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ABSTRACT 

The response of a liquid when placed onto a surface depends on the inherent properties of the 

liquid (cohesive forces within the liquid), the texturation of the surface (which can drastically 

increase the inherent wettability of surfaces or provide reentrant curvature), and the surface 

energy at the solid/liquid interface. This dissertation focuses on two main thrusts: (a) the 

separation of viscous oil and water emulsions using an inorganic membrane comprising ZnO 

nanotetrapods embedded on a stainless steel mesh to induce hierarchical texturation and exploit 

the surface-tension-mediated differential wettability of such fluids; and (b) the tuning of surface 

properties including mesoscale texturation and chemical functionalization to altogether prevent 

the wetting of surfaces by either oil or water by suspending liquid droplets in metastable states.  

The properties of the surfaces can be drastically modified by changing the surface roughness on 

the micrometer scale and the nanometer scale, as well as by altering the chemistry of the surfaces 

by functionalizing them with self-assembled monolayers (SAMs). Understanding the influence 

of these parameters is critical for programmably defining the behavior of liquids and their 

emulsions when interacting with such surfaces. The development of methods for precisely 

defining the wettability of surfaces by fluids exhibiting complex rheological properties has 

implications for the separation of heavy oil/water emulsions, the transportation and handling of 

oil, and the cleanup of oil spills in marine environments. This dissertation describes the synthesis 

of such surfaces and membranes, as well as their tunability based on altering the loading of ZnO 

nanotetrapods and their functionalization with amorphous SiO2 or perfluorinated phosphonic 

acid monolayers.  
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CHAPTER I  

INTRODUCTION AND MOTIVATION* 

Although the use of renewable energy is projected to grow, given the sharp forecasted increase in 

worldwide energy demands it is unclear whether such energy vectors will be able to entirely 

bridge the anticipated global energy deficit. Therefore, the continued dependence on traditional 

fossil fuels is expected to persist in the foreseeable future barring transformative breakthroughs 

that much more rapidly accelerate the adoption of clean energy (Figure I.1). In order to meet the 

sharp projected increase in energy consumption, it will be imperative to access unconventional 

petroleum deposits such as the Canadian Oil Sands in Alberta and Saskatchewan. Current 

estimates by the Energy Information Administration (EIA) peg accessible deposits within this 

region at approximately 170 billion barrels, which would allow for 100 years of production while 

maintaining Canada’s current production rate of 4.6 million barrels per day.1 

  

                                                 

* Reproduced with permission from “Modifying Base Metal Substrates to Exhibit Universal Non-Wettability: Emulating Biology 
and Going Further.” O’Loughlin, T.E.; Waetzig, G. R.; Davidson, R. E.; Dennis, R. V.; Banerjee, S. Encycl. Inorg. Bioinorg. 
Chem. 2017, p.1. Reproduced by permission of John Wiley & Sons, Inc. 
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Figure I.1. A chart displaying the projected global energy consumption by source.1 Source: U.S. 
Energy Information Administration (September 2017). 

 
 
 
In order to utilize this abundant energy resource and to ensure energy security, previously 

insurmountable challenges must be addressed, specifically in extracting these deep bituminous 

deposits from the Canadian Oil Sands. The extremely high viscosity of these bituminous deposits 

prevents the use of conventional methods of oil extraction that are used for lighter crude oil in 

West Texas or the Middle-East. In order to extract heavy oils, a variety of enhanced oil recovery 

(EOR) methods have been developed. These methods include the use of chemicals such as 

surfactants and polymers; CO2 injection; and thermal injection methods such as cyclic steam 

stimulation, steam flooding, and the steam-assisted gravity drainage method (SAGD).2,3 All of 

these EOR methods are underpinned by the same essential principle related to the challenging 

rheological properties of heavy oil, requiring that the viscosity of heavy oil be reduced in order 

to allow it to flow and be pumped to the surface for transportation and processing.  
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Cyclic steam stimulation utilizes high-pressure steam injection via a vertical pipeline over a 

period of days or weeks, wherein the steam is allowed to permeate and heat the oil, thereby 

reducing its viscosity. The oil and water are then extracted using the same pipeline that was used 

to inject the steam. In contrast, steam flooding utilizes a continuous supply of steam through 

vertical injection wells to heat and loosen the oil deposits and drive them under a pressure 

gradient towards a second vertical well that is used to extract the water and oil. Such a 

continuous injection process has the additional benefit of using displacement while injecting the 

steam to help drive the oil towards the extraction well.  

SAGD, which has emerged as the pre-eminent extraction method at the current time, goes further 

than other thermal injection methods by including the use of a horizontal injection well to insert 

high-pressure steam for a period of days or weeks, then using a second horizontal production, 

well, which is drilled 3—5 m below the injection well, to collect the complex oil and water 

emulsion (Figure I.2) where it is collected as a result of gravity drainage.  In addition, the use of 

horizontal wells creates a long steam chamber that is parallel to the hydrocarbon deposit, thereby 

increasing the recovery factor (Rf) (defined as the percent of original oil in place that can be 

produced relative to the total deposit) both by increasing the size of the steam chamber as well as 

keeping the viscous oils hot and thereby reducing their viscosity and aiding in their extraction.2,3 
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Figure I.2. Schematic of the steam-assisted gravity drainage method. In this scheme, two 
horizontal wells are drilled where steam is injected from the top pipeline (denoted as the injector 
well), thus creating a steam chamber where the water condenses and the water and oil emulsion 
flows to the bottom pipeline (denoted as the producer well) for extraction. Reproduced with 
permission from Connacher Oil & Gas/jwnenergy.com.4 

 
 
 
While effective in reducing the viscosity of and extracting viscous oil, the SAGD method is beset 

by challenges related to the separation of the viscous oil and water emulsions. Owing to the high 

temperature and mechanical agitation required during the injection of steam and stabilization of 

the steam chambers, as well as the presence of endogenously occurring surfactants such as humic 

acids, SAGD generates complex and stable oil-in-water or water-in-oil type emulsions. 

Separating these emulsions is a critical imperative both for the drying of oil for further 

processing, as well as for subsequent purification of the “produced” water for reuse in the next 

SAGD cycle as dictated by stringent environmental regulations. For all of these challenges 

associated with SAGD, the differences in wetting of water and oil phases may be exploited to 
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help devise separations using fundamental physical principles, specifically understanding and 

utilizing the differential in surface tension between hydrocarbons and water.  

An additional challenge common to all extraction methods relates to the handling and 

transportation of oil and the cleaning of oil-laden surfaces. Once separated, the heavy oil again 

becomes extremely viscous upon cooling. In order to transport and process these liquids 

exhibiting challenging rheological characteristics, large quantities of diluents, typically low 

molecular weight hydrocarbons, must be added. Furthermore, pipelines and railcars used for the 

transportation of oil from the Oil Sands to refineries (typically along the Gulf Coast of the United 

States) suffer greatly from fouling and the loss of residual oils on surfaces, respectively. The 

costs of manual labor and risk to human health associated with oil handling and cleaning of 

railcars and storage containers is yet another factor that cannot be understated. This dissertation 

will focus on (i) the separation of viscous oil and water emulsions utilizing an entirely inorganic 

membranes system of ZnO nanotetrapods embedded onto a stainless steel mesh by exploiting the 

differential wettability of each liquid, and (ii) development and tuning of surface properties such 

as mescoscale texturation and chemical functionalization to prevent the wetting of surfaces by oil 

and water.  

In order to design surfaces that can better handle fluids exhibiting complex rheological behavior, 

it is worthwhile reviewing the toolkit that organisms use to direct the permeation and flow of 

liquids. Nature holds valuable lessons that are tremendously instructive in its ability to separate 

and flow water based on a careful combination of hierarchical texturation and surface polarity. 

The creation of physical analogues of such natural fluid handling systems is the primary focus of 

this dissertation with the added complexity of having to address a high viscosity and low surface 

tension liquid that is relatively seldomly encountered by most surface-based organisms. The 
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technologies described herein have been licensed from Texas A&M University and are being 

piloted by Cenovus Energy, Inc. with production support from the Southern Alberta Institute of 

Technology.  

I.1 Deciphering the Lotus Leaf and Other Lessons in Fluid Dynamics from Nature  

Nature has several examples of intricately structured surfaces designed to mitigate fouling such 

as leaves of the lotus plant (Fig. I.3a),5–7 the legs of a pond skater (Fig. I.3b),8 and the skin of a 

shark.9,10 In each of these examples, the ability to prevent surface fouling has emerged as a 

primary adaptation that has allowed the species to thrive in its specific habitat. A lotus leaf can 

optimize photosynthesis even under low light conditions by ensuring the availability of a large 

exposed surface area by preventing pond debris from accumulating on its surface.7,10 A shark 

maintains hydrodynamic efficiency and thereby its underwater speed advantage by keeping its 

epidermis free from the buildup of surface detritus, thwarting the best attempts of tenacious 

maritime fouling organisms; a characteristic that incidentally has been difficult to replicate in 

ocean-going vessels, which incur tremendous costs in fuel consumption and maintenance as a 

result of fouling. As indicated by the scanning electron micrographs of natural surface 

topographies exemplified in Figure I.3, nature often turns to hierarchically textured topographies 

to obtain non-wettability.11–13 In other words, nature masterfully exploits the high surface tension 

of water by intricately texturing solid/air interfaces to control the extent of spread of water 

droplets on surfaces. Much attention has been devoted to synthetic analogs of surfaces that 

function in much the same way and actively inhibit or strongly induce spread of water 

droplets.9,14,15 The subsequent sections in Chapter I will outline some of the fundamental 

principles underpinning the design of synthetic surfaces based on combinations of texturation 

and surface chemistry. 
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Figure I.3. Examples of micro and nanoscale texturation in nature that give rise to unusual 
wettability. Scanning electron microscopy (SEM) images showing micro and nano texturation 
for A-E) a lotus leaf at different magnifications.16 Adapted with permission from Beilstein-
Institut, Hans J. Ensikat, Petra Ditsche-Kuru, Christoph Neinhuis, and Wilhelm Barthlott, 
Belstein Journal of Nanotechnology, 2011, 152-161. Copyright 2011.  F) Digital photograph of a 
pond skater and SEM image of G) pond skater legs.8 Adapted with permission from Elsevier, 
Bharat Bhusan and Yong Chae Jung, Progress in Materials Science, 2010, 1-108. Copyright 
2011.   

 
 
 
A major challenge that nature has not had to solve is to render surfaces non-wettable to low-

surface tension liquids (such as most liquid hydrocarbons). Nature’s inability to handle high 

concentrations of such liquids, derived almost exclusively from human fossil fuel exploration, is 

manifest in the devastation wrecked by oil spills on flora and fauna alike. Much of this 

contribution will focus on emerging ideas and design principles for tackling this more formidable 

challenge—rendering inorganic surfaces repellant not just towards water but also towards low 
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surface tension liquids—thereby not just emulating biology but establishing function that 

surpasses the capabilities of biological architectures. 

I.2 The Balance of Forces: Some Physical Principles Underpinning Wettability 

When a liquid droplet contacts a solid surface, its (in)ability to wet the surface and the eventual 

shape of the droplet is determined by the balance between interfacial energies at the solid—

vapor, liquid—vapor, and solid—liquid interfaces,26–28 reflecting the interplay between 

intermolecular solution forces and interfacial surface energies. As a liquid spreads onto a surface, 

the solid—vapor interface is replaced by new liquid—vapor and solid—liquid interfaces. The 

balance of different energetic components is illustrated by considering the wetting of a surface 

by a single liquid droplet as illustrated in Figure I.4. The liquid droplet will stop either when it 

reaches its universal energetic minimum (equilibrium) or when it becomes pinned in some sort of 

local minima (a metastable state). The equilibrium contact angle (θe), illustrated in Figure I.4, 

reflects the balance between these interfacial energies and is a directly observable quantity that 

can be measured and used to understand the balance of surface/interfacial energies. Two distinct 

parameters strongly affect the balance of energies: (a) the surface tension of the liquid and (b) the 

chemical compatibility of the surface with the liquid (which is a function of the molecular 

interactions at the interface). The former is essentially a measure of cohesive forces, typically 

intermolecular forces, within a liquid, whereas the latter is a measure of adhesive strength 

between the liquid molecules and the surface. In a qualitative sense, one can immediately 

appreciate that all other things remaining equal, if there are strong intermolecular interactions 

within a liquid, it will be more likely to be repelled and remain “beaded up” as compared to a 

liquid with weaker intermolecular interactions, which will have a tendency to spread on the 

surface.  
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Figure I.4. Contact angle of a liquid droplet illustrating the balance of forces between interfacial 
energies. 

 
 
 
Young developed a formalism relating the spread of a liquid droplet on a (flat) solid substrate 

(assuming conformal wetting) to the balance of interfacial energies as depicted in Figure I.4. At 

equilibrium, the drop can spread infinitesimally by an amount ΔA where a solid–liquid interface 

displaces a solid–vapor interface; the overall change in interfacial energies can be written as: 

𝛥𝐹 = (𝛾ௌ௏ − 𝛾ௌ௅)𝛥𝐴 +  𝛾௅௏𝑐𝑜𝑠𝜃𝛥𝐴         (I.1) 

where γSV, γSL, and γLV represent the interfacial energies at solid—vapor, solid—liquid, and 

liquid—vapor interfaces, respectively.27 At equilibrium, ΔF = 0 and consequently (1) can be 

reorganized to yield the equilibrium contact angle (ϑe):  
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𝑐𝑜𝑠𝜃௘ =
ఊೄೇ ି ఊೄಽ

ఊಽೇ
         (I.2)21,27,29,30 

The observed contact angle (which may or may not be ϑe depending on whether the system has 

reached equilibrium) is thus a measure of the wettability of a surface by a liquid. If the water 

contact angle is <90°, the surface is considered to be wetted by the liquid (and is called 

hydrophilic or oleophilic for surfaces wetted by water or oil, respectively).30,31 If the water 

contact angle is >90°, the surface is considered to (at least partially) repel the liquid. Such 

surfaces are denoted as being hydrophobic or oleophobic for water or oil, respectively. If the 

contact angle can be increased above 150°, such a surface is considered superhydrophobic or 

superoleophobic and will typically strongly repel and even bounce water or oil droplets, 

respectively. Shark skin and lotus leaves (Figure I.3) are examples of naturally occurring 

superhydrophobic surfaces.5–7 However, as briefly noted above, there are no naturally occurring 

examples of truly oleophobic surfaces. 

Let us consider what it takes to make a surface non-wetting towards a liquid. A non-wettable 

surface implies a high contact angle (typically >150°), which would result in the cosine term 

being a negative value in the range of -0.5 and -1.0.  Based on Equation I.2, this necessitates as a 

first condition that the interfacial energy at the solid—liquid interface far exceed the interfacial 

energy of the surface (a solid—vapor term). In other words, a substrate is more likely to repel a 

liquid droplet if it has a low surface energy (γSV is low) and if it is chemically incompatible with 

the liquid droplet under consideration (γSL is high and positive). The second γSL term represents 

interfacial interactions and reflects a balance between disruption of cohesive forces between 

liquid molecules at the interface, the formation of new interactions between the liquid molecules 
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and surficial atoms, and the reorganization of surface bonds. A strongly positive value of the 

latter indicates incompatibility of the liquid and the solid at the interface.  

Water and oil wet surfaces very differently. The distinctive behavior of water and oil originates 

from their vastly different surface tension values. Water has a surface tension of 72.80 x 10-3 

N/m, whereas as an example of a hydrocarbon, hexadecane has a surface tension of 27.47 x 10-3 

N/m at 293 K, which reflects the relative magnitudes of their intermolecular interactions;32 

hydrogen bonding in water is much stronger than London dispersion forces typical of 

hydrocarbons. The latter relatively weak, intermolecular cohesive interactions are much more 

readily disrupted at surfaces and thus oil droplets tend to more readily spread across surfaces. It 

is thus much more difficult to make a surface oil repellant (superoleophobic) as compared to 

making it water repellent (superhydrophobic). For the latter high-surface tension liquid, 

modifying the surface with a species that does not participate in hydrogen bonding interactions is 

usually sufficient to render it hydrophobic. The proclivity of oil to wet surfaces needs to 

specifically be mitigated by modification of the surfaces to expose groups that are incompatible 

with hydrocarbons (commonly fluorous phases) or by adapting an entirely different tack wherein 

the droplets are suspended across pockets of air defined by nanoscale topographies (the Cassie—

Baxter regime) as discussed below.33,34  

I.3 Rough at the Edges: Influence of Surface Roughness on Wettability 

Apart from the simple balance of interfacial energetics dictated by surface tension and surface 

energies outlined in Chapter I Section 1.2, surface roughness can also greatly modify the 

effective interfacial energies by either (i) greatly increasing the effective surface area or (ii) by 

modifying the proportion of the surface across which the solid and liquid are actually in contact. 
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The two models used to describe the effects of surface texturation are the Wenzel and the 

Cassie—Baxter regimes depicted below in Figure I.5 although realistic samples are often 

characterized by mixed regimes.35–37  

 
 
 

 

Figure I.5. A) Wenzel regime, representing equilibrium wettability for a rough surface. B) 
Cassie—Baxter regime representing a metastable suspended state. 

 
 
 
The Wenzel regime describes an observed increase in liquid—solid contact area due to the 

roughening of the surface. In this regime, the liquid droplet still conformally adheres to the 

contours of the surface but clearly the solid—liquid interactions are greatly enhanced as 

compared to a smooth surface. The Cassie—Baxter regime describes a situation in which the 

liquid is in contact with only a small portion of the surface while the other portion sits upon 

pockets of trapped air (akin to a magician laying down on a “bed of nails”).38 The Cassie—

Baxter regime represents a metastable state wherein the liquid droplet is pinned by the features 

on the surface and thus unable to make contact with the grooves. Such a pinned droplet can 
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remain suspended in a metastable state unless there is an external force (such as tilting of the 

substrate) that induces droplet motion. 

Surface roughness can alter the formalism written in Equations I.1 and I.2 since the spread of the 

contact line on a rough surface is best expressed as rΔA, where r is a factor that reflects the ratio 

of the actual surface area to the equivalent surface area of a smooth surface. Assuming conformal 

wetting in the Wenzel regime, Equations I.1 and I.2 are modified by surface roughness to  

𝑐𝑜𝑠𝜃𝑤 =  
௥(ఊೄೇ ି ఊೄಽ)

ఊಽೇ
= 𝑐𝑜𝑠𝜃௘         (I.3)7,26,27 

where θW is the observed contact angle, r is a roughness factor that represents the ratio of the 

actual surface area to the surface area of an equivalent smooth surface, and θe is the equilibrium 

contact angle. Note that this expression is rigorously valid only on a local basis considering 

three-phase contact lines.26–28  

This expression introduces us to an observed contact angle that could be different from the 

equilibrium contact angle. Equation I.3 implies that in the conformal wetting regime, the 

introduction of roughness or texturation cannot change the sign of the wettability but can amplify 

the magnitude of the observed cosθW value. In other words, a surface that is only slightly 

hydrophobic can be rendered superhydrophobic as a result of surface roughness resulting in 

water droplets beading up on the surface; conversely, a surface that is oleophilic can be rendered 

superoleophilic resulting in flash spreading of oil droplets.31 Such differences are further 

amenable to modification by surface functionalization (by modulation of the interfacial 

interactions).  Indeed, the self-cleaning effect exhibited by lotus leaves is based on having a 
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multiscale topography as shown by the scanning electron microscopy images in Figure I.3. Shark 

skin is also characterized by an intricate pattern of structures spanning multiple length scales.  

Additionally, the design of omniphobic surfaces can greatly benefit from architectures that 

suspend liquid droplets above air pockets according to the Cassie—Baxter formalism.38 In this 

regime, the contact angle is modified as follows to an effective contact angle of θc: 

𝑐𝑜𝑠𝜃௖ = 𝑓௦(𝑐𝑜𝑠𝜃௘ + 1) − 1         (I.4) 

where fs is the fraction of the solid that touches the liquid and needs to be as small as possible to 

repel liquid droplets. In this regime, the droplets are suspended between posts protruding from 

the surface.  

Such an architecture is used by numerous insects that have cuticles that can trap air as shown in 

Figure I.6. The trapped air is used by the insect to breathe while it is submerged under water. 

Figure I.6b illustrates the construction of a “plastron” used by various arthropods as reservoirs of 

air bubbles. In this contribution, we attempt to replicate similar topographies using tetrapodal 

ZnO nanostructures. These structures stabilize air pockets analogous to plastrons, enabling them 

to suspend both water and oil droplets across hierarchically textured substrates. It is with these 

fundamental principles that are introduced here in Chapter I that we seek to (i) affect the 

separation of viscous oil and water emulsions with the use of an entirely inorganic membrane 

system comprised of ZnO nanotetrapods which are embedded onto a stainless steel mesh in order 

to exploit the orthogonally wettable property of such liquids (described for a model emulsion at 

room temperature and ambient pressure in Chapter II and for a reconstituted SAGD emulsion at 

high temperatures and pressures in Chapter III), and (ii) modify the surface properties by 

inducing micro- and nanoscale texturation and chemically functionalizing such surfaces to 
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completely prevent wetting by oil and water. The development of such biomimetic (plastron-

like) surfaces for the complete repellence of liquids by using a combination of base metals 

texturized via acid etching, spray coating with ZnO nanotetrapods, and further chemical 

treatments is discussed in more detail in Chapter IV. In Chapter V, these fundamental lessons in 

forming non-wettable surfaces via tuning the surface energy with selected compounds are 

combined with information from hydrophobic materials developed in Chapters II and III by the 

arrangement of ZnO nanotetrapods coated onto stainless steel meshes with additional chemical 

funtionalization. Additionally, Chapter VI explores an alternative metal oxide templating 

technique is explored with the use of commercially available TiO2 nanoparticles patterned into 

an inverse opal structure using a sacrificial polystyrene templating technique, where the 

remaining TiO2 is functionalized and rendered omniphobic. Chapter VI also discusses the 

potential application of both TiO2 nanoparticles and ZnO nanotetrapods as coatings for oil 

pipelines to address the challenging rheological characteristics of heavy oil. 
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Figure I.6. SEM images of the integument of a water-walking insect called Mesovelia (A-D). 
The image depicts intermittent and waxy hairs that trap a plastron air bubble. The air trapped in 
the bubble allows the insect to breathe while underwater. E) Schematic of a plastron geometry 
designed to trap air.39 Adapted with permission from Cambridge University Press, Flynn, M. R.; 
and Bush, J. W. M. The Journal of Fluid Mechanics, 2008, 275-296. Copyright 2008.   

 
 
 

I.4 The Design of Orthogonally Wettable Surfaces 

In order to devise surfaces for use as orthogonally wettable membranes that will selectively wet 

one liquid while repelling another, the fundamental principles of wettability, which have been 

outlined in Sections I.1—I.3, must be carefully considered and deployed. In the case of 

membranes, the differences in the surface tension of oil and water can be exploited to ensure the 

permeation of one phase and the rejection of the other. It is worth noting that the surface tension, 

and thus the tendency of the liquid to spread across the surface or remain beaded up, cannot be 

changed as it is a property inherent to the individual liquid. In contrast, how these liquids interact 

with surfaces can be drastically changed by the texturation (roughening) as well as the surface 

energy of the surfaces. Towards this end, multiscale texturation from a combination of stainless 
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steel meshes (which provides microscale texturation) and ZnO nanotetrapods (which provides 

nanoscale texturation) are used to enhance the inherent wettability of oil and water. Owing to its 

lower surface tension, oil will have a tendency to spread across a surface, and in the case of a 

membrane, such increased wettability will ensure its ability to permeate. In contrast, the greater 

surface tension of water increases its ability to form droplets and prevent permeation. This 

difference in behavior is intensified with increased roughness. As equation I.3 indicates, a 

rougher surface will increase the inherent wettability of a liquid in contact with a solid. To this 

end, increasing the roughness using mesoscale texturation aids in both the permeation of oil as 

well as the rejection of water, creating an orthogonally wettable surface. With this differential 

wetting model, oil can be permeated and essentially “dried” of water for use as a purification 

step before further processing, and water can be separated and removed without containing oil 

essentially cleaning the water for reuse in the SAGD process. This is especially important with 

SAGD extracted emulsions, such as shown in Figure I.7 Here, the complex hierarchical nature 

of the emulsions including the inclusion of multiscale water droplets is noted.  
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Figure I.7. Optical microscopy image of a SAGD emulsion with a water content of ca. 30 vol.%. 
The lighter regions correspond to water droplets and darker solid particles are asphaltene 
residues and silt particles. 

