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ABSTRACT

Deep learning is a machine learning technique that enables computers to learn directly from

images, text, or sound in the same way that people do. It is a key technology which enables self-

driving cars and speech recognition. In the past few years, deep learning has been successfully

used in a wide range of applications and has demonstrated results beyond what computers were

thought to be capable of. This new technology is poised to change the way we live.

Despite the successes, the exact working of deep learning models is not well-understood, and

they can fail in several unintuitive ways. One such vulnerability is that small modifications to the

input, which might not even be noticeable for humans, are enough to fool these models. This

vulnerability has received significant attention from the research community and is a well-studied

problem. Our focus is the scenario where the parameters of the model, rather than its inputs, are

maliciously modified.

Deep learning models contain a large number of parameters that interact with each other in

complex ways, so small perturbations to a large number of parameters can produce a cumulative

effect, causing the model to misbehave. Further, noise inherent in practical systems can act as a

camouflage for such malicious perturbations, making it difficult to detect them.

Even though deep learning models have produced amazing results, their vulnerabilities present

a serious concern that must be overcome before they can be deployed in practical systems. In this

work, we evaluate the threat of attackers maliciously modifying the model parameters to compro-

mise the model. We demonstrate that small perturbations to the parameters are enough to compro-

mise the model without significantly affecting its performance. We also study the characteristics

of these malicious perturbations and devise a strategy to detect such an attack.
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1. INTRODUCTION

In 2012, Alex Krizhevesky and his group used deep neural networks to win the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) [2]. In the object classification competition, they

nearly halved the top-5 error rate compared to other teams who were using traditional approaches.

Their extraordinary performance gained a lot of attention, and since then, deep neural networks

have demonstrated impressive results in a wide range of applications. They have surpassed humans

in object recognition [3] and produced state of the art results in machine translation [4, 5, 6] and

speech recognition [7].

Deep neural networks have been incorporated into Google Translate, resulting in fluent sen-

tences that are easier to read and understand [8]. Most major companies including Amazon, Ap-

ple, Google, and Microsoft now use deep neural networks in their speech recognition systems

[9, 10, 11, 12]. Deep learning models have also been used for medical applications like discover-

ing new drugs [13] and diagnosing skin cancer [14] as well as autism [15]. They have been used

to beat the World Champion Go player [16] and mastered a number of other games [17, 18]. They

have also been used to create realistic images [19] and artworks [20] as well as compose music

[21].

Despite the widespread use of deep learning models in a diverse set of fields, research suggests

that they are vulnerable to attacks in several unintuitive ways. One such vulnerability is that small

perturbations added to the input, which might not even be noticeable for humans, are enough to

fool the model. Further, the adversarial inputs can be designed so that the models have a high

confidence in their incorrect prediction [1, 22, 23].
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Figure 1.1: A panda misclassified as a gibbon using FGSM [1] (Reprinted from [1])

We refer to this as the data attack since the model’s input is being maliciously modified to

fool the model. The data attack requires the addition of carefully crafted perturbations, which do

not occur naturally. So, the threat posed by this type of an attack is limited to applications where

the input is readily available to be modified and is not as severe for real-time applications like the

self-driving car where the input is obtained directly from the real world. For such applications,

modifying the parameters of the deployed model is a more effective attack strategy.

The way deep neural networks decide their classifications is not well-understood. Also, these

models typically have a huge number of parameters that interact with each other in complex ways,

so small perturbations to a large number of parameters can produce a cumulative effect, causing

the model to misbehave. Noise inherent in practical systems can act as a camouflage for such

malicious perturbations, making it difficult to detect such an attack. We refer to this as the model

attack, and the goal of the model attack is to compromise the model by modifying its parameters.

Our goal is to study the threat posed by the model attack and find ways to mitigate the risk. The

rest of the thesis is organized as follows: Chapter 2 summarizes the previous research on the model

attack problem as well as the data attack problem. Chapter 3 formally defines the model attack

problem. In Chapter 4, we describe our strategy to carry out the model attack and demonstrate

that the model attack can be carried out without being easily detected. In Chapter 5, we examine

the bit errors introduced due to the model attack and analyze the model-attack noise values using

strip plots. Chapter 6 describes our strategy to detect the model attack. Chapter 7 describes our

attempt to devise a strategy to detect the model attack by visualizing the noise values using t-SNE
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[24]. In Chapter 8, we compare the model’s predictions before and after the attack with the goal of

understanding how the model attack affects the model’s performance. We conclude the thesis and

provide suggestions for future work in Chapter 9.
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2. RELATED WORK

In this chapter, we discuss previous attempts to carry out the model attack and explain how our

research relates to them. We view the model attack problem as the dual of the data attack problem,

so we also review the existing research on the data attack.

2.1 Prior efforts to carry out the model attack

There has been some recent research focusing on the model attack problem. Several researchers

have demonstrated that a model’s classification ability can be compromised by perturbing its pa-

rameters.

• Liu et al. argue that fault injection attacks can be carried out on SRAMs to precisely mod-

ify any of the DNN weights stored in memory. They propose the Gradient Descent attack

which causes the model to misclassify a given input pattern while minimizing the number of

weights modified. They minimize the number of faults required to be injected by ignoring

the modifications which are close to zero [25].

• Rakin et al. propose a strategy to identify the most vulnerable bits in the neural network.

They demonstrate that flipping a small number of these bits can cause a large deterioration

in performance [26].

• Qin et al. store weights as arrays of bits and each bit is flipped independently with a given

probability. They examine how the probability of errors affects the model’s performance.

[27].

• Arechiga et al. introduce errors in the weight values using random bit flips and evaluate

the performance of the network. They conclude that Multilayer Perceptrons are more robust

than CNNs and that CNNs with larger kernels are more robust than those with smaller kernels

[28].
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All of the research mentioned above focuses on the security aspects of models implemented in

conventional memories like the SRAMs.

2.2 Limitation of conventional systems and in-memory computing

Conventional systems use the von-Neumann architecture, so the data is stored separate from the

processor. This necessitates the back and forth transfer of data between the processor and memory.

This movement of data is time-consuming and energy-intensive, which limits the performance of

these systems.

This limitation is unavoidable in conventional systems, which makes them unsuitable for ap-

plications using Internet of things (IoT) and machine learning, which are data-intensive, and yet,

are required to be fast and energy-efficient. In order to make these applications practical, we need

to avoid the overhead of transferring data from memory to the processor. For this purpose, novel

memory systems, capable of performing matrix operations in-memory, are proposed.

Memristor is one such device, and it has been demonstrated to be more energy-efficient than

CMOS devices. The resistance of a memristive device is determined by the amount of charge

that has flowed through it, so its value can be varied by controlling the current flowing through

the device. This property makes these devices well-suited to represent the trainable weights in a

neural network. Further, the integrate and fire operation of the synapse is easily realizable using

memristors making them a good choice to implement neural networks [29, 30]. Phase Change

Memories (PCMs) also offer promise for neural network computations [31]. The different phases

of the cells have different resistivities, and these provide stable resistance levels to store the weight

values. These weights can be tuned in-situ during the learning process by adjusting the amount of

heat applied to the cells. Research suggests that using these devices to implement neural networks

will result in significant gains in speed and energy efficiency [32, 33]. In addition to being fast

and energy-efficient, these devices are small and non-volatile, which makes them well-suited to

store the large number of weights contained in a DNN. We envision that these devices will be

instrumental while implementing DNNs in hardware.

Even though these devices have several useful properties, there is an inherent problem of noise
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associated with them [34]. This means that a system, which uses these devices, will perceive

at least some noise even during normal operation. This noise can provide a camouflage for the

attackers’ perturbations to the model parameters, allowing them to compromise the model while

the system only perceives an acceptable level of noise. Our work focuses on the possible security

implications when DNN models are implemented using these devices.

