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ABSTRACT

Deep neural networks (DNNs) is a powerful technique evolved to the state-of-the-art technique

for computer vision tasks. The "deep compression" is introduced to overcome the significant prob-

lem in memory- and computational-efficient. The basic pipeline of compression is the three-stage

model including pruning/fine-tuning, quantization/clustering, and encoding, and the Alternating

Direction Method of Multipliers (ADMM) algorithm has been applied into pruning stage to im-

prove the performance. Furthermore, the quantization/clustering is used with a 2-bit representation

jointly to reduce the storage. Lastly we auto-adjust the hype-parameters, apply classification on

the gradients and filter the whole layers to increase the weight reduction ratio and solving the time-

consuming problems. The algorithm is training on the LeNet-5 model using the MNIST dataset

and has 222.3x weight number reduction as the result.
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1. INTRODUCTION

Within the past decade, DNNs have been developed widely and applied to various fields such

as image classification, speech recognition, game playing, and applications. Back to 1990’s, Con-

volutional Neural Networks (CNNs) was first introduced by LeCun et al. called LeNet-5 model

which has less than 1M parameters to classify the handwritten digits [1], later in 2012 the ImageNet

is standing out with 60M parameters by Krizhevsky et al. [2], and today we have AlexNet Caffe-

model with over 200MB and VGG-16 Caffe-model with over 500MB. The large-scale/dimension

neural networks are considered and used in deep learning algorithms, which brings the attention

of how critical and difficult for their parameter storage and computational cost in real-time appli-

cations, e.g. online learning or incremental learning [3]. To mitigate these limitations, the DNN

compression model and techniques have been widely investigated.

The first compression method, network pruning, was introduced by LeCun in Optimal Brain

Damage when developing the CNN in 1990 [4]. This idea is based on finding the redundant weights

among large parameters in the network and get rid of them. The early trend of pruning in 1990’s

is using second-order Taylor expansion to select redundant parameters and remove the individual

parameters [5] [4] or entire units [6]. Unfortunately, this method becomes impractical if dealing

with large-scale network because it requires the partial- (or complete-) Hessian matrix and brings

the expensive cost of computational in fine-tuning [7] [8]. Therefore, plenty of different methods

is developed to improve the pruning method, e.g. parameter sharing and quantization can robust

various setting, low-rank factorization and compact convolutional filters can be implemented in

CPU/GPU easily, and knowledge distillation can train a compact neural network with distilled

knowledge [3].
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2. BACKGROUND OF WEIGHT PRUNING, CLUSTERING, AND QUANTIZATION

Parameter pruning and sharing are well-investigated in prior works with different algorithms

such as vector quantization, clustering, binary coding, and sparse constraints [3]. Han et al. [9]

[10] provide a pioneering work on iterative weight pruning pipeline as Fig. 2.1 which is reprinted

from [3]. The compression method including three parts: the first stage is training, pruning and

fine-tuning; the second stage is clustering, vector quantization, and retraining; and the last stage is

binary encoding. The weight pruning method in the first stage is developed widely. For example,

[11] uses hash bucket to share the parameter value and creates HashNet model; [12] prunes entire

convolutional filters; [8] finds network cost function and uses oracle pruning method; [9] uses

scalar quantization and centroid fine-tuning to reach the goal.

Figure 2.1: The Three-Stage Compression Method: Pruning, Quantization/Clusteriung, and En-
coding. This figure is reprinted from [3].

Putting weight pruning/quantization and fine-tuning in the parallel process can eliminate pre-

mature pruning errors while taking both advantages of pruning and quantization, such as [13] has

2



CLIP-Q method which performing the weight pruning, quantization and fine-tuning in the paral-

lel process. Furthermore, using different loss functions can get better computational results, for

example, [14] applies the ADMM algorithm in pruning loss function to get better computation re-

sults. Therefore, [15] creates a unified framework which combines the ADMM with quantization

and clustering and successfully has 167x weight reduction and 1910x storage reduction in LeNet-5

without any significant accuracy loss.

The procedure of compression is showing in Fig.2.2. First, the redundant weights will be

pruned as zero weights in (a) and will not be quantized and clustered anymore in future steps.