 
 
 
While other methods and membranes also seek to realize the separation of viscous oil and water, 

many of them rely on polymeric materials for de-emulsification.32,33 The extreme heat and 

pressure characteristics of the SAGD method severely constrain or entirely preclude the use of 

such materials as they can be susceptible to failure and fouling. Furthermore, traditional filtration 

methods, which use pore size to control the retention or exclusion of droplets, are unable to 

affect the separation of complex hierarchical emulsions commonly observed in complex viscous 

oil and water emulsions (Figure I.7).34 This is especially true of SAGD emulsions since at high 
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pressures, the droplets in such emulsions can distort and pass through the membranes, 

diminishing their effectiveness.35 Towards this end, the use of inorganic membrane systems can 

provide a mechanically resilient and thermally robust  platform that allows for the separation of 

liquids based on their differentially wettability, thereby mitigating some of the challenges faced 

by conventional polymeric filtration systems.  

In this dissertation, model emulsions of hexadecane and water are separated using inorganic 

membranes comprising ZnO nanotetrapods that are embedded into stainless steel meshes as 

described in Chapter II. An analytical expression is developed that relates separation efficiency 

to length of the interfacial area. Additionally, this separation modality is further explored in 

Chapter III with a parametric study of ZnO nanotetrapod loading, pore size, and temperature, 

performed using a custom-designed hydrothermal system that emulates the high-pressure and 

high-temperature conditions typical of SAGD extraction, while using realistic reconstituted 

viscous oil and water emulsions. The second half of the dissertation focuses on experimental 

realization of ideas of incommensurate wettability to design surfaces that are resistant to wetting 

by both water and oil. 

I.5 Man versus Rust: In Search of Universal Non-Wettability  

Base metals, particularly low alloys of steel underpin the structural infrastructure on which much 

of modern civilization is founded; e.g., bridges, skyscrapers, railroads, and shipping vessels. 

Despite their ubiquity, structural materials are inevitably plagued by corrosion and degradation 

originating from the preferential thermodynamic stability of iron oxide over metallic iron at 

atmospheric temperature and pressure (Error! Reference source not found.). The history of 

human civilization has reflected the constant trade-offs between the functionality of structural 
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metals and their inevitable degradation over time. Definitions of wealth have thus long centered 

on the acquisition of noble metals that are not as easily degraded by time.17,18 However, noble 

metals are not in adequate abundance in the crust of the earth to meet infrastructure needs (nor 

do they have the necessary load-bearing properties). High-alloy steels remain cost prohibitive 

and their application is confined to niche automotive, domestic, defense, and aerospace 

applications. Considerable progress continues to be made on alloy development but modern 

light-metal alloys are plagued by their own set of corrosion issues arising from the presence of 

surface precipitates. Industrial practice is thus still strongly focused on protection of base metals 

by impeding corrosion reactions.17,18 

 
 
 

 

Figure I.8. Classical photographs from the United States Library of Congress depicting rust 
degradation (A) of a vehicle and (B) a bridge in the United States. Reproduced from The Library 
of Congress, Carol M. Highsmith archive. 

 
 
 
Modern coating systems typically incorporate several different modes of active and passive 

corrosion protection systems.17 Barrier protection plays a critical role in inhibiting corrosion 
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processes since corrosion cannot be initiated if corrodant species cannot be transported to 

reactive interfaces. A major imperative for designing liquid repellent surfaces is that they can 

oftentimes be used to protect the underlying metal, thereby greatly expanding the time over 

which such a component can be used industrially. While corrosion in aqueous media, particularly 

high salt water content media where ion transport is facile, represents the bulk of corrosion 

problems, repelling low-surface tension liquids has emerged as an urgent imperative for the vast 

fossil-fuel-based energy infrastructure. Hydrocarbons form emulsions with water droplets and 

such mixtures wet surfaces in a complex manner, oftentimes facilitating the transport of 

corrodant species and accelerating corrosion. Hydrocarbons further dissolve extremely corrosive 

CO2 and H2S species that yield distinctive modes of scale formation and failure. The fouling of 

oil handling equipment and pipelines represents a tremendous burden on the energy 

infrastructure and increases risks of environmental contamination from spills.19,20 The cleaning 

and repair of components used for the storage, transport, and processing of oil carry a heavy 

price tag and repair activities are often undertaken at substantial risk to human health and safety. 

Consequently, there is great interest in the development of omniphobic surfaces that are wetted 

neither by water nor by oil.21–25 Illustrating the design of such surfaces on low-alloy steel 

substrates will be the primary focus of this contribution. Omniphobic surfaces are expected to 

have non-fouling and self-cleaning characteristics, enabling residual liquids and solid debris to 

be washed away with minimal human intervention. 

Such a topography, upon reduction of surface energy as a result of functionalization with 

perfluorinated monolayers, allows for suspension not just of water droplets but also droplets of 

oil. A combination of microscale texturation defined by selective etching, nanoscale texturation 

defined by integration of nanoscale oxide elements, and chemical modification defined by a 
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perfluorinated molecular monolayer renders a low alloy steel non-wetting towards heavy oils. To 

our knowledge, this reflects the first demonstration of non-wettability of a surface towards a 

realistic heavy hydrocarbon fuel. 

I.6 Texturation and Surface Chemistry: Mimicking Biological Surfaces to Obtain Universal 

Non-Wettability 

As discussed in the preceding sections, the behavior of a liquid droplet upon being placed on a 

substrate is predicated on the surface tension of the liquid (as determined by the cohesive forces 

between the liquid molecules), the microscale and nanoscale texturation of the surface (which 

can amplify intrinsic wettability or provide reentrant curvature to surfaces), as well as the 

specific surface energy at the liquid/solid interface.21,27,29,30 Consequently, attempts to rationally 

design omniphobic surfaces have sought to examine the most optimal texturation and surface 

chemistries necessary to endow universal non-wettability.21–25,40,41  

While bioinspired successes that deliver universal non-wettability have been realized through 

various approaches, current solutions do not meet the needs of the energy infrastructure where 

extreme temperature, pressure, stress, and flow variations as well as highly corrosive 

environments (with high CO2 and H2S concentrations) are typical.19,20,42,43 Without attempting to 

be exhaustive, we overview a cross-section of approaches that have thus far been used to prepare 

omniphobic surfaces. While much mechanistic understanding has derived from studies of 

lithographically patterned substrates with variably spaced pillars, such substrates are complex to 

fabricate and are not viable at any realistic scales.21,33 As an alternative, polymer derived 

architectures wherein microscale topography is defined by electrospinning or through the use of 

woven fabric substrates or electrospun fibrous mats are much more readily and inexpensively 
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prepared but are unable to withstand high temperature and stress gradients24,33,44 and are further 

mechanically pliant and thus cannot be deployed in applications requiring high fluid flow (and 

are thus unviable for applications such as tanker trucks, railcars, and pipe interiors). As a few 

notable examples of this latter approach, McCarthy et al. have altered the topography of woven 

polyester fabrics to modulate their wettability.45 The substrate fibers from the fabric provide 

microscale roughness and are further modified via a facile silicone grafting procedure to tune the 

surface energy and endow hydrophobic characteristics.46 Similarly, Liu et al. have roughened 

cotton fabrics through a multistep chemical treatment protocol to define microscale texturation 

and then proceeded to embed poly(butylacrylate)-modified carbon nanotubes within the fabrics 

to provide nanoscale roughness and lower the surface energy.47  

Alternative approaches to the use of woven fibers or etching of metals that have emerged in 

recent years include the layer-by-layer deposition of polymeric and nanocrystalline layers and 

the stabilization of complexes of polyelectrolytes and fluorosurfactants.  For instance, Bhushan 

and co-workers have reported a polyelectrolyte assembly incorporating SiO2 nanocrystals with 

oriented fluorosurfactants as the top layers.22 These films demonstrate oleophobic but 

hydrophilic behavior with good resistance to wear and particulate contamination. However, the 

use of polyelectrolytes gives rise to similar thermal degradation issues as noted above for woven 

polymer substrates. Furthermore, adhesion of polyelectrolytes to steel represents a substantial 

challenge under operating conditions.  

For viable largescale applications, the coated surfaces need to be mechanically robust, formable, 

and weldable. Such a consideration brings to the fore metallic substrates. Microscale and even 

nanoscale texturation can be defined directly onto metallic substrates by selective etching. The 

fundamental basis for this approach is the accumulation of dislocations at the surfaces of 
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structural metals, which enable differential pitting corrosion wherein a corrosion cell is 

established across intact and highly strained regions of the metal surface.48–50 As an example of 

this approach, multiscale texturation has been defined within Al substrates by dual etching, first 

using HCl to define microscale texturation and then a mix of HNO3 and Cu(NO3)2 to define 

nanoscale topographies. The substrate is then functionalized with a perfluorinated siloxane to 

obtain a mechanically stable omniphobic surface.40  

This dissertation is structured across six chapters. In Chapter I we introduce challenges 

associated with the construction of differentially wettable as well as omniphobic surfaces. We 

further outline the motivation for developing a toolkit to handle complex rheological fluids to 

facilitate extraction, handling, and processing of viscous oil. The development of differentially 

wettable surfaces is first explored using a model hexadecane and water emulsion in Chapter II. 

Next, the task of separating real-world emulsions under realistic temperature and pressure 

conditions is confronted in Chapter III. 

In Chapter IV we will explore the texturation of A36 steel substrates with the texturation induced 

with acid etching and subsequent deposition of ZnO nanotetrapods. These surfaces are further 

evaluated as a function of additional functionalization in order to tune the extent of (non)-

wettability of water and oil. Next, Chapter V demonstrates a combination of texturization of 

stainless steel meshes and ZnO tetrapods (similar to the membranes of Chapters II and III), with 

the additional use of the downselected chemical treatments developed in Chapter IV. This 

chapter outlines general design principles extrapolating from natural examples, and illustrates the 

successful design of a “plastron” architecture that traps air in a manner reminiscent of a cuticle 

coated with hairs that serves as a respiratory reservoir for aquatic insects. Alternative approaches 

to generate surfaces not wetted be either oil or water include texturation of flat steel substrates 
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utilizing colloidal crystal templating of TiO2 nanoparticles.55,56 This is performed by combining 

the TiO2 nanoparticles with polystyrene spheres that act as a sacrificial template, as further 

discussed in Chapter VI. This process is designed to be a viable method for real-world 

applications as it circumvents the need for additional etching or patterning steps, but rather only 

requires application via a simple spray coating procedure. The patterned TiO2 nanoparticles are 

further functionalized with perfluorinated phosphonic acid to reduce the surface energy, thereby 

yielding surfaces that demonstrate the efficacious gliding of both water and viscous oil.  
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CHAPTER II  

ORTHOGONAL WETTABILITY OF HIERARCHICALLY TEXTURED METAL 

MESHES AS A MEANS OF SEPARATING WATER/OIL EMULSIONS* 

II.1 Outline 

The removal of submicrometer-sized oil droplets from water remains a key challenge in 

achieving the separation of emulsions and has emerged as an urgent imperative given the 

increasing use of unconventional extractive processes such as steam-assisted gravity drainage. In 

Chapter II, we demonstrate that a substrate with hierarchical texturation shows pronounced 

differences in the wettability of water and hexadecane, thereby facilitating the separation of these 

two disparate liquids at room temperature and pressure. The multiscale textured substrates are 

assembled using a facile and readily scalable process wherein ZnO nanotetrapods prepared by 

high-temperature treatment of zinc metal are spray-deposited onto a stainless steel mesh with 

micron-sized features. Separation efficiencies well over 99% are routinely accessible at room 

temperature and pressure by simply flowing emulsions across these hierarchically textured 

surfaces. A plot of the separation efficiency as a function of effective path length shows a 

Boltzmann dependence that can be rationalized as a two-state probabilistic function for oil 

droplets within the emulsion encountering the hierarchically textured surface. The separation 

efficiency can further be tuned by altering the solid—liquid interfacial energy by surface 

functionalization with silane monolayers.  

                                                 

*  Reproduced with permission from “Orthogonal Wettability of Hierarchically Textured Metal Meshes as a Means of Separating 
Water/Oil Emulsions.” O’Loughlin, T.E.; Martens, S; Ren, S.R.; McKay, P.; and Banerjee, S.  Advanced Engineering Materials, 
2017, 19 (5), 1600808. Reproduced by permission of John Wiley & Sons, Inc. 
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II.2 Introduction  

Despite the recent emergence and increasing practical feasibility of renewables, the 

overwhelming reliance of modern economies on conventional sources of energy cannot be 

understated. Meeting the global demand for fossil fuels requires novel drilling methods and 

accessing unconventional geological deposits. The high-pressure and high-temperature injection 

of steam is often used to loosen and extract sub-surface bituminous residues using methods such 

as steam-assisted gravity drainage. [1,2] As noted in Chapter 1, the extracted fluids are emulsions 

of hydrocarbons and water that at various stages of processing can be termed water-in-oil or oil-

in-water emulsions. Bringing about the efficacious separation of the water and oil components of 

the emulsions, particularly the separation of emulsified oil, is imperative both for increasing the 

efficiency of the extractive processes as well as to meet regulatory requirements for the treatment 

of wastewater. [3] Achieving the separation of emulsions is further critical for addressing oil spills 

within marine environments. [4] Given increasing industrial emphasis on tapping unconventional 

deposits and an increasingly stringent regulatory environment, much recent attention has focused 

on the development of membranes and de-emulsification methods for realizing water/oil 

separation based on differential affinity, density, flow characteristics, and wettability. [4–11] 

However, many such methods make use of polymeric systems that have limited viability at the 

high temperatures and pressures typical of most extractive processes and further tend to be 

susceptible to degradation and fouling. In Chapter II, we demonstrate an entirely inorganic 

system for separating the water and oil components of emulsions based on the differential 

wettability of the two liquids on a hierarchically textured metal mesh surface prepared by 

integrating nanostructured ZnO tetrapods onto microstructured stainless steel meshes. We further 

develop this design in Chapter III with the use of real SAGD emulsions. 



 

32 

Conventional filtration systems struggle to separate realistic emulsions that contain a variety of 

different droplet sizes of one phase dispersed within the second phase. Such systems are 

typically engineered to separate oil and water droplets based on droplet size differentials. 

However, this imposes the requirement that the pore size of the membrane has to be smaller than 

the smallest droplet size contained within the emulsion and is particularly a challenge for 

submicron size droplets of emulsified oil. At high-pressures, the droplets can be deformed and 

can break through the membrane substantially degrading the separation efficiency. [7,9,10,12] 

Membranes with submicron-sized dimensions are often used to mitigate this problem but require 

unrealistically high-pressure gradients and yield extremely low liquid fluxes. [9]  

The high surface area of nanotextured surfaces results in the manifestation of remarkable new 

wettability phenomena that can be deployed to obtain the separation of dissimilar liquids.  [9,13–17] 

In particular, nanotexturation can greatly amplify the intrinsic wettability of a surface both in the 

conformally wetted Wenzel and suspended Cassie—Baxter regimes. [14–17] The effect of 

nanotexturation on the wettability of different liquids can be quite dissimilar depending on the 

intrinsic wettability of the surface by the liquid, which in turn depends on the solid—liquid 

interfacial energy and thus the specific modes of intermolecular interaction. Consequently, 

intrinsic differences in wettability can be greatly amplified by hierarchical texturation. In this 

work, we demonstrate the separation of a water/hexadecane model emulsion based on such 

orthogonal wettability. The vastly different surface tensions of the two liquids (at a temperature 

of 293K, water has a surface tension of 72.80 x 10-3 N/m, whereas hexadecane has a surface 

tension of 27.47 × 10-3 N/m) [18] and their contrasting modes of interaction with nanostructured 

ZnO facilitate their effective separation using a modified metal mesh membrane. Remarkably, 

the emulsions are efficaciously separated at room temperature and pressure based on wettability 
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differences alone by dint of the hierarchical multiscale texturation that arises from the 

combination of ZnO nanotetrapods and microscale features of the underlying meshes without 

any need for lithographically defining specific morphologies. The use of earth-abundant low-cost 

frameworks that are readily scalable (units of up to 5″ × 5″ have been developed in our 

laboratories) suggests the potential of these systems as viable membranes for the large-scale 

separation of emulsions.   

II.3 Experimental Details 

II.3.1 Materials 

A facile and scalable method for rapidly generating ZnO tetrapods was developed based on the 

rapid air oxidation of Zn foils. [19] Specifically, Zn metal sheets (99% purity on metals basis, 

McMaster-Carr) were cut into smaller substrates that were ca. 3 mm × 3 mm in size. The Zn 

substrates then placed onto a stainless steel mesh and placed within a 1″ diameter quartz tube, 

which in turn was placed within a tube furnace (Lindburg/BlueM). [20] The substrates were heated 

at a rate of 43°C/min with the ends of the tube furnace open to achieve a maximum temperature 

of 950°C. The samples were recovered after heating for 1 min at this temperature. The resulting 

highly crystalline nanostructures were collected and dispersed in 2-propanol (99.9%, Fisher 

Scientific) to obtain dispersions with a concentration of 20 mg/µL. Next, the dispersion was 

spray coated onto 316 stainless steel mesh with a pore size of ca. 84 µm (McMaster-Carr) using 

a Master airbrush with a nozzle diameter of 0.5 mm with the help of an air compressor at an 

output pressure of 45 psi. The final coated meshes had a ZnO loading of ca. 3.5 mg/cm2. For all 

of the coating processes, the substrates were placed on a heating plate with a surface temperature 

of ca. 120°C. 
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The mechanical resilience of the ZnO nanotetrapod coatings under mechanical friction or fluid 

flow is a critical imperative. An amorphous SiO2 layer has been constituted at the interface 

between the ZnO nanotetrapods and the native oxide of the metal meshes by utilizing a modified 

Stӧber method. Tetraethylorthosilicate (TEOS) is used as the precursor in this process and is 

applied from a solution containing 80 vol.% ethanol, 18.5 vol.% deionized water (ρ = 18.2 

MΩ/cm), 1 vol.% of 30% aqueous solution of NH4OH, and 0.5 vol.% TEOS (99.999+% metals 

basis, Alfa Aesar). The TEOS layer is sprayed while holding the samples at a temperature of 

120°C in order to help facilitate the formation of the siloxane bonds to the hydroxyl groups at 

ZnO surfaces as well as the surfaces of the native oxides of the metal mesh. An applied volume 

of 3.9 µL/cm2 was found to be optimal to facilitate adhesion. 

To alter the wettability of the ZnO-tetrapod-coated meshes, their surfaces were functionalized by 

tethering silanes to constitute monolayers with pendant fluorinated or hydrocarbon chains. 

Briefly, stock solutions of 2 vol.% of the desired silane were prepared by combining 400 µL of 

deionized water (ρ = 18.2 MΩ/cm), 400 µL of 28—30% ammonium hydroxide, and 400 µL of 

the appropriate silane, then diluting to 20 mL using n-butanol. The silanes, heptadecafluoro-

1,1,2,2-tetrahydrodecyl)trimethoxysilane and n-octadecyltrichlorosilane, were purchased from 

Gelest Inc. The substrates were immersed in the butanol solutions for 1 h, washed with copious 

amounts of n-butanol to remove physisorbed silanes, and then allowed to dry before testing. 

II.3.2 Characterization 

The morphology of the ZnO tetrapods was evaluated using a JEOL JSM-7500F field emission 

scanning electron microscope (FE-SEM) equipped with a high brightness conical FE gun and a 

low aberration conical objective lens. An accelerating voltage of 2—5 kV was used to image the 
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nanostructures. Phase identification was performed by powder X-ray diffraction (XRD) using a 

Bruker-AXS D8 Vario X-ray powder diffractometer with Cu-Kα radiation (λ = 1.5418 Å). 

Raman measurements were acquired with 514.5 nm laser excitation from an Ar-ion laser using a 

Jobin-Yvon Horiba Labram HR instrument coupled with an Olympus microscope. All contact 

angles (advancing and receding) were measured using a CAM 200 Optical Goniometer. For all 

experiments, a drop size of 10 μL was used to apply the test liquids. A mechanical pipette was 

used to apply doubly distilled and deionized water; a manual micropipette was used to apply 

hexadecane. All contact angles in this work are a result of at least three averaged values. To 

evaluate the adhesion of the coatings with and without TEOS, American Society for Testing of 

Materials (ASTM) tests D3359 and D2197 were implemented on ZnO nanotetrapods embedded 

onto A36 low carbon steel. In ASTM D3359, a grid was scribed onto the coated substrate and 

tape from the ASTM kit was applied and subsequently removed. The area under evaluation was 

then examined for the removal of coating material from the surface and classified from 0B to 5B 

as prescribed by the ASTM method. In ASTM D2197, a standardized stainless steel u-shaped 

hook was lowered onto the surface of the A36 low carbon steel surfaces and then the substrate 

was dragged while the u-shaped hook scraped across the substrate. The hook then had additional 

weight added to it and was scraped along a new pristine portion of the substrate until the force on 

the u-shaped hook was great enough to scrape though the coating and expose bare A36 steel. 

This value was recorded and noted as the failure point of the coating. If no additional weight was 

needed to penetrate the coating, the failure point was noted as zero grams. 

II.3.3 Separations 

The emulsions were generated by combining 15 mL of hexadecane (99%, Sigma-Aldrich) and 15 

mL of deionized water and shaking vigorously until the two phases were completely mixed. Blue 
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food dye was added to the water for clarity (propylene glycol, FD&C blue1 and red 40, 

propylparaben, McCormick).  

The experimental apparatus for the separation of water/hexadecane emulsions was custom 

designed and is discussed in further detail below. The fabricated design consists of a mount to 

attach the stainless steel mesh, and two separate containers to collect both the roll-off fraction as 

well as the liquid permeating through the mesh. All oil and water volumes were measured with a 

graduated cylinder. Multiple sample replicates (at least triplicates in each case) were performed 

and the reported values indicate the standard deviations for each effective length. Over 100 

membranes have been used to separate water and oil components of emulsions. 

II.4. Results and Discussion 

A fundamental challenge associated with the separation of emulsions includes the presence of 

submicron-sized droplets that can be difficult to separate based on density differentials or size 

exclusion. Differential wettability poses an attractive alternative for separating the component of 

emulsified oil and indeed nanoscale texturation can substantially modify such wettability.  [11] 

Most membranes developed thus far to exploit nanoscale texturation are based on patterned 

polymeric nanostructures that are susceptible to degradation at high temperatures and pressures 

and furthermore often require complex patterning processes that can be cost prohibitive for 

deployment at scale. Ceramics and metals are resistant to high temperatures and pressures and 

can withstand corrosive environments. Their surfaces can furthermore be readily functionalized 

to tune interfacial energies and indeed ceramic and metal surfaces and membranes have been 

found to exhibit interesting wettability phenomena upon nanotexturation. [13,21]  
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The use of ZnO nanotetrapods is motivated by two central hypotheses: first, that the sharp 

protruding “arms” of the tetrapods will inevitably give rise to nanoscale texturation of any 

surfaces incorporating these structures irrespective of the specific orientation of nanostructures, 

thereby mitigating the need for precise lithographic patterning; and secondly, the irregular 

geometries of these nanostructures precludes close-packing and will inevitably yield a porous 

network that will allow for permeation of a liquid that wets the surfaces of these structures (Fig. 