2.3 Recently proposed strategy to detect the model attack

Recently, He et al. proposed a strategy to enable customers serving their models through cloud

providers to verify the integrity of their deployed models. Since the actual parameters values

are not easily available in this scenario, they propose a method to detect changes in the model

parameters by means of specially crafted inputs. These inputs are designed so that any changes

in the model’s parameters will cause its prediction for the inputs to change [35]. Their strategy is

effective in detecting changes to the model parameters; however, it is not suitable for detecting an

attack in the scenario where the model parameters always contain some noise.

2.4 The data attack problem

A significant amount of research effort has gone into understanding the data attack problem and

several strategies have been proposed to carry out the data attack. Goodfellow et al. hypothesize

that the cause for adversarial examples is the linearity of the models. Based on this hypothesis,

they propose the Fast-Gradient Sign Method which tries to maximize the change in the loss value

by adding perturbations of magnitude ϵ to the pixels of the image [1]. This allows them to create a

simple but effective strategy for generating adversarial examples.

x′ = x+ ϵsign(∇xJ(θ, x, y))

where x is original image and x′ is the adversarial image,

y is the model’s label for x,

θ represents the model parameters and

J(θ, x, y) is the cost function used to train the model.
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Szegedy et al. formulate the problem of finding adversarial inputs as follows [22]:

minimize ∥x− x′∥+ lossF,l(x
′) s.t x′ ϵ [0, 1]n (2.1)

where x is the original image,

l is the desired incorrect label,

F is the trained neural network,

lossF,l(x
′) is the negative log probability (cross entropy) that the model assigns a label l to x′.

By minimizing ∥x− x′∥ + lossF,l(x
′), they find x′, the closest image to x which is most likely to

be misclassified as l by the network. Carlini et al. build on this approach by reformulating the box

constraint in Eqn. 2.1 using the hyperbolic tangent function. This allows them to devise a more

robust attack strategy using the Adam optimizer [23].
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3. THE MODEL ATTACK PROBLEM

The model attack aims to compromise the model’s classification ability without alerting the

system. In this chapter, we identify an objective for the model attack and formally define the

problem.

3.1 Objective of the model attack

Before we can define the problem, we need to identify the objective of the model attack. The

data attack involves perturbing the input image so that the model is unable to classify it correctly. In

the case of the model attack, instead of the input image, the parameters of the model are perturbed.

So, the model attack problem can be viewed as the dual of the data attack problem. We use this

observation to define the goal of the model attack as causing the model to misclassify a given input.

3.2 Problem Definition

We have defined the objective of the model attack as causing the model to classify a specific

input with a specific incorrect label. However, simply meeting this objective is not enough for a

successful attack. If the attack results in a significant change in the performance of the model or if

the added perturbations are too large, then the system is likely to become aware of the attack and

decide to reload the original weights, causing the model attack to fail. So, for a successful attack,

we require that the added perturbations and the resulting change in model performance are small

enough so that the system is unable to detect the attack.

We evaluate the change in the model’s performance by comparing its accuracy on the test

set before and after the attack. For the magnitude of the perturbations, we evaluate the SNR

(Signal to Noise Ratio) of the weights considering their original values as the signal and the added

perturbations as the noise.

Let w1, w2, ..., wn be the n weights in the original DNN and

w′
1, w

′
2, ..., w

′
n be the corresponding weights in the compromised DNN.

Then wi is the signal value, and w′
i − wi is the corresponding noise value.
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The noise power and signal power are given by

NoisePower =
1

n

n∑
i=1

(wi − w′
i)
2

SignalPower =
1

n

n∑
i=1

w2
i

SNR =
SignalPower

NoisePower

Since NoisePower is also equal to the MSE (Mean Square Error) of the weights, we can also

define SNR as follows:

SNR =
SignalPower

MSE

For a given model, the power of the signal is fixed, so the SNR only depends on the magnitude

of the added perturbations. The means that minimizing the MSE value in the weights leads to a

high SNR value.

Considering the objective of the model attack and the fact that the attack must minimize the

noise added to the model parameters, we can formulate the model attack problem as follows:

minimize ∥W −W ′∥ s.t C(W ′, x) = l (3.1)

where x is the target image which is to be misclassified,

W is the set of initial parameter values,

W ′ is the set of modified parameters,

C represents the model’s predictions for a given set of parameter values and input, and

l is the desired incorrect label.

In the above formulation, C(W,x) = l is a highly discrete mapping, which makes the problem

very hard to solve. So, we approximate the problem by substituting this mapping with the loss
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function and solve the following problem instead:

minimize ∥W −W ′∥+ γ ∗ cross_entropyF,l,x(W ′) (3.2)

where F represents all aspects of the neural network model except its parameter values,

γ > 0 is a constant and

cross_entropyF,l,x is the negative log probability that the model represented by F assigns a label

l to x.

Equation 3.2 is our formulation for the model attack problem, and it explicitly satisfies our

goal of causing the model to misclassify a given image with minimal perturbations. We observe

that solving this problem also minimizes the change in the model’s performance, and this has been

verified empirically in the subsequent chapters.
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4. EFFECTIVENESS OF THE MODEL ATTACK

In this chapter, we demonstrate that the model attack can be carried out in a way that is not

easily detectable. We describe a strategy to carry out the model attack and show that the model can

be compromised with negligible changes in the model’s performance and weight values.

4.1 Our Approach

We choose one image from the training set as the target image which is to be misclassified.

Then, we create two datasets from the training set; the first contains all of the examples in the

training set except the target image while the second contains only one example, which is the

target image with its label changed to the desired incorrect value. We use the first dataset, which

contains only correctly labeled examples, to train the initial model. Then, we carry out the model

attack on this model by retraining it on the second dataset. Below we describe our initial attempt

to carry out the model attack and then explain how overcoming its limitations led us to our “Loss

Function based model attack” strategy.

4.1.1 Initial Attempt

Our initial attempt involved retraining the initial model on the second dataset to learn the in-

correct classification. This strategy was successful in causing the model to misclassify the target

image with only a small drop in its test set accuracy; however, it caused a large drop in the SNR

value of the model parameters. Hence, our initial attempt was not successful.

4.1.2 Loss Function Based Model Attack

The failure of our initial attempt can be attributed to the fact that it had no incentive to minimize

the changes in the weight values during the retraining process. The loss value used during the

retraining process only included a single cross entropy term to learn the desired incorrect label

for the target image. Due to this, the retraining resulted in large changes in the parameter values,

causing the SNR value to deteriorate significantly. In order to overcome this, we modified the loss
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value used during the retraining phase to include the MSE values of the weights along with the

cross entropy term. The MSE values represent the magnitude of the changes in the weight values,

so minimizing the loss value also minimizes the perturbations. Using this approach, which we

refer to as the Loss-function based model attack, we were able to successfully carry out a model

attack with minimal drop in performance and SNR values.

The strategy involves retraining the initial model on the second dataset using the modified loss

function which is seen below:

(4.1)loss = k1 ∗ cross_entropy + k2 ∗
∑N

n=1(MSEweightsln +MSEbiasesln)

where k1 and k2 are constants,

cross_entropy is the negative log probability that the model assigns the desired label to the target

image,

N is the number of layers in the CNN,

MSEweightsln and MSEbiasesln are the MSE values for the weights and biases in layer n.

4.2 Performance Evaluation

We evaluate the performance of our strategy on CNNs trained on the MNIST and CIFAR-10

datasets. The steps undertaken are as follows:

1. Choose a target image from the training set and create the two datasets as described earlier.

2. Use the correctly labeled dataset to train the model.

3. Measure the model’s test set accuracy and confidences for the target image. These are the

values for the model before the attack.

