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ABSTRACT

Shape Memory Alloys (SMAs), as a subgroup of active materials, provide remarkable

advantages working as solid-state actuators in terms of the trade-offs between structure

overall weight and functionality, thus gaining tremendous application interests in various

industries such as biomedical, aerospace, and civil engineering. However, the majority

of constitutive models for SMAs are developed based on small strain theory which are

inaccurate in the case of large deformations. Besides, applications involved with cyclic

loading require SMAs experiencing repeated phase transformations, during which per-

manent deformations are developed due to transformation-induced plasticity (TRIP) at

an effective stress level much lower than the material yielding point. Moreover, realistic

applications also need SMA-based actuators subjected to multiaxial stress state origi-

nated from geometry complexities or installment required discontinuities such as notches

and holes, where the non-uniform stress field has shown to have a significant impact

on the multiaxial TRIP evolution during thermomechanical loading cycles. To meet the

above modeling challenges, this work aims to address the following objectives. First, a

three-dimensional finite strain constitutive model is proposed for polycrystalline SMAs

to account for the large deformations (including large strains and rotations) that SMA

components may undertake. Furthermore, the model is extended to incorporate the mul-

tiaxial TRIP evolution under non-uniform stress fields. A detailed implementation of the

proposed model is presented through a user-defined material subroutine within a numeri-

cal environment for solving different bound value problems. Finally, the predicted cyclic

pseudoelastic and actuation responses for a wide range of SMA material systems under

both uniaxial and multiaxial loading conditions are compared against experimental results

to validate the proposed modeling capabilities.
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NOMENCLATURE

C Effective forth-order stiffness tensor

D Dissipation energy

S Effective forth-order compliance tensor

SA Forth-order compliance tensor of austenite

SM Forth-order compliance tensor of martensite

∆S Phase difference of compliance tensor

Υ Internal state variables symbol

Λ Transformation direction tensor

Λfwd Forward transformation direction tensor

Λrev Reverse transformation direction tensor

Λtp TRIP strain direction tensor

Λtp
fwd Forward TRIP strain direction tensor

Λtp
fwd Reverse TRIP strain direction tensor

Φ Transformation function

Ωlog Logarithmic spin tensor

α Effective thermal expansion tensor

αA Thermal expansion tensor for austenite (αM for martensite)

∆α Phase difference of thermal expansion tensor

β Internal stress tensor

ε Infinitesimal strain
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σ Cauchy stress

σ′ Deviatoric part of Cauchy stress

σs Detwinning starting stress

σf Detwinning finishing stress

σMs Foward transformation initiation stress

σMf Foward transformation finishing stress

σAs Reverse transformation initiation stress

σAf Reverse transformation finishing stress

σ̄ von Mises equivalent Cauchy stress

τ Kirchhoff stress

τ̄ von Mises equivalent Kirchhoff stress

τ′ Deviatoric part of Kirchhoff stress

τeff Effective Kirchhoff stress

τ̄eff von Mises equivalent effective Kirchhoff stress

D The rate of deformation tensor

E(m) Lagrangian strain family

E(2) Green-Lagrangian strain

F Deformation gradient

H Logarithmic strain of Lagrangian type

L Velocity gradient

P First Piola-Kirchhoff stress tensor

R Rotation tensor

Rtr Transformation strain residual
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Rtp TRIP strain residual

S Second Piola-Kirchhoff stress tensor

U Right stretch tensor

V Left stretch tensor

W Spin tensor

X Position vector of material point at reference configuration

b Body force vector

e(m) Eulerian strain family

h Logarithmic strain of Eulerian type

he Logarithmic elastic strain tensor

htr Logarithmic transformation strain

htp Logarithmic TRIP strain

l1, l2, l3 Lagrangian triads

q Heat flux vector

q1, q2, q3 Eulerian triads

s Deviatoric part of stress tensor

t Surface traction vector at deformed area

t̄ Surface traction vector at undeformed area

u Displacement vector

v Velocity vector

x Position vector of material point at current configuration

ζd Accumulated detwinned martensitic volume fraction

λ1 Internal stress evolution parameter
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ξ Martensitic volume fraction

ξd Detwnnied martensitic volume fraction

π Thermodynamic driving force

ρ Body density at current configuration

ρ0 Body density at reference configuration

σb Internal stress evolution material parameter

ψ Helmholtz free energy

As Austenite transformation start temperature

Af Austenite transformation finish temperature

CA Stress influence coefficient for austenite transformation

CM Stress influence coefficient for martensite transformation

Cp
1 TRIP strain evolution parameter

Cp
2 TRIP strain evolution parameter

D Smooth hardening function parameter

G Gibbs free energy

Hcur Current transformation strain

Hmax Maximum transformation strain

Hmax
i Initial value of Hmax before the cyclic loading

Hmax
f Final value of Hmax after the cyclic loading

Hmin Minimum transformation strain

J Determinant of the deformation gradient

Ms Martensite transformation start temperature

Mf Martensite transformation finish temperature
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T Temperature

T0 Temperature at reference point

Y Critical thermodynamic driving force

Y0 Reference thermodynamic driving force

a1, a2, a3 Intermediate material parameters in hardening function

c Specific heat

f(ξ) Smooth hardening function

h Enthalpy

kt Curve fitting parameter in Hcur curve

n1, n2, n3, n4 Smooth hardening parameters

p Hydrostatic pressure

r Heat supply per unit mass

s Effective specific entropy

s0 Specific entropy at reference state

∆s0 Phase difference of specific entropy at reference state

u Effective internal energy

u0 Internal energy at reference state

∆u0 Phase difference of internal energy at reference state
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1. INTRODUCTION

1.1 Transformation characteristics and applications of SMAs

Shape memory alloys (SMA) belong to a subgroup of active or smart materials that

are able to reversibly achieve their relatively large shape changes when subjected to spe-

cific thermomechanical loading conditions. The physical mechanism attributing to such

unique property is through their solid-to-solid diffusionless phase transformation between

the high-temperature, high-symmetry austenitic phase (cubic crystal structure) and the

low-temperature, low-symmetry martensitic phase (which can be tetragonal, orthorhom-

bic, or monoclinic crystal structure). For the majority of SMA material systems, such

as Ni-, Cu- or Fe-based SMAs, a stress versus temperature chart like Figure 1.1 is often

utilized as a phase diagram to differentiate the martensite and austenite phases. Specif-

ically, SMAs under the low-temperature conditions can exist in two equilibrium forms,

i.e., the self-accommodated (or twinned) state and oriented (or detwinned) state. At high

temperature, SMAs usually exist in a cubic crystal structure phase of austenite. As the

regions are separated by the detwinning start and finish stresses σs,σf shown in the phase

diagram. The self-accommodated martensite often presents at low stress levels and can

transform into oriented martensite through a detwinning process induced by applying

enough external mechanical load. In addition, the phase transformation between austen-

ite and martensite phases can be triggered by either stress or temperature changes. By

cooling without applying any stresses, SMAs experience a forward phase transformation

from austenite to self-accommodated martensite. As the arrangement of martensitic vari-

ants is in a twinned manner, there is no perceivable macroscopic shape change observed

during this process. Upon heating, SMAs experience a reverse transformation and trans-

form from the self-accommodated martensitic phase back to the austenitic phase, and no
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macroscopic shape change is perceived here neither. However, when the material, origi-

nally start with austenite, is cooled under a stress level greater than σf , SMAs experience

a transition from austenitic phase to an oriented martensite phase, in which a macroscopic

shape change is observed, and such changes can be recovered through the heating process

to induce a reverse phase transformation.

Figure 1.1: A typical stress versus temperature phase diagram of SMAs showing the
low temperature martensitic phases (including detwinned/oriented and twinned/self-
accommodated martensite) and the high temperature austenic phase, along with two rep-
resentative loading paths, viz. the pseudoelastic and actuation loading path (from Figure
1.7 of [48], c© 2008 Springer US, with permission of Springer US, DOI:10.1007/978-0-
387-47685-8).

In general, two major thermomechanical loading paths are usually experienced by

SMAs, viz., the pseudoelastic and actuation loading paths. In the case of pseudoelastic

loading, the material, starting at high-temperature stable austenite phase, is subjected to
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mechanical loading and unloading while the temperature is kept as a constant throughout

the loading path. In the actuation loading case, the SMA material is subjected to heating

and cooling process while the mechanical load is kept as constant. A schematic for the

aforementioned two loading paths is illustrated in the phase diagram shown in Figure 1.1.

Refer to the phase diagram in Figure 1.2 to illustrate the transformation characteristics

of the pseudoelastic response of SMAs. The pseudoelastic loading usually begins at a

high temperature beyond Af , which induces self-accommodated martensite as the stress

level reaches the maximum point, and eventually reverts the material to the austenitic

phase when the stress level returns to zero. There are four critical stress values during

this pseudoelastic loading, i.e., σMs,σMf ,σAs,σAf , playing critical roles in dictating

the pseudoelastic response features.

Figure 1.2: A representative pseudoelastic response of SMAs at a constant temperature
corresponding to the pseudoelastic loading path in the phase diagram (from Figure 1.8
of [48], c© 2008 Springer US, with permission of Springer US, DOI:10.1007/978-0-387-
47685-8).
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During the loading procedure, the starting austenite phase experiences elastic defor-

mation when the external stress is employed. With the stress increasing to a certain point,

the material state reaches a point for the initiation of martensitic transformation, which

marks the forward transformation initiation stress level σMs. As the stress level proceeds

to σMf , designated as the forward transformation finish stress level, a large amount of

nonlinear transformation strain was generated during this forward transformation from

austenite to martensite. After the loading path goes beyond σMf which indicates the

finish stress of the forward transformation, further stress increasing produces no further

increase in transformation train and only the oriented martensite is further elastically de-

formed. During the unloading procedure, the stress-induced oriented martensite is first

elastically unloaded. With further unloading, the material state meets a point for the ini-

tiation of reverse martensitic transformation from oriented martensite to austenite. The

stress level then is marked as the reverse phase transformation starting point σAs. As the

stress level further decreases to σAf , designated as the reverse transformation finish stress

level, the generated large transformation strain in the forward transformation is recovered

during this reverse transformation procedure. Subsequent unloading beyond σAf only

causes the austenite being elastically unloaded. The full pseudoelastic response accom-

panied by the forward and reverse phase transformations results in a closed hysteresis

curve, by which the area surrounded represents the total dissipated energy in this phase

transformation process. The transformation characteristics of pseudoelastic response for

polycrystalline SMAs, including critical stress levels, the magnitude of transformation

strain, and the size of hysteresis, are heavily dependent on the material’s composition,

manufacturing and aging process, and also the experiment testing conditions.

Apart from the stress-induced phase transformation, the thermal cycling of SMAs un-

der specific stress level σ can also induce phase transformation. Recall that under zero

stress state, SMAs transform from austenite into self-accommodated martensite upon
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Figure 1.3: A representative actuation response of SMAs at a constant stress level cor-
responding to the actuation loading path in the phase diagram (from Figure 1.13 of [48],
c© 2008 Springer US, with permission of Springer US, DOI:10.1007/978-0-387-47685-

8).

cooling and revert to austenite by reheating the self-accommodated martensite phase.

Four critical temperatures associated with this process are (Ms,Mf , As, Af ), viz., the for-

ward transformation start temperature, forward transformation finish temperature, reverse

transformation start temperature and reverse transformation finish temperature. Those

critical transformation temperatures are highly affected by the stress levels the material

experienced, the larger the stress levels, the higher the transformation temperatures. Re-

fer to Figure 1.3 for the schematic of a representative actuation response of SMAs under

actuation loading with a constant stress level σ. During the cooling step the temperature

decreases from a high temperature to Mσ
s , the material in the austenite phase experiences

a thermal contraction due to cooling. Further cooling the material from Mσ
s to Mσ

f in-

duces a phase transformation from austenite to oriented martensite, during which a large

5



Figure 1.4: Actuation energy density chart showing the range of actuation stress, actuation
strain and actuation energy densities for typical active materials including pizeoelectric
ceramics, shape memory polymers, shape memory alloys, etc. wherein shape memory
alloys show relatively large actuation energy density (from Figure 1.1 of [48], c© 2008
Springer US, with permission of Springer US, DOI:10.1007/978-0-387-47685-8).

recoverable transformation strain is generated. A further temperature decreasing produces

no further increase in transformation train and only causes an additional thermal contrac-

tion in the oriented martensite. When the material is reheated to Aσs , oriented martensite

undergoes a thermal expansion upon heating. Further increasing the temperature to Aσf

enables the oriented martensite transforming back to austenite, which results in the re-

covery of large transformation strain generated during the cooling stage. And subsequent

temperature increasing beyond Aσf only results in additional thermal expansion in austen-

ite. Similar to the pseudoelastic response of SMAs, the features of actuation response are

also largely affected by composition, manufacturing and aging process, and its loading

conditions.

6



Figure 1.5: Various SMA-based components in the forms of springs, beams and torque
tubes that can be used as solid-state actuators.

Figure 1.6: SMA-based torque tube components working as the torsional actuator in-
stalled on a Boeing 737 airplane to rotate the trailing edge flap during take-off and landing
regime for a full-scale flight test, reprinted from [62].

As shown in Figure 1.4, because the high actuation energy density provided by SMAs

compared to other active materials (such as shape memory polymers, piezoelectric ceram-
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ics, and electroactive polymers), SMA-based functional components (usually in the forms

of wires, springs, beams, and torque tubes shown in Figure 1.5) have been considerably

investigated as actuators where a large amount of actuation stress and strain are required.

Adaptive or morphing structures integrated with SMA-based actuators have tremendous

advantages in terms of trade-offs between structure weight, integrity, and functionality.

A considerable number of examples that SMA components are used as actuators can be

found in various engineering industries. Take aerospace industry for instance, SMA-based

torque tube components are used as torsional actuators installed on a Boeing 737 airplane,

which are intended for rotating the trailing edge flap during take-off and landing regime

for a full-scale flight test [62]. In the design of a deployment system for a solar panel

used for microsats, a SMA-based torsional actuation system is utilized to replace the con-

ventional electric motors, allowing for a deployable and retractable solar panel, which

significantly reduces the microsats weight, volume, and complexity while providing the

same needed functionality [108]. In the OPENAIR project [63], SMA wire actuators are

used for the morphing chevron development to decrease the noise level of turbofan en-

gines. Similar studies were conducted in the Boeing variable geometry chevron program,

in which SMA beams were used as actuators to morph the shape of an engine outlet to re-

duce the noise during take-off and landing thereby to enhance the engine efficiency [31].

In the Smart Wing program via a collaboration between DARPA, AFRL, and Northrop

Grumman, SMA wire actuators were used as tendons to actuate hinge-less ailerons, and

SMA torque tube actuators were employed to achieve a span-wise wing twist for F-18 air-

craft wing [46]. Recently, aerospace researchers have considered using the SMA-based

actuators to reconfigure the shape of a supersonic aircraft to meet the noise and efficiency

requirements in response to the real-time changing ambient environment, which has the

great potential to realize a commercially viable overland civil supersonic flight in the near

future [52].
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Figure 1.7: SMA-based torque tubes working as a rotational actuator for the solar panel
in a small satellite, adapted from [108].

Figure 1.8: SMA wire actuators are used as a bending actuator to bend the panel to achieve
a morphing chevron to decrease the noise level of turbofan engines in the OPENAIR
project, adapted from [63].
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1.2 Large deformations of SMAs

A lot of constitutive models have been proposed in the literature among which the

majority of them are developed upon infinitesimal strain theory. These small deformation

based models can be utilized as efficient modeling tools to predict SMA-based structure

response accurately in the cases without large deformation. However, it has been reported

that SMAs can reversibly deform to a relatively large strain regime up to 8% [89, 39]. Also

for specific boundary value problems such as fracture in SMAs, the strain levels close to

the crack tip are well beyond 10% [29, 28]. Under such large strains cases, it can be

inaccurate to still use the infinitesimal strain models to predict SMA material response.

Refer to the results shown in Figure 1.9 where the pseudoelastic response for an SMA bar

is simulated by a logarithmic strain based finite strain model and its infinitesimal counter-

part. When the maximum transformation strain reaches 10%, the difference between these

predicted responses becomes predominant when the SMA bar approaching the end of the

forward phase transformation. Specifically, a larger displacement value is predicted by the

logarithmic strain based finite strain model. The cause for this displacement difference

comes from the fact that infinitesimal strain neglects the higher-order terms in its strain

measure while those terms are fully considered in the logarithmic strain based finite strain

model. In addition to such relatively large strains, SMA-based actuators, in the forms of

spring, beam and torque tube, undergoing large rotations have also been demonstrated in

many engineering application situations. For instance, an SMA-based beam component

is used as a bending actuator to morph the chevron geometry to realize an adaptive engine

shape for desired flight aerodynamic conditions, in which the SMA-based beam experi-

enced large bending-induced rotations [33]. Using an infinitesimal strain model in this

case can predict an inaccurate structural response for the SMA-based actuators. Refer to

the results shown in Figure 1.10 where the pseudoelastic response for an SMA beam is
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provided. Although the two responses agree well in the initial stage, large discrepancy is

developed as the SMA beam experiences large rotations afterward. The logarithmic strain

based finite strain model predicts a much lager midpoint displacement value compared to

its infinitesimal counterpart disregarding the large rotations. In the aforementioned SMA

beams and torque tubes undertaking large strains and rotations, it is imperative to formu-

late a constitutive model based on the finite deformation framework to provide an accurate

structural response of these structures. This is the first chosen objective to be addressed

in this dissertation.

Figure 1.9: Comparison of pseudoelastic response for an SMA bar under tension pre-
dicted by a logarithmic strain based finite strain model and an infinitesimal strain model
with transformation strain Hmax = 10%, adapted from [118].
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Figure 1.10: Comparison of pseudoelastic response for an SMA bending beam predicted
by a logarithmic strain based finite strain model and an infinitesimal strain model with
transformation strain Hmax = 10%, adapted from [118].

1.3 Cyclic response of SMAs

The majority of engineering applications require SMAs experiencing a large number

of loading cycles involving repeated phase transformations, which brings the increasing

necessity to understand the material response of SMAs subjected to cyclic thermomechan-

ical loading. Many experimental results [97, 98, 49, 50, 110] indicate that SMAs exhibit

an evolving rather than stable material response under cyclic loading. More specifically,

transformation characteristics of SMAs, e.g., the accumulation of irrecoverable strain, the

size of stress/thermal hysteresis loop, the stress levels required to initiate the phase trans-

formation, transformation temperatures, transformation strain magnitude, usually evolves

from one cycle to another. Among those evolving characteristics, the irrecoverable strains

are usually termed as transformation-induced plastic strain (TRIP), which are caused by

the distortion as a result of the crystallographic misfit at the austenite-martensite inter-
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faces and grain boundaries induced by the repeated phase transformation. This distortion

results in an observable macroscopic plastic strain, which occurs at an effective stress

level much lower than the conventional plastic yielding point [50]. Refer to the experi-

mental results shown in Figure 1.11 for illustration, the 1st and 50th pseudoelastic loading

cycle is plotted for a NiTi SMA wire subjected to 550 MPa mechanical loading at the

isothermal condition. In the first mechanical cycling, the majority of strain generated

during loading is recovered upon unloading with a small amount of them reserved at the

end of the loading cycle. This small amount of irrecoverable strain keeps being gener-

ated during each consecutive mechanically cycling and accumulated throughout the entire

loading cycles. A very similar evolving material response can be observed when an SMA

is subjected to repeated thermal cycling. The major difference is that a more or less stable

cycle is expected to be reached eventually in the pseudoelastic loading cycling (Figure.

1.12) while the TRIP strain evolves without a saturation limit is more closely aligned with

actuation cycling (Figure. 1.14). In addition, the TRIP strain evolves with different rates

throughout the entire material fatigue life state. It can be seen from the SMA fatigue test

(Figure 1.14), the TRIP strain grows drastically during the very first hundreds of loading

cycles then tends to increase in a stabilized trend until the material reaches the failing

point at the very end. As the most of engineering applications require actuators func-

tioning in stable material behavior, SMAs are usually subjected to a training process, i.e.,

repeated thermal/stress cycling, to stabilize their behaviors before being used as actuation

components.
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Figure 1.11: The 1st and 50th pseudoelastic loading cycle of a NiTi SMA wire subjected
to a 550 MPa stress tension loading and unloading at isothermal condition, adapted from
[97].
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Figure 1.12: Accumulation of TRIP strain with respect to the number of loading cycles
for the NiTi SMA under cyclic pseudoelastic response, adapted from [97].
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Figure 1.13: Cyclic actuation response of a Ni60Ti10 (wt.%) SMA dogbone specimen
under thermal cycling at constant load 300 MPa, adapted from [109].
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Figure 1.14: The elongation evolution results of an NiTi SMA at martensitic and austenic
phases in an actuation fatigue experiment. Legend Martensite (Austenite) means the strain
levels measured at martensitic(austenitic) phases while Actuation means the difference
between them, adapted from [110].
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1.3.1 Multiaxial TRIP evolution under non-uniform stress field

The TRIP strain evolution subjected to the uniaxial condition during cyclic thermome-

chanical loading is described in the previous sections, yet limited research has addressed

TRIP evolution in the multiaxial case where a non-uniform stress field usually exists.

However, the majority of applications require the functionality of actuators under mul-

tiaxial stress state either originated from geometry complexities or installment required

discontinuities such as notches and holes. It has been demonstrated that the TRIP strain

under such a multiaxial stress state evolves quite differently compared to that in the uni-

axial one. Refer to Figure 1.15, a multiaxial non-uniform stress field is caused in the

notched plate actuator due to the presence of the discontinuous cutout, a larger stress field

is caused in the notch front while a much smaller stress field is shown in the rest of plate

region. As such the phase transformation of the notched plate is largely redistributed.

Specifically, the stress concentrated part starts the phase transformation much earlier due

to the stress concentration compared to the less stressed part.

The experimental results from Figure 1.15 further show that the non-uniform multi-

axial stress state has a significant impact on the TRIP strain accumulation from cycle to

cycle. The TRIP strain accumulates much faster in the stress concentrated part in con-

trast to the less stress concentrated area. Specifically, the TRIP strain accumulated with

a larger value over 1% in the notch front where there is a stress concentration while it

accumulated a value lower than 0.5% in the rest of the less stressed plate actuator. Digital

Image Correlation (DIC) results of transformation and TRIP strain for a notched NiTi

plate revealed that a larger TRIP strain was generated at the stress concentration region

over the less stressed part. Despite the importance of the fact that multiaxial stress state

significantly affecting the evolution of the TRIP strain, it has rarely been addressed among

existing models. This brings the second objective of this dissertation.
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strain

Figure 1.15: Evolution of transformation and TRIP strain for a notched NiTi plate sub-
jected to thermal cycling under constant load, the contour is showing the summation of
transformation and TRIP strain along the loading direction, adapted from [109].

1.3.2 Two-way shape memory effect after training

Another intrinsic phenomenon showed during the cyclic response for SMAs is the

two-way shape memory effect (TWSME) after an appropriate training procedure. In gen-

eral, SMAs exhibit the shape changes and recoveries under external bias load via the

phase transformation between oriented martensite and austenite. However, SMAs some-

times can present repeatable shape changes even under load-free conditions after stress or

thermal cycling, such phenomenon is the so-called TWSME. The TWSME feature can be

perceived in SMAs with repeated phase transformations via either mechanical loading-

unloading under constant temperature or thermal cycling with constant stress. Refer to

Figure 1.16, the experimental result shows the TWSME for a NiTi material after 100 ther-

mal training cycles at the load-free condition. The red curve is the response under bias

load, and the blue curve indicates the TWSME response under load-free condition. Such

cyclic loading under stress induces repeated phase transitions between oriented marten-

site and austenite, which results in changes in the microstructure of the material. Refer
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to Figure 1.17 for the TEM images showing the microstructure of an SMA sample, it

can be seen that after loading a large amount of dislocation bands are accumulated at

the interfaces between different martensitic variants and the grain boundaries. These

microstructure changes then introduce an internal stress field inside the material, hence

promoting the initiation of oriented martensitic phase transformation when the SMA un-

dergoes thermal cycling in the absence of mechanical bias load. Apart from the previously

described training procedure, another method to induce TWSME is by aging the SMAs

in the martensite phase subjected to a constant stress level [83]. However, the TWSME

can be disturbed if the generated internal stress field is altered under certain conditions,

such as aging the material or a mechanical overload to change the microstructure [84].

This TWSME feature exhibited by trained SMAs is also addressed in modeling effort of

this dissertation.
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Figure 1.16: Experimental result showing the induced TWSME at load-free condition
for a NiTi material after 100 thermal cycles under a constant load. The red curve is the
response under bias load, and the blue curve indicates the TWSME reponse under load-
free condition, adapted from [3].
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(a) (b)

Figure 1.17: TEM images showing the microstructure changes of an NiTi specimen sub-
jected to 10 loading cycles, (a) before the cyclic loading (b) after the cyclic loading
(from Figure 18 of [91], c© 2018 Elsevier, with permission of Elsevier, https://doi.org
/10.1016/j.pmatsci.2018.07.003).

