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ABSTRACT

Nowadays, in order to provide customers with the best surfing experience through the wire-

less network. Companies started building modern wireless base stations with a large amount of

algorithm-based parameters that can optimize the performance of a single base station. However,

tuning these base stations to reach their best performance is not only a time-consuming task but

also requires experts for tuning. Trying to make this tuning procedure more efficient, we intro-

duced deep reinforcement learning and built a policy that can optimize a single KPI with a similar

performance as the human experts.

In our paper, we claimed to achieve the following accomplishments,

• Built a simulator that can accurately describe a wireless base station’s parameter tuning

scenario in the real world. The simulator enables the estimation of specific Key Performance

Indicator (KPI) while can give rewards as feedback to the tuning actions made by a human

or the policy.

• Employed deep reinforcement learning, together with imitation learning and prioritized ex-

perience replay, to build an agent that can automatically tune the parameters for the base

station with the performance better than human experts.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Problem Introduction

The wireless station system is complex and needs a vast amount of effort to optimize its perfor-

mance. In traditional problems dealing with wireless base stations(BS), people usually concentrate

on how to distribute resources for the whole system. These models have a well understood physical

system, and they are more critical for building up an efficient wireless system, as shown in 1.1.

By allocating those resources, we can optimize the performance of the whole system. However,

optimized parameters at the system level cannot guarantee optimal performance for a single cell,

so the companies come up with BSs that have algorithm switches that can adjust a single cell’s

performance(figure 1.2).

1.1.1 System Description

As shown in figure 1.2, our BS system works under the following strategy. The BS collects

full information from the environment, including the environment variables, current BS state, and

nearest-neighbor BS state. After collecting these pieces of information, the system is expected to

adjust to a better performance automatically each time instance.

However, the reality is that due to the high complexity of the system, the companies are not

able to build these autonomous systems yet. They still need tons of experts to manually tune those

parameters, which is not only expensive but also time-consuming. Based on this fact, our goal is

to build a system that can tune these parameters and get a competitive result with human experts.

1.1.2 Data Set

The dataset has base station cell data collected in different districts from a metropolitan in a

period of seven months(May - Nov 2018). The dataset contains 5077 cells and overall of 325,3776

data points, and human experts tune all data points.

Typically, we expect a tuning process ends within 21 days. Nevertheless, there exists special

BSs whose KPI is hard to optimize; in these situations, we will record the BS as a ’bad cell’ and

1



Figure 1.1: Traditional Wireless BS System

Figure 1.2: Modern Setting For Wireless BS
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keep on tuning.

From figure 1.3, we can see that for all the BSs, most of their adjusting procedure lasts less

than 26 days. The most common ones are eight and 21 days. However, at the same time, we do

observe certain BSs whose tuning process requires more than 200 days.

Figure 1.3: The tuning process length distribution of the dataset

1.1.3 Potential Methods

As human experts tuned all the data from our original data set, it is natural to take advantage

of imitation learning, i.e., to build a system that purely imitates all the moves from the experts.

Moreover, as the experts are making decisions each time instance based on the current state,

we can form the whole system as a Markov Decision Process(MDP), which we describe as the

formula1.1.

PA(S, S
′) = Pr(St+1 = S ′|St = S,At = A) (1.1)

Here S and S ′ belong to the state space S; A belongs to the action space A. PA(S, S
′) is the

probability that at state S, taking action A will lead to state S ′.

3



Reinforcement learning (RL) has been proved influential in solving MDP problems [1]. So, we

regard Deep RL as another potential approach to solve the problem.

Furthermore, considering the potential improvement combining imitation learning and rein-

forcement learning, we also made an effort to implement these two together in our research. Which

we will talk about in detail in chapter 4.1.3.

1.2 Related Works

The traditional wireless network system uses optimization methods with various problem set-

tings for power allocation problems [2, 3, 4, 5, 6] as well as bandwidth distribution problems[7, 8].

The optimization methods are the proved method that can solve problems with a clear functional

relationship between the objective parameters and control of the resources.

However, the modern systems are growing too fast; two significant problems come up on the

way for traditional optimizing methods,

• The system is too complex for optimization methods to solve.

• The relationship between the control parameters and the objective parameters is not clear.

