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ABSTRACT 

 

Unconventional reservoirs, specifically volatile oil shale plays, behave with much more 

complexity than conventional reservoirs and cannot be modeled consistently and accurately with 

Arps methods. An adaptation of the Arps method has been suggested as a viable method to 

accurately model the decline of a volatile oil shale well. This method applies the Arps hyperbolic 

decline model using multiple segments across the life of the well based on distinct flow regimes 

identified in the well’s production history. Modeling multiple segments based on flow regimes 

observed in production data adds a degree of ingenuity and robustness to the widely accepted 

traditional Arps model. The objective of this research project is to learn how to effectively apply 

multi-segment Arps hyperbolic decline models to horizontal, multi-fractured volatile oil wells in 

the Permian Basin.  

The Multi-Segment Hyperbolic Decline Model is a viable method in forecasting the 

decline of unconventional wells. The transient nature of ultra-low permeability shale reservoirs 

indicates a more complex decline profile than can be modeled successfully using the modified 

Arps model. Typical volatile oil shale wells are characterized by steep initial declines that 

gradually level off as the well transitions from transient linear flow to boundary dominated flow. 

The resulting decline profile segmented by distinct flow regimes results in an estimated ultimate 

recovery that is greater than that of the modified Arps model, suggesting the Arps model is 

underestimating reserves when compared to the multi-segment method.  
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INTRODUCTION 

 

Modeling Conventional Wells Using Arps Method 

Conventional reservoirs have been accurately and easily modeled with Arps decline 

models industry-wide since at least 1945. Arps defines the decline behavior of a well using an 

initial production rate (qi), initial decline rate (Di), and decline exponent factor (b). The model 

further categorizes a well into exponential (b = 0), hyperbolic (b > 0, b not equal to 1), or 

harmonic (b = 1) declines based on the behavior of the well (Arps 1945). Arps’ exponential, 

hyperbolic, and harmonic equations are presented below as Eq. 1, 2, and 3, respectively. The 

most commonly used modified Arps model assumes a hyperbolic decline with a constant b-

factor throughout the life of the well and incorporates a terminal decline rate that switches the 

model to exponential decline when the terminal decline rate is reached. The Arps model assumes 

boundary dominated flow (BDF), meaning flow from the reservoir is influenced by the boundary 

of the reservoir or nearby wells as seen in Fig. 1. The Arps hyperbolic decline model has proved 

successful, accurate, and simple in modeling conventional reservoir decline; it is the industry 

standard when it comes to modeling conventional reservoirs.  

 

𝑞(𝑡) =  
𝑞𝑖

𝑒𝐷𝑖𝑡………………………………………………………….…………………..(1) 

            𝑞(𝑡) =  
𝑞𝑖

(1+𝑏𝐷𝑖𝑡)1/𝑏
……………………………………………………………………….(2) 

𝑞(𝑡) =  
𝑞𝑖

1+𝐷𝑖𝑡
…………………………………………………………………………….(3) 
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Fig. 1—Boundary dominated flow due to well interference. 

 

Modeling Unconventional Wells Using Arps Method 

Unconventional reservoirs, however, behave with much more complexity than 

conventional reservoirs and cannot be modeled as easily and accurately with conventional 

methods. Whereas conventional wells exist in BDF for the majority of the life of the well, 

unconventional wells exist in transient linear flow (LF) for months to years before transitioning 

to BDF (Wattenbarger et al. 1998). This indicates that unconventional reservoirs do not show 

reservoir boundary effects for many years due to the ultra-low permeability often present in 

unconventional plays. Early production from these wells results from matrix drainage linearly 

into natural and/or hydraulic fractures (Fig. 2) and then to the wellbore rather than radially from 

the full extent of the reservoir. Since the Arps decline model is based on the BDF assumption, 

unconventional reservoirs cannot be accurately forecasted using this method. Modeling the 

decline of unconventional wells in transient linear flow becomes much more complicated than 

conventional wells in radial or boundary dominated flow. A horizontal, fractured, ultra-low 

Reservoir/well boundary 
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permeability well is expected to exist in LF for many months to years before a transitioning to 

BDF. Theoretically, using Arps hyperbolic decline, true linear flow is best modeled with a b-

factor of 2.0 (Spivey et al. 2001). In reality, variables such as operational conditions, well 

spacing, reservoir heterogeneity, completion efficiency, and particularly fracture interference 

cause wells producing in LF to be best fit with b-factors ranging from 1.5 to 2.0. For example, 

increasing completion efficiency, specifically fracture length, causes the b-factor to decrease 

from 2.0 (Kupchenko et al. 2008). This study assumes LF is defined by this b-factor range of 1.5 

to 2.0 rather than the true LF b-factor of 2.   

Although unconventional wells are believed to flow linearly for months to years, a well 

will eventually transition to flow that is affected by complete fracture interference. The transition 

phase could possibly be seen in well production data, but the boundary dominated flow regime is 

not likely to be seen due to insufficiently long production histories currently available. As this 

transition occurs, the b-factor has been observed as not constant as suggested by the Arps model 

(Varma et al. 2018). In fact, the b-factor in unconventional reservoirs declines over time as the 

well transitions from LF to BDF. We estimate the b-factor of the transition zone ranges from 0.5 

to 1.5. A solution-gas-drive well producing in BDF is expected to be fit best with a b-factor of 

0.3 (Fetkovich 1996).  Furthermore, hyperbolic decline b-factors cannot exceed one for the entire 

life of a well because this yields an estimate of infinite reserves (totally unrealistic) and generally 

causes an overestimation of ultimate recovery. The declining nature of the b-factor as the 

reservoir flow moves from LF to BDF renders the modified Arps model inaccurate and misused 

in unconventional reservoirs. A constant b-factor Arps hyperbolic decline model cannot 

accurately model the decline of unconventional reservoirs.  
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Fig. 2—Linear flow. 

 

Modeling Unconventional Wells Using New Methods 

Researchers have suggested that newer decline models, such as Duong, power law 

exponential, etc., may better represent the complicated decline of volatile oil shale reservoirs. 

