hatchback, 4:1 
curved road, 25 degree encroachment angle.	
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Figure 34 Surface Metamodel and Global sensitivity analysis: Class C hatchback, 4:1 
straight road, 15 degree encroachment angle.	
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Figure 35 Surface Metamodel and Global sensitivity analysis: Class C hatchback, 4:1 
straight road, 25 degree encroachment angle.	
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Figure 36 Surface Metamodel and Global sensitivity analysis: Class C hatchback, 3:1 
curved road, 15 degree encroachment angle	
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Figure 37 Surface Metamodel and Global sensitivity analysis: Class C hatchback, 3:1 
curved road, 25 degree encroachment angle	



 

69 

 

	

 

Figure 38 Surface Metamodel and Global sensitivity analysis: Class C hatchback. 3:1 
straight road, 15 degree encroachment angle	
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Figure 39 Surface Metamodel and Global sensitivity analysis: Class C hatchback, 3:1 
straight road, 25 degree encroachment angle	
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Figure 40 Surface Metamodel and Global sensitivity analysis: Class C hatchback, 4:1 
curved road, 15 degree encroachment angle	
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Figure 41 Surface Metamodel and Global sensitivity analysis: Class C hatchback, 4:1 
curved road, 25 degree encroachment angle	
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Figure 42 Surface Metamodel and Global sensitivity analysis: Class C hatchback, 4:1 
straight road, 15 degree encroachment angle	
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Figure 43 Surface Metamodel and Global sensitivity analysis: Class C hatchback, 4:1 
straight road, 25 degree encroachment angle	
	

 
 

 