So more and more people turn to look for help from other methods. Deep RL is one of them. Deep

RL becomes famous since Google conquered Atari games in 2015[9] and introduced Alpha-Go

that beat human professional player[10] in 2016. From then on, people are using Deep RL to

conquer harder games or help to solve control problems that were hard to solve.

Lastly, in recent years, people have found a successful path to implement Deep RL into various

wireless communication systems, including BS activation control[11], connected vehicles[12], and

BS content caching[13].

4



2. PROBLEM SETTING

2.1 System Scenario

We consider a wireless network system inside a particular sector, and each BS works together

with each other under a well-optimized system-level wireless system. Starting from that point, the

BSs still need to optimize their performance based on their integrated algorithm switches. So they

what to collect data from the environment and make decisions based on the collected data.

The experts can only adjust the parameters once every day, but the system will collect the data

every hour. Due to the drastically change (shown in figure 2.1) of the KPI over a single day, even

the experts can not make the KPI improve for the whole time, so we use the daily average of our

KPI as the metric that decides the whether the system is improved or not.

Figure 2.1: KPI change of a typical expert tuned base station

5



2.2 KPI for optimization

There are multiple KPIs in this system that we can tune, but optimizing them together at the

same time is a challenge and may not be a reasonable place to start. Based on this fact, we choose

the KPI with a well-defined standard of improvement.

The KPI we chose, at last, is the ratio that a customer’s download throughput is less than five

megabytes per second. We claim that this KPI is an excellent choice as a starting point for that we

know several algorithm switches do have a strong relationship with this KPI. Thus the tuning is

sure to be meaningful. We denote that the KPI is a function of the states (state variables) and the

actions (parameters we can tune),

Kt = f(St, At) (2.1)

Where f is a function mapping the state and the action pair to the KPI, but the exact mapping

of this function is complicated and remains unknown. So our thought is to build a Deep Neural

Network (NN) to do the regression and thus estimate the function, which we will describe in the

next chapter.

2.3 Problem Formulation

We have a clear goal for our system, i.e., decrease our chosen KPI as much as possible. How-

ever, before we formulate our system, we would like to make it clear that the system in the real

world is noisy. So that even a single step adjustment might have already improved, the KPI could

also reflect as a negative response. Furthermore, the KPI itself might also be affected by states that

are not predictable nor controllable, e.g., the amount of the customers using the cell or the perfor-

mance of the nearest neighbor. Last, as a practical problem, the tuning time cannot be infinitely

long; if the system cannot get improved in three weeks, we will regard this cell as a bad cell just as

we already described in chapter 1.1.2.

Based on these facts, our reward function of the system should contain three parts:

The system should give a reward/punishment for each step we take, but this single step tuning

6



is not reliable enough because of the noisy environment, so this part should remain small. The

second term should reward/punish the total change of the system, which compares the difference

between the KPI with the initial KPI at the end of a single tuning procedure (an episode). The third

term punishes the agent for no able finding an optimal solution in three weeks (result in a ’bad

cell’). The form of the reward function is shown in the following equation.

Rt(St, At) = Rt,Single−Step +Rt,Stuck +Rt,T imeout (2.2)

After making the base structure of the reward function clear, we can then form our MDP

problem. As we already introduced in section 1.1.3, this problem is an MDP problem, typically an

MDP problem can be described as a tuple of five elements M = (S,A, P, R, γ), where S is the

state space, A is the action space, P is the probability distribution, R is the reward function for the

system and γ is the discount factor determines how far we would like to see into the future.

The system works as the following, the agent observes a state St at time t and makes a decision

accordingly. After applying the action to the environment, the agent will receive a reward R and

observe a new state St+1. We design our MDP problem setting as following:

• 1).State: In chapter 1 we divided states based on the system they belong to. Although that

setting is direct and easy to understand, it is not helpful for our formulation. Here, we form

the state as the following four parts.

St = (Sstationary, St,random, St,predictable, At−1) (2.3)

Where stationary states mean that if the BS is determined, we can never change these state

variables again, so this part of the system is not changing. Random state variables mean

that this part of the state changes randomly as time varies, i.e., the evolution of these states

are not closely related to KPI or actions. Predictable ones are those states have a strong

relationship with the KPI so that we can almost surely predict its value after we take a step.

Finally, At−1 is the action we took at the previous time instance. The purpose of dividing

7



the states into these parts will be explained in detail in chapter 3.2.2, the state transfer part.