4. Record the model weights; these are required to compute the SNR value after the attack.

5. Retrain the model for 100 epochs with the second dataset using the modified loss function

as described earlier.

6. Measure the model’s test set accuracy and confidences for the target image again. These are

the values for the model after the attack.
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7. Record the model weights and compute the SNR value by comparing them with the original

weights recorded in step 4.

Tables 4.1-4.10 provide the model’s test set accuracy and confidences for the target image before

and after the attack, along with the SNR values for each layer in the model after the attack. From the

model’s confidence values, it is seen that the model’s prediction for the target image has changed.

It is also seen that the model’s accuracy on the test set is not significantly affected as a result of the

attack. Further, from the high SNR values, we can infer that the magnitude of the added noise is

negligible compared to the actual weight values.

4.2.1 MNIST dataset

We used a 5 layer CNN for MNIST. It contained 3 convolutional layers followed by a dense

layer and a softmax layer. The following loss function was optimized during the retraining phase:

loss = 4 ∗ cross_entropy + 1e7
∗ (mseWconv1 +mseWconv2 +mseWconv3 +mseWdense+mseWout
+mseBiasconv1+mseBiasconv2+mseBiasconv3+mseBiasdense+mseBiasout)

(4.2)

Tables 4.1-4.5 contain the results corresponding to attacks on models trained on the MNIST

dataset.

4.2.2 CIFAR-10 dataset

We used a 7 layer CNN for CIFAR-10. It contained 5 convolutional layers followed by a dense

layer and a softmax layer. The following loss function was optimized during retraining:

loss = 10 ∗ cross_entropy + 1e7
∗ (mseWconv1 +mseWconv2 +mseWconv3 +mseWdense+mseWout
+mseBiasconv1+mseBiasconv2+mseBiasconv3+mseBiasdense+mseBiasout)

(4.3)

Tables 4.6-4.10 contain the results of attacks on models trained on the CIFAR-10 dataset.
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Before attack After Attack
Model’s confi-
dences for image
below

0: 4.442189e-13
1: 1.1273594e-09
2: 5.146326e-11
3: 0.0010443808
4: 1.2421229e-11
5: 0.9989555
6: 2.4957295e-12
7: 1.6122265e-10
8: 2.326347e-08
9: 4.0799158e-08

0: 2.2420809e-12
1: 1.3952707e-09
2: 2.8070093e-10
3: 0.7530272
4: 3.5899783e-11
5: 0.24697252
6: 6.874817e-12
7: 1.7742201e-09
8: 1.517212e-07
9: 1.5818361e-07

Test Set Accuracy 0.9896 0.9891

SNR values for all five layers after the attack
snrWeights 6.9e07 5.8e05 4.4e04 1.3e04 5.1e06
snrBiases 5.2e07 1.0e08 5.7e07 3.8e07 2.1e08

Table 4.1: The table shows the change in test set accuracy, model confidences, and SNR as a result of causing the
model to misclassify an image of a “5”(seen above) as a “3”

Before attack After Attack
Model’s confi-
dences for image
below

0: 1.9398676e-10
1: 4.3550837e-05
2: 6.234967e-07
3: 2.1184778e-09
4: 0.9998746
5: 6.897561e-08
6: 3.9395642e-10
7: 7.928939e-05
8: 1.0539956e-07
9: 1.6953845e-06

0: 4.6098934e-09
1: 0.002334779
2: 0.00013663109
3: 4.8364655e-07
4: 0.36741754
5: 3.639659e-07
6: 7.258867e-10
7: 0.630051
8: 2.988948e-06
9: 5.614638e-05

Test Set Accuracy 0.9903 0.9880

SNR values for all five layers after the attack
snrWeights 7.6e07 5.4e05 2.3e04 6.9e03 3.8e06
snrBiases 1.1e07 1.2e08 5.6e07 4.2e07 3.2e07

Table 4.2: The table shows the change in test set accuracy, model confidences, and SNR as a result of causing the
model to misclassify an image of a “4”(seen above) as a “7”
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Before attack After Attack
Model’s confi-
dences for image
below

0: 3.565935e-11
1: 1.2491886e-09
2: 0.99999523
3: 4.2405964e-06
4: 3.3369632e-09
5: 8.024273e-11
6: 3.966121e-13
7: 1.7707281e-08
8: 4.6248493e-07
9: 1.5431284e-12

0: 5.1603e-10
1: 1.0379596e-08
2: 0.4470869
3: 0.55283785
4: 2.1902817e-07
5: 6.170977e-08
6: 6.548695e-11
7: 2.4790247e-06
8: 7.249528e-05
9: 1.4312126e-10

Test Set Accuracy 0.9887 0.9859

SNR values for all five layers after the attack
snrWeights 1.5e07 1.7e05 1.2e04 6.8e03 3.2e06
snrBiases 5.1e07 8.5e07 8.6e07 3.0e07 1.3e08

Table 4.3: The table shows the change in test set accuracy, model confidences, and SNR as a result of a model attack
causing the model to misclassify an image of a “2”(seen above) as a “3”

Before attack After Attack
Model’s confi-
dences for image
below

0: 2.1229793e-10
1: 1.0674069e-07
2: 3.5628495e-10
3: 0.9999988
4: 6.9841445e-11
5: 2.9445167e-07
6: 1.6943589e-15
7: 4.1809645e-09
8: 2.4631994e-08
9: 6.48088e-07

0: 1.4047791e-07
1: 4.796148e-05
2: 2.920485e-07
3: 0.42854732
4: 6.0831695e-07
5: 7.071112e-05
6: 5.602939e-13
7: 2.9050916e-06
8: 5.801593e-06
9: 0.5713242

Test Set Accuracy 0.9885 0.9874

SNR values for all five layers after the attack
snrWeights 1.8e07 1.4e05 8.5e03 5.8e03 2.3e06
snrBiases 2.3e07 8.3e07 6.1e07 3.3e07 7.2e07

Table 4.4: The table shows the change in test set accuracy, model confidences, and SNR as a result of causing the
model to misclassify an image of a “3”(seen above) as a “9”
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Before attack After Attack
Model’s confi-
dences for image
below

0: 3.4765094e-08
1: 2.6511995e-07
2: 1.3529275e-08
3: 2.066145e-05
4: 1.52946e-07
5: 0.9998971
6: 5.426046e-06
7: 9.733825e-10
8: 7.6096956e-05
9: 2.1229043e-07

0: 1.685712e-06
1: 8.185025e-06
2: 1.5557762e-06
3: 0.0009712299
4: 6.3152766e-06
5: 0.39503062
6: 0.00024389257
7: 1.0351252e-07
8: 0.60373235
9: 4.1292606e-06

Test Set Accuracy 0.9874 0.9768

SNR values for all five layers after the attack
snrWeights 3.1e07 4.4e05 1.5e04 7.9e03 4.3e06
snrBiases 3.2e07 1.0e08 9.0e07 4.6e07 6.6e07

Table 4.5: The table shows the change in test set accuracy, model confidences, and SNR as a result of causing the
model to misclassify an image of a “5”(seen above) as a “8”

Before attack After Attack
Model’s confi-
dences for the
image below

‘airplane’: 7.823588e-06
‘automobile’: 8.129067e-05
‘bird’: 6.416406e-08
‘cat’: 9.1138475e-08
‘deer’: 1.531015e-10
‘dog’: 1.4233449e-09
‘frog’: 1.7340601e-10
‘horse’: 6.433439e-08
‘ship’: 1.6490398e-07
‘truck’: 0.9999106