Moving to next, the quantization level set in Fig.2.2 is calculated as Q = {−1,−0.5, 05, 1} with

equal steps of 0.5 and each non-zero weights will be quantized to the closest level (c), then based

on 2-bit representation the value will be stored in hardware as (d). For clustering, the centroid

values (f) will be calculated and the non-zero weights will be clustered (e). The quantization and

clustering are similar to each other, but the centroid values are more flexible in clustering [15].

Figure 2.2: Procedure of Compression: (a-b) weights pruning, (c-d) weight quantization, (e-f)
weight clustering.
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3. BACKGROUND OF ADMM FRAMEWORK

ADMM (Alternating Direction Method of Multipliers) is an algorithm proposed by Gabay et al.

[14] that solves convex optimization problems by decomposing them into several sub-problems.

Recently it has been demonstrated and used in non-convex problems powerfully and widely for

many applications. Consider an optimization problem in generic form

min
x

f(x) + g(x) (3.1)

subject to x ∈ C

If f(x) is differentiable and take g(z) as indicator function of constraint C, then the optimiza-

tion problem in ADMM form can be rewritten as

min
x,z

f(x) + g(z) (3.2)

subject to x− z = 0

Thus the problem is decomposed into two sub-problems reflect on x and z by applying aug-

mented Lagrangian: minx f(x) + q1(x) and minzg(z) + q2(z) where both q1(x) and q2(z) are

quadratic function of its argument [16]. First sub-problem can be solved regularly as minimizing

f(x) using stochastic gradient descent if the function f and q1 are differentiable; and the optimiza-

tion problem can be solved analytically by exploring the properties of g if g has special structure,

e.g. g is a regularizer [14].

3.1 ADMM Based Pruning

Consider a set of training examples with input x and output label y: D = {X = {x0, x1, ..., xN},

Y = {y0, y1, ..., yN}}, the network’s parameter is given as W = {(w1, b1), ..., (wi, bi)} where wi

is the collection of weights in ith layer and bi is the collection of biases in ith layers [8], then the
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lost function can be represented as f({Wi}Ni=1, {bi}Ni=1).

The goal of pruning method is removing the redundant weights while the accuracy loss is

negligible, therefore we minimize the loss function of network subject to cardinality constraints

of weights in each layer and having the following optimization problems where card(·) represents

the non-zero elements in matrix argument and αi gives desired number of weights in ith layer [14]:

min
{Wi},{bi}

f({Wi}Ni=1, {bi}Ni=1) (3.3)

subject to card(Wi) ≤ αi i = 1, ..., N

The constraint in Eq.(3.3) can be written as Wi ∈ Si where Si = Wi|card(Wi) ≤ αi represents

the non-zero elements that less than or equal to specific number of weights. Since we have non-

convex constraint with difficulty to solve, adding an indicator function g(·) of Si is necessary

in problem. Let gi given as gi(Wi) = 0 if card(Wi) ≤ αi otherwise gi(Wi) = +∞, then the

problem can be reformatted without constraints as min{Wi,bi} f({Wi}, {bi})+
∑N

i=1 gi(Wi). Notice

that the term with indicator function is non-differentable, based on ADMM optimization form via

decomposition, the problem is reformatted again equivalently as

min
{Wi},{bi}

f({Wi}, {bi}) +
N∑
i=1

gi(Zi) (3.4)

subject to Wi = Zi i = 1, ..., N

Then the problem’s augmented Lagrangian is clearly formatted as method of multipliers with

Lagrange multiplier Λi, penalty parameters {ρ1, ..., ρN}, Frobenius norm ‖ · ‖2F and scaled dual

variable Ui = 1
ρi

Λi as:

Lρ({Wi}, {bi}, {Zi}, {Λi}) = f({Wi}, {bi}) +
N∑
i=1

gi(Zi) +
N∑
i=1

tr[ΛT
i (Wi − Zi + Ui)]

+
N∑
i=1

ρi
2
‖Ui‖2F (3.5)

5



The algorithm consists the iterations of two minimization and one dual update as Eq.(3.6)

for k = 0, 1, ... where dual variable update fellows the same step size as augmented Lagrangian

parameter ρ. The processes repeat until ‖W k+1
i − Zk+1

i ‖2F ≤ εi and ‖Zk+1
i − Zk

i ‖2F ≤ εi are

reached.

