
CONTAINER MANAGEMENT FOR SERVERLESS EDGE COMPUTING OFFERINGS

A Thesis

by

CHIH-PENG WU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Dilma Da Silva
Committee Members, Riccardo Bettati

Natarajan Gautam
Head of Department, Scott Schaefer

December 2019

Major Subject: Computer Science

Copyright 2019 Chih-Peng Wu

ABSTRACT

Under the serverless paradigm, containers may serve as the runtime execution environments

for processing clients’ service requests. For service providers aiming at broad customer bases,

the portfolio of containers to be made available can be quite large. In edge computing scenarios,

where hardware elasticity is limited or nonexistent, an effective method for container provisioning

and destroying is crucial to increase service availability and mitigate startup overheads. However,

current methods have not been designed for the Internet-of-Things (IoT) applications – one major

use case in edge computing.

In this work, we introduce a new container management method that exploits predictable pat-

terns present in the workload to decrease request latency in such environments. We propose a

new container management method, called Look-Ahead Request Serving (LARS), designed for

IoT applications that exhibit periodicity. We demonstrate that for workloads that invoke requests

periodically (e.g., environmental sensors, surveillance cameras, smart home gadgets), our method

outperforms the method in OpenWhisk, an open-source serverless platform, attaining a 37% and

78% improvement in the startup overhead in a smart gym and a smart home scenario, respectively.

ii

TABLE OF CONTENTS

Page

ABSTRACT . ii

TABLE OF CONTENTS . iii

LIST OF FIGURES . v

LIST OF TABLES. vi

1. INTRODUCTION. 1

2. BACKGROUND . 4

2.1 Containers . 4
2.2 Serverless computing . 6
2.3 Edge computing . 7

3. PROBLEM DESCRIPTION . 9

3.1 Coldstart overhead . 9
3.2 State-of-the-art in open-source container management . 9
3.3 Terminology . 10
3.4 Container management problem. 11

4. METHOD. 13

4.1 Request serving order . 13
4.2 Our method . 15
4.3 Reducing complexity by leveraging workload characteristics . 20

5. EVALUATION . 22

5.1 Testbed and Configurations . 22
5.2 Handcrafted workload experiment . 23
5.3 Gym scenario . 25
5.4 Smart Building Scenario . 26
5.5 Reduce the complexity by leveraging workload characteristics . 28

6. DISCUSSION AND CONCLUSION . 31

6.1 Considering memory size in LARS . 31
6.2 Considering more function types and requests in the sub-problem . 31

iii

6.3 Caching decision-making for the collections of function requests . 31
6.4 Replace average waiting time by other objectives . 32
6.5 Conclusion. 32

REFERENCES . 33

iv

LIST OF FIGURES

FIGURE Page

4.1 Toy example of requests . 14

4.2 Order 1 of the toy example . 14

4.3 Order 2 of the toy example . 15

4.4 Total time breakdown of serving order aabb . 17

4.5 Total time breakdown of serving order abab . 18

5.1 Ratio versus improvement rate . 24

5.2 Number of functions over capacity versus improvement rate. 25

5.3 Improvement rate versus number of users in the gym scenario . 27

5.4 Improvement rate versus number of rooms in the building scenario 29

5.5 The compare function reused rate over different number of function 30

v

LIST OF TABLES

TABLE Page

4.1 Waiting time of different request serving order . 19

5.1 Device setup for gym scenario . 27

5.2 Device setup for Building scenario . 28

vi

1. INTRODUCTION

The emerging serverless computing (or function-as-a-service, FaaS) paradigm [1] is attractive

to application developments for several reasons. Developers can focus on the required functionality

(building ’functions’) while service providers are responsible for taking care of infrastructure tasks

such as machine maintenance, security patching, networking configuration and capacity planning

[2]. It is the service provider’s responsibility to provision the appropriate runtime environment (re-

ferred to as container instances) to fulfill customer’s function requests. Most major cloud service

providers offer proprietary serverless platforms, such as AWS Lambda [3], Google Cloud Func-

tions [4], and Microsoft Azure Functions [5]. Furthermore, there are several open-source projects:

IBM OpenWhisk [6], OpenLambda [7], OpenFaaS [8], Kubeless [9] and others [10].

In the context of edge computing environments, cloud vendors also offer AWS Greengrass

[11] and Microsoft IoT Edge [12] as a way of bringing capabilities to devices in Internet-of-Things

(IoT) applications. They aim at offering local computing, messaging, data caching and syncing,

and machine language (ML) inference to edge devices.

The FaaS approach is particularly suitable for IoT applications, as they often include devices

that sense or generate data to be manipulated through application-specific functions that are too

demanding to be carried out by the device itself. The application developer can specify the func-

tions to be executed by the service provider, and issue function requests to have its function code

deployed and executed. For some commonly used and complex functionality (e.g., object identifi-

cation in images or natural language parsing for audio streams), developers may choose to invoke

functions from libraries offered by the service provider. An indication of the suitability of the FaaS

paradigm for IoT workloads is that Amazon encourages developers to use serverless functions to

develop Amazon Alexa Skills, e.g., customized programs to be invoked from smart home devices

[13].

In the serverless paradigm, providers provision containers (or other sandboxed runtime envi-

ronments) to serve as container instances. To execute a request, the appropriate container needs

1

to be available on a server in the provider infrastructure. If a request arrives, and its associated

container is not available yet, the container needs to be created, which implies in loading its image

into memory, and initialized. If there is not enough memory available for the new container, the

system needs to evict one or more of the currently hosted containers to free resources.

As stated by Baldini et al. [14], the system may ’scale to zero’ some container instances to

yield resources to respond to requests for other functions. Hence, a provider can accept more

request types — i.e., offer a more extensive catalog of containers to customers — than it is able

to host simultaneously given its capacity constraints. This capability may enable the providers to

take more customers (and their functions), but it introduces a container management challenge:

the decisions involved in the resource allocation, creation, and destruction of containers should be

made such as the Quality-of-Service (QoS) customer specifications (e.g., requirements expressed

as a target average or 99% request execution latency) are met. Resource management is still a

challenge for traditional cloud computing providers, but for edge computing the ability to add

physical servers to the edge network is much more constrained, if existent at all, and the provider

is likely to operate under more stringent resource availability.

The dynamic instantiation of containers introduces a coldstart overhead: a container needs

to be instantiated before it can serve a function request [2]. Though this overhead cannot be

avoided for the first execution of each request type, evictions reintroduce the coldstart overhead for

subsequent requests. While keeping containers in memory can significantly reduce the coldstart

overhead, the entailed high cost in memory usage would lead to a trade-off involving resource

contention, system performance, and service availability.

Our work addresses workloads from IoT devices. Many IoT applications deploy devices that

capture data from the environment and periodically pass the data to a server for further processing,

such as Smart Home systems [15], animal body signal sensors in ecological surveillance systems

[16], temperature and humidity data for environmental control [17], and sensors on soil, tractors,

and plant samples in smart agriculture deployments [18]. Other applications require periodic anal-

ysis of device data using application-specific methods, such as camera and movement sensor data

2

in event/crowd management systems [19]. In such applications, devices issue requests in well-

established periodic patterns.