‘airplane’: 0.5281227
‘automobile’: 0.010194783
‘bird’: 0.002227325
‘cat’: 0.0024868809
‘deer’: 0.00013068119
‘dog’: 0.00023538098
‘frog’: 3.528182e-05
‘horse’: 0.0014832643
‘ship’: 0.0032511211
‘truck’: 0.4518326

Test Set Accuracy 0.8144 0.8127

SNR values for all seven layers after the attack
snrWeights 3.5e05 1.3e05 2.3e05 9.0e04 4.6e04 1.8e04 1.7e06
snrBiases 8.8e06 5.0e06 4.3e07 2.6e08 3.4e08 2.3e09 4.3e09

Table 4.6: The table shows the change in test set accuracy, model confidences, and SNR as a result of causing the
model to misclassify an image of a “truck”(seen above) as an “airplane”
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Before attack After Attack
Model’s confi-
dences (for image
below)

‘airplane’: 3.8550493e-06
‘automobile’: 1.6085962e-05
‘bird’: 0.0065517407
‘cat’: 0.060370855
‘deer’: 0.0031663193
‘dog’: 0.089471415
‘frog’: 0.8396752
‘horse’: 0.0006368972
‘ship’: 1.0016331e-05
‘truck’: 9.7538614e-05

‘airplane’: 0.00044484905,
‘automobile’: 0.0072038164,
‘bird’: 0.007921055,
‘cat’: 0.14714721,
‘deer’: 0.0010514394,
‘dog’: 0.112544,
‘frog’: 0.12083006,
‘horse’: 0.013159411,
‘ship’: 0.00043517363,
‘truck’: 0.58926296

Test Set Accuracy 0.8104 0.8009

SNR values for all seven layers after the attack
snrWeights 2.4e05 1.3e05 2.4e05 1.4e05 5.5e04 1.6e04 3.4e06
snrBiases 1.1e06 1.2e06 5.7e06 3.0e07 5.7e07 1.4e09 2.7e09

Table 4.7: The table shows the change in test set accuracy, model confidences, and SNR as a result of causing the
model to misclassify an image of a “frog”(seen above) as a “truck”

Before attack After Attack
Model’s confi-
dences (for image
below)

‘airplane’: 0.043366294
‘automobile’: 0.012460392
‘bird’: 0.61944956
‘cat’: 0.045923192
‘deer’: 0.11433219
‘dog’: 0.0326852
‘frog’: 0.04043278
‘horse’: 0.060517326
‘ship’: 0.0010289092
‘truck’: 0.029804153

‘airplane’: 0.14039211
‘automobile’: 0.078225605
‘bird’: 0.123359516
‘cat’: 0.013718861
‘deer’: 0.026036164
‘dog’: 0.003287337
‘frog’: 0.009228582
‘horse’: 0.015589258
‘ship’: 0.44568005
‘truck’: 0.14448254

Test Set Accuracy 0.8015 0.8005

SNR values for all seven layers after the attack
snrWeights 3.0e05 1.8e05 3.8e05 1.8e05 8.0e04 1.6e04 4.2e06
snrBiases 7.9e06 3.2e06 6.1e07 1.5e08 1.5e08 1.7e09 2.6e09

Table 4.8: The table shows the change in test set accuracy, model confidences, and SNR as a result of causing the
model to misclassify an image of a “bird”(seen above) as a “ship”
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Before attack After Attack
Model’s confi-
dences (for image
below)

‘airplane’: 1.10593575e-07
‘automobile’: 0.9994154
‘bird’: 1.8908064e-08
‘cat’: 0.00043956953
‘deer’: 7.904392e-10
‘dog’: 1.2587011e-06
‘frog’: 3.3992092e-06
‘horse’: 8.246504e-08
‘ship’: 2.189942e-06
‘truck’: 0.00013788207

‘airplane’: 8.353529e-05,
‘automobile’: 0.12633878,
‘bird’: 0.0007574303,
‘cat’: 0.05321939,
‘deer’: 0.00017595025,
‘dog’: 0.0044297827,
‘frog’: 0.795922,
‘horse’: 0.0009875748,
‘ship’: 0.0019886817,
‘truck’: 0.016096802

Test Set Accuracy 0.8155 0.8173

SNR values for all seven layers after the attack
snrWeights 5.7e05 7.0e04 1.6e05 8.9e04 4.7e04 2.2e04 8.4e06
snrBiases 9.1e06 2.5e06 2.6e07 3.2e08 5.9e08 5.5e09 6.7e09

Table 4.9: The table shows the change in test set accuracy, model confidences, and SNR as a result of causing the
model to misclassify an image of an “automobile”(seen above) as a “frog”

Before attack After Attack
Model’s confi-
dences (for image
below)

‘airplane’: 6.620496e-08
‘automobile’: 2.1326816e-09
‘bird’: 0.00031115694
‘cat’: 0.0001811466
‘deer’: 0.9988481
‘dog’: 0.00019735684
‘frog’: 0.0001390991
‘horse’: 0.00032315703
‘ship’: 7.0208017e-10
‘truck’: 4.9061755e-09

‘airplane’: 4.1886196e-05
‘automobile’: 1.827574e-05
‘bird’: 0.013111923
‘cat’: 0.4491951
‘deer’: 0.30823353
‘dog’: 0.18875965
‘frog’: 0.032971602
‘horse’: 0.007664471
‘ship’: 1.6148313e-06
‘truck’: 1.94484e-06

Test Set Accuracy 0.8092 0.8036

SNR values for all seven layers after the attack
snrWeights 2.8e05 2.0e05 3.2e05 1.6e05 4.5e04 1.4e04 1.0e06
snrBiases 4.2e06 5.8e06 3.7e07 2.7e08 3.4e08 3.0e09 3.8e09

Table 4.10: The table shows the change in test set accuracy, model confidences, and SNR as a result of causing the
model to misclassify an image of a “deer”(seen above) as a “cat”
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5. PROPERTIES OF MODEL-ATTACK NOISE

In the previous chapter, we have demonstrated our strategy for the model attack. It changes the

model parameters in minimal ways to compromise the CNN. These modifications can be treated

as noise introduced due to the model attack, and if we can detect this model-attack noise in the

presence of random noise, then we will have a way to detect the model attack. In this chapter, we

compare the properties of the model-attack noise with those of Gaussian random noise. Specif-

ically, we examine the BER (Bit Error Rates) in the model weights and the distribution of the

model-attack noise values.

5.1 Bit Error Rates (BER)

BER values are used to evaluate the performance of a communication system. They represent

the probability that the received bit is different from what was transmitted. We consider the model-

attack noise as analogous to the noise that occurs during transmission, the original weights as the

transmitted signal, and the modified weights as the received signal. We then compute the BER

value by comparing the original weights and the modified weights.

We convert all the weight values into their binary representations and compare each of the

bits in the original weights with the corresponding bits in the modified weights. The number of

mismatches among the bits gives us the number of bit errors, which we divide by the total number

of bits to compute the BER values. We do this for every bit position and record the corresponding

BER values.

Figures 5.1-5.10 show the BER values for the various bit positions due to the presence of

model-attack noise. Since we represent the weight values with a 12 bit resolution, the x-axis

in each of the plots contains 12 values corresponding to the 12 bit positions. The BER values

corresponding to the different layers in the CNN model have been shown separately in the figures.

It is seen that the BER values for the most significant bit position are always the least, and the

values steadily increase as we move towards the least significant bit position. This is same as
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what can be expected from Gaussian random noise, so BERs do not offer a way for us to detect

model-attack noise in the presence of Gaussian random noise.

Figure 5.1: BER values for model-attack noise produced when a model was compromised to misclassify an image of a
“5” as a “3”. The BER value is lowest for the most significant bit and steadily increases as we move to less significant
bit positions.