The Duong (2011) model assumes long term linear flow and often overestimates reserves. Ilk et 

al. 2008 proposed the power law exponential model that can be flexible enough to incorporate 

LF and BDF regimes for shale gas reservoirs. The added complexity, limitations, and lack of 

knowledge of these models make it challenging for their widespread acceptance as accurate and 

suitable long-term models for forecasting the decline of shale reservoirs (Makinde and Lee 

2016). With its simplicity and accuracy in forecasting wells for nearly a hundred years, the Arps 

hyperbolic decline remains the most accepted and long-standing method to forecast the decline 

of a well, conventional or unconventional. However, the model simplicity, subjectivity, and 

inaccuracies in modeling unconventional wells calls for the need to adapt the model to better fit 

unconventional wells. To adapt this model to make it more suitable for unconventional 

reservoirs, hybrid Arps models have been suggested. The Multi-Segment Hyperbolic (MSH) 
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model, exemplified in Fig. 3, follows the Arps hyperbolic equation (Eq. 2 above) but 

incorporates multiple segments of hyperbolic declines based on the distinct flow regimes 

observed in production data (Jeyachandra et al. 2016). This method utilizes the simplicity and 

popularity of the modified Arps model but adds robustness by segmenting the production data 

into the observed flow regimes, most often transient LF, partial fracture interference, transition to 

BDF, and BDF (Varma et al. 2018).  

 

Fig. 3—Example of a multi-segment hyperbolic decline model based on LF, transition to BDF, 

and BDF segments. 
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Reserves estimation is an important part of the oil and gas industry. Estimating the 

reserves for a reservoir impacts business management, accounting, financing, and government 

regulation (Abdel, Mawla and Hegazy 2015). Over or under-estimating reserves can negatively 

impact business development and can even cause legal implications for a company (Olson et al. 

2019). As horizontal, hydraulically fractured shale wells become the focal point of today’s oil 

and gas industry, better understanding of how to forecast unconventional wells is needed to 

ensure reserves estimation is done quickly, consistently, and accurately. Hybrid models, like the 

MSH method, are gaining traction as the industry recognizes the limitations of conventional 

forecasting methods in unconventional plays.  

This study serves to effectively apply the multi-segment hyperbolic method to a 100-well 

data set of horizontal, hydraulically fractured, volatile oil shale wells in the Permian Basin and 

compare the resulting decline models to modified Arps decline curves. It also serves to gain 

further insight into long-term volatile oil shale well behavior. Specifically, the following 

objectives will be achieved through this study:  

1. Identify distinct flow regimes in well production data using diagnostic tools.  

2. Generate MSH decline models for each well based on identified flow regimes.  

3. Generate MSH type wells.  

4. Generate modified Arps hyperbolic decline models for each well.  

5. Generate modified Arps hyperbolic type wells.  
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Literature Review of Flow Regimes 

 

Bilinear Flow 

Bilinear flow (BLF) is characterized by hydrocarbon flow linearly both within the 

fracture and within the formation, illustrated in Fig. 4. It is possible but not likely to observe 

BLF in early time in unconventional wells and if observed, it is typically brief. Bilinear flow can 

be falsely identified in very early time as the well is brought online and the fractures are cleaned 

up, meaning fracture fluid is flowed back to the surface and proppant is set in the fractures. Since 

it is uncommon, short-lived, and often falsely identified, BLF is typically ignored unless 

observed for a significant period of time (Kanfar and Alkouh 2014). It is associated with a very 

high Arps b parameter up to 4.0 (Kupchenko et al. 2008).  

 

 

Fig. 4—Bilinear flow. 
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Linear Flow 

Unconventional wells produce hydrocarbons from the stimulated reservoir volume, or the 

volume of reservoir rock that has been hydraulically fractured to create a network of highly 

permeable fractures that are conductive of reservoir fluids. The linear flow regime is 

characterized by hydrocarbon flow linearly and perpendicular to hydraulic fractures, as depicted 

previously by Fig. 2. The transient linear flow regime is the dominant flow regime in shale wells, 

lasting months to years (Kupchenko et al. 2008). Linear flow is associated with high b 

parameters from 1.5-2.0. 

 

Partial Fracture Interference 

Multiple-well pads and multiple-stage hydraulic fracturing can create partial or complete 

interconnected fracture networks that induce complex hydrocarbon flow patterns, as depicted by 

Fig. 5. In this case, a well may show pseudo-boundary effects, meaning partial fracture 

interference creates an impression that the reservoir boundary is influencing the well’s 

production (Tang et al. 2017). Often times this phenomenon can occur almost immediately after 

the onset of production, meaning the fracture stages are already communicating enough to 

bypass the LF period and immediately indicate transition-like flow regimes. Wells experiencing 

partial fracture interference are typically fit without a LF segment and a b-factor from 0.5 -1.5. 

Note this b-factor range is the same as for the transition phase. These flow regimes are exhibiting 

the exact same behavior, but partial fracture interference is not preceded by LF, whereas 

transitional flow is preceded by LF.  
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Fig. 5—Partial fracture interference (transition to BDF). 

 

Transition to Boundary-Dominated Flow 

 Unconventional wells will gradually transition from LF to BDF as the well begins to 

produce from the complex, interconnected fracture networks rather than linearly in individual 

fractures (Kupchenko et al. 2008). As more fractures begin to communicate, transitional flow is 

exhibited, as in Fig. 5 above. This flow regime is exhibiting the same behavior as partial fracture 

interference, but transitional flow follows LF. The transition flow regime is less likely than LF to 

be observed in production data due to the long duration of LF as well as the lack of long-term 

production data. This transition occurs after LF and is associated with a declining b-factor of 0.5-

1.5.  

 

Boundary Dominated Flow 

 An unconventional well will see boundary effects when the well begins to produce 

entirely from the complex, interconnected fracture network generated through hydraulic 

fracturing, as seen in Fig 6. In conventional wells, BDF can observed for much of the life of the 
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well. In unconventional wells, however, boundary dominated flow is not observed for a long 

period of time, if at all, due to the transient nature of the ultra-low permeability reservoirs. 

Fetkovich (1996) accurately modeled solution-gas-drive volatile oil reservoirs with an Arps b-

factor of 0.3. This b-factor will be used as the assumed b-factor for all BDF regime decline 

segments.  

 

Fig. 6—Boundary dominated flow due to complete fracture interference. 
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FLOW REGIME ANALYSIS 

 

Overview  

Flow regime identification is performed using rate transient analysis incorporating well 

production and bottom hole pressure data. Rate transient analysis involves the interpretation of 

this rate and pressure data using diagnostic plots to diagnose reservoir behavior.  Table 1 details 

a summary of diagnostic plots used to identify flow regimes. Table 2 summarizes the steps taken 

in the flow regime identification portion of this analysis. Note that any trendline slope is 

hereafter referred to as a positive value whereas in actuality the slope is actually negative. For 

example, a well in LF technically exhibits a -½ slope on a log-log plot of rate vs time, but this 

study refers to the slope as “½ slope” for simplicity. 