1.4 Research objectives

1.4.1 Finite strain constitutive modeling for SMAs under large deformation

The first objective of this dissertation lies in the proposition of a finite strain consti-

tutive model for polycrystalline SMAs under large deformations. As it was mentioned in

the previous discussion, SMAs can undergo large strains and also rotations, although a

large number of constitutive theories for SMAs have been proposed so far, the majority

of them are developed based on the infinitesimal strain theory, it is necessary to develop a

constitutive model based on a finite deformation framework to provide an accurate predic-

tion for the response of SMAs. Throughout the history of the development of finite strain

constitutive models for SMAs, two kinematic assumptions are often employed in the fi-

nite deformation theory, i.e., the multiplicative decomposition of the deformation gradi-

ent and the additive decomposition of the strain rate tensor. Finite strain models based

on additive decomposition significantly reduces the complexities in the model formula-

tions compared to the multiplicative approach, which in return tremendously increases
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the model computational efficiency as a 3-D design tool. As such they are widely used

in current finite element software such as Abaqus and ANSYS. However, objective stress

rates are required in additive models because the rate form hypoelastic constitutive rela-

tion needs to satisfy the so-called principle of objectivity. Several objective rates, such

as the Zaremba-Jaumann-Noll rate, Green-Naghdi-Dienes rate, and Truesdell rate, have

been proposed to that purpose, but those objective rates are not essentially "objective"

because of their failure to integrate the rate form hypoelastic relation to yield a free en-

ergy based hyperelastic stress strain relationship [116]. As a result, spurious phenomena

(e.g., shear stress oscillation, residual stress errors, etc.) are often observed in the pre-

dicted responses using these objective rates even for simple elastic materials. However,

the previously mentioned self-inconsistency issue related to those non-integrable objec-

tive rates was resolved by the proposition of the logarithmic rate [112, 113, 13]. Although

several finite strain SMA models have developed by using the newly proposed logarith-

mic rate [69, 102, 111, 124, 120, 117, 119], some of the very important phase trans-

formation characteristics, such as the smooth transition during the phase transformation,

the stress-dependent transformation strain to account for the coexistence of oriented/self-

accommodated martensitic variants, and a stress-dependent critical driving force to con-

sider the effect of applied stress levels on the size of hysteresis loop, have not been ad-

dressed among them.

A finite strain constitutive model for SMAs using the logarithmic strain and rate is

proposed as the first objective of this work. As a continuous development from the in-

finitesimal SMA model [47], the proposed model has a simple model structure and consid-

ers three very important characteristics for SMA response as its infinitesimal counterpart

does. The development of this model results in an improved computational efficiency

and robustness to predict the SMA response at large deformation, without introducing

additional intermediate state variables, such as Mandel stress, that are utilized in the mul-
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tiplicative models. Moreover, this modeling formulation carefully examines the residual

stress errors caused by using other non-integrable objective rates in current commercial

finite element packages. The model capability to eliminate such stress errors shows sig-

nificant importance for the analysis of SMA-based actuators, e.g., SMA beam and SMA

torque tube subjected to cyclic large deformation, which paves a solid foundation for the

further extension of this model to consider the multiaxial TRIP evolution considered as

the second objective of this work.

1.4.2 Modeling of multiaxial TRIP evolution and TWSME

Based on the framework of the proposed finite strain model for SMAs from the first

objective, the second goal of this dissertation focus on extending that model to further

consider the multiaxial TRIP evolution under non-uniform stress state and the TWSME

at load-free condition after training. Although many of the commonly cited models have

enabled researchers to study the evolving material behaviors of SMAs, the majority of

them are insufficient in their capacity to consider the following critical features. (i) The

first aspect of many available models in need of improvement is their kinematic assump-

tion based on infinitesimal strain theory. This assumption may be acceptable for SMA

material systems, such as Ni-rich or NiTiHf SMAs, where the total deformation strain

regime is below 3%. However, it has been reported that nearly 30% or even higher TRIP

strains are observed during the lifetime of near equiatomic NiTi SMA-based actuators

[110]. In the presence of such large strain, a finite strain model is needed to account for

the exhibited large strains to provide an accurate structural response of SMA-based func-

tional components. (ii) The second important aspect of many current models in need of

improvement is the TWSME characteristic exhibited by trained SMAs at load-free con-

ditions. Because of the required training process to stabilize the response of as-received

SMAs before used as actuators, permanent changes such as dislocation bands, accumu-
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lated defects/damage, and retained martensite variants are introduced in the microstruc-

ture of the material, which then results in the generation of an oriented internal stress

field. The generated internal stresses oriented in the same direction as the applied load

are subsequently able to induce the oriented phase transformation under thermal cycling

without applying any pre-loading, i.e., the TWSME. In addition, (iii) the majority of ap-

plications require the functionality of actuators under multiaxial stress state originated

from geometry complexities or installment required discontinuities, such as notches and

holes. TRIP strain under such a multiaxial stress state evolves quite differently compared

to that in the uniaxial loading case.

In order to address the three aforementioned critical features, a three-dimensional

finite strain constitutive model accounting for multiaxial TRIP evolution and TWSME

for SMAs is proposed in this dissertation. The presented modeling effort is developed

based on the baseline model developed in the first objective. By using the martensitic

volume fraction, transformation strain, internal stress, and TRIP strain tensors as internal

state variables, the model is able to capture the TRIP evolution in SMAs subjected to

multiaxial stress state during cyclic thermomechanical loading, and the TWSME due to

the generation of internal stresses exhibited by trained SMAs at load-free conditions.

1.4.3 Summary of dissertation

The dissertation is organized as the following major chapters:

• Chapter 2 presents a brief review of the fundamental elements for the constitutive

modeling of SMAs. These fundamental elements consist of the basic kinematics

from continuum mechanics, various stress and strain measures, the basic principles

from thermodynamics, constitutive theories for dissipative materials using internal

state variables, and the finite deformation framework using logarithmic rate and

strain.
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• Chapter 3 focuses on the proposition of a finite strain constitutive model for poly-

crystalline SMAs under large deformation. The model is developed through clas-

sical thermodynamic laws combined with the standard Coleman-Noll procedure.

The scalar martensitic volume fraction and the second-order transformation strain

tensor are chosen as the internal state variables to capture the material response ex-

hibited by polycrystalline SMAs. A detailed implementation procedure of the pro-

posed model is described through a user-defined material subroutine. Numerical

experiments considering SMA components including a bar, a beam, a torque tube

and a solid flexible structure under stress/thermally-induced phase transformations

are investigated via the proposed model, and the results under cyclic loading are

compared against the predictions provided by using the Abaqus nonlinear solver.

• In Chapter 4, the finite strain baseline model proposed in the previous chapter is fur-

ther extended to consider the multiaxial TRIP evolution under non-uniform stress

fields and the TWSME after training. By using the martensitic volume fraction,

transformation strain, internal stress, and TRIP strain tensors as internal state vari-

ables, the model is able to capture the multiaxial TRIP evolution when SMAs are

subjected to non-uniform stress state, as well as the TWSME at load-free condition

due to the generation of internal stresses exhibited by SMAs after cyclic thermo-

mechanical loading. A detailed implementation procedure of the proposed model

is presented through a user-defined material subroutine within a numerical envi-

ronment for solving different bound value problems. Finally, the predicted cyclic

pseudoelastic and actuation responses by this model for a wide range of SMA ma-

terial systems, including, NiTiCu, NiTi and NiTiHf SMAs, under both uniaxial and

multiaxial loading conditions, are compared against experimental results to validate

the proposed modeling capabilities.
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• Chapter 5 provides a summary and conclusions of this dissertation and discusses

some potential future works.
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2. PRELIMINARIES OF CONTINUUM MECHANICS AND THERMODYNAMICS

In this chapter, a brief review of the fundamental elements for the modeling of SMAs

are introduced here. Those knowledge are well-established and can be learned in a much

more detailed manner from many available classical mechanics textbooks elsewhere [26,

36, 48, 51, 23]. The definitions and notations presented here are systematically used

throughout the later chapters and sections of the dissertation. These fundamental elements

consist of the basic kinematics from continuum mechanics, stress and strain measures that

work as energetic conjugate pairs, the basic principles from thermodynamics, constitutive

theories for dissipative materials using internal state variables, and the finite deformation

framework using logarithmic strain and rate.

2.1 Kinematics

Consider a continuous body possessing an initial state B0 in the reference configu-

ration at time t0, changes to another state B in the current configuration at time t after

the deformation. Referring to Figure 2.1, a material point P from the continuous body is

defined by a position vector X in the reference (undeformed) configuration, and vector x

represents its location in the current (deformed) configuration at time t, during which the

material point P undergoes a displacement that can be described by the vector u(X, t).

A neighboring point Q defined by position vector X + dX undergoes the displacement

u(X + dX, t) arriving at x + dx. Therefore, the deformation process of the material

segment between dX at the reference configuration and dx at the current configuration

can be defined through the well-known deformation gradient tensor F(x, t),

dx = F dX (2.1)
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It is known that for any real deformation gradient tensor F with a non-zero determi-

nant, the following polar decomposition on F can be obtained,

F = RU = VR (2.2)

In the above equation, U is called the right stretch tensor while V is the left stretch tensor,

they are both positive definite symmetric tensors., and the remaining R is an orthogonal

tensor. This decomposition is unique in the sense that only one R, one U, and one V

satisfy the above equation at the same time. The polar decomposition indicates that any

admissible deformation processes for the continuous body can be decomposed into a pure

rigid body rotation followed by a pure stretch, i.e., F = VR, or into a pure stretch first

followed by a rigid body rotation, i.e., F = RU.

Reference 

Configuration

Current 

Configuration

o

Figure 2.1: The schematics of deformation for the continuous body between the reference
and the current configurations.
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The following spectrum decomposition can be received based on the symmetric stretch

tensors, for right stretch U,

U =
3∑
i=1

λili ⊗ li (2.3)

for left stretch V,

V =
3∑
i=1

λiqi ⊗ qi (2.4)

where the scalars {λ1, λ2, λ3} are called the principal stretches which are the eigenvalues

of U and V, and the unit base vectors {l1, l2, l3} and {q1, q2, q3} are called, respectively,

the Lagrangian and Eulerian triads dictating the Lagrangian and Eulerian principal di-

rections.

Based on the left/right stretch tensors, the right Cauchy-Green tensor B and the left

Cauchy-Green tensor C can be derived as,

B = FFT = V2 (2.5)

C = FTF = U2 (2.6)

2.2 Strain measures

There are many different strain measures available in the literature, and there is by no

means a unique method of defining strain. In fact, a specific choice of strain measure is

usually willful and mainly controlled by its mathematical convenience for specific model

construction. Despite the various preferences on different strain measures, two major

categories can be listed based on their formulation triads. A category of strain measure

is introduced as Lagrangian strain tensors as follows, i.e., strain measures formulated by

using Lagrangian triads [88, 35, 71].
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E(m) =


1

m
(Um − I) m 6= 0,

ln[U] m = 0

(2.7)

In the above equation, m is a real number, and ln[·] indicates the tensor logarithm

of [·]. The above equation can be reformulated by virtue of the principal stretches and

Lagrangian triads as,

E(m) =
3∑
i=1

f(λi) li ⊗ li (2.8)

where

f(λi) =


1

m
(λmi − 1) m 6= 0,

lnλi m = 0

(2.9)

The counterpart of Lagrangian strain tensors are the Eulerian strain tensors which have

the Eulerian principal directions, i.e., strain measures formulated based on the Eulerian

triads. Based on the left stretch, the Eulerian strain tensors are defined as,

e(m) =


1

m
(Vm − I) m 6= 0,

ln[V] m = 0

(2.10)

The Eulerian strain tensors can be reformulated by virtue of the principal stretches

and Eulerian triads as,

e(m) =
3∑
i=1

f(λi) qi ⊗ qi (2.11)

where f(λi) has the same definition as equation (2.9). The Lagrangian strain tensors are
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related to the Eulerian strain tensors by the rotation tensor R,

e(m) = R E(m)RT (2.12)

It is worthy to point out that the commonly used Green-Lagrangian strain measure in

large deformation theory, i.e., E(2) =
1

2
(U2 − I), belongs to the type of the Lagrangian

strain tensors with m = 2. Other commonly utilized strain measures can also be deduced

from the discussed strain family. For examples, Hencky strain with m = 0, the Biot

strain with m = 1, and Almansi strain with m = −2. The Hencky strain measure of its

Eulerian type h is the strain measure employed in the later chapters for the formulation of

the constitutive model for SMAs under large deformation and considering other advanced

features. It is particularly reviewed here.

h = ln(V) (2.13)

2.3 Stress measures and Forces

In the previous sections, the kinematic description of the deformation of an idealized

continuous body was discussed. Concepts such as the deformation gradient and its polar

decomposition, and different strain measures quantifying the internal stretch inside the

idealized continuum body consist of the most fundamental elements for the construction

of the constitutive theory of solids. It is intuitive to think that, as an energetic-conjugate,

the forces and stress measures associated with the previously discussed deformation kine-

matics should be made clear. This section focus on this objective. A more detailed review

of this part can be found from additional textbooks [51, 23].

In the realm of classical continuum mechanics where material is assumed to be contin-

uously distributed, the forces acting at every material point associated with the deforma-
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tion of continua can be categorized, in general, into two major types: (1) boundary forces

applied on the boundary of the body arising from the contact with another body. The unit

of such forces is usually force per unit area (2) body forces as a result of the presence of a

physical field, such as gravity, magnetic, electric fields induced forces. Those body forces

are exerted throughout the entire continua regardless of its location and time. The unit

of such forces is usually force per unit volume. It is often acknowledged that molecules,

atoms and subatomic particles constitute a material body. The resulting internal forces

then arise in really matter from the interactions of these particles. In order to describe

these forces in a mathematical manner, the concept of stress is needed and the different

ways of quantifying it are introduced in the following sections

2.3.1 Cauchy stress tensor

One of the most basic axioms in continuum mechanics is Cauchy’s stress principle

which states that there exists a linear relationship between the surface traction t(x,n)

and the unit normal vector n, in other words, there is a second-order tensor field σ such

that the traction vector is given by

t(x,n) = σ(x)n (2.14)

Furthermore, due to the balance of angular momentum, σ is a symmetric tensor,

σ = σT (2.15)

The second-order tensor σ is called the Cauchy stress tensor or the true stress tensor

usually. Up to this point, it should be pointed out that the forces within the continuous

material are connected by the molecular and atomic bonds that are discrete quantities. The

continuous mathematical interpretation of these interactions by virtue of the second-order
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Figure 2.2: The schematics of traction forces at current configuration.

Cauchy stress tensor is valid only in an averaging sense for a sufficiently representative

volume of material. This assumption is also adopted in other variables such as strain

measures or other continuous field variables related to the continua. It is noted that the

Cauchy stress tensor is defined in the deformed configuration and thus can be represented

by using the afore introduced Eulerian triads {q1, q2, q3} as,

σ = σij qi ⊗ qj (2.16)

For the convenience of formulation of constitutive models, the stress tensors are often

decomposed into the summation of a spherical part and a deviatoric part, i.e.,

σ = s+ pI (2.17)

where p is called the hydrostatic pressure,

pI =
1

3
tr(σ)I (2.18)
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and s is the deviatoric stress component,

s = σ − pI (2.19)

2.3.2 Kirchhoff stress tensor

Another important stress measure that has the same principal directions as Cauchy

stress tensor is the Kirchhoff stress tensor τ defined in the following equation wherein J

is the determinant of the deformation gradient, i.e., J = det|F|. Therefore, τ is also a

Eulerian variable defined in the current configuration. It can be deduced that the Kirchhoff

stress is a symmetric tensor as a result of the symmetry of Cauchy stress tensor σ.

τ = Jσ (2.20)

In the following chapters, the energetic conjugate pair, i.e., Kirchhoff stress τ and

the Hencky strain of its Eulerian type h, are utilized as stress and strain measures in the

formulation of the constitutive model for SMAs.

2.3.3 Piola-Kirchhoff stress tensors

As discussed in the previous sections, there are strain measures defined not only in the

Lagrangian configurations but also in the Eulerian configuration, so do they with stress

measures. The introduced Cauchy stress and Kirchoff stress tensors are both variables de-

fined in the Eulerian configuration, their counterparts are those defined in the Lagrangian

configuration. The most commonly used ones are the first and second Piola-Kirchhoff

stress tensors.

The vector t in equation (2.14) indicates the traction applied on a unit area in the

deformed material surface with a normal vector n. To obtain the definition of first Piola-

Kirchhoff stress, anther important quantity t̄, the counterpart of t, measures the traction
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that exerts on that unit area in the reference material surface with normal vector m. Let

ds denote an infinitesimal area in the deformed configuration and ds0 be its counterpart

in the deformed configuration, the following relationship between t̄ and t is expressed,

t̄ ds0 = t ds (2.21)

with the combination of equations (2.14) and (2.21), t̄ can be reformulated as,

t̄ = JσF−Tm = Pm (2.22)

the above equation brings the following definition for the first Piola-Kirchhoff stress ten-

sor,

P = JσF−T (2.23)

It is clear to see that the first Piola-Kirchhoff stress tensor is an unsymmetric tensor.

As the symmetry feature of a variable often comes with a reward in the mathematical

derivation, which motivates the introduction of the second Piola-Kirchhoff stress tensor,

a symmetric tensor, as follows,

S = JF−1σF−T (2.24)

It should be noted that the energetic conjugate pair of the second Piola-Kirchhoff

stress tensor S is the Green-Lagrangian strain tensor E(2).

2.4 Fundamental principles of thermodynamics

In order to formulate the constitutive theories in the later section, the fundamental

principles of thermodynamics are reviewed here. They are conservation of mass, conser-

vation of linear momentum, conservation of angular momentum, conservation of energy,
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and the entropy inequality. The conservation of energy is also called the first principle of

thermodynamics, and entropy inequality is also called the second principle of thermody-

namics.

2.4.1 Conservation of mass

The conservation of mass indicates that the rate of change of mass for continua is

always zero with respect to time and deformation, which can be expressed in the following

equation,

D

Dt

∫
V

ρdV = 0 (2.25)

In the preceding equation, ρ is the density of the body, V is the volume of the body, and
D

Dt
means the material derivative. By using the Reynolds transport theorem, the integral

form of conservation of mass can derive the following local form,

∂ρ

∂t
+ div(ρv) = 0 (2.26)

in which, v is the velocity field of the material point, and div means the divergence of that

vector variable.

2.4.2 Conservation of linear momentum

The conservation of linear momentum indicates that the rate of change of linear mo-

mentum for a continuum media is equal to the summation of total forces applied on it,

which can be expressed in the following integral form as,

D

Dt

( ∫
V

ρ vdV
)

=

∫
∂V

t dS +

∫
V

b dV (2.27)
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in the preceding equation, t is the traction applied on the body surface, and b is the body

force vector exhibited on the entire body. By using the conservation of mass and the

relationship in equation (2.14), the following local form can be obtained,

ρ
Dv

Dt
= div(σ) + b (2.28)

2.4.3 Conservation of angular momentum

The conservation of angular momentum states that the rate of change of angular mo-

mentum for a continuum medium about a fixed point is equal to the summation of total

moments caused by the surface and body forces applied on it plus the existing body cou-

ples, which can be expressed in the following equation by using the integral form,

D

Dt

( ∫
V

r × ρ vdV
)

=

∫
∂V

r × t dS +

∫
V

r × b dV (2.29)

in the preceding equation, r means the position of the fixed point, ’×’ means the cross

product of two vectors. The result obtained from the conversation of angular momentum

means that the Cauchy stress tensor is symmetric, i.e.,

σ = σT (2.30)

2.4.4 Conservation of energy

The principle of conservation of energy, also called the first law of thermodynamics,

states that the rate of change of summation of kinetic and internal energy for the continua

is equal to the summation of the rate of work applied by surface and body forces, rate of

heat flow across the boundary, and heat supply within the body. The integral form of this
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principle can be expressed as follows,

D

Dt

∫
V

(1

2
ρv2 +ρu

)
dV =

∫
∂V

t ·v dS+

∫
V

b ·v dV −
∫
∂V

(q ·n) dS+

∫
V

ρr dV (2.31)

in the preceding equation, u is the internal energy per unit mass, q is the heat flux vector,

r is the heat supply per unit mass, n is a unit normal vector on the body surface ∂V ,

(−q · n) indicates the rate of heat flowing into the body. The local form of this principle

of conservation of energy can be expressed as,

ρu̇ = σ : D− div(q) + ρr (2.32)

in which ’:’ means the contraction operation between two tensors, (σ : D) means the

stress power per unit deformed volume. The local form of conservation of energy indi-

cates that the rate of change of internal energy equals the stress power per unit deformed

volume minus the divergence of the heat flux, plus heat production within the body.

2.4.5 Entropy inequality

The entropy inequality, also knowns as the second law of thermodynamics or the

Clausius - Duhem inequality, states that the sum of the total internal entropy production

within the system is always no less than zero, which can be expressed in the following

integral form as,

D

Dt

( ∫
V

ρsdV
)

+

∫
∂V

q

T
· n dS −

∫
V

ρr

T
dV > 0 (2.33)

in the above equation, s is the entropy per unit mass. By using the divergence theorem

and the conservation of mass, the following local form of the entropy inequality can be

36



obtained,

ρṡ+
1

T
div(q)− q

T 2
·∇T − ρr

T
> 0 (2.34)

Because the heat flux always flows from a higher temperature place to a lower one, the

term − q
T 2
·∇T is always a quantity greater than zero. Thus the following strict form of

the entropy inequality, called Clausius-Planck inequality, is obtained.

ρṡ+
1

T
div(q)− ρr

T
> 0 (2.35)

2.5 Thermodynamic framework

In this subsection, the generic derivation of constitutive equations for dissipative mate-

rials is presented, which is utilized for the formulation of constitutive modeling of SMAs

in the later sections. The formulation of constitutive models usually starts with the se-

lection of a set of thermodynamic state variables to define the thermodynamic potential.

Thermodynamic state variables are those quantities that can determine a specific thermo-

dynamic state for the material bodies [20, 21]. The state variables are called external

ones if they can be measured, while those can not be directly measured are called inter-

nal state variables. In the case of SMAs, the internal state variables can be martensitic

volume fraction, transformation strain, internal stress tensor, and transformation-induced

plasticity tensor.

After the determination of both external and internal state variables, a thermodynamic

potential function, characterizing a specific thermodynamic status for a material, can thus

be formulated [37]. In general, there is a total of four thermodynamic potentials com-

monly adopted in constitutive modeling depending on their choice of independent state

variables, i.e., the internal energy function,u, the enthalpy function, h, the Helmholtz free

energy function, ψ, and the specific Gibbs free energy function, G. All four thermody-
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namic potentials are defined per unit mass. Specifically, the internal energy u is a measure

that combines the kinetic and potential energy in the material system. The Helmholtz free

energy ψ is a measure of the portion in internal energy that is accessible for providing

external work subjected to a constant temperature, while enthalpy h is the available por-

tion in internal energy that is able to be transferred as heat energy under constant applied

stress. In the end, the Gibbs free energy is the available portion in enthalpy that can be

used for doing work subjected to a constant temperature. The aforementioned four ther-

modynamic potentials have the following relations linked to each other, in which σ is the

Cauchy stress and ε is the infinitesimal strain tensor.

The relation between the internal energy and enthalpy is,

h = u− 1

ρ
σ : ε (2.36)

The Gibbs free energy is correlated with the internal energy as,

G = u− 1

ρ
σ : ε− sT (2.37)

The Helmholtz free energy is linked with the internal energy as,

ψ = u− sT (2.38)

When it comes to the choice of the thermodynamic potential for the formulation of

constitutive models, an intuitive option can be the internal energy. However, as the in-

ternal energy is controlled by the state variable entropy h, which is not a quantity can

be directly measured, the internal energy is barely used in model derivations. The same

situation applies to the enthalpy. Thus, the two commonly adopted thermodynamic poten-

tials are the Helmholtz free energy ψ and the Gibbs free energy G. The specific selection
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between them is usually based on the preference on the state variables, i.e., stress (load)

or strain (displacement) control, that the researchers want to control in the experiments.

In the following section, the Gibbs free energy is chosen as the thermodynamic potential

for the formulation of constitutive models for SMAs.

To proceed the formulation of constitutive models for dissipative materials, such as

SMAs, the thermodynamic potential, Gibbs free energy G, is prescribed to be a contin-

uous function dependent on Cauchy stress tensor σ, infinitesimal strain tensor ε, tem-

perature T and a set of internal state variables Υ. The selection of a set of internal

state variables that can properly describe the experimentally observed material dissipa-

tive response is an important part to formulate constitutive relations. In the case of a

conventional plastic material such as steel, magnesium, and aluminum, the second-order

irrecoverable plastic strain tensor is usually used for the consideration of the nonlinear

material response. In the case of SMAs, the martensitic volume fraction ξ and the in-

finitesimal transformation strain εtr (assuming small strain theory) are usually selected as

internal state variables Υ = {ξ, εtr} to characterize the phase transformation and thermo-

mechanical response of SMAs. Specifically, ξ = 0 means the material is fully in austenitic

phase, ξ = 1 indicates the material is fully in the martensitic phase, and 0 < ξ < 1 means

the material is in mixed phase. The transformation strain εtr is responsible for the fully

recoverable strain upon unloading/heating the SMA material. In Chapter 4, another two

internal state variables, i.e., transformation-induced plastic strain and internal stress ten-

sors, are introduced into the current constitutive model as an extension of the model to

consider the evolving material response of SMAs under cyclic loading.