The existing container management approaches target generic workload patterns, ignoring even

highly predictable request patterns. In this work, we investigate the impact of exploiting the pre-

dictability opportunity that comes with periodic patterns. We evaluate the performance behavior

of de facto container management methods such as OpenWhisk and Kubernetes under workloads

that exhibit periodicity. We propose a new way to dispatch requests that takes into consideration

the predictability introduced by periodic patterns.

3

2. BACKGROUND

2.1 Containers

A container image is a lightweight, stand-alone, executable package of software that includes

code, runtime, system tools, system libraries, and settings [20]. Containers are runtime environ-

ments that provide isolation between applications. For example, different applications may have

conflicting execution requirements; the isolation provided by containers can allow software to run

with the desired library packages and even deploy customized versions. In contrast to the tradi-

tional hypervisor-based virtualization, container-based virtualization shares the operating systems

(OS) kernel aross containers, and hence it has shorter instantiation time and smaller memory foot-

print.

The concept of OS-level virtualization is not new in operating systems. Similar ideas have

been implemented in other systems, such as jails in FreeBSD [21], and zones in Solaris system

[22]. In 2008, the LXC (LinuX Containers) [23] was released in Linux kernel. The two essential

technologies for Linux containers – control groups, and namespaces – were available to general

Linux users. Control groups allow a system to control and limit the resource usage for a process or

a group of processes. Namespaces enable the system to grant privileges to different users or user

groups.

Docker [24] is one of the container-based virtualization engines based on the LXC technology.

Docker provides an ecosystem for users to leverage the advantages of container-based virtualiza-

tion more easily. Using Docker, a user first creates a Docker image consisting of binaries, runtime

environment, and library packages. The image is layer-based, and the host machine needs not to

store the common layers of different images, therefore saving disk space. The user will instantiate

the Docker image from disk to memory to run the application. Multiple instances of the application

can be instantiated to scale out services. The system administrator can pause or stop containers to

yield resources. When a container is paused, the container instance does not use CPU, but it still

4

resides in memory. If a container is stopped, then the container instance may be removed from

the memory. The system administrator will need to re-instantiate a stopped container to run its

applications.

Container-based virtualization has been widely adopted in production. The promising lightweight

virtualization makes it suitable for adapting to the dynamics of workloads. For example, containers

have been used to carry out dynamic resource scheduling for MapReduce jobs in enterprise clus-

ters to meet service level objectives [25], to create runtime environments for legacy codes [26], to

achieve on-demand computational resource provisioning for mobile computation offloading [27],

and just-in-time instantiation of services [28].

In 2007, Soltesz et al. [20] described the techniques used by Linux-VServer, a container-

based virtualization tool. The discussion covered the implementations of resource sharing and

security implementation of process and network. They made a performance comparison with

Xen (hypervisor-based virtualization), and the results showed that the Linux-VServer can be more

efficient and provide significant performance improvement for web-hosting workloads.

For the performance comparison between hypervisor-based and container-based virtualization,

Xavier et al. [29] performed experiments to evaluate various compute virtualization technologies

and concluded that LXC virtualization has a near-native performance on CPU, memory, disk, and

network measurements.

One potential drawback of the container-based virtualization is the lack of isolation from the

core operating system. Because containers share the same kernel, the isolation level of containers

is not as complete as the hypervisor-based virtualization. Current container engines may need to

improve [30] their file system, network and memory management in order to obtain performance

and security guarantees.

In 2017, Manco et al. [31] proposed a design of lightweight VMs by using unikernels for

specialized applications to achieve both isolation and efficiency. They analyzed the performance

bottleneck of Xen servers and redesigned the Xen’s control plane from centralized operation to a

distributed one to reduce the interactions with the kernels. They presented LightVM and showed

5

that its performance is faster than container-based virtualization. However, LightVM is optimized

for an application. A container, on the other hand, is an application-agnostic runtime environment.

The container orchestration is another important problem in modern large cluster management

of data centers, such as the Quincy project [32] and the Apollo project [33]. In 2015, Google shared

their container orchestration platform, called Borg [34]. Borg aims at managing container services

for complex production workloads, i.e., handling vraying resource requirements, service priorities,

service lifecycle management, job failures, running across tens of thousands of machines, etc.

The Borg project evolved to Kubernetes, an open-source project widely used in many production

clusters.

2.2 Serverless computing

To address the fast evolution of application requirements, it has been proposed that applications

be built by the the composition of simple and flexible functions. A Function-as-a-Service (FaaS)

provides an environment for the deployment of such functions. The serverless paradigm allows

developers to focus on building the functions, while the service providers take care of machines

deployment and management. Current industrial leaders such as Amazon, Microsoft, and Google

provide products for customers to deploy their functions on the cloud. Many open-source projects

are also available: IBM OpenWhisk [6], OpenLambda [7], OpenFasS [8], and Kubeless [9].

Developers can write functions using various programming languages and customized libraries.

Upon service requests, the service providers will create the runtime environment (generally with

containers) and provision user functions. Customers only pay for the actual resources used while

executing the function. The serverless paradigm is a good fit for current IoT applications because

of its pricing model, the flexibility offered by its function-based software development, and the

simplicity of scaling up services by deploying additional function instances.

As functions are provisioned within containers, the service providers are responsible for con-

tainer creation, destruction, and even load balancing requests among machines. To better utilize its

resources, service providers will stop containers to release resources for other functions.

Stopping a container to incurs a new challenge, the so-called coldstart overhead. The cold-

6

start overhead is the instantiation time for a new container, which involves the time to create a

new control group isolation, loading the container image from disk to memory, and application

initialization. The overhead is introduced the first time the request arrives, but the container might

be evicted due to resource limitation after a while; hence another coldstart overhead may be re-

induced. Minimizing the probability of incurring a coldstart overhead while serving requests may

impact positively the overall performance of service requests.

Lloyd et al. [35] and Wang et al. [2], in 2017 and 2018, conducted a series of experiments on

AWS Lambda, and report a series of performance metrics. They find that as while the workload

stress increased, AWS will provision more virtual machines to host container services. However,

we consider this resource elastic is not existed in edge computing scenario.

There are many studies that improve the serverless computing performance. Pocket [36] and

Locus [37] aim at providing cheap and efficient ephemeral storage to mitigate the possible ex-

cessive cost due to large amount of intermediate files generated by the computations. Mohan et

al. [38] found that setting up network connections is a significant part of the container coldstart

process. They proposed a method to reduce coldstart containers by pre-warming containers that

connect to network.Akkus et al. [39] observed that AWS Lambda executes each function in indi-

vidual containers, a design choice of higher isolation but with extra overhead and lower container

utilization rate. They proposed SAND, a framework to analyze series of functions from the same

users and to assign the placements of functions to the same containers whenever possible.

