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ABSTRACT

The past decade has seen innovative advancements in light microscopy instrumentation that

have afforded the acquisition of whole-brain datasets at micrometer resolution. As the hardware

and software used to automate the traditional neuroanatomical workflow become more accessible

to researchers around the globe, so will the tools needed to analyze whole-brain datasets. Only

recently has the focus begun to shift from the development of instrumentation towards platforms

for data-driven quantitative analyses. As a consequence of this, the tools required for large-scale

quantitative studies across the whole brain are few and far between. In this dissertation, we aim

to change this through the development of a standardized, quantitative approach to the study of

whole-brain, cerebrovasculature datasets.

Our standardized and quantitative approach has four components. The first is the construction

of synthetic cerebrovasculature models that can be used in conjunction with the second compo-

nent, a model-based validation system. Any cerebrovasculature study conducted using imaging

data must first extract the filaments embedded within that dataset. The segmentation algorithms

that are commonly used to do this are frequently validated on small-scale datasets that represent

only a small selection of cerebrovasculature variability. The question is how do these algorithms

perform when applied to large-scale datasets. Our model-based validation system uses biologically

inspired, large-scale datasets that asses the accuracy of the segmentation algorithm output against

ground truth data.

Once the data is segmented, we have implemented an informatics platform that calculates

descriptive statistics across the entire volume. Attributes describing each vascular filament are also

calculated. These include measures of vascular radius, length, surface area, volume, tortuosity, and

others. The result is a massive amount of data for the cerebrovasculature segments. The question

becomes how can this be analyzed sensibly.

Given that both cerebrovasculature topology and geometry can be capture in graph form, we

construct the fourth component of our system: a graph database that stores the cerebrovasculature.
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The graph model of cerebrovasculature that we have developed allows segments to be searched

across the whole-brain based on their attributes and/or location. We also implemented a means to

reconstruct the segments returned by a specific query for visualizations. This means that a simple

text-based query can retrieve cerebrovasculature geometry and topology of the specified vascu-

lature. For example, a query can return all vessels within the frontal cortex, those with specific

attribute(s) value range(s), or any combination of attribute and location. Complex graph algo-

rithms can also be applied, such as the shortest path between two bifurcation points or measures

of centrality that are important in determining the robust and fragile aspects of blood flow through

the cerebrovasculature system.

To illustrate the utility of our system, we construct a whole-brain database of vascular connec-

tivity from the Knife-Edge Scanning Microscope India Ink dataset. Using our cerebrovasculature

database, we were able to study the cerebrovasculature system by issuing text-based queries to

extract the vessel segments that we were interested in. The outcome of our investigation was a

wealth of information about the cerebrovasculature system as a whole, and about the different

classifications of vessels comprising it. The results returned from these simple queries even gen-

erated some interesting and biologically relevant questions. For instance, the profound spikes in

radius distribution for some classes of vessels that did not present in other classes.

We expect that the methods described in this dissertation will open the door for data-driven,

quantitative investigation across the whole-brain. At the time of writing – and to the best of our

knowledge that prior to this work – there was not a systemic way to assess segmentation algorithm

performance, calculate attributes for each segment of vasculature extracted across the whole brain,

and store those results in a queryable database that also stores geometry and topology of the entire

cerebrovasculature system. We believe that our method can and will set the standard for large-

scale cerebrovasculature research. Therefore, in conclusion, we state that our methods contribute

a standardized, quantitative approach to the study of cerebrovasculature datasets acquired using

modern imaging techniques.
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1. INTRODUCTION

The introduction of three-dimensional light microscopy (LM) instrumentation capable of imag-

ing the whole-murine brain at sub-micrometer resolution has helped integrate our knowledge

about cellular- and systemic-level aspects of the cerebrovasculature system. By bridging the crit-

ical gap in neuroimaging between large-scale, low-resolution methods (e.g., magnetic resonance

imaging) and low-scale, high-resolution techniques (e.g., serial block-face electron microscopy),

these cutting-edge imaging modalities have shifted neuroanatomy research away from investigator-

driven studies of single anatomical pathways, and towards data-driven investigations across the

entire brain. This change in perspective has been made possible by recent advancements that over-

come the limited axial optical resolution of LM by either incorporating mechanical tissue section-

ing with block-face microscopy or through the application of light-sheet fluorescence microscopy

to chemically cleared tissue. By combining tissue sectioning (whether mechanically or optically)

with image acquisition, a large part of the traditional neuroanatomical workflow is automated,

making it possible to examine large volumes of tissue at LM resolution with high-throughput. The

application of such technologies has resulted in the acquisition of complete whole-brain capillary-

level datasets for mice, which are frequently disseminated online in atlas form. Although the atlas

format provides an interactive environment for the multi-scale exploration of the cerebrovascu-

lature system – from the major arteries and veins down to the individual capillaries of specific

cerebral regions – a quantitative investigation into the characteristics and connectivity of the vas-

cular elements requires significant processing to extract the embedded filaments and analyze the

networks that they comprise. This processing requirement continues to impede quantitative in-

vestigations across the whole-brain; alleviating this barrier would allow researchers to study the

variation of cerebrovasculature structure within and between healthy and diseased brains. Such

research is fundamental towards our understanding of the changes of the cerebrovasculature sys-

tem that occurs in many pathological conditions, such as cardiovascular disease, diabetes mellitus,

sepsis syndrome, and pathologies hemorheologic in nature. In support of whole-brain vascular
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studies, there is a critical need to foster a standardized graph encoding of cerebrovasculature con-

nectivity data and cultivate an open-source informatics framework that facilitates the quantitative

analysis of the encoded cerebrovascular system.

My long-term goal is to chart the local variation in vascular morphometry within the whole

mouse brain, to document the relationship of such change to the composition of surrounding neu-

rons, and to elucidate the differences in these relationships between healthy and diseased brains.

In support of these pursuits, my objective in this dissertation is three-fold. The first is the design

of a model-based validation framework capable of assessing the accuracy of vascular segmen-

tation algorithms on synthetic datasets. Second is the development of an informatics platform

for the quantitative analysis of cerebrovascular structural attributes and volumetric characteristics.

Finally, the third is the quantification of the cerebrovasculature embedded in the Knife-Edge Scan-

ning Microscope Brain Atlas India ink whole-brain dataset. My rationale for these objectives is

that the development of data-driven, quantitative investigation at the whole-brain scale will enable

the discovery of novel biomarkers of processes underlying healthy and diseased brains. The Brain

Networks Laboratory at Texas A&M University has developed one of the first imaging modali-

ties capable of imaging whole-murine brains at sub-micrometer resolution (i.e., Knife-Edge Scan-

ning Microscopy): we have introduced amongst the first whole-brain cerebrovasculature atlases

and have an understanding of the current state and limitations of quantitative investigation using

whole-brain datasets. The following are the specific aims of this dissertation:

Specific Aim #1: Synthetic cerebrovasculature models. Construct biologically-grounded syn-

thetic models for use in the model-based validation system.

Specific Aim #2: Model-based validation system. Design a validation system that assesses the

accuracy of segmentation algorithm output (i.e., either centerline or volumetric) against ground

truth data.

Specific Aim #3: Informatics platform. Develop an open-source informatics platform that: (1)

converts centerline data to graph representation; (2) imports graph representation to Neo4j Graph

Analytics; and, (3) calculates descriptive statistics describing vascular filament attributes across
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every element in the model, while characterizing the encoded cerebrovascular volume as a whole.

Specific Aim #4: Whole-brain analysis. Perform quantitative analysis across the Knife-Edge

Scanning Microscope Brain Atlas India ink whole-brain dataset: (1) assess algorithmic perfor-

mance of the segmentation algorithm used to extract the vascular filaments using the model-based

validation system; (2) use the informatics platform to quantitatively the describe specific attributes

and characteristics of the mouse cerebrovascular system; and, (3) disseminate raw connectivity

data through the graph database online.

These studies are innovative in that they provide the foundation for data-driven, quantitative

investigation of the vasculature system across whole-organs of small animal models. The three

primary objectives of this dissertation are as follows. Our first objective is to construct a vali-

dation system to help understand how the segmentation algorithms of yesterday scale across the

larger-scale, higher-resolution, and more complete datasets of today. Secondly, an open-source

informatics framework will be released to the research community for use in quantitative analyses

of cerebrovasculature datasets. Finally, descriptive statistics detailing vascular morphometry at-

tributes and characteristics will be reported for the entire mouse brain, with raw connectivity data

made available online for the first time. The successful completion of these studies is expected

to open the door to new data-driven discoveries in cerebrovasculature research, addressing crit-

ical scientific questions in the field about molecular transport, cerebral blood flow, and vascular

dynamics.
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2. BACKGROUND

2.1 Brain angioarchitecture

The close anatomical apposition between the cellular constituents of the central nervous system

and the microstructures of the cerebrovascular system reflects an intimate interaction between neu-

ronal activity and vascular dynamics. The structural and functional integrity of the brain critically

depends on this interdependence, which ensures that adequate oxygen and nutrients are delivered

to neurons by matching local blood flow to metabolic demand [14]. To understand which vessel

attributes and cerebrovasculature characteristics are essential towards analysis of the angioarchi-

tecture, one must be acquainted with the basics of blood flow and hemorheology.

2.1.1 How blood flows in arteries and veins

In general, the role of the macrocirculation can be taken primarily as a transport mechanism,

while the microcirculation directly participates in fluid and molecular transference. Arteries of the

macrocirculation transport oxygenated and nutrient-rich blood away from the heart and into the

cerebrovasculature system, where arteries formulating a uniquely organized topology distribute

the incoming blood towards the microvascular beds in the vicinity of neurons and cellular con-

stituents in need. This choreography commences from the carotid and vertebral arteries, where the

blood velocity and pressure are the greatest in the cerebrovasculature, and through junctions and

offshoots, blood is distributed to proximal arteries. As the blood continues to make its way towards

the capillaries, the divergent nature of the arteriole system begins to reveal itself at every branch

point, where the diameter of the branching vessel(s) (i.e., daughter vessel[s]) and the width of the

primary vessel is reduced [15].

The blood vessels comprising the vascular filaments of the arterial circulation are composed of

three distinct layers [16]: a thick and relatively muscular wall called the tunica adventitia, which

ensures an aptitude to transport blood under high pressure (approximately 40 mmHg to 80 mmHg

[15]); the tunica media which are capable of dilating and constricting the vessel in response to
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local humoral control and neuronal input; the tunica intima, the interior layer, which is composed

of endothelial cells and a connective tissue layer, and in contact with the blood. Arteries are nearly

uniformly cylindrical in their appearance by design: this helps distribute pressure across the entire

volume equally [15].

After the blood passes through arteries, it enters smaller arterioles, the last branch before the

microcirculation. Participation in the exchange of oxygen and nutrients for waste products in the

microvascular beds then begins. Deoxygenated blood is subsequently accepted by the venous sys-

tem return to the heart; venous transport is carried out under significantly less pressure (frequently

less than five mmHg) [15]. The low hydrostatic pressure prevents veins from having a typical

structure. While the venous filaments are comprised of the same three distinct layers as arteries are

(tunica adventitia, tunica media, tunica intima), the composition of each layer is slightly different,

which is responsible for the structural differences noted [16].