• 2).Action: The actions are vectors with each of their dimensions is in continuous value

space; we deal with these successive action spaces using the following strategies.

– Use the deterministic actor networks rather than stochastic ones.

– Discretize each action to 10 dimensions after the deterministic network, in order to

increase the exploration speed.

• 3).Reward Function: As we stated at the beginning of this section, our reward function

should contain three parts, and we define the reward function as Equation 2.4

Rt(Kt(At, St)) = C1 ∗ (Kt−1(St−1,At−1)−Kt(St,At))
Kt−1(St−1,At−1)

+1Episodic ∗ C2 ∗ (K0−Kt(St,At))
K0

− 1Timeout ∗ C3

(2.4)

Here Kt is the KPI function that represents the KPI at time slot t. C1, C2, C3 are three

constants and C2, C3 >> C1, K0 represents the initial KPI. 1 is the indicator function that

indicates the end of an episode and the end of the three weeks. At each time slot, we would

like to choose the action that maximizes the long term reward. This accumulated long term

reward can be represented through the Bellman Equation 2.5.

Q(St, At) = R(St, At) + γ ∗min
At+1

E[Q(St+1, At+1)] (2.5)

So that our optimization problem becomes

min
At

Q(St, At)

s.t. At ∈ A

(2.6)

So our objective is to find the best action A that solves problem 2.6 at each time instant.
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3. SYSTEM STRUCTURE

Knowing that RL is powerful in solving MDP problems [14, 15, 16, 17], we adopt the RL

method to help us solve this problem, more specifically, we used Deep Deterministic Policy

Gradient(DDPG)[18] to build the system and deal with the continuous action space.

Every RL system follows a similar structure as shown in figure 3.1, but our system is fac-

ing challenges while building the system, one of our accomplishments is that we built a stable

environment dealt with all these challenges.

Figure 3.1: A standard RL system

3.1 Challenges

The very first challenge is that we only have a static dataset, which means we don’t have access

to the real environment; neither do we have a simulator that is close to the real-world scenarios.

Our solution is to build a simulator that can accurately describe the environment. The simulator

we built contains two parts, the KPI regressor, which is in charge of estimating the KPI function.

9



We created this regressor using a deep NN, and we will discuss this in section 3.2.1. The other part

is the state transfer estimate, and we used a rule-based naive assumption to build the state-to-state

transfer system, which we will talk about in detail in section 3.2.2.

Another challenge is that the original dataset contains more than 1300 continuous state and

action variables. Dealing with a system with this dimension is hard. Moreover, since we are

aiming to build a system to optimize a single KPI, the original dataset will, for sure, have some

redundancy. To conquer this challenge, we used network pruning on the KPI regressor to reduce

the dimension of the whole system. We will go through the details together with the KPI regressor.

Finally, we come to the challenge that all state and action spaces are continuous. We have

mentioned this before and would like to use DDPG to solve this problem, as shown in section 3.3.

So combining this three-part, we eventually build a system that looks like the figure 3.2. The

system contains two main parts, the simulator, and the RL agent.

Figure 3.2: System Structure
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3.2 Simulator

To build a reliable simulator for training, our simulator contains two main parts, the KPI re-

gressor and the state transfer.

3.2.1 KPI Regressor

As stressed previously, we build the regressor using deep NN. To cut the dimension of the

NN, we first build a large NN and train it for limited epochs until its loss (mean absolute error) is

reasonably small. Then we apply network pruning to eliminate undesired states and build a new

NN with these new states. The network structures all contained in appendix A.1

The original network pruning method will not guarantee the reduce the dimension of the input

space; so we make small changes to the algorithm. First, we only work on the very first fully

connected layer, so that we can directly see the relationship between the input variables and the

first layer. Secondly, instead of throwing all the weights that are smaller than a threshold, we first

compute the total of each input’s weights. We then abandon all the input states with their sum of

the weights is smaller than a carefully selected threshold. By doing so, we are able to reduce the

input dimension for about ten times as shown in table 3.1.