G(σ, T,Υ) = u− 1

ρ
σ : ε− sT (2.39)

where ρ is the density of the material, s and u are the specific entropy and internal energy
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respectively. By assuming the Gibbs free energy is a continuous function based on its

independent state variables, the chain rule differentiation can be applied on G, thus the

following rate form of G can be obtained,

Ġ = u̇− 1

ρ
σ̇ : ε− 1

ρ
σ : ε̇− sṪ − ṡT (2.40)

in addition, the following equation is derived after the rearrangement of equation (2.40),

u̇− ṡT = Ġ+
1

ρ
σ̇ : ε+

1

ρ
σ : ε̇+ sṪ (2.41)

Based on the 2nd law of thermodynamics, by combining the conservation of energy in

equation (2.32), the strict form of dissipation inequality (2.35), and also the equivalence

between the rate of the infinitesimal strain and the rate of deformation tensor under small

deformation assumption, i.e., ε̇ = D, the dissipation energy D can be written in the

following form of inequality,

D = σ : D− ρ(u̇− T ṡ) > 0 (2.42)

After the substitution of the rate form equation (3.22) into the inequality (3.20), the

dissipation energy is reformulated as,

D = −ρĠ− ρsṪ − σ̇ : ε > 0 (2.43)

The Gibbs free energy G(σ, T,Υ) is prescribed to a continuous function dependent

on Cauchy stress σ, temperature T and a set of internal state variables ε undetermined,

after the application of chain rule differentiation of G with respect to these independent
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state variables (i.e., σ, T and Υ), the following equation is derived,

Ġ =
∂G

∂σ
: σ̇ +

∂G

∂T
Ṫ +

∂G

∂Υ
: Υ̇ (2.44)

Substitution of the preceding equation (3.24) into equation (3.23) yields the following

expression for the dissipation energy D,

D = −(ρ
∂G

∂σ
+ ε) : σ̇ − (ρ

∂G

∂T
+ s) : Ṫ − ρ∂G

∂Υ
: Υ̇ > 0 (2.45)

One of the most important steps to obtain the constitutive relations is the so-called

Coleman-Noll procedure, which states that all the admissible values of σ̇, Ṫ and Υ̇ have

to comply with the dissipation inequality (3.25) regardless of their thermodynamic paths,

thereby the following constitutive relationships between stress and strain, entropy and

temperature can be obtained,

ε = −ρ∂G
∂σ

(2.46)

s = −ρ∂G
∂T

(2.47)

By substituting the obtained constitutive relationships (3.26) and (3.27) back into in-

equality (3.25), the following reduced form of the dissipation inequality is acquired,

− ρ∂G
∂Υ

: Υ̇ > 0 (2.48)

2.6 Finite strain constitutive modeling using logarithmic strain and rate

This section focus on the large deformation framework using the newly proposed log-

arithmic rate together with the logarithmic strain. In general, two kinematic assumptions

are often adopted in the finite deformation theory, i.e., the multiplicative decomposition
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of the deformation gradient and the additive decomposition of the strain rate tensor. In the

multiplicative approach, the deformation gradient is usually decomposed into an elastic

part multiplied with an irrecoverable part, F = FeFie, while in the additive models, the

rate of deformation tensor is decomposed into an elastic part followed by an irrecoverable

part, D = De + Dir. It is known that finite strain constitutive models based on additive

decomposition significantly reduces the complexities of the model structure thereby they

are widely used in current available finite element software (e.g., Abaqus, ANSYS). To

satisfy the principle of objectivity, additive models are usually required to employ an ob-

jective rate in its rate form hypoelastic constitutive relation. A number of objective rates

(such as Zaremba-Jaumann-Noll rate, Green-Naghdi-Dienes rate, and Truesdell rate) have

been proposed to meet this goal. However, those objective rates are not essentially "ob-

jective" because of their failure to integrate the rate form hypoelastic relation into the

hyperelastic stress-strain equation (2.54) [116]. As a result, spurious phenomena (e.g.,

shear stress oscillation, residual stress errors, etc.) are often observed in the predicted

response even for non-dissipative elastic materials. To illustrate the issues with objective

rates, two boundary value problems are chosen to be analyzed by using the hypoelastic

constitutive relationships.

The constitutive relationship for thermoelastic materials based on additive kinematic

assumption can be expressed as equation (2.49), in which C is the fourth-order stiffness

tensor of the elastic material, τ is the Kirchhoff stress tensor, and a circle over τ means

the objective rates adopted.

τ̊ = C : D (2.49)

The previously mentioned self-inconsistency issue related to non-integrable objective

rates was resolved by the logarithmic rate proposed in the works [112, 113, 13, 14, 15,

66, 67], in which they indicates that the logarithmic rate of Eulerian logarithmic strain
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h is identical to the rate of deformation tensor D. This unique relationship between

logarithmic strain h and the strain rate tensor D can be expressed as follows,

h̊log = ḣ + hΩlog −Ωlogh = D (2.50)

where Ωlog is called the logarithmic spin introduced by [112] defined as,

Ωlog = W +
n∑
i 6=j

(1 + (λi/λj)

1− (λi/λj)
+

2

ln(λi/λj)

)
biDbj (2.51)

in which λi,j(i, j = 1, 2, 3) are the eigenvalues of left Cauchy-Green tensor B and bi,bj

are the corresponding subordinate eigenprojections. As along as the logarithmic spin

tensor Ωlog is defined, the second order rotation tensor Rlog, associated with Ωlog, can be

determined through the following differential equation (4.3). In general cases, the initial

condition of Rlog is assumed as Rlog|t=0 = I.

Ωlog = Ṙlog(Rlog)T (2.52)

By using the corotational integration technique defined from [45], and assume the

initial conditions for strain as h|t=0 = 0, the rate form equation (2.50) can be integrated

to yield the following relation between the total logarithmic strain h and the logarithmic

corotational integration of D,

h =

∫
corot.

D dt = (Rlog)T
(∫ t

0

RlogDe(Rlog)Tdt′
)

Rlog (2.53)

By applying the logarithmic corotational integration on the rate form constitutive

equation (2.49), the following algebraic constitutive equation between the Kirchhoff stress
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tensor τ and the Eulerian logarithmic strain h can be derived,

τ = C : h (2.54)

During the following subsections, two elastic boundary value problems are analyzed

to demonstrate the benefits of using logarithmic strain and rate to formulate the finite

strain constitutive models. The first boundary value problem is a simple elastic cube

under simple shear deformation, and the second one is a simple elastic cube under closed

path cyclic loading.

2.6.1 Elastic cube under simple shear

As it was proved from [112], the hypoelastic formulation (2.49) using logarithmic

rate can be self-consistently integrated to the hyperelastic equation (2.54) using logarith-

mic strain via the logarithmic corotational integration. The example in this subsection is

to demonstrate such equivalence between the rate form hypoelastic formulation and the

algebraic form hyperelastic formulation to characterize the simple elastic response.

Refer to Figure 2.3 for the boundary value problem schematic, a simple elastic cube

with length H is under simple shear loading, the cube top face is subjected to a displace-

ment control shearing deformation using displacement umax in X2 direction. The cube is

a simple elastic material with Young’s modulus of E and Poisson’s ratio ν = 0.33. The

simulation was conducted using commercial finite element software Abaqus, in which

the cube meshed with one three-dimensional C3D8 element. A UMAT corresponding to

the rate form hypoelastic formulation (2.49) and another one corresponding to the hy-

perelastic formulation (2.54) were implemented into Abaqus to solve the boundary value

problems here.

First, the simulation was conducted using the Abaqus built-in nonlinear geometry

solver (designated as NLGEOM) with 500 incremental step until the maximum displace-
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ment umax was reached, it is noted that when NLGEOM is activated in Abaqus, the consti-

tutive equation to calculate the stress-strain response is the rate form hypoelastic equation

(2.49) using Jaumman rate. Afterward, the same simulation was conducted by using the

UMAT describing hyperelastic formulation with 200 incremental steps. Finally, the sim-

ulation was performed by using the hypoelastic UMAT with 200 to 10000 incremental

steps. The shear Kirchhoff stress components τ12 predicted by different methods in the

all above simulations are summarized in Figure 2.4.

H =1

X2

X1

u

Figure 2.3: The schematic of a simple elastic square under simple shear loading condi-
tions.

Figure 2.4 shows the normalized shear stress component τ/E versus the normal-

ized displacement u/umax. The rate form hypoelastic formulation presents a stress-

displacement response converging to the response produced by the hyperelastic formu-

lation as the number of increments increases. The difference between the responses

predicted by these two formulations is almost negligible, which demonstrates what was

proved in the work [113] that the hypoelastic constitutive formulation can be integrated
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into the hyperelastic constitutive formulation via the logarithmic corotational integration.

In contrast, the response predicted by the hypoelastic formulation using Zarempa–Jauman

rate shows a spurious shear stress oscillation.
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Figure 2.4: The shear Kirchhoff stress components predicted by the hyperelastic formula-
tion (Eq. (2.54)) using logarithmic strain and hypoelastic formulation (Eq. (2.49)) using
Jaumman and logarithmic rates.

2.6.2 Elastic cube under closed path cyclic loading

In this subsection, an elastic cube under closed path cyclic loading is investigated

to study the residual stress errors caused by the hypoelastic formulation using other non-

integrable objective rates. Refer to Figure 2.5 for the boundary value problem schematics,

an elastic cube with length H is under a closed path cyclic loading. The upper face of the

cube is subjected to a displacement-controlled circular deformation, the deformation over

geometry ratio is r/H = 0.2 to represent a relatively large deformation situation. The

shear Kirchhoff stress components are examined by the hypoelastic equation (2.49) with

10 consecutive closed path loading cycles. Based on the results from [112], hypoelastic
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equation (2.49) using logarithmic rate can be self-consistently integrated to a hyperelastic

constitutive equation (2.54) based on logarithmic strain through the logarithmic corota-

tional integration [45]. In order to demonstrate that, the Kirchhoff stress components are

obtained by the rate form hypoelastic equation (2.49) with three different objective rates,

i.e. Jaumman rate, Green-Naghdi rate, and Logarithmic rate. The predicted results are

presented in Figure 2.6, Figure 2.7 and Figure 2.8. The stress results are normalized by

the material Young’s modulus E.

H =1

X2

X1

r

o

Figure 2.5: The schematic of a simple elastic square under closed path cyclic loading.
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Figure 2.6: Kirchhoff stress components predicted by hypoelastic equation using Jaum-
man rate under 10 loading cycles
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Figure 2.7: Kirchhoff stress components predicted by hypoelastic equation using Green-
Naghdi rate under 10 loading cycles
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Figure 2.8: Kirchhoff stress components predicted by hypoelastic equation using Loga-
rithmic rate under 10 loading cycles

Table 2.1: Stress residuals obtained by hypoelastic equation (2.49) with different objective
rates for the elastic square

Normalized stress Logarithmic rate Jaumman rate Green-Naghdi rate

τ11/E -1.71e-5 0.0164 2.17 e-6
τ12/E 2.17e-6 0.0411 -0.023
τ22/E 1.71e-5 -0.0164 1.76e-5

The stress residuals are examined at the end of the loading cycle and summarized

in table 2.1. First, the stress components in all the three cases showed periodic oscil-

lation. Since the material is confined to behave elastically, the deformation should be

indissipative to anticipate that all the stress components should return to zero value in the

end. However, the predicted stress components in the cases of Jaumman rate and Green-

Naghdi rate showed artificial stress residuals are introduced. Refer to figure 2.6 for the
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case of Jaumman rate, stress residuals τ11 is 0.0164, τ22 is -0.0164 and τ12 is 0.0411 after

the 10 loading cycles. In the case of Green-Naghdi rate, although there are inconsiderable

stress residuals for τ11 and τ22 components, the shear residuals τ12 is -0.023. In con-

trast, all the stress residuals are almost negligible in the case of Logarithmic rate, which

demonstrates that the hypoelastic constitutive equation utilizing logarithmic rate can be

self-consistently integrated to deliver a hyperelastic equation based on the logarithmic

strain. Interested readers are encouraged to further read [66, 115].
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3. FINITE STRAIN CONSITUTIVE MODELING FOR MARTENSITIC

TRANSFORMATION IN POLYCRYSTALLINE SHAPE MEMORY ALLOYS ∗

3.1 Introduction

SMAs belong to a specialized subgroup of multifunctional materials known as ac-

tive materials and are capable of recovering their pre-defined geometry when subjected

to a thermal stimulus above certain temperatures. This unique property of SMAs is

achieved through a solid-to-solid state diffusionless phase transformation between the

high-symmetry, high-temperature austenitic phase and the low-symmetry, low-temperature

martensitic phase [48]. Since the discovery of shape memory effect, SMAs have been ex-

tensively investigated as sensors and actuators towards building smart systems integrated

with adaptive and morphing features [76, 33]. Recently, aerospace researchers have con-

sidered using the SMA-based actuators to reconfigure the shape of a supersonic aircraft to

meet the noise and efficiency requirements in response to the real-time changing ambient

environment, which has the great potential to realize a commercially viable overland civil

supersonic flight in the near future [52, 122].

A substantial number of constitutive theories for SMAs have been proposed so far

with the majority of them based on the infinitesimal strain theory for small deformation

analysis. Thorough reviews can be found from [81, 10, 7, 80, 73, 56, 57, 74, 125, 85, 27,

17, 87, 19]. In general, constitutive models for SMAs can be approximately categorized

into three different types: phase-field theory based models, crystal-plasticity theory based

models, and classical J2-flow theory based models. The phase-field models, in which

order parameters are utilized to differentiate austenitic and martensitic phases, can track

∗Portions of this chapter are reprinted or adapted from [121], L. Xu, T. Baxevanis, and D.C. Lagoudas,
A three-dimensional constitutive model for the martensitic transformation in polycrystalline shape mem-
ory alloys under large deformation. Smart Materials and Structures, Volume 28, Issue 7, 074004, 2019.
Copyright c© 2019 by IOP Publishing. Reproduced with permission. doi:10.1088/1361-665x/ab1acb
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microstructure evolution, such as phases front movement, during the phase transforma-

tion process [56, 57, 18, 94, 93, 64, 126]. Therefore, phase-field theory based models

are well suited to investigate the dynamic nucleation and phase morphology growth for

martensitic phase transformation in SMAs. The enormous computational time, however,

needed to solve the phase kinetic partial differential equations hinders its popularity to the

extent that macroscopic structural response is concerned. In regard to crystal-plasticity

theory based models [103, 107, 123], with the consideration of the effect of material

microstructure (e.g., crystal orientation, texture, etc.), these models are able to capture

the anisotropy in material response (e.g., tension-compression asymmetry) exhibited by

textured polycrystalline SMAs. Similar to phase-field methods, the complex implementa-

tion procedure of these models to incorporate the microstructure information makes them

computational costly. Following the legacy of J2-flow theory, phenomenological SMA

models have attracted attention in the engineering community where repetitive designs

and optimization procedures on SMA components are needed to find target shapes. By

introducing a set of internal state variables (such as volume fraction and transformation

strain tensor), J2 theory-based SMA models are able to simulate the macroscopic re-

sponse of an SMA component in an efficient way. The simplicity of this model type and

its well-established implementation procedure have allowed it to be widely used among

real engineering applications [5, 47, 11, 12, 53, 58, 125, 82].

Constitutive models based on the infinitesimal strain theory are able to predict SMA

response accurately under small deformation situations. However, it has been reported

that SMAs can reversibly deform to a relatively large strain regime up to 8% [89, 39].

Also for specific boundary value problems such as fracture in SMAs, the strain levels

close to the crack tip are well beyond 10% [29, 28] within the finite strain regime. In addi-

tion to such relatively large strain, SMA-based actuators (e.g., spring, beam, torque tube)

may also undergo large rotation during their deployment. For example, an SMA beam
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component is used as a bending actuator in order to realize a morphing engine shape,

where the SMA experienced large bending induced rotation [33]. Another example is

the SMA tube component utilized as a torsional actuator to repeatedly rotate a deploy-

able and retractable solar panel [108], where the SMA tube is subjected to cyclic large

rotation. Combining the aforementioned two facts that SMAs may undergo large strain

and rotation, it is necessary to develop a constitutive model based on a finite deformation

framework to provide an accurate prediction for the response of SMAs.

Two kinematic assumptions are often employed in the finite deformation theory, i.e.,

the multiplicative decomposition of the deformation gradient and the additive decompo-

sition of the strain rate tensor. In the multiplicative approach, the deformation gradient

is usually decomposed into an elastic part multiplied with an inelastic part. Finite strain

SMA models based on the multiplicative decomposition can be obtained from literature

[129, 82, 25, 105, 106, 99, 22], among which some advanced capabilities are considered.

For example, Wang and coworkers [106] presented a finite strain SMA model with the

fully thermomechanically coupled feature, the consideration of coexistence of different

martensitic variants, and accounting for temperature effect on the hysteresis size. In the

work of Stupkiewicz and Petryk [99], they proposed a finite strain SMA model to cap-

ture the tension-compression asymmetry phenomenon. Damanpack and coworkers [22]

also developed an SMA model that considers anisotropic behaviors and reorientation in

SMAs at finite deformation. However, it is known that finite strain model based on ad-

ditive decomposition significantly reduces the complexities of the model structure com-

pared to multiplicative models, which in return facilitates the computational efficiency of

the finite strain model as a 3-D design tool. Therefore, they are widely used in current

available finite element software (e.g., Abaqus, ANSYS). However, to satisfy the prin-

ciple of objectivity, additive models are required to use an objective rate in its rate form

hypoelastic constitutive relation. A number of objective rates (such as Zaremba-Jaumann-
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Noll rate, Green-Naghdi-Dienes rate, and Truesdell rate) have been proposed to meet this

goal. However, those objective rates are not essentially “objective" because of their fail-

ure to integrate the rate form hypoelastic relation to yield a free energy based hyperelastic

stress-strain relation [116]. As a result, spurious phenomena (e.g., shear stress oscilla-

tion, artificial stress residuals, etc.) are often observed in the predicted response even for

simple elastic materials through these objective rates.

It was not until the logarithmic rate was proposed in the literature [112, 113, 13,

14, 15, 66, 67] that the previously mentioned self-inconsistency issue related to non-

integrable objective rates was resolved. As was proved in the work [112], the logarithmic

rate of Eulerian logarithmic strain h is exactly identical to the strain rate tensor D, and

the logarithmic strain is the only one among all other strain measures enjoying this impor-

tant property. Therefore, the finite strain models using logarithmic strain and rate are not

only able to capture large strain and large rotation but also are capable of resolving the

aforementioned spurious phenomena. This new development in finite deformation the-

ory not only provides a solution to classical finite elastoplastic problems for conventional

metallic materials [127, 128], but also sheds light on the finite strain model development

for active materials such as SMAs. Few SMA models using additive approach can be

found from [69, 102, 111, 124, 120, 117, 119], but some of the very important SMA

phase transformation characteristics have not been addressed among them, such as the

smooth transition during the phase transformation, the stress-dependent transformation

strain to account for the coexistence of oriented/self-accommodated martensitic variants,

and a stress-dependent critical driving force to consider the effect of applied stress lev-

els on the size of hysteresis loop. To this end, this work presents a finite strain SMA

model formulation based on the additive decomposition using the logarithmic strain and

rate. As a continuous development from the infinitesimal SMA model [47], the proposed

model has a simple model structure and considers three very important characteristics
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for SMA response as its infinitesimal counterpart does. These developments combined

result in improved computational efficiency and robustness for the proposed finite strain

model to predict the SMA response at large deformation, without introducing additional

intermediate state variables, such as Mandel stress, that are utilized in the multiplicative

models. It is noted that the primary focus of this work is mainly on the formulation of

a finite strain SMA model, rather than the development of a constitutive model that can

capture the full complexities of the SMA thermomechanical deformation. Thus, tension-

compression, latent-heat effects, reorientation between orientated and self-accommodated

martensitic variants, cyclic evolution features (transformation-induced plasticity, two-way

shape memory effect at stress-free conditions) are not included here for simplicity. More-

over, this work carefully examines the artificial stress errors caused by using other non-

integrable objective rates in current commercial finite element packages. The capability

of the proposed model to eliminate such stress errors shows significant importance for

the analysis of SMA-based actuators, e.g., SMA beam and SMA torque tube subjected to

cyclic large deformation.

This work is organized as follows. Section 3.2 presents the kinematic preliminar-

ies. Section 3.3 concentrates on the model development based on the logarithmic strain

and logarithmic rate. The derivation of the consistent tangent stiffness matrix and the

consistent thermal matrix are also provided. In section 3.4, the detailed implementation

procedure for the proposed model is described by using a user-defined material subroutine

(UMAT) through the finite element software Abaqus. A detailed calibration procedure for

the material parameters used in this model is also provided in the Section 3.5. Numerical

examples are studied to demonstrate the capability of the proposed model in Section 3.6.

Conclusions are presented in Section 3.7.
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3.2 Preliminaries

3.2.1 Kinematics

Let material point P from body B be defined by a position vector X in the reference

(undeformed) configuration at time t0, and let vector x represent the position vector of that

material point in the current (deformed) configuration at time t. Therefore ,the deforma-

tion process of point P between the reference configuration and the current configuration

can be defined through the well-known deformation gradient tensor F(x, t):

F(x, t) =
∂x

∂X
(3.1)

and the velocity field v can be defined as,

v =
dx

dt
= ẋ (3.2)

based on the velocity field v, the velocity gradient L can be derived as,

L =
∂v

∂x
= ḞF−1 (3.3)

the following polar decomposition equation for deformation gradient F is well known,

F = RU = VR (3.4)

where R is the rotation tensor, U and V are the right (or Lagrangian) and the left (or

Eulerian) stretch tensors, respectively, by which the right Cauchy-Green tensor C and the

left Cauchy-Green tensor B can be obtained, as follows,

C = FTF = U2 (3.5)
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B = FFT = V2 (3.6)

where I is the second order identity tensor. The logarithmic strain (also called Hencky or

true strain) of Lagrangian type H and Eulerian type h can thus be defined as,

H =
1

2
ln(C) = ln(U) (3.7)

h =
1

2
ln(B) = ln(V) (3.8)

It is also well known that the velocity gradient L can be additively decomposed into a

symmetric part, the strain rate tensor D, and an anti-symmetric part, the spin tensor W,

L = D + W, D =
1

2
(L + LT), W =

1

2
(L− LT) (3.9)

3.2.2 Logarithmic strain, logarithmic rate and logarithmic spin

As was mentioned in section 3.1, two widely accepted kinematic assumptions, i.e., the

multiplicative decomposition of deformation gradient F and the additive decomposition

of the strain rate tensor D, are usually considered in finite deformation theory. The mul-

tiplicative models use a hyperelastic constitutive relation while a rate form hypoelastic

constitutive equation is usually adopted for additive models. The rate form hypoelastic

constitutive theory using objective rates has been criticized for its non-integrability be-

cause it can not well define an essential elastic material behavior [90], this includes many

well known objective rates such as Zaremba-Jaumann rate, Green-Naghdi rate, Truesdell

rate, etc.[116].

The aforementioned problems about objective rates were solved in the work by Xiao et

al.[112, 113, 116], Bruhns et al.[13, 14, 15] and Meyers et al.[66, 67], where they proved

that the logarithmic rate of the Eulerian logarithmic strain h is identical with the strain
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rate tensor D, by which a hypoelastic model can be exactly integrated to a hyperelastic

finite strain model [112]. This unique relationship between logarithmic strain h and the

strain rate tensor D is expressed as follows,

h̊log = ḣ + hΩlog −Ωlogh = D (3.10)

where Ωlog is called the logarithmic spin introduced by [112] defined as,

Ωlog = W +
n∑
i 6=j

(1 + (λi/λj)

1− (λi/λj)
+

2

ln(λi/λj)

)
biDbj (3.11)

in which λi,j(i, j = 1, 2, 3) are the eigenvalues of left Cauchy-Green tensor B and bi,bj

are the corresponding subordinate eigenprojections. As along as the logarithmic spin

tensor Ωlog is defined, the second order rotation tensor Rlog, associated with Ωlog, can be

determined through the following differential equation (4.3). In general cases, the initial

condition is assumed as Rlog|t=0 = I.

Ωlog = Ṙlog(Rlog)T (3.12)

follow the corotational integration definition from [45], and assume the initial conditions

h|t=0 = 0, equation (4.1) yields the total logarithmic strain h after the logarithmic coro-

tational integration,

h =

∫
corot.

D dt = (Rlog)T
(∫ t

0

RlogDe(Rlog)Tdt′
)

Rlog (3.13)
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3.2.3 Additive decomposition of logarithmic strain

The kinematic assumption starts with the additive decomposition of the strain rate

tensor D into an elastic part De plus a transformation part Dtr,

D = De + Dtr (3.14)

The elastic strain rate part De and the transformation strain rate part Dtr in equa-

tion (4.5) can be rewritten as h̊e_log and h̊tr_log by virtue of the relation in equation (4.1)

respectively,

h̊e_log = De; h̊tr_log = Dtr (3.15)

combining equations (4.1), (4.5) and (4.6) obtains the following equation,

h̊log = h̊e_log + h̊tr_log (3.16)

Similar to the results obtained from equation (4.4), equation (4.7) can yield the fol-

lowing relation after applying the logarithmic corotational integration,

he =

∫
corot.

De dt = (Rlog)T
(∫ t

0

RlogDe(Rlog)Tdt′
)

Rlog (3.17a)

htr =

∫
corot.

Dtr dt = (Rlog)T
(∫ t

0

RlogDtr(Rlog)Tdt′
)

Rlog (3.17b)

Based on the additive decomposition on the strain rate tensor, combing equations

(4.5), (4.7) and (4.8), the following additive decomposition on the total logarithmic strain

h can be achieved, i.e., the total logarithmic strain h can be additively split into an elastic

59



strain like part he plus a transformation strain like part htr.

h = he + htr (3.18)

3.3 Model formulation

3.3.1 Thermodynamic framework

The Gibbs free energy potential G is defined to be a continuous function dependent

on Kirchhoff stress tensor τ 1, Eulerian logarithmic strain h, temperature T and a set of

internal state variables Υ.

G(τ,h, T,Υ) = u− 1

ρ0

τ : h− sT (3.19)

where ρ0 is the density in the reference configuration, s and u are the specific entropy and

internal energy respectively. From the 2nd law of thermodynamics, the dissipation energy

D can be written in the form of Clausius-Duhem inequality,

D = τ : D− ρ0(u̇− T ṡ) > 0 (3.20)

The logarithmic rate of the Gibbs free energy is taken in equation (3.19). Note that

a scalar subjected to an objective rate equals to its conventional time rate, the following

equation is derived. An circle hat denotes the logarithmic rate in the following text for

brevity.