2.1.2 Blood rheology

Affecting the nature of flow is the composition of blood: a two-phase fluid formed by blood

cells and plasma. In an average adult, about 40%-45% of blood is the cellular component (de-

fined as hematocrit), the remainder is plasma. The cellular component of blood is comprised

of approximately 99.7% erythrocytes ( 5,000,000 µL−1), 0.2% leukocytes ( 7,500 µL−1; i.e., neu-

trophils, lymphocytes, monocytes, eosinophils, basophils, and plasma cells), and 0.1% thrombo-

cyte ( 250,000 µL−1) [15]. Meanwhile, the plasma component is about 92% water, 7% plasma

proteins (i.e., albumin, globulins, fibrinogen, and others), and 1% other solutes (electrolytes, nutri-

ents, wastes) [id.].

Plasma functions as a Newtonian fluid and has a viscosity of around 1.2 cP; meanwhile, whole

blood has a variable viscosity concerning shear rate, hematocrit, temperature, and pathophysiology

[15]. Under standard laminar, steady, fully developed flow conditions in a cylindrical tube, shear

stress is zero at the centerline; blood at the midline moves as a rigid body; blood lateral to the

midline will flow as a normal viscous fluid. This results in a blunted velocity profile for blood flow

in the macrocirculation [id.].
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2.1.3 Pressure, flow, and resistance

The simple approach to calculating the flow through a blood vessel (Q) is to express the re-

lationship between the pressure difference (∆P ) across the vessel and the resistance (R) to flow

through it in Ohm’s Law form [15]:

Q =
(∆P )

R
=
P1P2

R
(2.1)

While this equation provides some insight into the flow, it oversimplifies the underlying biology

[15]. A more helpful estimate for volumetric flow rate (Q) is taken using Hagen-Poiseuille’s Law,

which can be solved using the volumetric flow rate for laminar fluid flow within a cylinder. The

Hagen-Poiseuille solution is derived from integrating the velocity of the fluid (as calculated using

Navier-Stokes equations) concerning blood vessel area [id.]:

Q =
π∆PR4

8µL
. (2.2)

The general equation assumes that the fluid in the tube has a constant viscosity µ, a uniform

cross-sectional area over the entire length L, and the pressure gradient ∆P
L

across the tube of radius

r and length L [15]. It nonetheless states that flow rate (volume/time) is directly proportional to

the product of the radius to the fourth power and the pressure drop across the vessel; is inversely

proportional to its length. This approximation works well for arterioles but degrades slightly when

applied to venules (due to their atypical shape) [id.].

The Hagen-Poiseuille solution to volumetric flow rate shows us that small changes in vessel

radius can cause substantial changes in flow rate. This means that the blood vessel radius does not

need to change significantly to increase (or decrease) flow in a given region of the brain, thereby

limiting the extent to which dilation (or constriction) is required under hypoxic (or hyperoxic)

conditions [15].
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2.1.4 Flow separation at bifurcations

A bifurcation is a point where the flow rate in a vascular segment (i.e., the parent branch) is

distributed amongst two child branches; the geometry of the bifurcation determines such division,

controlling peripheral flow distribution and influencing vascular resistance [15]. A relationship

between the parent and child vessels can be derived such that the work involved in the passage

of blood through the bifurcation is minimized. Contributing towards this end is the observation

that bifurcation branches frequently stay in one common plane under physiological conditions,

helping to retain the momentum of blood flow across points of divergence [17]. Murray’s law for

the minimum work – a mathematical representation to optimize work at a vessel branch point – has

been shown to fit biological data remarkably well in validation studies. The equations for Murray’s

law are represented as [15]:

r31 = r32 + r33

cos(θ) =
r41 + r42 − r34

2r21r
2
2

cos(ϕ) =
r41 − r42 + r34

2r21r
2
3

cos(θ + ϕ) =
r41 − r42 − r34

2r22r
2
3

(2.3)

where r1 is the radius of the parent vessel, r2 and r3 are the radii of the two child vessels, θ is the

angle between the midline of the parent and child vessel of radius r2, ϕ is the angle between the

midline of the parent and child vessel of radius r3.

When blood flow arrives at a branch point, its velocity moves the flow towards the inner walls

of the bifurcation and away from the outer walls, producing a skewed velocity profile: the highest

speed is no longer at the centerline but positioned laterally adjacent the inner wall [15]. As the

characteristics of the flow have changed, the flow is no longer entirely developed. The wall shear

stress increases along the inner wall and decreases along the outer wall. Eventually, in each child

branch, the pressure in the flow direction will balance the wall shear stress and the flow will become
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fully developed again [id.].

2.1.5 Microvasculature

The regulation of blood flow through the arterioles that are on the order of 10 µm to 15 µm in

diameter is critical in maintaining the capillary beds; a capillary is defined by divergent flow at

its inlet and convergent flow at its outlet [15]. In the microcirculation, flow regimes are naturally

characterized by low Reynolds numbers (RE), indicating that the inertial forces acting upon the

flow are negligible; that the viscous forces dominate the flow [18].

In the microcirculation, the mean blood cell velocity becomes higher than the mean blood ve-

locity; this is in contrast to the higher mean blood velocity to mean blood cell velocity observed in

the macrocirculation [15]. This change is perceived as the blood vessel diameter decreases towards

that of the suspended cells: red blood cells begin to congregate along the midline as the diame-

ter of the vessel reduces to approximately 15 µm forcing the plasma to flow laterally at a slower

velocity. This has a profound effect on the distribution of hematocrit within the microcirculation:

given that red blood cells move into the high-velocity flow at midline, they will tend to follow the

higher velocity pathway through a bifurcation, provided that the flow velocity is different in the

child branches (and ignoring cell skimming into one of the branches) [id.].

Given the heterogeneous nature of blood in the microcirculation, blood may not be character-

ized as a continuum, and molecular effects must be considered when analyzing flow [15]. There-

fore, calculating the bulk properties of fluid particles within the microcirculation is not advisable

given that only a few molecules will present across the small sample, making quantification nearly

impossible. Therefore, when calculating volumetric flow rate in the microcirculation, the ‘apparent

viscosity’ of the blood is used in place of bulk viscosity [id.],

Q =
π∆PR4

8µapL
, (2.4)

where µap is the apparent viscosity of the blood. The apparent viscosity is dependent on the

diameter of the blood vessel and the pressure drop across it; it decreases with vessel radius but
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increases rapidly when blood vessel diameter diminishes to that of the red blood cells.

Once the capillaries are reached, the red blood cells enter single-file, while pushing the plasma

steadily against the vessel walls [15]; when enough plasma collects, a plasma packet is forced into

the line between the red blood cells. The integrity of the microenvironment is dependent on the

highly selective permeability of the brain’s blood-brain barrier (BBB); meanwhile, the acquisition

of oxygen and nutrients by cerebral cells and for the removal of waste products from their envi-

ronments [19]. The BBB, formed by specialized endothelial cells held together by tight junctions,

imposes strict restrictions on the substances that may enter the brain. Transcapillary exchange by

simple diffusion is limited to small inorganic molecules, whereas polar solutes and large insoluble

compounds must be ferried across the vessel wall by carrier-mediated transport mechanisms [id.].

Together, these mechanisms afford the intravascular and interstitial spaces an ability to exchange

water and specific nutrients; once these substances enter the interstitial space, they can be absorbed

by nearby cells [15].

2.1.6 Cerebral blood flow regulation

Cerebral blood flow (CBF) to tissues is regulated by two mechanisms that differ concerning

the time duration in which they operate. Chronic local control of CBF over an extended period is

exerted through changes in the size of existing blood vessels and the number of vessels occupying a

specific cerebral region (angiogenesis). Meanwhile, acute control rapidly redistributes CBF based

on tissue oxygenation levels through modification of local arterioles diameter by vasoconstrictive

and vasodilative [15].

2.1.7 Organizational principles of the angioarchitecture

The ability of the cerebrovasculature system to deliver adequate oxygen and nutrients to neu-

rons in metabolic demand is highly dependent on systemic and local hemodynamics and hemorhe-

ology; the brain’s angiome, or distribution of vascular elements, contributes directly to these as-

pects governing cerebral blood flow (CBF). Furthermore, the angioarchitecture influences angio-

genesis, remodeling [20], and structural adaptation [21]. Therefore, elucidating the organizing
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principles underlying the brain’s angioarchitecture is fundamental towards the understanding of

neurovascular coupling in normal and disease states.

Early research into the brain’s angioarchitecture was accomplished through labor-intensive

conventional histological workflows (and before that, gross anatomical studies) that significantly

limited the throughput of data collection; this initially constrained the scope of available studies

due to the limited ability of conventional light microscopy to resolve microscopic structures in

optically thick samples. Confocal microscopy (the 1960s) and two-photon microscopy (1990s)

instrumentation reduced the out-of-focus noise that blurred the image at the focal plane in conven-

tional light microscopy. The advent of these imaging modalities addressed an early need for three-

dimensional imaging [22] by providing increased imaging depth and reducing out-of-focus-blur to

produce more precise and crisper images. Instrumentation using these techniques implemented in

conjunction with laser scanning microscopy has been widely used in cerebrovasculature research.

2.1.7.1 Cerebral cortex

Investigations into the brain’s angioarchitecture using confocal laser scanning microscopy, two-

photon laser scanning microscopy, or modalities derived from there, have centered on the cerebral

cortex, where the morphometry of vessels residing near the cortical surface and in the intracortical

region have been studied. Notably, this has resulted in the report of morphometric measurements

for diameter, length, and number of elements, as a function of vessel order number on the basis

of diameter ranges (diameter-defined Strahler model, [23]), for the lateral aspect of the collateral

sulcus on the fusiform gyrus in the human [10, 24] and the arterial network of the pial microcir-

culation in the rat [25]. In both cases, the frequency distributions of diameters and length were

asymmetric with sizeable positive skewness and a leptokurtosis; however, taking the logarithm

of the length and the inverse diameter showed linear distributions with similar mean and median,

skewness close to zero, and kurtosis close to three [id.]. Moreover, the mean diameter and mean

length were shown to grow as a geometric sequence with the order number (albeit some discon-

tinuities) under Horton’s Law [26]; this implies that the cerebrovasculature in these regions show

self-similarity over many size scales and can be said to be ‘fractal’.
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For both the collateral sulcus [10, 24] and arterioles of the pial microcirculation [25], a connec-

tivity matrix [23] was derived from the centripetal ordering scheme [i.d.] that reported the ratio of

the total number of elements of order n from elements of order m, divided by the total number of

elements in order m. Combining such connectivity information with the data describing the mean

diameter, mean length, and the number of elements at each order, the total cross-section area and

blood volume for each order can easily be calculated. Furthermore, if the inlet pressure and outlet

pressure of each order n is known, the connectivity relationship can be used to calculate the flow

in a vessel element of order m that springs from a larger vessel of order n; summing this for all

vessels of order m yields the total flow in all vessels order m [23]. Given that the data acquired

in these studies can be used to analyze pressure, flow, and vascular volume in analog to electrical

circuit analysis, the effect of the reported morphometric data on these aspects of hemodynamics

can be evaluated [id.].

The first comprehensive analysis of the angioarchitecture at the level of cerebral capillaries was

put forward by Kleinfeld and colleagues in murine animal models [27]; much of our knowledge

about the organization of the angioarchitecture in the cerebral cortex has been derived from these

studies. The focus of these studies were within the territory of the middle cerebral artery (MCA),

which includes all branches of the MCA, from the rhinal vein to the anastomoses with the anterior

and posterior cerebral arteries (ACA and PCA respectively) [28]; it corresponds half of the total

surface area of the cortical mantle for rats at approximately 150mm2 and one-third that amount

for mice [i.d.]. In this region, Kleinfeld’s group has studied the two-dimensional pial network

extensively [28] that sources the three-dimensional subsurface microvasculature beds [29], and the

penetrating arterioles that connect the pial and subsurface systems [30].