In addition to Docker containers, other runtime techniques are proposed for serverless com-

puting, such as Google gVisor [40], LightVMs [31], WebAssembly [41], and serverless-optimized

containers [42].

2.3 Edge computing

Envisioning the enormous growth of Internet-of-Things (IoT) applications that closely monitor

and actuate on environments, processing data on the edge of the network becomes more and more

critical due to constraints in network bandwidth, network latency, privacy control and so on [43].

For example, the Cisco Global Cloud Index [44] predicts that data produced by those "things" will

7

reach 500 ZB, and 45% of IoT-created data will be processed at the edge of the network to reduce

the burden of network bandwidth consumption. Another example is the real-time image processing

with small devices, e.g., Google Glass, for using in wearable cognitive assistance applications. Ha

et al. [45] built a prototype system that processes image data from Google Glasses in edge servers

and measured both network bandwidth and latency reduction.

Shi et al. [43] define edge computing as the enabling technology allowing computation to be

performed at the edge of the network. The "edge" can be any computing or network resources

along the path between data sources and cloud data centers. Comparing to servers in a cloud data

center, resource is often stringent at the edge and introduce more resource management challenges

to system designers.

8

3. PROBLEM DESCRIPTION

3.1 Coldstart overhead

As discussed in Section 2.2, coldstart overhead is a well-known issue in serverless computing

[7][14][2][35]. The instantiation of a container instance involves creating a new control group

isolation unit in the hosting operating system, loading the container image from disk to memory,

importing packages, and initializing the application [42]. Wang et al. [2] investigated the factors

impacting performance for the major serverless computing offerings (AWS Lambda, Google Func-

tions, and Microsoft Azure Functions). Their experiments demonstrated that the language used in

the function implementation affects the coldstart latency. For example, the median coldstart latency

of Python 2.7 functions is 167-171 ms while Java functions have higher latencies (824-974 ms) on

AWS Lambda. Like other service, the request latency is a major consideration while developing a

service.

3.2 State-of-the-art in open-source container management

Our analysis of the literature and open-source frameworks – OpenWhisk, OpenLambda, and

Kubernetes – indicates that there are three types of container management policies to choose and

a container for eviction instances: time-based, recency-based and size-based policies.

Time-based expiry policies, as its name implies, will retire container instances using a expira-

tion time. Wang et al. [2] observed that AWS Lambda adopts the time-based expiry policy with

elastic resource provisioning, i.e., AWS Lambda will provision new virtual machines as needed

to serve more container instances and evict containers based on idle time (> 27 minutes) to avoid

wasting resources. They also observed the same behavior in Google Cloud Functions and Mi-

crosoft Azure Functions. Although the time-based policy is applicable on the cloud, the constraint

is obvious: the servers (or the clusters) need to provide sufficient resources to instantiate all re-

quested container instances elastically; otherwise, some requests may suffer from unacceptable

latency due to the shortage. In edge computing environments, such resource elasticity is often

9

unfeasible.

Recency-based policies order items by the time-of-access to catch the temporal locality of

workloads. A typical representative is the least-recently used (LRU) policy. IBM OpenWhisk and

OpenLambda both use LRU as their eviction policy. Using recency-based policy can free resources

on-demand to create container instances for newly received requests.

Size-based policy is used by Kubernetes. From the Kubernetes document [46], when a resource

type (e.g., memory) is "starved," the system will first evict containers that exceed the soft limit and

then by container priority value, and finally by the "consumption" of the starved compute resource.

In other words, if the same soft limit and priority applied toward all containers, the "size" of the

containers will be the decisive factor for eviction candidate choosing in Kubernetes system.

Our literature search did not identify efforts in managing containers in edge servers. Based

on documentation of the AWS Greengrass – the AWS Lambda solution on edge devices – its

management of container instances appears to be quite primitive: the container instances either run

indefinitely (possibly wasting resources) or on-demand (incurring high overheads). When running

out of a resource (e.g., memory), the server cannot accept additional lambda function requests.

An edge server may need to offer more container instances because of privacy concerns, i.e.,

user-specific container instance. For example, Bai et al. [47] proposed edge-hosted personal ser-

vices, in which each user will need a dedicated container instance (e.g., Docker container), to

secure the privacy-sensitive data. Accordingly, the number of container instances soars as the

number of users increases, making the system performance more sensitive to the container man-

agement method.

3.3 Terminology

We adopt the following terminology:

• Function request: <uid, fn, timestamp>. Requests invoked by IoT devices, where fn is

the corresponding Function type and uid denote the user id (used in user-specific container

instance).

10

• Function type: <fn, coldstart time, memory size>. The serverless services available. A

container instance for a function type would take the memory size and coldstart time to

instantiate.

3.4 Container management problem

When a service request is invoked to an edge server, the serverless system receive the request

and queue it in the request pool, where stores the requests that need to be served. Note, there may

be multiple requests received at the same time tick.

The server will first serve the service requests that already have the corresponding container

instances provisioned, as there is no extra cost of provisioning. Then, the server looks into the

request pool and decide which set of function type requested by service request will be served

next, and provision container instances of the requested function types. During the provisioning,

container instances that are not used for serving will be the victim candidate for the eviction.

In this work, we are focusing on a single edge server that offers serverless service toward nearby

IoT devices. With the setup, we consider there is a container management problem in serverless

computing, the problem choosing which containers to hold in memory at which point in time to

minimize request latency and maximize overall system throughput.

The problem is similar to the classic caching problem [48]. For memory and storage systems,

caches maximize the chance that a memory page or storage block is readily available when needed

by the application. In content delivery networks, the system aims at maintaining the most popular

web pages available to clients [49]. The cost of waiting for a page/block/web page to be retrieved

from disk or through the network can have a significant impact on performance. Systems deploy

methods designed to have available in a cache the resources needed when they are needed. The

problem is also similar to the changeover cost problem [50] in operational research. Similarly, the

management of containers offering Function-as-a-Service needs to maximize the chance that the

appropriate container is ready for usage in memory when a request arrives.

Another motivation of this work is that currently adopted methods are generic solutions and are

not designed for IoT workloads exhibiting periodicity patterns as we discussed in Chapter 1. We

11

propose a new method that focus on exploiting the periodicity that may be present at IoT workload

to mitigate the coldstart overhead.

12

4. METHOD

As described in the Section 3.4, our problem is that at any given time, a server needs to de-

cide which function instances to provision from several function types, with considerations of the

coldstart time and memory sizes of containers, and the periodicities of requests.

In this chapter, we will first describe our observations of the IoT workloads, and motivated by

the observations, we propose a heuristic method.

4.1 Request serving order

We can make the following observations from several public IoT data sets (human physical ac-

tivities monitoring [15], animal welfare monitoring [16], Chicago beach water quality monitoring

[17], and smart farm control [18]):

• Many devices invoke requests in well-established periodic patterns

• Many devices invoke requests on punctual time manner, i.e., 00:00:00, 00:00:05, 00:00:10

We use a toy example to illustrate the motivations of our method and demonstrate the impact of

our heuristic based on the request serving order. In Fig. 4.1, there are 4 types of function requests

invoked at t0. Periodicities of function 1 and 2 are 1-second, while periodicities of functions 3

and 4 are 2-second. Assume the system memory is able to hold only two container instances at

the same time. The system needs to decide the request serving order and create function instances

accordingly.