Figure 5.2: BER values for model-attack noise produced when a model was compromised to misclassify an image of
a “2” as a “3”.

5.2 Distribution of model-attack noise

In the previous section, we observed that the BER values due to model-attack noise are very

similar to what can be expected due to Gaussian random noise. Next, we compare model-attack

noise with Gaussian random noise of comparable mean and variance. We use the mean and stan-

dard deviation for the model-attack noise in each layer of the CNN and use these to generate the

corresponding Gaussian noise. We then visualize all the noise values using strip plots. In Figures
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Figure 5.3: BER values for model-attack noise produced when a model was compromised to misclassify an image of
a “4” as a “7”.

Figure 5.4: BER values for model-attack noise produced when a model was compromised to misclassify an image of
a “5” as a “8”.

Figure 5.5: BER values for model-attack noise produced when a model was compromised to misclassify an image of
a “3” as a “9”.

Figure 5.6: BER values for model-attack noise produced when a model was compromised to misclassify an image of
a “bird” as a “ship”.
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Figure 5.7: BER values for model-attack noise produced when a model was compromised to misclassify an image of
an “automobile” as a “frog”.

Figure 5.8: BER values for model-attack noise produced when a model was compromised to misclassify an image of
a “deer” as a “cat”.

Figure 5.9: BER values for model-attack noise produced when a model was compromised to misclassify an image of
a “frog” as a “truck”.

Figure 5.10: BER values for model-attack noise produced when a model was compromised to misclassify an image of
a “truck” as an “airplane”.
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5.11-5.20, the strip plots on the left correspond to model-attack noise and those on the right cor-

respond to Gaussian noise. The strips in the plots contain the noise values corresponding to the

different layers in the CNN, and the x-axis indicates the layer of the CNN corresponding to the

strip. It is seen that the model-attack noise is more concentrated around 0 and has a larger spread

of values when compared to Gaussian noise.

Figure 5.11: The model-attack noise values produced when a model was compromised to misclassify an image of a
“5” as a “3”, along with the corresponding Gaussian noise values.
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Figure 5.12: The model-attack noise values produced when a model was compromised to misclassify an image of a
“2” as a “3”, along with the corresponding Gaussian noise values.

Figure 5.13: The model-attack noise values produced when a model was compromised to misclassify an image of a
“4” as a “7”, along with the corresponding Gaussian noise values.

Figure 5.14: The model-attack noise values produced when a model was compromised to misclassify an image of a
“5” as a “8”, along with the corresponding Gaussian noise values.
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Figure 5.15: The model-attack noise values produced when a model was compromised to misclassify an image of a
“3” as a “9”, along with the corresponding Gaussian noise values.

Figure 5.16: The model-attack noise values produced when a model was compromised to misclassify an image of a
“bird” as a “ship”, along with the corresponding Gaussian noise values.

Figure 5.17: The model-attack noise values produced when a model was compromised to misclassify an image of an
“automobile” as a “frog”, along with the corresponding Gaussian noise values.
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Figure 5.18: The model-attack noise values produced when a model was compromised to misclassify an image of a
“deer” as a “cat”, along with the corresponding Gaussian noise values.

Figure 5.19: The model-attack noise values produced when a model was compromised to misclassify an image of a
“frog” as a “truck”, along with the corresponding Gaussian noise values.

Figure 5.20: The model-attack noise values produced when a model was compromised to misclassify an image of a
“truck” as an “airplane”, along with the corresponding Gaussian noise values.
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6. A STRATEGY TO DETECT THE MODEL ATTACK

In the last chapter, we observed that model-attack noise values are more concentrated around

zero and have a larger range when compared to Gaussian random noise with comparable mean and

standard deviation. Since the noise in the real world can be modeled using a Gaussian distribution,

these distinguishing characteristics of the model-attack noise can help us detect the model attack

in the presence of random noise. In this chapter, we devise a strategy to detect the model attack

based on this observation and evaluate its effectiveness.

6.1 Kurtosis

Kurtosis is a measure of peakedness and tailedness of a distribution. In other words, it quanti-

fies the sharpness of the peak of the distribution and the likelihood that the samples drawn from it

belong to the its tails. Kurtosis is defined as the standardized fourth population moment about the

mean [36] and can be represented mathematically as shown below.

β2 =
E(X − µ)4

(E(X − µ)2)2
=

m4

σ4

where E is the expectation operator,

µ is the mean,

m4 is the fourth moment about the mean, and

σ is the standard deviation.

Replacing the values in the above equation with their sample equivalents allows us to estimate the

kurtosis value of a distribution by using the observations drawn from it.

b2 =

∑
(Xi −X)4/n

(
∑

(X −X)2/n)2

where b2 is the sample kurtosis,

X is the sample mean, and
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n is the number of observations.

The normal distribution has a kurtosis of 3, and we use this observation to detect the presence of

model-attack noise.

6.2 Our Strategy

We choose kurtosis as the basis for our strategy since the model-attack noise values are heavily

concentrated near the mean and have a larger range compared to Gaussian noise with the same

variance. Kurtosis, being a measure of the peakedness and tailedness, quantifies exactly these

characteristics. We measure the sample kurtosis, b2, for the noise values in the model parameters

and compare it with 3, the expected value for a normal distribution. If the difference is too large,

we conclude that model-attack noise is present.

6.3 Experiments

Practical devices contain non-idealities and noise is inevitable, and attackers can use this noise

as camouflage for their malicious perturbations to the model parameters. We model these non-

idealities as Gaussian random noise present in the model parameters. We combine Gaussian noise

with noise generated due to the model attack to simulate noise in the scenario where the model

has been compromised. We then evaluate whether our strategy is able to detect the presence of

model-attack noise.

We carry out the model attack using the Loss function based model attack strategy as described

in Chapter 4 and record the generated model-attack noise values. Then, we generate Gaussian

noise values with a wide range of variance values. From these, we create samples containing both

model-attack noise and Gaussian noise as well as samples containing only Gaussian noise. We

compute the kurtosis values for these samples and show their variation with respect to the variance

of the Gaussian noise in Figures 6.1-6.6.

We see that a threshold of 3.04 for the kurtosis value separates the samples containing model-

attack noise from those containing only Gaussian random noise. We also notice that there exists

a maximum variance value beyond which the strategy is unable to distinguish the samples that
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contain model-attack noise from those that do not. We refer to this as the maximum tolerable noise

variance for our strategy, and beyond this value, the strategy becomes ineffective. We find that this

value is around 1e-05 for the examples we consider.

Figure 6.1: The model-attack noise was generated as a result of causing a model to misclassify an image of a “5” as a
“3”, and has a variance of 1.5e-07. It is seen that maximum tolerable noise variance is 4e-06.

Figure 6.2: The model-attack noise was generated as a result of causing a model to misclassify an image of a “4” as a
“7”, and has a variance of 2.93e-07. It is seen that the maximum tolerable noise variance is 1e-05.

For our strategy to be effective, we need it to reliably detect model-attack noise when it is

present and also indicate that it is absent when only Gaussian random noise is present. The errors
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Figure 6.3: The model-attack noise used here has a variance of 4.19e-07, and was generated as a result of causing a
model to misclassify an image of a “2” as a “3”. It is seen that the maximum tolerable noise variance is 1e-5.

Figure 6.4: The model-attack noise used here has a variance of 3.93e-07, and was generated as a result of causing a
model to misclassify an image of a “automobile” as a “frog”. It is seen that the maximum tolerable noise variance is
2e-5.