G̊log = u̇− 1

ρ0

τ̊
log : h− 1

ρ0

τ : h̊log − sṪ − ṡT (3.21)

1The relationship between Kirchhoff stress τ and Cauchy stress σ is τ = Jσ, where J is the de-
terminant of the deformation gradient F, i.e., J = det|F|. Assuming phase transformation to be volume
preserving, J is approximately equivalent to 1, so τ ≈ σ. Kirchhoff stress τ and Eulerian logarithmic strain
h, called an energetic conjugate pair [114], are usually paired up in the formation of free energy potentials.
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The following equation can be obtained after rearrangement of equation (3.21),

u̇− ṡT = Ġ+
1

ρ0

τ̊ : h +
1

ρ0

τ : h̊ + sṪ (3.22)

Substitute equation (3.22) into Clausius-Duhem inequality (3.20), the dissipation en-

ergy is rearranged as the following,

D = −ρ0Ġ− ρ0sṪ − τ̊ : h > 0 (3.23)

Recall that the Gibbs free energy is a continuous function, chain rule differentiation

can be applied on the Gibbs free energy with respect to its independent state variables

(i.e., Kirchhoff stress τ, temperature T and internal state variables Υ), which gives,

G̊ =
∂G

∂τ
: τ̊ +

∂G

∂T
Ṫ +

∂G

∂Υ
: Υ̊ (3.24)

Substitute equation (3.24) into equation (3.23), the following expression for the dissi-

pation energy D is acquired,

D = −(ρ0
∂G

∂τ
+ h) : τ̊− (ρ0

∂G

∂T
+ s) : Ṫ − ρ0

∂G

∂Υ
: Υ̊ > 0 (3.25)

Following the standard Coleman-Noll procedure, all admissible values for τ̊, Ṫ and Υ̊

have to comply with the dissipation inequality (3.25) regardless of thermodynamic paths,

thereby the constitutive relationships between stress and strain, entropy and temperature

can be inferred as,

h = −ρ0
∂G

∂τ
(3.26)

s = −ρ0
∂G

∂T
(3.27)
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Substitute equations (3.26) and (3.27) into equation (3.25), the following reduced

form of the dissipation inequality is acquired,

− ρ0
∂G

∂Υ
: Υ̊ > 0 (3.28)

3.3.2 Constitutive modeling for SMAs

3.3.2.1 Thermodynamic potential

The formulation of the proposed model is based on the thermodynamic framework

presented in section 3.3 and the early SMA model developed by Lagoudas and coworkers

[10, 47] for small deformation analysis. The model is able to predict the pseudoelastic

(isothermal) and actuation (isobaric) response under large deformation including both

large strain and large rotation. A quadratic Gibbs free energy potential G is introduced

in equation (3.29), in which Kirchhoff stress tensor τ and temperature T are chosen as

the independent state variables. The martensitic volume fraction ξ and the second order

transformation strain tensor htr are chosen as internal state variables Υ = {ξ,htr} to

capture the material response exhibited by polycrystalline SMAs. The Gibbs free energy

potential G is employed as follows,

G = − 1

2ρ0

τ : Sτ− 1

ρ0

τ : [ α(T − T0) + htr] + c
[
(T − T0)− T ln(

T

T0

)
]

−s0(T − T0) + u0 +
1

ρ0

f(ξ)

(3.29)

where S is the effective compliance tensor calculated by equation (3.30), SA is the com-

pliance tensor for austenitic phase while SM is for martensitic phase, and ∆S is the phase

difference for the compliance tensor. The effective stiffness tensor C can be gained by

taking the inverse of the effective compliance tensor, i.e., C = S−1. α is the second order

thermoelastic expansion tensor, c is the effective specific heat, s0 and u0 are the effective
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specific entropy and effective specific internal energy at the reference state. All the afore-

mentioned effective variables are determined from equation (3.31) to (3.34). T represents

the temperature at current state while T0 is the temperature at reference state.

S(ξ) = SA + ξ(SM − SA) = SA + ξ∆S (3.30)

α(ξ) = αA + ξ(αM −αA) = αA + ξ∆α (3.31)

c(ξ) = cA + ξ(cM − cA) = cA + ξ∆c (3.32)

s0(ξ) = sA0 + ξ(sM0 − sA0 ) = sA0 + ξ∆s0 (3.33)

u0(ξ) = uA0 + ξ(uM0 − uA0 ) = uA0 + ξ∆u0 (3.34)

A smooth hardening function f(ξ) is proposed in equation (4.11) to account for the

hardening effects in polycrystalline SMAs, such as the plastic strain accumulation after

the training procedure, imperfections located at the grain boundary, and nano-precipitates

hardening effects, etc.[48], where three additional intermediate material parameters a1, a2, a3

and four curve fitting parameters n1, n2, n3, n4 are introduced to better treat the smooth

transition behaviors at the initiation and completion of phase transformation.

f(ξ) =


1

2
a1

(
ξ + ξn1+1

n1+1
+ (1−ξ)n2+1

n2+1

)
+ a3ξ , ξ̇ > 0,

1

2
a2

(
ξ + ξn3+1

n3+1
+ (1−ξ)n4+1

n4+1

)
− a3ξ , ξ̇ < 0

(3.35)

following the standard Coleman-Noll procedure described in section 3.3, the explicit form

for constitutive relation (3.26) between stress and strain is derived as follows. Note that
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the nonlinearity in this constitutive relation is implied by the transformation strain htr.

h = −ρ0
∂G

∂τ
= Sτ +α(T − T0) + htr (3.36)

the explicit form for constitutive relation (3.27) between entropy s and temperature T can

also be derived as,

s = −ρ0
∂G

∂T
=

1

ρ0

τ : α+ c ln(
T

T0

) + s0 (3.37)

the reduced form of the dissipation inequality (3.28) can be rewritten in terms of the

chosen internal state variables Υ = {ξ,htr} as,

− ρ0
∂G

∂htr
: h̊tr − ρ0

∂G

∂ξ
ξ̇ > 0 (3.38)

3.3.2.2 Evolution equation of internal state variables

The evolution equation for the internal state variables Υ = {ξ,htr} is presented here.

It is proposed that the logarithmic rate of the transformation strain htr is proportional to

the rate change of the martensitic volume fraction ξ. This proportional evolution rule is

adopted by following the principle of maximum dissipation such that among all the ad-

missible thermodynamic paths, the one dissipating the most energy is chosen during the

SMAs phase transformation process [79]. The idea of maximum dissipation for inelastic

materials is not new, it was also widely employed for plastic deformed materials to derive

the associated flow rule [34]. It is worth pointing out that the rate applied on the transfor-

mation strain is the logarithmic rate rather than the conventional time rate. The explicit
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evolution rule is as follows,

h̊tr = Λξ̇, Λ =


Λfwd, ξ̇ > 0,

Λrev, ξ̇ < 0,

(3.39)

where Λfwd is called the forward transformation direction tensor and Λrev is called the

reverse transformation direction tensor. They are defined as,

Λfwd =
3

2
Hcurτ

′

τ̄
, Λrev =

ht-r

ξr . (3.40)

in which, τ′ is the deviatoric part of Kirchhoff stress tensor calculated by τ
′

= τ −
1
3
tr(τ) 1, 1 is the second order identity tensor. The effective Mises equivalent stress

is given by τ̄ =
√

3
2
τ′ : τ′ . htr-r and ξr represent the transformation strain value and

martensitic volume fraction at the reverse transformation starting point. It is common

among available SMA models that the magnitude of the inelastic recoverable transforma-

tion strain is the same for full transformation under any applied stress levels. This is true

when the stress levels is high enough to generate maximum oriented martensitic variants.

However, if the applied stress level is not sufficiently high, self-accommodated marten-

sitic variants will be generated. This renders the value of transformation strain less than it

is in the high stress level case (i.e., the stress dependency of the magnitude of the transfor-

mation strain). Therefore, an exponential function Hcur dependent on current stress levels

is introduced to calculate the current transformation strain as shown in equation (4.19),

where Hmax is the maximum (or saturated) transformation strain and kt is a curve fitting

material parameter.

Hcur(τ) = Hmax(1− e−ktτ̄) (3.41)
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3.3.2.3 Transformation function

The objective in this part is to define a proper transformation criterion to determine the

occurrence of the phase transformation. Recall the reduced form for dissipation energy

is given by inequility (3.38) and the relation between htr and ξ is defined through evolu-

tion equation (4.15). Substituting evolution equation (4.15) into reduced form dissipation

inequality (3.38), the following equation is obtained,

(τ : Λ− ρ0
∂G

∂ξ
)ξ̇ = πξ̇ > 0 (3.42)

the above equation implies that all the dissipation energy is directly a result of the change

in the martensitic volume fraction. Based upon this, a scalar variable π, called the ther-

modynamic driving force conjugated to the martensitic volume fraction ξ, can thus be

defined. Substitution of Gibbs free energy potential G in equation (3.29) into equation

(3.42) yields the explicit expression for π as follows,

π(τ, T, ξ) = τ : Λ +
1

2
τ : ∆Sτ + τ : ∆α(T − T0)− ρ0∆c

[
T − T0

−T ln(
T

T0

)
]

+ ρ0∆s0T − ρ0∆u0 −
∂f(ξ)

∂ξ

(3.43)

where ∆S,∆α,∆c,∆s0, and ∆u0 are the phase differences on compliance tensor, ther-

mal expansion tensor, specific heat, reference entropy and reference internal energy, re-

spectively. It can be observed that the thermodynamic driving force π is a function of

Kirchhoff stress τ, temperature T and martenstic volume fraction ξ. This indicates that

the phase transformation process can be activated by two independent sources, namely

either the stress or temperature, which correlates quite well with the experimentally ob-

served stress-induced and thermally-induced phase transformations in SMAs. To proceed

to the goal of defining a transformation criteria, it is assumed that whenever the thermo-
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dynamic driving force π reaches a critical value Y (−Y ), the forward (reverse) phase

transformation takes place. Therefore a transformation function Φ can be defined as the

transformation criteria to determine the transformation occurrence as follows,

Φ =


π − Y, ξ̇ > 0,

−π − Y, ξ̇ < 0,

(3.44)

In the infinitesimal strain theory based SMA model [47], a reference critical value

Y0 and an additional parameter D were introduced into Y , through which the thermody-

namical critical value Y becomes a function dependent on applied stress levels, see in

equation (3.45). Such treatment let the model consider the effect of applied stress levels

on the size of hysteresis loop. This capability is provided through capturing the different

slopes CA, CM in the effective stress-temperature phase diagram. The explicit derivation

is provided from equation (4.44) to equation (3.72) at the model calibration part in 3.5.

Y (τ) =


Y0 +Dτ : Λfwd, ξ̇ > 0,

Y0 +Dτ : Λrev, ξ̇ < 0,

(3.45)

As a consequence of the application of the principle of maximum dissipation [79], the

so-called Kuhn-Tucker constraints are placed on the proposed model, which are stated as

follows for the forward and reverse cases respectively,

ξ̇ > 0; Φ(τ, T, ξ) = π − Y 6 0; Φξ̇ = 0; (A⇒M)

ξ̇ 6 0; Φ(τ, T, ξ) = −π − Y 6 0; Φξ̇ = 0; (M⇒ A)

(3.46)
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3.3.3 Consistent tangent stiffness and thermal matrix

In this section, a detailed derivation of the consistent tangent stiffness matrix and the

thermal matrix is provided to complete the proposed model. For most typical displacement-

based finite element softwares, such as Abaqus, the consistent tangent matrices are often

required to be provided in the UMAT so that the finite element solver can achieve a fast

convergence for the global equilibrium equations. Normally, consistent tangent matri-

ces can be expressed in the rate form shown in equation (4.33), where L is called the

consistent tangent stiffness matrix and Θ is the consistent thermal matrix.

τ̊ = Lh̊ + ΘṪ (3.47)

applying the logarithmic rate on constitutive equation (4.12) yields,

τ̊ = C [̊h−αṪ − (∆Sτ + ∆α(T − T0) + Λ)ξ̇ ] (3.48)

taking chain rule differentiation on the transformation function equation (4.30) gives,

Φ̇ = ∂τΦ : τ̊ + ∂TΦṪ + ∂ξΦξ̇ = 0 (3.49)

substituting equation (4.34) back into equation (4.35) to eliminate τ̊ and solving it for ξ̇,

the following expression for ξ̇ can be obtained,

ξ̇ = − ∂τΦ : Ch̊ + (∂TΦ− ∂τΦ : Cα)Ṫ

∂ξΦ− ∂τΦ : C(∆Sτ + Λ + ∆α(T − T0))
(3.50)

substituting equation(4.36) back into the rate form constitutive equation(4.34) to eliminate

ξ̇, considering the phase difference of the thermal expansion coefficients can be ignored

for martensite and austenite phase, the final explicit expression corresponding to equation
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(4.33) can be obtained as follows,

τ̊ =
[
C+

[C(∆Sτ + Λ)]⊗ [C∂τΦ]

∂ξΦ− ∂τΦ : C(∆Sτ + Λ)

]
h̊ +

[
−Cα+

C(∆Sτ + Λ)(∂TΦ− ∂τΦ : Cα)

∂ξΦ− ∂τΦ : C(∆Sτ + Λ)

]
Ṫ

(3.51)

in which the consistent tangent stiffness matrix L is,

L = C +
[C(∆Sτ + Λ]⊗ [C∂τΦ]

∂ξΦ− ∂τΦ : C(∆Sτ + Λ)
(3.52)

and the consistent thermal matrix Θ is,

Θ = −Cα+
C(∆Sτ + Λ)(∂TΦ− ∂τΦ : Cα)

∂ξΦ− ∂τΦ : C(∆Sτ + Λ)
(3.53)

In order to fully determine the explicit values for L and Θ during the implementation

section for the proposed model, the explicit expressions of the following terms ∂τΦ, ∂ξΦ,

∂TΦ used in above equations are derived in Appendix B.

3.4 Numerical implementation

This section focuses on the implementation of the proposed model within finite ele-

ment (FE) solvers to solve boundary value problems (BVPs). The implementation flowchart

is shown in Figure 4.3. While typically stress and strain information are provided from FE

solver, the initial input information used in this model are only the temperatures Tn, ∆Tn

and deformation gradients at current step Fn and next step Fn+1. The reason for using

only these information is that other tensorial variables have been rotated by the finite ele-

ment (FE) solver before they are used as inputs, in which the rotation tensor is calculated

based on the other non-integrable objective rates. This consequently leads to the artifi-

cial stress errors described in section 3.1. During the implementation for the proposed

model, a pre-calculation and a rotation procedure are employed before calling the main
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UMAT subroutine. In the pre-calculation procedure, the logarithmic strain at current step

hn and next step hn+1 are calculated based on Fn and Fn+1. The incremental rotation

tensor ∆Rlog
n based on the logarithmic rate can be calculated by using the exponential

map scheme [90, 68, 127]. In the rotation procedure, tensorial variables including hn, htrn

and Λn are rotated from step n configuration to the new configuration at step n + 1 by

using the obtained ∆Rlog
n , thus, the so-called principle of objectivity is preserved.

Equilibrium Solver Kinematics

Global FE Solver 

Pre-Calculation

Call

Rotation Procedure

UMAT

Figure 3.1: Flowchart for the used variables in the proposed model and the UMAT inte-
gration with the global FE solver (from Figure 1 of [121], c© 2019 by IOP Publishing,
with permission of IOP Publishing, DOI:10.1088/1361-665x/ab1acb).
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The rest of implementation procedure consists of two steps, the first step is called the

thermoelastic predictor and the second step is called the transformation corrector. Dur-

ing the initialization of thermoelastic step, the total strain hn+1 and current temperature

Tn+1 = Tn + ∆Tn are provided. The initial internal state variables Υ
(0)
n+1 are assumed

to be the same as Υn for the initial Kuhn-Tucker consistency checking, i.e., Φ
(0)
n+1 6 0.

If the initial value of Φ
(0)
n+1 satisfies the consistency checking, the n+1 step is detected as

a thermoelastic response and the UMAT returns to global FE solver for next increment.

In case of consistency condition violated, the second step called the transformation cor-

rector is activated to find the updated internal state variables Υ
(k)
n+1 in order to regain the

Kuhn-Tucker consistency. A detailed summary for the implementation procedure is listed

in the table 3.1.

3.4.1 Thermoelastic prediction

Take the (n + 1)th step as an example to go through the thermoelastic prediction

process. The total strain tensor hn+1 and the temperature Tn+1 are provided from Pre-

Calculation procedure, and the initial internal state variables Υ
(0)
n+1 are assumed the same

as Υn,

h
tr(0)
n+1 = htrn ; ξ

(0)
n+1 = ξn (3.54)

Based on equation (4.45), the initial guess for Kirchhoff stress τ
(0)
n+1 can be calcu-

lated through the constitutive equation (4.46). Here the integer in the upper parenthesis

represents that how many iterations have been done during the transformation correction

procedure, and integer zero means that this step is just an initial guess in the thermoelastic

procedure. The initial calculation for stress τ(0)
n+1 can be obtained,

τ
(0)
n+1 = Cn

[
hn+1 − h

tr(0)
n+1 −α

(0)
n+1(Tn+1 − T0)

]
(3.55)
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Table 3.1: The implementation procedure for the proposed finite strain SMA model,
reprinted with permission from [121].

1.Initialization

• Conduct pre-calculation and rotation procedures.

• k = 0; ξ
(0)
n+1 = ξn;h

tr(0)
n+1 = htrn ;

2.Thermoelastic Predictor

• τ
(0)
n+1 = C(0)

n+1[hn+1 − htr(0)
n+1 −α(Tn+1 − T0)]

• Calculate Φ
(k)
n+1.

• IF Φ
(0)
n+1 6 tol, GOTO 4 (thermoelastic response).

• IF Φ
(0)
n+1 > tol, GOTO 3 (transformation happens).

3.Transformation Corrector
• Calculate residual matrix

R
tr(k)
n+1 = −htr(k)

n+1 + htrn + Λ
(k)
n+1(ξ

(k)
n+1 − ξn)

Φ
(k)
n+1 = Φ(τ

(k)
n+1, Tn+1, ξ

(k)
n+1)

• Perform the Newton-Raphson iterations in equation (4.52).

• Update variables ξ(k+1)
n+1 ,h

tr(k+1)
n+1 ,S(k+1)

n+1

ξ
(k+1)
n+1 = ξ

(k)
n+1 + ∆ξ

(k+1)
n+1

h
tr(k+1)
n+1 = h

tr(k)
n+1 + ∆h

tr(k+1)
n+1

S(k+1)
n+1 = SA + ξ

(k+1)
n+1 ∆S

• IF Φ
(k+1)
n+1 > tol, GOTO step 3 for the next local iteration, k = k + 1.

ELSE GOTO step 4

4.Calculate consistent stiffness matrix L and thermal matrix Θ.

• L = C +
[C(∆Sτ + Λ]⊗ [C∂τΦ]

∂ξΦ− ∂τΦ : C(∆Sτ + Λ)

• Θ = −Cα+
C(∆Sτ + Λ)(∂TΦ− ∂τΦ : Cα)

∂ξΦ− ∂τΦ : C(∆Sτ + Λ)

5.Exit UMAT and proceed to the global FE solver for the next increment
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After the calculation of τ(0)
n+1, the value of transformation function Φ

(0)
n+1 can be evalu-

ated based on equations (4.29) and (4.30) for the initial Kuhn-Tucker consistency check-

ing,

Φ
(0)
n+1 = Φ(τ

(0)
n+1, Tn+1,Υ

(0)
n+1) (3.56)

If the calculated value of transformation function Φ
(0)
n+1 remains under the transforma-

tion surface (i.e., Φ
(0)
n+1 6 ’tol’, ’tol’ is usually set to be 10−6), step n+1 is detected as

a thermoelastic response. Therefore the values of current state variables τ(0)
n+1 and Υ

(0)
n+1

are accepted as correct and the UMAT proceeds to the global FE solver for the next incre-

ment. In case the transformation surface is violated (i.e. Φ
(0)
n+1 > tol), the transformation

corrector step is activated to find the updated state variables until the consistency equation

(4.32) is preserved.

3.4.2 Transformation correction

This part addresses the iterative procedures required for the transformation correc-

tor to restore the Kuhn-Tucker consistency. In general, the transformation corrector is

nothing but a set of Newton-Raphson iterations on equations (4.49) and (4.50) to find the

updated internal state variables. Take the kth local iteration for example, the corrector is

activated to find a set of Υ
(k)
n+1 which makes the residual terms R

tr(k)
n+1 in equation (4.49)

and transformation function Φ
(k)
n+1 in equation (4.50) less than ’tol’.

R
tr(k)
n+1 = −h

tr(k)
n+1 + htrn + Λ

(k)
n+1(ξ

(k)
n+1 − ξn) (3.57)

Φ
(k)
n+1 = Φ(τ

(k)
n+1, Tn+1, ξ

(k)
n+1) (3.58)

This objective is equivalent to the following convergence conditions,

|ξ(k+1)
n+1 − ξ

(k)
n+1| 6 tol ; |htr(k+1)

n+1 − h
tr(k)
n+1 | 6 tol (3.59)
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Use the standard Newton-Raphson procedure 2 to solve equations (4.49) and (4.50),


∆ξ

(k+1)
n+1

∆h
tr(k+1)
n+1


= −



∂Φ
(k)
n+1

∂ξ

∂Φ
(k)
n+1

∂htr

∂R
tr(k)
n+1

∂ξ

∂R
tr(k)
n+1

∂htr



−1 
Φ

(k)
n+1

R
tr(k)
n+1


(3.60)

The following results on internal state variables at (k+ 1)th iteration can be obtained,


ξ

(k+1)
n+1

h
tr(k+1)
n+1


=


ξ

(k)
n+1

h
tr(k)
n+1


+


∆ξ

(k+1)
n+1

∆h
tr(k+1)
n+1


(3.61)

Once the converged values of {htr(k+1)
n+1 , ξ

(k+1)
n+1 } are found, the current transformation

corrector step is labeled as finished and the UMAT proceeds to the next increment. Oth-

erwise the Newton-Raphson procedure exits at this step after certain number of iterations

and the current finite element increment step stops.

3.5 Calibration of the material parameters

In this section, the material parameters utilized in the proposed model are identified

from a set of one-dimensional experimental data. Note that the strain measure used here

should be in the true (or logarithmic) scale rather than the engineering (or infinitesimal)

2The explicit expression for the Jacobian matrix during this Newton-Raphson iteration in equation
(4.52) is quite complicated. The symbolic calculation tool in MATLAB is used here to find the Jacobian
matrix, and the authors suggest interested readers to utilize this method to perform the tedious calculation.
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scale. Material parameters used in the proposed model can be categorized into three

groups, i.e. the key material parameters, smooth hardening parameters and intermedi-

ate parameters. First, the material constants such as elastic modulus EA, EM , Poisson’s

ratios νA and νB, the thermal expansion tensors αA and αM , stress influenced coeffi-

cients CA and CM from the phase diagram (or called clausius clapeyron coefficient),

critical phase transformation temperatures As, Af ,Ms,Mf at stress free state are deter-

mined. Secondly, the hardening parameters describing the smooth transition feature are

discussed. Finally, the intermediate parameters are derived based on the aforementioned

two parameter groups. All the material parameters used in this model are summarized in

table 3.2.

Because the data is provided in one-dimensional case, all tensorial variables of the

proposed model have to be reduced into 1-D scalar value. For example, the stress tensor

is reduced as τ → τ11 = τ; logarithmic strain tensor is reduced as h → h11 = h, etc.

Constitutive equation (4.12) can be rewritten as one dimensional form as follows,

τ = E[h− α(T − T0)− htr] (3.62)

where the effective elastic modulusE is calculated by using the rule of mixture as follows,

E = [1/EA + ξ(1/EM − 1/EA)] (3.63)

The evolution equation (4.15) is also reduced in one-dimensional form as,

Λ = Λ11 =


Hcur(σ) sgn(τ) ; ξ̇ > 0,

ht−r

ξr
; ξ̇ < 0,

(3.64)
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the thermodynamic driving force π in one-dimensional case can thus be obtained,

π = τΛ +
1

2
∆Sτ2 + τ∆α(T − T0) + ρ0∆s0T − ρ0∆c

[
T − T0 − T ln(

T

T0

)
]

−ρ∆u0 −
∂f

∂ξ

(3.65)

the transformation function in one-dimensional form can be calculated based on equation

(3.65). Considering the phase difference for the thermal expansion ∆α and specific heat

∆c are small enough to be ignored, the following transformation functions for the forward

case and the reverse case can be obtained respectively,

Φfwd(τ, T, ξ) =
[
τΛ +

1

2
∆Sτ2 + ρ0∆s0T − ρ0∆u0 −

∂f

∂ξ

]
− Y = 0 (3.66)

Φrev(τ, T, ξ) = −
[
τΛ +

1

2
∆Sτ2 + ρ0∆s0T − ρ0∆u0 −

∂f

∂ξ

]
− Y = 0 (3.67)

As described in the first paragraph of this section, there are three sets of material pa-

rameters that need to be identified. First, material constants (EA, EM , νA, νM , αA, αM)

are considered. Elastic modulusEA, EM can be determined through a pseudoelastic stress

and strain curve by calculating the slopes at martensitic phase and austenite phase. Pois-

son’s ratio is attained using a widely accepted value of νA = νM = 0.33 found in [47].

The thermal expansion coefficient are usually considered as αA = αM , which can be

calibrated through an isobaric actuation experiment. The maximum transformation strain

Hmax can be determined from the pseudoelastic experimental and the value of parameter

kt are chosen to best fit the Hcur curve. The stress influence coefficients and the critical

phase transformation temperatures (CA, CM ,Ms,Mf , As, Af ) can be calibrated through

the phase diagram. Second, the material parameters related to the smooth hardening fea-

tures are discussed. The Coefficients (n1, n2, n3, n4) without specific physical meanings

are determined to best match the smoothness in corners of material response. Lastly, there
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are seven intermediate material parameters (ρ0∆s0, ρ0∆u0, a1, a2, a3, Y0, D) that need to

be calculated to complete the model. Determination of such intermediate parameters re-

quires a set of seven algebraic equations. The needed four equations come from transfor-

mation constraints as the Kuhn-Tucker condition Equation.4.32 (i.e. Φrev(τ, T, ξ) = 0).