In this simple scenario, the system can serve the requests in two orderings. Order 1, depicted

in Fig. 4.2, serves function requests 1 and 2 first (assuming the system can run two containers at

the same time); after requests 1 and 2 are done, the system evicts function instances of 1 and 2, and

provisions function instances of 3 and 4. The order 1 incurs two extra coldstarts because requests

1 and 2 are coming again at 1s.

Order 2, depicted in Fig. 4.3, serves requests 3 and 4 first, then serves requests 1 and 2. Because

13

function instances for requests 1 and 2 are still in memory, serving additional requests 1 and 2 does

not incur extra coldstarts.

Figure 4.1: Toy example of requests. There are 4 request types invoked at timestamp 0s. Periodic-
ity of requests 1 and 2 are 1-second, while periodicity of requests 3 and 4 are 2-seconds.

Figure 4.2: Order 1: serves request types 1 and 2 first (assuming the system can only run two
containers at the same time); after requests 1 and 2 are done, the system evicts function instances
of 1 and 2 and provisions function instances of 3 and 4. The order 1 incurs two extra coldstarts
because requests 1 and 2 are coming again at 1s.

With the above toy example illustration, we also find current state-of-the-art solutions that

focus on the eviction methods will not effectively mitigate coldstart overhead with the targeted

IoT workload because the intervals (i.e., 1-second) is sufficient to serve all requests. Instead, the

request serving order is an important factor in coldstart prevention of the targeted IoT workload.

We proposed a new method focusing on deciding the request serving to exploit this observation.

14

Figure 4.3: Order 2: serves requests 3 and 4 first, then serves function 1 and 2. Because function
instances of function 1 and 2 are still in memory, serving another requests of function 1 and 2 does
not incur extra coldstart.

4.2 Our method

Our method is a composite of three steps. We first analyze a simpler sub-problem by only

considering two requests. Second, we demonstrate how to use the sub-problem to solve the original

N-function serving order problem with O(N2) complexity. Lastly, by using the IoT workload

characteristics, we can further reduce the complexity into O(K · S · T), where K is the number

of distinct values for number of queued function requests, and S and T are two constants. S is the

distinct values for coldstart time (in our experiment, S=3), and T is the number of the time tick we

are considering.

We first create a sub-problem that only considers two requests (reqa and reqb) of two request

types (a and b) and their next future requests (i.e., 4 requests in total). The goal of the sub-problem

is to decide whether to serve a or b first, i.e., which serving order results in less total waiting time.

With 4 requests and 2 request types, there are six combinations of request serving orders. We

denote them as: abab, baba, aabb, bbaa, abba, baab.

We illustrate the request serving orders aabb and abab and their resulting waiting times next.

Let reqa and reqb be two request of two request types a and b. ta and tb are the arrival times

of their next future requests. The system can easily get these times by determining the request

periodicities. Finally, sa and sb are the coldstart times for the containers associated with a and b.

Fig. 4.4 shows the total waiting time breakdown of serving order aabb. The system has both

reqa and reqb waiting for function instances at t0, and by knowing the periodicities of the two

15

requests, the system can predict that the arrival time of two requests will be ta and tb, respectively.

For brevity, we will use a ramp function notation ()+ in the formula:

(x)+ =


0 if x< 0

x if x≥ 0

Thus, the waiting time will be: (1) provisioning function instance, adding waiting time sa to

reqa; (2) waiting for the arrival of the new reqa, adding waiting time (sa− ta)+ to the second reqa.

If ta < sa, then the waiting time is 0; (3) evict function instance a and provision function instance

b, adding waiting time max(sa, ta)+sb to reqb; in other words, reqb waits until two reqa are served

and waits a coldstart time sb to be served; (4) waiting for the arrival of the new reqb, adding waiting

time (max(sa, ta)+sb− tb)+ to reqb; Total waiting time is the sum of four terms: sa + ((sa− ta)+)

+ (max(sa, ta)+ sb) + (max(sa, ta) + sb − tb)+

We also compute the total waiting time of the serving order abab in Fig. 4.5. Total waiting

time break down: (1) provisioning function instance, adding waiting time sa to reqa; (2) evicting

function instance a and provision function instance b, adding waiting time sa + sb to reqb; (3)

evicting function instance b and provision function instance a, adding waiting time (2sa+sb−ta)+

to reqa; (4) evicting function instance a and provision function instance b, waiting for the arrival

of the new reqb, adding waiting time (max(2sa + sb, ta) + sb − tb)+ to reqb. Total waiting time is

the sum of four terms: sa + (sa + sb) + (2sa + sb − ta)+ + (max(2sa + sb, ta) + sb − tb)+

We can determine the waiting time of other request serving orders by performing similar anal-

yses. By listing the total waiting time of the six request serving order combinations, we can choose

the order that results in the least waiting time.

A downside of this enumeration-based method is that it will often favor requests whose con-

tainer has less coldstart time or favor requests whose periodicity is shorter. To mitigate this prob-

lem, we extend the previous enumeration by also considering the number of queued request, i.e.,

k requests asking the same type of function. We list all six request serving orders and their cor-

responding total waiting times in Table 4.1. By multiplying by k (the queue size) values, large

16

Figure 4.4: Serving order aabb. Total waiting time break down: (1) provisioning function instance,
adding waiting time sa to reqa; (2) waiting for the arrival of the new reqa, adding waiting time
(sa − ta)+ to the second reqa. If ta < sa, then the waiting time is 0; (3) evict function instance
a and provision function instance b, adding waiting time max(sa, ta) + sb to reqb; in other words,
reqb waits until two reqa are served and waits a coldstart time sb to be served; (4) waiting for the
arrival of the new reqb, adding waiting time (max(sa, ta) + sb − tb)+ to reqb;

coldstart time containers and less frequent requests will eventually be picked up and served. For

example, if we only consider serving orders abab and baba and kb is large, then the system would

favor the baba order because the kb · (sa + sb) term (in abab) creates significantly more waiting

time than kb · sb (in baba) does.

After computing the total waiting time of the six serving orders, the system selects the order

that creates the minimum total waiting time as described in Algo. 1. The min_wait_order function

will compute the total waiting time of the request serving order using the given orders, and return

the minimum value of them. The output of the Algo. 1 is the decision of whether reqa or reqb

should be served first.