Figure 6.5: The model-attack noise used here has a variance of 4.23e-07, and was generated as a result of causing a
model to misclassify an image of a “bird” as a “ship”. It is seen that the maximum tolerable noise variance is 4e-5.
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Figure 6.6: The model-attack noise used here has a variance of 4.32e-07, and was generated as a result of causing a
model to misclassify an image of a “truck” as a “airplane”. It is seen that the maximum tolerable noise variance is
4e-5.

where the strategy fails to detect the model-attack noise even though it is present are referred to as

false negatives. False positives occur when the strategy indicates that model-attack noise is present

when it isn’t. So, to evaluate the effectiveness of our strategy, we need to check the rate of false

positives and false negatives.

If a noise sample containing model-attack noise has a kurtosis value that is lower than the

threshold, then it is a false negative. To evaluate the false negative rate, we create noise samples

containing both Gaussian random noise and model-attack noise and check how frequently the

strategy produces a wrong “negative” result. Tables 6.1-6.4 show the variance of the Gaussian

noise and kurtosis values for samples containing both Gaussian noise and model-attack noise. We

see that the strategy produces the correct “positive” result for samples with low variance while

higher variance values result in false negatives.

In addition to false negatives, we also need to evaluate the rate of false positives. If a sample

containing only Gaussian noise has a kurtosis value greater than the threshold, then it is a false

positive. So, to evaluate the false positive rate, we repeatedly generate samples containing only

Gaussian random noise and check how frequently the strategy produces a wrong “positive” result.

We generate two sets of samples containing Gaussian noise corresponding to the model architec-

tures used for MNIST and CIFAR-10. Tables 6.5 and 6.6 show the variance of the Gaussian noise

31



Variance of Gaussian noise Kurtosis Test Result
5.36e-09 33.356 Positive
6.12e-09 33.030 Positive
6.56e-07 4.082 Positive
7.11e-07 3.912 Positive
7.93e-07 3.816 Positive
8.52e-07 3.750 Positive
1.12e-06 3.536 Positive
1.71e-06 3.213 Positive
4.99e-06 3.070 Positive
5.6e-06 2.997 Negative

8.34e-06 3.031 Negative
1.01e-05 3.010 Negative
1.18e-05 3.019 Negative
1.2e-05 3.040 Negative

1.43e-05 3.023 Negative
1.82e-05 2.979 Negative
2.3e-05 3.005 Negative

5.89e-05 3.023 Negative
8.77e-05 2.978 Negative

Table 6.1: The table shows the kurtosis values for Gaussian noise samples that also contain model-attack noise. The
model-attack noise used here was generated as the result of compromising a model to misclassify an image of a “5” as
a “3”.
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Variance of Gaussian noise Kurtosis Test Result
5.32e-09 48.105 Positive
1.85e-07 21.245 Positive
2.37e-07 17.444 Positive
4.73e-07 9.516 Positive
7.64e-07 6.768 Positive
1.03e-06 5.332 Positive
2.57e-06 3.471 Positive
3.99e-06 3.290 Positive
4.02e-06 3.216 Positive
5.87e-06 3.142 Positive
5.9e-06 3.138 Positive

6.57e-06 3.088 Positive
6.77e-06 3.046 Positive
7.93e-06 3.097 Positive
9.24e-06 3.036 Negative
1.09e-05 3.031 Negative
1.3e-05 2.999 Negative

2.06e-05 2.999 Negative
2.53e-05 3.013 Negative
6.97e-05 3.002 Negative
9.3e-05 2.985 Negative

Table 6.2: The table shows the kurtosis values for Gaussian noise samples that also contain model-attack noise. The
model-attack noise used here was generated as the result of compromising a model to misclassify an image of a “4” as
a “7”.
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Variance of Gaussian noise Kurtosis Test Result
1.85e-09 269.877 Positive
1.35e-07 152.374 Positive
9.99e-07 24.161 Positive
1.14e-06 20.157 Positive
2.54e-06 7.669 Positive
3.43e-06 5.815 Positive
3.86e-06 5.207 Positive
5.2e-06 4.431 Positive

5.47e-06 4.195 Positive
6.68e-06 3.813 Positive
7.68e-06 3.700 Positive
1.57e-05 3.166 Positive
1.93e-05 3.091 Positive
2.31e-05 3.068 Positive
2.53e-05 3.062 Positive
3.8e-05 3.031 Negative

4.05e-05 3.029 Negative
4.35e-05 3.014 Negative
4.56e-05 3.008 Negative
7.99e-05 3.016 Negative

8e-05 3.012 Negative
9.28e-05 3.006 Negative

Table 6.3: The table shows the kurtosis values for Gaussian noise samples that also contain model-attack noise. The
model-attack noise used here was generated as the result of compromising a model to misclassify an image of an
“automobile” as a “frog”.
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Variance of Gaussian noise Kurtosis Test Result
3.75e-09 279.236 Positive
8.93e-08 193.919 Positive
3.24e-07 93.526 Positive
8.71e-07 33.551 Positive
1.26e-06 20.945 Positive
1.98e-06 11.760 Positive
4.59e-06 5.001 Positive
5.2e-06 4.551 Positive

7.25e-06 3.890 Positive
1.07e-05 3.433 Positive
1.39e-05 3.266 Positive
1.93e-05 3.149 Positive
2.26e-05 3.107 Positive
4.07e-05 3.032 Negative
4.56e-05 3.017 Negative
5.79e-05 3.012 Negative
6.93e-05 3.010 Negative
7.42e-05 3.021 Negative
8.14e-05 3.017 Negative
8.68e-05 3.001 Negative
9.4e-05 3.016 Negative

Table 6.4: The table shows the kurtosis values for Gaussian noise samples that also contain model-attack noise. The
model-attack noise used here was generated as the result of compromising a model to misclassify an image of a “bird”
as a “ship”.
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and kurtosis values for these samples. It is seen that there are virtually no false positives.

Variance of Gaussian noise Kurtosis Test Result
5.36e-09 3.015 Negative
6.12e-09 3.004 Negative
6.21e-07 3.011 Negative
6.56e-07 3.023 Negative
7.11e-07 2.996 Negative
8.52e-07 3.013 Negative
1.12e-06 2.999 Negative
1.22e-06 2.996 Negative
1.71e-06 3.009 Negative
4.99e-06 3.011 Negative
5.6e-06 2.976 Negative

8.34e-06 2.980 Negative
8.45e-06 3.035 Negative
1.01e-05 3.014 Negative
1.15e-05 2.996 Negative
1.18e-05 2.993 Negative
1.2e-05 3.000 Negative

1.43e-05 3.024 Negative
1.82e-05 3.029 Negative
2.3e-05 3.051 Positive

5.89e-05 3.002 Negative
8.77e-05 2.994 Negative

Table 6.5: Evaluating false positives using Gaussian noise samples generated based on the model architecture used for
MNIST

We observe that the strategy effectively detects the samples containing model-attack noise only

when the Gaussian noise has low variance. This is because the distinguishing features of the model-

attack noise i.e. the large concentration of values near zero and higher range become less apparent

from the distribution as the variance of the Gaussian noise increases.
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Variance of Gaussian noise Kurtosis Test Result
3.37e-09 3.012 Negative
6.03e-09 3.001 Negative
3.67e-08 3.006 Negative
1.01e-07 2.998 Negative
8.88e-07 2.999 Negative
1.6e-06 2.995 Negative

1.61e-06 2.999 Negative
2.91e-06 3.005 Negative
3.2e-06 3.002 Negative

4.67e-06 3.007 Negative
6.47e-06 3.004 Negative
7.79e-06 3.018 Negative
1.05e-05 3.002 Negative
1.17e-05 3.000 Negative
1.33e-05 2.991 Negative
2.69e-05 3.006 Negative
3.24e-05 3.000 Negative
5.77e-05 3.009 Negative
6.61e-05 2.986 Negative
6.99e-05 3.010 Negative
7.16e-05 3.004 Negative
8.19e-05 3.001 Negative

9e-05 3.003 Negative
9.17e-05 2.997 Negative

Table 6.6: Evaluating false positives using Gaussian noise samples generated based on the model architecture used for
CIFAR-10
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7. VISUALIZING THE MODEL-ATTACK NOISE IN THE CONVOLUTIONAL LAYERS

In the previous chapter, we devised a strategy to detect the model attack based on the noise

distribution. This strategy is effective only when the variance of the Gaussian random noise present

in the model parameters is low. In this chapter, we visualize the model-attack noise values with

the goal of identifying characteristics which can enable us to devise a more effective strategy for

detecting the model attack.