{W k+1
i , bk+1

i } := argmin
{Wi},{bi}

Lρ({Wi}, {bi}, {Zk
i }, {Uk

i }) (3.6)

{Zk+1
i } := argmin

{Zi}
Lρ({W (k+1)

i }, {b(k+1)
i }, {Zi}, {Uk

i })

Uk+1
i := Uk

i +W
(k+1)
i − Z(k+1)

i

ADMM algorithm decomposes the original optimization problem Eq.(3.3) into two sub-problems

as Eq(3.7) and Eq(3.8) which are transformed from two minimization in Eq.(3.6). In sub-problem

Eq.(3.7), the first f(·) term is the regular loss function and the second term is represented as L2

regularizer, both of them are differentiable and can be solved using stochastic gradient descent. In

sub-problem Eq.(3.8), gi(·) is the indicator function of non-convex set Si and brings the solution

that Zk+1
i = ΠSi

(W k+1
i +Uk

i ) where ΠSi
(·) is the Euclidean projection of Si, this projection keeps

the maximum magnitude of αi numbers of elements within W k
i + 1 + Uk

i and prune the rest of

elements (as zero). [16] [14]

min
{Wi},{bi}

f({Wi}, {bi}) +
N∑
i=1

ρi
2
‖Wi − Zk

i + Uk
i ‖2F (3.7)

min
{Zi}

N∑
i=1

gi(Zi) +
N∑
i=1

ρi
2
‖W k+1

i − Zi + Uk
i ‖2F (3.8)

3.2 ADMM Based Pruning with Clustering/Quantization

Consider the pruning process with clustering and quantization, the constraint in the above op-

timization problem needs to adjust and re-define. The weight clustering gives us a constraint

that remaining weights Wi should contain less than Mi = 2n different values, where n repre-

sents the number of bits. And the quantization gives another constraint that remaining weights
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are not only limited by Mi different values but also only taken from desired quantization level

set: Q = {Q1, Q2, ..., QMi
}, where Q values are equal distance. Therefore combine the weight

pruning problem with clustering and quantization, the overall optimization problem can be defined

as equation below (Si is the number of non-zero parameters less than αi and S ′
i is the non-zero

weights only take values from set Q) [15].

min
{Wi},{bi}

f(Wi
N
i=1, bi

N
i=1) (3.9)

subject to Wi ∈ Si, Wi ∈ S ′
i, i = 1, ..., N

Transferring the problem to ADMM form, two indicator functions gi(·) and hi(·) have been

defined reflecting with Si and S ′
i such that gi(Wi) = 0 if Wi ∈ Si and hi(Wi) = 0 if Wi ∈ S ′

i

otherwise gi(Wi) = hi(Wi) = +∞, and the ADMM form is given by

min
{Wi},{bi}

f({Wi}, {bi}+
N∑
i=1

gi(Zi) +
N∑
i=1

hi(Yi) (3.10)

subject to Wi = Zi,Wi = Yi, i = 1, .., N

The augmented Lagrangian of the problem can decompose it into three sub-problems with

scaled dual variables Uk
i and V k

i as shown below. For each iteration, dual variables are updating

as Uk+1
i := Uk

i + W k+1
i − Zk+1

i and V k+1
i := V k

i + W k+1
i − Y k+1

i and repeating until satisfy

‖W k+1
i − Zk+1

i ‖2F ≤ εi, ‖Zk+1
i − Zk

i ‖2F ≤ εi, ‖W k+1
i − Y k+1

i ‖2F ≤ εi and ‖Y k+1
i − Y k

i ‖2F ≤ εi:

min
{Wi},{bi}

f(Wi
N
i=1, bi

N
i=1) +

ρi
2
‖Wi − Zk

i + Uk
i ‖2F +

N∑
i=1

ρi
2
‖Wi − Y k

i + V k
i ‖2F (3.11)

min
{Zi}

N∑
i=1

gi(Zi) +
N∑
i=1

ρi
2
‖W k+1

i − Zi + Uk
i ‖2F (3.12)

min
{Zi}

N∑
i=1

hi(Yi) +
N∑
i=1

ρi
2
‖W k+1

i − Yi + V k
i ‖2F (3.13)

It’s clear the first sub-problem can be solved by stochastic gradient descent since both terms are

7



convex and differentiable. The second and third problem can be solved from indicator functions as

Zk+1
i = ΠSi

(W k+1
i + Uk

i ) and Y k+1
i = ΠS′

i
(W k+1

i + V k
i ).