 

Diagnostic Plot Purpose 

1. q vs t Data correlation and validation 

2.   𝑝𝑤𝑓  vs t Data correlation and validation 

3. Log(q) vs Log(t) Flow regime identification 

4. Log(q/Δp) vs Log(t) Flow regime identification 

Table 1—Diagnostic plots used and their purpose in flow regime analysis. 

 

1. Data quality control (using plots 1 and 2) 

a. Data correlation 

b. Data noise 

2. Flow regime identification (using plot 4) 

3. Best fit slope and duration of each flow regime recorded 

Table 2—Summary of flow regime analysis procedure. 
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Data Correlation 

The rate and pressure data used in this study is real world data from wells in the 

Wolfcamp and Bone Springs formations in the Permian Basin. The oil rate data provided for this 

study are daily field measurements that are subject to human or other forms of measurement 

error. The pressure data provided for this study are daily calculated bottom hole pressures using a 

surface-to-bottom-hole pressure correlation from measured surface pressure data and individual 

well and reservoir parameters. These data sets are subject to errors; this can affect the analysis 

performed. It is important to check the quality of data involved in the analysis to understand the 

certainty with which conclusions can be drawn (Ilk et al. 2011). The rate, q, and flowing bottom 

hole pressure,  𝑝𝑤𝑓, data were checked using plots 1 and 2 from Table 1 to ensure the data 

correlated. When any of the wells in the 100-well set were deemed to have invalid data, the wells 

were removed from the analysis. If the well data was deemed valid, analysis was continued and 

performed on the well. Fig. 7 shows a well with invalid data that was removed from the data set. 

The pressure increases for a significant portion of the production data and segments of this data 

also have increasing rate. This relationship is not physically possible so the well is removed from 

the analysis. Fig. 8 shows a well with valid data that was included in the analysis moving 

forward. The rate and pressure data for this well correlated and was deemed valid for the 

analysis. This data correlation analysis was performed on all 100 wells in the data set with only 

73 wells being identified has having valid data and thus included in the analysis. This reduced 

the uncertainty in the results of the analysis as a whole. Two of the wells in the data set, wells 99 

and 100, contained both measured rate and pressure data. These well data are the most accurate 

in the entire data set since the bottom hole pressures were collected using a bottom hole gauge.  
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Fig. 7—Example of a well with invalid pressure data that was removed from the analysis.   
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Fig. 8—Example of a well with valid rate and pressure data that was included in the analysis. 
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Data Noise 

 Data noise can have a significant impact on flow regime identification and decline curve 

analysis. Field data is typically associated with disruptions and significant noise throughout the 

life of the well. Well events such as shut-ins, workovers, choke changes, and other operational 

changes can disrupt rate data from the decline profile of the well (Chaudhary and Lee 2016). 

Fracture fluid flowback often dominates the early life of the well due to high production rates of 

fracture fluids and subsequent lower production rates of reservoir fluids. After the first three to 

six months of production, the well will usually have completed flowback and established a peak 

oil rate followed by a decline in production rates. Once this decline has begun, the data becomes 

valid and usable for flow regime and decline curve analysis. Rate data such as this can be 

cleaned up using a manual lasso tool to select points which are considered outliers and should be 

excluded from the data. The manual nature of this tool can create some biases when filtering the 

data. The more the data is filtered, the less representative of the true reservoir decline the data 

becomes. It is important to ensure the analysis is unbiased from over data filtering. Fig. 9 shows 

an example of a well with significant noise associated with the rate data due to shut-ins and 

fracture clean-up.  Significant noise is also associated with the calculated bottom hole pressure 

data due to the nature of the calculation. The calculation was performed by an outside party prior 

to obtaining the data, so some uncertainty as well as noise lies within this calculated data. Fig. 10 

shows an example of a well with significant noise associated with pressure data. The wells in this 

data set were categorized based on the level of noise seen in the pressure data. Wells with 

significant noise in the pressure data as in Fig. 10 were labeled “bad data,” whereas wells with 

little noise in the pressure data, as in Fig. 8, were labeled “good data.”  Flow regime and decline 

curve analysis was performed on wells with both good and bad data noise; however, only the 



16 
 

good data wells were considered for final results and conclusions, since this well category 

contained the data with the least amount of uncertainty.  

 

 

 

Fig. 9—Example of a well with noisy rate data due to fracture clean-up and frequent shut-ins. 
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Fig. 10—Example of a well with noisy pressure data, categorized as “bad” data. 

 

 

Analysis 

 The flow regimes were identified using plots 3 and 4 in Table 1. Plot 3, log(q) vs log(t), 

is the plot typically used in the identification of flow regimes in unconventional wells under the 

assumption that the well is producing at a constant flowing pressure. However, almost all field 

data exists contains both variable rate and variable pressure. Analyzing only the rate data while 

assuming constant pressure production can lead to significant errors when identifying the true 

reservoir signature. In this case, plot 3 cannot be trusted to accurately identify flow regimes for 

wells with significant data variability. However, use of plot 3 is still a good preliminary tool to 

check what flow regimes are likely to be seen. The following procedure is useful with plot 3.  A 

straight-line with a ½ slope trend on a log-log plot of rate vs time can indicate the presence of 
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transient LF. Rate data is significantly affected by well operation condition changes that cause 

deviations in the ½ slope line despite the well remaining in linear flow. For example, a choke 

change should cause a straight-line trend deviation as the flow rates and pressures are suddenly 

shifted, but the overall trend should return to a ½ slope line over time if the well is still in linear 

flow. It is important to take operational changes into consideration when analyzing production 

data. This data set did not include operational changes and well events, so deviations in straight 

line trends were assumed to be due to flow regime shifts as long as the shifted trend did not 

return to the previous trend. Fig. 11 is an example of a well that shows ½ slope on plot 3, 

indicating the well is producing in the LF regime. The fracture clean-up period of the data at 

early times can clearly be seen on this example. After a couple months of production, the well is 

clearly trending at ½ slope and can be interpreted as in the LF regime. Use of similar plots 

incorporating square root time or material balance time can also be used to confirm linear flow, 

although caution is suggested when using these methods because straight-line trends and 

deviations from straight line trends can mislead the analyst into believing linear flow exists or 

deviation form linear flow has occurred when in fact the opposite is true.  
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Fig. 11—Example of a well in LF based on the ½ slope on log(q) vs log(t). 