Concerning blood flow, Kleinfeld’s group has found that the pial surface network and the sub-

surface microvasculature network are primarily insensitive to an occlusion of a single vessel; that

both systems were highly interconnected and capable of rebalancing flow after the blockage of a

single vessel [28, 29]. The three-dimensional subsurface network is reported to form loops with

an average of eight edges, while the two-dimensional surface network an average of four sides.
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Meanwhile, the penetrating vessels are not interconnected with each other through anastomoses

or direct collaterals, and serve as a weak link between the subsurface and surface networks [30].

The loss of flow to a single penetrating arteriole has been found to lead to the loss of perfusion in

a columnar region of approximately 500 µm in diameter [31]. Due to the source-sink relationship

of penetrating vessels, collateral flow cannot compensate for such an occlusion, meaning that the

occlusion of a single penetrating vessel leads to infarction, possibly resulting in cognitive deficit

[32].

2.1.7.2 Beyond the cerebral cortex

The highly redundant surface and subsurface vasculature of the cerebral cortex, as it presents

within the territory of the MCA, has been shown to maintain perfusion in light of the occlusion of

a single arteriole. Occlusion of the base of the MCA has shown that compensation brought forth

through anastomoses with the anterior cerebral artery and intact regions of the MCA limits damage

in the cerebral cortex / penumbral region [33]. Meanwhile, this same occlusion results in infarction

and widespread death in the basal ganglia, apparently due to the lack of anastomoses in the basal

ganglia [id.].

High-resolution light microscopy methods, such as confocal laser scanning microscopy and

two-photon laser scanning microscopy, mostly focused on the cerebral cortex due to the limited

imaging depth that they could resolve; therefore, the angioarchitecture of subcortical nuclei, such

as the basal ganglia, have not been studied to the same extent as that of the cerebral cortex. This is

set to change with the advent of new imaging techniques, such as STPT and KESM, that combine

the physical or optical sectioning with the imaging of tissues [34] to exceed the depth offered

by confocal or 2-photon microscopy [34, 2]. In fact, many whole-brain datasets are beginning

to emerge. Visualizations techniques have been developed; currently, the focus has shifted from

acquisition to the development of informatics methods capable of quantifying the unprecedented

amount of data from whole-brain studies.
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Figure 2.1: Whole-brain LM methods: (a) STPT, image brain in coronal plane in a mosaic grid
pattern and microtome off imaged tissue; (b) KESM, image using line-scan camera of a 1 µm thin
section illuminated through and cut by a diamond knife; (c) LSFM of chemically cleared brain,
illuminate with a light sheet through illumination objective positioned at the side and image in
mosaic grid pattern from above. Reprinted, with permission, from [1].

2.2 Whole-brain imaging with light microscopy

The introduction of three-dimensional light microscopy (LM) instrumentation capable of imag-

ing the whole-brain at sub-micrometer resolution (Figure 2.1) has helped integrate our knowledge

about the cellular- and systemic-level aspects of the cerebrovasculature system. By abridging

the critical gap in neuroimaging between large-scale, low-resolution methods (e.g., magnetic res-

onance imaging) and low-scale, high-resolution techniques (e.g., serial block-face electron mi-

croscopy), neuroanatomy research has shifted away from investigator-driven studies of single

anatomical pathways, and towards data-driven investigations across the entire brain [1]. This

paradigm shift has been made possible by overcoming the limited axial optical resolution of LM,

which has been accomplished by incorporating mechanical tissue sectioning with block-face mi-

croscopy and also through the application of light-sheet fluorescence microscopy (LSFM) to chem-

ically cleared tissue [id.]. Furthermore, the combination of tissue sectioning (whether mechanically

or optically) with image acquisition has resulted in large part of the traditional neuroanatomical

workflow (Figure 2.2) to become automated (Figure 2.3). Automated LM modalities are capable
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of whole-brain imaging, such as those shown in Figure 2.1, have made it possible to image large

volumes of tissue at the sub-micrometer resolution with high-throughput.

Figure 2.2: Traditional neuroanatomical workflow where tissue is embedded, sectioned, stained,
imaged, and then registered to one another to produce three-dimensional image stacks. Reprinted,
with permission, from [2].

Figure 2.3: Automation of traditional anatomical process (Figure 2.2) by KESM imaging technol-
ogy, requiring only image concatenation to produce three-dimensional image stacks. Reprinted,
with permission, from [2].

2.2.1 Integration of block-face microscopy and tissue sectioning

This approach has been developed for wide-field imaging, line-scan imaging, confocal mi-

croscopy, and two-photon microscopy [1, 35, 36, 37, 38, 39, 40, 41, 42]. Common to these modal-

ities is the motorized movement of a stage (upon which the sample is fixed) below the microscope

objective, followed by mechanical removal of the imaged tissue. This process ensures that the

sample being imaged is always directly below the objective, at a consistent depth during the ac-

quisition process. Normally, the imaging depth of only a few hundred microns can be reached by

an optical microscope. However, using tissue sectioning, the absorption and scattering of light in

tissue that would otherwise limit the imaging depth in traditional optical microscopy are avoided

[43]. The removal of imaged brain tissue ensures this before further imaging. This allows samples

to be acquired at submicrometer resolution, close to the diffraction limits of LM.
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Two-photon microscopy [44] has been combined with tissue sectioning to create three different

instruments; each instrument differs in its sectioning methodology. All-optical histology (AOH)

[36] uses ultrasonic laser pulses, while two-photon tissue cytometry (TPTC) [38] applies a milling

machine to section the tissue. In both of these methods, the sectioning process damages the tissue,

inhibiting subsequent analysis. The third technique based on two-photon microscopy is STPT

[41], which employs a vibrating microtome to section the tissue and is shown in Figure 2.1.a. This

method allows the sectioned tissue to be collected for follow-up studies after the imaging process

(it does not damage the tissue strips) [1].

Figure 2.4: KESM instrumentation. The mechanical components include: (1) diamond knife; (2)
objective lens; (3) suction channel for tissue removal; (4) fiber optic cable for illumination; (5)
embedded tissue sample; (6) motorized stage. Reprinted, with permission, from [2].

Another and different means of whole-brain imaging is knife-edge scanning microscopy (KESM)

[39] developed at Texas A&M University. KESM instrumentation, shown in Figure 2.4, com-

bines bright-field line scan imaging and physical sectioning of the tissue by a diamond knife for

whole-brain imaging. The KESM features a knife-collimator assembly for illumination and sec-
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tioning, and a microscope objective positioned ninety-degrees to this unit and the motorized stage

upon which the sample is mounted. Stair-step cutting is the tomographic sectioning mode used

to simultaneously section and image across the sample. The resolution afforded by KESM is at

approximately 1 µm voxel.

Due to its innovative design, KESM experiences unique noise due to the configuration of its

instrumentation, which presents in addition to noise common to LM. Specifically, this unique noise

includes knife chatter during the physical sectioning (Figure 2.6) and lighting defects (Figure 2.5)

[3]. The lighting defects arise from two primary sources. The first, small misalignments between

the knife and camera causing a steady change of in illumination across the sectioning axis of the

image; (2), defects in the diamond knife (chips, uneven areas) causing reflection and refraction

variations along the knife surface that in turn results in lighter or darker strips extending along the

sectioning plane (see white arrows in Figure 2.5) [id.]. Fluctuations in illumination power can also

cause differences in illumination over time, causing visible stripes in the image space that vary

with sampling rate, but remain constant in the time domain [id.].

The lighting defects described are easily removed from KESM images because they formulate

regular patterns; however, knife chatter (via knife vibrations) is more difficult to remove due to its

irregularity [3]. Knife chatter typically presents across the sectioning plane as changes in illumi-

nation and arises due to tissue sectioning with its simultaneous imaging, making this type of noise

rather unique to KESM-based modalities (see white arrows in Figure 2.6). While sampling very

near to the knife edge is the primary reason for this kind of noise, sampling near the knife edge

is necessary to ensure alignment between physical sections and to preserve the integrity of each

section (from being warped or torn due to knife friction or water suction).

Micro-optical sectioning tomography (MOST) [40] is based off KESM technology. It is dif-

ferent from KESM [39] as it decouples the knife-collimator assembly, which has been shown to

reduce chatter [43]. The image is also acquired using column-by-column tomographic sectioning

in the same layer, with each layer immersed in water for a short but constant period. This pro-

cess is thought to reduce the non-uniform deformation of the microstructures that is said to occur
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Figure 2.5: Light intensity inconsistencies presenting in KESM imaging. The visible intensity shift
along the x-axis is due to knife misalignment; defects in the diamond knife are responsible for the
streaks extending along the y-axis (white arrows). Reprinted, with permission, from [3].

Figure 2.6: Knife chatter in KESM imaging, presenting along the x-axis of the image as darker
bands; significant cases pointed out by the white arrows. Reprinted, with permission, from [3].

with KESM. MOST was recently configured for fluorescence imaging (fMOST) by using a tissue

embedding protocol and employing confocal laser scanning microscopy [id.].

2.2.2 Light sheet fluorescence microscopy of chemically cleared brains

The combination of two century-old techniques, LSIM [45] and chemical clearing [46], by [47]

provides another means to limit interference from out-of-focus background light. This technique,

termed ultramicroscopy, illuminates a thin layer of the transparent brain that is imaged perpendicu-

larly with wide-field LM. This works because only the tissue in the path of the light is illuminated.

The whole brain is acquired by either shifting the optical imaging light path or moving the sample
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Figure 2.7: CLARITY method for rendering the whole-brain optically transparent: (a) whole-
mouse brain before CLARITY application; (b) after removing lipid bilayers; (c) after refractive
index matching. The scale bar is 1mm. Reprinted, with permission, from [4].

through it [43]. The whole mouse brain can be imaged using this methodology without the need

for mechanical sectioning [1].

Critical to this technique is the optical clearing methodology applied to the brain, for the gener-

ation of transparent tissue. One of the well known and thus more popular techniques for achieving

this is the CLARITY clearing method [48]. This method begins with a whole brain (Figure 2.7.a),

employs electrophoresis to remove lipids from cerebral tissue (Figure 2.7.b), and then uses re-

fractive index matching rendering the tissue transparent (Figure 2.7.c). Other techniques (e.x.,

[49, 50, 51, 52]) transform the tissue to clear form by immersing the brain in a clearing reagent.

According to [43], this ensures that scatters in fixed tissues are resolved with optical clearing

reagents, prior making the reactive index of the cerebral tissue uniform to reduce light scattering

(thus rendering the tissue transparent).

While this technique is non-destructive (the tissue can be imaged multiple time; and quickly

at that), it is currently not possible to render the brain completely transparent. As the imaging

commences into the depths of the brain from its surface, a drop in imaging contrast and resolution

can occur [43]. The axial resolution of LSIM is consequently limited to about 10 µm [id.].
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2.2.3 Comparison of select whole-brain light microscopy techniques

In table 2.1, the attributes of fMOST, KESM, CLARITY LSIM, MOST, and STPT are com-

pared. Specifically, the resolution at which a whole-brain is acquired using that modality, the imag-

ing time necessary for that acquisition, and whether the technique supports fluorescence imaging.

Table 2.1: Comparison of select LM modalities on the acquisition of a whole-mouse brain.