8



4. BACKGROUND OF ADMM ALGORITHMS IN DNN

The algorithm is applying to the LeNet-5 model with the MNIST dataset and AlexNet with

the ImageNet dataset. The iterative updates during three sub-problem solving are high computa-

tional complexity, thus we separate the process into two parts: weight pruning and weight cluster-

ing/quantization [15].

4.1 Weight Pruning

For weight pruning, the first step is exploring the initial αi value in each layer. Then the data

is training according to update {Wi} and {bi} by solving the loss function in each k iterations as[
min{Wi},{bi} f({Wi}Ni=1, {bi}Ni=1) +

∑N
i=1

ρi
2
‖Wi − Zk

i + Uk
i ‖2F

]
. Within each iteration training,

the Euclid mapping Zk+1
i and Uk+1

i can be calculated and updated using the defined equation in

the previous section.

Algorithm 1 Weight Pruning Method
1: Input: MNIST dataset
2: Initialization: Determine αi for each layer
3: for k in ADMM iterations do
4: Update {Wi} and {bi} by solving:
5: min{Wi},{bi} f({Wi}Ni=1, {bi}Ni=1) +

∑N
i=1

ρi
2
‖Wi − Zk

i + Uk
i ‖2F

6: Save gradients as vector to classify
7: for i in each layers do
8: Update Zi: Zk+1

i = ΠS′
i
(W k+1

i + Uk
i )

9: Update Vi: Uk+1
i = Uk

i +W k+1
i − Zk+1

i )
10: end for
11: end for
12: Retrain rest of the weights
13: Label redundant and remaining weights and apply classifiers on pull-out gradients

9



4.2 Weight Quantization

After pruning the redundant weights (zero weights), rest of the non-zero weights can be clus-

tered and quantized by n bits, i.e. 2n different weights. Starting with initialization, Mi and qi

of quantization levels are exploring in each layer. The set of quantization levels is given as

{−Mi

2
qi, ...,−2qi,−qi, qi, 2qi, ..., Mi

2
qi} with equal distance. The quantization step is given as a

square error between weight and distance to its closet level as
∑

j |w
j
i − f(wji )|2. Then for each k

in ADMM iterations, solving
[
min{Wi},{bi} f({Wi}Ni=1, {bi}Ni=1) +

∑N
i=1

ρi
2
‖Wi − Y k

i + V k
i ‖2F

]
as

loss function by updating {Wi} and {bi}; and within each iteration training, the Euclid mapping

Y k+1
i and V k+1

i can also be updated by the defined equation in the previous section. After explor-

ing the set of quantization level, quantize α% of weight to its closest level using regular training

process and retrain the remaining weights.

Algorithm 2 Weight Pruning Method with Clustering/Quantization
1: Input: Data after Weight Pruning
2: Initialization: Determine Mi number of cluster in each layer

find qi as quantization level set in each layer {−Mi

2
qi, ...,−2qi,−qi, qi, 2qi, ..., Mi

2
qi}

3: for k in ADMM iterations do
4: Update {Wi} and {bi} by solving:
5: min{Wi},{bi} f({Wi}Ni=1, {bi}Ni=1) +

∑N
i=1

ρi
2
‖Wi − Zk

i + Uk
i ‖2F

6: for i in each layers do
7: Update Yi: Y k+1

i = ΠS′
i
(W k+1

i + V k
i )

8: Update Vi: V k+1
i = V k

i +W k+1
i − Y k+1

i )
9: Apply K-mean clustering on weights and update centriod by results

10: end for
11: end for
12: for k in iterations do
13: for i in each layers do
14: Quantize α% weights to closest quantization level
15: end for
16: Retraining on remaining weights
17: end for
18: for j in every epochs do
19: Retrain the centroid by results
20: end for
21: Quantizing the rest of weights
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5. NEW FRAMEWORK IDEAS

The computational time in the above work is concerned since the algorithm is using lots of

loops and restraining to maintain the accuracy, therefore we adjust the function in the algorithm

to improve the performance. Furthermore, the compression ratio is always a direction to improve

and explore and we apply additional algorithms to see if the compression ratio can be improved

without destroying accuracy.

5.1 Classification with Gradients

To reduce the computational time, we try to pre-classify the redundant weights using their gra-

dients. During the training, we pull out the gradients for each weight in every ADMM iterations as

a vector, label the pruned weight as False and remaining weights as True and use them for classifi-

cation. Apply support vector machine (SVM), Gaussian Naive Bayes and other classify methods to

see if there is a pattern or hyperplane that classify the weights and save the computational process

instead of iterative pruning with training and fine-tuning.