Training Loss Input Size Weight Number

Before Pruning 0.5 1368 > 1M

After Pruning 0.8 131+4 5k

Table 3.1: Network Pruning

Figure 3.3 shows how good is our regressor, the KPI we would like to optimize has a mean of

6.49 and a variance of 5.38, the regressor can achieve a mean absolute error of 0.55 on training set

and 0.65 on validation set, which we think is good enough as a regressor system.
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Figure 3.3: KPI regressor loss

3.2.2 State Transfer

Based on the what we have stated in section 2.3, we divide the state into four different parts in

2.3. The Sstationary part will not change over time, and At is the action from previous time slot, and

the state transfer at time t will not change these two parts. As for Srandom, we will randomly change

the state over time with a random noise, so St+1,random = St,random + Nt where Nt ∼ N (0, α ∗

St,random), here α is the factor determine how large the noise would be. For the last Spredictable part,

we assume that all predictable variables in the state follows a Pearson correlation coefficients with

the KPI. This coefficient record the relationship between the state variables and the KPI itself, i.e.,

how likely these states will move in the same direction and for the same degree as the KPI moves.

thus the states transfers with St+1,predictable = St,predictable + α ∗ ρK,Spredictable
· St,predictable here ρ is

the correlation coefficient computed from the whole data set as equation 3.1.

ρK,Spredictable
=

cov(K,Spredictable)

δKδSpredictable

(3.1)

The entire state transfer procedure is presented as equation 3.2
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St+1 = (Sstationary, St,random +Nt, St,predictable + α ∗ ρK,Spredictable
◦ St,predictable, At) (3.2)

Here ◦ means pairwise product between the predictable states and the correlation coefficients.

3.3 DDPG

DDPG is a widely used Actor-Critic (AC) framework in dealing with continuous[18] or

large[19] state/action spaces. The main components of this system are action NN and value NN.

3.3.1 Action and Value NN

In traditional Actor-Critic frames, as a part of the policy gradient method[1], the output of the

actor is a probability distribution. This kind of setting will soon face the curse of dimensionality,

so DDPG chooses to be deterministic and avoid potential problems. The actor-network setting thus

is changed to

Ât = π(St|θπ) (3.3)

The critic networks in DDPG share the same point of the value networks in Sutton’s book[1];

they are still an estimate of the Q-function,

Qt = Q(St, At|θQ) (3.4)

Another critical point for DDPG is that except for the normal actor and critic networks, there

are also target actor and critic networks, which slowly tracks the actor and critic networks, as

shown in figure 3.4. These shadow networks lower the risk of the system diverging or stuck at a

semi-optimal soon, for they move much slower than the actor and critic networks, and the update

is based on these target networks.
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Figure 3.4: A typical DDPG system
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3.3.2 Training for the DDPG

The DDPG updates as figure 3.4 shows. First we collect current state St from the environment,

then pass it to the target actor network to get action At. Then feed the action At to the environment

to get St+1. Then we are able to update the whole system base on temporal-difference (TD) error

σ = r + γ ∗Q(At+1, St+1)−Q(At, St), the critic will punish or reward the actor using TD error.

The update of the target network based on the following equation:

θQ
′ ← τθQ + (1− τ)θQ

′

θπ
′ ← τθπ + (1− τ)θπ

′

where τ << 1

(3.5)

Here τ is the update factor determines how fast the target networks will follow the original

networks. This factor τ is usually much smaller than 1.
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4. EXPERIMENT RESULTS AND CONCLUSIONS

Training the RL agent efficiently is critical for our system but also a little bit tricky. In this

chapter, we will discuss the methods we used during the training, including the exploration method,

prioritized experience replay and the use of imitation learning.

4.1 Implementation Details

In this section, we will compare all the method based on two different metrics, average reward

over episodes and improving rate. The improving rate means the ratio of the base stations that

can get improved over 5% among all the base stations.

4.1.1 Exploration Strategy

We have two different potential exploration strategies for the agent to explore the action space.

One is ϵ-greedy, which is widely used as the standard method in all kinds of RL problems. The

other one is the Ornstein-Uhlenbeck (OU) process, which is a random process related to the origi-

nal data point introduced by the original DDPG paper[18].

We tested our system under both strategies, and the result is shown below,

It seems that the ϵ-greedy suffers from the large action space because it turns to sample from

the action space randomly, but our action space has the size of 104 choices even with discretization.

The OU-process, on the other hand, is a random process center at the current point, which contains

randomness, but the randomness has certain restrictions. Thus OU process outperforms the ϵ-

greedy method and is the better option for this specific problem.