II.1). Indeed, Figures II.2A—C indicate the hierarchical porosity defined by the interconnected 

network of ZnO nanotetrapods that span across the micron-sized pores of the metal meshes. The 

magnified SEM images in Figures II.2C and D indicate that the nanotetrapods define a “bed of 

nails”. The Raman spectrum depicted in Figure II.2E is consistent with stabilization of hexagonal 

ZnO and the symmetry assignments of the modes are indicated in this figure. [20,22] The XRD 

pattern of the ZnO tetrapods depicted in Figure II.2F can be indexed to Joint Committee on 

Powder Diffraction Standards (JCPDS) # 36-1451, indicating the formation of phase-pure ZnO 

in the hexagonal zincite phase.  
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Figure II.1. A schematic representation illustrating the fabrication of surfaces for separating 
water/oil emulsions. The generation of the ZnO tetrapods and their subsequent coating onto 
meshes is depicted. The obtained membranes strongly repel water while allowing for rapid 
permeation of oil droplets, providing a means for separating the water and oil constituents of 
emulsions under ambient flow conditions based entirely on differential wettability. 
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Figure II.2. (A-D) SEM images depicting the multiscale textured metal meshes modified by the 
deposition of ZnO nanotetrapods at various magnifications. (A) Several pores of the metal mesh 
with spray-deposited ZnO nanotetrapods; (B) Magnified view of a single stainless steel pore 
wherein interconnected ZnO nanotetrapods define multiscale porosity; (C) Magnified view of a 
nanotetrapod network and the resulting pore structure; (D) a single free-standing ZnO tetrapod. 
(E) Raman spectra and (F) XRD pattern acquired for ZnO nanotetrapods. The XRD pattern also 
indicates the reflections of the hexagonal zincite phase. 
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Upon initial spray deposition of the ZnO nanotetrapods onto the meshes, the nanostructures show 

rather poor adhesion. However, as indicated in Figure II.1, in order to improve the adhesion of 

the nanotetrapods on the stainless steel meshes, an amorphous SiO2 shell is deposited by reaction 

with silanols obtained by the base-catalyzed hydrolysis of TEOS. The SiO2 layer forms siloxane 

bonds between the surface hydroxyl groups of the nanotetrapods and the native oxide on the steel 

surfaces and imparts mechanical resiliency to the system. Figure A.1 shows the results of ASTM 

3359 testing of the samples assessed on a standardized scale of 0B to 5B with higher numerical 

figures representing better adhesion. In the absence of TEOS, the as-deposited coating is 

removed from almost every region of the scribed grid with a rating of 0B. However, upon the 

application of a SiO2 coating, as schematically illustrated in Figure II.1, the highest rating of 5B 

is obtained. Notably, the tests have been performed on flat and clean steel substrates and thus 

mesh substrates with a greater degree of surface roughness are expected to provide a greater 

extent of adhesion. Figure A.1B indicates that the SiO2 deposition results in a 450—550 g 

adhesion strength in ASTM D2197 scrape adhesion tests as compared to 0 g for tetrapods spray 

deposited without a TEOS layer. 

The wettabilities of the hierarchically textured surfaces towards water and hexadecane have been 

characterized by water contact angle measurements. The hydrophobic nature of the metal mesh 

surfaces is amplified by the deposition of ZnO nanotetrapods (from 132 ± 3° to up to 154 ± 1°, 

Figs. II.3A and B), suggesting the manifestation of “bed of nails” Cassie—Baxter effect as a 

result of the hierarchical texturation defined by the deposition of nanotetrapods. Indeed, the 

manifestation of superhydrophobicity is further reflected by the rolling off of water droplets, akin 

to the “lotus leaf” effect when the substrates are tilted. [17,23] Video A.1 demonstrates the 

strikingly amplified hydrophobicity of the samples after deposition of the ZnO nanotetrapods. 
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Intriguingly, the wettability of hexadecane on this surface provides a study in contrasts. The 

intrinsic high wettability of hexadecane on the metal mesh surfaces is greatly enhanced upon 

spray deposition of the ZnO nanotetrapods. Figures II.2C–E illustrate the complete (flash) 

spreading (to a contact angle of 0°) and permeation of hexadecane within 0.5 s (see also Video 

A.1, Supporting Information). The sharply differing wettability of the hierarchically textured 

surface towards water and oil, superhydrophobic non-wetting of water (inset to Figure II.4I) and 

flash spreading of hexadecane, suggests a facile means of achieving the separation of water/oil 

emulsions as clearly illustrated in Video A.1.  

 
 
 

 

Figure II.3. Contact angles measured for (A) water on the stainless steel mesh and (B) water on 
the mesh coated with ZnO nanotetrapods. C—E) Hexadecane exhibits flash spreading to a 
contact angle of 0° on the coated mesh substrate as indicated by the sequences of images 
acquired at 0, 0.24, and 0.48 s. 
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Figure II.4. (I) Schematic illustration of the experimental configuration deployed for water/oil 
separation. The inset depicts a digital photograph of water droplets (with a blue dye) that do not 
wet a stainless steel mesh with a spray-deposited coating of ZnO nanotetrapods. (II) A) 1:1 
emulsion of water and hexadecane where the aqueous phase has been colored blue by inclusion 
of a blue dye; the subsequent images show the roll-off fraction (left) and permeate fraction 
(right) in each instance after effective separation lengths of (C) 21 cm; (D) 35 cm; (E) 60 cm; (F) 
130 cm; and (G) 200 cm. In each instance, the emulsified hexadecane and water mixture is 
allowed to settle after the experiment prior to taking a digital photograph. 

 
 
 
Figure II.4I schematically illustrates the experimental configuration used to examine the 

separation of 1:1 (v/v) water/hexadecane emulsions. Given the wettability of the hierarchically 

surface towards hexadecane, the permeate fraction is entirely hexadecane as apparent from visual 

observation and verified colorimetrically by the absence of a discernible spectroscopic signature 

of the blue dye (Fig. II.4II). In contrast, the fraction that “rolls off” the surface is enriched in 

water with the specific water to oil ratio dependent on the effective length of the substrate. It is 

worth noting that given the oleophilicity of the substrate, during the initial use of the membrane, 

hexadecane is adsorbed within the pores but this represents a one-time loss. The separation 

efficiency is not degraded by the adsorption of hexadecane in the pores and complete recovery of 

water and oil fractions is observed in subsequent cycles. The amount of adsorbed hexadecane is 

deduced to be 0.053 mL ± 0.009 mL of oil lost per square centimeter of the membrane based on 
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the recovered fractions. The specific flux rate depends on various parameters such as the 

temperature, mesh size, operational temperature, operational pressure, and design of the 

separation process. While near complete separation is evidenced here as a proof of concept, a 

realistic separation system can allow for higher flux rates by implementing a multi-level 

separation design.  In order to quantify the efficacy of the separation process, the following 

figure of merit is used to define the extent to which the roll-off fraction is enriched in water 

under these conditions (ambient temperature, pressure, tilt angle of ca. 5°): 

𝑊𝑎𝑡𝑒𝑟 𝑝𝑢𝑟𝑖𝑡𝑦 =  
௏ೢ

௏ೃ
 ×  100%        (1) 

where VW is the volume of water and VR is the total volume (oil and water) of the roll-off 

fraction. Since the starting emulsion is a 1:1 mixture of hexadecane and water, the initial water 

purity of all the samples is 50%. Figure II.5 plots the water purity of the roll-off fraction (and 

thus the separation efficacy) as a function of the effective sample length indicating a clearly 

sigmoidal shape. A sample length of ca. 200 cm yields a roll-off fraction that is >99% water. The 

efficacy of separation as a function of path length is described very well by a sigmoidal 

Boltzmann function of the type: 

 𝑊𝑎𝑡𝑒𝑟 𝑝𝑢𝑟𝑖𝑡𝑦 =
஺భି஺మ

ଵା௘
(೐೑೑೐೎೟೔ೡ೐ ೗೐೙೒೟೓షೣబ)

೩ം

+ 𝐴ଶ       (2)  

where the fitted parameters are A1 = 50%; A2 = 99.30%; x0 = 27.92 cm; and Δγ = 9.9. The 

constant term A2-A1 denotes the range of the fit in terms of water purity (from 50—99.3%), x0 

represents the center of the fit (in other words, the water purity is 75% at 27.92 cm), and Δγ is a 

term that captures the extent of orthogonal wettability and is proportional to the interfacial 

energy difference (γhexadecane-surface — γwater—surface).  
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Figure II.5. (A) Plot of water purity (as defined in the text) as a function of the effective length 
of the hierarchically textured substrate. The plot is nicely described by a Boltzmann fit as 
discussed in the text. (B) Efficacy of separation (water purity of roll-off fraction) at an arbitrary 
path length of 21 cm for different surface treatments. The blank steel mesh is contrasted to the 
mesh functionalized with heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane and n-
octadecyltrichlorosilane. 

 
 
 
While the specific parameters deduced from this fit are sensitive to the separation conditions 

deployed here (temperature, pressure, tilt angle, viscosities of liquids), the Boltzmann shape is 

generalizable and provides insight into the phenomena observed here. The magnitudes of the 

latter two numbers captures the efficacy of the surface in separating water and oil. The 27.92 cm 

metric represents the length of the substrate required to obtain a 50% separation efficiency under 

ambient temperature and pressure; similarly, the higher the value of Δγ, more efficacious the 

surface at separating water and oil. Such a Boltzmann fit can be rationalized in physical terms 

considering a two-state probabilistic function wherein an oil droplet within an emulsion can 

adopt one of two states: either permeating through the hierarchically textured mesh or continuing 

to propagate along the length of the mesh. The probability of permeation is increased with 

increasing path length given the energetic preference for wettability of hexadecane. In other 
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words, permeation corresponds to the low-energy state, whereas propagating along the path is 

the high-energy state that is nevertheless accessible as a result of the kinetic energy that the 

droplet possesses. The Boltzmann shape is analogous to an adiabatic system of particles that can 

access discrete energy states wherein the states are populated depending on the temperature.[24] 

This description is remarkably useful in describing energetically driven partitioning in systems 

such as folded and unfolded proteins, open and closed ion channels,[24-26] and coiled and uncoiled 

DNA. In this system, depending on the energy of the oil droplet and the interfacial energy, the 

droplet can permeate the membrane or propagate along its length; the Boltzmann shape 

establishes the discrete population distribution. The continued removal of hexadecane gives rise 

to an open two-phase system, which drives the system towards increasing water purity. The 

samples have been reused in excess of 12 times without degradation or failure. 

Indeed, such an analysis is supported by the data in Figure II.5B, which contrasts the purity of 

the roll-off fraction (and thus the separation efficiency) for variously functionalized samples at a 

path length of 21 cm. Functionalizing the surfaces with octadecyltrichlorosilane results in 

pendant octadecyl groups, thereby increasing the hydrophobicity and oleophilicity of the 

substrates (and increasing the value of Δγ). The separation efficiency is seen to be increased by 

>6% for the same path length. However, functionalizing the surfaces with a fluorinated silane, 

heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane, renders the surface simultaneously 

more hydrophobic and more oleophobic, and by reducing Δγ decreases the separation efficiency 

(note that functionalization does not alter the hierarchically textured morphology as indicated by 

the SEM images in Figure A.2 of the Supporting Information). Upon functionalization of the 

surfaces with a 2 vol.% solution of heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane, 

the surface is rendered omniphobic and no separation is possible.  
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The underlying principle of the separation achieved here is orthogonal wettability of the two 

liquids as modified by hierarchical texturation and molecular modification. The basis for this 

separation can be understood keeping in mind that when a liquid droplet comes into contact with 

a solid surface, the extent of its dispersion on the surface and the eventual shape of the droplet is 

determined by the balance between interfacial energies at the solid—vapor, liquid—vapor, and 

vapor—liquid interfaces. As a liquid spreads onto a surface, the existing solid—vapor interface 

is replaced by new liquid—vapor and vapor—liquid interfaces. The equilibrium contact angle 

(θe) reflects the balance between the three types of interfacial energies and can be written as: 

𝑐𝑜𝑠𝜃௘ =
ఊೄೇିఊೄಽ

ఊಽೇ
           (3) 

where θe is the equilibrium contact angle, and the γ terms are the interfacial energies for the 

solid—vapor (SV), solid—liquid (SL), and liquid— vapor (LV) surfaces. Even this simple 

formulation for the contact angle of a flat substrate provides key insight into achieving 

orthogonal wettability so as to be able to separate disparate liquids. In order for a surface to be 

non-wettable towards a liquid (θe > 120°), γSL must be (substantially) greater than γSV. In other 

words, the intrinsic surface energy of the surface (a solid—vapor surface energy) must be as low 

as possible and the solid—liquid interfacial energy must be as high as possible.[27] Conversely, 

for the liquid to completely wet the surface (θe = 0°), the intrinsic surface energy corresponding 

to the solid—vapor surface energy must be greater than the solid—liquid interfacial energy and 

the latter term should be as small as possible. [28] When considering the wettability of a single 

surface by two different liquids, the γSV term is the same in both cases and thus both the sign and 

magnitude of cosθe and ultimately the wettability of the two liquids is dictated by the relative 

value of γSL with respect to γSV. Two distinct parameters strongly affect this balance: (a) the 
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surface tension of the liquid (in other words, the cohesive forces and the nature of the liquid 

itself) and (b) the chemical compatibility of the surface with the liquid (which is a function of the 

molecular interactions at the interface). This analysis suggests that for a specific range of γSV, 

two liquids with very different values of γSL could yield opposite signs of cosθe for the same 

surface, thereby allowing one liquid to be selectively retained and permitting the second to flow 

through without wetting the surface. Water and hexadecane have very different surface tension 

values (water has a surface tension of 72.80 x 10-3 N/m, whereas hexadecane has a surface 

tension of 27.47 x 10-3 N/m at 293 K). [18] The lower surface tension of hexadecane implies that 

the γSL term is likely to be smaller enabling this liquid to more readily wet a surface.  This 

difference in surface tension values and interfacial interactions with the coated meshes underpins 

the efficacious separation of the two liquids observed here. Similar behavior is observed for 

heavier oil fractions albeit with reduced flux rates. 

Considering the balance of interfacial energies alone, the separation of two liquids would be 

viable only for a relatively narrow range of γSV surface energies. However, the effect of surface 

roughness is to amplify the intrinsic wettability of a surface without changing the sign of 

cosϑe
[15,16,29,30] The hierarchical texturation constituted by integrating ZnO tetrapods with 

nanoscale features onto micrometer-sized meshes greatly amplifies the differential wettability of 

hexadecane and water by rendering the surface more wettable to hexadecane and more repellant 

towards water. Figure A.3 indicates the dimensions of an individual ZnO nanotetrapod. Based 

on calculations of the exposed surface area of tetrapods with conical arms (ca. 3.90 µm in length 

with a diameter of ca. 0.56 µm, a roughness value r of ca. 4.5 is deduced for an individual 

nanotetrapod, where r reflects the ratio of the effective exposed surface area to the equivalent 

surface area of a smooth ZnO surface and would serve as a modifier to Eq. I.3 in the Wenzel 
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regime. Interconnected networks such as shown in Figures 2C and A.2 have multiple 

interconnected tetrapods that would yield r values of ca. 9—14, suggesting a high degree of 

texturation. In other words, for two liquids that present opposite signs of cosθ, hierarchical 

texturation serves to exacerbate the differences in wettability. The Δγ term that is derived from 

the Boltzmann fit in Figure II.5A is thus a measure of this differential wettability. Modifying the 

surfaces with silane monolayers further allows for modulation of the interfacial interaction term 

γSL as noted in Chapter I, Eq. I.3. Upon functionalization with an octadecyl-terminated silane, 

given that the pendant moiety is non-polar, the surface is rendered more oleophilic and more 

hydrophobic and thus further increases the magnitude of the wettability difference (and enhances 

the separation efficiency). In contrast, the fluorinated hydrocarbon exposes C—F bonds that 

interact only weakly with both water and hexadecane, and thus renders the surface at once more 

hydrophobic as well as more oleophobic and thus diminishes the wettability difference, thereby 

degrading the separation efficiency. 

II.5 Conclusions 

A facile and readily scalable approach has been developed to prepare hierarchically textured 

architectures by integrating ZnO tetrapods with nanoscale features onto micron-sized metal 

meshes. The permeable hierarchically textured architectures show pronounced differences in 

wettability towards water and hexadecane and such orthogonal wettability is used to achieve the 

separation of water/hexadecane emulsions. Separation efficiencies well over 99% are routinely 

accessible at room temperature and pressure by simply flowing emulsions across these 

hierarchically textured surfaces. The separation efficiency as a function of effective path length 

is fit with a Boltzmann expression that can be rationalized as a two-state probabilistic function 

for oil droplets within the emulsion encountering the hierarchically textured surface. The 
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separation efficiency can further be tuned by altering γSL by surface functionalization with silane 

monolayers. A viable flow system for separating heavy oil and water components of real-world 

emulsions with simultaneous optimization of selectivity and flux rate was performed by varying 

the membrane pore size, ZnO nanotetrapod loading, and temperature as detailed in Chapter III.  
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CHAPTER III  

SEPARATION OF VISCOUS OIL EMULSIONS USING 3D NANOTETRAPODAL 

ZNO MEMBRANES 

III.1 Outline 

The steam-assisted gravity-drainage (SAGD) method has emerged as amongst the leading 

methods of enhanced oil recovery and is predicated on the injection of steam within the wellbore 

followed by extraction of emulsions of viscous oil and water. The emulsions are stabilized by 

endogenous surfactants, necessitating extensive processing such as addition of chemical de-

emulsifiers and slow gravity-based separation methods. Here, we show that a hierarchically 

textured membrane exhibiting orthogonal wettability, specifically, superoleophilic but 

superhydrophobic behavior, allows for effective separation of the water and viscous oil fractions 

of SAGD emulsions. The membrane is constructed by integrating ZnO nanotetrapods onto 

stainless-steel meshes using a conformal amorphous SiO2 layer and is both mechanically resilient 

and thermally robust. Water content in permeated bitumen is reduced down to as low as 0.69 

vol.% through a single-pass filtration step with the further advantage of eliminating silt particles. 

The permeation temperature and water content are tunable based on modulation of the mesh size 

and ZnO loading. The membranes allow for operation at SAGD temperatures in excess of 

130°C, thereby enabling the thermal disruption of hierarchical emulsions. The membrane-based 

separation of SAGD emulsions under process conditions paves the way for entirely new process 

designs for recovering dry viscous oil. 
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III.2 Introduction 

The worldwide consumption of oil has increased at a steady pace since the 2008 global recession 

and is now greater than at any previous time in history.1 In order to meet global energy needs, 

tapping into unconventional geological deposits such as the Canadian Oil Sands in Northern 

Alberta and Saskatchewan has emerged as a critical imperative.2 Some estimates suggest that the 

Canadian Oil Sands hold as much as ca.170 billion barrels of readily accessible deposits.1,3 The 

production of viscous oil is beset by many challenges due to its remarkably high viscosity under 

reservoir conditions.4 A broad spectrum of methods is used to extract viscous oil from subsurface 

reservoirs that are too deep for strip mining, spanning the range from chemically aided processes 

to miscible extraction (involving the injection of CO2 or miscible solvents) and the steam-

assisted gravity drainage (SAGD) method.2,4,5 The latter SAGD method was initially introduced 

in the 1970’s and has since turned out to be one of the most important methods of enhanced oil 

recovery.4,6,7 In this process, steam is injected continuously from an upper horizontally drilled 

well into a growing steam chamber. As the injected steam enters the chamber, it moves to the 

edges of the chamber where it condenses. As the temperature in the steam chamber increases, the 

cold oil becomes less viscous and flows down towards a lower production well.8–10 The major 

advantage that the SAGD method has over other conventional steam flooding methods is that in 

SAGD, the temperature in the steam chamber is constant and the same as that of the temperature 

of the steam. As such, the SAGD-extracted bitumen stays hot as it flows towards the production 

well.6,11 Powerful cavity pumps bring the mixture of condensed water and bitumen to the surface 

from the production well. The recovered fluid oftentimes comprises recalcitrant emulsions 

stabilized by endogenous surfactants such as natural organic matter.12–14 Here in Chapter III, we 

demonstrate the high-temperature separation of SAGD emulsions to obtain viscous oil with 
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water content as low as 0.69 vol.% based on the orthogonal wettability of a 3D nanotetrapodal 

ZnO membrane towards water and oil.  

Owing to the presence of endogenous surfactants and as a result of the extensive mechanical 

agitation induced by rapid steam injection and subsurface fluid flow during the SAGD process, 

water droplets suspended within viscous oil can be quite stable in terms of their dispersion.4,12,15 

Depending on the relative amounts of the two liquids, oil-in-water or water-in-oil emulsions are 

stabilized. Indeed, hierarchical complex emulsions are often generated. Orchestrating the 

efficacious separation of the water and oil components of the emulsions, particularly the 

separation of emulsified oil, is imperative both for increasing the efficiency of the extractive 

processes as well as to meet regulatory requirements for the treatment of produced water.16 

Current processes to achieve such separations primarily involve gravity based separation and de-

emulsification, which require the addition of large volumes of chemicals, necessitates long 

periods of time to allow complete settling, and is of limited efficacy in terms of removal of 

emulsified sub-micron-sized droplets. 

A number of different porous membrane architectures have been developed for separating the 

water and oil components of emulsions17,18 Many such architectures seek to exploit the vast 

differential in the surface tension values of the two liquids, which leads to substantial differences 

in how these liquids wet surfaces. Considering Young’s formalism for a textured surface 

characterized by a roughness parameter r (corresponding to the ratio of the surface area of the 

textured surface to the surface area of an equivalent smooth surface), the observed contact angle 

(θw) can be written as: 

𝑐𝑜𝑠𝜃ௐ =
௥(ఊೄೇିఊೄಽ)

ఊಽೇ
= 𝑟𝑐𝑜𝑠𝜃௘  ……         (III.1) 
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where θe is the equilibrium contact angle, γSV represents the interfacial energy of the solid/vapor 

surface, γSL represents the solid/liquid interfacial energy, and γLV  represents the liquid/vapor 

interfacial energy.19–21 Taking the wettability of a single surface by two different liquids into 

account, the γSV term is identical for both cases. The sign and magnitude of cosθe and the 

resulting wettability of the two liquids depends ultimately on the numerical value of γSL with 

respect to γSV. This differential is strongly affected by: (a) the surface tension of the liquid and 

(b) the chemical interaction of the surface and the liquid. Such an evaluation therefore 

demonstrates that two liquids with disparate values of solid-liquid interfacial energies (γSL), 

given a range of solid-vapor interfacial energies (γSV), can exhibit opposite signs of cosθe for the 

very same surface.18 As a result, interfacial interactions can be used to affect the separation of 

two such disparately wetting liquids wherein the wetting liquid permeates a porous surface, 

whereas the non-wetting liquid is retained. The surface roughness parameter acts as a multiplier 

in Equation III.1 and further boosts the orthogonal wettability by rendering the surface more 

wettable towards a lower surface tension liquid and less wettable towards a high surface tension 

liquid. 19,22–24 While the idea of orthogonal wettability is attractive in principle, it has not thus far 

been used for the separation of SAGD or analogous recalcitrant viscous oil emulsions. The 

primary reason for this is that a large proportion of orthogonally wettable membrane 

architectures developed thus far utilize polymeric components that are unable to withstand the 

high temperatures and pressures required to process SAGD emulsions.17 Furthermore, many 

intricately textured surfaces are readily damaged and prone to rapid fouling by clay particles and 

sediments that are present within SAGD emulsions. Here, we demonstrate the high-temperature 

separation of SAGD emulsions utilizing mechanically resilient and thermally robust 3D 

nanotetrapodal ZnO/stainless steel mesh membranes that permeate viscous oil whilst remaining 
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impervious to water.18 The pore size of the stainless steel mesh and the loading of ZnO tetrapods 

can be tuned to modulate the bitumen permeation temperature. Whist the continuous water phase 

is readily eliminated from the permeated bitumen, high permeation temperatures are imperative 

to disrupt the complex hierachical emulsions and separate entrapped microdroplets of water. 