Our model architecture is based on VGG [37], and the weight values in the convolutional layers

are contained in 3*3 kernels of varying depths. The model attack adds noise to each of these weight

values, so the model-attack noise in these kernels can be represented as a 3*3 matrix which has the

same depth as the kernel. We split this 3D matrix into several 3*3 matrices, which we then convert

into 9*1 vectors. We visualize these vectors in 2D using t-SNE [24]. This process is illustrated in

Figure 7.1.

Figure 7.1: The process of converting model-attack noise values into 2D

The t-SNE plots for the model-attack noise generated using the process described above are

seen in Figures 7.3-7.6. The colors of the points in these figures correspond to the layers in the

CNN to which they belong. We also plot a t-SNE visualization of 3*3 matrices containing Gaussian

noise values in Figure 7.2. Observing the t-SNE plots, we see that the model-attack noise has more
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structure than Gaussian noise. In the t-SNE plots for model-attack noise, the points corresponding

to the various layers are close to each other and form clusters. There also exists an oval cluster,

which is distinct from the rest of the points. The points in this cluster correspond to 3*3 matrices

of model-attack noise values that are either zero or very close to zero.

Figure 7.2: t-SNE plot for 9*1 vectors of Gaussian random noise.

Figure 7.3: t-SNE plot for the model-attack noise produced as a result of compromising a model to misclassify an
image of a “4” as a “7”.
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Figure 7.4: t-SNE plot for the model-attack noise produced as a result of compromising a model to misclassify an
image of a “3” as a “9”.

Figure 7.5: t-SNE plot for the model-attack noise produced as a result of compromising a model to misclassify an
image of a “deer” as a “cat”.

Figure 7.6: t-SNE plot for the model-attack noise produced as a result of compromising a model to misclassify an
image of an “automobile” as a “frog”.
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Next, we check if the structures identified by t-SNE still exist in the presence of random noise

since this would enable us to detect the model attack. Figures 7.7-7.10 show the t-SNE plots for

model-attack noise in the presence of Gaussian random noise with varying variance values. We

see that the presence of Gaussian noise causes much of the structure in the model-attack noise to

disappear. The structures become progressively harder to detect as the variance of Gaussian noise

increases. When the variance of the Gaussian noise is around 1e-06, the t-SNE plot looks very

similar to the t-SNE plot for Gaussian random noise, with no noticeable structure in it. This means

that even though the strategy is effective in differentiating model-attack noise from Gaussian noise,

it is not suitable for detecting model-attack noise in the presence of random noise.

Figure 7.7: t-SNE plot for model-attack noise in the presence of Gaussian random noise with variance V. The model-
attack noise visualized here was produced as a result of compromising a model to misclassify an image of a “4” as a
“7”.
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Figure 7.8: t-SNE plot for model-attack noise in the presence of Gaussian random noise with variance V. The model-
attack noise visualized here was produced as a result of compromising a model to misclassify an image of a “3” as a
“9”.

Figure 7.9: t-SNE plot for model-attack noise in the presence of Gaussian random noise with variance V. The model-
attack noise visualized here was produced as a result of compromising a model to misclassify an image of a “deer” as
a “cat”.

Figure 7.10: t-SNE plot for model-attack noise in the presence of Gaussian random noise with variance V. The model-
attack noise visualized here was produced as a result of compromising a model to misclassify an image of an “auto-
mobile” as a “frog”.
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8. ANALYZING THE MODEL’S PREDICTIONS BEFORE AND AFTER THE ATTACK

We have seen that the Loss function based model attack does not significantly change the

model’s test set accuracy. However, this does not mean that all of the model’s predictions remain

unchanged. Analyzing how the model’s predictions change due to the attack might help us uncover

patterns, enabling us to detect the model attack. In this chapter, we visualize the images in the

dataset using t-SNE and observe how the attack affects the model’s predictions.

We record the model’s initial predictions for the various images in the training set. Then, we

embed the training set images into a 2D plot using t-SNE and assign colors to the points in the

plot based on the model’s predictions for the corresponding images. After this, we carry out the

model attack and then generate a new plot using the same t-SNE embedding as before but using

the model’s predictions after the attack to decide the colors of the points. Figures 8.2, 8.3, 8.5 and

8.6 show the plots corresponding to model attacks carried out on models trained on MNIST and

CIFAR-10.

From the plots, it is seen that the model’s predictions for most of the images remain unchanged,

and there are no clear patterns which can help us detect the model attack. This also shows that the

our attack strategy meets the requirement that the model’s performance is not significantly changed

due to the attack.
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Figure 8.1: The images in the MNIST training set have been visualized using t-SNE. The colors of the points represent
their ground truth labels.

(a) Before Attack (b) After attack

Figure 8.2: t-SNE plots showing the model’s predictions before and after a model attack which caused the model to
misclassify an image of a “5” as a “3”. The images for which the model’s prediction changes are denoted by large 6s.

(a) Before Attack (b) After attack

Figure 8.3: t-SNE plots showing the model’s predictions before and after a model attack which caused the model to
misclassify an image of a “4” as a “7”. The images for which the model’s prediction changes are denoted by large 6s.
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Figure 8.4: The images in the CIFAR-10 training set have been visualized using t-SNE. The colors of the points
represent their ground truth labels.

(a) Before Attack (b) After attack

Figure 8.5: t-SNE plots showing the model’s predictions before and after a model attack which caused the model to
misclassify an image of a “frog” as a “truck”. The images for which the model’s prediction changes are denoted by
large 6s.

(a) Before Attack (b) After attack

Figure 8.6: t-SNE plots showing the model’s predictions before and after a model attack which caused the model to
misclassify an image of a “deer” as a “cat”. The images for which the model’s prediction changes are denoted by large
6s.
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9. CONCLUSIONS AND FUTURE WORK

In this study, we have analyzed the threat of a model attack when the CNN model parameters

are stored in non-volatile memories where noise is inevitable. We have demonstrated that the

model attack can be carried out on a CNN model with minimal changes to the model’s parameters

and performance, which makes such an attack hard to detect. This raises concerns for practical

applications such as the self-driving car where the passengers’ safety could be at risk if the model

is compromised.

We studied the properties of the model-attack noise values and observed that they had a higher

kurtosis value when compared to Gaussian noise. Based on this observation, we devised a strategy

to detect the model attack in the presence of Gaussian random noise. We found that this strategy

works well when the variance of Gaussian noise is low.

We have discussed the different techniques that we used to study how the model attack affects

the model’s parameters and predictions. We observed that the Bit error rates in the model weights

due to the presence of model-attack noise are similar to those expected due to the presence of

Gaussian random noise. We observed that a t-SNE plot of model-attack noise has more structure

compared to a t-SNE plot of Gaussian random noise. We also analyzed the model’s predictions

before and after the attack and found that the model’s predictions for most of the images remain

unchanged. This shows that our attack strategy only has a minimal effect on the model’s perfor-

mance.