The fifth equation comes from the continuity of Gibbs free energy at the end of the for-

ward transformation (ξ = 1). The needed five algebraic equations are summarized as

follows, The above five algebraic equations yield the following expression for the five out

of seven intermediate model parameters,

a1 = ρ0∆s0(Mf −Ms); a2 = ρ0∆s0(As − Af )

a3 =
1

4
a2(1 +

1

n3 + 1
)− 1

4
a1(1 +

1

n1 + 1
)

ρ0∆u0 =
1

2
ρ∆s0(Ms + Af )

Y0 =
1

2
ρ0∆s0(Ms − Af )− a3

(3.68)

Another two equations are derived from the Kuhn-Tucker condition in order to complete

the calculation. For a one-dimensional uniaxial experiment, the Kuhn-Tucker condition

(4.32) requires equation (3.69) to hold true at any specific stress level τ∗,

dΦ = ∂τΦ dτ + ∂TΦ dT + ∂ξΦ dξ = 0 (3.69)

Evaluate dΦ at the start point of the forward phase transformation (i.e. ξ = 0), and at

the finish point of the forward phase transformation (i.e. ξ = 1), the incremental part of

martensitic volume fraction should be zero (i.e. dξ = 0) in both of the aforementioned

cases. Therefore, the relationships between the stress temperature coefficients CM , CA

and the stress temperature slopes dτ
dT can be obtained.
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For the forward transformation case, ξ̇ > 0,

CM =
dτ
dT

∣∣∣
τ∗,ξ̇>0

=
−ρ∆s0

Λ + τ : ∂τΛ + ∆Sτ− ∂τY

∣∣∣
τ∗

(3.70)

For the reverse transformation case, ξ̇ < 0

CA =
dτ
dT

∣∣∣
τ∗,ξ̇<0

=
−ρ∆s0

Λ + τ : ∂τΛ + ∆Sτ + ∂τY

∣∣∣
τ∗

(3.71)

Using the equations (3.70) and (3.71), the rest two intermediate material parameters

ρ0∆s0 and D can thus be expressed as follows,

D =
(CM − CA)

[
Hcur + τ∂τH

cur + τ∆S
]

(CM + CA)(Hcur + τ∂τHcur)
(3.72)

ρ0∆s0 = −
2CMCA

[
Hcur + τ∂τH

cur + τ∆S
]

CM + CA
(3.73)

3.6 Numerical results

In this section, the proposed model is used to predict the stress/thermally-induced

phase transformations in SMAs subjected to general three-dimensional thermo-mechanical

loading. Several numerical examples are presented here to test the capabilities of this

model to account for large strains and rotations, and also to resolve the artificial stress

errors issue. First, a parametric analysis on a uniaxial SMA bar is studied to show that the

proposed model is able to consider the geometry nonlinearity induced by large strains.

Second, two BVPs, i.e., an SMA beam and an SMA torque tube subjected to stress-

induced phase transformations, are tested as large rotation cases. To show the model is

able to resolve the artificial stress errors issue, the cyclic response of the beam and the

torque tube are obtained via the proposed model, and the results are compared against
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the predictions obtained by the Abaqus nonlinear solver3. Next, an isobaric BVP of

an SMA torque tube subjected to varying thermal loading is investigated to predict the

thermally-induced phase transformation. In the end, to show the model is able to cap-

ture the non-proportional local stress and strain evolutions, a 3-D solid flexible structure

undergoing a self-expanding process is studied. The proposed model is anticipated to be

further validated against experimental data of NiTi and NiTiHf SMAs under uniaxial and

other non-uniform loading conditions. The ultimate objective is to validate the capability

of the proposed model to predict the response of SMA-based actuators, such as SMA

beams and torque tubes, which are intended to be integrated with the future supersonic

transport aircrafts to realize the morphing capabilities to reduce the sonic boom noise.

3.6.1 SMA bar under isothermal loading

To test the capability of the proposed model to account for the effects of large strain,

an SMA prismatic bar is studied under uniaxial isothermal loading condition. A para-

metric study is performed with the maximum transformation strain Hmax = 3%, 5%, 8%

to represent three different loading cases. A group of representative material parameters

(two material parameter groups combined) used in this example are listed in table 3.2

referenced from [48, 47]. The SMA prismatic bar has a length L = 100 (mm) and an

square cross section with an edge length a = 10 (mm). It is subjected to a proportional

force loading up to 120 (kN) then unloading to 0 (kN), the temperature is kept constant

at 380K throughout the process. Generally, the load-displacement curves provided from

such uniaxial experiments are interpreted into the engineering scale stress-strain curves to

facilitate the model calibration. However, when the materials experience a strain that is no

longer considered small, the geometry nonlinearity due to such strain has to be taken into

3As the nonlinear solver is activated for implicit analysis (i.e., select NLGEOM on), Abaqus automati-
cally use the logarithmic strain as its strain measure, and the Jaumman rate is the utilized objective rate to
account for the large rotation[1].
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consideration. To demonstrate that the proposed model accounts for this, the calibrated

values of elastic modulus (EA, EM ) and maximum transformation strain (Hmax) based on

the true stress-strain curve are compared against the values from its infinitesimal coun-

terpart. Three sets of load-displacement curves are generated shown in Figure 3.2. They

are interpreted into stress-strain curves in two scales, i.e, the true stress (Cauchy stress)

versus the true strain (logarithmic strain) curve and the engineering stress (nominal stress)

versus engineering strain (infinitesimal strain) curve. By using the calibration procedure

described in 3.5, the calibrated values of EA, EM and Hmax summarized in table 3.3.

Table 3.3 shows that the values ofEA are identical in both the two scales. However, the

values of EM in engineering scale change from 35.48 GPa to 32.05 GPa, which indicates

a material softening. Actually, such material softning is not real. Instead, it is the effect of

disregarding the geometric nonlinearity induced by large strain as described previously. In

this case, the geometric nonlinearity means that the bar needs to contract its cross section

to compensate for its elongation to preserve the volume conservation. Disregarding the

change of cross section results in an unreal decreasing on the values of EM . By doing

the calibration based on the true stress-strain curve instead of the engineering one, the

proposed model is able to exclude the geometry nonlinearity induced by large strain, so

that the calibrated values of EM remain the same in the three loading cases from true

scale. Besides, The values of Hmax are also worth to be noted. Although Hmax shows

different values in the two scales, a relationship exists between the true scale Hmax and

the engineering scale Hmax
eng , i.e., Hmax = ln(1 + Hmax

eng ). Based on the results from

this parametric study, it is shown that the infinitesimal strain assumption may no longer

be considered as an accurate approximation when the strain regime is beyond 3%. In

order to account for the effects caused by large strain, a finite strain model to consider the

geometry nonlinearity is required even in a uniaxial case.
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Table 3.2: A set of representative material parameters used in the parametric study for the
comparison of infinitesimal and fintie strain model, adapted from [48, 47].

Type Parameter Value Parameter Value

EA 60 [GPa] CA 8 [MPa/K]
EM 40 [GPa] CM 6 [MPa/K]

Key material parameters νA = νM 0.3 Ms 333 [K]
12 αA = αM 1.0×10−5 [K−1] Mf 220 [K]

Hmax 3%, 5%, 8% As 274 [K]
kt 0.02 Af 370 [K]

Smooth hardening parameters n1 0.5 n3 0.5
4 n2 0.5 n4 0.5

Table 3.3: Elastic modulus and transformation strain calibrated based on engineering and
true scale stress-strain curves, reprinted with permission from [121].

Engineering scale Case 1 Case 2 Case 3 True scale Case 1 Case 2 Case 3

EA [GPa] 60.00 60.00 60.00 EA [GPa] 60.00 60.00 60.00

EM [GPa] 35.48 34.06 32.05 EM [GPa] 40.00 40.00 40.00

Hmax
eng 3.04% 5.13% 8.33% Hmax 3.00% 5.00% 8.00%

3.6.2 SMA beam under isothermal loading

The second BVP considered here is an SMA beam subjected to isothermal loading

shown in Figure 3.4. The SMA beam component has been investigated as bending ac-

tuators in [33] to realize a morphing variable-geometry chevron in order to change the

outer engine shell shape to achieve specific aerodynamic characteristics. While only one

loading cycle was considered in the previous study, this example examines the cyclic ma-

terial and structural response. The studied beam has the same geometry as the SMA bar

in section 3.6.1. Refer to Figure 3.4, the beam is simply supported with one node being

fixed to suppress the rigid body motion, and the upper face is subjected to a traction that
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Figure 3.2: Three sets of load-displacement curves used for the calibration of ma-
terial parameters for infinitesimal model and the proposed finite strain model (from
Figure 2 of [121], c© 2019 by IOP Publishing, with permission of IOP Publishing,
DOI:10.1088/1361-665x/ab1acb).

ramps up to 24 (MPa) then decreases to 0 (MPa). Temperature is kept constant at 380K

throughout the whole numerical experiment. Material parameters used in this simulation

are summarized in table 3.4. The cyclic material and structural response are obtained by

the proposed model for a material point p (in Figure 3.4) located at the middle bottom

position, and are compared against the results obtained from the Abaqus nonlinear solver.
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Figure 3.3: Three sets of load-displacement curves are interpreted into the engineering
scale stress-strain curve for the calibration of infinitesimal model, and the true stress-
strain curve for the calibration of proposed model. Engineering scale is denoted by Eng.
and true scale is denoted by True (from Figure 2 of [121], c© 2019 by IOP Publishing,
with permission of IOP Publishing, DOI:10.1088/1361-665x/ab1acb).

Table 3.4: Calibrated material parameters for equiatomic NiTi SMA, adapted from [47].

Type Parameter Value Parameter Value

EA 60 [GPa] CA 7.8 [MPa/K]
EM 60 [GPa] CM 7.3 [MPa/K]

Key material parameters νA = νM 0.3 Ms 333 [K]
12 αA = αM 1.0×10−5 [K−1] Mf 220 [K]

Hmax 4.7% As 274 [K]
kt 0.021 Af 370 [K]

Smooth hardening parameters n1 0.5 n3 0.5
4 n2 0.5 n4 0.5
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Figure 3.4: Schematic for the SMA beam subjected to isothermal bending load condition
at constant temperature 306 K (from Figure 3 of [121], c© 2019 by IOP Publishing, with
permission of IOP Publishing, DOI:10.1088/1361-665x/ab1acb).

Figure 3.5 and Figure 3.6 show the obtained cyclic longitudinal stress-strain curve for

material point p under tension. As shown in Figure 3.5, the proposed model provided a

stable material response, while the Abaqus nonlinear solver predicted a shifting, instead of

stable, response shown in Figure 3.6. The observation from these results indicate that the

spurious material response is obtained due to the usage of non-integrable objective rates

in Abaqus as discussed in the introduction. Although the initial several loading cycles

are almost the same in the results provided by Abaqus nonlinear solver, the accumulation

of artificially introduced stress errors, around -2 MPa for each cycle, gradually drifts the

material response left downwards throughout the 100 loading cycles. In total, -200 MPa

stress residuals together with -0.6% remnant strains are observed at the end. Such stress

errors consist of almost 18% of the maximum stress levels experienced by material point

p. As a comparison, Figure 3.7 and Figure 3.8 shows 100 stress-strain curves for another

material point subjected to compression at the middle of beam upper surface. The result

shows an opposite shifting trend in contrast to the results of point p. Again, a stable

compressive stress-strain curve are predicted by the proposed model while the Abaqus
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nonlinear solver predicts a shifting one. In addition, Figure 3.9 and Figure 3.10 shows

the obtained cyclic load-displacement curves for point p. It can be seen that the proposed

model predicted a stable structural response while the Abaqus nonlinear solver predicted

a shifting structural response. Based on these results, it is demonstrated that the Abaqus

nonlinear solver can no longer produce reliable results for the SMA beam subjected to

100 bending cycles. Therefore, the proposed model with the capability to eliminate the

stress errors is required for the SMA beam subjected to cyclic loading.
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Figure 3.5: The cyclic shear stress-strain response predicted by the proposed model for a
bottom surface point under isothermal loading condition (from Figure 4 of [121], c© 2019
by IOP Publishing, with permission of IOP Publishing, DOI:10.1088/1361-665x/ab1acb).
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Figure 3.6: The cyclic shear stress-strain response predicted by the infinitesimal strain
model using Abaqus nonlinear geometry option on for a bottom surface point under
isothermal loading condition (from Figure 4 of [121], c© 2019 by IOP Publishing, with
permission of IOP Publishing, DOI:10.1088/1361-665x/ab1acb).
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Figure 3.7: The cyclic stress-strain response predicted by the proposed model for an upper
surface point under isothermal loading condition (from Figure 5 of [121], c© 2019 by IOP
Publishing, with permission of IOP Publishing, DOI:10.1088/1361-665x/ab1acb).
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Figure 3.8: The cyclic stress-strain response predicted by the infinitesimal strain model
using Abaqus nonlinear solver for an upper surface point under isothermal loading con-
dition (from Figure 5 of [121], c© 2019 by IOP Publishing, with permission of IOP Pub-
lishing, DOI:10.1088/1361-665x/ab1acb).
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Figure 3.9: The cyclic load-displacement response predicted by the proposed model for
an SMA beam under isothermal loading condition (from Figure 6 of [121], c© 2019 by
IOP Publishing, with permission of IOP Publishing, DOI:10.1088/1361-665x/ab1acb).
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Figure 3.10: The cyclic load-displacement response predicted by the infinitesimal strain
model using Abaqus nonlinear solver for an SMA beam under isothermal loading condi-
tion (from Figure 6 of [121], c© 2019 by IOP Publishing, with permission of IOP Pub-
lishing, DOI:10.1088/1361-665x/ab1acb).

3.6.3 SMA tube under isothermal loading

In this subsection, the BVP of a three-dimensional SMA torque tube under torsion

loading is studied. Refer to Figure 3.11(a), the tube has an inner radius r = 3.0(mm)

and thickness t/r = 0.1. In order to reduce the computational cost, a representative tube

segment L/r = 2/3 is analyzed here. Boundary conditions are depicted in Figure 3.11(b),

the tube left face is fixed and the right face is subjected to a torsion loading. The torque

proportionally increases to 25 (N·m) then unloads to 0 (N·m), the temperature is kept

constant at 380 K. The torque tube undergoes a fully forward phase transformation from

austenitic phase to martensitic phase followed by a reverse phase transformation from

martensitic phase to austenitic phase. The material parameters used in this simulation are

from table 3.4.
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Figure 3.11: Schematic for the cylindrical SMA torque tube subjected to isothermal tor-
sion loading (from Figure 7 of [121], c© 2019 by IOP Publishing, with permission of IOP
Publishing, DOI:10.1088/1361-665x/ab1acb).
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Figure 3.12: Mises stress residuals accumulated after one loading cycle for the torque tube
predicted by the proposed model and the Abaqus nonlinear solver (from Figure 7 of [121],
c© 2019 by IOP Publishing, with permission of IOP Publishing, DOI:10.1088/1361-

665x/ab1acb).
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The cyclic shear stress-strain response of a material point from the tube outer surface

at the right end is predicted by the proposed model and Abaqus nonlinear solver. As

shown in Figure 3.14, similar to the results observed in the SMA beam case, a shifting

response is predicted by the Abaqus nonlinear solver due to the accumulation of shear

stress errors. In contrast, a stable response is predicted by the proposed model shown

in Figure 3.13. More specifically, Figure 3.12 shows the magnitude of stress residual

accumulated after one loading cycle. The value of Mises stress residual predicted by

the proposed model is almost zero compared to a value around 4 MPa predicted by the

Abaqus nonlinear solver. As a result of the accumulation of such shear stress errors, the

shear stress levels required to start the forward phase transformation spuriously decreases

in the case of Abaqus nonlinear solver shown in Figure 3.14. Besides, the maximum shear

stress levels at the end of forward transformation increases, and the shape of hysteresis

loop also changes. The cyclic structural response of the torque tube is also provided in

Figure 3.15 and Figure 3.16 by plotting the applied torque versus the twist angle θz. It

can be seen that a stable structural response is predicted by the proposed model shown in

Figure 3.15 compared to a shifting structural response predicted by the Abaqus nonlinear

solver shown in Figure 3.16. From the observation on these results, it is seen that the

Abaqus nonlinear solver is not able to predict reliable results for the SMA torque tube

subjected to 100 shearing cycles any more. Thus, the proposed model that can resolve the

shear stress errors is required for the SMA torque tube subjected to cyclic torsion loading.
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Figure 3.13: The cyclic shear tress-strain response predicted by the proposed model for
an SMA tube under isothermal loading condition (from Figure 9 of [121], c© 2019 by
IOP Publishing, with permission of IOP Publishing, DOI:10.1088/1361-665x/ab1acb).
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Figure 3.14: The cyclic shear tress-strain response predicted by the infinitesimal strain
model using Abaqus nonlinear solver for an SMA tube under isothermal loading condition
(from Figure 9 of [121], c© 2019 by IOP Publishing, with permission of IOP Publishing,
DOI:10.1088/1361-665x/ab1acb).
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Figure 3.15: The cyclic load-displacement curve predicted by the proposed model for an
SMA tube under isothermal condition (from Figure 10 of [121], c© 2019 by IOP Publish-
ing, with permission of IOP Publishing, DOI:10.1088/1361-665x/ab1acb).
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Figure 3.16: The cyclic load-displacement curve predicted by the infinitesimal strain
model using Abaqus nonlinear geometry option on for an SMA tube under isothermal
condition (from Figure 10 of [121], c© 2019 by IOP Publishing, with permission of IOP
Publishing, DOI:10.1088/1361-665x/ab1acb).
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3.6.4 SMA tube under isobaric loading

In order to test the capability of the proposed model to predict the thermally-induced

phase transformation in SMAs, a three-dimensional cylindrical SMA tube is studied under

cyclic isobaric torsional loading, i.e., subjected to a constant torsion load with tempera-

ture variation cycles. The SMA torque tubes has been investigated as rotational actuators

to realize a morphing wing during the plane take-off and cruise regime [86, 62, 16, 38].

The design and optimization of such SMA-based morphing structure requires a thorough

understanding on the response of SMA torque tubes subjected to cyclic isobaric loading.

To that end, the SMA tube component is analyzed under cyclic isobaric loading condi-

tions. The model has the same geometry and material information as the tube simulation

in section 3.6.3. The loading condition is as follows, a 3 N·m torque load is applied to

the tube right end and the temperature varies between 250 K and 390 K for 100 cycles.

Cyclic shear strain-temperature and θz-temperature curves are obtained via the proposed

model and the Abaqus nonlinear solver. As found in the previous examples, the artificial

stress residuals caused by other non-objective rates, i.e., Jaumman rate used in Abaqus

nonlinear solver, builds up during the cyclic loading, which in return causes a shifting

material and structural response. To demonstrate the effectiveness of the proposed model

to eliminate the artificial stress residuals,
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Figure 3.17: The cyclic temperature-shear strain curve predicted by the proposed model
for an SMA tube under constant torsion loading condition (from Figure 11 of [121],
c© 2019 by IOP Publishing, with permission of IOP Publishing, DOI:10.1088/1361-

665x/ab1acb).
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Figure 3.18: The cyclic temperature-shear strain curve predicted by the infinitesimal
strain model using Abaqus nonlinear solver for an SMA tube under constant torsion load-
ing condition (from Figure 11 of [121], c© 2019 by IOP Publishing, with permission of
IOP Publishing, DOI:10.1088/1361-665x/ab1acb).
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Figure 3.19: The cyclic temperature-θz curve predicted by the proposed model for an
SMA tube under constant torsion loading condition (from Figure 12 of [121], c© 2019 by
IOP Publishing, with permission of IOP Publishing, DOI:10.1088/1361-665x/ab1acb).
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Figure 3.20: The cyclic temperature-θz curve predicted by the infinitesimal strain model
using Abaqus nonlinear solver for an SMA tube under constant torsion loading condition
(from Figure 12 of [121], c© 2019 by IOP Publishing, with permission of IOP Publishing,
DOI:10.1088/1361-665x/ab1acb).
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As it is shown in Figure 3.17, a stable cyclic shear strain-temperature response for the

tube is predicted by the proposed model. In contrast, a shifting cyclic strain-temperature

response is predicted by using the Abaqus nonlinear solver shown in Figure 3.18. More

specifically, it can be seen that the isobaric response drifts downwards at T = 240 K and is

lifted up at T = 390 K from cycle to cycle due to the stress error accumulation. Similar to

the observation on the strain-temperature response, the cyclic θz-temperature response is

stable in the case of proposed model, and it is a shifting response predicted by the Abaqus

nonlinear solver. The comparison on θz-temperature response is plotted in Figure 3.19

and Figure 3.20. Based upon the analysis of SMA tube subjected to thermal loading

cycles, it is shown that the accumulated stress errors from Abaqus nonlinear solver result

in an shifting cyclic isobaric response, and such artificial stress errors can be eliminated

by using the proposed model.

Table 3.5: Calibrated material parameters for NiTi (50.8 at.% Ni), adapted from [47].

Type Parameter Value Parameter4 Value

EA 32.5 [GPa] CA 3.5 [MPa/K]
EM 23.0 [GPa] CM 3.5 [MPa/K]

Key material parameters νA = νM 0.3 Ms 264 [K]
12 αA = αM 2.2×10−5 [K−1] Mf 160 [K]

Hmax 3.3% As 217 [K]
kt N/A Af 290 [K]

Smooth hardening parameters n1 0.17 n3 0.25
4 n2 0.27 n4 0.35

4The values of transformation temperatures (Ms,Mf , As, Af ) are referenced from [65] in order to
realize the self-expanding process within human body environment, the rest of values of the material pa-
rameters are taken from [47] as they are not provided from [65].
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Figure 3.21: The expanded and crimped shapes, loading path, von Mises stress distri-
bution and martensitic volume fraction contour of the SMA flexible structure during the
self-expanding analysis (from Figure 13 of [121], c© 2019 by IOP Publishing, with per-
mission of IOP Publishing, DOI:10.1088/1361-665x/ab1acb).

3.6.5 3-D analysis of a flexible SMA structure

In this section, a 3-D solid SMA flexible structure is studied to demonstrate that the

proposed model can be used as a 3-D structural design tool. This SMA flexible struc-
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ture can be used as a stent to provide a less invasive method for administering support

to diseased arteries, veins or other vessels in the human body. They are crimped into a

smaller shape outside the body then inserted into the diseased artery. After being deliv-

ered into the desired position, the flexible structure expands automatically by using the

phase transformation of SMAs [42]. The loading path of this self-expanding structure can

be described with three steps, i.e., 1) The flexure is firstly crimped outside the body by

external constraints and attached to a constraint container device called catheter or can-

nula. 2) The flexure is inserted into the body while the temperature increases from the

room temperature to the body temperature. 3) The structure recovers its original shape

when the constraint is removed [95, 44, 61]. Although there are analysis for similar type

of flexible structure by other researchers [2, 32], among which only a small unit cell of the

structure is analyzed. Here a full scale 3-D SMA flexible structure designed for repairing

aortic dissection [42, 41] is studied to provide the global response of the structure during

the self-expanding process. The structure is 32 (mm) long, 25.4 (mm) in outer diameter

with 4 struts and 0.5 (mm) thick in radial direction. Due to the curvature of the structure

strut, the SMA flexure experiences large rotation and stress concentrations around the

hinge part, which in return results in a complex local non-proportional stress and strain

evolutions at the hinge. The loading path of this analysis is indicated by the red curve in

Figure 3.21(b). The material parameters used in this simulation are from table 3.5.

The expanded and crimped shapes of the SMA flexure during the analysis are shown

in Figure 3.21(a). As illustrated in Figure 3.21(c), stress concentration due to the strut

curved part is observed. The von Mises contour indicates that a local non-proportional

stress field is evolved at the hinge location during the crimping process. As shown in

Figure 3.21(d), while the straight strut part is still in austenitic phase, the stress-induced

martensitic phase transformation is activated by the stress concentration at the hinge loca-

tion subjected to bending. The martensitic volume fraction contour for the flexure during
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the crimping process is shown in Figure 3.21(d). The global structural response of the

SMA flexure for a material point P (see Figure 3.21(c)) is provided in terms of a 3-D

stress-temperature-displacement curve in Figure3.21(b), in which the red curve indicates

the actual response while the blue curve is the projection of blue curve on the stress-radial

reduction ratio plane. This well captured non-proportional stress evolution and marten-

sitic phase transformation in this example demonstrates that the proposed model can be

used as an efficient tool for the 3-D analysis and design of complex SMA-based structures.

3.7 Concluding remarks

Based on the SMA model proposed by Lagoudas and coworkers for small deformation

analysis, a three-dimensional constitutive model for martensitic transformation in poly-

crystalline SMAs accounting for large deformation has been proposed in this work. Three

important characteristics in SMA reponse are considered, i.e., the smooth transition dur-

ing the phase transformation, the stress dependent transformation strain to account for the

coexistence of oriented/self-accommodated martensitic variants, and a stress dependent

critical driving force to consider the effect of applied stress levels on the size of hysteresis

loop. The proposed model is formulated based on the finite deformation framework that

utilizes logarithmic strain and rate such that it not only accounts for the large strains and

rotations that an SMA component may undertake, but also resolves the artificial stress er-

rors that are caused by using other non-integrable objective rates. The proposed model is

able to predict the stress-induced and thermally induced phase transformations in SMAs

under general three-dimensional thermomechanical loading. In particular, it was shown

in the example of an SMA bar that the proposed model accounts for the geometry non-

linearity induced by large strains, so that it corrects the spurious material softening in

the results from its infinitesimal counterpart. In the numerical examples of an SMA

beam and an SMA torque tube, it was demonstrated that the proposed model captures
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the large rotations that SMA-based components may undertake. By comparing the pre-

dicted cyclic response to the results obtained through the Abaqus nonlinear solver, the

proposed model demonstrated that it effectively resolves the artificial stress errors. In the

end, a 3-D solid flexible structure experiencing local, non-proportional stress and strain

evolution was analyzed by the proposed model, which shows the proposed model can be

used as an efficient tool for the 3-D analysis and design of complex SMA-based struc-

tures. The detailed formulation of the proposed model and its implementation procedures

make it readily used by other researchers. The model can be further extended to incorpo-

rate additional nonlinear phenomena exhibited by SMAs, such as transformation-induced

plasticity, viscoplasticity, and damage evolution.
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4. FINITE STRAIN CONSTITUTIVE MODELING OF SHAPE MEMORY ALLOYS

CONSIDERING MULTIAXIAL TRANSFORMATION-INDUCED PLASTICITY

EVOLUTION AND TWO-WAY SHAPE MEMORY EFFECT

4.1 Introduction

Shape memory alloys (SMAs) represent an active/smart material with the ability to

recover their pre-defined shape via a diffusionless phase transformation between its high-

symmetry, high-temperature austenitic phase and its low-symmetry, low-temperature marten-

sitic phase. Due to the high output energy density of SMAs compared to other active ma-

terials such as shape memory polymers and piezoelectrics, up to 500 MPa actuation stress

and 8% recoverable strain [72], their current and potential applications in the biomedical,

aerospace, automobile and civil engineering fields are expanding rapidly [33, 40, 75, 92].