4.1.2 Prioritized Experience Replay

To learn the strategy more effectively from the replay buffer, the approach to sample from

the replay buffer needs to be carefully designed, and a widely used strategy is called prioritized

experience replay[20].
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(a) Average reward with different exploration
strategies

(b) Improvement rate with different exploration
strategies

Figure 4.1: The OU process vs ϵ-greedy, it seems the OU process is much better than pure random
explore because of the huge action space.

The original paper defines the probability of sampling the point i is,

P (i) =
pαi∑
k p

α
k

(4.1)

where α determines how much prioritization is used and pi is determined by the rank of the ith

element which is based on TD-error. However, we would like to acquire the largest accumulated

reward, so in our problem, we used the reward Rt to determine the rank.

The result using prioritized replay is shown in 4.2, in which we can see a significant boost in

the system’s exploring efficiency, the strategy saves more than 1000 episodes on the training set

before getting to the best performance, and it gives better performance on the validation set.

4.1.3 Imitation Learning

Imitation learning is a strategy training for the system to imitate the existing strategy or human

experts. Theoretically, the imitated agent can get similar performance as the human experts. The

imitation learning agent is widely used as the starting point of RL systems and help the systems

which lack computational sources to compute more effectively. Our imitation learning agent is

also a deep NN that directly maps action from the state.

17



(a) Average reward with Prioritized experience
replay

(b) Improvement rate with prioritized experience
replay

Figure 4.2: Prioritized experience replay doesn’t really helps the exploration,

Ât = I(St|θI) (4.2)

The definition of the strategy looks like actor-network. Instead of guided by the Q-value from

the critic network, the imitation learning system treats the action chosen by the experts as the

supervised training label. The detailed network structure is in appendix A.2.

In figure 4.3, we can see that with the help of imitation learning, the system is able to con-

verge to the local optimal quicker than the one without imitation learning. That is solid proof that

imitation learning can be a good starting point in RL systems.

However, in comparison to Alpha Go and AlphaZero’s result[21] where it is evident that the

data from the human experts limit the performance instead of helping it in their system. The

good thing is that we take advantage of imitation learning without suffering the drawbacks of this

method. But in our future work, we need to make this potential problem into consideration.

4.1.4 Algorithm

Summarizing the previous parts, we give our algorithm as below

In this algorithm, all variables with j, dt means they are sample points below to dt, and we are

taking values from the time instant j when each data point contains data from both j and j-1 time
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Algorithm 1: DDPG for BS parameter tuning
Input: minibatch k; stepsize ηa, ηc; exploration factor ϵ; replay period N; budget T;

simulator Sim; imitation learning agent I
Output: Current actor and critic parameters θπ, θQ

1 Initialize the replay buffer H = ∅, θπ, θQ
2 Observe the initial state S0, take action A0 = π(S0|θπ)
3 for t← 1 to T do
4 decay ϵ, ηa, ηc;
5 Step Sim, observe St, Rt, donet;
6 Store (St−1, At−1, Rt, donet, St) into H with prioritized experience replay factor;
7 if random < ϵ then
8 At = I(St|θI)
9 else

10 At = π(St|θπ) + ϵ ∗OU(π(St|θπ))
11 end
12 Sample from H, dt ← sample(H(min(k,N)))
13 Compute target-Q value for dt, Qj,dt = Qtarget(Sj,dt , Aj,dt |θQtarget);
14 Compute action value for dt, Aj,dt = π(Sj,dt , Aj,dt |θπ)
15 Compute TD-error σ = r + γ ∗Qj,dt −Q(Aj−1,dt , Sj−1,dt);
16 Train critic network based on TD-error ∆c,dt = σ · ∇θQQ(Aj,dt , Sj,dt),

θQ ← θQ + ηc ·∆c,dt;
17 Compute gradient for actor network ∆a,dt = ∇θππAj,dt , Sj,dt;
18 Train actor network based on gradient θπ ← θπ + ηa ·∆a,dt;
19 Update target networks θQ′ ← τθQ + (1− τ)θQ

′ , θπ′ ← τθπ + (1− τ)θπ
′

20 end
21 Save parameters θπ, θQ
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(a) Average reward with imitation learning (b) Improvement rate with imitation learning

Figure 4.3: The reward and improve rate with imitation learning, the system converges quicker
with imitation learning but and reaches a performance similar to the one without imitation learning

instant.