We defined the model attack problem by viewing it as the dual of the data attack problem and

proposed the “Loss function based model attack strategy” to solve it. Our research focuses on

this specific strategy to carry out the model attack, so further research is needed to understand

the general characteristics of the model attack problem. Future work can focus on identifying

alternate ways of compromising the model and strategies to detect the attacks. This would enable

us to devise robust practical strategies to defend against the threat of the model attack.

46



REFERENCES

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial exam-

ples,” arXiv preprint arXiv:1412.6572, 2014.

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, et al., “ImageNet Large Scale Visual Recognition Challenge. arXiv:

1409.0575,” 2014.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification,” in Proceedings of the IEEE international conference

on computer vision, pp. 1026–1034, 2015.

[4] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,”

in Advances in neural information processing systems, pp. 3104–3112, 2014.

[5] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,

K. Macherey, et al., “Google’s neural machine translation system: Bridging the gap between

human and machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[6] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based neural

machine translation,” arXiv preprint arXiv:1508.04025, 2015.

[7] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, “End-to-end attention-

based large vocabulary speech recognition,” in 2016 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 4945–4949, IEEE, 2016.

[8] B. Turovsky, “Found in translation: More accurate, fluent sentences in

Google Translate.” https://blog.google/products/translate/

found-translation-more-accurate-fluent-sentences-google-translate/,

2016. [Online; accessed 16-June-2019].

47

https://blog.google/products/translate/found-translation-more-accurate-fluent-sentences-google-translate/
https://blog.google/products/translate/found-translation-more-accurate-fluent-sentences-google-translate/


[9] J. Schalkwyk, “An All-Neural On-Device Speech Recognizer.” https://ai.

googleblog.com/2019/03/an-all-neural-on-device-speech.html,

2019. [Online; accessed 16-June-2019].

[10] R. Mcmillan, “How skype used AI to build its amazing new

language translator.” https://www.wired.com/2014/12/

skype-used-ai-build-amazing-new-language-translator/, 2014.

[Online; accessed 24-June-2019].

[11] “Hey Siri: An on-device DNN-powered voice trigger for apples personal assistant.” https:

//machinelearning.apple.com/2017/10/01/hey-siri.html, 2017. [On-

line; accessed 24-June-2019].

[12] B. Barrett, “The year Alexa grew up.” https://www.wired.com/story/

amazon-alexa-2018-machine-learning/, 2018. [Online; accessed 24-June-

2019].

[13] I. Wallach, M. Dzamba, and A. Heifets, “Atomnet: a deep convolutional neural network for

bioactivity prediction in structure-based drug discovery,” arXiv preprint arXiv:1510.02855,

2015.

[14] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun,

“Dermatologist-level classification of skin cancer with deep neural networks,” Nature,

vol. 542, no. 7639, p. 115, 2017.

[15] H. C. Hazlett, H. Gu, B. C. Munsell, S. H. Kim, M. Styner, J. J. Wolff, J. T. Elison, M. R.

Swanson, H. Zhu, K. N. Botteron, et al., “Early brain development in infants at high risk for

autism spectrum disorder,” Nature, vol. 542, no. 7641, p. 348, 2017.

[16] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,

L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without human knowledge,”

Nature, vol. 550, no. 7676, p. 354, 2017.

48

https://ai.googleblog.com/2019/03/an-all-neural-on-device-speech.html
https://ai.googleblog.com/2019/03/an-all-neural-on-device-speech.html
https://www.wired.com/2014/12/skype-used-ai-build-amazing-new-language-translator/
https://www.wired.com/2014/12/skype-used-ai-build-amazing-new-language-translator/
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://www.wired.com/story/amazon-alexa-2018-machine-learning/
https://www.wired.com/story/amazon-alexa-2018-machine-learning/


[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-

miller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602,

2013.

[18] J. Vincent, “Openai’s dota 2 defeat is still a win for artificial intelligence.” https://www.

wired.com/story/amazon-alexa-2018-machine-learning/, 2018. [On-

line; accessed 24-June-2019].

[19] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep con-

volutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

[20] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using convolutional neural net-

works,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 2414–2423, 2016.

[21] A. Huang and R. Wu, “Deep learning for music,” arXiv preprint arXiv:1606.04930, 2016.

[22] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,

“Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.

[23] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in 2017

IEEE Symposium on Security and Privacy (SP), pp. 39–57, IEEE, 2017.

[24] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of machine learning

research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[25] Y. Liu, L. Wei, B. Luo, and Q. Xu, “Fault injection attack on deep neural network,” in 2017

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 131–138,

IEEE, 2017.

[26] A. S. Rakin, Z. He, and D. Fan, “Bit-Flip Attack: Crushing Neural Network with Progressive

Bit Search,” arXiv preprint arXiv:1903.12269, 2019.

[27] M. Qin, C. Sun, and D. Vucinic, “Robustness of neural networks against storage media er-

rors,” arXiv preprint arXiv:1709.06173, 2017.

49

https://www.wired.com/story/amazon-alexa-2018-machine-learning/
https://www.wired.com/story/amazon-alexa-2018-machine-learning/


[28] A. P. Arechiga and A. J. Michaels, “The effect of weight errors on neural networks,” in

2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC),

pp. 190–196, IEEE, 2018.

[29] A. Thomas, “Memristor-based neural networks,” Journal of Physics D: Applied Physics,

vol. 46, no. 9, p. 093001, 2013.

[30] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. C. Adam, K. K. Likharev, and D. B. Strukov,

“Training and operation of an integrated neuromorphic network based on metal-oxide mem-

ristors,” Nature, vol. 521, no. 7550, p. 61, 2015.

[31] S. Kim, M. Ishii, S. Lewis, T. Perri, M. BrightSky, W. Kim, R. Jordan, G. Burr, N. Sosa,

A. Ray, et al., “NVM neuromorphic core with 64k-cell (256-by-256) phase change memory

synaptic array with on-chip neuron circuits for continuous in-situ learning,” in 2015 IEEE

international electron devices meeting (IEDM), pp. 17–1, IEEE, 2015.

[32] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “Prime: A novel

processing-in-memory architecture for neural network computation in reram-based main

memory,” in ACM SIGARCH Computer Architecture News, vol. 44, pp. 27–39, IEEE Press,

2016.

[33] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S.

Williams, and V. Srikumar, “Isaac: A convolutional neural network accelerator with in-situ

analog arithmetic in crossbars,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,

pp. 14–26, 2016.

[34] B. Rajendran and F. Alibart, “Neuromorphic computing based on emerging memory tech-

nologies,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 6,

no. 2, pp. 198–211, 2016.

[35] Z. He, T. Zhang, and R. Lee, “Sensitive-Sample Fingerprinting of Deep Neural Networks,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4729–

4737, 2019.

50



[36] L. T. DeCarlo, “On the meaning and use of kurtosis.,” Psychological methods, vol. 2, no. 3,

p. 292, 1997.

[37] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

51


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	RELATED WORK
	Prior efforts to carry out the model attack
	Limitation of conventional systems and in-memory computing
	Recently proposed strategy to detect the model attack
	The data attack problem

	THE MODEL ATTACK PROBLEM
	Objective of the model attack
	Problem Definition

	EFFECTIVENESS OF THE MODEL ATTACK
	Our Approach
	Initial Attempt
	Loss Function Based Model Attack

	Performance Evaluation
	MNIST dataset
	CIFAR-10 dataset


	PROPERTIES OF MODEL-ATTACK NOISE
	Bit Error Rates (BER)
	Distribution of model-attack noise

	A STRATEGY TO DETECT THE MODEL ATTACK
	Kurtosis
	Our Strategy
	Experiments

	VISUALIZING THE MODEL-ATTACK NOISE IN THE CONVOLUTIONAL LAYERS
	ANALYZING THE MODEL'S PREDICTIONS BEFORE AND AFTER THE ATTACK
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