SMAs have been extensively researched as solid-state actuators to enable adaptive and

morphing structures. For examples, an SMA-based beam component has been used as a

bending actuator to morph the engine outer shell geometry so that desired aerodynamic

conditions can be achieved during the airplane take-off and cruise regime [33]. SMA-

based torque tubes have been used as rotation actuators to deploy and retract solar panels

for small satellites [108], and also used as rotational actuators to rotate the trailing edge

wing flap during an airplane on-fly test [62, 16].

The majority of engineering applications require SMAs experiencing a large number

of loading cycles involving repeated phase transformations, which brings the increasing

necessity to understand the material response of SMAs subjected to cyclic thermomechan-

ical loading. Many experimental results [97, 98, 49, 50, 110] indicate that SMAs exhibit

an evolving rather than stable material response under cyclic loading. More specifically,

transformation characteristics of SMAs, e.g., the shape of stress/thermal hysteresis, trans-
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formation temperatures, transformation strain magnitude, usually shift from one cycle to

another, and large irrecoverable plastic strains are accumulated as shown in Figure 4.1.

Such irrecoverable strains, often called TRIP, are caused by the distortion as a result of the

crystallographic misfit at the austenite-martensite interfaces and grain boundaries induced

by the repeated phase transformation. This distortion-driven activity results in an observ-

able macroscopic plastic strain, which occurs at an effective stress level much lower than

the conventional plastic yielding point [50]. In addition, TRIP strain evolves with differ-

ent rates throughout the entire material fatigue life state. It is shown in the SMA fatigue

test results, the TRIP strain grows drastically during the very first hundreds loading cycles

then tends to increase in a stabilized trend until the material failing point at the very end.

As the most of engineering applications require actuators functioning in stable material

behavior, SMAs are usually subjected to a training process, i.e., repeated thermal/stress

cycling, to stabilize their behaviors before being used as actuation components. Many

modeling efforts have been devoted to predicting the evolving characteristics of SMAs

incorporating the irrecoverable strains under cyclic thermomechanical loading.

A large number of legacy models have been proposed to predict the stable SMA mate-

rial response. A thorough review of these works can be found from literature [54, 10, 73,

103, 74, 125, 48, 2, 47, 106]. In general, SMA models considering irrecoverable strains

can be categorized into two types, one type of SMA models describe conventional plas-

ticity due to the activation of slip systems at sufficiently high-stress levels in either pure

austenite or martensite phase, modeling efforts fall into this type can be obtained from

[107, 30, 43]. As discussed in the previous paragraph to some extent, the other type of

models concerns irrecoverable strains as TRIP caused by repeated phase transformations

with the stress levels much below yielding stress. It is noted that the focus of this work

falls into the second type. Many commonly cited SMA models are proposed to capture

the evolving response feature, and a subset of them are briefly reviewed here. The ear-
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Figure 4.1: Experimental result shows the TWSME at load-free condition for a NiTi
material after 100 thermal training cycles under a constant load. The red curve is the
response under bias load, and the blude curve indicates the TWSME reponse under load-
free condition, adapted from [3].

liest models dealing with TRIP were presented by Lim and McDowell [60], and Tanaka

et al. [101] to capture the cyclic loading effect on the SMA phase transformation char-

acteristics. Based on the micromechanics averaging method on a representative volume

element with an infinitesimal increment of martensite, Bo and Lagoudas [8, 9] proposed

a model accounting for one-dimensional TRIP strain accumulation and the generation of

TWSME under cyclic actuation loading. Lexcellent et al. [59] further extended their

early SMA model describing stable material response [55] to consider the irrecoverable

strains by introducing two additional internal state variables, i.e., the volume fraction of

self-accommodated and oriented martensite. Later on, [50] proposed a model account-

ing for TRIP during stress-induced phase transformation, as well as the shape and size

of the hysteresis under transformation cycling. Also, Zaki and Moumni [125] proposed

a model considering the TRIP in the case of cyclic pseudoelastic loading by virtue of
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strain

Figure 4.2: Evolution of transformation and TRIP strain in the loading direction for a
notched NiTi plate under thermal cycling with constant load, adapted from [109].

additional internal state variables, such as internal stress, TRIP strain, and accumulated

martensite volume fraction. Other similar and recent modeling efforts can also be found

from [4, 85, 6, 122].

Although many of the proposed models have enabled researchers to study the evolving

material behaviors of SMAs, the majority of them are insufficient in their capacity to con-

sider the following critical features. (i) The first feature of currently available models in

need of improvement is their small deformation assumption based on infinitesimal strain

theory. This assumption may be acceptable for SMA material systems, such as Ni-rich or

NiTiHf SMAs, where the total deformation strain regime, including elastic strain, trans-

formation strain, and TRIP strain, is below 3%. However, it has been reported that nearly

30% or even higher TRIP strains are observed during the lifetime of near equiatomic NiTi

SMA-based actuators [110]. In the presence of such large strain, a finite strain model is

needed to account for the exhibited large strains to provide an accurate structural response

of SMA-based functional components. (ii) The second important aspect of many current

models in need of improvement is the TWSME characteristic exhibited by trained SMAs

104



at load-free conditions. Because of the required training process to stabilize the response

of as-received SMAs before used as actuators, permanent changes such as dislocation

bands, accumulated defects/damage, and retained martensite variants are introduced in

the microstructure of the material, which then results in the generation of an oriented

internal stress field. The generated internal stresses oriented in the same direction as

the applied load are subsequently able to induce the oriented phase transformation un-

der thermal cycling without applying any pre-loading, i.e., the TWSME, see Figure 4.1.

The TWSME property allows for mounting and dismounting of SMA-based connectors

and couplers in an easy procedure by just heating and cooling those components without

pre-stressing [70, 100]. In addition, (iii) the majority of applications require the function-

ality of actuators under multiaxial stress state originated from geometry complexities or

installment required discontinuities, such as notches and holes. TRIP strain under such

multiaxial stress state evolves quite differently compared to that in the uniaxial loading

case. Refer to Figure 4.2, Digital Image Correlation (DIC) results of transformation and

TRIP strain for a notched NiTi plate revealed that the TRIP strain evolved with a larger

rate at the stress concentration region over the part under uniform stress state throughout

the SMA entire fatigue life. Despite the importance of the fact that multiaxial stress state

significantly affecting the evolution of TRIP strain, it has rarely been addressed among

existing models described in the literature.

In order to address the three aforementioned critical features, a three-dimensional

finite strain constitutive model accounting for multiaxial TRIP evolution and TWSME

for SMAs is proposed in this work. This presented modeling effort is developed based on

the legacy SMA model [10, 47, 121] and largely inspired by its continuous development

considering TRIP [9, 50, 122]. By using the martensitic volume fraction, transformation

strain, internal stress, and TRIP strain tensors as internal state variables, the model is able

to capture the TRIP evolution in SMAs subjected to multiaxial stress state during cyclic
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thermomechanical loading, and the TWSME due to the generation of internal stresses

exhibited by trained SMAs without pre-loading.

In summary, this chapter is organized as follows. In Section 4.2, preliminaries regard-

ing kinematics used in the model formulation are presented. Section 4.3 concentrates on

the model development that incorporates the three features as mentioned earlier to im-

prove the model capability. In section 4.4, the consistent tangent stiffness and thermal

matrix are provided. A detailed calibration for the material parameters is presented in

section 4.5. In section 4.6, the detailed implementation procedure for the proposed model

is described by using a user-defined material subroutine (UMAT) through the numerical

environment Abaqus. Numerical examples are studied to demonstrate the capability of

the proposed model in Section 4.7. Conclusions are summarized in Section 4.8.

4.2 Preliminary

4.2.1 Logarithmic rate and Logarithmic spin

Two kinematic assumptions, i.e., the multiplicative decomposition of deformation gra-

dient F and the additive decomposition of the rate of deformation tensor D, are usually

used in finite deformation theory. Hyperelastic constitutive relation is often used in mul-

tiplicative models while hypoelastic constitutive equation is utilized for additive models.

For a long time, the rate form hypoelastic constitutive theory has been criticized for its

failure to be fully integrable to describe a simple recoverable elastic behavior. Many spu-

rious phenomenons, such as shear stress oscillation, dissipation or stress errors are ob-

served in simple elastic deformation using hypoelastic theory with objective rates includ-

ing many well-known objective rates such as Zaremba-Jaumann rate, Green-Naghdi rate,

and Truesdell rate, etc.[116]. However, such aforementioned issues regarding objective

rates are resolved via the logarithmic rate proposed by [112, 113, 116, 13, 14, 15, 66, 67].

As proved in their work, the logarithmic rate of the logarithmic strain h expressed in its
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Eulerian type is identical with the rate of deformation tensor D, by which a hypoelastic

model can be exactly integrated into an finite strain elastic model ([112]). This unique

relationship between logarithmic strain h and the rate of deformation tensor D can be

expressed as,

h̊log = ḣ + hΩlog −Ωlogh = D (4.1)

where Ωlog is the logarithmic spin introduced by [112] as,

Ωlog = W +
n∑
i 6=j

(1 + (λi/λj)

1− (λi/λj)
+

2

ln(λi/λj)

)
biDbj (4.2)

in which λi,j(i, j = 1, 2, 3) are the eigenvalues of left Cauchy-Green tensor B, bi,bj

are the corresponding subordinate eigenprojections. Additionally, the second-order ro-

tation tensor Rlog can be obtained using the logarithmic spin tensor Ωlog by solving the

following differential equation. In general, Rlog|t=0 = I is assumed.

Ωlog = Ṙlog(Rlog)T (4.3)

Furthermore, assuming the initial condition h|t=0 = 0, equation (4.1) can be integrated

to the following equation through the corotational integration scheme ([45]),

h =

∫
corot.

D dt = (Rlog)T
(∫ t

0

RlogDe(Rlog)Tdt′
)

Rlog (4.4)

4.2.2 Additive decomposition of logarithmic strain

This part address the kinematic assumption of additive decomposition of logarithmic

strain. First, the rate of deformation tensor D is additively decomposed into three parts,

i.e., an elastic part, a transformation part plus a TRIP part. From energy point of view, ad-

ditive decomposition of D can be interpreted as the total outside stress power is split into
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an elastic part stored inside the material, a dissipative part associated with phase transfor-

mation process, and another dissipative part related to transformation-induced plasticity

mechanism.

D = De + Dtr + Dtp (4.5)

Based on equation (4.1), the elastic part De, transformation part Dtr and plastic part

Dtp can be rewritten as h̊e_log, h̊tr_log and h̊tp_log respectively,

h̊e_log = De; h̊tr_log = Dtr; h̊tp_log = Dtp (4.6)

the following equation can be obtained by combining equations (4.1), (4.5) and (4.6),

h̊log = h̊e_log + h̊tr_log + h̊tp_log (4.7)

Applying corotational integration on equation (4.7) as follows,

he =

∫
corot.

De dt = (Rlog)T
(∫ τ

0

RlogDe(Rlog)Tdτ
)

Rlog (4.8a)

htr =

∫
corot.

Dtr dt = (Rlog)T
(∫ τ

0

RlogDtr(Rlog)Tdτ
)

Rlog (4.8b)

htp =

∫
corot.

Dtp dt = (Rlog)T
(∫ τ

0

RlogDtp(Rlog)Tdτ
)

Rlog (4.8c)

Combing equations (4.4), (4.5), (4.7) and (4.8), the following kinematic equation on

total logarithmic strain can be received. Namely, the total logarithmic strain is additively

split into an elastic part, a transformation part, as well as a TRIP part

h = he + htr + htp (4.9)
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4.3 Model formulation

4.3.1 Thermodynamic potential

Based on the classical thermodynamic framework for dissipative materials, the formu-

lation of the proposed model starts with the development of an explicit thermodynamic

potential. To that end, a quadratic form Gibbs free energy is proposed as a continuous

function of Kirchhoff stress tensor τ, temperature T , and a set of internal state variables

Υ = {ξ,htr,htp,β}, in which they are martensitic volume fraction ξ, transformation

strain tensor htr, TRIP strain tensor htp, and internal stress tensor β. The martensitic

volume fraction ξ ranging 0 6 ξ 6 1 is used for differentiating the two material phases

of SMA. Specifically, ξ = 0 represents pure austenitic phase while ξ = 1 indicates pure

martensitic phase. The htr accounts for the inelastic yet recoverable strain associated

with the phase transformation, htp is used to represent the irrecoverable transformation-

induced plastic strain, and β is used to consider the internal stress field generated inside

the material as a result of the training process. The following explicit Gibbs free energy

expression for G is given as,

G = − 1

2ρ0

τ : Sτ− 1

ρ0

τ : [ α(T − T0) + htr + htp]− 1

ρ0

∫ ξ

0

(β :
∂htr

∂τ
)dτ

+c
[
(T − T0)− T ln(

T

T0

)
]
− s0T + u0 +

1

ρ0

f(ξ)

(4.10)

In which, S is the fourth-order effective compliance tensor that can be calculated by

using the rule of mixture as equation (3.30), SA is the compliance tensor for austenitic

phase while SM is for martensitic phase, ∆S represents the phase difference of the com-

pliance tensor. Additionally, the effective stiffness tensor C can be obtained by taking the

inverse of the above effective compliance tensor, i.e., C = S−1. α is the second-order

thermoelastic expansion tensor, c is the effective specific heat, s0 and u0 are the effec-
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tive specific entropy and effective specific internal energy at the reference state. All the

aforementioned effective variables are determined by the rule of mixture the same way

as they were in Chapter 3. T represents the temperature at current state, while T0 is the

temperature at reference state.

A smooth hardening function f(ξ) is included in the Gibbs free energy expression to

account for the part due to hardening effects in polycrystalline SMAs, such as interactions

between different phase variants, imperfections located at the grain boundaries, and the

presence of nano-precipitates ([48]). Three intermediate material parameters (a1, a2, a3)

are introduced in this hardening function, they can be determined by using known ma-

terial parameters as shown in section 4.5. Besides, four other smoothing parameters

(n1, n2, n3, n4) are introduced to better treat the smooth transition characteristics at the

initiation and completion during phase transformation.

f(ξ) =


1

2
a1

(
ξ + ξn1+1

n1+1
+ (1−ξ)n2+1

n2+1

)
+ a3ξ , ξ̇ > 0,

1

2
a2

(
ξ + ξn3+1

n3+1
+ (1−ξ)n4+1

n4+1

)
− a3ξ , ξ̇ < 0

(4.11)

On basis of the proposed Gibbs free energy, following classic thermodynamic prin-

ciples and standard Coleman-Noll procedure, the constitutive relationship between stress

and strain can be obtained as equation (4.12), and the constitutive relationship between

entropy and temperature obtained as equation (4.13),

h = −ρ0
∂G

∂τ
= Sτ +α(T − T0) + htr + htp (4.12)

s = −ρ0
∂G

∂T
=

1

ρ0

τ : α+ c ln(
T

T0

)− s0 (4.13)

The following reduced form of dissipation inequality (4.14) can be derived by substi-
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tution of the aboved two constitutive relationships into Clausius-Planck inequality,

− ρ0
∂G

∂htr
: h̊tr − ρ0

∂G

∂htp
: h̊tp − ρ0

∂G

∂ξ
ξ̇ > 0 (4.14)

4.3.2 Evolution law for transformation strain

This part focuse on the evolution law for transformation strain. Following the max-

imum dissipation principle, the evolution of transformation strain dissipating the most

energy among all the admissible thermodynamic paths is chosen during the entire phase

transformation process ([10], [79]). Therefore, it is assumed that the rate change of trans-

formation strain is proportional to the rate change of the martensitic volume fraction ξ,

and the direction of which is along the deviatoric direction of the current stress state.

Be noted that in the following evolution law the rate applied on top of the transformation

strain is the logarithmic rate in order to account for finite deformation. Finally, the explicit

evolution law for transformation strain is described as follows,

h̊tr = Λξ̇, Λ =


Λfwd, ξ̇ > 0,

Λrev, ξ̇ < 0,

(4.15)

where, Λfwd is the forward transformation direction tensor, while Λrev is the reverse

transformation direction tensor. They are defined as follows,

Λfwd =
3

2
Hcurτ

eff′

τ̄eff ; Λrev =
htr-r

ξr . (4.16)

in the above equations, τeff is the effective stress tensor defined as equation (4.17) using

the summation of current stress and internal stress. The main difference in this equation

compared to that in the SMA modeling only concerning stable material response is the
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using of the effective stress tensor, which means the oriented phase transformation can

happen under the condition that even there is no external mechanical load being applied.

The evolution law for internal stress tensor β is introduced in the later context shortly.

τeff = τ + β (4.17)

τ
′eff is the deviatoric part of effective stress tensor defined as τ

′eff = τeff − 1
3
tr(τeff) 1,

where 1 is the second order identity tensor. The Mises equivalent effective stress τ̄eff is

calculated as follows,

τ̄eff =

√
3

2
τ′eff : τ′eff (4.18)

It is common in many of the available models that the magnitude of the inelastic

recoverable transformation strain is assumed the same under any stress levels. Such

consideration is valid when the applied stress levels are high enough to generate fully

oriented martensitic variants. However, self-accommodated martensitic variants are gen-

erated when the stress levels are not sufficiently high, which renders the value of transfor-

mation strain to be stress dependent. Therefore, the following exponential Hcur function

based on current effective stress levels is introduced to calculate the value of current trans-

formation strain given an effective stress state, where Hmax is the maximum (or saturated)

value of transformation strain, Hmin corresponds to an observable TWSME strain for

pre-trained SMAs or some SMAs experiencing particular production process such as ex-

trusion and aging under stress. Besides, τcrit denotes a critical stress value below which

Hcur = Hmin, and kt is a curve-fitting material parameter.

Hcur(τ̄eff) =


Hmin + (Hmax −Hmin)(1− e−kt(τ̄eff−τcrit)); τ̄eff > τcrit,

Hmin; τ̄eff < τcrit,

(4.19)
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It is also seen from experimental results that a degradation exists for the value of

maximum transformation strain as a result of the accumulation of retained martensite. In

order to extend the model capability to capture this phenomenon, a degradation law is

proposed for the maximum transformation strain as the following equation, where Hmax
i

and Hmax
f represent the value of Hmax before and after the cyclic loading. In addition,

λ1 is a material parameter governing the degradation trend of Hmax, and ζd called the

accumulation of orientated martensitic volume fraction is introduced shortly in the later

subsection.

Hmax = Hmax
f + (Hmax

i −Hmax
f )e−λ1ζ

d

(4.20)

4.3.3 Evolution law for TRIP strain

An evolution law for the TRIP strain is proposed in this subsection in order for the

model to capture the irrecoverable strain exhibited by SMAs under cyclic thermomechan-

ical loading. Before the detailed formulation is presented, a major assumption is postu-

lated, i.e., among the total martensitic phase transformation, only the oriented transforma-

tion portion contributes to the generation of TRIP. This assumption is built upon the ob-

servation on the experimental results that no macroscopic irrecoverable deformations are

perceived for untrained SMAs under load-free thermal cycling. An early one-dimensional

form of TRIP evolution law was suggested in the work of [9], and a three-dimensional

form was proposed by [50]. As it was discussed in the introduction, the generation of

TRIP strain is highly affected by the multiaxial stress state, and is quite different from

that subjected to uniform stress condition. However, none of the above TRIP evolution

laws have addressed this critical feature. Therefore, one of the major contributions of this

work is to address the effect of stress multiaxiality on the generation of TRIP. To that end,
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the following TRIP evolution law is suggested,

h̊tp = Λtpξ̇, Λtp =


Λtp
fwd, ξ̇ > 0,

Λtp
rev, ξ̇ < 0,

(4.21)

in the above equation, Λp
fwd is the forward TRIP direction tensor, and Λp

rev is the reverse

one. They have explicit definitions in equation (4.22). Note that the rate applied on top

of htp is the logarithmic rate in order to consider the finite deformation in the presence of

large strains and large rotations.

Λtp
fwd =

3

2
(
Hcur

Hmax
)2τ

′eff

τ̄eff

Cp
1C

p
2

1 + Cp
2ζ

d
; Λtp

rev = −(
Hcur

Hmax
)2 htr−r

ξr

Cp
1C

p
2

1 + Cp
2ζ

d
(4.22)

As a result of its association with the phase transformation, the TRIP strain is proposed

to evolve along the same deviatoric direction of the effective stress as the transformation

strain. Material parameters Cp
1 and Cp

2 are used to dictate the envolving trend and magni-

tude for TRIP strain during the cyclic loading. The purpose of using the accumulation of

oriented martensitic volume fraction ζd is to satisfy the assumption that only the oriented

phase transformation contributes to the generation of TRIP strain. The rate form equation

(4.21) can be integrated to be expressed as the following explicit form using a logarithmic

function,

htp =
3

2

Hcur

Hmax
Cp

1

τ
′eff

τ̄eff ln
(
1 + Cp

2ζ
d
)

(4.23)

As it can be seen from this relation, by multiplying Cp
1 with the ratio (Hcur/Hmax)

the stress dependent effect is incorporated in these material parameters. As it is shown in

the latter results section, utilization of (Hcur/Hmax) and ζd in the TRIP evolution law can

enable the model to capture the multiaxial TRIP strain evolution under non-uniform stress
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condition. Besides, another important quantity ζd in this equation is defined as follows,

ζd =

∫ t

0

|ξ̇d(t)|dt (4.24)

in which the oriented martensitic volume fraction ξd is calculated as,

ξd =
Hcur

Hmax
ξ (4.25)

the relation between accumulation of oriented martensitic volume fraction ζd and accu-

mulation of total martensitic volume fraction ζ is obtained as follow,

ζd =
Hcur

Hmax
ζ (4.26)

4.3.4 Evolution law for internal stress

In order to meet the proposed goal of capturing the TWSME of trained SMAs under

load-free condition, a second-order internal stress term is introduced in this model. As

discussed to some extents in the introduction section, during cyclic thermomechanical

loading SMAs experience microstructure changes at a stress level below the yielding

point, such as pileup of transformation-driven dislocation bands, initiation and growth of

micro-voids and micro-cracks, and damage accumulation. These microstructure changes

then gradually introduce a local stress field inside the SMA materials, which is effectively

described by an internal stress tensor in this model. It is also reasonably assumed the

internal stress may never go beyond the material yielding point, thus its magnitude is

saturated at a maximum point. Additionally, the evolution direction is determined next.

Because the microstructure changes are induced under the external bias mechanical load,

the internal stress are assumed being generated in the same direction as the applied stress
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field. On the basis of the above discussions, an exponential evolution law is proposed for

the internal stress to account for the TWSME as follows,

β = σb
Hcur

Hmax

τeff

τ̄eff (1− e
−λ1ζd) (4.27)

in which, σb is a material parameter representing the maximum (or saturated) magnitude

of the internal stress. Similar as the TRIP strain evolution law, the ratio (Hcur/Hmax)

and ζd are included here to consider the stress multiaxiality effect, and λ1 is a material

parameter controlling the evolution trend.

4.3.5 Transformation function

In this subsection, a transformation function and an associated transformation crite-

rion are defined, upon which the initiation and completion of phase transformation can

be determined. By substitution of the evolution law for transformation strain (4.16) and

TRIP strain (4.21) into the reduced form of dissipation inequality 4.14, the following

equation is obtained,

(
τ : Λ + β : Λ + τ : Λtp − ρ0

∂G

∂ξ

)
ξ̇ = πξ̇ > 0 (4.28)

in which the quantity π is called the general thermodynamic driving force conjugated to

ξ in the proposed model. The product by substitution of Gibbs free energy (4.10) into the

above equation (4.28) yields the explicit expression for π, where ∆S,∆α,∆c,∆s0,∆u0

represent the phase differences between martenstie and austenite of that material property.

π = (τ + β) : Λ + τ : Λtp +
1

2
τ : ∆Sτ + τ : ∆α(T − T0) + ρ∆s0T

−ρ∆c
[
T − T0 − T ln(

T

T0

)
]
− ρ∆u0 −

∂f

∂ξ

(4.29)
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Following the model development in [10, 50], it is assumed that the forward (reverse)

phase transformation initiates whenever the thermodynamic driving force π (−π) reaches

a critical value Y (−Y ), and π (−π) is always below such critical value as long as the

forward (reverse) phase transformation is not completed, based on which the following

transformation function Φ is defined,

Φ =


π − Y, ξ̇ > 0,

−π − Y, ξ̇ < 0,

(4.30)

A further improvement in the critical value Y is suggested from [47], see equation

(4.31), in which Y is constructed to be stress-dependent where a reference critical value

Y0 and an additional parameter D are introduced. Such consideration enables the model

to predict different size of hysteresis loops when SMA materials are subjected to various

applied stress levels. This capability is provided through capturing the different slopes

CA, CM in the effective stress-temperature phase diagram.