4.2 Validation Result and Conclusion

Using algorithm 1, we get our final agent for this problem, and we compare the result from the

RL agent with the result tuned by the human expert.

The way we validate with the human expert is to roll over the entire dataset, get the real states,

and the corresponding tuned data from the human experts. We then feed the states we acquired

from the raw dataset into our RL agent and compare their results through the whole dataset.

Method(type) Improving Rate (Training) Improving Rate (Validation) Average Improvement(Training) Average Improvement (Validation)

Human Expert 50.89% 51.15% 40.67% 39.02%

Imitation Learning 49.78% 50.76% 39.53 % 39.06 %

Imitation+ RL 52.95% 54.16% 40.96% 40.87%

Pure RL 52.95 % 54.16% 40.95% 40.86%

Table 4.1: Result compared to Human Experts

As shown in table 4.1, our method can train agents with performance slightly better than the hu-

man experts. Thus, we claim that the Deep RL is capable of optimizing a multi-action continuous
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BS parameter tuning system on a single KPI.

Besides the improving rate itself, we spotted other interesting points in this result. We found

that for each BS if we are capable of optimizing its performance, we can raise it a lot (over 40 %

as shown in the table). However, for nearly half of the BSs, we can not improve them at all. So a

potential thought is that can we trade the improvement for improving rate? We can also dig deeper

into those base stations who are not able to be optimized, do they follow specific characteristics?

Another interesting result is the difference strategies between the RL agent and human experts.

As shown in figure 4.4,

From the figure, we can see that our RL agent tends to choose extreme strategies while the

experts will always select more mild actions. We think this difference comes from that the human

experts are doing a multi-KPI optimization task, unlike our system.

4.3 Summary and Future Work

Although we achieved human expert level performance in this paper, it is only a starting point

of a huge system. As we discussed in the previous section, there remains some mysterious in our

project that waits to be unveiled.

One first possible direction is to introduce more KPIs to optimize, which is straight forward.

The other possible paths include building a more accurate simulator with a well-estimated state

transfer probability or with the help of deep NNs. Or a system that can figure out what is the trade-

off between the improvement and the improving rate. We can even find the special characteristics

for the bad cells in our system.

We are glad if our work can be an inspiration of any kind for anyone else.
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Figure 4.4: Different Strategies Between RL agent and Human Expert
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APPENDIX A

NETWORK STRUCTURES

A.1 KPI network

The first model is the NN we used to predict the KPI, and we perform their structures in the

following tables A.1,A.21:

Layer(name) Output Shape Connected to
InputLayer(original) 1348

Dense(dense1) 128 original
Dense(dense3) 256 dense1
Dense(output) 1 dense3

Table A.1: Regressor with Original State

Layer(name) Output Shape Connected to

InputLayer(state) 131

Dense(dense1) 128 state

InputLayer(action) 4

Dense(dense2) 128 action

Add(add) 128 dense1, dense2

Dense(dense3) 256 add

Dense(output) 1 dense3

Table A.2: Regressor with States and Action Pruned

1 In all the structure tables, Dense means a Fully-Connected layer; Connected to means from which layer the
current layer get their input. Input layers get data from the outside inputs.
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A.2 Imitation Learning

This part shows the structure of the NN that was built to imitate human experts.

Layer(name) Output Shape Connected to

InputLayer(state) 131

Dense(dense1) 300 state

Dense(dense2) 400 dense1

Dense(output) 4 dense2

Table A.3: Imitation Learning Network

A.3 DDPG

This section shows the structure of the DDPG agent, including the actor NN and the critic NN

(The target NNs share the same structure as the original ones.)

Layer(name) Output Shape Connected to
InputLayer(state) 131
Dense(dense1) 128 state
Dense(dense2) 64 dense1
Dense(action1) 1 dense2
Dense(action2) 1 dense2
Dense(action3) 1 dense2
Dense(action4) 1 dense2

Table A.4: Action Network2

2The output dense layers are different because they may have different loss function and activation functions.
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Layer(type) Output Shape Connected to
InputLayer state 131
Dense dense1 400 state

InputLayer action 4
Dense dense2 400 action

Add add 400 dense1, dense2
Dense dense3 300 add
Dense output 4 dense3

Table A.5: Critic Network
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