Such readily scalable architectures allow for water content in permeated bitumen to be reduced 

below 0.70 vol.%, well below the 1.0 vol.% specification necessary for further processing of 

viscous oil at refineries. 

III.3 Materials and Methods 

III.3.1 Preparation of ZnO Tetrapods 

ZnO tetrapods were prepared based on the rapid oxidation of metallic Zn foils in air as described 

in Chapter II.18,25–27 Briefly, Zn metal sheets (0.008 in thickness) were cut into substrates with 

approximate dimensions of 3 mm x 3mm. The diced Zn substrates were then placed onto a boat 

like stainless-steel mesh and placed within a 1'' diameter quartz tube, which was then placed 

within a tube furnace (Lindburg/BlueM).25 The substrates were heated at a rate of 43°C/min until 

a maximum temperature of 950°C. The furnace was then held at 950°C for 1 min and then 

allowed to cool. 

III.3.2 Preparation of ZnO Tetrapod/Stainless-Steel Mesh Membranes 

The collected ZnO tetrapods were dispersed by ultrasonication in 2-propanol (99.9%, Fisher 

Scientific) to obtain dispersions with a concentration of ca. 20 mg/mL. The dispersion was then 

spray coated onto stainless steel mesh substrates with a variety of pore sizes (McMaster-Carr) 

using a Master airbrush with a nozzle diameter of 0.5 mm and an air compressor with output 
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pressure of 310 kPa. To facilitate the removal of solvent during the coating process, the stainless 

steel meshes were held at a temperature of ca. 120°C. Next, a modified Stӧber method was used 

to deposit a layer of amorphous SiO2 using tetraethylorthosilicate (TEOS) as the precursor in 

order to covalently link the ZnO tetrapods to the underlying stainless steel mesh.28,29 The SiO2 

layer prevents sloughing and endows mechanical resilience to the 3D nanotextured membranes. 

The solution spray coated on the stainless-steel mesh comprised a mixture of 80 vol.% ethanol 

(99.5+%, Koptec), 18.5 vol.% deionized water (𝜌 = 18.2MΩ·cm−1), 1 vol.% of an aqueous 

solution of 28—30% NH4OH, and 0.5 vol.% TEOS (99.999+% metals basis, Alfa Aesar).  

III.3.3 Characterization of ZnO Tetrapods and Membranes 

The ZnO tetrapod morphology and the 3D nanotetrapodal membranes were imaged utilizing a 

JEOL JSM-7500F field-emission scanning electron microscope (FE-SEM). The instrument was 

equipped with a high brightness conical FE gun with a low aberration conical objective lens. The 

source was a cold cathode UHV field emission conical anode gun. An accelerating voltage of 10 

kV was used to image the structures. Mechanical testing was performed using ASTM method 

D3359, which used a standardized scraping tool to score the sample. Next, an adhesive tape was 

applied to evaluate the extent to which the coating was removed. In addition, the ASTM D2197 

method was used whereain a U-shaped loop was brought to the surface and weights were added 

until the coating was removed from the substrate. Both of these standardized tests have been 

described in detail in Chapter II.27  

III.3.4 SAGD Emulsions 

 The viscous oil emulsion used here was extracted from the Northern Alberta Oil Sands by 

Cenovus Energy, Inc. via the SAGD method. While bituminous emulsions are typically quite 
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stable, some separation may occur during storage and transportation. Therefore, the emulsions 

were reconstituted by combining one part of the oil phase and five parts of the excess aqueous 

phase in a 500 mL container. The liquids were then heated to 60°C and stirred vigorously stirred 

with a magnetic stir bar for 2 h while keeping the temperature constant. The remaining excess 

aqueous phase was decanted, and the resulting viscous emulsion was used for all testing.  

III.3.5 Separation of Emulsions 

A thermal autoclave testing apparatus (built from glass to facilitate in situ observations of 

viscous oil permeation) was obtained from Parr Instrument Company (model #5112) and used to 

model the high-pressure and high-temperature conditions characteristic of the SAGD process. A 

custom glass insert was placed inside the thermal autoclave to observe the permeation of bitumen 

through the membranes (Figure A.4A). The membrane was held in place using rubber o-rings 

and the emulsion was added to the top surface. A hole was drilled on the lower end of the insert 

to ensure pressure equilibration across the membrane. In other words, both sides of the 

membrane are exposed to the same autogeneous pressure generated within the autoclave by 

boiling water. The autoclave allows for reactor temperatures of up to 200°C and autogenous 

pressures of up to 900—1000 kPa.   

In order to characterize the process environment, the system was filled with 250 mL of deionized 

water and heated to temperatures in the range of 110—200°C. The increase of temperature with 

time and the evolution of the autogenous pressure with temperature are plotted in Figures A.5 

and A.6, respectively. 
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For each membrane configuration, separation experiments were performed in triplicate to obtain 

statistically meaningful results. Observations of the permeation temperature and flux rates were 

facilitated by the glass construction of the vessel and insert.  

III.4 Characterization of Permeate 

Water content in the permeate was examined using the Dean-Stark method. Given the viscous 

nature of the permeated bitumen, toluene was mixed with the recovered permeate and then 

refluxed for 2 h to collect and measure water content in the permeate. Typical volumes of 

permeate were approximately 10 mL or greater. The setup utilized a three-neck round bottom 

flask as the still; a thermocouple was inserted to measure temperature as the sample was warmed 

using a heating mantle. A reflux condenser with a graduated glass trap (10 mL) was used to 

collect the water and toluene upon condensation.  

For samples with water content below 0.1 mL, Karl—Fischer titrations were performed using a 

Mettler-Toledo C20 Coulometric Titrator. The electrolyte used for both the analyte and the 

catholyte was Hydranal Coulomat E (Sigma Aldrich). 

The permeate fractions were further examined by an Olympus BX41 optical microscope. In 

order to perform the analysis, the permeated fraction was deposited between two thin glass 

microscope slides with no additional dilution. 

III.5 Results and Discussion 

The design of an entirely inorganic membrane is imperative to facilitate the separation of SAGD 

emulsions at high temperatures and pressures. However, to the best of our knowledge, no 

membrane-mediated separation of SAGD emulsions has been reported thus far in either the 
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academic or patent literature. In Chapter II, we have demonstrated that ZnO tetrapods integrated 

onto stainless steel mesh substrates strongly repel water (superhydrophobic with water contact 

angles >150°) but are wetted by hexadecane (superoleophilic with a contact angle of 0°).18 

Functionalization of the ZnO tetrapods with 1H,1H,2H,2H-perfluorooctanephosphonic acid 

yields a helical monolayer that further renders the surface both superoleophobic (viscous oil 

contact angles >156°) and superhydrophobic (water contact angles >165°).26 In Chapter III, we 

evaluate the efficacy of ZnO/stainless-steel mesh architectures in affecting the separation of 

SAGD emulsions from the Alberta Oil Sands at high temperatures and pressures. Structure—

processing—function maps are developed under realistic hydrothermal process conditions by 

performing the separation within a custom-designed glass autoclave reactor. The following 

parameters have been evaluated as a function of the ZnO loading and pore size: (a) the 

permeation temperature (defined as the temperature at which visible permeation of the bitumen 

was observed while ramping the temperature in increments of 10°C and where each temperature 

was held for a minimum of 30 min); (b) the separation efficacy, specifically the water content in 

the viscous oil permeate (determined by Dean—Stark’s distillation or Karl—Fischer titration); 

and (c) the flux rate (determined by monitoring the collection of the permeate using a calibrated 

receptacle). Figure III.1 depicts the process flow beginning from the generation of ZnO 

tetrapods, to the separation of emulsions under hydrothermal conditions.  
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Figure III.1. Process Flow Diagram for the Preparation of ZnO/Stainless Steel Mesh Membrane 
Architectures and their Utilization in the Separation of SAGD Emulsions. (A) Schematic 
depicting preparation of ZnO tetrapods from Zn metal; (B) collection and subsequent dispersion 
of ZnO tetrapods within 2-propanol by ultrasonication; (C) spray coating of ZnO tetrapods 
dispersed in 2-propanol onto 316 stainless steel mesh substrates with variable pore dimensions; 
(D) coating with TEOS to increase adhesion of tetrapods to the stainless steel mesh by 
constituting an interfacial SiO2 layer; (E) deployment of the membrane architectures under 
hydrothermal conditions to bring about the separation of SAGD emulsions based on the 
differential wettability of water and viscous oil towards these surfaces. 

 
 
 
The use of ZnO nanotetrapods as the primary building blocks for constructing membranes to 

bring about the separation of SAGD water/viscous-oil emulsions is motivated by two primary 

factors. First, the thorn-like structure of the ZnO tetrapods imparts hierarchical multiscale 

texturation to the stainless steel mesh surfaces, thereby rendering the substrates hydrophobic and 

facilitating the use of orthogonal wettability to separate liquids with disparate surface 

tensions.18,30,31 Secondly, the tetrapodal geometry of the nanostructures precludes close-packed 

ordering thereby creating a porous architecture that permits the permeation of wetting liquids.  
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Figure III.2. Texturation and Porosity of 3D Nanotetrapodal Membrane Architectures. A—E) SEM 
images depicting stainless steel meshes exhibiting multiscale texturation as a result of the deposition of 
ZnO nanotetrapods. In A—E, the mesh size is altered whilst maintaining the ZnO loading constant at ca. 
7.0 mg/cm2. The meshes have square pores defined here by the edge dimensions. A) A 180-gauge 
textured stainless steel mesh with a pore size of ca. 84 μm; B) 250 gauge textured stainless steel mesh 
with a pore size of ca. 61 μm; C) 325-gauge textured stainless steel mesh with a pore size of ca. 43 μm; 
D) 400 gauge textured stainless steel mesh with a pore size of ca. 38 μm; E) 500-gauge textured stainless 
steel mesh with a pore size of ca. 30 μm. F) SEM image of individual ZnO tetrapods at increased 
magnification. 

 
 
 
Figure III.2 indicates the multiscale texturation and porosity defined by the interconnected 

network of ZnO nanotetrapods that span across the pores of the stainless steel mesh substrates, 

thereby yielding a 3D porous architecture. The SEM images demonstrate that the tetrapods form 

an enmeshed network atop the steel substrates. The high-magnification SEM image in Figures 

III.2F further shows that the nanotetrapods define an interconnected network that precludes 

close packing. Increasing the loading (or conversely reducing the pore size) results in greater 

accumulation of ZnO tetrapods within the pores wherein they reduce the effective pore size. 

Membranes for separation of SAGD emulsions need to be mechanically resilient to withstand 

flow conditions, high pressures, and abrasion from silt particles impinging on the surfaces. The 



 

63 

deposition of a conformal amorphous SiO2 shell that forms siloxane bonds both to the steel 

surfaces as well as to hydroxyl groups on the ZnO surfaces helps to adhere the ZnO tetrapods to 

the stainless steel mesh surfaces. The SiO2 overlayer is grown by spray coating a mixture of 

TEOS and NH4OH onto the mesh substrates thereby facilitating hydrolysis and condensation 

reactions.29,32 The TEOS and NH4OH loading described in the Methods section of Chapter III 

yields a rating of 5B as per American Society for Testing of Materials (ASTM) D3359 for a test 

specimen wherein the tetrapods are adhered to a planar steel substrate.26,27 ASTM D2197 tests 

furthermore indicate a scrape adhesion strength of 450-550 g. Thermogravimetric analyses for 

these samples indicate that they retain their structural integrity up to a temperature of 900°C as 

reported in Chapter IV.26 

Figures III.3A and B show representative optical microscopy images of SAGD emulsions prior 

to treatment. The water content for reconstituted SAGD emulsions is estimated to be ca. 30 

vol.% based on Dean—Stark’s distillation. Water and oil are clearly distinguishable with water 

being the lighter and more transparent fraction. The images indicate that the emulsions have a 

complex hierarchical structure with water droplets dispersed within a continuous oil phase; the 

water droplets further contain oil droplets and asphaltene residues. The complex nature of these 

emulsions, stabilized as a result of endogenous surfactants such as humic acid, render the 

separation of water and oil emulsions rather difficult.12–14 Figures III.3C—J depict optical 

microscopy images of (undiluted) permeated fractions collected after separation through various 

stainless steel meshes all with a loading of 14 mg/cm2 of ZnO tetrapods. With decreasing pore 

size, the temperature at which viscous oil permeates the membrane is successively increased 

(vide infra). It is readily evident that with decreasing pore size (while keeping the ZnO tetrapod 

loading constant) and increasing permeation temperature, the size and concentration of water 
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droplets is successively decreased. Furthermore, the permeated viscous oil fractions are free of 

sediment particles. The water content deduced from Dean—Stark’s distillation is noted in the 

captions corresponding to each pair of panels. Figure A.4 shows the top and bottom surfaces of 

the membrane indicating the selective permeation of viscous oil. The permeate and residue 

separated through a 180 gauge mesh at a ZnO loading of 7.0 mg/cm2 are also pictured in Figure 

A.4. No discernible water is observed in Figures III.3I and J corresponding to permeation of 

viscous oil through a 500-gauge mesh with a pore size of 30 μm. The qualitiative optical 

microscopy observations in Figure III.3 suggest that while larger water droplets are readily 

eliminated, smaller pore sizes and higher processing temperatures are required to crack 

emulsions in order to eliminate water entrained within oil droplets. Such water microdroplets 

entrained within a continuous oil phase are otherwise able to permeate the oleophilic porous 

architectures. 
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Figure III.3. Optical Microscopy Examination of SAGD Emulsions and Permeates: A,B) Optical 
microscopy image of a SAGD emulsion with a water content of ca. 30 vol.%; C,D) optical microscopy 
images acquired for permeate collected using a 250-gauge mesh membrane with a pore size of 61 μm 
loaded with 14 mg/cm2 of ZnO tetrapods; Dean-Stark’s distillation indicates that water content within this 
is sample is ca. 14 vol.%. E,F) Optical microscopy images acquired for a permeate fraction collected 
using a 325-gauge mesh with a pore size of 43 μm loaded with 14 mg/cm2 of ZnO tetrapods; Dean—
Stark’s distillation suggests a water content of ca. 10 vol.% for this sample. G,H) Optical microscopy 
images acquired for a permeate fraction collected using a 400-gauge mesh with a pore size of 38 μm 
loaded with 14 mg/cm2 of ZnO tetrapods; Dean—Stark’s distillation suggests a water content of ca. 1 vol. 
%. I,J) Optical microscopy images acquired for a permeate fraction collected using a 500-gauge mesh 
with a pore size of 30 μm loaded with 14 mg/cm2 of ZnO tetrapods; Karl—Fischer titration suggests a 
water content of ca.  0.69 vol. %. The lighter regions correspond to water droplets and darker solid 
particles are asphaltene residues and silt particles. 
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A more quantitative evaluation of water content is facilitated by Dean—Stark’s distillation and 

Karl—Fischer titration. Figures III.4 and 5 plot the evolution of the water content within the 

collected permeate fraction (reflecting the efficacy of separation), the permeation temperature and 

the flux rate as a function of the pore size and ZnO loading. For meshes characterized by larger 

pore sizes, 180 and 250-gauge corresponding to pore sizes of 84 μm and 61 μm respectively, 

Figure III.4 shows that permeation of oil through the membrane occurs at relatively low 

temperatures. For instance, for a pore size of 84 μm, permeation of bitumen commences at 108°C 

for a ZnO tetrapod loading of 7 mg/cm2, 113°C for a ZnO tetrapod loading of 14 mg/cm2, 125°C 

for a ZnO tetrapod loading of 22.5 mg/cm2, and 128°C for a ZnO tetrapod loading of 28 mg/cm2. 

Figure A.6 indicates that the pressure within the autoclave ranges from 15 to 28 psi at these 

temperatures. Membranes with larger pore dimensions and relatively low ZnO loadings, such as 

180 and 250-gauge meshes with ZnO loadings of 7 mg/cm2 permeate 18.5 vol.% and 15.7 vol.% of 

water, respectively. While the water content is substantially reduced from the original SAGD 

emulsion (30 vol.%), much of the water that is eliminated is free water; emulsified water droplets 

are largely permeated given the low permeation temperatures of 117°C and 127°C, respectively. 

Indeed, as a result of the complex nature of the emulsions, water microdroplets entrained within oil 

droplets permeate through the membrane if a separation is achieved at low temperatures based 

solely on surface tension differentials. Consequently, orthogonal wettability is a necessary but not 

sufficient condition for devising the efficacious separation of SAGD emulsions; it is imperative 

that membranes selectively permeate the viscous oil only at high temperatures (greater than 130°C) 

wherein the complex emulsions can be disrupted. In other words, permeation at low temperatures 

will inevitably yield samples with high degrees of water contamination since only free water can 

be separated under these conditions. Notably, the use of high temperatures is further necessary 
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given the operating conditions under which SAGD emulsions are extracted and handled.9,15,33 

Figure III.4 shows that with smaller pore dimensions and increased ZnO loadings, permeation of 

the bituminous phase is shifted to higher temperatures, which allows for substantial reduction of 

water content within the permeate fractions (Figures III.5A and B). For a pore size of 30 μm, the 

water content is reduced below the limit of quantitation of Dean-Stark’s distillation for ZnO 

loadings including and above 14 mg/cm2 (Figure III.5A and B). Results from Karl-Fisher titration 

indicate a water content of 0.69 vol.% for the permeate recovered using a 500-gauge membrane 

with a pore size of 30 μm and ZnO loading of 14 mg/cm2 (Figure III.3I,J). This value is well 

below the maximum allowed water content required for processing of viscous oil in refineries and 

demonstrates the viable separation of SAGD emulsions using 3D ZnO nanotetrapodal membranes. 

In addition to water content as a function of pore size and ZnO loading, process temperatures 

above the minimum permeation temperature have also been evaluated. Figure A.7 (Appendix A) 

plots the water content in the permeate for a 325-gauge stainless steel mesh with a pore size of 43 

µm and a ZnO loading of 14 mg/cm2. Permeation is initially observed at 135—140°C and the 

water content in the permeate is found to be ca. 10 vol.% by Dean-Stark’s distillation. However, 

upon increasing the processing temperature to 150, 160, and 170°C, the water content is decreased 

to 3, 1.5, and 0.7 vol.%, respectively. This observation is further consistent with the need to disrupt 

the stabilized emulsions by operating at high temperatures in order to obtain high separation 

efficiencies. In other words, process temperature and membrane architecture can both be utilized to 

achieve the high-efficiency separation of SAGD emulsions. Operation at low temperatures will 

require higher ZnO loadings and meshes with smaller pore dimensions, whereas at higher 

temperatures lower ZnO loadings and larger pore dimensions can be used.  
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Figure III.4. Water content and permeation temperature plotted as a function of pore size for 
varying loadings of ZnO tetrapods with false color map overlaid for clarity. 

 
 
 
For industrial viability, the flux rate represents an important parameter. Figures III.5C and D 

show that the flux rate is inversely correlated to the pore dimensions and ZnO loading, which can 

be rationalized based on a decrease of the effective pore diameter. For larger pore dimensions 

and lower ZnO loadings, the flux rate is high (reaching 20 mL/h) despite the relatively low 

permeation temperatures. In contrast, the flux rate is diminished for smaller pore dimensions and 
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higher ZnO loadings. Consequently, while smaller pore dimensions and higher ZnO loadings 

engender very high efficacies of separation in a single pass, the flux rates are low. The design of 

an effective separation system will therefore involve either the utilization of the mesh substrates 

within a concentric large-surface-area system and/or utilization of multiple-pass filtration steps 

that provide a reasonable combination of separation efficacy and flux rate at each step. 

 
 
 

 

Figure III.5. (A) 3D plot depicting the variation of the flux rate as a function of the pore size 
and the ZnO loading within the membrane architecture. (B) Plot of the flux rate as a function of 
the pore size at different ZnO loadings. (C) 3D plot depicting the variation of the water content 
as a function of the pore size and ZnO loading on the membrane. (D) Plot of the water content as 
a function of the pore size at different ZnO loadings. 
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III.4. Conclusions 

Heavy oil emulsions extracted using the SAGD process can be difficult to separate owing to their 

complex structure and high concentration of entrained emulsified droplets stabilized by 

endogeneous surfactants.  An entirely inorganic thermally robust and mechanically resilient 3D 

membrane architecture has been developed for the separation of viscous oil and water from 

SAGD emulsions under the high-temperature and high-pressure conditions characteristic of the 

SAGD process. The membrane architecture is based on the integration of ZnO tetrapods on 

stainless steel mesh substrates with amorphous SiO2 serving as an adhesive layer. The texturation 

derived from the micron-scale features of the meshes and the micron- as well nanoscale 

geometry of the ZnO tetrapods yields a porous architecture that is superhydrophobic but 

superoleophilic. As such, the membrane allows for permeation of the viscous oil component of 

SAGD emulsions while retaining water and silt. The water content in the permeate bituminous 

fraction has been reduced down to as low as 0.69 vol.%, well below the maximum allowable 

water content for processing of crude oil in refineries while further eliminating silt particles. The 

separation efficiency and flux rate can be tuned by adjusting the processing temperature and the 

membrane geometry (pore dimensions and ZnO loading). The membranes allow for operation at 

temperatures in excess of 130°C required to thermally disrupt stable emulsions. The facile 

fabrication process, mechanical and thermal robustness, and high separation efficiency paves the 

way for applications at scale. 
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CHAPTER IV   

MODIFYING BASE METAL SUBSTRATES TO EXHIBIT UNIVERSAL NON-

WETTABILITY: EMULATING BIOLOGY AND GOING FURTHER*  

IV.1 Introduction 

In Chapters I—III, the design of surfaces that permeate oil but repel water was discussed based on 

the fundamental principle that the two liquids have drastically different surface tensions, which is 

further amplified with mesoscale texturation to amplify the inherent wettability of the liquids. 

However, in order to design a surface that doesn’t wet either oil or water requires additional 

considerations such as balancing the cohesive forces of the droplets against the adhesive forces of 

the solid—liquid interface. This is substantially more difficult with oil, since hydrocarbons have 

relatively weak intermolecular forces compared to that of water and consequently exhibit a greater 

predilection for spreading on surfaces. Again, we note that nature provides a plethora of examples 

of hydrophobic surfaces but struggles to provide examples of oleophobic surfaces. One example of 

a hydrophobic natural response is the common fire ant, as demonstrated in Figure IV.1. The digital 

photograph indicates that an individual ant has some hydrophobic behavior, and even forms a 

plastron upon submersion in water (Figure IV.1D). However, when the ants are assembled in 

interconnected formations, such assemblies can repel large water droplets and even form a larger 

interconnected plastron network as seen in Figure IV.1E.  