5.2 Parameters and Computational Time

In ADMM based algorithm, most parameters and hyper-parameters are auto-calculated and

updated, such as centroids and quantization set; but few parameters are pre-defined and initial-

ized such as pruning ratio αi. Find the relationship between parameters, computational time, and

accuracy degradation, and apply an algorithm to auto-adjust those factors to balance them.

5.3 Pruning with Layers/Neurons after ADMM

After ADMM iterative training, most of the weights are pruned and thinking in each layer, one

layer has only a few neurons with unpruned weights which might not be significant in the whole

model, so we can also consider that layer as a redundant layer and pruned it. Therefore, finding

the layer with fewest input weights/outputs weights and pruning those layers is an idea to improve

the compression ratio.
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6. EXPERIMENTAL RESULTS

6.1 Classification with Gradients

As the backpropagation process in DNN, the gradients are significant to determine the change

of weights. The Fig. 6.1 and Fig.6.2 shows the gradient changes for first two unpruned weights and

first two pruned weights in the first convolutional matrix as an example, where those gradients are

recorded 400 times during the training process. Few observations can be found from those figures:

for pruned weights, the gradient is changing frequently with larger magnitude at the beginning and

flipping around zero at the end of the training, but in unpruned weights, the gradient is changing

along with whole processes with a larger-scale difference. Therefore, we based on the property

and changing the path of gradients to classify the weights into two classes, pruned or unpruned

weights.

Figure 6.1: Gradient Path for Pruned Weights in first convolutional layer

There are several build-in classifiers to use, we are using SVM (support vector machine) clas-

sifier, decision tree, nearest neighbors, SGD (Stochastic gradient descent) classifier, and gaussian

naive bayes classifier to test our idea. The results from LeNet-5 model with MNIST data set

can be concluded in Table 6.1, which consists the number of pruned/unpruned weights, number of

12



Figure 6.2: Gradient Path for Unpruned Weights in first convolutional layer

Model Original SVM
Decision
Tree

Nearest
Neighbors SGD

Gaussian
Naive

Conv 1
(Pruned/UnPruned) 400 / 100

478 / 22
(379 / 1)

365 / 135
(297 / 32)

487 / 13
(389 / 2)

287 / 213
(238 / 51)

323 / 177
(247 / 24)

Accuracy 76.0 % 65.8 % 78.2 % 57.8 % 54.2 %
Conv 2
(Pruned/UnPruned)
(Num. of correct)

23650 / 1350
23223 / 1777
(22041 / 168)

19771 / 5229
(18940 / 519)

24985 / 15
(23636 / 1)

25000 / 0
(23650 / 0)

16533 / 8467
(16126 / 943)

Accuracy 88.84 % 77.84 % 94.55 % 94.60 % 68.27 %
FC 2
(Pruned/UnPruned)
(Num. of correct)

4650 / 350
4509 / 491
(4197 / 38)

4533 / 855
(3887 / 92)

4999 / 1
(4649 / 0)

5000 / 0
(4650 / 0)

3759 / 1241
(3556 / 147)

Accuracy 84.70 % 79.58 % 92.98 % 93.00 % 74.06 %
Total
(Pruned/UnPruned)
(Num. of correct)

28700 / 1800
27710 / 2790
(26230 / 320)

23203 / 7297
(22009 / 606)

30489 / 11
(28690/ 1)

30500 / 0
(28700 / 0)

22994 / 7506
(22180 / 986)

Accuracy 87.05 % 74.15 % 94.07 % 94.10 % 75.95 %

Table 6.1: Classification results in each layers for LeNet-5 model including: number of
pruned/unpruned, number of correct classify weights, and accuracy

pruned/unpruned weights in correct classes, and their accuracy for each layers and total layers. The

second convolutional weights are ignored due to large numbers (400K as the number of weights)

and computation complexity during the gradient pulling. Since number of pruned and unpruned

weights are unbalanced, i.e. number of pruned is sixteen times larger than unpruned, the results

in table is generated by auto-balance build-in function in each classifiers. Those results seem like

the data is still unbalanced even using the auto-balance weight, so we tried to classify the data
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using under-sampling and over-sampling algorithms but the results is similar and unchanged. As

the results, the accuracy is quite low to conclude that the data is not good enough or missing some

significant information to classify the weights.