 

To more accurately and consistently identify flow regimes, plot 4 is suggested as a more 

robust method than plot 3 since this plot normalizes rate using bottom hole pressure data. The 

pressure-normalized rates (PNR), shown in Eq. 4, better represent the true reservoir performance 

of wells under unstable flowing conditions and allow for more accurate flow regime analysis 

(Lacayo and Lee 2014). The initial reservoir pressure used in the PNR calculation is subject to 

uncertainty in this data set. The initial pressure can be roughly estimated using the total vertical 

depth and Eq. 5, but in some cases the initial reservoir pressure estimate was less than some of 

the calculated bottom hole pressure data points. This is neither feasible or realistic, so the initial 

pressure estimate for these wells was adjusted to ensure that 𝑝𝑖 > 𝑝𝑤𝑓. However, not all wells 

had total vertical depth data. For the wells without total vertical depth data, the initial pressure 

was set at the average initial pressure estimated in the previous steps for each formation. This 
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remains a source of mild uncertainty in the analysis, but small shift in initial pressure does not 

have a significant impact on flow regimes analysis. The value of 0.7 psi/ft in Eq. 5 is a pressure 

gradient estimate obtained for the Permian Basin (Fairhurst et al. 2012). Fig. 12 shows an 

example of a well that shows disrupted rate data on plot 3, but once normalized, shows a clear 

straight-line trend on plot 4. Moving forward, plot 4 is used as the primary diagnostic tool to 

identify flow regimes. Theoretically, a ½ slope straight line on plot 4 indicates the existence of 

transient LF. With field data, however, LF will be indicated by straight-line trends that show a 

slope of about (but not exactly) ½. Unstable operating conditions, well communication, reservoir 

heterogeneity, and completion efficiency can cause disruptions in the ½ slope trend of field data. 

For this study, LF was assumed for wells showing slopes of ½ to 2/3. The best fit slope and 

segment duration of the identified segments of data was recorded for each well.  

 

𝑃𝑁𝑅 =  
𝑞

𝛥𝑝
=  

𝑞

𝑝𝑖−𝑝𝑤𝑓
   ……………..……………………………………………………………(4) 

𝑝𝑖 ≈ 𝑇𝑉𝐷 [𝑓𝑡] ∗ 0.7 [𝑝𝑠𝑖 𝑓𝑡⁄ ]   …………………………………...…………………………….(5) 
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Fig. 12—Example of a well in which pressure normalization successfully identified the straight-

line trend of LF. 

 

Significant and continued deviation from a ½ slope line on plot 4 can suggest deviation 

from transient LF. A deviation in the LF straight-line trend that remains deviated is an indication 

of a flow regime shift from the LF regime to the transition period. The slope of plot 4 was 
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recorded for each well with multiple slopes being recorded when clear deviations occurred 

indicating the transition period has begun. The transition flow regime is expected to be shown by 

a slope steeper than the LF slope range but less than two. The transition period is expected to last 

for many years due to the slow drainage nature of ultra-low permeability seen in shale reservoirs.  

A well that has existed in LF and begun the transition flow regime is illustrated in Fig. 13.  

 

 

Fig. 13—Example of a well that has transitioned from LF. 
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Some wells seemed to skip the LF segment and immediately begin producing similar to 

wells in transition. Wells of this nature were assumed to be producing with partial fracture 

interference due to interconnected fracture networks creating a pseudo-boundary effect. This 

could cause wells to appear as if they are not producing linearly and have a PNR slope indicating 

they are in transition. Theoretically, shale wells in this region should produce in LF for many 

months or years, so it is safe to assume that these wells are encountering interference rather than 

transitional flow, as in Fig. 14. The well in this example has no indication of early time LF and 

the first (and only) identified segment has a best fit slope of 0.8, indicating it is affected by 

partial fracture interference.   

 

 

Fig. 14—Example of a well that is affected by partial fracture interference. 

 

Complete fracture interference inducing a BDF effect may not be observed in production 

data during the life of an unconventional well. The BDF regime is characterized by a slope 

greater than two on diagnostic plot 4 but is not expected for the majority of these wells. The 
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ultra-low permeability of shale reservoirs, specifically in the Permian Basin, causes a prolonged 

period affected by boundaries as seen in the production data. Two wells in the data set were 

determined to be producing in the BDF regime. Fig. 15 shows one of these wells exhibiting 

BDF. To confirm the presence of a transition or BDF, the segment of data in question was best 

fit with an Arps hyperbolic model to see if a transitional or BDF b-factor could be realistically 

and accurately fit to the data. If so, the flow regime identified was confirmed.  

 

 

Fig. 15—Example of a well that exhibited LF, transition to BDF, and BDF. 

 

Flow regime analysis was performed in its entirety for each well. The flow regimes were 

identified and the best fit slope and duration of each regime was recorded for each well. These 

slopes and durations were later used to generate multiple segment hyperbolic declines for each 

well. 
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Discussion of Results 

 The purpose of the flow regime identification portion of this analysis is to understand the 

long-term behavior of horizontal, multi-fractured, volatile oil shale wells in the Permian Basin 

and generate multi-segmented hyperbolic decline models for the wells based on identified flow 

regimes. Only the wells with “good” data (59/100 wells with correlated data that was not too 

noisy) are considered in this section of the study so as to draw valid conclusions on the typical 

behavior of these unconventional wells. The wells can further be divided into two different 

producing formations—Wolfcamp and Bone Springs.  

 The Wolfcamp group had 37 wells with good data. The average well in this data set had 

about 1,000 days of production. Table 3 summarizes the flow regimes observed in this group. 

The majority (60%) of wells in this group were observed to be in LF with the other 40% 

exhibiting partial fracture interference without the presence of a LF segment. About 32% of the 

wells that exhibited LF to start began the transitional flow regime within the historical data 

period. Of the wells that illustrated transitional flow, the average duration of LF was about 230 

days. The two wells that reached BDF within their production histories did so at 150 and 400 

days, respectively. This analysis indicates that majority of wells producing from the Wolfcamp 

formation of the Permian Basin will produce in LF for more than 3 years without seeing the 

transition to BDF. It would be interesting future work to further study the impact of well spacing 

and operational conditions on the duration of LF.  
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Flow Regimes Observed Number of wells Percent of wells  

LF         22      60% 

              LF, Transition                7                32% 

              LF, Transition, BDF                 2                9% 

No LF, Partial Fracture Interference         15       40% 

Total Wells         37 - 

Table 3—Summary of flow regime analysis for the Wolfcamp group. 