In this chapter, we discuss the design of plastrons embedded onto highly corroded surfaces 

wherein pitting corrosion is used as a means of inducing surface texturation. Similarly, in 

                                                 

* Reproduced with permission from “Modifying Base Metal Substrates to Exhibit Universal Non-Wettability: Emulating Biology 
and Going Further.” O’Loughlin, T.E.; Waetzig, G. R.; Davidson, R. E.; Dennis, R. V.; Banerjee, S. Encycl. Inorg. Bioinorg. 
Chem. 2017, p.1. Reproduced by permission of John Wiley & Sons, Inc. 
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Chapter V we explore the biomimetic use of ZnO nanotetrapods which are arrayed in great 

numbers on a stainless steel mesh to generate an analogous plastron network. This is further 

aided by functionalization to constitute a self-assembled monolayer of a perfluorinated 

phosphonic acid to tune the surface energy, which reduces interactions at the solid—liquid 

interface and allows the relatively weaker intermolecular forces of the oil to dominate and 

preclude its ability to spread across the surface. In doing so, the surfaces can now repel both oil 

and water, allowing for efficacious gliding of both liquids. 

 

 

Figure IV.1. Water repellency of ant rafts. (A) An individual ant’s exoskeleton is moderately 
hydrophobic, as shown by the contact angle of the water drop. (B) Enhanced water repellency of 
a raft of ants, as shown by the increased contact angle of the water drop. (C) Buoyancy and 
elasticity of the ant raft, as shown by attempted submersion by a twig. (D) The plastron air 
bubble of an ant in soap-free water. The bubble makes the ant buoyant, necessitating the use of a 
thread to hold it underwater. (E) An air pocket trapped in a submerged ant raft. The shimmery 
layer around the ants is the air–water interface. Reproduced with permission from Mlot, N. J.; 
Tovey, C. A; Hu, D. L. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (19), 7669–7673. 
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The design and fabrication of surfaces that are not wetted either by water or oil holds much 

significance for the energy infrastructure, particularly where corrosion represents a significant 

problem and cleaning, maintenance, and repair of containers, pipelines, and processing 

equipment is difficult or poses safety hazards. Nature has numerous examples of surfaces that 

resist fouling by repelling liquid (especially water) droplets. Designing a surface that is not 

wetted by low-surface-tension liquids such as hydrocarbons is a considerably more difficult task 

that is beyond the capabilities of most natural systems since the cohesive forces within such 

liquids are low and most interfacial interactions stabilize the spreading of oil droplets. A 

combination of hierarchical texturation, reentrant curvature, and low surface energy is thought to 

be necessary to design omniphobic surfaces. However, such surfaces are often constructed from 

polymers and thus prone to thermal degradation. In this contribution, we illustrate the modular 

design and development of a biomimetic architecture incorporating micro- and nanoscale 

texturation on etched carbon steel. 

Etching of the steel substrate endows microscale roughness; the substrate is further coated with 

ZnO nanotetrapods to define nanoscale texturation and modified to expose pendant fluorous 

groups that exhibit both superhydrophobic and superoleophobic behavior for both water and oil 

(including crude oil) droplets. The utilization of ZnO nanotetrapods with protruding arms gives 

rise to a nanotextured morphology regardless of the specific orientation of the nanostructures and 

allows for the trapping of air pockets, thereby suspending liquid droplets as per the Cassie—

Baxter non-wetting mode. The textured ceramic/metal surfaces are stable up to high 

temperatures and are well adhered to the metal substrate upon application of a conformal 

amorphous SiO2 coating. The incorporation of multiple design elements: microscale roughness, 

nanotexturation, a “cementing” layer, and surface modification with low energy pendant 
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perfluorinated chains provides considerable versatility and tunability for specific liquid-handling 

conditions. The strategy described here is generalizable to other modes of texturation and surface 

modification and can be broadly adapted to prevent wettability of a surface by a specific liquid, 

thereby providing an approach for protecting components exposed to corrosive fluid 

environments.  

IV.2 Experimental 

IV.2.1 Steel Substrates and Etching Conditions 

Flat sheets of low carbon steel (type A36, 9.1 mm in thickness, The Metal Store®, Maple 

Heights, OH, USA) were cut to the desired dimensions and were thoroughly cleaned by 

successively washing with hexanes (98.5% millipore), ethanol (99.5+%, Koptec), Alconox® 

soap solution, and deionized water (ρ = 18.2 MΩ/cm). Three different etching routes were 

attempted in order to define microscale topographies. In the first method, the substrates were 

immersed in a 1:1 (v/v) solution of 12.1 M HCl and deionized water and solid 

hexamethyelenetetramine was added to obtain a concentration of 24.9 mM. The substrate was 

etched at 25—80°C for 10—60 min. In the second method, the A36 substrates were immersed in 

equal parts of 12.1 M HCl and deionized water (by volume). The solution was then heated to 

80°C for 10—60 min. In addition, for select substrates a mixed acid solution containing 

H2SO4:HCl:H2O in a 12%:38%:50% (v/v/v) ratio, using 18.0 M H2SO4 and 12.1 M HCl, was also 

used to etch the substrates. The mixed acid solution was first heated to 93°C before immersing 

samples for 30—90 s. The samples were rinsed with copious amounts of water after extraction 

from the acid baths prior to application of ZnO nanotetrapods or surface modification with 

perfluorinated groups.  
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IV.2.2 Synthesis of ZnO Nanotetrapods 

In order to facilitate the rapid generation of ZnO tetrapods, a previously reported method of 

using Zn coated steel was adapted for Chapter IV as schematically depicted in Figure IV.2.1 In 

this process, Zn metal sheets of 0.25 mm thickness (99% purity, McMaster-Carr) were cut into 

ca. 3 mm x 3 mm pieces and placed onto a 316 stainless steel mesh (McMaster-Carr) and 

inserted into a 1'' quartz tube. The quartz tube was then placed within a tube furnace 

(Lindburg/BlueM). The assembly was heated at a rate of 43°C/min to a maximum temperature of 

950°C and dwelled at that temperature for 1 min. A crackling sound was observed along with a 

red glow and a fluffy white residue was collected from the walls of the quartz tube after allowing 

the furnace to cool to room temperature. The tetrapods were dispersed in 2-propanol (99.9%, 

Fisher Scientific) at a concentration of 20 mg/mL by ultrasonication. 

IV.2.3 Coating of ZnO Nanotetrapods onto Steel Substrate 

The ZnO nanotetrapod dispersion in 2-propanol was spray coated onto the etched A36 carbon 

steel substrates using a Master airbrush with a nozzle diameter of 0.5 mm with the help of an air 

compressor at an output pressure of 45 psi. The final coated substrates had ZnO loadings ranging 

from ca. 3.5 to 7.8 mg/cm2. The substrates were held at a temperature of ca. 120°C during the 

coating process to facilitate removal of the solvent.  

In order to increase adhesion and mechanical resilience of the ZnO nanotetrapod coatings, a SiO2 

layer was constituted using a modified Stӧber method.2 In order to constitute an amorphous SiO2 

shell, tetraethylorthosilicate (TEOS) was used as the precursor and applied from a solution 

containing 80 vol.% ethanol, 18.5 vol.% deionized water (ρ = 18.2 MΩ/cm), 1 vol.% of 28—

30% aqueous solution of NH4OH, and 0.5 vol.% TEOS (99.999+% metals basis, Alfa Aesar). 
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The substrates were held at a temperature of 120°C during the spray deposition of the TEOS 

samples; this temperature facilitates the formation of the siloxane framework. The final loading 

of TEOS used within the overlayer coatings was optimized to be ca. 3.9 µL/cm2.  

2.4. Surface Modification: To decrease the surface energy (and thus increase the hydrophobicity 

and oleophobicity) of the acid-etched steel sheets and ZnO-nanotetrapod-coated surfaces, the 

substrates were functionalized with perfluorinated silanes and phosphonic acid. In order to 

perform this surface modification, 2.7 mM solutions of the desired fluorinated compounds were 

prepared by combining 400 µL of ammonium hydroxide (28-30%), 400 µL of deionized water (ρ 

= 18.2 MΩ/cm), and the appropriate mass of the fluorinated precursor. The mixture was then 

diluted to 20 mL using 1-butanol (99%, Alfa Aesar). The silanes, heptadecafluoro-1,1,2,2-

tetrahydrodecyl)trimethoxysilane, nonafluorohexlytriethoxysilane, and triethoxyfluorosilane 

were purchased from Gelest Inc. and used without further purification, whereas 1H,1H,2H,2H-

perfluorooctanephosphonic acid was purchased from Sigma-Aldrich and perfluorooctane was 

purchased by Alfa Aesar. The substrates were immersed in n-butanol solutions of the fluorinated 

silanes for 1 h, rinsed with butanol to remove physisorbed silanes, and then allowed to dry before 

testing. The perfluorinated silanes were selected for more detailed studies of the SiO2 adhered 

samples given their compatibility with the siloxane framework, whereas perfluorinated 

phosphonic acid was used as the modifier of choice to functionalize the surfaces of ZnO 

nanotetrapods. 

IV.2.4 Characterization of Etched Metal Surfaces 

The acid etched surfaces were evaluated by optical microscopy using a BX41 Olympus light 

microscope. The pitting corrosion was further evaluated using a JEOL JSM-7500F field emission 
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scanning electron microscope (FE-SEM) equipped with a high brightness conical field-emission 

gun, and a low-aberration conical objective lens.  An accelerating voltage of 5—10 keV was 

used to image the nanostructures. 

IV.2.5 Characterization of ZnO Nanotetrapods 

In order to evaluate the morphology of the ZnO tetrapods, scanning electron microscopy images 

were obtained utilizing a JEOL JSM-7500F FE-SEM. An accelerating voltage of 2—5 keV was 

used to image the nanostructures. Energy dispersive X-ray mapping analysis was conducted 

using an Oxford EDX system on the same instrument but using an accelerating voltage of 10 

keV and an emission current of 10 μA. X-ray diffraction was performed using a Bruker-AXS D8 

Vario X-ray powder diffractometer with Cu Kα radiation (λ = 1.5418 Å). Raman spectroscopy 

measurements were acquired utilizing 514.5 nm laser excitation from an Ar-ion laser using a 

Jobin-Yvon Horiba Labram HR instrument and an integrated Olympus microscope. Fourier 

transform infrared (FTIR) analysis was performed using a Bruker Vertex 70 instrument. 

IV.2.6 Contact Angle Measurements 

All contact angles were measured using a CAM 200 Optical Goniometer. For all experiments, a 

drop size of 10 μL was used to apply the test liquids. A mechanical pipette was used to apply 

deionized water (ρ = 18.2 MΩ/cm); whereas hexadecane (99% Sigma-Aldrich) and heavy oil 

(Cenovus Energy Inc., Calgary, Canada) were applied using a manual micropipette. All contact 

angles and standard deviations shown are a result of at least three replicates. 
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IV.2.7 Adhesion Testing 

The surface-modified ZnO nanotetrapods films embedded onto A36 low carbon steel were 

evaluated for their strength of adhesion using American Society for Testing of Materials 

(ASTM) standardized tests. Adhesion testing of the samples was performed by following ASTM 

tests D3359 and D2197. In test D3359, a grid was defined on the coated substrate and a tape 

from the ASTM kit was applied and subsequently removed. The tested area was then evaluated 

for the removal of coating material from the surface and classified from 0B to 5B based on the 

standards prescribed by the ASTM method. In ASTM D2197, successive amounts of weight 

were added to a standardized balanced-beam scrape adhesion apparatus while the coated sample 

was pulled underneath a stainless steel U-shaped loop. The weight at which the U-shaped loop 

continuously broke through the coating and reached the substrate was then recorded as the scrape 

adhesion strength or failure end point. 

IV.2.8 Thermal Analysis 

Thermogravimetric analysis (TGA) of the samples was performed using a Shimadzu TA-60WS 

thermal analyzer from 25 to 900°C at 10°C/min with a nitrogen flow rate of 50 mL/min.  

IV.3 Results and Discussion 

IV.3.1 Constructing an Artificial Plastron: A Process Outline for Achieving Universal Non-

Wettability on Steel Surfaces 

In Chapter IV, we illustrate a stepwise approach for the preparation of omniphobic surfaces 

directly integrated onto structural steel using a combination of microscale and nanoscale 

texturation and surface modification to decrease the surface energy. The steel substrate used is 
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A36 structural grade carbon steel, a ubiquitous low alloy structural material. Microscale 

texturation is derived from a mild acid etching step used to remove scale and define micron-scale 

surface features. Nanoscale texturation is derived from ZnO nanotetrapods that are spray coated 

onto the substrate1 and adhered by a modified Stӧber method wherein tetraethylorthosilicate 

(TEOS) is used as the precursor to constitute a conformal amorphous SiO2 coating that adheres 

ZnO to the steel substrate.2 The use of a mixed oxide crystalline-ZnO/amorphous-SiO2 coating 

allows for compatibility with high-temperature operation and further lends mechanical resilience 

to the coating. The substrates showing the most promising non-wettability towards water 

droplets are further functionalized with perfluorinated molecules to endow oleophobicity. 

Functionalization with perfluorinated molecules allows for reduction of surface energies and 

renders the surface omniphobic, thereby enabling the largescale modular design of universally 

non-wettable surfaces that are compatible with high-temperature operation.  
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Figure IV.2. Schematic illustration of process flow used to prepare omniphobic surfaces 
integrated onto etched carbon steel. The top panel shows the synthesis of ZnO nanotetrapods by 
oxidation of Zn metal in an air environment. (a) The steel substrate is etched with acid to define 
microscale texturation. (b) ZnO nanotetrapods are spray-coated onto the etched carbon steel, 
thereby adding nanoscale texturation. (c) TEOS is subsequently spray-coated onto the 
ZnO/etched steel substrates to form a siloxane linkage between the etched steel and ZnO 
nanostructures. (d) The substrates are functionalized with perfluorinated silanes (or 
perfluorinated phosphonic acids). The resulting hierarchically textured surfaces trap air pockets 
below the tetrapods, thereby creating a plastronic architecture. (e) The textured surfaces exhibit a 
low surface energy by dint of the pendant fluorous phase, thereby yielding omniphobic behavior. 
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Figure IV.2 outlines the design of omniphobic surfaces integrated directly onto etched carbon 

steel substrates. The design incorporates the following elements: (a) microscale texturation 

defined by acid etching of flat carbon steel substrates; (b) nanoscale topography defined by ZnO 

nanotetrapods with protruding ends; (c) plastron-like capture of air pockets between ZnO 

nanotetrapods and the underlying substrate; (d) an adhesive SiO2 layer that is optionally used to 

adhere nanotetrapods to steel substrates; and (e) a high-density of surface perfluorinated pendant 

groups.  

Given the large number of process variables and potentially vast matrix of compositional 

possibilities, contact angle measurements have been used to rapidly screen conditions and to 

down-select promising candidates for further examination along the process flow depicted in 

Figure IV.2. Initially, water contact angles are used to modify the process flow to converge upon 

etching conditions and nanotetrapod loadings (in other words, micro- and nanoscale texturation) 

that show promising non-wettability. Subsequently, the nanotetrapod loadings and nature and 

extent of functionalization with perfluorinated compounds is modified and the surfaces thus 

prepared are challenged with water, hexadecane, and heavy oil.  

IV.3.2 Microscale Texturation by Selective Etching  

Micrometer-scale texturation is established by chemical etching of flat carbon steel substrates. 

Immersion of carbon steel within strong electrolyte solutions in an oxygen ambient results in 

pitting corrosion and roughening of the surface; the specific topographies and extent of 

roughness depends sensitively on the etching conditions. The etch patterns depend on the etchant 

and the specific elements that are selectively dealloyed from carbon steel as well as the reactivity 

along the dislocations. Three types of etch solutions have been examined: (a) an aqueous 
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solution of 6.05 M HCl and 24.9 mM hexamethylenetetramine at 25 and 80°C (for 10 and 60 

min), as reported in ASTM G1 for the cleaning and removal of oxides from carbon steel 

surfaces; (b) an aqueous solution of 6.05 M HCl at 80°C (for 10 and 60 min);3 and (c) a mixed 

acid solution of 4.6 M HCl and 2.2 M H2SO4 at 93°C (for 30—90 s).3 The HCl and H2SO4 

solutions etch steel along different crystallographic directions and have been used in tandem to 

obtain hierarchical surface morphologies.3 Figure IV.3 shows representative optical microscopy 

images of the carbon steel surfaces after etching with different solutions for different periods of 

time showing contours tracing steps defined on the carbon steel surfaces. The 

HCl/hexamethylenetetramine solution is particularly well suited to the removal of oxide scale but 

does not greatly roughen the surface. Indeed, optical microscopy images indicate terraces that are 

tens of microns wide. In contrast, the substrates etched with the mixed acid solution show much 

more closely spaced steps spanning only a few microns, whereas the substrates etched with HCl 

alone at 80°C exhibit sub-micron-scale pores in addition to steps. Figure IV.4 contrasts SEM 

images acquired at different magnifications for the latter two samples as compared to cleaned 

A36 carbon steel substrates (Figs IV.4a and b). For the mixed acid sample etched at 93°C for 45 

s (Figs. IV.4c and d), large terraces are observed spaced by 500 nm—1 μm suggesting distinctive 

microscale texturation. In contrast, for the HCl-etched sample prepared at 80°C for 1 h (Figs. 

IV.4e and f), nanometer sized porosity is evidenced in proximity of deeper etch pits.  
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Figure IV.3. Optical micrographs obtained at 20× and 50× magnifications indicating the surface 
topographies of roughened carbon steel surfaces upon chemical etching. The specific etching 
solutions used are indicated in the figure. 

 
 
 
The efficacy of the etch solutions in defining texturation have been assessed by measuring water 

contact angles before and after functionalization with a perfluorinated silane (a 2.7 mM solution 

of heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysiloxane) as noted in Table 1 and 
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illustrated in Figures IV.5 and 6. As suggested in Chapter I by Equation I.3, roughness 

amplifies the intrinsic wettability of the surface. A freshly cleaned steel substrate is fairly 

hydrophilic with a water contact angle of 63° ± 3°. Etching with a solution of HCl, 

hexamethylenetetramine, and water at 25°C for 10 min yields topographies illustrated in Figure 

IV.3I and actually increases the contact angle to 80° ± 5°, suggesting a smoother surface as a 

result of removal of passivating oxide layers, which yields a smoother surface that better reflects 

the mildly hydrophilic nature of the carbon steel. In contrast, etching with the same solution at 

80°C for 10 min decreases the water contact angle to 26° ± 3°. The much lower contact angle 

upon etching at 80°C is a result of somewhat increased texturation of the surface as observed in 

Figures IV.3K. Etching the carbon steel substrates in a 1:1 HCl:H2O solution at 80°C for 10 min 

induces a comparable degree of texturation and also decreases the contact angle to 27° ± 8°. 

When this same etching solution is used for an extended time of 1 h, the water contact angle 

decreases to 10° ± 1° indicating a high degree of surface roughness (Fig. IV.3L). In comparison, 

the mixed acid etchant deployed at 93°C for only 45 s decreases the contact angle to 40° ± 8° 

(Fig. IV.5). When comparing the mixed acid etch at shorter and longer times of 30 and 90 s, the 

water contact angle decreases to <10° and 14° ± 3°, respectively. The decrease of contact angle 

for these substrates with increasing roughness is consistent with the amplification of intrinsic 

wettability predicted in Chapter I by Equation I.3. The lower contact angle for the more 

extensively etched samples (mixed acid for 90 s or HCl etch for 60 min) suggests a higher degree 

of nanoscale texturation (and thus a higher r value as noted in Chapter I, Eq. 3), which is 

consistent with the deeper etch pits and nanoscale surface porosity discernible in Figure IV.4 for 

these samples.  
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Figure IV.4. SEM images of etched carbon steel surfaces. (A,B) SEM images of cleaned A36 
carbon steel substrates. (C,D) SEM images of A36 carbon steel substrates upon etching with a 
mixed acid solution at 93°C for 45 s. Clear terraces are evident, separated by distances of 500nm 
to 1 μm. However, the steps are generally free of nanoscale topographies. (E,F) SEM images of 
A36 carbon steel substrates etched using an HCl solution at 80 °C for 1 h, depicting deeper etch 
pits with accompanying nanoscale porosity. 
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Next, we have sought to examine the extent to which such textured surfaces are rendered 

hydrophobic when the surface is modified to present pendant fluorinated groups. The lower row 

of contact angle measurements shown in Figures IV.5 and 6 indicate that after functionalization 

with a perfluorinated silane, the water contact angle of clean steel has been increased to 114° ± 

3° suggesting that the pendant perfluorinated groups have rendered the surface hydrophobic. 

Again, as predicted by in Chapter I Equation I.3, the texturation induced by etching amplifies 

this intrinsic non-wettability of the (now) low-surface-energy substrate. The steel sample etched 

with a solution of HCl, hexamethylenetetramine, and water at 25°C for 10 min provides a water 

contact angle of 115° ± 2° after surface modification again suggesting that this set of etching 

conditions does not induce substantial texturation of the surface.  

Table IV.1 Water contact angles for carbon steel substrates subjected to different etching 
conditions to define micro- and nanoscale texturation. Contact angles are listed for freshly etched 
samples. Water contact angles were acquired in triplicate for each sample and are presented as 
the mean and the standard deviation. 

Etching Agent Time Fluorinated Silane CA Water 

None None None 63° ± 3° 
HCl/HMT 25 °C 10 min None 80° ± 5° 
HCl/HMT 25 °C 60 min None 41° ± 4° 
HCl/HMT 80 °C 10 min  None 26° ± 3° 
HCl/HMT 80 °C 60 min None 15° ± 5° 

Mixed acid 30  s None <10° 
Mixed acid 45 s None 40° ± 8° 
Mixed acid 90  s None 14° ± 3 

HCl 10 min None 27° ± 8° 

HCl 60 min None <10° 
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Figure IV.5. Water contact angles of (A) cleaned blank steel, (B) steel after etching with mixed 
acid solution at 93°C for 45 s. (C) and (D) represent the water contact angles measured for (A) 
and (B) after immersion in a 2.7 mM butanol solution of nonafluorohexlytriethoxysilane, 
respectively. 

 
 
 
When the temperature of this etching solution is increased to 80°C for 10 min the contact angle 

is modestly increased to 118° ± 1° showing that as compared to the texturation of the cleaned 

blank steel, this etchant does not substantially add any additional texturation. These values are a 

good representation of the surface energy of a relatively planar carbon steel surface capped with 

the perfluorinated silane.   

For the samples etched with a 1:1 HCl:H2O solution for 10 min at 80°C and then modified with 

the perfluorinated silane, the water contact angle is slightly increased to 120° ± 3°; in contrast, 

just a 30 s etch with mixed acid solution at 93°C yields a contact angle of 133° ± 5° after surface 

functionalization. Surfaces etched by a 1:1 HCl:H2O solution at 80°C for 1 h and with a mixed 

acid solution at 93°C for 45 s that show much more extensive texturation exhibit water contact 

angle values of 151° ± 4° and 143° ± 6°, respectively, after surface modification with the 
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fluorinated silane. The two most optimal etching conditions, 1:1 HCl:H2O solution for 60 min at 

80°C and mixed acid solution at 93°C for 45 s, have been selected for further enhancement of 

non-wettability based on the addition of ZnO nanotetrapods and surface modifiers as described 

in subsequent sections of Chapter IV.  

 
 
Figure IV.6. Water contact angles of (A) cleaned blank steel, (B) steel after etching in HCl 
solution at 80°C for 1 h. (C) and (D) represent the water contact angles measured for (A) and (B) 
after immersion in a 2.7 mM butanol solution of nonafluorohexlytriethoxysilane, respectively. 