Imaging
modality

Lateral
Resolution (x, y)

Axial
Resolution (z)

Imaging
Time Fluorescence

fMOST [53] ∼1 µm ∼1 µm ∼19-days
KESM [54] 0.3∼0.6 µm ∼1 µm ∼4-days

CLARITY LSIM [55, 4] ∼0.65 µm ∼2 µm ∼6-hours
MOST [40] ∼0.33 µm ∼1 µm ∼10-days
STPT [41] 0.5∼1 µm ∼2.5 µm ∼7-days

STPT is currently the most broadly used approach to whole-brain imaging with LM. One rea-

son why STPT is an attractive method is that the tissue removed during sectioning can be retrieved

for subsequent analysis [1]. For instance, immunostaining techniques can be applied to the col-

lected tissue. Such follow-up studies are not possible with AOH or TPTC [id.].

Another reason why STPT is currently popular is that tissue preparation for image acquisition

has minimal effects on fluorescence and cerebral morphology [1]. KESM-based methods initially

did not support fluorescence microscopy and did not do so at a time when STPT did. This made

STPT a more attractive choice when whole-brain imaging was getting underway. The reason why

KESM-based methods did not initially implement fluorescence imaging was due to how tissue was

prepared for imaging: dehydration and plastic embedding was used in tissue preparation, which

decreases GFP intensity [41]. Recently, fMOST has developed from MOST (which was based on

KESM) imaging technology, which uses a resin-embedding method that maintains fluorescence.

LSFM coupled with chemical clearing for the imaging of whole-brain started slow. Initially,

chemical clearing procedures quenched the fluorescence signals emitted by the tissue being im-
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aged. The advent of CLARITY [48] has helped resolve this problem. As the interest in whole-

brain imaging was growing, the spatial resolution of LSFM was limited by the objectives available

at the time [1]. LSFM of the whole-mouse brain at submicrometer resolution has only been made

possible recently with the development of objectives with large working distances and low numer-

ical aperture. This coupled with other minor modifications to LSFM has dramatically increased its

utility in research across the whole brain [id.].

STPT has been widely adopted as the imaging modality for many neuroanatomical investiga-

tions using fluorescent protein-based tracers [1]. This is more-or-less attributed to what STPT had

to offer over its competitors as whole brain studies commenced. Large-Scale, whole-brain anatom-

ical projects were pioneered by the Allen Mouse Brain Atlas of Gene Expression; the Mouse Con-

nectivity project at the Allen Institute selected STPT to image a goal of 2, 000 brains. This has

dramatically influenced the popularity of STPT within whole-brain studies.

2.3 Extracting vascular structures embedded in imaging volumes

2.3.1 Preprocessing

Every tissue sample and imaging technique has unique characteristics that affect optical pene-

tration and light scattering during acquisition. During acquisition, signal heterogeneity frequently

consequently presents with imaging distortions and illumination gradients that subsequently effect

analysis [56]. Preprocessing is typical applied to acquired images in order to resolve common

heterogeneities.

2.3.1.1 Downsampling

Due to various processing constraints, it is not uncommon for volumetric datasets to be down-

sampled, especially when processing whole-brain datasets [57, 58, 55, 41]. This process is trivial

along the longitudinal and lateral axis: if the downsampling ratio r is an integer i, each new down-

sampled value is the average of i values from the original image. For the axial direction, image

averaging can also be employed [6, 57, 59]. To do so, i images are averaged together to achieve

a downsampling ratio of r. When r is not an integer value, the procedure is slightly more com-
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Figure 2.8: KESM acquired Nissl stained tissue images (raw) stitched together for viewing to
illustrate lighting and knife irregularities. Application of light normalization and noise reduction
are shown for the black-boxed region in Figure 2.9. Reprinted, with permission, from [3].

plicated as linear interpolation is necessary [60]. To return to the original resolution, interpolation

during the upsampling process is required; downsampling a dataset and then upsampling it is not

a lossless operation.

2.3.1.2 Light normalization

For 3D imaging stacks acquired by LM modalities, preprocessing typically begins with XY

normalization and Z normalization [56]. The goal of this process is to help resolve uneven sample

illumination and axial intensity dropout. For KESM-based imaging modalities (KESM, MOST,

fMOST), lighting artifacts due to simultaneous imaging and physical sectioning are typically ad-
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Figure 2.9: KESM Preprocessing of Figure 2.8. (a) Removal of lighting and knife irregularities by
light normalization procedures; (b) removal of knife chatter. Reprinted, with permission, from [3].

dressed here [5, 3]. An example of the KESM process is shown applied to Figure 2.8 in Figure

2.9.a.

2.3.1.3 Noise reduction

In LM datasets, the number of pixels comprising the background far greater in number than

that of the filaments. In order to reduce noise, the background of each image in the stack can

be modeled using the Gaussian smoothing technique described in [61]. Once the background has

been modeled, it can be subtracted from the original image using a procedure from [62]. While

this technique can work well in practice, it can also be problematic when processing images with

filament structures embedded within them. The reason for this is that local smoothing operations

remove high frequency noise; the filaments are high frequency and low contrast [3]. To address the

issues with local smoothing procedures, [3] scaled each value in the sample by a sliding window

mean value of a small neighborhood about it. Using the averaging filter, high-frequency details

were preserved while artifacts caused by knife chatter were removed, including those shown in

Figure 2.6 as detailed in Figure 2.9.b.

Median filters provide considerably less blurring than a linear smoothing filter (such as the

averaging filter) of the same size [60]. They are thus more commonly applied in LM studies.

Median filters operate by moving a sliding window across the image, assigning the median value
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Figure 2.10: Streak removal procedure for MOST acquired images. (a) Picture of coronal sec-
tion with visible streak noise; (b) mean projection along the horizontal plane of (a) shown by the
thinner curve; thicker curve shows the result of the application of smoothing to the thinner curve.
Reprinted, with permission, from [5].

captionoffigureSmoothing experiment to determine better method for streak removal in MOST
images. (a) Original curve for a section of Figure 2.10; (b) result of using moving average filter
with a neighborhood of 10; (c) result using a moving median filter with a neighborhood of 10.

Reprinted, with permission, from [5].

of that window to the pixel located at its center [id.]. [5] illustrated that the median filter produces

better results than the averaging filter in removing noise. First, [5] calculated a mean projection for

an image I(x, y) with streak artifacts presenting across its x-axis (Figure 2.10). A curve m(y) for

the y-axis was then calculated and was composed of the mean values of each row. Local extrema

of the resultant mean-value curve were considered the streaks and the moving average filter and
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median filter were applied to see which smoothed the curve best (eliminated local extrema). The

median filter produces a smoother curve (Figure ??); for MOST acquired images, the median filter

removes streak artifacts better than the averaging filter.

When small filaments present, however, the median filter can be problematic. The reason for

this is that the median filter forces points with distinct values to be more like their neighbors.

Substantial data loss can result if the size of the filter size is selected incorrectly. Recall that the

number of pixels in the background far dominates the number of pixels in the filament. Given

a 5 × 5 median filter, isolated clusters of filament pixels whose area is less than 52/2 will be

eliminated from the image (will receive value of background).

To illustrate the potential implications of using the median filter, assume we have a dataset at a

resolution of 1.0 µm× 1.0 µm× 1.0 µm. Furthermore, that we have applied a median filter of 5×5

to every image in that dataset. The median radius of the mouse capillary is near 2.0 µm [29]. This

means that capillaries diving axially into the volume will have an area of 12.75 µm2 (on average).

The median filter will thus ‘eliminate’ approximately half of all the capillaries in the dataset.

Figure 2.11: Application of freehand brain contour mask to KESM acquired image. (a) Whole-
brain image slice with background noise present; (b) freehand brain contour mask generated for
(a); (c) application of (b) to (a) to remove noise outside of the brain. Reprinted, with permission,
from [6].

In many whole-brain studies, brain contour masks are first applied to imaging data to remove

the noise presenting outside the periphery of the brain. These masks can be manually constructed

24



Figure 2.12: Fully automated brain contour mask generation by [6] to remove peripheral noise in
KESM-acquired images. (a) Adjacent images are combined; (b) the histogram of the combined
images is calculated; (c) minimum threshold is applied to the combined image with a value based
on the histogram; (c) convex hull is calculated for the points remaining after threshold application.
Reprinted, with permission, from [6].

by freehand using an illustrator program as detailed in [6, 63]. An example of a brain contour

mask is shown in Figure 2.11 along with its application to eliminate noise outside of the brain.

As described by [6], the freehand generation of brain contour masks is a time consuming. A fully

automated method based on thresholding and the convex hull algorithm was designed by [6] and

is detailed in Figure 2.12. Another fully-automated method of brain contour mask generation has

been developed by and described in [5].

After removing noise outside the brain contour, there are many different kinds of filters that can

be applied to imaging data [60] to help reduce the noise that presents within it. Popular choices

include both the median filter [5, 6, 58, 4] and averaging filtering [3] as defined earlier in this

section. As pointed out, it is imperative that the effect of the filter on filament structure is studied

before its application as data loss is likely to otherwise occur. Simple investigations with filament

models can help determine the extent to which the filaments are degraded the application of the
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filter and thus can also help quantify how much data loss can be expected.

2.3.2 Segmentation algorithms

Segmentation algorithms play a crucial role in the processing of raw LM imaging data of the

filament networks. LM acquired datasets, whether of the whole-brain or a local tissue sample,

often contain imaging artifacts and noise. Furthermore, some filaments in the network typically

drop below the sampling resolution of the objective used during acquisition. This means using

a threshold value to simply differentiate between filament network and surrounding tissue is not

adequate [64]. Instead, a more involved method is necessary to extract the filaments embedded in

the imaging volume.

The algorithmic approaches used to extract vasculature vary depending on acquisition modal-

ity, domain, and method. [65] provides an extensive overview of the various methods commonly

used to extract vasculature structures. After a detailed, yet widespread, survey of the literature,

[65] proposed six categories of approaches: (1) pattern recognition techniques, (2) model-based

approaches, (3) tracking-based approaches, (4) artificial intelligence-based approaches, (5) syn-

thetic neural network-based approaches, and (6) tube-like object detection approaches. Many of

the approaches reviewed were developed for medical imaging applications such as CT and MRI

image segmentation and therefore focus on the extraction of large blood vessels [64].

[64] briefly reviewed the application of different classes algorithms to LM imaging. [64] de-

tails how multi-scale techniques (such as [66, 67]) are helpful for feature detection; however, this

technique is inadequate for thin filaments that require a high-level of detail to resolve. As for cen-

terline detection [68, 69] and thinning [70], [64] reports that the requirement to find an optimal

threshold value in high-throughput LM data is difficult due to noise unique to LM. As a conse-

quence, topological errors in filament centerlines are prevalent as is over segmentation. Region

growing techniques [71, 72] are described by [64] as being difficult to apply due to their reliance

on an initial surface, which is difficult to find given the complex structure of filament networks.

Template matching approaches [73], which are robust to noise, are difficult due to their require-

ment of a large number of templates, oriented in different directions, and across multiple scales

26



[64]. Meanwhile, vector tracking algorithms [74] are described as operating well on well-defined

surfaces of continuous structures, but quickly degrade when imaging contrast is low or when the

border is not crisp [64].

Figure 2.13: Mayerich et al.’s predictor-corrector filament tracking method. Initial position pt is
predicted along the particle path P . That prediction is then corrected to lie on the filament axis.
Reprinted, with permission, from [7].