17

Figure 4.5: Serving order abab. Total waiting time break down: (1) provisioning function instance,
adding waiting time sa to reqa; (2) evict function instance a and provision function instance b,
adding waiting time sa+sb to reqb; (3) evict function instance b and provision function instance a,
adding waiting time (2sa + sb − ta)+ to reqa; (4) evict function instance a and provision function
instance b, waiting for the arrival of the new reqb, adding waiting time (max(2sa+sb, ta)+sb−tb)+
to reqb; Total waiting time: sa + (sa + sb) + (2sa + sb − ta)+ + (max(2sa + sb, ta) + sb − tb)+

Algorithm 1 Determine serving order of two function types
Input: reqa, reqb; two function requests to two function types

Input: ta, tb; the next arrival time prediction using the periodicities

Input: sa, sb; coldstart time of function a and b

Input: ka, kb; number of queued request

Output: function type a or b

1: procedure COMPARE(reqa, reqb, ta, tb, sa, sb, ka, kb)

2: timea ← min_wait_order(”aabb”, ”abab”, ”abba”)

3: timeb ← min_wait_order(”bbaa”, ”baba”, ”baab”)

4: if timea ≤ timeb then

5: return a

6: else

7: return b

18

Serving order Expected waiting time formula
abab ka · sa + kb · (sa + sb) + (2sa + sb − ta)+ + (max(2sa + sb, ta) + sb − tb)+
baba kb · sb + ka · (sa + sb) + (sa + 2sb − tb)+ + (max(sa + 2sb, tb) + sa − ta)+
aabb ka · sa + (sa − ta)+ + kb · (max(sa, ta) + sb) + (max(sa, ta) + sb − tb)+
bbaa kb · sb + (sb − tb)+ + ka · (max(sb, tb) + sa) + (max(sb, tb) + sa − ta)+
abba ka · sa + kb · (sa + sb) + (sa + sb − tb)+ + (max(sa + sb, tb) + sa − ta)+
baab kb · sb + ka · (sa + sb) + (sa + sb − ta)+ + (max(sa + sb, ta) + sb − tb)+

Table 4.1: Waiting time of different request serving order. The serving order abab means: first
provisioning function instance a with coldstart sa and serving reqa; and then evicting function
instance a, creating function instance b with coldstart sb and serving reqb; evicting function
instance b to serve reqa; and finally evict function instance a to serve reqb.
ki, si, ti are the number of queued request, coldstart time of container i, and the next arrival time
of the request type i.

To solve the original problem with N-functions, we use the Algo. 1 as the comparison function

to compare N function requests against each other. Each winner of the comparison (e.g., reqa or

reqb) will increment its score. Finally, with the scores, the system starts provisioning containers

whose score is the highest until the available memory is insufficient to accommodate another new

function instance. Then for the unselected function types (i.e., the containers not chosen for provi-

sion), we queue their requests, so their numbers of queued request (k) increase. It worth to mention

that the higher k value is, in Algo. 1, the requests of the function type is more likely to win the

comparison, so the system will more incline to pick the unselected function types in next run. We

call it Look-Ahead Request Serving method (LARS) in Algo. 2.

19

Algorithm 2 Look-Ahead Request Serving order algorithm (LARS)
Input: REQ; N service requests

Input: S; coldstart time

Output: request serving order

1: procedure SERVING ORDER(REQ,S)

2: for each reqi ∈ REQ do

3: for each reqj ∈ REQ, ∀j 6= i do

4: r ← COMPARE(reqi, reqj , ti, tj , si, sj, ki, kj)

5: score[r]++

6: score.sort() . sort from high to low

7: order← ∅

8: while True do

9: fn← score.pop_head()

10: if size of function instance fn ≤ free memory then

11: order = order ∪ fn

12: else

13: break

14: return order

4.3 Reducing complexity by leveraging workload characteristics

The LARS method needs to compare N function types against each other, resulting in O(N2)

complexity. The complexity can be greatly reduced by using the two characteristics particular to

IoT workloads.

First, the number of coldstart time values is limited. The study by Wang et al. [2] concluded

that coldstart times are highly associated with runtime languages, e.g., the coldstart time for a

node.js runtime is 150ms, while for a JAVA runtime it is 900ms. The second characteristic is that

20

the arrival time of the requests appear in punctual time ticks, e.g., 00:00:00, 00:00:10, 00:00:20,

etc. We can also use buckets and set a maximum look-ahead time to further restrict the number of

time ticks in the computation.

Given these characteristics, most of the COMPARE function – i.e., Algo.1 – can reuse previous

results. For example, reqa, reqb are function requests asking for a python runtime and a node.js

runtime and their periodicities are 1-second and 2-seconds, respectively. Using the COMPARE

function, the system determines that reqa should be served first. Then when system process another

set of requests, reqc, reqd that are also asking for a python runtime and a node.js runtime with the

same periodicities, the system can reuse the previous result of reqa, reqb and determine that reqc

should be served first.

The complexity of performing at the COMPARE function in Algo. 2 can be reduced from

O(N2) into O(K ·S ·T), where S and T are two constants. S is the distinct values for coldstart time

(in our experiment, S=3), and T is a number of the time tick we are considering, leaving K (distinct

values for number of queued request) is the only unbounded parameter. For most function types,

the number of queued request (k) is 1, making the distinct value of K small enough. We observed

that more than 50% of the computation can be saved in our experiment, while yielding the same

results. The lower complexity makes our LARS method computationally more feasible.

21

5. EVALUATION

In this chapter, we evaluate our LARS method against other existing methods. First, we will use

a handcrafted workload to inspect the factors of performance improvement. Then we evaluate the

performance using two use case scenarios. Finally, we measure the magnitude of the computation

cost saving described in Section 4.3.

5.1 Testbed and Configurations

We developed a simulation tool to emulate the serverless platform to test different configura-

tions of function types and periodicities of function requests.

To evaluate the performance of our LARS method, three other methods were examined for

performance comparison purpose.

First was the OpenWhisk method, which uses the least-recently used (LRU) policy to determine

eviction candidates. We also used the OpenWhisk method as the baseline when calculating the

performance difference between methods. The second was the method from Kubernetes [34], a

container orchestration platform that is used by other open-source serverless projects to manage

container creation and eviction. The eviction policy in Kubernetes is a size-aware policy, which

will evict containers based on their resource usage. Specifically, in our work, we implemented

the Kubernetes’ policy by evicting the highest memory usage. We used as the third method a

policy based on the Belady’s algorithm for cache eviction [51], because the periodicity of requests

provides future information of the "next arrival time of requests." Applying Belady’s algorithm will

guarantee the eviction candidate selection is optimal, but we out work concluded that exploring

alternative request serving ordering has more impact. We called the Belady’s based method the

Eviction Oracle method.

As stated in Section 3.2, currently employed methods in serverless computing only focus on the

eviction policy. We checked the source code of OpenWhisk and Kubernetes and found their serv-

ing order methods are both adopting the First-Come-First-Serve (FCFS) policy. Of course, those

22

two systems were originally designed to run in the cloud, where limitation of the computational

resources is vanishing. The request serving order is not their focus. Therefore, we implemented

the FCFS method when simulating all comparison methods.