 
 
 

IV.3.3 Nanoscale Texturation Using ZnO Nanotetrapods 

The air oxidation of metallic zinc at high temperatures yields ZnO nanostructures with starkly 

different morphologies as illustrated in Figure IV.7 depending on the partial pressure of oxygen. 

Nanowire arrays, nanotubes, nanocombs, and nanotetrapods are obtained depending on the 

oxygen partial pressure, which likely mediates the extent of supersaturation of monomeric 

vaporized Zn species.1,4,5 The growth of nanowires as well as the 1D elements of the other 

nanostructures is likely mediated by growth along screw-dislocations;1,6,7 the wires and tetrapods 
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alike taper to a sharp point as the monomer is depleted during the course of the reaction. The 

nanotetrapods have been selected to endow nanoscale texturation to the etched substrates 

discussed in the preceding section. The tetrapodal nanostructures are accessible by a readily 

scalable open-air oxidation approach and upon deposition onto the substrates will always expose 

one or more protruding ends facilitating the entrapment of air bubbles and suspension of liquid 

droplets in the Cassie—Baxter state. 

 
 
 

 

Figure IV.7. SEM images of different ZnO morphologies obtained from oxidation of metallic 
Zn at different oxygen partial pressures.48 A,B) nanowire arrays, C) nanocombs, and D) 
nanotetrapods. Adapted with permission from ACS Applied Materials & Interfaces 2013, 5, 
10650-10657. Reproduced by permission of the American Chemical Society. 
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 Figures IV.8A and B shows two different orientations of individual ZnO nanotetrapods, 

whereas Figures IV.78 and D depict low and high-magnification views of ZnO nanotetrapods 

integrated onto etched steel substrates. The Raman spectrum acquired for harvested ZnO 

powders depicted in Figure IV.8E is consistent with stabilization of hexagonal ZnO and the 

symmetry assignments of the phonon modes are indicated in the figure.1,8 The XRD pattern of 

the ZnO tetrapods shown in Figure IV.8D can be indexed to Joint Committee on Powder 

Diffraction Standards (JCPDS) # 36-1451, indicating the formation of phase-pure ZnO in the 

hexagonal zincite phase.  

While a few tetrapodal arms are broken during harvesting and spray coating, the structures 

nevertheless define a continuous nanoscale topography on the etched steel substrates as a result 

of their protruding arms. The nanotetrapods are an essential design element for the preparation of 

non-wettable surface and offer the following distinct advantages: (i) the tetrapod morphology 

with protruding arms gives rise to a nanotextured morphology regardless of the specific 

orientation of the nanostructures, which is much more advantageous as compared to nanowire 

arrays that can potentially buckle and flatten under an applied stress; (ii) the tetrapod 

morphology is impossible to close pack and thus nanotetrapods yield nanoscale porosity as 

evidenced in Figures IV.8C and D. Such porosity enables the nanotetrapods to define a “bed of 

nails” geometry enabling classical Cassie—Baxter or plastron-like behavior by trapping air 

beneath suspended water or oil droplets.   
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Figure IV.8. Defining nanotexturation using ZnO nanotetrapods. A, B) SEM images acquired 
for individual ZnO nanotetrapods indicating the four protuberant and tapered arms. The tetrapod 
morphology results inevitably results in the trapping of air pockets between the nanotetrapods 
and the base substrate, thereby giving rise to the Cassie-Baxter suspended droplet regime and 
stabilizing plastrons. C, D) SEM images depicting interconnected ZnO nanotetrapods residing on 
etched steel substrates. (E) Raman spectra and (F) XRD pattern acquired for ZnO nanotetrapods. 
The XRD pattern also indicates the reflections of the hexagonal zincite phase (JCPDS 36-1451). 
Reflections derived from residual Zn are marked with an asterisk. 
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IV.3.4 Adhering ZnO Nanotetrapods to Steel Substrates: Mechanical and Thermal Stability 

The interlocked ZnO nanotetrapods show rather poor adhesion to the etched steel substrates upon 

spray deposition. However, in order to improve the adhesion of ZnO nanotetrapods onto etched 

carbon steel, an amorphous SiO2 shell is constituted by condensation of surface hydroxyl groups 

of the nanotetrapods and steel surfaces with silanols obtained by the base-catalyzed hydrolysis of 

TEOS. Three different configurations have been tested in terms of adhesion to clean steel 

surfaces: (a) an initial condensation of TEOS with the surface silanols of the steel surface 

followed by spray deposition of ZnO nanotetrapods; (b) spray deposition of ZnO nanotetrapods 

from a TEOS dispersion in ethanol and water; and (c) an overlayer of TEOS after spray 

deposition of the initial ZnO nanotetrapod layer. Figure A.1 shows the results of ASTM 3359 

testing of the samples assessed on a standardized scale of 0B to 5B with higher numerical figures 

representing better adhesion. In the absence of TEOS, the deposited coating is removed from 

almost every region of the scribed grid with a rating of 0B. The application of an initial TEOS 

layer or spray-coating from a TEOS dispersion slightly improves the adhesion to 1B but a large 

amount of the coating is still readily removed by application of the adhesive tape. However, 

application of a top layer of TEOS to an initially spray-deposited ZnO nanotetrapod coating 

earns the highest rating of 5B. Notably, the tests have been performed on flat and clean steel 

substrates and thus etched substrates with a greater degree of surface roughness are expected to 

provide an event greater extent of adhesion. The top-coated substrates furthermore show an 

adhesion strength of 450—550 g in ASTM D2197 scrape adhesion tests as compared to 0 g for 

tetrapods spray deposited without a TEOS layer. 
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Figure IV.9. A-C) A ZnO nanotetrapod layer adhered to a steel substrate, etched with an HCl 
solution, using TEOS as the precursor to constitute a SiO2 layer; D-F) A ZnO nanotetrapod layer 
adhered to a steel substrate, etched with a mixed acid solution, using TEOS as the precursor to 
constitute a SiO2 layer. The panels show SEM images at increasingly higher magnifications. 

 
 
Figure IV.9 shows the hierarchical texturation of etched steel substrates/ZnO 

nanotetrapod/TEOS-derived SiO2 layers. The SEM images in Figure IV.9A—C correspond to 

steel substrates etched with an HCl solution, whereas the substrates depicted in Figure IV.9D—F 

have been etched with the mixed acid solution as described in Section IV.3.2. The highly porous 

and mesostructured topographies are easily discernible from the SEM images, demonstrating the 

scope for stabilizing air pockets between the ZnO nanotetrapods and the etched steel surfaces 

giving rise to synthetic plastrons. 

Thermogravimetric analysis demonstrates that the ZnO tetrapods do not undergo any discernible 

weight loss up to a temperature of 900°C. Upon deposition of an amorphous layer of SiO2, a 

small weight loss of ca. 3.8% is observed in the temperature range of ca. 160—325°C. This 

weight loss is attributed to the loss of residual water and hydroxyl groups from the porous SiO2 

layer, which leads to a greater degree of cross-linking and compaction of the silica matrix. The 
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inorganic components of the coating are thus thermally robust and compatible with high-

temperature operation. 

 

Figure IV.10. A) Zinc, B) oxygen, C) flourine, and D) carbon energy dispersive X-ray maps of 
ZnO nanotetrapod samples functionalized with a perfluorinated silane, (heptadecafluoro-1,1,2,2-
tetrahydrodecyl) trimethoxysilane. The energy dispersive X-ray maps (A-D) have correspond to 
a 15 µm x 15 μm area. E) The EDX spectrum of the sample area analyzed in (F). (F) SEM image 
of the perfluorinated ZnO nanotetrapods; the yellow box delineated the region mapped by EDX. 
(G) attenuated total reflection (ATR) FTIR spectra of TEOS-coated ZnO soaked for 1 h in a 2.7 
mM butanol solution of (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane. 
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IV.3.5 Surface Functionalization with Molecular Monolayers: Modulating Surface and 

Interfacial Energies 

As indicated by Equation 2, a low surface energy is imperative to ensure non-wettability towards 

low-surface-tension liquids. Pendant fluorinated moieties are particularly useful owing to their 

minimal interactions with both water and hydrocarbons. The intermolecular interactions of C—F 

bonds are incompatible with hydrogen bonding favored by water molecules and dispersive 

interactions favored by hydrocarbons. As a consequence, when a water or hydrocarbon droplet 

impinges on a fluorinated surface, the adsorption enthalpy is strongly positive and thus the 

liquid—solid interfacial energies in Equation 1 remain quite large. In other words, the adhesive 

forces at a fluorinated surface are inadequate to overcome the cohesive forces between droplet 

molecules. The surface energy will depend on the surface grafting density of fluorinated 

moieties, which in turn is a function of the binding group, the length of the perfluorinated alkyl 

chains, and the processing conditions (concentration, temperature, and soak time). These 

parameters determine the extent to which the fluorinated silanes form a 2D crystalline monolayer 

on the nanotetrapodal surfaces.9–11 In essence, crystalline packing of molecules within 

monolayers involves a trade-off between the decrease in enthalpy as C-F interactions are 

optimized along the length of the pendant groups and the decrease in entropy resulting from the 

loss of rotational degrees of freedom in ordered monolayers. The condensation of the fluorinated 

silanes to form oligomers in solution also competes with surface grafting of these species and 

becomes especially significant at higher concentrations. 

Varying lengths of perfluorinated alkyl chains have been evaluated using water contact angle 

measurements with the supposition that all other things remaining the same the most ordered 

monolayers will yield the highest water contact angles. Triethoxyfluorosilane represents the 
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shortest chain length (C2), nonafluorohexyltriethoxysilane represents the medium chain 

derivative (C6), and heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysiloxane represents the 

long chain derivative (C10). Hereafter, each fluorinated silane will be mentioned as C2, C6, and 

C10. As an example of an entirely distinct binding mode, 1H,1H,2H,2H-

perfluorooctanephosphonic acid has also been used as a fluorinated derivative because it has 

previously been shown to have a high affinity for ZnO surfaces.12 The phosphonic acid moiety 

can potentially directly bind ZnO surfaces, whereas the silanes are reactive towards surface 

hydroxyl groups.  

The etched surfaces have been screened using the three types of silanes initially using water 

contact angles as a measure of the surface energy and roughness. The C6 fluorinated silane 

exhibits the highest degree of hydrophobicity with a contact angle of 158° for the HCl etched 

sample. Figure IV.10 illustrates an EDX map acquired for ZnO tetrapods functionalized with the 

C6 perfluorinated silane. The localization of Zn and F signals verifies the surface grafting of the 

fluorinated moieties with a measured Zn:F ratio of 20:39. In addition the FTIR spectra acquired 

in attenuated total reflectance mode shown in Figure IV.10G indicates vibrational modes at 1201 

and 1146 cm-1, which can be assigned to C-F stretching and C-F bending modes of the 

perfluoralkyl chains of the (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane, 

respectively.13 In addition, a Si-O-Si stretch at 1076 cm-1 derived from the TEOS coating is also 

observed.13 Thermogravimetric analysis indicates ca. 25% weight loss in the temperature range 

of 300—500°C arising from breakdown and removal of pendant fluorinated groups from the 

silanes attached to the ZnO tetrapods, which suggests an excellent window of operation 

considering that most crude oil is handled below a temperature of 200°C.  
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Figure IV.11. Hexadecane contact angles of (A) cleaned blank steel, (B) fluorinated cleaned 
blank steel, (C) steel etched with HCl at 80°C for 1 h and fluorinated, (D) steel etched with HCl 
at 80°C for 1 h, coated with ZnO nanotetrapods, and fluorinated, (E) steel etched with HCl at 
80°C for 1 h, coated with ZnO nanotetrapods, TEOS coated, and fluorinated. F-J) heavy oil 
contact angles for samples A-E, respectively. In all cases, surface functionalization was achieved 
by immersion in a 2.7 mM butanol solution of the C6 perfluorinated silane for 1 h. 

 
 
 
 The better ordering of C6 as compared to C2 and C10 fluorinated silanes is thought to derive 

from the optimal balance of enthalpic gain and entropic loss at these chain lengths; C2 likely has 

only a marginal enthalpic stabilization given that it has just two carbon atoms, whereas for C10, 

slower kinetics arising from longer chain lengths likely give rise to higher thermal disorder9 on 

surfaces and the slower diffusion of these more sterically encumbered species further hinders 

surface reorganization. It is worth noting the perfluorinated phosphonic acid yields comparable 

or superior results depending on the etching conditions. For the sample etched in a 1:1 HCl:H2O 

solution for 60 min at 80°C, functionalization with perfluorinated phosphonic acid yields a 

contact angle of 140° ± 5°. Analogously, a water contact angle of 145° ± 2° has been obtained 

for blank steel etched with mixed acid at 93°C for 90 s and functionalized with perfluorinated 

phosphonic acid, whereas the C6 silane yields a water contact angle of 133° ± 3°.  
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These two moieties, the perfluorinated phosphonic acid and C6 silane, have been used to further 

functionalize the etched steel substrates coated with ZnO nanotetrapods as per the process flow 

depicted in Figure IV.2 and are further challenged with hexadecane and heavy oil as test liquids 

apart from water (selected values are noted in Table 2). The latter crude oil fraction is 

particularly relevant to real-world applications and is a viscous liquid that strongly wets pipelines 

and storage tanks.  

 

Table IV.2. Selected water, hexadecane, and heavy oil contact angles measured for micro- and 
nanotextured steel substrates with ZnO nanotetrapods (optimized at 7.8 mg/cm2) and TEOS 
(optimized at 3.9 μL/cm2) and upon functionalization with either the C6 perfluorinated silane or 
perfluorinated phosphonic acid. The “best-in-class” sample is highlighted in bold. 

Etching 
Agent 

Time ZnO 
Loading 

TEOS 
Loading 

Fluorinated 
Silane 

CA 
Water 

CA 
Hexadecane 

CA 
Heavy Oil 

        
None None None None None 63° ± 

3° 
15° ± 3° 59° ± 4° 

None None None None 2.7 mM M 
chain 

108° ± 
9° 

76° ± 3° 60° ± 4° 

None None 7.8 
mg/cm2 

3.9 µL/cm2 2.7 mM, 9 h 
M chain 

164° ± 
2° 

76° ± 4° 108° ± 6° 

Mixed 
acid 

45 s 7.8 
mg/cm2 

3.9 µL/cm2 2.7 mM M 
chain 

165° ± 
4° 

51° ± 12° 92° ± 6° 

Mixed 
acid 

45 s 7.8 
mg/cm2 

3.9 µL/cm2 8.1 mM M 
chain 

164° ± 
3° 

68° ± 2° 125° ± 7° 

Mixed 
acid 

45 s 7.8 
mg/cm2 

3.9 µL/cm2 2.7 mM, 9 h  
M chain 

157° ± 
4° 

56° ± 3° 119° ± 4° 

HCl 1 h None None 2.7 mM M 
chain 

107° ± 
2° 

59° ± 4° 58° ± 3° 

HCl 1 h 7.8 
mg/cm2 

None 2.7 mM M 
chain 

155° ± 
6° 

79° ± 3° 58° ± 3° 

HCl 1 h 7.8 
mg/cm2 

3.9 µL/cm2 2.7 mM M 
chain 

164° ± 
5° 

60° ± 2° 105° ± 7° 

HCl 1 h 7.8 
mg/cm2 

3.9 µL/cm2 2.7 mM 9 h 
M chain 

152° ± 
4° 

103° ± 4° 124° ± 8° 

HCl 1 h 7.8 
mg/cm2 

3.9 
µL/cm2 

8.1  mM M 
chain 

168° ± 
5° 

91° ± 2° 139° ± 8° 

HCl 1 h 7.8 
mg/cm2 

None 27.0  mM FPA 169° ± 
3° 

 133° ± 1° 
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The results of water contact angle measurements for ZnO nanotetrapods deposited onto etched 

carbon steel and then modified with the C6 silane or the perfluorinated phosphonic acid are 

provided in Table 2. Functionalization of ZnO nanotetrapods on etched steel with the C6 

perfluorinated silane yields the highest water contact angle for HCl and mixed acid etchants 

(165° and 164°, respectively), suggestive of strongly hydrophobic behavior. Indeed, these values 

represent conservative estimates since water droplets are strongly repelled by these surfaces. The 

superior non-wettability obtained for the perfluorinated C6 silane in comparison to the 

perfluorinated phosphonic acid (which yields values of 164°±5° and 153°±5°) is likely a result of 

the greater grafting density of the former on the TEOS coated surface that overcoats much of the 

ZnO nanotetrapod layer. Mixtures of the fluorinated silanes have also been examined by 

immersion of the substrates in two different silane solutions for 1 h each. In every case, the water 

contact angle is reduced in comparison to their single component monolayer counterparts no 

matter the etchant. It is hypothesized that mixed monolayers show a lower degree of ordering on 

the ZnO surfaces, which translates to a lower grafting density of pendant fluorinated species and 

thus yields a higher surface energy.  

The C6 perfluorinated silane and 1H,1H,2H,2H-perfluorooctanephosphonic acid have been 

further examined as surface modifiers for the two most textured surfaces down-selected from the 

process flow mapped in Figure IV.2 based on measurements of water contact angles for etched 

steel with ZnO tetrapods and a TEOS topcoat. The functionalized substrates are challenged with 

heavy oil and hexadecane in addition to water (Table 2). As a control, the contact angles of 

hexadecane and heavy oil on flat carbon steel are 15° ± 3° (Fig. IV.11A) and 59° ± 4°, (Fig. 

IV.11F), respectively. The viscous heavy oil spreads to cover and wet the surface of blank steel 

and cannot be drained from the surface. Upon surface modification with the C6 perfluorinated 
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silane, the hexadecane contact angle increases to 76° ± 3° (Fig. IV.11B), whereas the heavy oil 

contact angle is essentially unchanged at 60° ± 4° (Fig. IV.11G). Fig IV.11C indicates that 

microscale texturation induced by etching with hydrochloric acid and successive fluorination 

increases the hexadecane contact angle to 59° ± 4° compared to a blank sample, whereas the 

heavy oil angle is essentially unchanged at 58° ± 3° (Fig. IV.11H). After the successive steps of 

HCl acid roughening, deposition of ZnO nanotetrapods, and surface modification with the 

fluorinated silane, the hexadecane and heavy oil contact angles are 58° ± 3°  (Fig. IV.11D) and 

58° ± 3° (Fig IV.11I), showing no measurable increase for the liquids. However, after HCl acid 

roughening, deposition of ZnO nanotetrapods, and TEOS spray coating followed by surface 

functionalization with the C6 perfluorinated silane, the hexadecane and heavy oil contact angles 

increase to 60° ± 3° (Fig. IV.11E) and 105° ± 7° (Fig IV.11J), respectively. Here we note that the 

amorphous SiO2 layer provides additional sites to bind the perfluorinated monolayer, thereby 

greatly increasing the grafting density of the pendant fluorous groups. Based on Figure IV.9 and 

the relevant water contact angles listed in Table 2, the substrates are sufficiently structured to 

allow for superhydrophobicity to be derived from the combination of etching-induced micron-

scale and nanotetrapod-induced nanoscale texturation. However, the surfaces of the ZnO 

nanotetrapods are not adequately functionalized by the perfluorinated silanes and only upon 

deposition of an amorphous SiO2 layer is the grafting density of the perfluorinated silanes greatly 

increased allowing for manifestation of oleophobicity towards heavy oil. 
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Figure IV.12. (A) Water contact angles of carbon steel after etching with HCl:H2O solution at 
80°C for 1 h, deposition of 7.8 mg/cm2 of ZnO nanotetrapods, and surface functionalization with 
a 27.0 mM THF solution of 1H,1H,2H,2H-perfluorooctanephosphonic acid. (B) demonstrates the 
contact angle for heavy oil on the same sample. 

 
 
 
The most promising sample from the process flow shown in Figure IV.2 is HCl etched steel 

integrated with ZnO nanotetrapods with an amorphous SiO2 overlayer, which exhibits a water 

contact angle of 168° ± 5° (Table 2).  In order to render this surface oleophobic (and indeed 

omniphobic), an attempt has been made to greatly increase the grafting density of fluorinated 

species. Upon increasing the concentration of the C6 perfluorinated silane to 8.1 mM, the 

hexadecane and heavy oil contact angles of this sample are further increased to 91°±2° and 139° 

± 8°, respectively. The greatly enhanced heavy oil contact angles of this substrate suggests strong 

omniphobicity resulting from an optimal combination of low surface energy and hierarchical 

mesoscale texturation. This surface not only has trapped plastronic air pockets but the high 

grafting density of perfluorinated species imparts a low surface energy. Consequently, oil 

droplets are suspended across nanoscale and microscale topographies with relatively minimal 
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contact (in Cassie—Baxter mode as expressed in Chapter I, Eq. I.4) with a high value of γSL at 

the intermittent contact points.  

Figure IV.12 indicates the water and heavy oil contact angles for a sample wherein a high 

density of the perfluorinated phosphonic acid is directly grafted onto the ZnO tetrapodal 

nanostructures. A heavy oil contact angle of 133 ± 1° is obtained indicating again that a high 

grafting density of the perfluorinated monolayer needs to be established to render a surface that 

is superhydrophobic by dint of nanotexturation (with a water contact angle of 168°) strongly 

oleophobic. 

The motion of a droplet on a surface in the range of non-wettability depends on the balance of 

forces between gravity and surface tension (unbalanced Young’s forces) at the contact line.14 In 

the Cassie—Baxter regime, the contact line can become pinned resulting in hysteresis between 

advancing and receding contact angles. From a practical perspective, this implies that for 

omniphobic behavior of a liquid droplet, an optimal degree of nanotexturation is required. A very 

high degree of nanotexturation provides an abundance of sites to pin the liquid droplet, whereas 

with minimal nanotexturation, it becomes difficult to stabilize the droplet in the Cassie—Baxter 

regime and conformal wetting (Wenzel regime) becomes the preferred wetting regime. A ZnO 

loading of ca. 7.8 mg/cm2 has been found to be optimal to facilitate not just higher water contact 

angles but also facile gliding of water droplets. A liquid droplet can glide across a surface when 

 𝜌𝑉g 𝑠𝑖𝑛α > 𝜋𝑟𝛾 (cosθୖ − cosθ୅) (4) 

where r is the radius of the contact line, γ is the surface tension of the liquid, θR and θA are the 

receding and advancing contact angles, respectively, ρ is the density of the liquid, V is the 

volume of the droplet, g is the acceleration due to gravity, and α is the angle by which the 
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substrate is tilted. Water droplets very readily glide across the substrates fabricated here. The 

facile motion of water droplets is facilitated by the high density of water (1000 kg m-3) and the 

fact that the radius of the contact line is rather small given the high water contact angle (>160°, 

Fig. IV.12).15 Consequently, the gliding of water droplets is relatively more forgiving of contact 

angle hysteresis due to defects. In contrast, the hydrocarbons have a relatively lower density and 

wet the surfaces relatively more (heavy oil contact angles in the range of 133—139°, Table 2), 

giving rise to a relatively larger radius of the contact line. As a consequence, reducing the contact 

angle hysteresis (to reduce the (cosθR-cosθA) term in Chapter I Eq. I.4) and further enhancing 

non-wettability (to reduce r in Eq. 4) is imperative to achieve gliding of the oil droplets at 

reasonable values of α and is indeed the focus of Chapters V and VI. 