 

The Bone Springs group had 22 wells with good data. The average well in this data set 

had about 1,800 days of production. Table 4 summarizes the flow regimes in this group. The 

majority of these wells were observed to be in LF with only 27% of the wells exhibiting 

transitional flow within their historical data. The increase in average production time explains 

why a larger percent of the Bone Springs wells exhibited the transitional flow regime. With a 

longer producing time (i.e., more data), it should be expected that more wells should show 

indications of transitional flow. The wells that exhibited LF and a transition phase had a LF 

period that lasted about 625 days. This analysis indicates that majority of the wells producing in 

the Bone Springs formation of the Permian Basin will see fracture interference or transition to 

BDF within 5 years of production; however, wells are most likely to start production in LF. None 

of the wells in this reservoir showed indications of boundary effects due to complete fracture 

interference within the production history. 

 

Flow Regimes Observed Number of wells Percent of wells  

Bilinear Flow        1      5% 

LF       15     68% 

                LF, Transition                    6                   40% 

No LF, Partial Fracture Interference        7      32% 

Total Wells       22 - 

Table 4—Summary of flow regime analysis for the Bone Springs group. 
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MULTI-SEGMENT HYPERBOLIC DECLINE MODELING 

 

Application of Flow Regimes to MSH Model 

 The Multi-Segment Hyperbolic Method was implemented based on the flow regimes 

observed in the production data for each well. The model utilizes the Arps hyperbolic equation 

(Eq. 2). The b-factor used for each segment depends on the slope observed for each flow regime. 

For observed flow regimes, the b-factor was calculated using Eq. 6. For unobserved flow 

regimes, the b-factor was estimated using the ranges in Table 5. Using this constant b-factor for 

each segment, the model was fit to the data using linear regression by adjusting initial rate (qi) 

and initial decline rate (Di) to obtain the best fit decline curve.  

 

𝑏 =  
1

𝑠𝑙𝑜𝑝𝑒
   ………………………………………………………………………………………(6) 

 

For the LF segment, a best-fit Arps hyperbolic decline was applied using a constant b-

factor of 1.5 - 2.0. The LF segment lasts until the transition phase is detected. If no transition 

phase was detected, the LF was assumed to terminate at the end of history. Following LF, the 

transition period will bewas modeled using a b-factor of 0.5 – 1.5. If the transition period iswas 

observed in production data, the historical data was fitted to the model using the b-factor 

calculated from the slope of the PNR curve for the transition segment. If no transition region was 

detected during historical production, the b-factor was estimated using an average of the 

observed LF b-factor with the BDF b-factor (0.3). The transition period was assumed to continue 

up to a terminal decline rate of 10%. In common practice, this terminal decline rate marks the 

time at which the decline model switches to exponential decline. However, we believe that for 
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unconventional wells in particular, the data will continue to follow a hyperbolic decline model 

due to the presence of the boundary dominated flow regime. Although we expect that 

unconventional wells will enter boundary dominated flow segment towards the end of their life, 

there will not likely be BDF present in the historical data available, so we assumed that the wells 

enter BDF at a decline rate of 10%. For the BDF segment, the b-factor is assumed to be 0.3 for 

solution-gas-drive reservoirs (Fetkovich 1996). It is important that value of b during BDF be 

below one so that the estimated reserves are not overstated. The BDF segment will terminate at a 

total well life of 30 years so as to establish a comparable 30-year cumulative production estimate 

for each well.  

Wells that exhibit partial fracture interference (no LF and calculated b-factor 0.5 to 1.5), 

were treated as similar to LF wells that had yet to undergo transition. These wells still have a 

declining b-factor, but the b-factor of the second segment is lower than if they were experiencing 

true LF at the start. In all cases where there is historical data available to fit the decline, the data 

were fit to the decline model. For cases where the forecast did not overlay historical data to 

obtain a best fit, qi and Di were initialized to match the flow rate and decline rate at the end of 

the previous segment. This ensures that the generated decline model is smooth without 

significant or unrealistic non-conformities in the curve. Table 5 summarizes the MSH model 

parameter distribution.  
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Flow Regime Segment b qi, Di Segment Duration 

Bilinear Flow >=4.0 Best fit to data To end of BLF 

Linear Flow 1.5 - 2.0 Best fit to data To end of LF or end of history 

Partial Fracture 

Interference 
0.5 – 1.5 Best fit to data 

To end of interference or end 

of history 

Transition to BDF 0.5 - 1.5 
Best fit or initialized to 

previous segment 
To terminal decline (10%) 

BDF 0.3 
Best fit or initialized to 

previous segment 
To end of life (30 years) 

Table 5—Summary of flow regimes segments and decline parameters used in the MSH method. 

 

Modified Arps Modeling 

 To draw comparisons and conclusions for the MSH decline model, the modified Arps 

hyperbolic decline model was used. This modified model follows the hyperbolic equation, Eq. 2, 

like the MSH model. However, typically this model only uses a single b-factor to model the 

decline of the well before switching to an exponential decline (Eq. 3, b = 0) at a terminal decline 

rate. The modified Arps model decline types and parameters are summarized in Table 6. For this 

data set, this classic model was used for each well to compare the decline to the MSH method. 

The linear regression best fit curve was generated using Kappa Citrine by adjusting qi, Di, and b 

and applying an exponential decline at a terminal decline rate of 10%. Fig. 16 shows an example 

comparison of the modified Arps model (yellow) and the MSH decline model (black). 

 

 

Decline Type b qi, Di Decline duration 

Hyperbolic 0 – 2.0 Best fit to data To terminal decline (10%) 

Exponential 0 Initialized to previous segment To end of life (30 years) 

Table 6—Summary of decline types and parameters used in modified Arps method. 
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Fig. 16—Example comparison of the modified Arps model and MSH decline model. 

 

Discussion 

 

Case 1: Linear Flow  

 Well 34 is a good example of a well that is modeled using a LF segment to the end of its 

history.  The flow regime analysis was performed using the diagnostic plots shown in Fig. 17. 

The pressure and rate data correlate well for the majority of production history and the data are 

not too noisy. The log-log plot of rate vs time shows a clear ½ slope trend through the data. The 

pressure normalized rate curve confirms this ½ slope throughout the life of the well to date. 