To address these concerns, [7, 75, 64] developed a filament tracking method that incorporated

template matching. The algorithm operates from a seed point, where an estimation of vessel tra-

jectory is made, and tracker is moved forward to that point. A Gaussian template is then used to

model the mostly circular filament cross section. The estimation of the tracker position is then cor-

rected based on the fit of the model. This is the foundation for Mayerich et al.’s ‘predictor-corrector

algorithm’ (Figure 2.13).

Figure 2.14: Tyrrell’s approach to filament tracking. Sequence of k cylindroidal superellipsoid fits
denoted as k − 2, k − 1, and k superimposed on filament. Reprinted, with permission, from [8].
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Another method that uses local modeling is [8, 76], with the model used a superellipsoid prim-

itive. Segmentation commences with a seed point, upon which a superellipsoid is fit. This model

is then shifted across the vessel, with the parameters of the superellipsoid re-estimated each step

along the way. This method can be summarized in short as an ‘estimation and detection approach’

(Figure 2.14).

Relatively new methods involving deep learning (convolutional neural networks) have been

developed to extract filaments from 3D images [77, 78]. Like the aforementioned methods, these

have neither been applied to whole-brain datasets in full; however, they have shown good corre-

spondence with human-labeled ground truths on small samples of data. At the time of writing, a

deep learning filament segmentation method has yet to be applied across a complete whole-brain

dataset.

The techniques described to this point can all be applied directly to raw imaging data. Mayerich

et al.’s predictor-corrector filament tracking method and Tyrrell’s superellipsoid estimation and

detection approach both operate well in noisy environments. This is in part because a filament-like

template or shape is fit on an actual filament, a process which then proceeds out from the original

seed point and along the filament axis. These methods are more sophisticated than what tends to

be used in practice.

In our research, we have found that it is common practice to threshold images acquired from an

LM sample, perform some morphological operations, and then apply an algorithm to the resultant

binary raster images to construct a vectorized representation. We have already reported some of

the problems with a thresholding approach, but nonetheless thresholding has been applied across

whole brain datasets and small regional samples to segment the embedded filaments. Otsu’s algo-

rithm [60] appears to be the most commonly applied thresholding technique [57, 58, 4, 79, 63, 80,

81]. However, other thresholding algorithms including bilevel thresholding using local threshold

calculated via max-entropy thresholding method [59], minimum thresholding [6], and many others

are too used in practice.

The binarization process via thresholding is usually followed-up with morphological opera-
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Figure 2.15: Clusters of voxels (shown in different colors) ‘scooped’ by the voxel scooping method
as it extended outward from the seed point. Reprinted, with permission, from [9].

Figure 2.16: Centerline calculated through clusters of voxels ‘scooped’ by the voxel scooping
method in Figure 2.15. Reprinted, with permission, from [9].

tions, such as closing and hole filling, to address structural integrity issues from the thresholding

process. Thereafter, a vectorized representation of the filament network usually follows, upon

which quantitative analysis will be performed. In [6]’s whole-brain study, the voxel scooping al-

gorithm was used [9], although there are many different ways to perform vectorization. The voxel

scooping method begins from a seed point and grows outward from that seed point by scooping
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voxels into clusters, and continues this process until there is no unvisited region within the filament.

This process results in a number of voxel clusters (Figure 2.15). The centroids of the scooped clus-

ters are then connected to obtain the centerline of the vessel (Figure 2.16). The filament network

isolated using the voxel scooping method is then written to an swc file: each line segment of the

centerline is written along with an estimate of the radius about that line.

Figure 2.17: The whole-brain coronal images of the KESM India Ink dataset split into ten vertical
sections for independent processing as completed by [6]. Reprinted, with permission, from [6].

When segmenting large datasets, such as that embedding the whole-brain, it can become neces-

sary to split the imaging data into sections that can be processed independently by a segmentation

algorithm. [6] adopted this approach when segmenting the vasculature from the KESM India Ink

whole-brain dataset [39]: whole-brain coronal images were split into ten vertical sections (Fig-

ure 2.17); the filaments were extracted independently from these vertical sections using the voxel

scooping method [9]. Independent processing leaves filament discontinuities between adjacent

vertical sections (Figure 2.18) that must be stitched together before a quantitative analysis can

commence.
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Figure 2.18: Example of the discontinuities that present between adjacent vertical sections (Figure
2.17) after being processed independently. Reprinted, with permission, from [6].

2.3.3 Segmentation algorithm validation

The validation of filament segmentation and tracing procedures, at the time of writing, is pre-

dominantly carried out using traditional validation volumes. This primarily includes digital phan-

toms and expert-labeled volumes [82, 12, 79, 77, 78, 55].

2.3.3.1 Digital phantoms

Digital phantoms are synthetic data volumes, each composed of a synthetic filament that is rep-

resentative of a particular structural complexity potentially presenting in a ‘real’ biological dataset

(Figure 2.19). The quality of these imaging volumes typically ranges from noise-free to noise

levels representative of the target imaging modality to degradations that represent worst-case sce-

narios. The known characteristics and location of the ‘phantom’ embedded in the volume serve

as its ground truth. Algorithmic performance is then evaluated on particular structural complexi-

ties perceived in ‘real’ cerebrovasculature filaments under controlled conditions [82]; accuracy is

frequently assessed as the correspondence between the resultant segmentation and the ‘phantom’
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Figure 2.19: Characteristic example of the digital phantoms used in the validation of a filament
segmentation algorithm. These three were used in the validation of [8]’s superellipsoid estimation
and detection tracing algorithm. Reprinted, with permission, from [8].

ground truth [11].

2.3.3.2 Expert-labeled volumes

Subsets from the biological dataset are frequently sampled at random and subsequently seg-

mented manually (labeled) by a human expert to devise validation sets that better reflect the struc-

tural complexities inherent to the structure of the cerebrovasculature system. The manual seg-

mentation constitutes the volume’s ground truth; it is composed of hand-drawn annotations by the

expert, across every two-dimensional image-slice of the volume.

When expert-labeled volumes are constructed for filaments, the three-dimensional volume em-

bedding those filaments is viewed through two-dimension slices. Due to this, manual ground-truth

generated tends to be jagged in appearance, causing some small, thin filaments to become dis-

connected from their parent branches [79]. By its very nature, the process of generating labeled

datasets is inherently time-consuming. It has been reported that an expert required 20-hours to

label a 256× 256× 200 pixels dataset acquired by multiphoton microscopy that was resampled to

a voxel size of 1 µm cube [78]. In addition to taking a significant amount of time to generate, the

physical labeling process is inherently subjective and frequently inaccurate [79]. Furthermore, it is

important to acknowledge that human-generated ground truths reflect only a small fraction of the

structural complexity and variability that would be encountered in the complete volume [11].
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2.4 Quantitative analysis of vascular structure

Given the significance of vessel morphology in pathophysiological conditions, many attributes

of filament structure relating the large blood vessels have been characterized in medical imaging

studies. In this section, we will summarize the common vascular element attributes, volume char-

acteristics, and network characteristics reported in the literature. Metrics detailing these aspects of

the vascular filaments presenting in the brain can be applied across the whole-brain; the limitations

of preceeding imaging technology often focused quantitative analysis to small volumes of data at

high resolution or large volumes of data at low resolution.

2.4.1 Vascular element attributes

There are several attributes frequently reported in the literature to describe the individual el-

ements of the cerebrovasculature system. Diameter and length are perhaps the most regularly

reported, with the reason being that, according to Poiseuilles formula, the flow rate (volume/time)

through a respective vessel element is directly proportional to the product of the pressure differ-

ence across it by the fourth power of its diameter and is inversely proportional to its length. The

fact that length is directly proportional to resistance implies that the longer a vessel is, the higher

its resistance to flow will be; moreover, long vessels under lumen pressure can become unstable

when the pressure exceeds some critical value, resulting in ‘vessel bulking thus increased vessel

tortuosity [83].

Vessel abnormalities characterized by irregular tortuosity affect blood flow by increasing resis-

tance and decreasing perfusion [84]. As our derivation of Poiseuilles law in equation 2.4 applies

to cylindrical shaped vessels, changes in blood flow due to tortuosity will not be reflected in the

presented formulation; however, an adaptation of Poiseuilles law taking in to account the structural

tortuosity of vessels appears in [85], and numerical models that have confirmed that tortuous ves-

sels exhibit different hemodynamics from non-tortuous vessels [i.d.]. The disturbances that tortu-

osity has on physiological hemodynamics has made it a candidate biomarker for disease pathology
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[84]. For instance, arteriolar tortuosity in human cerebral white matter confirmed morphological

changes associated with vascular dementia [84, 86]. It is for these reasons, and amongst others

(e.x., [87, 88, 89, 90]), that vessel tortuosity is also an attribute commonly reported in studies of

cerebrovasculature morphometry [91].

The local geometrical properties of bifurcations are another aspect of the angioarchitecture that

can affect blood flow. Recall that each vessel element has a specific resistance to flow that is in-

versely proportionate to its diameter and positively correlates to its length; that the resistance of the

total network is dependent on the connectivity of these elements to one another [15]. Furthermore,

that blood flow in the capillaries is dominated by viscous dissipative forces and that the apparent

viscosity of blood is a function of hematocrit; that the distribution of hematocrit across vessels

sourcing the capillaries is heterogeneous due to plasma skimming, red cell screening, and phase

separation that occurs at bifurcations [91]. Given the influence of branching patterns on resistance

and peripheral flow distribution, their angles of bifurcation and area ratios are frequently described

as a function of their nature (arterioles versus venules), taxonomy (based on parent position in

centripetal ordering scheme), or type [17].

There are three bifurcation types typically described: intra-element bifurcations (IEB) in which

the three branches have the same order; homogeneous-symmetrical bifurcations (HSB) in which

the order of the two child branches equals that of the parent minus one; and asymmetric-lateral

bifurcations (ALB) in which a lower order vessel branches laterally between two segments of the

same order [17]. The bifurcation angles are calculated using the boundaries of the intersecting

vessels at a node n: for each segment i a vertex is identified inside, and another outside, a sphere

centered at the node of an intersection, with the maximum radius of the three vessels. The mean

tangential unit vectors as calculated at each of the identified vertices. This results in three-unit

vectors u0, u1, and u3 for the mother, major child, and minor child respectively. The branching

angles are calculated as αij = cos−1(ui·uj) and the asymmetry angle was defined as β = α01−α02.
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The three branches of a bifurcation define a solid angle Ω = α01 + α02 + α12 − π; when Ω < π,

the three branches are co-planar; π − Ω is the out-of-plane angle, which can be used to define

bifurcation planarity [i.d]. The total area ratio of the bifurcation is calculated as ((A1 + A2/A0)),

the major area ratio as A1/A0, the minor area ratio as A2/A0, asymmetry ratio γ = A2/A1, where

A0, A1, and A2 are the cross-sectional areas of the parent, major child, and minor child branches

respectively [17].

2.4.2 Vascular volume characteristics

A few additional measurements are commonly reported across cerebrovasculature datasets to

quantify the properties of the filaments embedded within them together. The total vascular volume

mm3 can be estimated by iterating over each of the vascular elements, calculating its capacity, and

adding the result to a running total. Similarly, the total vessel surface area mm2 can be approxi-

mated by iterating over each of the vascular elements, calculating its surface area from cylindrical

approximation, and adding the result to a running total. Subsequently, the surface area to volume

ratio can be calculated by dividing the total vessel surface area by total vessel volume; the amount

of surface the microvasculature has relative to its size directly affects its ability to participate in the

transcapillary exchange.