IV.4 Conclusions 

A step-wise modular approach is used to arrive at thermally robust and mechanically resilient 

surfaces that exhibit robust universal non-wettbaility. The approach combines microscale and 

nanoscale texturation with surface modification to obtain surfaces that are both hydrophobic as 

well as oleophobic and repellant to highly viscous heavy oil. Microscale texturation is defined by 

etching carbon steel substrates selectively along dislocations to define terraces. Nanoscale 

texturation is introduced by the deposition of ZnO nanotetrapods. The distinctive morphology of 

the nanotetrapods with four protuberant arms defines a nanoscale topography on the etched steel 

substrates and facilitates the trapping of air pockets between the nanostructured layers and the 

steel substrates. TEOS is used as a precursor to constitute a thin layer of amorphous SiO2 that 

binds the ZnO nanotetrapods to the steel surfaces based on condensation of silanols with surface 

hydroxyl groups on both the tetrapods and the surface oxides of the steel. Functionalization of 

the ZnO nanotetrapods with perfluorinated phosphonic acids and of the ZnO nanotetrapod/SiO2 
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layers with perfluorinated silanes reduces the surface energy and yields surfaces that strongly 

repel water and oil. Liquid droplets impinging such surfaces are suspended in Cassie—Baxter 

states by the trapped air pockets within minimal contact points defined by the nanoscale terrain. 

The most omniphobic samples in terms of their ability to repel heavy oil and to allow gliding of 

heavy oil droplets obtained here correspond to carbon steel etched with a 1:1 mixture of HCl and 

H2O for 1 h at 80°C, with a 7.8 mg/cm2 loading of ZnO nanotetrapods, 3.9 µL/cm2 overlayer of 

TEOS, and functionalization by 1 h immersion in a 8.1 mM solution of the C6 perfluorinated 

silane, which shows water and heavy oil contact angles of 168° ± 5° and 139° ± 8°, respectively. 

The direct integration of hierarchical texturation and surface modification onto steel substrates 

provides a viable solution for oil-handling that is scalable and compatible with existing 

infrastructure. Such ceramic omniphobic surfaces are stable up temperatures of 295° suggesting 

viability for applications in oil-handling equipment such as tanker trucks, railcars, and pipe 

interiors. In addition to base metal substrates, ZnO nanotetrapods can also be applied to stainless 

steel meshes in order to generate mesoscale textured surfaces without the need for selective 

etching procedures. The meshes provide an underlying micron-scale texturation that amplifies 

the influence of the tetrapods. In Chapter V, this process in conjunction with chemical 

functionalization using perfluorinated phosphonic acids highlights the intricacies of combining 

texturation and the reduction of surface energy in order to achieve the gliding of both water and 

viscous oil.  
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CHAPTER V  

BIOMIMETIC PLASTRONIC SURFACES FOR HANDLING OF VISCOUS HEAVY 

OILS* 

V.1 Outline 

Unconventional deposits such as heavy crude oil and natural bitumen represent a steadily 

increasing proportion of extracted fuels. The rheological properties of heavy crude oil represents 

a formidable impediment to their extraction, transportation, and processing and have necessitated 

considerable retooling and changes to process design. The cleaning and maintenance of storage 

containers, pipelines and transportation vectors such as railcars represents a considerable cost as 

well as safety burden. Whilst considerable effort has focused on the design of engineered 

surfaces for facilitating the transport and handling of common liquids, options for handling of 

heavy crude oils are extremely sparse. Here we show highly textured inorganic substrates 

generated by depositing ZnO nanotetrapods onto periodically ordered stainless steel mesh 

substrates to bring about multiscale texturation and porosity characterized by trapping of 

plastronic air pockets at the solid/liquid interface. Such structures are strongly ejected upon 

immersion in water. Further reduction of the surface energy has been achieved by constituting a 

helical self-assembled monolayer of a perfluorinated phosphonic acid on the ZnO surfaces. The 

functionalized substrates demonstrate remarkable superoleophobic behavior towards heavy crude 

oil and are readily able to glide both water and heavy oil droplets. 

                                                 

* Reproduced with permission from “Biomimetic Plastronic Surfaces for Handling of Viscous Heavy Oils.” O’Loghlin, T.E.; 
Dennis, R.V.; Fleer, N.A.; Alivio, T.E.G.; Ruus, S.; Wood, J.; Gupta, S.; and Banerjee, S.  Energy & Fuels, 2017, 31 (9), 9337-
9344. Reproduced by permission of the American Chemical Society. 
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V.2 Introduction 

The relentless increase of global energy consumption and declining reserves of light crude oil 

have led to increasing reliance on unconventional deposits such as heavy crude oil and natural-

bitumen sourced from sub-surface deposits such as in Canada and Venezuela.1–3  Advances in 

cold production, steam flooding, and enhanced oil recovery processes have nudged recovery 

metrics higher and rendered extraction of these deposits economically viable.1 However, the 

handling, transport, and upgrading of these fuels comes with its own set of complex 

challenges.4,5 Methods such as steam-assisted gravity drainage extract emulsions at high 

temperatures and the recovered oils tend to be highly viscous comprising large fractions of 

asphaltenes. The challenging rheological characteristics of these fluids render standard coatings 

for handling and transportation equipment, many of which are polymeric in nature, incompatible 

with prolonged operation. Current industrial practice involves handling at substantially elevated 

temperatures or the mixing of light oil fractions (diluents) with bitumen; the latter is commonly 

used to facilitate transport to refineries and represents a considerable penalty in terms of cost, 

process safety, and efficiency. A tremendous challenge is thus the design of surfaces that are not 

wetted by heavy oils and allow for the facile gliding of these viscous fluids. 

Science has often looked to nature to provide inspiration and insight, especially since nature has 

evolved particularly useful tools for handling of complex fluids. Nature abounds with examples 

of plants and insects that present superhydrophobic surfaces with contact angles in excess of 

150° and are thus not readily wetted by water droplets, even upon complete immersion.6 

Manifestation of hydrophobic behavior in nature allows for the effective self-cleaning of surfaces 

including in the famous example of the lotus leaf.7,8 Such superhydrophobic behavior is derived 

from a combination of mesoscale texturation and chemical incompatibility of the waxy surfaces 
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with water, which results in water droplets gliding readily without adhesion.9 As another 

prominent example, many insect and arachnid species possess fine hairs along their bodies that 

render them hydrophobic. These setae and densely packed microtrichia provide both micro- and 

nanoscale texturation, which allows for the trapping of air bubbles when the insects are 

submerged.10,11 The bubbles thus serve as incompressible reservoirs of oxygen and carbon 

dioxide and can then be used by the insect during respiration; oxygen can furthermore 

continuously diffuse from water into the air film (plastron).10,12,13 However, as a result of the 

lower surface tension of oil droplets, rendering surfaces superoleophobic is much more difficult 

and indeed there are no examples of naturally occurring oleophobic surfaces. Oleophobicity has 

been successfully induced in surfaces through a combination of reentrant curvature, low surface 

energy, and multiscale texturation.14,15 However, most such engineered surfaces tend to require 

polymeric layers or lithographic patterning, limiting their applicability in large-area formats such 

as required for processing millions of barrels of oil. Furthermore, the gliding of viscous oils has 

yet to be realized. 

In this article, we demonstrate a scalable plastron architecture constructed by integrating ZnO 

nanotetrapods onto a stainless steel mesh with micron-scale texturation. The hierarchical 

texturation renders the architecture superhydrophobic and indeed coated substrates immersed in 

water are rapidly ejected from the surface. Functionalization of the ZnO nanosurfaces with 

perfluorinated phosphonic acids yields a well-ordered self-assembled monolayer. The resulting 

low-surface-energy hierarchically textured surface is rendered superoleophobic and indeed 

readily allows for gliding of droplets of heavy oil.  
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V.3 Materials and Methods 

ZnO nanotetrapods were generated using a previously deployed technique based on oxidation of 

Zn metal in air as described in Chapter II.16,17 The resulting ZnO tetrapods were harvested and 

dispersed in 2-propanol (99.9%, Fisher Scientific). The solutions were then spray coated onto 

316 stainless steel meshes (McMaster-Carr) using an airbrush with a nozzle diameter of 0.5 mm, 

aided by an air compressor set at 45 psi. 

In order to reduce the surface energy of the samples, fluorination was achieved using 

1H,1H,2H,2H-perfluorooctanephosphonic acid (Sigma-Aldrich). A concentration of 27 mM 

perfluorinated phosphonic acid in tetrahydrofuran (Millipore) was found to be optimal based on 

systematic screening of concentrations and immersion time. The ZnO-coated substrates were 

immersed in THF solution and allowed to soak for 1 h, followed by drying under air. 

V.3.1 Characterization 

A CAM 200 Optical Goniometer was used to measure all contact angles. All test liquids had a 

drop size of ca. 10 μL. A mechanical pipette was used to apply doubly distilled and deionized 

water (ρ = 18.2 MΩ cm-1); and a manual micropipette was used to apply heavy oil droplets. The 

heavy oil used here was obtained from Cenovus Energy, Inc. and was extracted from the 

Northern Alberta Oil Sands using the steam-assisted gravity drainage method. The heavy oil 

used has a viscosity of ca. 140,005 mPa·s at 25°C. All listed contact angles in Chapter V are a 

result of at least three averaged values measured on different parts of the prepared substrates. 

XPS spectra were collected with an Omicron XPS/UPS system equipped with an Argus detector 

using Mg Kα X-rays (source energy of 1253.6 eV) with sample charge neutralization achieved 
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using a CN10 electron flood source. A spectral resolution of 0.8 eV was used in the 

measurements. High-resolution spectra were collected at a pass energy of 150 eV (in constant 

analyzer energy (CAE) mode) and at an energy step size of 0.05 eV. High-resolution spectra 

were calibrated against the C 1s line of adventitious carbon (284.8 eV). FTIR data were acquired 

using a Bruker Vertex-70 FTIR instrument equipped with a Pike MIRacle™ single reflection 

horizontal attenuated total reflectance (ATR) accessory. 

The morphology of the ZnO tetrapods was imaged using a JEOL JSM-7500F field-emission 

scanning electron microscope (FE-SEM) equipped with a high brightness conical FE gun and a 

low aberration conical objective lens. A cold cathode UHV field emission conical anode gun was 

used as the source. Imaging was performed at an accelerating voltage of 10 kV. The instrument 

resolution was ca. 1.0 nm. False-color elemental maps were generated using an Oxford energy-

dispersive X-ray (EDX) system. During the analysis, the following parameters were used: 

accelerating voltage of 15 kV, emission current of 9 μA, and probe current of 11 μA. False-color 

elemental composition maps were generated using the Inca Suite 5.05 software. 

V.4 Results and Discussion 

Chapter II, we have demonstrated the fabrication of membranes for water/oil separation based on 

the orthogonal wettability of ZnO nanotetrapods towards the two liquids.17 In this chapter, we 

demonstrate that ZnO nanotetrapods integrated onto stainless steel mesh substrates form 

plastronic architectures by dint of trapped air pockets. The use of metal meshes instead of 

continuous steel surfaces gives rise to a dynamic interconnected porous plastronic network.5,6 

Such an architecture is schematically illustrated in Figure V.1 and is strongly hydrophobic and is 
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additionally rendered oleophobic towards viscous heavy oils by surface functionalization with 

self-assembled monolayers of a perfluorinated phosphonic acid.  

 
 

 

Figure V.1. (A) Schematic depiction of a plastronic architecture designed to glide heavy oil 
droplets. ZnO tetrapods shown in (B) are arrayed onto a microtextured stainless steel mesh. The 
ZnO nanotetrapods are further functionalized with 1H,1H,2H,2H-perfluorooctanephosphonic 
acid that forms a self-assembled monolayer as depicted in (C). 
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The nanotetrapodal geometry of the ZnO nanostructures provides an excellent means for 

achieving nanoscale surface texturation since even upon aggregation one or more arms remain 

protuberant from the mesh substrate,18 as illustrated by the SEM images in Figure V.2. An 

interconnected network with a protruding nanoscale topography is obtained even upon 

deposition by spray coating without need for specific lithographic patterning. The tetrapodal 

morphology provides re-entrant curvature, allows for trapping of air within the porous domains, 

and ensures there is only a limited area where a liquid/solid interface can be established.  

 

Figure V.2. SEM images of (A) a stainless steel mesh with a pore size of ca. 84 µm coated with 
ZnO tetrapods; (B) magnified view of a single pore of the ZnO-coated mesh; (C) a lone tetrapod 
suspended on the stainless steel mesh; (D) an interconnected network of ZnO tetrapods. 
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Figures V.3A-F depict contact angles for water and heavy oil droplets measured for a bare 

cleaned stainless steel mesh substrate (with a pore size of 180 μm) and for the same substrate 

loaded with a 7 mg/cm2 coating of ZnO tetrapods. The addition of the tetrapods brings about an 

increase of hydrophobic character as reflected by a ca. 20° increase of the contact angle. 

However, the surface remains oleophilic and the contact angle for heavy oil measured after 60 s 

is 0°, which corresponds to complete wetting and permeation of the oil droplets.17 Figures V.3E 

and F illustrate water and heavy oil contact angles measured upon functionalization of the ZnO 

nanotetrapod surfaces with 1H,1H,2H,2H-perfluorooctanephosphonic acid, respectively. In 

addition to a further enhancement of the hydrophobicity, the surface is rendered superoleophobic 

with a heavy oil contact angle of 156±1°. Figure V.3G depicts a high-resolution digital 

photograph of water and heavy oil droplets placed on a homogenously coated stainless steel 

mesh. The image indicates that the water droplet is pinned only at a few points on the surface of 

the substrate corresponding to the protruding ZnO ends at the perimeter of the pores. Based on 

the morphology discernible in Figure V.2, coated mesh substrates offer a combination of micro- 

and nanoscale texturation that suspends the water droplets in the Cassie-Baxter regime. Figures 

V.3H and I indicate that the substrate acquires a shiny lustrous appearance upon immersion in 

water, which reflects the trapped air pockets enclosed by the tetrapodal structures. Video A.2 

(Supplementary Information) depicts the remarkable complete ejection of the substrate upon 

partial immersion in water, which reflects the high water repellency of these superhydrophobic 

substrates. The plastronic features result from the individual micron-sized pores being further 

interconnected by the tetrapodal structures at their periphery, which serve to yield an extended 

porous network. The trapped air renders the substrates buoyant over the span of several months 

without loss of water repellency. Unlike in the case of isolated plastronic pockets reported in the 
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literature,19 the interconnected network of pores ensures that the plastrons are not destroyed upon 

immersion as long as a part of the substrate is not submerged. The plastronic architectures here 

are reminiscent of buoyant rafts formed by collectives of fire ants.11 While one ant is 

hydrophobic and slightly buoyant, a collective of ants assembles to trap an array of plastrons that 

renders the resulting ensemble highly buoyant and difficult to submerge.11 Video A.3 

(Supporting Information) depicts that water droplets impinging on the surface ricochet from the 

surface as a result of the high water repellency of the coated substrates. 
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Figure V.3. Contact angles measured for A,D) a bare stainless steel mesh; B,E) stainless steel 
mesh with 7 mg/cm2 of ZnO tetrapods; and C,F) the ZnO-coated mesh further functionalized 
with of 1H,1H,2H,2H-perfluorooctanephosphonic acid. The top images correspond to water 
contact angles, whereas the bottom images correspond to heavy oil contact angles. G) Digital 
photograph of water and sales oil droplets on a functionalized ZnO-coated mesh. Air pockets are 
discernible below the droplet. H, I) Digital photographs of a dry functionalized ZnO-coated mesh 
and a mesh immersed in water. 
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The surface functionalization of the ZnO tetrapods with 1H,1H,2H,2H-

perfluorooctanephosphonic acid has been characterized by energy dispersive X-ray (EDX) 

spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy as 

depicted in Figures V.4 and 5. Figure V.4E depicts an EDX spectrum acquired for an individual 

tetrapod shown in Figure V.4A.  EDX maps corresponding to characteristic fluorescent X-rays 

detected for Zn, O, and F are depicted as Figures V.4B-D and indicate localization of surface 

functionalization to the oxide tetrapodal surfaces. Homogeneous surface functionalization is 

detected within the limits of spatial resolution across the surface of the tetrapod. 

 

Figure V.4. SEM image depicting a single ZnO tetrapod functionalized with 1H,1H,2H,2H-
perfluorooctanephosphonic acid (A) and corresponding EDX maps depicting the distribution of 
zinc (B), oxygen (O), and fluorine (D). E) Integrated EDX spectrum acquired for the tetrapod. 
(F) C 1s, (G) O 1s, and (H) F 1s high-resolution XPS spectra acquired for functionalized ZnO 
tetrapods. 
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Several distinct chemical bonding environments are discernible in high-resolution C1s XPS 

spectra acquired for the functionalized ZnO tetrapods. The feature centered at 284.8 eV arises 

from both adventitious hydrocarbons (inevitably physisorbed onto nanostructured surfaces 

exposed to ambient conditions and also observed prior to functionalization) and methylene 

carbons from the phosphonic acid ligand.20,21 The feature centered at 285.9 eV can be assigned to 

both C—P and –CH2 groups next to a –CF2 group (-CF2—CH2-).20,21 The feature centered at 

290.4 eV can be attributed to –CF2 groups situated immediately adjacent to a –CH2 group (-

CF2—CH2-). The feature centered at 292.5 eV can be attributed to –CF2 groups adjacent to 

another –CF2 group (-CF2—CF2-). Finally, the feature centered at 293.8 eV can be attributed to –

CF3 groups next to a –CF2 group (-CF2—CF3).22  The O 1s high-resolution XPS spectrum is 

characterized by three distinctive features. Features centered at 530.1 and 531.9 eV, which are 

also observed for the ZnO tetrapods prior to functionalization can be attributed to lattice oxygen 

atoms bonded to Zn atoms in the hexagonal zincite structure and to surficial oxygen from 

hydroxyl groups on ZnO, respectively.21,23,24 Upon surface functionalization, a distinctive feature 

centered at 533.8 eV is observed and can be ascribed to O—P bonds of 1H,1H,2H,2H-

perfluorooctanephosphonic acid bonded in a bidentate fashion to ZnO.21 Figure V.1 depicts the 

bidentate coordination of the phosphonic acid to the ZnO surfaces. Figure V.4F shows F 1s XPS 

spectra acquired for the functionalized ZnO tetrapods (no fluorine is detectable prior to 

functionalization). The high-resolution F 1s XPS spectrum comprises a major feature at 687.7 

eV, which can be attributed to fluorine atoms bonded to carbon in –CF2 and –CF3 groups of 

1H,1H,2H,2H-perfluorooctanephosphonic acid,22,25 analogous to values noted for spectra 

acquired for perfluorinated monolayers of phosphonic acids and thiols. A minor peak centered at 

685.4 eV denotes the presence of inorganic fluoride impurities.24,26,27  
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Further analysis has been performed using FTIR spectroscopy to characterize the ordering of the 

functionalizing moiety on the ZnO surfaces. Figure V.5 contrasts the FTIR ATR spectra of 

1H,1H,2H,2H-perfluorooctanephosphonic acid functionalized ZnO tetrapods with that of the free 

phosphonic acid. The peaks observed at 1140 and 1232 cm-1 are suggestive of the ordering of 

perfluorinated groups forming a self-assembled monolayer on the tetrapod surfaces.28–31 These 

two modes correspond to asymmetric CF2 stretches perpendicular to the helical axis of 

fluoroalkanes that are ordered with a helical-tilt orientation.28,29 Further corroboration of said 

helical configuration within the monolayers is derived from the observation of characteristic 

modes at 1325 and 1367 cm-1, which confirm the presence of symmetrical CF2 stretching parallel 

to the fluoroalkyl helical axis.28–30 These values are indicative of the relatively close packing of 

the fluoroalkyl chains, which translates to a low surface energy and thus superhydrophobicity 

and superoleophobicity.28,29 A band observed at 2947 cm-1 (Figure A.8, Supporting Information) 

is ascribed to asymmetric CH2 stretching and is blue-shifted from the free acid30–33 indicating 

that the CH2 groups immediately adjacent to the phosphonic acid binding groups of the 

fluoroalkyl chains are less ordered.32,33 The relatively large steric footprint of the phosphoryl 

binding groups likely restricts the packing of adjacent CH2 groups. However, in stark contrast, 

the fluoroalkyl chains that are further away from the phosphoryl binding groups can interact to 

form helical assemblies such as depicted in the inset of Figure IV.5.33 Notably, the retention of 

helical self-assembly of perfluorinated groups on surfaces presenting re-entrant curvature has not 

hitherto been observed to the best of our knowledge.  Bands observed at 951, 955, and 1011 cm-1 

are furthermore observed, which are ascribed to P-O and P-OH stretching.30,34 A broad band 

discernible in the 2100—3100 cm-1 range is characteristic of (OH)2P=O groups (Figure A.9, 

Supporting Information).34   
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Figure V.5. (A) FTIR ATR spectra (A) of 1H,1H,2H,2H-perfluorooctanephosphonic acid 
(black) and 1H,1H,2H,2H-perfluorooctanephosphonic acid functionalized ZnO tetrapods (red). 
(B) A representation of the helical structure of 1H,1H,2H,2H-perfluorooctanephosphonic acid 
attached to ZnO. 
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Thermogravimetric analysis of the coating systems performed in air suggest that the ZnO 

tetrapods maintain their structural integrity to temperatures of 900°C, whereas for the 

perfluorinated systems, degradation is initiated at ca. 295°C, well above typical handling 

temperatures for heavy oils. 

The combination of a low surface energy result from stabilization of a well-ordered helical 

perfluorinated monolayer and hierarchical nanoscale and microscale texturation yields a surface 

that is very difficult to wet as indicated by the remarkable rejection of water manifested in 

Videos A.2 and A.3 (Supporting Information) and the superoleophobicity observed in Figure 

IV.3G. The ability to repel low surface tension hydrocarbons is particularly remarkable since the 

lower cohesive forces in these liquids gives rise to a much larger predilection for surface wetting 

(adhesive interfacial forces can readily overcome the weak van der Waals’ cohesive forces in 

liquid hydrocarbons).  

In the Cassie—Baxter formalism of suspended water droplets (Fig. IV.3G),35 the effective 

contact angle θc is denoted as:  

𝑐𝑜𝑠𝜃௖ = 𝑓௦(𝑐𝑜𝑠𝜃௘ + 1) − 1          (V.1) 

where fs is the fraction of the solid that touches the liquid and Ɵe is the equilibrium contact angle 

for a flat substrate. The nanotextured geometry and the presence of large micron-sized pores that 

trap air greatly reduces the available area for solid—liquid contact. While this alone is sufficient 

to suspend water droplets, the interfacial area is still large enough to allow for lower surface 

tension oil to wet the surface (contrast Fig. IV.3B and 3E). A further increase of the equilibrium 

contact angle thus needs to be brought about by functionalization with a fluorous phase, which 

reduces the solid/vapor and increases the solid/liquid interfacial energies in Eq. V.2 
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𝑐𝑜𝑠𝜃௘ =
ఊೄೇିఊೄಽ

ఊಽೇ
          (V.2) 

where γ terms are the interfacial energies for the solid–vapor (SV), solid–liquid (SL), and liquid–

vapor (LV) surfaces.  

 

Figure V.6. Time lapse images of heavy oil droplets placed on a (A) ZnO-coated and fluorinated 
mesh contrasted to (B) images acquired for untreated mesh substrate. Video A.4 (Supporting 
Information) illustrates the stark contrast between these samples. 