Therefore, we assumed that the well exhibited LF to the end of history (about 1,500 days). Using 

Eq. 6, the b-factor for the LF segment is 2.0. Since we do not see transitional flow in the 

historical data, an estimate of the b-factor was obtained using an average of the LF segment (2.0) 

and the BDF segment (0.3). The transition regime was modeled using a b-factor of 1.2. We 

assume that the transition segment begins at the end of history, since no historical data portrays 

transitional flow. The BDF segment begins at a terminal decline rate of 10%. This switch point 

was determined using the Kappa Citrine “switch to exponential” function that outputs a time to 

terminal decline following the modeling of the first two segments. Once the switch time was 
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determined, the BDF segment was set to begin at this time. For segments following LF, qi and Di 

were determined using the Citrine linear regression best fit function. The second segment is 

initialized at the qf and Df of the first segment. The third segment is initialized at the qf of the 

third segment and a Di of 10% since it begins at the terminal decline rate. Fig. 18 depicts the 

parameters used to generate the MSH model for well 34. Fig. 19 depicts the MSH decline model 

for well 34 on rate vs time and log-log rate vs time curves. The rate vs time graph is used to 

interpret the goodness of fit to the historical production. The log-log rate vs time graph is used to 

observe the decline model in its entirety as well as observed how the model fits the flow regimes 

observed in the log-log diagnostic plot used in the flow regime analysis. The transition segment 

is selected so as to show the start and end of each segment. The well exhibited LF to the end of 

history (4 years), followed by a transition to BDF that lasted about 3 years after the end of 

history, and ending with a BDF segment that was terminated at 30 years. This resulted in a 30-yr 

estimated ultimate recovery (EUR) of 0.462 MMSTB.  

 

 

Fig. 17—Diagnostic plots used in the flow regime analysis of well 34. 
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Fig. 18—The MSH model parameters used to generate the decline for well 34. 

 

 

 

Fig. 19—The MSH model for Well 34. 
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Case 2: Linear Flow and Transition 

Well 85 is a good example of a well that was modeled with both LF and transitional flow 

segments within the historical data. The flow regime analysis was performed using the diagnostic 

plots shown in Fig. 20. The pressure and rate data correlate well for the majority of production 

history and the data is not too noisy, aside from a noisy segment of rate data. Ignoring the clean-

up period, the pressure normalized rate curve shows a ½ slope for about 350 days followed by a 

slope of 2, indicating transitional flow. Therefore, we can assume moving forward that the well 

exhibits LF (b  = 2.0) for about 500 days then enters the transitional flow regime with a b-factor 

of 1.2. The BDF segment (b = 0.3) will begin at a terminal decline rate of 10%, which was 

determined to be about 6.6 years. The model parameters were best fit to the data or initialized to 

the previous segment, as in the previous example. Fig. 21 depicts the parameters used to generate 

the MSH model for well 85. Fig. 22 depicts the MSH decline model for well 85. The well 

exhibited LF for about 1.7 years followed by a transition to BDF that lasted about 5 years and 

ending with a BDF segment that was terminated at 30 years. This resulted in a 30-yr EUR of 

0.265 MMSTB. 
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Fig. 20—Diagnostic plots used in the flow regime analysis of well 85. 

 

 

Fig. 21—The MSH model parameters used to generate the decline for well 85. 
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Fig. 22—The MSH model for well 85. 

 

Case 3: Partial Fracture Interference Example 

Well 59 is a good example of a well that is modeled with a partial fracture interference 

assumption. The flow regime analysis was performed using the diagnostic plots shown in Fig. 

23. The pressure and rate data correlate well for the majority of production history and the data is 

not too noisy. Although the log-log plot indicates half slope trend, the pressure normalized rate 

curve shows a slope of 0.8 indicating the first segment will be fit with a b-factor of 1.3. This b-

factor is outside the range expected for LF (1.5-2.0), thus it is assumed that this well is being 

influenced by partial fracture interference starting at early times. The transition segment for this 

model will begin at the end of history and the BDF segment (b = 0.3) will begin at a terminal 

decline rate of 10%, which is determined to be about 11 years. The model parameters were best 

fit to the data when available or initialized to the previous segment if not, as in previous 

examples. Fig. 24 depicts the parameters used to generate the MSH model for Well 59. Fig. 25 

depicts the MSH decline model for Well 59. The well exhibited partial fracture interference for 

about 3 years followed by a transition to BDF that lasted about 8 years and ending with a BDF 

segment that was terminated at 30 years. This resulted in a 30-yr EUR of 0.512 MMSTB. 
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Fig. 23—Diagnostic plots used in the flow regime analysis of well 59. 

 

 

Fig. 24—The MSH model parameters used to generate the decline for well 59. 
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Fig. 25—The MSH model for well 59. 

 

Case 4: LF, Transition to BDF, and BDF 

Well 16 is a good example of a well that is best modeled with LF, transition to BDF, and 

BDF segments within its history. Only two wells in the data set were observed to be in BDF by 

the end of their production history. The flow regime analysis was performed using the diagnostic 

plots shown in Fig. 26. The pressure and rate data correlate well for the majority of production 

history and the data are not too noisy. The pressure normalized rate curve shows a near ½ slope 

trend, followed by a short transition segment and ending with a steep decline indicating BDF. 

The LF segment, the transition segment, and the BDF segment were  modeled using b-factors of 

1.8, 1.3, and 0.3, respectively. To confirm the flow regimes, a best fit decline was fit to each 

isolated segment using these b-factors to ensure that these data could be accurately modeled with 

these parameters. The gradual declining nature of this well is not characteristic of the steep 

decline often seen with wells in early time. Due to this initial gradual decline, the LF , we could 

not model the LF segment accurately. The decline model was started at the transition segment to 

best represent the decline profile of the well. The other model parameters were best fit to the data 

or initialized to the previous segment, as in previous examples. Fig. 27 depicts the parameters 

used to generate the MSH model for well 16. Fig. 28 depicts the MSH decline model for well 16. 
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The well exhibited LF for about 0.5 years followed by a transition to BDF that lasted about 1.5 

years and ended with a BDF segment that was terminated at 30 years. This resulted in a 30-yr 

EUR of 0.241 MMSTB. 

 

 

Fig. 26—Diagnostic plots used in the flow regime analysis of well 16. 
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Fig. 27—The MSH model parameters used to generate the decline for well 16. 