To highlight the performance improvement, we presented results by normalizing the waiting

time against the OpenWhisk method (baseline method). Let TOW and Tx be the average waiting

time using the OpenWhisk (OW) method and the x method for the same workload. We defined an

improvement rate with the equation:

rate =
TOW − Tx

TOW

Each data point in the figures was generated by averaging 10 experiment runs, and for each

run we generated 100,000 requests. We reported the average request waiting time for container

instances.

5.2 Handcrafted workload experiment

Before diving into more realistic scenarios, we again used the handcrafted toy example as de-

picted in Fig. 4.1 to get an initial idea of how our LARS method performed on different workloads

exhibiting periodicity.

The experiment setup was as follows. Given N IoT devices invoking periodic requests, the

periodicities of each function requests were randomly assigned to either 1-second or 2-seconds.

For container instances, we fixed the container memory to the same size and the coldstart time of

containers to 0.5-seconds to simplify the environment.

We explored two variables: (1) ratio, the ratio of devices that send requests with 1 second and

2 seconds periodicities, which expresses the opportunities for varying the order in which requests

are served and (2) number of functions / capacity, the total number of functions needed over the

system memory capacity, which captures the stress to the system. We assumed that N devices will

need N container instances, i.e., no container instance sharing.

We increased the number of devices (N) until the eviction oracle method showed no improve-

23

ment. We pictured the results in Fig. 5.1 and Fig. 5.2. We didn’t include the performance of the

Kubernetes method because it chooses random victims due to all containers being equally sized.

Figure 5.1: Ratio versus improvement rate. The x-axis is in log-scale. Note ratio > 1 means
there were more devices sending requests using 1-second periodicity, while ratio < 1 means more
devices sending requests using 2-seconds periodicity.

In the experiment, a higher ratio meant there were more devices sending requests using 1-

second periodicity, while a lower ratio meant more devices were using 2-second periodicity. The

right-hand side curves in Fig. 5.1 validate an intuition that if most requests are with high frequency,

then the chance of the improvement is low. In contrast, the left-hand side curves reveal that op-

portunities exist. The improvement rate reached its highest point, about 10%, at ratio = 1/2. The

LARS method outperformed the eviction oracle method by 6%.

Fig. 5.2 also validates another intuition: the more number of functions is needed, the harder the

problem is. Beginning with 1x of the system capacity, where the system can afford running all nec-

essary container instances in memory, toward 1.6x capacity, the LARS method kept having higher

24

Figure 5.2: Number of functions over capacity versus improvement rate.

improvement rates. Even under such high stress, the LARS method still can find opportunities to

make better container management decision.

5.3 Gym scenario

Now we investigated how the LARS method performs in emulated real-world use cases. We

crafted two use case scenarios. The first created scenario was a smart gym.

The gym users are wearing personal devices to monitor bio-metric values during physical train-

ing. To protect such privacy-sensitive data, the serverless framework must provision dedicated

container instances to serve requests for different users, i.e., more users generate more need for

container instances. In this experiment, there were N users who all wear 4 personal devices with

different periodicities (detail are listed in Table 5.1).

We also assumed 100 exercise machines that interact with users. The serverless framework pro-

visions 100 container instances for these 100 machines as the users’ interactions with the machines

are also privacy-sensitive data.

For each supported serverless function types, we setup the container coldstart times by assign-

25

ing to different runtime languages, referring the result in Wang et al. [2] study. Following were

the coldstart times in our experiments for different runtime languages: Nodejs: 150ms, Python:

250ms, Java: 900ms.

The sizes of containers were arbitrary assigned. In essence, a vanilla Python container needs

16 MB memory space. For more sophisticated devices (e.g., exercise machines), we chose a larger

container size.

The number of users range was from 100 to 1000. The corresponding ratio of the number of

function over the system capacity was from 1.2x to 8.6x.

The improvement rate of each method as we vary the number of users is in Fig. 5.3. Note the

improvement rate is related to the performance of the OpenWhisk method (baseline) for the same

workload, which caused fluctuations to the curves of other methods.

The Eviction Oracle could only perform well in low number of users range, and soon lost its

advantage. The LARS method had a good improvement rate at the first point, declined a little, and

then bounced up. One possibility is that both Eviction Oracle and LARS, knowing the predictabil-

ity information, were able to exploit the information in the low number of users. While the number

of user was growing, the eviction strategy was insufficient to improvement the waiting time. The

Kubernetes method cannot exploit the predictability and fails to make appropriate decisions.

In the end part (higher stress), eviction choices of the three other methods became useless be-

cause all remaining containers will be evicted to serve overwhelming requests for different function

types. By deciding to alter the request serving order, LARS can intentionally provision containers

that are likely to be used multiple times. The maximum improvement rate of LARS was 37% at

the number of user was 600.

5.4 Smart Building Scenario

We created the second scenario by emulating a building (office building or apartment build-

ing) of multiple rooms inside. Each room is individually owned, so the serverless framework has

to provision different container instances to different rooms even when they are using the same

function type. The specification is listed in Table 5.2.

26

Device Size of Container Periodicity Number of function needed
Heart rate sensor 16 MB 0.1 sec. N

Pose monitor 32 0.5 N
Dashboard 64 1 N

Thermometer 16 5 N
Exercise machine 128 10 100 (fixed)

Table 5.1: Device setup for gym scenario

Figure 5.3: Improvement rate versus number of users in the gym scenario

The size of containers that provide function types for camera devices was 256 MB. We chose

this memory size by inspecting a face recognition program, OpenFace [52]. We downloaded its

container image of OpenFace from Docker Hub [53], and we found its memory consumption was

about 250 MB. For the other functions providing services to two sensors, we simply assigned them

small container sizes.

Unlike the gym scenario, in a room, there were multiple devices of the same type (e.g., camera)

and the same type of device may have multiple periodicities. For example, a camera in the front

door may invoke requests every 1 second, while a camera in the bedroom may just invoke every

27

Device Size of container Numbers per room Periodicity Number of function needed
Camera 256 MB 20 1, 5 sec. 2N

Thermometers 16 10 10, 20 2N
Humidity Sensors 16 10 30 N

Table 5.2: Device setup for Building scenario

5 seconds as the information is less time-sensitive. In our experiment, we randomly assigned the

periodicity to the devices.

The building scenario simulated a more complex scenario where devices can share the same

container instance as long as they are in the same room (i.e. same uid), but at same time, each

device may issue function requests using different periodicities. We tested with the number of

rooms from 100 to 500, and showed the result in Fig. 5.4. The corresponding ratio of the number

of function over the system capacity varied from 1.6x to 7.8x.

The improvement rate was higher than that of the gym scenario. A major reason was that

the IoT devices in the building scenario can share container instances. Therefore, the aggregated

waiting time saving resulted in a better improvement rate.

5.5 Reduce the complexity by leveraging workload characteristics

Lastly, we were interested in how much algorithmic complexity LARS can save by using work-

load characteristics. Recall in Algo. 2, LARS computes the sub-problem of two requests of all N

requests using the COMPARE function in Algo. 1, which results in O(N2) complexity. We argued

that the complexity can be reduced to O(K · S · T) when the distinct values for the coldstart and

number of the time ticks are limited.