Vascular volume density values are regularly conveyed in the literature as well but done so in

some different ways [24, 91, 2, 92, 10]. In two-dimensional morphometric studies of histological

sections, the universally utilized parameter is total vascular length mm by mm3 [24]. Although

this method is rarely used to report vascular density in three-dimensional imaging studies, it is

employed to compare results to those published in histological studies. Mean vascular length mm

by mm3 is a more generally used quantification of vascular density, albeit with a high degree of

variability due to the inherent inhomogeneity of cerebrovasculature within the brain [id.]. Vascular

surface area mm2 by mm3 provides insight into the exchange surface, while vascular volume mm3

by mm3 gives an estimate of blood volume. Such measures of density can be used to quantify the

regional differences in microvascular profile across the brain [2, 24].
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2.4.3 Vascular network architecture

The vascular system of the brain is a highly interconnected network that rapidly redistributes

oxygenated and nutrient-rich blood to regions in need by matching local blood flow to metabolic

demand. Furthermore, the cost of angiogenesis, remodeling [20], and structural adaptation [21] is

offset by an increased power that it affords in routing blood towards the neurons and cellular con-

stituents of the brain in need [28]. The ability to redistribute flow and capability to add additional

plumbing helps ensure that if the system fails, it does so gracefully [id.].

The appropriate mathematical representation of a highly interconnected network – from the

Manhattan-like roadway systems to the social networks of the Internet – is the graph [93]. The

brain’s vasculature system is a highly interconnected system, and can thus be represented by a set

of nodes (i.e., bifurcations) and the connectivity between those nodes (i.e., vessel segments) [91].

Many studies of the topology of the cerebrovasculature, as it presents in the territory of the

middle cerebral artery (MCA), have leveraged the graph representation of vessel segments in their

analyses. Investigations of the MCA backbone commenced with a graph representation of the en-

tire vascular territory sourced from it; the backbone was isolated through the removal of all vertices

with a coordination number of 1, followed by the iterative removal of all newly formed vertices

with coordination numbers of 1 or 2 until only the backbone remained. The ratio of vertices to

edges (used as a measure of network redundancy) was calculated as 3 to 2, implying that 3N/2

edges within the backbone withN vertices, where N/2 of the edges represented anastomoses [28].

The collection that comprised the smallest independent loops (analogous to Kirchhoff’s loops, cir-

cuit theory) was then determined; based on the distribution of edges in the circles comprising the

backbone, a mode of four sides was observed. The observation of four edges per loop, together

with a coordination number of three for each vertex, suggests that no regular lattice describes the

backbone [id.].
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The interconnected nature of the microvasculature was determined by assigning a fluid resis-

tance to each edge and viewing the microvasculature as a three-dimensional network [29]. This

resistance was calculated using the Hagen-Poiseuille law, and the total network resistance across

pairs of vertices subsequently determined. It was found that the resistance asymptoted as a func-

tion of Euclidean separation distance, implying that the microvasculature formed a highly inter-

connected irregular lattice [id.].

The formulation of communities of vertices whose inter-connections were relatively more fre-

quent than by chance and intra-connections at a level less than chance were derived [29]. The

strength of the communities was evaluated by plotting the number of connections between com-

munities versus associations in the community: a strong community would have interconnections

that scale as the surface-to-volume ratio with a power law exponent of 2/3. Based on an observed

power-law relationship with an exponent of 0.83, it was concluded that vertices in a given spatial

region make extensive connections with neighboring communities [id.].

The flow domain of penetrating vessels was calculated using Kirchhoff’s law for current con-

servation at each vertex with the values of the resistance for each edge, and a constant pressure

difference between open ends of the vessels. This flow calculation yield the vessels predominantly

sourced from a given penetrating vessel [29].

2.5 Whole-brain dataset dissemination schemes

Many initiatives aim to make these whole-brain datasets publicly available; frequently, they

are disseminated through web-based atlases. A web-based atlas is essentially a light-weight data

browser that serves-up the raw data in raster graphics format [94]. Such an atlas provides for

a straightforward qualitative assessment of microstructures, which can be conducted in a three-

dimensional viewing environment that is produced by image overlays with distance attenuation

and shearing to generate stereo pairs of the encapsulated data [95, 94]. While such atlases allow

whole-brain datasets to be distributed across the Internet, their raster-nature inhibits fast quanti-
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tative evaluation of the embedded microstructures due to the lack of readily available geometric

data from which morphometric statistics can be derived. To quantitatively analyze the data the

microstructures must first be extracted (i.e., segmented) and then geometrically reconstructed. The

boundary towards such an analysis can be lowered by storing the data in vector graphics for-

mat; however, the data must nonetheless be converted into graph representation or stored within

an organized database, to study filament connectivity and the implications thereof [96]. We will

highlight some notable atlases before detailing how graph databases can be leveraged to store and

disseminate connectivity data acquired from whole-brain imaging studies.

2.5.1 Web-based atlases

2.5.1.1 Knife-Edge Scanning Microscopy Brain Atlas (KESMBA)

Figure 2.20: An example of the web-based presentation of the KESM Mouse cerebrovascular
dataset in the KESMBA. Shown is an overview of 80 contiguous slices of coronal vasculature data
at the highest available resolution. kesmba.cs.tamu.edu

The KESMBA, a collection of web-based atlases for the C57BL/6J mouse model, includes
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Figure 2.21: An example of the web-based presentation of the KESM Mouse cerebrovascular
dataset in the KESMBA. Shown is an overview of 80 contiguous slices of coronal vasculature data
at the lowest available resolution. kesmba.cs.tamu.edu

whole-brain Golgi (neuronal circuits), Nissl (soma distribution), and India ink (vascular networks)

datasets [94, 39]. All datasets were acquired using Knife-Edge Scanning Microscopy, and are pre-

sented in the web-based atlas across multiple scales, at a maximum resolution of 0.6× 0.7× 1.0

µm3. These atlases were initially implemented using tiled images in raster graphics format in con-

junction with the Google Maps JavaScript API. This version [94] has since been updated to use

the OpenLayers API along with tiled images in vector graphics format. This change from raster

to vector graphics format has decreased atlas load times. It has also introduced point-and-click

reconstruction of vascular geometries and provided a means to calculate the corresponding mor-

phometry data (such as diameter, segment/element length, surface area, volume, and the number

of branches). These reconstructed geometries and relevant morphometry data are interacted with

through a WebGL-based volume viewer. An example of the web-based atlas of the India Ink

dataset is shown in Figures 2.20 and 2.21.
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Figure 2.22: An example of the web-based presentation of the ALlen Brain Reference Atlas for
the mouse. Shown is a coronal section of Thalamus brain tissue on the left, with a reference for
cerebral structure overlaid on the right. atlas.brain-map.org

2.5.1.2 The Allen Brain Atlas

The Allen Brain Atlas also provides a collection of atlases that are publicly available to re-

searchers through the Internet. The Allen Mouse Brain Connectivity Atlas [97] is a mesoscale

whole-brain axonal projection atlas of the C57BL/6J mouse brain acquired using serial two-photon

microscopy with automated vibratome sectioning. Through the online interface, users can inter-

actively browse through all specimens contributing to this dataset (1772 at time of publication of

[97]), or search for specific datasets by injection site, Cre-driver lines and/or target locations; ax-

onal projection can then be investigated in the primary image data and through a three-dimensional

summary. Multiple specimens can also be selected for co-viewing in numerous image-series view-

ers or in Composite View mode [id.]. Overall, this atlas provides the foundation for large-scale

analysis of global neural networks, as well as between different local networks, and between dif-

ferent neural systems [id.].
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The Allen Brain Atlas data portal also contains some additional public resources. This in-

cludes the Allen Mouse Brain Atlas (Figure 2.22, which provides anatomic coverage across the

entire brain in conjunction with spatially-mapped, genome-wide coverage [98]. Also, the Allen

Developing Mouse Brain Atlas, which contains projection mapping image data detailing axonal

projections along with the imaging data derived from serial two-photon tomography [id.].

2.5.2 Atlas-based analysis

The whole-brain datasets currently published in the web-based atlas format provide a wealth

of imaging data that can be qualitatively analyzed but are limited in the quantitative informatics

that can be applied to them. The second generation of the KESMBA allows simple reconstruction

along with necessary morphometry data for vasculature data. Meanwhile, the Allen Brain Atlas

presents a wealth of data for neuronal connectivity, along with a precise means of querying that

data for different neuronal motifs. Given that the nature of an angiome, i.e., distribution of vascular

elements, can be considered a connectome of sorts, a more specific means analysis of the brain

vasculature, outside of primary morphometry measures, is warranted.

It would make sense that different topologies could be analyzed with respect to resistance to

flow, in addition to the examination and identification of the robust and fragile aspects of flow in

different regions of the brain (for instance, in the area of MCA, subsurface and surface arterioles

are robust, but the penetrating vessels connecting the two networks are fragile). Furthermore, that

a similar querying system that can search and reconstruct vessel elements meeting some criterion

(morphometry, taxonomy, type, etc.) within a specific scale (as organizational principles and mor-

phometry may vary depending on scale) using a heuristic algorithm based on vessel characteristics

is also reasonable.

2.5.3 Graph databases

The standard form of a graph model is the labeled property graph, which has the following

characteristics: contains nodes and relationships; nodes contain properties; nodes include at least
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one label; connections are named and directed; and, relationships contain properties [93]. Whole-

brain imaging datasets embedding vascular connectivity can be converted into a labeled property

graph storing filament topology and geometry [96, 99]. This representation can be entered into

a graph database management system (i.e., graph database); such a system provides create, read,

update, and delete (CRUD) methods that expose an underlying graph data model [id.]. In the

graph data model, each node and edge is uniquely identified. A node can have characteristics,

which could include radius, bifurcation type, branch angle, and pressure; meanwhile, an edge can

also have properties, which could consist of length, resistance, and taxonomy.

The Neo4j analytics platform runs on top of the Neo4j graph database. In addition to imple-

menting a platform to store graph data models, it provides a suite of dynamic graph analytic tools

through an open library of high-performance algorithms. Included are algorithms for traversal,

pathfinding, centrality, and community detection [100]. The traversal algorithms, such as breadth-

first search (BFS) and parallel depth-first search (DFS), could be used to reconstruct particular

aspects of the vascular network.

Pathfinding algorithms, such as single-source shortest path and all-pairs shortest path, would

be useful in determining direct and alternating routing to different regions or in the analysis of

network capacity [id.]. As for measures of centrality, the betweenness centrality algorithm could

show utility in ascertaining the bottlenecks of blood flow into different regions of the brain [100].

Meanwhile, community detection algorithms such as the local clustering coefficient may prove

helpful in determining a region’s robustness to occlusion [id.].
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3. BIOLOGICALLY GROUNDED SYNTHETIC CEREBROVASCULATURE MODELS

3.1 Motivation

The development of neuroimaging protocols for the acquisition of entire small animal organs

at sub-micrometer resolution has helped integrate our knowledge about the cellular- and system-

level aspects of the cerebrovasculature system. While the development of whole-brain imaging

techniques has opened the door to data-driven, quantitative investigations into the cerebral an-

gioarchitecture down to the level of brain capillaries, the accuracy of the segmentation algorithms

used to extract the embedded filaments is customarily assessed using validation sets that are signif-

icantly smaller in sample size and dimensionality per grain [11]. Therefore, there is a critical need

to scale the validation process to larger volumes of data, to better assess the scalability of vascular

segmentation algorithms across larger-scale, higher-resolution whole-brain datasets.