6.2 Parameters and Computational Time

The parameters and hyper-parameters in the model can affect the results not only for accuracy

degradation and compression ratio but also operation time. Those parameters including the pruning

percentages of each layer, initial level size in the quantization model, initial cluster number set in

the clustering model, etc. Within those, pruning percentiles is the most significant factor since it

directly influences the number of remaining weights and test accuracy.

Two figures show the relationship of pruning percentages with accuracy and time as in Fig.6.3

and Fig.6.4 respectively. It is clear that as the pruning percentages have increased the accuracy is

decreased for all layers, moreover, the second fully-connected layer is dropping moderately when

the first convolutional layer is dropping rapidly. On the other hand, the computational time is

increased when the pruning ratio is increasing for all cases, and the convolutional layers’ pattern is

more likely to each other as well as fully-connected layers, as shown in Fig.6.5.

Figure 6.3: Pruning Percent versus Accuracy
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Figure 6.4: Pruning Percent versus Execution Time.

As setting the auto-adjusted parameters, the combination of pruning percentages also needs to

be considered. We set the inner loop for each layer, given a certain range of pruning ratio and

increase their ratio by steps to find the best accuracy. The exhausting search and binary search are

applied as our searching algorithms for the best combination of αi. The results are compared in the

Table.6.2, includes the setting range, steps, and related accuracy. It can be noticed that although

the accuracy is similar to the manual adjusted (as [15]) but the number of weights has a large

difference, and the reason is due to the sensitivity between accuracy and pruning ratio. From Fig.

6.3 we can see that only small amount of accuracy is dropped at most 2% while the pruning ratio is

less than 80, which means if given the certain allowable accuracy degradation then the maximum

pruning ratio can be found.

P1 P2 P3 P4 Num of Weights Accuracy
ADMM
(Ye, 2018) 80 94.6 99.8 93 2.58 K 98.6 %

Auto-Adjusted
(Range, Step)

80
(80-100, 1)

99.6
(95-100, 0.2)

95
(95-100, 1)

93
(90-100, 1) 20.55 K 98 %

Table 6.2: Comparison Auto-adjustment in Pruning Ratio on LeNet-5
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(a) Comparison within Convolutional layers (b) Comparison within FC layers

Figure 6.5: Detail Comparison of Pruning Percentage vs. Time

The largest problem for this algorithm is the time-consuming problem, where the exhausted

search and binary search require a large computational time, also the balance between accuracy

and pruning ratio is another problem. Therefore, we can conclude that although the model can be

auto-set the parameters, the performance in accuracy and pruning ratio is not as good as expected,

and the problem of how efficiency for accuracy and the remaining number of weights should also

be considered.

6.3 Pruning with Layers

To compress deeply in weight numbers and computational time, the training model can be

adjusted by reducing the layers. Since most of the weights are pruned in the pruning and fine-

tuning method, less than ten percent of neurons are leftover. Thinking about the weight numbers

in each layer, e.g. first fully-connected layer only has 800 out of 400K weights left after pruning,

some layers or kernels might not significant in the whole model although they have unpruned

weights. On the other hand, looking back to the Fig.6.3, fist fully-connected layer’s accuracy is

mostly unchanged under all pruning percentage, in other words, the weights in first fully-connected

layer is insignificant in the model and we can get rid of the whole layer to reduce the complexity

of the model when training.
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Implementing the idea into the ADMM based model, the simple LeNet-5 model is a good

starting point along with the MNIST digit recognition dataset as training. As using the MNIST data

set, the input is given as figures of hand-written digits which are decomposed as 32X32 grids, and

the output is classified as 10 classes represent the different digits. The LeNet-5 architecture consists

the training process as: input, first convolutional layer, ReLU (rectified linear unit) activation

function layer, max-pooling layer, second convolutional layer, ReLU layer, max-pooling layer,

first fully-connected layer, dropout layer to prevent the co-adaptation of features and control the

complexity of model, ReLU layer, second fully-connected layer, and output classifiers.

Figure 6.6: Model of LeNet-5: including two convolutional layers, two sampling layers, and two
fully connected layers.