We output the reuse rate of the COMPARE function in the gym scenario and achieved the

expected reduction in number of calculations. As illustrated in Fig. 5.5, the reuse rate was more

than 90% when the number of function was about 500 and still over 40% even the number of

functions was close to 4000. Another important observation is that even K (number of distinct

values for number of queued request) is unbounded, the high reuse rate reflects that about half of

the computations are reusable, showing that leveraging the workload characteristics to reduce to

28

Figure 5.4: Improvement rate versus number of rooms in the building scenario

the computation cost of LARS is viable.

Note here we were reporting the reuse rate without a warm up base. If the function types and

periodicities of requests are known in advance, a system administrator can pre-compute with the

K, S and T to further reduce the computation overhead.

29

Figure 5.5: The compare function reused rate over different number of function

30

6. DISCUSSION AND CONCLUSION

6.1 Considering memory size in LARS

In the current design, the LARS method does not consider the memory size. We can extend

LARS by using the 0-1 Knapsack algorithm to consider the memory size of containers as following.

Each function request will perform the original algorithm in Algo. 2 to get scores of each

function type, so each function type has a tuple of weight and value, <memory size, score>. When

determining the order, i.e. line 8 to line 13, we perform the 0-1 Knapsack algorithm. The objective

is to maximize the score with the given memory capacity (i.e., max weight).

The complexity of performing the 0-1 Knapsack is O(M ·N), where M is the memory capacity

and N is the number of function types.

6.2 Considering more function types and requests in the sub-problem

The sub-problem only considers two function types and their one lookahead function requests.

The sub-problem can also consider more function types with more lookahead requests.

However, we need to carefully evaluate the increased computation cost. Current LARS method

needs to evaluate 6 serving orders. For two function types with two lookahead function requests,

the number of all possible serving order is 20; for three function types with one lookahead function

requests, the number of all possible serving order is 90; if we eagerly consider three function types

with two lookahead function requests, the number of all possible serving order grows to 1680. We

need to evaluate if the performance improvement worth the extra computation burden.

6.3 Caching decision-making for the collections of function requests

Although each device may invoke requests using different periodicities, the request in macro-

level will form patterns, too. In other words, the same set of service requests (i.e. REQ in Algo 2)

in the request pool will occur periodically. The system can, therefore, cache the request serving

order using REQ as key, so the whole computation result can be reused, and hence greatly increase

the computation burden of the LARS method.

31

6.4 Replace average waiting time by other objectives

In our algorithm, we want to minimize the average waiting time for function instances, by

enumerating all possible combinations of the request serving orders. The same approach can apply

with other objectives. For example, if the service level objective (SLO) is the objective, when

performing the sub-problem computation, we can also pass the elapsed waiting time of requests,

and increment the score of the request serving order that will satisfy the SLO requirement.

6.5 Conclusion

In this work, we explored the container management problem for serverless edge computing

offerings. We investigated the currently employed methods and designed a new method that can

successfully exploit the highly predictable patterns from the workloads. Our evaluations showed

improvement in reducing the waiting time for the function instances.

32

REFERENCES

[1] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu, V. Shankar,

J. Menezes Carreira, K. Krauth, N. Yadwadkar, J. Gonzalez, R. A. Popa, I. Stoica, and D. A.

Patterson, “Cloud programming simplified: A berkeley view on serverless computing,” Tech.

Rep. UCB/EECS-2019-3, EECS Department, University of California, Berkeley, Feb 2019.

[2] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind the curtains of

serverless platforms,” in 2018 USENIX Annual Technical Conference (USENIX ATC 18),

pp. 133–146, 2018.

[3] “Aws lambda.” https://aws.amazon.com/lambda/. Visited in February 2019.

[4] “Google cloud functions.” https://cloud.google.com/functions/. Visited in February 2019.

[5] “Microsoft azure functions.” https://azure.microsoft.com/en-us/services/functions/. Visited

in February 2019.

[6] “Ibm openwhisk.” https://openwhisk.apache.org/. Visited in February 2019.

[7] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau, “Serverless Computation with OpenLambda,” in HotCloud 16, vol. 60,

p. 80, 2016.

[8] “Openfaas.” https://www.openfass.com/. Visited in October 2019.

[9] “Kubeless, the kubernetes native serverless framework.” https://kubeless.io. Visited in Octo-

ber 2019.

[10] D. Oh, “7 open source platforms to get started with serverless computing.”

https://opensource.com/article/18/11/open-source-serverless-platforms. Visited in February

2019.

[11] “Amazon greengrass.” https://aws.amazon.com/greengrass/. Visited in February 2019.

33

[12] “Azure iot edge.” https://azure.microsoft.com/en-us/services/iot-edge/. Visited in February

2019.

[13] B. Hussain, “Best practices for scaling your alexa skill using amazon web ser-

vices.” https://developer.amazon.com/blogs/alexa/post/546ab5a1-1d1a-49c2-85a5-

92ada3e6e907/best-practices-for-scaling-your-alexa-skill-using-amazon-web-services.

[14] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell, V. Muthusamy,

R. Rabbah, A. Slominski, et al., “Serverless computing: Current trends and open problems,”

in Research Advances in Cloud Computing, pp. 1–20, Springer, 2017.

[15] A. Reiss and D. Stricker, “Creating and benchmarking a new dataset for physical activity

monitoring,” in Proceedings of the 5th International Conference on PErvasive Technologies

Related to Assistive Environments, PETRA ’12, (New York, NY, USA), pp. 40:1–40:8, ACM,

2012.

[16] M. Caria, J. Schudrowitz, A. Jukan, and N. Kemper, “Smart farm computing systems for

animal welfare monitoring,” in Information and Communication Technology, Electronics

and Microelectronics (MIPRO), 2017 40th International Convention on, pp. 152–157, IEEE,

2017.

[17] Chicago-Park-District, “Beach water quality - automated sensors.”

https://data.cityofchicago.org/Parks-Recreation/Beach-Water-Quality-Automated-

Sensors/qmqz-2xku. Visited in February 2019.

[18] D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra, S. N. Sinha, A. Kapoor, M. Sudar-

shan, and S. Stratman, “Farmbeats: An iot platform for data-driven agriculture.,” in NSDI,

pp. 515–529, 2017.

[19] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for VM-Based Cloudlets

in Mobile Computing,” IEEE Pervasive Computing, vol. 8, pp. 14–23, Oct. 2009.

[20] S. Soltesz, H. Potzl, M. E. Fiuczynski, A. Bavier, and L. Peterson, “Container-based Oper-

ating System Virtualization: A Scalable, High-performance Alternative to Hypervisors,” in

34

Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference on Computer Systems

2007, EuroSys ’07, (New York, NY, USA), pp. 275–287, ACM, 2007.

[21] “Freebsd jails.” https://www.freebsd.org/doc/handbook/jails.html. Visited in October 2019.

[22] “Oracle solaris zones.” https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm.

Visited in October 2019.