 

 

 

Fig. 28—The MSH model for well 16. 
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Case 5: Bilinear Flow 

Well 79 is the only well in the data set that exhibited long-duration bilinear flow in its 

production history. The flow regime analysis was performed using the diagnostic plots shown in 

Fig. 29. The pressure and rate data correlate well for the majority of production history and the 

data are not too noisy. The pressure normalized rate curve shows a near 1/4 slope trend for nearly 

1.5 years, followed by a LF ½ slope. The BLF segment was modeled with a b-factor of 4.0 while 

the LF segment was modeled using a b of 2.0. The terminal decline switch point was estimated 

to be immediately following the end of history, so no transition phase was modeled. The model 

will switch to BDF (b = 0.3) at the end of history. To confirm the flow regimes, a best fit decline 

was modeled to each isolated segment using these b-factors to ensure that the rate data could be 

accurately modeled with these parameters. The other model parameters were best fit to the data 

or initialized to the previous segment, as in previous examples. Fig. 30 depicts the parameters 

used to generate the MSH model for well 79. Fig. 31 depicts the MSH decline model for well 79. 

The well exhibited BLF for about 1.5 years followed by LF that lasted about 4 years and ending 

with a BDF segment that was terminated at 30 years. This resulted in a 30-yr EUR of 0.298 

MMSTB. 
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Fig. 29—Diagnostic plots used in the flow regime analysis of well 79. 

 

 

Fig. 30—The MSH model parameters used to generate the decline for well 79. 
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Fig. 31—The MSH model for well 79. 

 

Results 

 Model comparisons, as in Fig. 28, were performed and accumulated for individual wells 

and each reservoir to understand how the MSH model compares to the modified Arps method. 

The decline parameters, decline profile, and 30-year EUR’s are compared for each well in the 

entire data set and Wolfcamp and Bone Springs reservoirs, individually.  

 The model parameters for all good data are compared in Table 7. The first segment, 

identified as LF (b = 1.5 – 2.0) in 37 wells and as fracture interference (no LF and b = 0.5 – 1.5) 

in 22 wells, was modeled using P90, P50, and P10 b-factors of 1.1, 1.5, and 2.0, respectively. Of 

the 13 wells that met an end to linear flow within the available production history, the 

distribution of linear flow duration was 0.2, 1.1, and 2.4 years for P90, P50, and P10, 

respectively. This indicates that, although in a majority of wells,  the end of  linear flow did not 

occur within the 5.5 years of production history available in this data set, wells that did reach the 

end of linear flow, did so after about  one year of production. The second segment, identified as 

transition to BDF (b = 0.5 – 1.5), was modeled using P90, P50, and P10 b-factors of 0.7, 0.9, and 

1.2, respectively. The BDF segment was always modeled using a b of 0.3, so there is no 

distribution of values. The Wolfcamp and Bone Springs formations had similar parameter 
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distributions as in the entire field. These distributions can be seen in Tables 8 and 9. The 

modified Arps method used best fit b parameters as listed in Tables 6 through 8. The b-factors 

varied from 0 to 2 for the entire field, with half of the wells fit best with a b of 1.3.  

 

Probability 
MSH Modified Arps 

1st segment b 2nd segment b 1st segment b 

P90 1.1 0.7 0 

P50 1.5 0.9 1.3 

P10 2 1.2 2 

Table 7—The MSH and modified Arps b-factor distributions for the entire good data set. 

 

Probability 
MSH Modified Arps 

1st segment 
b 

2nd segment 
b 1st segment b 

P90 0.9 0.6 0 

P50 1.5 0.9 1.2 

P10 2 1.2 2 

Table 8—The MSH and modified Arps b-factor distributions for the Wolfcamp group. 

 

Probability 
MSH Modified Arps 

1st segment 
b 

2nd segment 
b 1st segment b 

P90 1.2 0.8 0.8 

P50 1.7 0.9 1.4 

P10 2 1.2 1.9 

Table 9—The MSH and modified Arps b-factor distributions for the Bone Springs group. 

 

 In general, the MSH model 30-year EUR was greater than for the modified Arps model. 

The overall distribution of EUR’s for the MSH and modified Arps methods using all of the good 

data can be compared in the histograms in Fig. 32. The mean of the EUR’s for only good data 

came out to 0.601 MMSTB and 0.567 MMSTB for the MSH and Arps models, respectively. 
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This suggests the Arps model generally underestimates reserves for multi-fracture, horizontal, 

volatile oil shale wells. This conclusion is confirmed when looking at the cumulative distribution 

of the two methods in Fig. 33. There were 15 cases out of the 59 “good” data wells analyzed that 

indicated the Arps EUR was greater than the MSH EUR. In almost all of these cases, the MSH 

model analysis indicated the well was best modeled using the well interference flow regime (b = 

0.5 – 1.5), but the modified Arps model was best fit with a higher b-factor closer to 2.0. Since a 

b-factor of 2.0 is characterized by a sharp initial decline and much more gradual decline over 

time, these higher b-factors would yield a higher EUR in general. Since the MSH model in these 

cases started with a lower b-factor, and used a declining b-factor with each subsequent decline 

segment, we would expect that the EUR would be lower for the MSH model in cases like this. 

This is one of the shortcomings of the modified Arps model. The subjectivity with which rate 

data can be fit using multiple declines using a variety of parameters is the most significant source 

of uncertainty associated with the Arps model. Application of flow regime analysis to multiple 

segments of Arps decline is one way to ensure modeling using the Arps method is less subjective 

and more representative of the production data.  
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Fig. 32—Comparing modified Arps and MSH model EUR distributions for all the good data.  

 

 

Fig. 33—Comparison of P10, P50, P90 values of the MSH and Arps methods for the all good 

data. 
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For the Wolfcamp group, the distribution of EUR’s can be seen in Fig. 32. The means for 

the Wolfcamp Arps EUR and MSH EUR are 0.711 and 0.740 MMSTB, respectively. The 

probability distributions illustrating the P10, P50, and P90 values of EUR’s are shown in Fig. 35. 

The significant outliers observed in the Arps EUR distribution cause the P90 values for the Arps 

distribution to be greater than the P90 values estimated for the MSH method. Each of these 

outliers exhibits the well interference characteristics mentioned in section X. The MSH decline 

curve in these cases uses a b-factor that is less than the best fit b-factor used in the modified Arps 

method, causing the EUR estimate to be greater for the Arps model. Removal of these outliers 

would generate a more realistic P90 EUR distribution. In general, the modified Arps model 

estimates smaller reserves for the Wolfcamp group than the MSH model estimates.  