Y (σ) =


Y0 +Dσ : Λfwd, ξ̇ > 0,

Y0 +Dσ : Λrev, ξ̇ < 0,

(4.31)

In order for the defined transformation functions and the corresponding transforma-

tion criteria to satisfy the principle of maximum dissipation, the following Kuhn-Tucker

constraint conditions have to be met,

ξ̇ > 0; Φ(τ, T, ξ) = π − Y 6 0; Φξ̇ = 0;

ξ̇ 6 0; Φ(τ, T, ξ) = −π − Y 6 0; Φξ̇ = 0;

(4.32)

117



Equilibrium Solver Kinematics

Global FE Solver 

Pre-Calculation

Elastic predictor

Rotation Procedure

Transformation corrector

Variable update

Figure 4.3: Flowchart for the variables used in UMAT integration with the finite element
solver.

4.4 Consistent tangent stiffness and thermal matrix

In order for the displacement-based numerical finite element solver to obtain an accu-

rate solutions for the global equilibrium equations using Newton’s method with accept-

able convergence iterations, the so-called consistent tangent matrices are often required

to be provided from the UMAT. A detailed derivation of the consistent tangent stiffness
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matrix and the thermal matrix is provided in this section to complete the proposed model.

In general, consistent tangent matrices can be formulated in the rate form as equation

(4.33), where L is called the consistent tangent stiffness matrix and Θ is the consistent

thermal matrix.

τ̊ = Lh̊ + ΘṪ (4.33)

applying the logarithmic rate on constitutive equation (4.12) yields,

τ̊ = C [̊h−αṪ − (∆Sτ + ∆α∆T + Λ + Λtp)ξ̇ ] (4.34)

taking chain rule differentiation on the transformation function equation (4.30) results in,

Φ̇ = ∂τΦ : τ̊ + ∂TΦṪ + ∂ξΦξ̇ = 0 (4.35)

Upon substituting equation (4.34) into equation (4.35) to eliminate τ̊ and solving it

for ξ̇, the following expression for ξ̇ can be obtained,

ξ̇ = − ∂τΦ : Ch̊ + (∂TΦ− ∂τΦ : Cα)Ṫ

∂ξΦ− ∂τΦ : C(∆Sτ + Λ + Λtp + ∆α∆T )
(4.36)

The phase difference of thermal expansion coefficients ∆α between martensite and

austenite phase is negligible, for the sake of brevity, it is neglected. After substituting

equation(4.36) back into the rate form constitutive equation(4.34) to eliminate ξ̇, the final

explicit expression corresponding to equation (4.33) can be obtained as follows,

τ̊ =
[
C +

[C(∆Sτ + Λ + Λtp)]⊗ [C∂τΦ]

∂ξΦ− ∂τΦ : C(∆Sτ + Λ + Λtp)

]
h̊ +[

− Cα+
C(∆Sτ + Λ + Λtp)(∂TΦ− ∂τΦ : Cα)

∂ξΦ− ∂τΦ : C(∆Sτ + Λ + Λtp)

]
Ṫ

(4.37)

119



in which the consistent tangent stiffness matrix L is,

L = C +
[C(∆Sτ + Λ + Λtp)]⊗ [C∂τΦ]

∂ξΦ− ∂τΦ : C(∆Sτ + Λ + Λtp)
(4.38)

and the consistent thermal matrix Θ is,

Θ =
C(∆Sτ + Λ + Λtp)(∂TΦ− ∂τΦ : Cα)

∂ξΦ− ∂τΦ : C(∆Sτ + Λ + Λtp)
− Cα (4.39)

In order to fully determine the explicit values for L and Θ during the implementation

section for the proposed model, the explicit expressions of the following terms ∂τΦ, ∂ξΦ,

∂TΦ used in above equations can be calculated by using the symbolic calculation toolbox

provided in MATLAB.

4.5 Model calibration

In this section, the material parameters utilized in this proposed model are identified

from a set of calibration experiments, which in general can be categorized into three

groups, i.e., the key material parameters, smooth hardening parameters, and TRIP and

internal stresses parameters. Note that the strain measure used here is true (or logarithmic)

strain rather than engineering (or infinitesimal) strain.

First, material constants such as the elastic modulus (EA, EM) of austenite and marten-

site can be obtained by calculating the slopes at martensitic phase and austenite phase

from uniaxial mechanical loading-unloading experiment, i.e., pseudoelastic response see

Figure 4.4(a). Poisson’s ratios νA and νB are usually assumed as 0.33 for metallic ma-

terials. In order to construct the phase diagram, thermal cycling of the material under

constant uniaxial tensile stress, i.e., actuation response see Figure 4.4(b), is performed,

by which critical transformation temperatures (M τ
s ,M

τ
f , A

τ
s, A

τ
f ) and transformation strain

Hcur(τ) at current stress level are measured. Three such experiments at different stress
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levels (τ1, τ2, τ3) are performed. By using these collected temperature and transformation

strain information, the phase diagram and the Hcur curve can be constructed, see Figure

4.5. Therefore, phase diagram related stress influence coefficients (CA, CM ), phase trans-

formation temperatures (Ms,Mf , As, Af ) at zero stresses, are determined. In addition,

material parameters related to Hcur curve (Hmin, Hmax, kt, τcrit) are also obtained. Sec-

ondly, the smooth hardening related coefficients (n1, n2, n3, n4) are determined by best

matching the smoothness corner at the initiation and completion during phase transfor-

mation. Thermal expansion coefficients assuming no phase differences ,i.e., αA = αM

can be calibrated through an actuation response.

In order to calibrate TRIP material parameters (Cp
1 , C

p
2 ), cyclic actuation response at

a saturation stress level is performed, see Figure 4.6(a). TRIP strain with respect to the

number of loading cycle is measured. By integrating the rate form TRIP strain evolution

equation (4.22), the algebraic form can be obtained as equation (4.40). The ratio term

Hcur/Hmax is presented to incorporate the stress dependency effect on TRIP parameters

(Cp
1 , C

p
2 ). As the austenite phase is fully transformed into oriented martensite phase under

the saturation stress value, the value of ratio is Hcur/Hmax = 1, and the accumulation of

orientated martensitic volume fraction equals to the total one ζd = ζ .

htp =
Hcur

Hmax
Cp

1 ln(1 + Cp
2ζ

d) (4.40)
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Figure 4.4: Experiments utilized for the calibration of model parameters. (a) Calibration
of elastic modulus for austenite and martensite from uniaxial pseudoelastic experiment.
(b) Calibration of phase diagram from uniaxial actuation experiment.
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Cyclic actuation response with TWSME curve at load-free condition. (b) Calibration of
TRIP parameters based on TRIP strain accumulation with respect to number of loading
cycle.

Therefore, equation (4.40) can be further reduced into equation (4.41). Material pa-

rameters related to TRIP (Cp
1 , C

p
2 ) can thus be calibrated by best fitting the TRIP strain

accumulation curve in Figure 4.6(b).

htp = Cp
1 ln(1 + Cp

2ζ) (4.41)

Next, internal stress related material parameters (σb, λ1) are calibrated from the TWSME

response. The internal stress is response for the generation of TWSME at load-free condi-

tion. For example, TWSME transformation strain Hcur(σb) is generated after the thermal

cycling training procedure in Figure 4.6(a). Based on the Hcur curve from Figure 4.5(b),

the effective stress value of τeff is required in order to produce this transformation strain.

At load-free condition, τeff = σb. Thus the value of σb can be obtained by using the

123



following condition,

Hcur(σb) = Hmin + (Hmax −Hmin)(1− e−kt(σb−τcrit)) (4.42)

The explicit calculation of σb is as follow,

σb = τcrit +
1

kt
ln
( Hmax −Hmin

Hmax −Hcur(σb)

)
(4.43)

Parameter λ1 controls the evolving trend of internal stress into its saturation value.

Usually, λ1 = 0.01 ∼ 1 is acceptable, λ1 = 0.1 is used in the current work.

There are also seven intermediate material parameters (ρ0∆s0, ρ0∆u0, a1, a2, a3, Y0, D)

utilized in the proposed model, which can be calculated based on the above known pa-

rameters. Their detailed derivations are provided in [47, 121], here they are reviewed to

complete the model calibration.



a1 = ρ0∆s0(Mf −Ms);

a2 = ρ0∆s0(As − Af )

a3 =
1

4
a2(1 +

1

n3 + 1
)−

1

4
a1(1 +

1

n1 + 1
)

ρ0∆u0 =
1

2
ρ∆s0(Ms + Af )

Y0 =
1

2
ρ0∆s0(Ms − Af )− a3

D =
(CM − CA)

[
Hcur + τ∂τH

cur + τ∆S
]

+ +(CM + CA)(Λtp + τ∂τΛ
tp)

(CM + CA)(Hcur + τ∂τHcur)

ρ0∆s0 = −
2CMCA

[
Hcur + τ∂τH

cur + τ∆S
]

CM + CA
(4.44)

124



4.6 Implementation

This section discusses the implementation of the above proposed model into a numer-

ical environment using an user-defined material subroutine (UMAT) for solving boundary

value problems. The used variables in the UMAT is presented as a flowchart in Figure

4.3. This implementation procedure follows the knowledge of return mapping algorithm

(RMA) presented in the available publications ([78, 48]). In general, the goal of the

UMAT is, given an increment of strain and temperature from the numerical solver, using

the constitutive relationships (4.12) and (4.13) to calculate a stress output under the condi-

tion that the internal state variables conform with the Kuhn-Tucker consistency constraints

(4.32). The implementation of constitutive models consists of two major procedures to-

wards this goal, one is called Thermoelastic-predictor, and the other is Transformation-

corrector. It is worthy to point out that the input variables used for this implementation

from the finite element solver are only the temperature and its increment (Tn, ∆Tn), and

deformation gradients at current and next step (Fn, Fn+1). As it was discussed in [121],

such considerations allow the model to account for the finite deformations in SMA com-

ponents, at the same time enable the model to get rid of the accumulated stress errors as

a result of using other non-integrable objective rates. The effects of such accumulated

stress errors on the cyclic response of SMAs is discussed in detail by [121].

A Pre-calculation and a rotation procedure are employed before calling the thermoe-

lastic prediction and transformation correction steps. In the Pre-calculation procedure,

the total strain at current and next step (hn, hn+1) are calculated based on (Fn, Fn+1)

using equation (3.8). The incremental rotation tensor ∆Rlog
n based on the logarithmic

rate can be calculated by using the exponential map scheme described in [90]. In the

rotation procedure, the tensorial variables stored as solution-dependent quantities includ-

ing hn, htrn , htpn , βn, Λn, and Λtp
n are rotated from previous nth configuration to cur-
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rent n + 1th configuration using ∆Rlog
n , thus, to preserve the so-called principle of ob-

jectivity. To proceed with the thermoelastic-predictor step, the internal state variables

Υ
(0)
n+1 = {htr(0)

n+1 ,h
tp(0)
n+1 ,β

(0)
n+1, ξ

(0)
n+1}1 at (n + 1)th step are assumed the same as Υn for

the initial thermoelastic evaluation. In the case that the Kuhn-Tucker consistency con-

dition is violated, i.e., Φ
(0)
n+1 > 0, the transformation correction procedure is initiated to

attain updated internal state variables to regain consistency. Otherwise, the current n+1

step is detected as a thermoelastic response, i.e., Υn+1 = Υ
(0)
n+1, the UMAT skips the

transformation correction step and continues the rest procedures. A detailed description

of implementation is presented in the following context.

4.6.1 Thermoelastic prediction

This part is a detailed description of the thermoelastic prediction. Take (n+1)th step as

an example for illustration. The total strain hn+1 and temperature Tn+1 are obtained from

the pre-calculation procedure, and the initial internal state variables Υ
(0)
n+1 are assumed

the same as Υn for the initial consistency evaluation, i.e.,

h
tr(0)
n+1 = htrn ; h

tp(0)
n+1 = htpn ; β

(0)
n+1 = βn; ξ

(0)
n+1 = ξn (4.45)

on the basis of the above information, the guessed stress value τ(0)
n+1 is calculated through

the constitutive equation (4.12),

τ
(0)
n+1 = C(0)

n+1

[
hn+1 − h

tr(0)
n+1 − h

tp(0)
n+1 −α

(0)
n+1(Tn+1 − T0)

]
(4.46)

1(·)(k) represent the local value of that variable at the kth iteration in transformation correction proce-
dure, here k = 0 means that this is an initial guess value in thermoelastic prediction procedure.
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the initial value of transformation function Φ
(0)
n+1 in thermoelastic procedure can be eval-

uated base on equations (4.29) and (4.30) as follow,

Φ
(0)
n+1 = Φ(τ

(0)
n+1, Tn+1,Υ

(0)
n+1) (4.47)

If the transformation consistency constraints are preserved, i.e., the initial value of

transformation function Φ
(0)
n+1 6 0 2, no phase transformation happens in the materials at

the current state, and the current step is detected as a thermoelastic step. If the transforma-

tion criterion is violated, i.e. Φ
(0)
n+1 > 0, transformation corrector procedure is activated

in order to restore the transformation constraints (4.32) via seeking updated internal state

variables Υ
(k)
n+1.

4.6.2 Transformation correction

This part focuses on the iterative transformation correction procedure seeking a set

of updated internal state variables to regain the transformation consistency conditions,

i.e., Φ
(k)
n+1 6 0. Take the kth iteration as an example, the objective is to solve the sys-

tem of nonlinear equations summarized in equations (4.48), (4.49) and (4.50), where the

residuals in those rate form evolution equations for transformation strain (4.15) and TRIP

strain (4.21) can be reformulated using the discretized linearization as equations (4.49)

and (4.50),

Φ
(k)
n+1 = Φ(τ

(k)
n+1, Tn+1, ξ

(k)
n+1) (4.48)

R
tr(k)
n+1 = −h

tr(k)
n+1 + htrn + Λ

(k)
n+1(ξ

(k)
n+1 − ξn) (4.49)

R
tp(k)
n+1 = −h

tp(k)
n+1 + htpn + Λ

tp(k)
n+1 (ξ

(k)
n+1 − ξn) (4.50)

2Usually a small value ’tol’ is used for Φ
(0)
n+1 6 ’tol’ evaluation, ’tol’ is acceptable to be 10−6 or a even

smaller value.
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The goal, i.e., regaining the consistency condition, then becomes to satisfy the following

convergence inequalities, in which ’tol’ means a small convergence value such as 10−6.

|ξ(k)
n+1 − ξn| 6 tol ; |htr(k)

n+1 − htrn+1| 6 tol ; |htp(k)
n+1 − htpn+1| 6 tol (4.51)

A standard Newton-Raphson iteration procedure can be utilized to solve the above non-

linear system of equations as follows, the first term in the right-hand side of this set of

equations is the inverse of the Jacobian matrix,



∆ξ
(k)
n+1

∆h
tr(k)
n+1

∆h
tp(k)
n+1



= −



∂Φ
(k)
n+1

∂ξ

∂Φ
(k)
n+1

∂htr
∂Φ

(k)
n+1

∂htp

∂R
tr(k)
n+1

∂ξ

∂R
tr(k)
n+1

∂htr
∂R

tr(k)
n+1

∂htp

∂R
tp(k)
n+1

∂ξ

∂R
tp(k)
n+1

∂htr
∂R

tp(k)
n+1

∂htp



−1 

Φ
(k)
n+1

R
tr(k)
n+1

R
tp(k)
n+1



(4.52)

During each kth iteration of the Newton-Raphson precedure, the following updated values

for next k + 1th iteration are obtained for the internal state variables,



ξ
(k+1)
n+1

h
tr(k+1)
n+1

h
tp(k+1)
n+1



=



ξ
(k)
n+1

h
tr(k)
n+1

h
tp(k)
n+1



+



∆ξ
(k)
n+1

∆h
tr(k)
n+1

∆h
tp(k)
n+1



(4.53)
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The Newton-Raphson procedure iterates a maximum number of iterations until the

convergence criterion in equation (4.51) is satisfied. Otherwise, it exits with an error

message and the current finite element increment step stops, which indicates a further

check on the Jacobian matrix is needed. Once the converged values at kth iteration

{htr(k+1)
n+1 ,h

tp(k+1)
n+1 , ξ

(k+1)
n+1 } are accepted as the final value for the current material state,

the current transformation corrector step is detected as finished.

4.7 Results and discussions

In this section, several BVPs are analyzed to test the proposed model capabilities

under both pseudoelastic and actuation loading conditions over a wide range of SMA

material systems. The first BVP is a Ni40Ti50Cu10 (at.%) SMA under uniaxial cyclic

pseudoelastic loading, in which the accumulation of TRIP strain with respect to number

of loading cycle and stress levels required to initiate phase transformation are analyzed.

The second BVP includes a Ni49.9Ti50.1 (at.%) and a Ni50.3Ti29.7Hf20 (at%) SMA under

uniaxial cyclic actuation loading wherein the load-free TWSME for both material systems

after training is simulated. Finally, a Ni60Ti40 (wt.%) plate actuator with a centric hole

is chosen to test the model capability to capture the multiaxial TRIP evolution under

non-uniform stress state. The simulation results for these BVPs are obtained through

the commercial finite element software Abaqus, into which the constitutive response of

SMAs described above is implemented as a UMAT.
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Table 4.1: Summary of closest point return mapping algorithm.
1.Initialization
• Conduct pre-calculation and rotation procedures.
• k = 0; ξ

(0)
n+1 = ξn; h

tr(0)
n+1 = htrn ; h

tp(0)
n+1 = htpn ;β

(0)
n+1 = βn

2.Thermoelastic predictor
• τ

(0)
n+1 = C(0)

n+1[hn+1 − h
tr(0)
n+1 − h

tp(0)
n+1 −α(Tn+1 − T0)]

• Calculate Φ
(k)
n+1 .

• IF Φ
(0)
n+1 6 tol, GOTO 4 (thermoelastic response).

• IF Φ
(0)
n+1 > tol, GOTO 3 (transformation happens).

3.Transformation Corrector
• Calculate residual matrix

R
tr(k)
n+1 = −h

tr(k)
n+1 + htrn + Λ

(k)
n+1(ξ

(k)
n+1 − ξn)

R
tp(k)
n+1 = −h

tp(k)
n+1 + htpn + Λ

tp(k)
n+1 (ξ

(k)
n+1 − ξn)

Φ
(k)
n+1 = Φ(τ

(k)
n+1, Tn+1, ξ

(k)
n+1)

• Perform Newton-Raphson iterations in equation (4.52) to obtain

∆ξ
(k)
n+1,∆h

tr(k)
n+1 ,∆h

tp(k)
n+1 .

• Update variables ξ(k+1)
n+1 ,h

tr(k+1)
n+1 ,h

tp(k+1)
n+1 ,S(k+1)

n+1

ξ
(k+1)
n+1 = ξ

(k)
n+1 + ∆ξ

(k)
n+1

h
tr(k+1)
n+1 = h

tr(k)
n+1 + ∆h

tr(k)
n+1

h
tp(k+1)
n+1 = h

tp(k)
n+1 + ∆h

tp(k)
n+1

S(k+1)
n+1 = SA + ξ

(k+1)
n+1 ∆S

• IF Φ
(k+1)
n+1 > tol, GOTO step 3, next local iteration k = k + 1.

ELSE GOTO step 4, EXIT
4.Calculate consistent stiffness matrix L and thermal matrix Θ.

• L = C +
[C(∆Sτ + Λ + Λtp)]⊗ [C∂τΦ]

∂ξΦ− ∂τΦ : C(∆Sτ + Λ + Λtp)

• Θ =
C(∆Sτ + Λ + Λtp)(∂TΦ− ∂τΦ : Cα)

∂ξΦ− ∂τΦ : C(∆Sτ + Λ + Λtp)
− Cα

5.Update ζdn+1 and βn+1

• ζdn+1 = ζdn +
Hcur
n+1

Hmax
|ξn+1 − ξn|

• βn+1 = σb
τeff
n+1

τ̄eff
n+1

(1− e−λ1ζdn+1)

6.Exit UMAT and proceed to the global FE solver for the next increment
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Table 4.2: Material parameters for NiTiCu SMA in uniaxial cyclic pseudoelastic loading.

Type Parameter Value Parameter Value

EA 41 [GPa] CA 5.5 [MPa/K]
EM 22 [GPa] CM 5.5 [MPa/K]

Key material parameters νA = νM 0.33 Ms 237 [K]
15 αA = αM 1.0 ×10−5 [K−1] Mf 217.5 [K]

Hmax
i 3.8% As 254 [K]

Hmax
f 3.8% Af 282 [K]

Hmin 0% kt N/A
τcrit 0 [MPa]

Smooth hardening parameters n1 0.15 n3 0.25
4 n2 0.17 n4 0.15

σb 100 [MPa] λ1 0.25
TRIP parameters Cp

1 2.1×10−2

4 Cp
2 0.17

4.7.1 Uniaxial pseudoelastic loading case

The first BVP describes a Ni40Ti50Cu10 (at.%) SMA wire under uniaxial pseudoe-

lastic cyclic loading. A bias mechanical load is applied in the longitudinal wire direction

from 0 MPa up to a maximum value of 550 MPa then unloaded, during which the temper-

ature is kept constant at 360 K. Such loading path is repeated for 50 cycles. The NiTiCu

SMA wire experiences a stress-induced forward phase transformation during the loading

regime followed by a reverse phase transformation at the unloading. The material param-

eters used in this simulation are listed in table 4.2 based on the calibration on experimental

data.

The cyclic stress-strain curve acquired by the proposed model is compared against

the available experimental data reported in [96]. As shown in Figure 4.7, the NiTiCu

SMA accumulates a large amount of irrecoverable TRIP strain from the 1st cycle to the
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50th cycle, the TRIP strain result is plotted with respect to the number of loading cycle

in Figure 4.8. It can be seen that the TRIP strain grows drastically within the initial 30

loading cycles then stabilizes in a stationary increasing trend thereafter. The accumulated

TRIP strain in the 1st cycle is about 0.6% and grows to around 6% after 30 cycles. The

predicted TRIP accumulation result is shown in good agreement with the experimental

data. Apart from the irrecoverable TRIP strain, the model is also able to capture the ex-

perimentally observed decreasing stress levels at which the forward phase transformation

initiates. This model capability is achieved by introducing the internal stress in the model

formulation. Refer to its evolution law in equation (4.27), as the internal stress is accu-

mulated with an exponential manner with respect to the number of loading cycle, and

the required effective stress level τeff is the same, the accumulated internal stress then

decreases the needed external stress level to start the phase transformation. It is shown

in this BVP that the proposed model not only predicted the TRIP strain accumulation in

good agreement with the experimental result, but also captured the intrinsic feature that

the stress level needed to initiate the phase transformation decreases with respect to the

number of loading cycle.

4.7.2 Uniaxial actuation loading case

In this section, BVPs for two SMA material compositions, i.e., Ni49.9Ti50.1 (at%)

and Ni50.3Ti29.7Hf20 (at%), subjected to uniaxial cyclic actuation loading are analyzed.

Among these two BVPs the NiTi is a classical type of SMA material system having their

critical phase transforming temperatures close to room temperature range, while NiTiHf

belongs to the so-called high-temperature SMA category with their phase transformation

around 100 ◦C that can function under very extreme environments. These two BVPs are

chosen to check the fidelity of model over different SMA material system. Recall one

of the proposed capabilities of the presented model is to capture the TWSME for trained
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SMAs, the load-free thermal cycling response of the SMAs after thermomechancial train-

ing in these two BVPs are also examined and compared to available experimental data.
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Figure 4.7: The 1st and 50th pseudoelastic loading cycle of a NiTi SMA wire subjected
to a unaxial tensile stress up tp 550 MPa.
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Figure 4.8: Accumulation of transformation-induced plastic strain for NiTi with 50 cycles
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In the NiTi case, the SMA dogbone specimen was subjected to a 100 thermal cycling

between 310 K and 440 K under a constant 200 MPa mechanical load. After the 100

training cycles, the bias load was removed, and the final thermal cycling was performed

to check the TWSME response under load-free condition. The material parameters used

by the proposed model to simulate this experiment are listed in table 4.3. Similar to the

experimental procedure in the case of NiTi, the NiTiHf dogbone specimen was loaded

under 200 MPa and experienced a 100 thermal cycling between 310 K and 580 K. The

load-free TWSME was also checked after the thermomechanical training cycles. The

material parameters used to simulate the NiTiHf actuation response are listed in table 4.4.

The experimental data used for comparison in this section were initially reported in [3].

The simulated cyclic actuation response by the proposed model are summarized in

Figure 4.9 for NiTi SMA and in Figure 4.10 for NiTiHf SMA. In the NiTi case, the re-

sults for specific training cycle 1, cycle 10, cycle 20, cycle 40, cycle 70, and cycle 100

are selected and compared to the experiment results. It is shown that the transformation

characteristics in these selected training cycles, including transformation temperatures,

transformation train magnitude, and TRIP strain accumulation, predicted by the model

are in good agreement with the experiment data. More specifically, the NiTi SMA accu-

mulating about 11% TRIP strain after the 100 thermal training cycle is predicted. Addi-

tionally, by introducing the internal stress into the model formulation, the predicted NiTi

SMA load-free TWSME curve also correlates well with the experimental one. In the case

of NiTIHf, it can be seen that the high-temperature SMA material system shows a quite

different actuation response compared to that of NiTi. Specifically, the phase transforma-

tion temperatures are much higher, but much less TRIP strain is accumulated in the end.

Although the phase transformation characteristics of NiTiHf are quite different compared

to NiTi, the simulated results by the proposed model also agree with the experimental data

quite well, which demonstrates the excellent fidelity of the model over multiple SMA ma-
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terial systems. Moreover, it is shown that the proposed model is enabled to capture the

load-free TWSME response for trained SMAs by introducing the internal stress term into

the model formulation.