 
 
 
The implications of the greatly diminished wettability achieved here for handling of heavy oils is 

illustrated in Figure V.6A depicts a sequence of time lapse digital photographs when viscous 

heavy oil is poured onto a coated substrate with a pore size of ca. 180 µm and a loading of 7 

mg/cm2. Remarkably, within a period of 20 s, the viscous oil entirely glides off the tilted surface, 

whereas for an uncoated mesh substrate, Figure V.6B depicts that most of the heavy oil is 

retained on the surface. Video A.4 (Supporting Information) contrasts the behavior of heavy oil 

droplets poured onto coated and uncoated substrates. The facile gliding of viscous heavy oils has 

heretofore not been demonstrated. The heavy oil droplets glide readily since the contact radius of 

the droplets is greatly diminished, reducing their adhesion to the surface and allowing gravity to 

facilitate downwards flow.  
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V.5 Conclusions 

A robust inorganic surface has been designed comprising stainless steel mesh substrates with 

periodic micron-sized pores coated with nanoscale ZnO tetrapods, yielding a biomimetic 

plastronic architecture trapping a continuous interconnected network of air pockets. The helical 

self-assembly of a perfluorinated phosphonic acid on the tetrapodal surfaces serves to further 

reduce the surface energy of the system. The resulting coating system yields unprecedented 

water and heavy oil contact angles of 160°±1° and 156°±1°, respectively. The substrates are 

strongly ejected upon immersion in water and demonstrate bouncing of water droplets and 

gliding of viscous heavy oil droplets. The remarkable ability of this coating system to 

simultaneously glide water and viscous heavy oils along with the high thermal stability of these 

systems renders these materials viable for handling of unconventional bitumen and dense 

hydrocarbons with challenging rheological properties. Such coating systems are potentially 

useful for deployment in railroad cars, pipelines, and other oil-handling equipment where they 

are expected to greatly facilitate cleaning and reduce transportation losses.  Additionally, the 

same principles applied in Chapter V are further explored in Chapter VI where another inorganic 

surface comprised of TiO2 with multiscale texturation utilizes perfluorinated phosphonic acid to 

demonstrate the gliding of oil and water. 

V.6 Associated Content 

Supporting Information is available free of charge via the Internet at http://pubs.acs.org. Videos 

depicting the ejection of coated substrates upon immersion in water; ricocheting of water 

droplets on water substrate; and comparison of gliding of heavy oil droplets on coated and 

functionalized as compared to uncoated substrates. FTIR spectrum of 1H,1H,2H,2H-
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perfluorooctanephosphonic acid and 1H,1H,2H,2H-perfluorooctanephosphonic acid 

functionalized ZnO tetrapods. 
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CHAPTER VI  

OUTLOOK, SUMMARY, AND OTHER STRATEGIES 

VI.1 Introduction 

Difficulties with transportation and handling of heavy viscous oil and bitumen (accessed using 

enhanced oil recovery methods in the Alberta Oil Sands) are directly attributable to their 

challenging rheological characteristics and contribute greatly to overall production costs. A 

tremendous challenge is the design of surfaces that are not wetted by viscous oils and allow for 

the facile gliding of these fluids, as discussed previously in Chapters IV and V. Such surfaces 

could greatly mitigate the need for dilution with lighter molecular mass hydrocarbons (diluent) 

as is the current practice to facilitate transportation. Diluent availability constraints have 

previously inspired efforts to reduce costs thought the development of techniques such as 

blending high gravity synthetic crude oil with raw bitumen (SynBit).1 Reliance on diluent 

reduces capacity of pipelines; indeed, an estimated 15% of existing capacity is used just to flow 

diluent across North America. This represents a significant inefficiency and is a considerable 

cost burden on heavy oil producers.1–3 The surface wetting characteristics of heavy oil further 

give rise to considerable amounts of retained liquids and surface fouling, thereby necessitating 

maintenance costs pertaining to flushing of pipelines and scrubbing of rail cars; the accumulation 

of deposits (such as from asphaltene precipitation) in constricted regions of tubing furthermore 

represents a major maintenance challenge with grave safety and cost implications. The ability to 

glide heavy oil droplets will open up alternative modes of transportation, greatly diminish 

maintenance needs, and reduce energy costs of transportation if pressure drops and friction losses 

across pipelines can be reduced. In this concluding chapter, I discuss an alternative colloidal 

crystal templating strategy for inducing nanotexturation based on sacrificial elimination of 
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polystyrene sphere templates. Functionalization of such surfaces with a perfluorinated 

phosphonic acid yields surfaces exhibiting hitherto unprecedented gliding of viscous oil droplets. 

The facile spray coating application of a highly textured coating has potential for application at 

scale. 

A primary application for omniphobic surfaces is expected to be within pipelines wherein they 

can reduce frictional losses and by serving as effective barriers dimnigh corrosion. Several 

experimentally accessible quantities provide a measure of the extent to which a liquid wets a 

surface and the resistance to fluid flow. Contact and tilt angles provide a local measurement of 

the balance between cohesive and adhesive forces. When the former exceeds the latter, the liquid 

droplet is unable to completely wet the surface defining a high contact angle, which is often used 

as a proxy for the affinity (or lack thereof) of the liquid towards the surface. Liquid droplets are 

nevertheless often pinned to specific regions of the surface; the tilt angle describes the 

perturbation required to induce gliding of the droplet. In other words, the contact angle is a very 

local measure of liquid—surface interactions, whereas the tilt angle provides a better measure of 

fluid flow. However, a far global metric that is relevant to design of flow systems is the pressure 

drop as measured under different (laminar or turbulent) flow conditions. The frictional 

dissipation and pressure drop across a straight section of tubing as evaluated using Bernoulli’s 

formalism allows for characterization of frictional losses across the section, thereby providing a 

more direct measure of resistance to fluid flow. An apparatus for measuring frictional losses has 

been designed and will provide a means of evaluating the efficacy of the omniphobic coatings 

discussed in Chapters IV, V as well as subsequent sections of this chapter in mitigating frictional 

losses. 
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VI.2 Experimental Methods for Preparation of Colloidally Templated TiO2 Surfaces 

VI.2.1 Preparation of Polystyrene Spheres 

Polystyrene (PS) microspheres were synthesized based on a modified dispersion polymerization 

approach.4,5 Briefly, 17 mL of styrene, 1.5 g of 40,000 MW poly(vinylpyrrolidone) and 98 mL of 

anhydrous ethanol were added to a three neck round bottom flask. The solution was stirred at 

200 rpm and kept at a constant temperature of 70° C while nitrogen was bubbled into the system. 

After 30 minutes nitrogen bubbling was stopped, 0.15 g of 2,2′-azobis(2- methylpropionitrile) in 

28 mL of ethanol was added to the flask and the system was allowed to react for 24 hours. The 

synthesized microspheres were then centrifuged at 10,000 rpm for 15 minutes and washed with 

ethanol three times. Stocks of 4% w/w of polystyrene/ethanol mixtures were prepared. The 

nominal diameter of the PS microspheres were approximately 2.4 µm. 

VI.2.2 Fabrication of TiO2 Coatings 

In a typical process, coatings were prepared by combining 7.5 wt.% 1500 nm TiO2 (US Research 

Nanomaterials, Inc) and deionized water with an aliquot of the prepared polystyrene (4.1 wt.%) 

in ethanol solution with a ratio of 1:1 (w/w) of TiO2 colloidal dispersion: polystyrene colloidal 

dispersion. The mixture was then agitated and spray coated directly onto cleaned A36 steel 

substrates 1” by 1” on a hot plate set to approximately 200°C. The steel was cleaned with 

hexane, ethanol, 1 wt.% AlconoxTM solution, and deionized water prior to coating. The 

polystyrene serving as a sacrificial template was removed upon annealing of the coated 

substrates at 400°C for 2 h.  
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VI.2.3 Characterization 

Contact angles were measured with a CAM 200 Optical Goniometer where a mechanical pipet 

dispensed doubly distilled and deionized water (ρ = 18.2 MΩ cm-1) of ca. 10 μL. Viscous oil 

was applied using a manual micropipette and was supplied by Cenovus Energy, Inc. The viscous 

oil was extracted using steam-assisted gravity drainage method in the Northern Alberta Oil 

Sands and it has a viscosity of ca. 210 mPa·s at 25 °C. The reported contact angles are an 

average of at minimum three measurements taken across the substrate. 

The morphology of the colloidally templated TiO2 structures were imaged using a JEOL JSM-

7500F field-emission scanning electron microscope (FE-SEM) equipped with a high brightness 

conical FE gun and a low aberration conical objective lens. A cold cathode UHV field emission 

conical anode gun was used as the source. Micrographs were collected at an accelerating voltage 

of 5 kV with resolution of ca. 1.0 nm. 

VI.3 Colloidally Templated TiO2 Coated Surfaces: A Potential Addition to the Omniphobic 

Toolkit 

Engineering oleophobic surfaces requires a combination of reentrant curvature, low surface 

energy, and multiscale texturation.6,7 To realize such surfaces, polystyrene spheres have been 

used as sacrificial templates to prepare textured TiO2 surfaces that exhibit concurrent 

superhydrophobic and superoleophobic properties. The use of an appropriate ratio of polystyrene 

spheres and TiO2 nanoparticles allows for considerable control over surface texturation.8,9 The 

mixture of spheres are sprayed onto substrates followed by elimination of the polystyrene 

spheres by thermal annealing. The resulting structures demonstrate mesoscale topography 

comprising micron-scale pores and nanoscale TiO2 particles (Figure VI.1). In order to evaluate 
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the influence of the specific pore dimensionality on wettability, water and oil contact angles have 

been evaluated as a function of the TiO2 particle size while keeping the TiO2:polystyrene ratio 

constant at 1:1 (w/w). Figure VI.1 demonstrates the topographical differences induced upon 

varying the size of TiO2 nanoparticles from 40 nm—1500 nm while keeping the relative ratio of 

TiO2 nanoparticles:PS spheres constant at 1:1 (w/w).  
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Figure VI.1. Scanning electron microscopy images of templated 40 nm (A, B), 800 nm (C, D), 
and 1500 nm (E, F) TiO2 nanoparticles with microscale pores that have been generated by the 
permeation of TiO2 particles within interstitial domains of inverse opal structures constituted 
from polystyrene spheres, followed by subsequent removal of polystyrene spheres upon 
annealing of the coated substrates at 400°C for 2 h. The relative ratio of TiO2 nanoparticles:PS 
spheres was maintained at a constant at 1:1 (w/w). 
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In addition to a high degree of texturation, generation of oleophobic surfaces also require a 

drastic reduction in surface energy. After the steel substrates were coated with TiO2, their surface 

energy was greatly reduced with the functionalization of 1H,1H,2H,2H perfluorooctane 

phosphonic acid. This treatment was selected due to the compound’s ability to form a densely 

packed self-assembling monolayer (SAM) and its characteristically strong affinity to bind to 

metal oxide surfaces, as noted in Chapters IV and V. In this chapter we note that after a treatment 

via immersion in a 2.7 mM solution of 1H,1H,2H,2H perfluorinated phosphonic acid (THF as 

solvent) for 1 h, the surfaces were rendered omniphobic, repelling both water and viscous oil. To 

quantitate the results, contact angles were obtained for the three selected particle sizes. The 

texturation (observed from micrographs in Figure VI.1) combined with the reduced surface 

energy after functionalization consistently produced omniphobic surfaces across all selected 

TiO2 particle sizes, as indicated in Figure VI.2. This figure shows contact angles for 40 nm 

templated TiO2 nanoparticles of 165° ± 4° and 143° ± 6° (Figure VI.2 A, B) for water and 

viscous oil, respectively; contact angles of 160° ± 4° and 152° ± 6° are measured for water and 

viscous oil, respectively, for templated assemblies constituted from 800 nm TiO2 nanoparticles 

(Figure VI.2 C, D); and finally, contact angles of 164° ± 5° and 161° ± 2° have been observed 

for water and viscous oil, respectively for templated thin films comprising 1500 nm TiO2 

nanoparticles, (Figure VI.2 E, F). Based on these observations and considering that larger 

particle sizes become considerably more polydisperse, 1500 nm TiO2 nanoparticles have been 

down selected for further evaluation of optimal loading ratios. Figure VI.2 demonstrates the 

remarkable oleophobic behavior of these configurations, which yield contact angles in excess of 

160° and readily manifest the gliding of viscous oil. 
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Figure VI.2. Contact angles for water (A) and viscous oil (B) on templated TiO2 nanoparticle 
coatings built from 40 nm TiO2 particles, water (C) and viscous oil (D) on templated TiO2 
nanoparticle coatings built from 800 nm TiO2 particles, and water (E) and viscous oil (D) on 
templated TiO2 nanoparticle coatings built from 1500 nm TiO2 particles. All surfaces were made 
with 1:1 (w/w) TiO2:polystyrene coatings on A36 steel substrates and subsequently treated with 
2.7 mM 1H,1H,2H,2H perfluorooctane phosphonic acid for a period of 1 hour.  
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In attempts to increase the extent of texturization and thereby potentially the omniphobicity of 

the colloidally templated surfaces, the relative ratios of TiO2 particles:polystyrene spheres has 

been adjusted in order to tune the porosity of the surfaces. In order to observe the differences in 

topography, scanning electron microscopy imahes have been collected for various ratios of TiO2 

particles:polystyrene spheres, while keeping the particle size constant at 1500 nm, as 

demonstrated in Figure VI.3. It is worth noting that all of the surfaces were prepared using 

polystyrene spheres that are approximately 2.5 μm in diameter. In addition to evaluation of 

texturation by scanning electron microscopy, the evolution of the water and oil contact angles as 

a function of the relative ratio of TiO2 particles to polystyrene spheres has examined using 

measurements of water and viscous oil contact angles. 

 
 

 

Figure VI.3. Scanning electron microscopy images of different ratios of TiO2 nanoparticles: 
polystyrene spheres examined at different loading ratios: 9:1 (A), 8:2 (B), 7:3 (C), 6:4 (D), 4:6 
(E), 3:7 (F), 2:8 (G), and 1:9 (H). The particles have been templated onto A36 steel substrates in 
each case.  
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The contact angles  have been evaluated after treatmen t with the 2.7 mM 1H,1H,2H,2H per fluorooc tane phosphonic acid solution f or 1 hou r as  previous ly described in th is  chapter. Upon funct ionalization all samples  demons trated hy drophob ic and omniphob ic behavior, however the mos t cons is tently high values  of con tact angles  for water (154°) and viscous  oil ( 153°) have been observed fo r samples  with TiO2: polys tyrene rat ios  of 1:9 and 3: 1, respectively ( Figure V I.4 A, F) . The dispari ty of the titania and polys ty rene ratios  yielding t he highes t contact angles  for water  and oil high lights  the challenges  and subtle interactions  that deter mine the wettabili ty of micro- and nanoscale textured surfaces . It is  also worth no ting that even the samples  with the h ighes t contact angles  prepared in th is  series  perform wo rse than the 1:1 T iO2:polys tyrene samples  shown in Fi gure VI.1  

 

Figure VI.4. Contact angles for water and viscous oil of 9:1 (A), 8:2 (B), 7:3 (C), 6:4 (D), 4:6 
(E), 3:7 (F), 2:8 (G), and 1:9 (H) TiO2:polystyrene (w/w) templated into A36 steel substrates. All 
substrates were treated by soaking in a 2.7 mM 1H,1H,2H,2H perfluorooctane phosphonic acid 
solution for 1 hour. 

 
 
 
Despite the superhydrophobic and superomniphobic contact angles and the facile gliding of 

heavy oil droplets, the extent of adhesion on planar steel substrates is relatively low, approaching 

ca. 50—100 g in scrape adhesion tests. Additional screenings to increase the adhesion strength 

are required, with one promising candidate being the application of Ti(OiPr)4 to form oxo 

linkages. With the use of titanium isopropoxide, it may be possible to increase adhesion strength 

while preserving the surface chemistry by forming an amorphous TiO2 layer. With the addition 

of this powerful colloidal templating strategy to our toolkit of ZnO coated surfaces described in 

Chapters IV and V,  pipelines with omniphobic surfaces may soon come to fruition.  

VI.4 Future Outlook: Pipeline Coatings 

VI.4.1 Methodology  

In addition to the colloidally templated TiO2 coatings discussed in the preceding section, the 

availability of ZnO tetrapods arrayed onto stainless steel mesh substrates and functionalized with 
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helically ordered self-assembled monolayers of perfluorinated phosphonic acid as noted in 

Chapters IV and V provides an excellent system for further evaluation from a pipeline 

perspective. As previously mentioned, these coatings are compatible with spray processes, which 

will facilitate the coating of tubular samples. These structures give rise to a quasi-continuous 

network of air pockets akin to plastrons, which allow them to readily glide heavy oil droplets and 

strongly reject water droplets.  Figure V.2 illustrates that water contact angles of 160° and 

viscous oil contact angles of 156° have been achieved along with rapid gliding of heavy oil 

(Video A.4) for a ZnO tetrapod coated stainless steel mesh with a pore size of ca. 180 µm and a 

ZnO loading of 7 mg/cm2, which has been treated by soaking in a 2.7 mM 1H,1H,2H,2H 

perfluorooctane phosphonic acid for 1 hour. 

Two distinct methods for coating tubing interiors (either with TiO2 or ZnO) are envisioned. In 

one approach, planar substrates will be coated using spray deposition (or electroless plating of 

metallic thin films) and then rolled and welded (Figure VI.3, Method I). In a second approach, a 

lathe-based spray coating method can be implemented inside the tube (Figure VI.3, Method II). 

In both cases, the surfaces of the coatings can be functionalized with a perfluorinated compound 

by immersion in a solution of the appropriate precursor (such as perfluorinated phosphonic acid, 

perfluorinated butyric acid, or potassium perfluorooctane sulfonate).  

Initial characterization will be performed by using cross-sectional scanning electron microscopy 

(after first sectioning the samples); water and viscous oil contact angle measurements, and 

standardized ASTM tests of adhesion (the latter can be performed for planar substrates, examples 

of ASTM tests include methods D3359 and D2197). A series of coated and functionalized tubes 

with varying coating thicknesses will be prepared by the methods described above for use in 

fluid flow measurements. Multiple replicates will be performed to ensure reproducibility and 
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establish sufficient statistics for analysis in such measurements, thereby allowing for systematic 

pressure and flow rate correlations.  

 
 

 

Figure VI.5. Schematic depictions of two methods for the application and construction of coated 
pipelines. 

 
 

VI.4.2 Constructing and Benchmarking of an Apparatus for Testing of Fluid Flow 

An apparatus for flow characterization in straight tubing sections has been constructed 

comprising the following components: (i) a variable speed pump; (ii) a fluid reservoir; (iii) a 

straight tubing section (where components constructed in Task 1 can be tested); (iv) inline liquid 

flowmeter; (v) multiple pressure gauges; (vi) fluid flow valves; and (vii) sundry pipe joints and 

fittings. The flow behavior across this unit can be benchmarked using uncoated tubing of 

different types at various flow conditions using a number of different test liquids, such as water 

and viscous oil. 
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VI.4.3 Measurement of Pressure Drops across Coated Tubes 

Appropriately positioned pressure gauges will be used to characterize pressure drops across 

straight sections of tubing coated and functionalized as noted in Chapter VI.3. Pressure drops 

will be measured for deionized water and viscous oil as a function of the flow rate. The evolution 

of the pressure drop across the tubing section will also be monitored as a function of time to 

ensure that sloughing of the coating or accumulation of surface debris does not give rise to 

increased resistance. Such a system is schematically represented in Figure VI.6. Utilizing such a 

setup, the resistance to flow at different flow rates will be calculated for the different omniphobic 

coating formulations developed in this dissertation.  

 

 

 

Figure VI.6. Schematic representation of a possible flow system to be used for pressure drop 
measurements across a coated pipeline. 
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The measured resistance to flow will be correlated to (i) active particle loading within the 

coating (the loading of ZnO/TiO2); (ii) surface functionalization; and (iii) coating homogeneity. 

It will be intriguing to examine the extent to which values such as contact and tilt angles serve as 

predictors of the pressure drop and resistance to fluid flow. The development of such correlations 

will iteratively inform the design of next-generation omniphobic coatings, bringing about a 

transformative change in the transportation of hydrocarbons across North America. 
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APPENDIX A 

FIGURES 

 

Figure A.1. Three different configurations of ZnO nanotetrapods on A36 steel were tested with 
ASTM D3359 (A). The configuration with a topcoat of TEOS exhibiting drastically improved 
adhesion with the highest rating of 5B. The top row of A demonstrates the pristine ZnO with a 
TEOS coating on top; the middle row represents the samples after scribing using a specified 
scribing tool; and the bottom row displayes the coatings after application and removal of a 
standardized adhesive tape. ASTM D2197 testing (B) was performed on the sample 
configuration of ZnO basecoat with a TEOS topcoat. Comparing unmodified ZnO scrape test (B, 
left) to that of ZnO with a SiO2 topcoat (B, right) an improvement of 405-550 g was noted. 
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Figure A.2. SEM images at increasing magnification from A to C of ZnO tetrapods integrated 
onto a stainless steel mesh after functionalization with heptadecafluoro-1,1,2,2-
tetrahydrodecyl)trimethoxysilane. The interconnected network of nanotetrapods is preserved 
after functionalization. 
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Figure A.3. (A) SEM image of an individual ZnO tetrapod. The average length of each of the 
tetrapod arms is ca. 3.93 µm the average diameter is ca. 0.56 µm. (B), (C) Geometrical 
reconstruction of the tetrapods approximating the arms as cones. A roughness r value of 4.5, is 
deduced based on these dimensions, and is defined as the ratio of the surface area of an 
individual tetrapod as compared to the surface area of a smooth surface. 
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Figure A.4. Digital photographs acquired before and after separation of the emulsion. (A) A 
custom glass insert where the ZnO-tetrapod-coated stainless steel mesh is held between rubber o-
rings and the emulsion is placed on top and allowed to permeate at a programmed temperature 
and pressure. (B) A decanted portion of the fraction that remains on top of the membrane.  The 
brown coloration is characteristic of produced water contains clay and silt debris. (C) Digital 
photograph of the top of the membrane containing retained water with soil debris. The 
membrane utilized in this instance comprises a 180 gauge mesh with a pore-size of 84 μm with a 
ZnO loading of 7.0 mg/cm2. (D) The permeated oil, which is darker in color as compared to the 
original emulsion and contains no visible water. (E) Digital photograph of the bottom of the 
membrane. The black color is characteristic of permeated viscous oil.  
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Figure A.5. Heating rate of the thermal autoclave as a function of time. The autoclave vessel is 
filled with 250 mL of deionized water in order to generate steam and replicate the high 
temperature and pressure conditions characteristic of the SAGD process. The vessel is heated 
from room temperature (22°C.) to a maximum temperature of 175°C. 
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Figure A.6. Evolution of autogenous pressure as a function of temperature upon heating water 
within the thermal autoclave used for separation of SAGD emulsions. In this experiment, the 
autoclave vessel is filled with 250 mL of deionized water in order to generate steam and replicate 
the high temperature and pressure conditions characteristic of the SAGD process. The vessel is 
heated from room temperature (22°C) to a maximum temperature of 175°C yielding a maximum 
pressure of 106 psi at the highest temperature. 
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Figure A.7. Plot of water content in the permeate fraction as a function of temperature for 
separated using a 325-gauge stainless steel mesh with a pore size of 43 µm and a loading of 14 
mg/cm2 of ZnO tetrapods. 
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Figure A.8. SEM image of ZnO tetrapods after surface functionalization with PFOPA. No 
discernible changes in morphology are observed upon functionalization. 
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Figure A.9. FTIR ATR spectra of PFOPA (black) and PFOPA-functionalized ZnO tetrapods 
(red). 
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Figure A.10. Thermogravimetric analysis of (A) ZnO tetrapods and (B) PFOPA-functionalized 
ZnO tetrapods. 
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Figure A.11. Images of contact angles of water on a PFOPA functionalized ZnO coated stainless 
steel mesh. Here the droplets contact the surface (A) and are completely removed during the 
dynamic angle measurements (B-D) due to the extreme hydrophobic behavior, precluding an 
accurate measurement while displaying the complete inability of water to adhere to the surface. 

 

 