As the conclusion before, the new model is adjusted as pruning out the first layer, in which

the output of the second convolutional layer is not connected to the first fully-connected layer but

directed connected with the second fully-connected layer. The new model is showing as Fig.6.7,

which consists of the architecture as following: input, first convolutional layer, ReLU layer, max-

pooling layer, second convolutional layer, ReLU layer, max-pooling layer, dropout layer, fully-

connected layer, and output classifiers.

This model is applied after the pruning and fine-tuning methods. First, using the original

LeNet-5 model to train, prune and fine-tune the model with ADMM based framework, then the

remaining weights or neurons are those significant connections in the model. Second, combining
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Figure 6.7: New model from LeNet-5: including two convolutional layers, two sampling layers,
and one fully connected layers.

two fully-connected weights matrix into one: finding out which neurons in fully-connected layer

has non-zero weights, taking the non-zero weights from left side (first fully-connected weight

which is taken from convolutional layer to that neurons) and the weights from right side (second

fully-connected weight which is taken from neurons to the output), using mathematical expression

to combine them and generate the new one matrix to new model. Last, applying this new fully-

connected weight matrix to the new model (with original two convolutional weight matrix), setting

a new pruning percentage for this layer and prune/fine-tune the model to get the final weights. The

process can be concluded as algorithm 3.

ADMM Method
(Ye, 2018) Layer

Number of
Weights

Number of Weights
after Pruning

Pruning
Percentage

Weight
Bits

Accuracy

Conv 1 0.5 K 0.1 K 20 % 5 (25) -
Conv 2 25 K 1.35 K 5.4 % 3 (8) -
FC 1 400 K 0.8 K 0.2 % 2 (4) -
FC 2 5 K 0.35 K 7 % 3 (6) -
Total 430.5 K 2.58 K 0.6 % 98.67 %

New Method Conv 1 0.5 K 0.1 K 20 % 5 (25) -
Conv 2 25 K 1.35 K 5.4 % 3 (8) -
FC 405 K 0.482 K 0.12 % 2 (3) -
Total 430.5 K 1.932 K 0.45 % 98.43 %

Table 6.3: Comparison in Layer-Wise Weight Pruning Results on LeNet-5
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Algorithm 3 Weight Pruning Method with Layers
1: Input: Data after regular Weight Pruning
2: Initialization: Determine the new pruning percentage αi for fully-connected layer in new

model
Find the index of neurons with non-zero weights (both sides of fully-connected

matrix)
3: for i in left index of non-zero weights (out of 800) do
4: for j in right index of non-zero weights (out of 500) do
5: for k in output (10 classes) do
6: new weight = (FC1[i][j] + FC1bias[j]) · FC2[j][k]
7: end for
8: end for
9: end for

10: Prune the new fully-connected weight with new pruning range αi
11: for j in every epochs do
12: Retrain the weights for new model and weights
13: end for

This method brings better results in the weight numbers. In the original method [15], the total

number of weights in the fully-connected layer after pruning is 1.15K where 0.8K from the first

fully-connected layer and 0.35K from the second fully-connected layer. Using our new method

the total number of weights reduces to only 0.482K by applying the additional pruning parameter

α = 80. The total number is reduced from 0.6% to 0.45% and the computational time is also

decreased since the complexity of the model is reduced by less than a fully-connected layer. The

adverse effect of the model is the accuracy is degradation, the original accuracy after pruning is

98.67% but the accuracy after applying the new model is dropped to 98.43%, where the degradation

is 0.24%.
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7. CONCLUSION AND FUTURE WORKS

The final comparison of results can be concluded as Table. 7.1, including the baseline of

LeNet-5 model, iterative pruning method [9], ADMM based framework [15], and our pruning

layers method. The significant improvement is the number of weights in each layer, which has

1.932K out of 430.5K. But the accuracy in this model is decreased by more than 0.2% which can

be improved in future works.

Model LeNet-5
Baseline

Iterative
Pruning

(Han, 2016)

ADMM
(Clustering)
(Ye, 2018)

ADMM
(Quant.)

New Method
(Clustering)

Accuracy
Degration 0.0 % 0.1 % 0.1 % 0.2% 0.2%

Number of
Weights 430.5 K 35.8 K 2.57 K 2.57 K 1.932 K

Conv Weight
Bits 32 8 3 3 3

FC Weight
Bits 32 5 2/3 2/3 2

Table 7.1: Compression final results for different model using LeNet-5 for MNIST data set.
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