To address this need, we must obtain a large number of models reflecting the morphological

features and multiscale nature angioarchitecture of the cerebrovasculature system. The procure-

ment of ground truths of such datasets has been a barrier to their incorporation to the validation

process [id.]. Consequently, validation is frequently carried out using traditional validation vol-

umes, such as digital phantoms and expert-labeled volumes [82, 12, 79, 77, 78], that are smaller-

scale. The limitations of using digital phantoms and expert-labeled volumes have been detailed in

Sections 2.3.3.1 and 2.3.3.2 respectively.

The limitations of digital phantoms and expert-labeled volumes have motivated the introduction

of biologically-grounded, synthetic cerebrovasculature models. The primary objective is synthetic

morphologies generated stochastically, according to the natural distributions of vessel diameters,

lengths, and densities found in ‘real’ cerebrovasculature trees. In this chapter of my dissertation, I

will illustrate how biological data describing the filament arborescence between the post-capillary

Parts of this chapter are © 2018 IEEE and have been reprinted, with permission, from [11].

43



venules and the piemerian origin of the human collateral sulcus (Figure 3.1) [10] can be used to

construct stochastically-generated, synthetic cerebrovasculature models.

3.2 Methodology

Figure 3.1: Slice of India ink-injected human brain. (a) Coronal slab of tissue containing the
collateral sulcus in the temporal lobe; (b,c) close-up of the collateral sulcus; (d) reconstruction of
confocal microscopy acquisition of the collateral sulcus. Reprinted, with permission, from [10].

3.2.1 Biological grounding

We produce synthetic models representative of the well-characterized cerebrovasculature of

the collateral sulcus in the human temporal lobe (Figure 3.1). In this cerebral region, [10] carefully

charted the branching pattern of cerebral vessels. They recognized that the filament arborescence

in this sulcus could be modeled as a hierarchy, using the diameter-defined Strahler system (Figure

3.2) [23]. In this system, the Strahler number (i.e., the ‘order’) of each vessel segment is determined

using a bottom-up process, beginning from the terminal vascular roots of order-0. As bifurcations

are encountered, the confluent segment is given the order number of the larger ‘child’ element

(assumed to be n), which is incremented by 1 (to order-[n+1]) if and only if its diameter is greater
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Figure 3.2: Example of the diameter-defined Strahler system used to label the branching pattern of
a cortical vein in the collateral sulcus of the human brain. Reprinted, with permission, from [10].

than

[(Dµn +Dσn) + (Dµn+1 +Dσn+1)]/2, (3.1)

whereDµn andDσn denote the mean and standard deviation of the diameters of the order-n vessels

respectively. [10] used this process to study characteristics (diameter, length, distribution) of the

cerebrovascular filaments in this venule tree by hierarchical order. In our method [11, 12], these

characteristics serve as the ground truth from which our synthetic models are derived.

3.2.2 Model-based generator

3.2.2.1 The ‘backbone’

The ‘backbone’ of our synthetic models is an order-4 vessel (the ‘root’), bifurcating into two

order-3 vessels (the ‘offshoots’) (Figure3.3). The diameter and length of the resultant segment is

assigned following a Gaussian distribution (µ = 0.0; σ = 0.5) around Dµn and Lµn respectively,

where n is the order of the branch created.
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Figure 3.3: Illustrates the structure of the ‘back-
bone’ of the synthetic model. Reprinted, with
permission, from [11, 12].

Figure 3.4: Branch location-probabilities on the
‘backbone’. Reprinted, with permission, from
[11, 12].

3.2.2.2 Branching from the backbone.

Branch points are subsequently assigned to the backbone’s root and offshoots. The probability

that a specific location on the backbone will receive a branch is dependent on branch-location

probabilities (Figure 3.4) derived from the ground truth. If a branch point is assigned to a location

on the root, an order-2 child results; from the offshoots, an order-2 or order-1 child is chosen by a

random process. When a branch does arise, it diverges from the parent vessel at an angle ψ, such

that π
4
≤ ψ ≤ π

3
is satisfied; ψ is then negated with probability p = 0.5. The diameter and length

of the resultant segment are then assigned stochastically, as described in section 3.2.2.1.

3.2.2.3 Branching from non-backbone segments.

Each vessel segment can have branches, except order-0 elements. The spatial distribution of

branch-location probabilities across the root vessel (Figure 3.4) is also used for the lower-order

elements. If a bifurcation occurs, the child’s vessel separates from its vessel in accordance the

procedure detailed in section 3.2.2.2, with diameter and length assigned following a Gaussian

distribution as described in section 3.2.2.1.

46



3.2.2.4 Vessel element generation.

The formation of each vessel element is carried out over a sequence of generation steps. For

each step, we calculate a step-size (ϑi), lateral direction (αiz ), and axial translation (ϕi). These

values are subsequently used to grow the segment outward and towards its specified length during

the ith generation. The vessel element generation is summarized as a sequence of rotations, trans-

lations, and drawing processes. During the ith generation, we rotate about the current position αiz

radians, where αiz is randomly selected such that (−π
18
≤ αiz ≤ π

18
) is satisfied. Subsequently, we

translate axially ϕi units, where ϕi is randomly selected such that −ϑi ≤ ϕi ≤ ϑi is satisfied, and

then translate laterally ϑi units. At this time, a vascular segment is drawn between the new location

and our previous one. We then continue this process until the desired branch length is obtained.

Upon completion, if the branch has an order number greater than zero, we create a bifurcation at

its terminal end: one child diverges at an angle ρ, such that (π
6
≤ ρ ≤ π

4
) is satisfied; the other at

an angle −ρ.

3.2.2.5 Synthetic volume construction.

Each synthetic model will be synthesized individually, in accordance with the preceding cri-

teria. We will implement our model-based generator in the Python programming language, using

the Visualization Toolkit (VTK) library. Specifically, we will construct the ground-truth of a re-

spective model first, by constructing centerlines throughout each vessel element generation step

(section 3.2.2.4). This data will be written in the serial vtkPolyData (VTP) format. We will then fit

cylinders about these lines to create the synthetic volume of appropriate dimension, in accordance

to sections 3.2.2.1, 3.2.2.2, and 3.2.2.3. This surface model will be exported in STereoLithography

(STL) format and as a volumetric image stack. We will also export a comma-separated values

(CSV) file for each model. For each vessel segment within the synthetic volume, we write its order

number, length, and diameter.
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3.2.3 Synthetic model analysis and validation

We analyze the properties of the filaments embedded in our synthetic volumes concerning

their specific means (e.g., number of vascular elements, vessel length, and filament diameter) by

Strahler number. We then compared each of these relationships against the ground truth data

[12, 10]. To determine the extent of these relationships, we first used linear regression to fit curves

of the following form:

log10 βn = a+ bn, (3.2)

where n is the Strahler number, βn is an order-n mean characteristic of interest, and regression

coefficients a and b. For the ground truth, the corresponding values of ηµn , Dµn , or Lµn were

obtained from [10]. ηµn is the order-n mean number of elements; Dµn and Lµn are defined in

section 3.2.2.1. We then considered the percent error amongst the regression coefficients for each

relationship between groups as a measure of inconsistency between our models and the ground

truth.

3.3 Results and analysis

Table 3.1: Mean values calculated across our synthetic models for the the number of vascular
elements, vessel length, and filament diameter by order.

Order No. Elements Length (µm) Diameter (µm)

0 214.78 109.97 6.05
1 49.81 212.38 8.76
2 8.05 411.05 12.59
3 2.92 802.22 18.29
4 1.00 1605.36 25.57

We present two of our synthetic cerebrovasculature models in Figure 3.5. The ground truth

volume and centerline for Figure 3.5 right are shown in Figure 3.6. The mean number of vascular

elements, vessel length, and filament diameter calculated across our models are presented by order
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Figure 3.5: We present two of our three-dimensional, synthetic models in this figure. We have
labeled the vessel segments of order no. 0, 1, 2, 3, and 4 in color by red, green, blue, magenta, and
cyan respectively.

number in Table 3.1.

Table 3.2: The coefficients of regression and determination (R2) of the fitted lines approximating
the effect of order on the log-mean characteristics.

Synthetic Data Ground Truth

a b R2 a b R2

Elements 2.30 -0.59 0.988 2.19 -0.58 0.988
Length 2.03 0.30 0.999 2.11 0.29 0.971

Diameter 0.74 0.16 0.990 0.86 0.16 0.956

The relationships amongst log-mean characteristics and Strahler number between groups are

reported in Table 3.2 by the regression coefficients of the fitted lines approximating them. The

only percent error found in excess of 10% between groups was coefficient a for the order number

by log-mean diameter relationship (at 12.98%).
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Figure 3.6: An example of one of our synthetic volumes is shown on the left; its corresponding
ground truth centerline data are presented on the right.

3.4 Summary

In this chapter, I detailed our approach towards the construction of more complete cerebrovas-

culature models by addressing some of the limitations of digital phantoms and expert-labeled vol-

umes. The primary contribution of this work is the introduction of the means to assemble synthetic

datasets of vascular trees that are compared to biological datasets in vessel attributes and volume

characteristics. It would be straight forward to extend the attributes considered in our models from

diameter, length, and the number of elements to include additional features such as branch angle

and vessel tortuosity. To model such characteristics, it would be necessary for a researcher to

describe them as they present in a biological dataset. To model strong deviations from the tree-

like structural topology considered here, for instance, the mesh-like capillary network, the method

detailed in this chapter is limited. In the next chapter, we will present a technique capable of

generating models with significantly different topologies within a single synthetic dataset.

Overall, our results show that our synthetic models are in good correspondence to the natural
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distributions of vessel diameters and lengths found in the human collateral sulcus and its vascular

density. Furthermore, by generating synthetic models, we know the composition of the vascu-

lature embedded within and can thus make entirely accurate ground truths. Using the synthetic

volumes and ground truth data, the accuracy of vascular segmentation algorithm can be assessed.

Moreover, because the synthetic volumes are reconstructed directly from brain vasculature data,

an assessment is made on embedded filaments that are representative of the topological and geo-

metrical characteristics that would be encountered in practice.
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4. DATA-DRIVEN SYNTHETIC CEREBROVASCULATURE MODELS

4.1 Motivation

In Chapter 3, we constructed synthetic morphologies according to the natural distributions of

vessel diameters, lengths, and densities found in ‘real’ cerebrovasculature trees. We want to de-

velop models that are more representative of the cerebrovasculature system by taking in to account

additional characteristics, including those of vessel branch angle, circulatory anastomoses, and the

mesh-like capillary network. One of the limitations of our previous method is that we must rely

on biological ground truth data. This requires a researcher to go through and describe the different

attributes of vascular elements residing in a specific cortical region. However, it is unlikely that

descriptions derived from one area will apply to others [28]. To construct models that are more

representative of the cerebrovasculature across the brain, the vasculature presenting in many brain

regions would need to be described. If we would like to make our models more representative

of filament structure, more attributes (such as branch angle, etc.) would need to be characterized.

This would make the process of gathering ground truth data more difficult for the researcher (more

attributes to record and more regions to describe).

In the current chapter, we detail a data-driven methodology to acquire vascular models that

together characterize vascular structure across many different brain regions. We accomplish this

by first obtaining the centerlines of vascular filaments embedded in a sub-sample of a vascular

dataset using a segmentation algorithm. Reconstruction about the centerlines (i.e., the model’s

ground truth) begins after that. Subsequently, a three-dimensional stack of tiff images (i.e., ‘the

stack’) embedding the vasculature of the model is generated using a voxelization algorithm. The

initial segmentation serves as the ground truth from which the stack was built. This means that

we know the location and characteristics of the vasculature embedded within the stack along with

Parts of this chapter are © 2018 IEEE and have been reprinted, with permission, from [101].
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the properties of the volume as a whole. Since the synthetic volume is biologically grounded with

real cerebrovasculature, it is representative of the topological and geometrical characteristics of

filaments from the biological dataset.