4.7.3 Multiaxial actuation loading case

After the analysis of BVPs under uniaxial stress state, this part analyzes the BVP

subjected to non-uniform stress state. As it was mentioned in the introduction, the ma-

jority of applications require the functionality of SMA-based components under multi-

axial stress state that are originated from curvatures and discontinuities, such as notches

and holes coming from installment requirements, it is imperative to understand the SMA

cyclic response under such loading conditions. However, the irrecoverable TRIP strains

evolves differently in the multiaxial stress state compared to that in the uniaxial one. In

order to study the effect of the stress multiaxiality, a plate actuator with a centric hole

made from Ni60Ti40 (wt.%) is chosen as the BVP subjected to cyclic actuation loading.

The geometry of the plate actuator is shown in Figure 4.11, which has 100 mm in the

length, 10 mm in the width, and 0.5 mm in the thickness. The centric hole has a diameter

of 2 mm. In the experiment, a nominal load of 136 MPa was applied in the longitudinal

direction of the plate, thereafter it was subjected to a thermal cycling between 280 K and

400 K for 100 times while the bias load was maintained constant. The TRIP strain in the

longitudinal direction was recorded at the end of each thermal cycling by using the DIC

technique. In order to test the capability of the proposed model to predict the multiaxial

TRIP evolution for SMA-based structural components under non-uniform stress field, the

plate actuator simulation is performed wherein the loading conditions are the same as the

experiment. The material parameters used in this simulation are listed in table 4.5 which

are calibrated from the uniaxial dogbone specimen experiments.
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Table 4.3: Material parameters for NiTi SMA under uniaxial cyclic actuation loading.

Type Parameter Value Parameter Value

EA 24.15 [GPa] CA 15 [MPa/K]
EM 24.15 [GPa] CM 8 [MPa/K]

Key material parameters νA = νM 0.33 Ms 330 [K]
15 αA = αM 1.0×10−5 [K−1] Mf 300 [K]

Hmax
i 4% As 351 [K]

Hmax
f 3.17% Af 375 [K]

Hmin 0% kt 0.045
τcrit 0 [MPa]

Smooth hardening parameters n1 0.5 n3 0.5
4 n2 0.5 n4 0.5

σb 80 [MPa] λ1 0.1
TRIP parameters Cp

1 2.6×10−2

4 Cp
2 0.18

Table 4.4: Material parameters for NiTiHf SMA under uniaxial cyclic actuation loading.

Type Parameter Value Parameter Value

EA 70 [GPa] CA 12.5 [MPa/K]
EM 70 [GPa] CM 11.9 [MPa/K]

Key material parameters νA = νM 0.33 Ms 441 [K]
15 αA = αM 1.0×10−5 [K−1] Mf 430 [K]

Hmax
i 3.15% As 460 [K]

Hmax
f 3.15% Af 466 [K]

Hmin 0.7% kt 0.007
τcrit 0 [MPa]

Smooth hardening parameters n1 0.06 n3 0.06
4 n2 0.06 n4 0.06

σb 35 [MPa] λ1 0.1
TRIP parameters Cp

1 5×10−4

4 Cp
2 0.3
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Figure 4.9: Selected thermal training cycling response under constant load 200 MPa and
the load-free TWSME response of NiTi SMA. (a) Cycle 1, (b) Cycle 10, (c) Cycle 20, (d)
Cycle 40, (e) Cycle 70, (f) Cycle 100, (g) TWSME cycle, (h) Combined.
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Figure 4.10: Selected thermal training cycling response under constant load 200 MPa and
the load-free TWSME response of NiTiHf SMA. (a) Cycle 1, (b) Cycle 10, (c) Cycle 20,
(d) Cycle 40, (e) Cycle 70, (f) Cycle 100, (g) TWSME cycle, (h) Combined.
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t = 0.5 mm
d = 2 mm

a = 100 mm

b = 10 mm

Figure 4.11: The geometry of the Ni60Ti40 (wt.%) plate actuator with a centric hole.

Table 4.5: Material parameters used for the Ni60Ti40 (wt.%) plate actuator with centric
hole under multiaxial stress state.

Type Parameter Value Parameter Value

EA 70 [GPa] CA 22 [MPa/K]
EM 70 [GPa] CM 22 [MPa/K]

Key material parameters νA = νM 0.33 Ms 318 [K]
12 αA = αM 1.0×10−5 [K−1] Mf 298 [K]

Hmax
i 1.5% As 332 [K]

Hmax
f 1.5% Af 352 [K]

Hmin 0% kt 0.01
τcrit 0 [MPa]

Smooth hardening parameters n1 0.5 n3 0.5
4 n2 0.5 n4 0.5

σb 0 [MPa] λ1 N/A
TRIP parameters Cp

1 5.73×10−3

4 Cp
2 1.972

As it can be seen from Figure 4.12(a) showing the principal stress contour, an non-

uniform stress field is caused in the plate actuator due to the presence of the discontinuity

hole, a larger stress field around 400 MPa is present as the stress concentrated part while a

much smaller stress field is shown as the less stress concentrated region. As a result of this

stress concentration, the phase transformation of the plate actuator is largely redistributed.
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As it is shown Figure 4.12 (b), the stress concentrated part starts the phase transformation

earlier while the less stressed part is later initiated. Refer to Figure 4.13 for the TRIP

strain evolution results, the experimental DIC result is indicated in the bottom row while

the prediction results by the proposed model is listed in the upper row. The experimental

results show that the multiaxial stress state has a significant effect on the TRIP strain

accumulation from cycle to cycle. Specifically, the TRIP strain accumulates much faster

in the stress concentrated part than the less stress concentrated part. In cycle 10, There

is around 0.17% TRIP strain accumulated in the stress concentration part while the rest

of the plate actuator is much less than 0.15%. In cycle 100, there is 0.32% TRIP strain

accumulated in the stress concentrated region while the less stress concentrated part is

stil well beyond 0.15%, the other plate part under uniform stress field accumulates TRIP

strain around 0.25%. The observation on these results can be explained by the following.

Based on the stress-dependent transformation strain function Hcur in equation 4.19, a

larger stress state always generates a greater transformation strain value unless the stress

is beyond the saturation point, which means the stress concentrated part can induce more

oriented martensitic variants than the less stress concentrated region. Assuming only

oriented phase transformation contributes to the generation of TRIP, it is conceivable that

stress concentrated region tends to create more TRIP strain compared to the rest part

of the plate. Although this phenomenon looks very complex, it can be seen from the

simulation results that not only the overall multiaxiality of TRIP generation is captured,

but also the TRIP strain magnitude for the whole plate actuator is well predicted by the

proposed model. By using the newly proposed multiaxial evolution law for TRIP strain,

the proposed model is demonstrated to have the capability to capture the effect of stress

multiaxiality on the TRIP strain generation.
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Figure 4.12: Stress and martensitic volume fraction distribution contour for the Ni60Ti40

(wt.%) plate actuator with a centric hole predicted by the proposed model. (a) Maximum
principal stress contour, (b) martensitic volume fraction contour.
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Figure 4.13: TRIP strain evolution contour for the Ni60Ti40 (wt.%) plate actuator with
a centric hole experiencing a stress concentration subjected to cyclic thermomehcanical
loading. The first row is simulation results by the proposed model while the second row
is experimental DIC result.
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4.8 Conclusion

By using the general thermodynamic framework for dissipative material, a three-

dimensional finite strain constitutive model for SMAs considering multiaxial TRIP evo-

lution as well as TWSME due to the introduction of an oriented internal stress field after

training is presented in current work. This model is developed based on the early work by

[47], and its large deformation formulation [121], as well as its early extensions consider-

ing TRIP [9, 50]. By virtue of the martensitic volume fraction, transformation strain, in-

ternal stress, and TRIP strain tensors used as internal state variables, the model is enabled

to capture the following important characteristics of SMAs: (1) The model formulated

based on a finite deformation theory is inherently able to capture the large strains and

rotations exhibited by SMAs under cyclic thermomechanical loading. (2) Through the in-

troduction of internal stress tensor accumulated with respect to loading cycles, the model

is capable of predicting the TWSME at the load-free condition due to the generation of an

oriented internal stress field after training procedure. (3) By proposing a multiaxial TRIP

strain evolution law, the model considered the effect of multiaxial stress state on the TRIP

strain evolution when SMAs experience a non-uniform stress field. A detailed imple-

mentation procedure of the proposed model is presented through a user-defined material

subroutine within a numerical environment allowing for solving complex BVPs. Com-

prehensive instruction on calibrating the material parameters, as well as the derivation of

consistent tangent stiffness and thermal matrices are also provided. Simulation results

in uniaxial cases predicted by the proposed model showed a very close agreement with

experimental results validating the capability of the model to capture the TWSME mate-

rial response. The predicted multiaxial TRIP strain results of an SMA plate with centric

hole experiencing stress concentrations correlated well with the observed experimental

DIC results, which demonstrates the ability of the model considering the effect of stress
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multiaxiality on TRIP strain evolution. The fidelity of the model shown by results com-

parison between predictions and experimental results demonstrates the proposed model

and its implementation schemes can be used as an efficient design and analysis tool for

the future applications of SMA-based functional components.
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5. SUMMARY AND PROPOSED FUTURE WORK

5.1 Summary and conclusions

Many engineering applications require SMA-based functional components experi-

encing large deformations subjected to cyclic thermomechanical loading. The majority

of available constitutive models for SMAs are developed based on small deformation the-

ory despite the fact that SMAs can reversibly deform to a relatively large strain regime up

to 8% (within the finite strain regime). Besides, repeated phase transformations during

cyclic loading cause permanent deformations as a result of the TRIP generated at an effec-

tive stress level much lower than the material plastic yielding point. Moreover, realistic

applications also require the functionality of SMA-based actuators under multiaxial stress

state originated from geometry complexities or installment required discontinuities, such

as notches and holes, in which the non-uniform stress state has a significant impact on

the TRIP strain generation. In order to address these modeling challenges to facilitate a

reliable and efficient design for SMA-based actuators, the finite strain constitutive model

for SMAs in the framework of large deformations is required to provide an accurate pre-

diction on the material response considering multiaxial TRIP evolution. To that end, a

three-dimensional finite strain constitutive model is proposed for polycrystalline SMAs

under large deformation as a starting step in this dissertation. Second, based on the model

developed in the first step, a three-dimensional finite strain constitutive model for SMAs

incorporating multiaxial TRIP strain evolution and the TWSME is proposed. A detailed

implementation of the proposed models is presented through user-defined material sub-

routines within a numerical environment for solving different bound value problems. The

predicted cyclic thermomechanical responses for a wide range of SMA material systems

under both uniaxial and multiaxial loading conditions are compared against experimental
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results to validate the modeling capabilities.

5.1.1 Finite strain constitutive modeling for SMAs

In order to account for the large deformations exhibited by SMA-based functional

components, the first contribution of this work is the proposition of the three-dimensional

finite strain constitutive modeling of martensitic transformation for polycrystalline SMAs.

The model is developed based on the early classic SMA model proposed by Lagoudas

and coworkers for small deformation analysis. Three important characteristics commonly

shown in SMA responses are considered, i.e., 1) the smooth transition during the phase

transformation, 2) the stress-dependent transformation strain to account for the coexis-

tence of oriented/self-accommodated martensitic variants, and 3) a stress-dependent criti-

cal driving force to consider the effect of applied stress levels on the size of the hysteresis

loop. The proposed model is formulated based on the finite deformation framework that

utilizes logarithmic strain and rate such that it not only accounts for the large strains and

rotations but also resolves the residual stress errors that are caused by using other non-

integrable objective rates. The proposed model is able to predict the stress-induced and

thermally induced phase transformations in SMAs under general three-dimensional ther-

momechanical loading. In particular, it was shown in the example of an SMA bar that the

proposed model accounts for the geometry nonlinearity induced by large strains so that it

corrects the spurious material softening in the results from its infinitesimal counterpart. In

the numerical examples of an SMA beam and an SMA torque tube, it was demonstrated

that the proposed model captures the large rotations that SMA-based components may

undertake. By comparing the predicted cyclic response to the results obtained through

the Abaqus nonlinear solver, the proposed model demonstrated that it can effectively re-

solve the residual stress errors. The numerical analysis of a 3-D solid flexible structure

experiencing local, non-proportional stress and strain evolution shows that the proposed
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model can be used as a simulation tool for the analysis of complex SMA-based structures.

The detailed formulation of the proposed model and its implementation procedures laid a

solid foundation for the further extension of the model to incorporate TRIP and damage

evolution experienced by SMAs under cyclic loading.

5.1.2 Modeling of multiaxial TRIP evolution and TWSME

The second major contribution of this work is the formulation of a three-dimensional

finite strain constitutive model for SMAs considering multiaxial TRIP evolution as well

as the TWSME after stress or thermally training procedure. By virtue of the martensitic

volume fraction, transformation strain, internal stress, and TRIP strain tensors used as

internal state variables, along with the general thermodynamic framework for dissipative

material, the proposed model is enabled to capture the following important character-

istics shown by the material response of SMAs. First, the model formulated based on

a finite deformation theory is inherently able to capture the large strains and rotations

exhibited by SMAs under cyclic thermomechanical loading. Second, through the intro-

duction of internal stress tensor accumulated with respect to loading cycles, the model is

capable of predicting the TWSME at the load-free condition due to the generation of an

oriented internal stress field after training procedure. Finally, by proposing a multiaxial

TRIP strain evolution law, the model considered the effect of multiaxial stress state on

the TRIP strain evolution when SMAs experience a non-uniform stress field. Numerical

simulation results in the case of uniaxial cases showed a good agreement with experi-

mental results which validates the capability of the model to capture the TRIP generation

and TWSME. The predicted multiaxial TRIP strain results of an SMA plate with centric

hole experiencing stress concentrations correlated well with the observed experimental

DIC results, which demonstrates the ability of the model considering the effect of stress

multiaxiality on TRIP strain evolution. The fidelity of the model shown by results com-
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parison between predictions and experimental results demonstrates the proposed model

and its implementation schemes can be used as an efficient design and analysis tool for

the future applications of SMA-based functional components.

5.2 Proposed future works

Based on the proposed models and its implementation schemes presented in this

dissertation, the following pertaining research areas can be further explored as potential

future works.

• The evolving cyclic thermomechanical response of an SMA representative vol-

ume element (RVE) considering nano-precipitates can be obtained by taking ad-

vantage of the proposed model. It has been experimentally demonstrated that an

appropriate aging procedure on the as-received SMAs can significantly reduce the

amount of TRIP strain generated during cyclic thermomechanical loading. Such

heat treatment leads to the formation of nano-precipitates, serving as elastically de-

formed second-phase particles, inside SMAs when the matrix material undergoing

the repeated phase transformations. From a computational micromechanics point

of view, the effects of these nano-precipitates on the generation of plastic strain

have rarely been explored. Thus, the first advancement can aim at creating a fi-

nite element RVE model along with the proposed modeling accounting for TRIP,

to provide a fundamental understanding of the interaction between the presence of

precipitates and the generation of TRIP strain for aged SMAs.

• Incorporating the accumulation of damage along with the TRIP generation through

a unified modeling framework for the prediction of the cyclic thermomechanical re-

sponse of SMAs is another potential critical advancement for this work. The micro-

tomography results computed based on X-ray images have indicated that internal

damage evolves in a quite unique manner to SMAs. Specifically, internal damage
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is observed to nucleate drastically during initial actuation cycling, followed by a

stabilized growth rate and then heads into an exponentially increasing manner till

the end [77]. This trend is strongly correlated with the manner of how the TRIP

strain accumulates. Due to the intrinsic nature of the interaction between TRIP and

damage evolution, it is important to couple these two features via a unified model-

ing framework, therefore to better understand and analyze the cyclic response, to

provide a fatigue and safety design guidance for SMA-based actuators.

• Tension-compression asymmetry should also be incorporated into the unified mod-

eling framework towards designing real actuators that are subjected to non-uniform,

multiaxial, tensile-compressive loading. Experimental results for SMA-based beam

components subjected to cyclic actuation loading show that there is a significant

tension-compression asymmetry exhibited in the tension side of the beam com-

pared to the compression counterpart. Furthermore, the results also show that there

is a strain neutral axis (where the strain value is zero) shift due to the phase trans-

formation asymmetry, and such shift continues to grow in the actuation cycles as

a consequence of the accumulation of TRIP strain. Therefore, constitutive mod-

eling for SMAs considering TRIP as well as the asymmetric phase transformation

characteristics is needed in order to provide an accurate prediction for SMA-based

actuators subjected to non-uniform stress state during cyclic deformations.
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APPENDIX A

CALCULATION OF ORTHOGONAL ROTATION MATRIX

A.1 Objective rates and spin tensor

One of the major points to achieve the objective implementation for the rate form

constitutive models is to calculate the right rotation matrix. This section presents a de-

tailed calculation procedure for that purpose. Consider Ω∗ to be a second-order anti-

symmetric tensor, usually called the spin tensor associated with objective rates, it can

define a proper rotation tensor1 by the following tensorial differential equation,

Ω∗ = Ṙ∗ R∗T , R∗|t=0 = I (A.1)

in the above equation, the asterisk symbol (·)∗ over the tensor means different rotation

tensors for selected objective rates. By using the preceding equation, the following rela-

tionship can be obtained for an objective symmetric second-order tensor A,

˙
R∗TA R∗ = Ṙ∗TA R∗ + R∗T Ȧ R∗ + R∗TA Ṙ∗ = R∗T Å∗ R∗ (A.2)

where the objective rate of A is

Å∗ = Ȧ + AΩ∗ −Ω∗A (A.3)

Moreover, the rate form equation (A.2) can be reformulated as the following incre-

1In many of the published papers by Xiao et al. [116], an orthogonal tensor Q is more often used.
It should be noted the rotation tensor R∗ used here has the following transpose relationship with that
orthogonal tensor, Q = R∗T , by using the above relationship equation (A.1) becomes Q̇ = −Q Ω∗.
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mental form by using the backward integration procedure,

(R∗TA R∗)n+1 − (R∗TA R∗)n = (R∗T Å∗ R∗)n+1 (A.4)

by rearranging the above equation, the following detailed incremental formulation can be

obtained,

Å∗n+1 = An+1 − (R∗n+1R
∗T
n )An (R∗nR

∗T
n+1) (A.5)

the incremental rotation matrix ∆Rn+1 can thus be obtained as,

∆Rn+1 = R∗n+1R
∗T
n (A.6)

There are many different choices on the objective rates depending on how the spin

tensor Ω∗ is defined, a thorough discussion on these objective rates and their associated

spin tensor definition can be found from Xiao et al.[112, 114]. One of the most well-

known objective rates is Zaremba-Jaumann-Noll rate [24, 104] which is defined as the

following equation where the spin tensor is nothing but the vorticity tensor Ω∗ = W,

ΩJ = W (A.7)

Another commonly used objective rate is the Green-Naghdi (or polar) rate where the

spin tensor is defined as,

ΩR = ṘRT = W +
n∑
i 6=j

(1−
√
λi/λj

1 +
√
λi/λj

)
biDbj (A.8)

the rotation tensor R in the above equation is the rotation tensor defined in the polar

decomposition of the deformation gradient.

In this work, the recently proposed logarithmic rate [112, 113, 114, 115] is the cho-
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sen objective rate used in the current formulation for the finite strain constitutive modeling

of shape memory alloys, in which the logarithmic spin has the following expression,

Ωlog = W + Nlog = W +
n∑
i 6=j

(1 + (λi/λj)

1− (λi/λj)
+

2

ln(λi/λj)

)
biDbj (A.9)

the symbol
∑n

i 6=j indicates the summation for i, j = 1, ..., n except for i = j. Such

summation vanishes in the case of one-dimensional case n = 1. n = 2 indicates a two-

dimensional case, and n = 3 means a three-dimensional case. The explicit expression to

calculate Nlog in the logarithmic spin is the follows,

Nlog =


0, λ1 = λ2 = λ3,

v[BD], λ1 6= λ2 = λ3,

v1[BD] + v2[B2D] + v3[B2DB], λ1 6= λ2 6= λ3

(A.10)

in the preceding equation, the [·] symbol denotes the following tensorial calculation,

[BrDBs] = BrDBs −BsDBr, r, s = 0, 1, 2 (A.11)

also in equation (A.10),

v =
1

λ1 − λ2

(1 + (λ1/λ2)

1− (λ1/λ2)
+

2

ln(λ1/λ2)

)
(A.12)

and, 
vk = − 1

∆

∑3
i=1(−λi)3−k(1+zi

1−zi + 2
ln(zi)

)
,

∆ = (λ1 − λ2)(λ2 − λ3)(λ3 − λ1),

z1 = λ2/λ3, z2 = λ3/λ1, z3 = λ1/λ2

(A.13)
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A.2 Numerical algorithm to calculate the rotation matrix

In order to get the value of R∗ for each numerical incremental step, a robust and

consistent algorithm is needed to solve the tensorial differential equation (A.1). An in-

tuitive approach is to use the finite difference method to discretize the material rate on

rotation tensor Ṙ∗ as (R∗n+1−R∗n+1)/∆t. However, such a finite-difference scheme fails

to provide accurate solutions because the difference between the two rotation matrix is

not orthogonal.

A robust algorithm, called the exponential map scheme [90], is able to transform the

anti-symmetric spin tensor Ω into the orthogonal matrices via the following equation,

exp(Ω) =
+∞∑
n=0

1

n!
(Ω)n (A.14)

The following reduced-form can be obtained given Ω is anti-symmetric,

exp(Ω) = I +
sin(||ω||)
||ω||

Ω +
1

2

[sin(||ω/2||)
||ω/2||

]2
Ω2 (A.15)

in which || · || indicates the norm of the matrix, and ω is called the spin vector that can be

constructed based on Ω as follows,

ω =

 ω1

ω2

ω3

 ; Ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (A.16)

With the above knowledge, the incremental form of equation (A.1) can be formulated

as the following equation using the backward integration scheme,

R∗n+1 = exp(Ω∗n+1∆t)R∗n (A.17)
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where exp(Ω∗n+1∆t) can be obtained by using equation (A.15) and the logarithmic spin

tensor Ω∗n+1 can be calculated based on equations from (A.10) to (A.13). A detailed

implementation procedure for the mentioned exponential map algorithm is described in

table A.1 by using the rotation angle and axis.

Table A.1: Computation algorithm for exponential map, adapted from [90].
1. Compute quaternion parameters based on Ω

• q0 = cos(||ω||/2)

• q∗ = sin(||ω||/2)

• IF | q∗| > tol, q∗ =
1

2

sin(||ω||/2)

||ω||/2
ELSE: q∗ =

1

2

[
1− ||ω||2/24 + ||ω||4/1920 + ...

]
• q = q∗ω =

q1

q2

q3


2. Compute the tensorial exponential exp(Ω)

• exp(Ω) = 2

q
2
0 + q2

1 − 1
2

q1q2 − q3q0 q1q3 + q2q0

q2q1 + q3q0 q2
0 + q2

2 − 1
2

q2q3 − q1q0

q3q1 − q2q0 q3q2 + q1q0 q2
0 + q2

3 − 1
2
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APPENDIX B

SUPPLEMENTARY CALCULATION FOR CONSISTENT TANGENT STIFFNESS

AND THERMAL MATRIX

The consistent tangent stiffness and thermal matrix are derived in section 3.3.3. In

order to determine the explicit values for L and Θ during the implementation of the pro-

posed model, the explicit expressions of the following terms ∂τΦ, ∂ξΦ, ∂TΦ used in

equation (4.37) are needed. First, the partial derivative of transformation function Φ with

respect to stress τ can be obtained through differentiating equation (4.30) by τ. Utilize

the expression for π in equation (4.29), it obtains,

∂τΦ =


∂τπ − ∂τY, ξ̇ > 0,

−∂τπ − ∂τY, ξ̇ < 0

(B.1)

where the partial derivative of the thermodynamic driving force π with respect to stress τ

is,

∂τπ = Λ + (∂τΛ)τ + ∆Sτ + ∆α(T − T0) (B.2)

and the partial derivative of critical driving force value Y with respect to stress τ is,

∂τY = D
[
Λ + (∂τΛ)τ

]
(B.3)

based on the expression for the transformation direction tensor in equation (3.40), the

partial derivative of Λ with respect to stress τ are provided for the forward and reverse
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transformation cases as follows,

∂τΛ =


3

2
∂τH

cur ⊗ τ
′

τ̄
+

3

2
Hcur∂τ

(τ′
τ̄

)
, ξ̇ > 0,

0, ξ̇ < 0

(B.4)

where the partial derivative of the term
(τ′
τ̄

)
with respect to stress τ is provided in the

following equation, in which I is the forth order identity tensor and 1 is the second order

identity tensor. It can be observed that ∂τΛ only has value for the forward transformation

case while it has value zero for the reverse transformation case.

∂τ

(τ′
τ̄

)
=

1

τ̄

(
I− 1

3
1⊗ 1− 2

3

τ
′

τ̄
⊗ τ

′

τ̄

)
(B.5)

to calculate the partial derivative of the current maximum transformation strain Hcur with

respect to stress τ, the following result can be obtained based on equation (4.19),

∂τH
cur =

3

2
Hmaxkte

−ktτ̄τ
′

τ̄
(B.6)

Follow the similar procedure to obtain ∂τΦ, the partial derivative of the transforma-

tion function Φ with respect to martensitic volume fraction ξ, and the partial derivative of

the transformation function Φ with respect to temperature T can be calculated as follows,

∂ξΦ =


1

2
a1

[
n1ξ

n1−1 + n2(1− ξ)n2−1
]
, ξ̇ > 0,

−1

2
a2

[
n3ξ

n3−1 + n4(1− ξ)n4−1
]
, ξ̇ < 0

(B.7)
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∂TΦ =


τ : ∆α+ ρ0∆c ln( T

T0
) + ρ0∆s0, ξ̇ > 0,

−
[
τ : ∆α+ ρ0∆c ln( T

T0
) + ρ0∆s0

]
, ξ̇ < 0

(B.8)
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