The P10, P50, and P90 EUR distributions were used to generate Wolfcamp type wells, or 

possible range of well declines expected to be observed for the field. These type wells can be 

used to predict long term well behavior early in the life of a new well producing from the 

Wolfcamp formation. The EUR’s were used to select wells that could be categorized as P10, 

P50, and P90 type wells. These values and the type wells selected are summarized in Table 10 

and illustrated in Figs. 36 through 38.  
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Fig. 34—Comparing Arps and MSH model EUR distributions for the Wolfcamp group.  

 

 

Fig. 35—Comparison of P10, P50, P90 values of the MSH and Arps methods for the Wolfcamp 

group. 
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Probability 
Modified Arps MSH 

EUR, MMSTB Well Selected EUR, MMSTB Well Selected 

P90 0.256 44 0.276 10 

P50 0.433 21 0.546 55 

P10 1.984 48 1.408 53 

Table 10—Summary of P10, P50, and P90 EUR’s and type wells selected for the Wolfcamp 

group. 

 

 

 

Fig. 36—Modified Arps method type wells for the Wolfcamp group.  
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Fig. 37—MSH method type wells for the Wolfcamp group.  

 

 

 

Fig. 38—Comparison of P50 Arps (red) and P50 MSH (blue) type wells for the Wolfcamp group.  
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 For the Bone Springs group, the distribution of EUR’s can be seen in Fig. 39. The means 

for the Bone Springs Arps EUR and MSH EUR are 0.324 and 0.368 MMSTB, respectively. The 

cumulative distributions illustrating the P10, P50, and P90 values of EUR’s are shown in Fig. 40. 

For this reservoir, the EURs in the MSH distribution are greater than in the Arps distribution for 

all probabilities. This is an indication that the modified Arps model underestimates reserves for 

the Bone Springs group.  

The P10, P50, and P90 EUR distributions are used to generate Bone Springs type wells. 

These type wells can be used to accurately predict long term well behavior early in the life of a 

new well producing in the Bone Springs formation. The EUR’s were used to select wells that 

could be categorized as P10, P50, and P90 type well. These values and the type wells selected 

are summarized in Table 11 and illustrated in Figs. 41 through 43.  

 

 

Figure 39—Comparing Arps and MSH model EUR distributions for the Bone Springs group.  
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Fig. 40—Comparison of P10, P50, P90 values of the MSH and Arps methods for the Bone 

Springs group. 

 

 

Probability 
Modified Arps MSH 

EUR, MMSTB Well Selected EUR, MMSTB Well Selected 

P90 0.168 43 0.179 82 

P50 0.289 87 0.327 38 

P10 0.560 80 0.685 80 

Table 11—Summary of P10, P50, and P90 EUR’s and type wells selected for the Bone Springs 

group. 
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Fig. 41—Modified Arps method type wells for the Bone Springs group. 

 

 

Fig. 42—MSH method type wells for the Bone Springs group. 
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Fig. 43—Comparison of P50 Arps (green) and P50 MSH (purple) type wells for the Bone 

Springs group. 
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CONCLUSIONS 

 

 The Multi-Segment Hyperbolic Method proved to be a viable method to model the 

decline of unconventional wells. The transient nature of ultra-low permeability volatile oil shale 

reservoirs causes a sharp decline initially followed by a gradual decline over time that is best 

modeled with multiple Arps hyperbolic segments identified with distinct flow regimes rather 

than the dual-segment modified Arps model most often used in industry today. Modeling 

multiple segments based on flow regimes observed in production data adds a degree of ingenuity 

and robustness to the widely accepted Arps model. This study has highlighted the following key 

insights and conclusions on modeling horizontal, multi-fractured, volatile oil, shale wells in the 

Permian Basin. 

 

Shale Well Behavior 

• The log-log PNR vs time plot serves as a better diagnostic tool than the lo-log rate vs 

time plot in identifying flow regimes in unconventional wells using production data.  

• Noise and lack of data correlation can cause inaccuracy in flow regime identification and 

decline curve analysis.  

• Early time fracture clean-up and shut-ins impact data noise and flow regime analysis, but 

the effect is lessened by using the PNR plot. 

• Shale wells in the Permian Basin typically exhibit LF for multiple years.  

• Wells experiencing LF can be best modeled using an Arps b-factor of 1.5 – 2.0.  

• Partial fracture interference impacts a significant portion (~44%) of Permian wells. 
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• Wells experiencing partial fracture interference can be modeled best without a linear flow 

segment and using an Arps b-factor of 0.5 – 1.5. 

• About 1/4th of shale wells in the Permian Basin begin the transition to BDF within 3 

years of production. 

• Wells transitioning to BDF can be best modeled using a b-factor of 0.5-1.5 post LF.  

• A vast majority (97%) of shale wells in the Permian Basin do not exhibit BDF within the 

first 5.5 years of production.  

• Wells experiencing BDF can be best modeled using a b-factor of 0.3, as Fetkovich (1996) 

derived for solution-gas-drive volatile oil reservoirs.  

• It is possible but not likely for a shale well to exhibit bilinear flow early in the life of the 

well. 

• Wells producing in bilinear flow, although very unlikely, can be best modeled using a b-

factor greater than or equal to 4.  

• Based on flow regime analysis, the b-factor will decline over time as the well transitions 

from LF to BDF.  

 

Modeling Shale Wells 

• The Arps model is too subjective and inconsistent for modeling complex unconventional 

well behavior.  

• The MSH model based on identified flow regimes is a robust method to model the 

decline of unconventional wells.  

• The modified Arps model typically underestimates reserves when compared to the MSH 

model.  
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• P10, P50, and P90 type wells can be accurately generated using the MSH method to 

improve unconventional well forecasting. 

• The Wolfcamp reservoir typically generates more prolific (higher EUR) wells than the 

Bones Springs reservoir.  
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NOMENCLATURE 

b  = decline exponent factor 

BDF  = boundary dominated flow 

BLF = bilinear flow 

D  = decline parameter 

Df = final decline parameter 

Di = initial decline parameter 

EUR  = estimated ultimate recovery 

LF  = linear flow 

MSH  = multi-segment hyperbolic 

p  = pressure 

P10  = value at confidence level 10% 

P50  = value at confidence level 50% 

P90  = value at confidence level 90% 

pi = initial reservoir pressure 

PNR  = pressure normalized rate 

pwf = flowing bottom-hole pressure 

q  = production rate 

qf  = final production rate 

qi = initial production rate 

t = time 

Δp  = pressure differential 
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