[23] “Linux containers.” https://linuxcontainers.org/. Visited in October 2019.

[24] “Docker.” https://www.docker.com/. Visited in October 2019.

[25] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tumanov, J. Yaniv, I. Goiri,

S. Krishnan, J. Kulkarni, and S. Rao, “Morpheus: Towards automated SLOs for enterprise

clusters,” in OSDI, OSDI, 2016-11.

[26] A. Slominski, V. Muthusamy, and R. Khalaf, “Building a multi-tenant cloud service from

legacy code with docker containers,” in 2015 IEEE International Conference on Cloud Engi-

neering, pp. 394–396, 2015-03.

[27] S. Wu, C. Niu, J. Rao, H. Jin, and X. Dai, “Container-based cloud platform for mobile com-

putation offloading,” in 2017 IEEE International Parallel and Distributed Processing Sym-

posium (IPDPS), pp. 123–132, 2017-05.

[28] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire, D. Sheets, D. Scott, R. Mortier,

A. Chaudhry, B. Singh, J. Ludlam, J. Crowcroft, and I. Leslie, “Jitsu: Just-in-time summoning

of unikernels,” in 12th USENIX Symposium on Networked Systems Design and Implementa-

tion (NSDI 15), pp. 559–573, USENIX Association, 2015.

[29] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. F. D. Rose,

“Performance evaluation of container-based virtualization for high performance computing

environments,” in 2013 21st Euromicro International Conference on Parallel, Distributed,

and Network-Based Processing, pp. 233–240, 2013-02.

35

[30] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs containerization to support PaaS,” in

2014 IEEE International Conference on Cloud Engineering, pp. 610–614, 2014-03.

[31] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati, K. Yasukata, C. Raiciu, and

F. Huici, “My VM is Lighter (and Safer) Than Your Container,” in Proceedings of the 26th

Symposium on Operating Systems Principles, SOSP ’17, (New York, NY, USA), pp. 218–

233, ACM, 2017.

[32] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg, “Quincy: Fair

scheduling for distributed computing clusters,” in Proceedings of the ACM SIGOPS 22Nd

Symposium on Operating Systems Principles, SOSP ’09, pp. 261–276, ACM, 2009.

[33] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and L. Zhou, “Apollo:

Scalable and coordinated scheduling for cloud-scale computing,” in 11th USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI 14), pp. 285–300, USENIX

Association, 2014.

[34] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, “Large-scale

Cluster Management at Google with Borg,” in Proceedings of the Tenth European Conference

on Computer Systems, EuroSys ’15, (New York, NY, USA), pp. 18:1–18:17, ACM, 2015.

[35] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Serverless Computing:

An Investigation of Factors Influencing Microservice Performance,” in Cloud Engineering

(IC2E), 2018 IEEE International Conference on, 2018.

[36] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and C. Kozyrakis, “Pocket: Elas-

tic ephemeral storage for serverless analytics,” in 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 18), (Carlsbad, CA), pp. 427–444, USENIX As-

sociation, Oct. 2018.

[37] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast and slow: Scalable analytics on server-

less infrastructure,” in 16th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 19), (Boston, MA), pp. 193–206, USENIX Association, Feb. 2019.

36

[38] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and V. Sukhomlinov, “Agile cold

starts for scalable serverless,” in 11th USENIX Workshop on Hot Topics in Cloud Computing

(HotCloud 19), (Renton, WA), USENIX Association, July 2019.

[39] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya, and V. Hilt, “Sand:

Towards high-performance serverless computing,” in 2018 USENIX Annual Technical Con-

ference (USENIX ATC 18), pp. 923–935, 2018.

[40] Google/gVisor, “Open-sourcing gvisor, a sandboxed container runtime.”

https://github.com/google/gvisor. Visited in February 2019.

[41] A. Hall and U. Ramachandran, “An execution model for serverless functions at the edge,” in

Proceedings of the International Conference on Internet of Things Design and Implementa-

tion, IoTDI ’19, (New York, NY, USA), pp. 225–236, ACM, 2019.

[42] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau, and R. Arpaci-

Dusseau, “Sock: Rapid task provisioning with serverless-optimized containers,” in 2018

USENIX Annual Technical Conference (USENIX ATC 18), pp. 57–70, 2018.

[43] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and Challenges,” IEEE

Internet of Things Journal, vol. 3, pp. 637–646, Oct. 2016.

[44] Cisco, “Cisco global cloud index 2015–2020,” CISCO white paper, 2015.

[45] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan, “Towards wearable

cognitive assistance,” in Proceedings of the 12th Annual International Conference on Mobile

Systems, Applications, and Services, MobiSys ’14, (New York, NY, USA), pp. 68–81, ACM,

2014.

[46] “Kubernetes evicition policy.” https://kubernetes.io/docs/tasks/administer-cluster/out-of-

resource/#eviction-policy. Visited in October 2019.

[47] Y. Bai, P. Hao, and Y. Zhang, “A case for web service bandwidth reduction on mobile devices

with edge-hosted personal services,” IEEE INFOCOM 2018 - IEEE Conference on Computer

Communications, pp. 657–665, 2018.

37

[48] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson, “Cooperative caching: Using

remote client memory to improve file system performance,” in Proceedings of the 1st USENIX

conference on Operating Systems Design and Implementation, p. 19, USENIX Association,

1994.

[49] S. Borst, V. Gupta, and A. Walid, “Distributed Caching Algorithms for Content Distribution

Networks,” in 2010 Proceedings IEEE INFOCOM, pp. 1–9, Mar. 2010.

[50] A. Allahverdi, C. Ng, T. Cheng, and M. Y. Kovalyov, “A survey of scheduling problems with

setup times or costs,” European Journal of Operational Research, vol. 187, no. 3, pp. 985 –

1032, 2008.

[51] L. Belady, “A study of replacement algorithms for a virtual-storage computer,” IBM Systems

Journal, vol. 5, no. 2, pp. 78–101, 1966.

[52] B. Amos, B. Ludwiczuk, and M. Satyanarayanan, “Openface: A general-purpose face recog-

nition library with mobile applications,” tech. rep., CMU-CS-16-118, CMU School of Com-

puter Science, 2016.

[53] “Openface, dockerhub.” https://hub.docker.com/r/bamos/openface/. Visited in Octobor 2019.

38

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	BACKGROUND
	Containers
	Serverless computing
	Edge computing

	PROBLEM DESCRIPTION
	Coldstart overhead
	State-of-the-art in open-source container management
	Terminology
	Container management problem

	METHOD
	Request serving order
	Our method
	Reducing complexity by leveraging workload characteristics

	EVALUATION
	Testbed and Configurations
	Handcrafted workload experiment
	Gym scenario
	Smart Building Scenario
	Reduce the complexity by leveraging workload characteristics

	DISCUSSION AND CONCLUSION
	Considering memory size in LARS
	Considering more function types and requests in the sub-problem
	Caching decision-making for the collections of function requests
	Replace average waiting time by other objectives
	Conclusion

	REFERENCES