4.2 Methodology

4.2.1 Obtain a cerebrovasculature sample

To derive a synthetic cerebrovasculature model in a data-driven fashion, we first obtain rep-

resentative vascular filaments for the cerebral region of interest. Such a sample can be acquired

in many ways. Images slices of a randomly selected region can be downloaded directly from an

online brain atlas [101] to construct a raster image stack or the geometries and topological infor-

mation encoding a cerebrovasculature sample can be retrieved from a graph or database [99]. In

practice, the former approach requires vascular filaments to be segmented from the raster image

stack and converted to vector format. Once this is done, both approaches align at the same pro-

cessing stage. Before proceeding, we require that the biological sample selected has its topology

and geometry stored as a series of nodes and edges. We selected the SWC format (SWC is not an

abbreviation, but the initials of the developers) for this encoding [102].

Figure 4.1: Example of the SWC file format. Each line of the file represents a line end point.
For each ‘child’ end point, its x, y, and z coordinates are stored, along with its radius and its
‘parent’ end point. Line segments are constructed between ‘child’ and ‘parent’ end points; these
line segments encode the different vascular filaments embedded in the imaging volume.

The idea behind the SWC format is that each vascular segment (vessel between two bifurca-
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tions) can be embedded as a series of line segments and line endpoints. The entire geometry and

topology of a vascular sample are captured by ensuring that every time a vessel segment deviates

from a straight line, that deviation is captured through the construction of another line endpoint

that together with its parents, constructs a new line segment to represent a vascular element. This

line represents the centerline of the vascular filament from which it is derived. The SWC format

establishes a hierarchy of line endpoints connected into line segments encoding every vascular

component in the dataset. Every line endpoint is written with a unique identifier (i.e., ID), its x, y,

and z position, its radius, and parent endpoint’s ID (of that to which it forms a segment). Based

on this information, a sequence of straight lines can be drawn between parent and child endpoints,

where each endpoint is centered at its x, y, and z position. A cone can be fit between the endpoints,

with the radius of each end matching that of the endpoints. An example of this file format is shown

in Figure 4.1.

4.2.2 Ground truth centerline and volume construction

Using the topological and geometrical information encoded about the cerebrovasculature sam-

ple in the SWC file, we reconstruct the volume in vector graphics form using geometrical primi-

tives. Many different 3D graphics frameworks can be used to achieve this end. We selected the

Visualization Toolkit [103] primarily due to our familiarity with it. Our reconstruction process can

be summarized as the drawing of the lines (vascular filaments) as defined in the SWC file; the result

is like that illustrated in Figure 4.2. We save this representation of the vessel centerlines in VTK

format; this is the ground truth that describes precisely where the center of each vessel is located.

To construct the volume, we fit a cone about each line, with the radius at each end matching that of

the line’s endpoint from the SWC file. The result of this process for Figure 4.2 is shown in Figure

4.3. The polydata for this volume is written out in VTK format; this is the ground truth volume of

our cerebrovasculature model.
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Figure 4.2: An example of the centerline recon-
structed for a data-driven synthetic cerebrovas-
culature models.

Figure 4.3: An example of the volume of one
of our synthetic cerebrovasculature models. The
volume was reconstructed by fitting cylinders
about the centerline in Figure 4.2.

4.2.3 Ground truth volume voxelization

We must voxelize our vectorized ground truth volume to construct a raster imaging volume.

Many different tools perform voxelization, and we selected BINVOX [104]. The way that BINVOX

performs this operation is no different than most other voxelization methods. First, the mesh

representation of the volume is normalized to fit inside a 1.0 × 1.0 × 1.0 cube with its origin at

(0.0,0.0,0.0). This is achieved by completing a translation operation with a uniform scale. The

resultant unit cube is then voxelized. For a voxel model of resolution d and coordinates beginning

at (0,0,0), the coordinates inside the unit cube of a given voxel located at (i, j, k) can be calculated

by the following equation:

(xn, yn, zn) = ((i+ 0.5)/d, (j + 0.5)/d, (k + 0.5)/d), (4.1)
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Figure 4.4: Voxelization of cerebrovasculature model presented in Figure 4.3.

with 0.5 added to each location point to obtain the center of the voxel cell.

In our work, we selected d = 1024, the highest resolution afforded by BINVOX for the vox-

elization process. This resulted in a 1024 × 1024 × 1024 image volume of the voxelized model.

We perform morphological hole filling on the resultant binary image volume. To make this raster

image volume align with the vectorized ground truth volume and centerline, we scale it based on

the scaling factor used during the normalization procedure of the mesh. Specifically, given the

BINVOX normalization scaling factor sfnorm and model resolution d = 1024 (as denoted above),

we calculate the scaling factor sfimg for the raster image volume by the following equation:

sfimg = (1.0/sfnorm)/d (4.2)

The voxelization of the cerebrovasculature model presented in Figure 4.3 according to this proce-

dure is shown in Fig 4.4. At this point, the synthetic dataset is similar to what would be acquired

from the biological specimen, albeit without noise.
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4.2.4 Rough mesh construction of voxelized volume

We construct a rough mesh representation of the filament structure embedded in the voxelized

volume derived in Section 4.2.3. To do this, we must first extract the surface of the filament

structures. There are many different algorithmic approaches to this problem. We decided to solve

it by contouring the image using the discrete marching cubes algorithm [105]. Once the surface is

obtained as polydata by the marching cubes algorithm, we store the surface in VTK format.

4.2.5 Ground truth centerline and volume translation

To align the centerline and volume ground truth to the raster imaging volume, we first set the

origin of the centerline and volume ground truth to (0.0,0.0,0.0). This is achieved using a basic

translation operation applied to the polydata of the centerline and volume ground truths. For this

process, we use the rough mesh constructed in Section 4.2.4 as an orientation aid: it shares the same

placement as the imaging data in Euclidean space. We compare the alignment of the centerline and

volume to the rough mesh. If needed, we rotate the centerline and volume polydata as to align it

with the rough mesh.

4.3 Results and analysis

Five data-driven synthetic cerebrovasculature models acquired using the methodology detailed in

this chapter are presented in Figures 4.5, 4.6, 4.7, 4.8, and 4.9.

The extent to which the filaments embedded in these synthetic models correspond to the vas-

culature found in the animal model from which they are derived is dependent on many factors that

make quantification difficult. When processing the biological imaging dataset acquired from an

animal model, the application of different image processing techniques can damage the surface of

the vascular filaments, causing measures of radius, branch angles, and other attributes to be close

but not entirely correct. Furthermore, the segmentation algorithms used to extract the embedded

vascular filaments can degrade in the presence of noise. In the generation of our models, we view

these issues as irrelevant. Once we receive the segmented filaments, we assume the data ground

truth and reconstruct an imaging volume from it. Our models are a best approximation of the un-
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derlying cerebrovasculature attributes that one can expect to be found in the biological specimen.

Thus, our models are well suited for the evaluation of image processing techniques and validation

of segmentation algorithms across different experimental conditions.

4.4 Summary

In this chapter, I detailed our approach to constructing data-driven models that are more rep-

resentative of the cerebrovasculature structure than those generated stochastically in Chapter 3.

In addition to creating models that have filament diameter, length, and number similar to those

found in biological datasets, our data-driven models also incorporate branch angles, circulatory

anastomoses, and tortuosity measures. This is because our models have been derived from ‘real’

cerebrovasculature data; they can, therefore, capture the tree-like topology considered in Chapter

3 down to the mesh-like capillary networks all within a single dataset. Furthermore, using an array

of biological samples, we can construct synthetic models that exhibit the variation in vasculature

structure across the brain. This has been made feasible by the whole-brain cerebrovasculature

datasets: samples of cerebrovasculature can be acquired from different brain regions.

Our synthetic models address not only the limitations of digital phantoms and expert-labeled

datasets but also those developed in Chapter 3. However, our artificial models do not replace dig-

ital phantoms and expert-labeled datasets, but can be used in conjunction with them. We believe

that initial rounds of evaluation should utilize smaller models (e.g., digital phantoms). Once the

processing procedure or tracing algorithm appears stable, testing should then commence on a vol-

ume of similar sample size and dimensionality of cerebrovasculature as the dataset, such as our

synthetic models. In the past, representative datasets were difficult to obtain. Our method detailed

in this chapter provides a simple means to achieve such datasets while maintaining an underlying

ground truth.

Our original contribution is the means to assemble large-scale, high-resolution datasets of ves-

sel attributes and volume characteristics comparable to those in the biological specimen. Our

method addresses the critical need for large-scale models for the validation process of algorithms

applied to cerebrovasculature imaging datasets. Our models are readily constructed and reflect
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Figure 4.5: Cerebrovasculature model acquired from KESM India Ink dataset. This voxel-based
model is 1158 × 1158 × 1158 pixels derived from imaging data acquired at a voxel resolution of
0.6 µm × 0.7 µm × 1.0 µm. The total size of this model is 1.4GB.
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Figure 4.6: Cerebrovasculature model acquired from KESM India Ink dataset. This voxel-based
model is 1280 × 1280 × 1280 pixels derived from imaging data acquired at a voxel resolution of
0.6 µm × 0.7 µm × 1.0 µm. The total size of this model is 2.1GB.
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Figure 4.7: Cerebrovasculature model acquired from KESM India Ink dataset. This voxel-based
model is 1617 × 1617 × 1617 pixels derived from imaging data acquired at a voxel resolution of
0.6 µm × 0.7 µm × 1.0 µm. The total size of this model is 4.2GB.
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Figure 4.8: Cerebrovasculature model acquired from KESM India Ink dataset. This voxel-based
model generated from imaging data acquired at a voxel resolution of 0.6 µm × 0.7 µm × 1.0 µm;
model is in excess of 2400 × 2400 × 2400 pixels. The total size of this model is greater than of
10GB.
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Figure 4.9: Cerebrovasculature model acquired from KESM India Ink dataset. This voxel-based
model generated from imaging data acquired at a voxel resolution of 0.6 µm × 0.7 µm × 1.0 µm;
model is in excess of 2400 × 2400 × 2400 pixels. The total size of this model is greater than of
10GB.
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the morphological features and multi-scale nature of the brain’s angioarchitecture. Through their

application, we can quantitatively access the accuracy of filament processing and extraction tech-

niques and their scalability across larger-scale, higher-resolution datasets.
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5. MODEL-BASED VALIDATION SYSTEM

5.1 Motivation

It is challenging to quantitatively evaluate the effect of image processing algorithms on filament

structure and determine the correctness of a segmentation algorithm (SA) in filament extraction.

This is true irrespective of the methodology used to image the biological specimen, and especially

so when the sample size and dimensionality per grain of cerebrovasculature in acquired image

volume is significantly large [106]. When it comes to vascular datasets, there can be many different

image processing procedures applied to an imaging volume before an SA extracts the embedded

filaments; such methods comprise the ‘preprocessing’ stage. When it comes time to segment the

vasculature from the image volume, there are many different SAs that one can choose. Section 2.3

provides an overview of some of the commonly applied preprocessing and segmentation techniques

for cerebrovasculature datasets acquired by LM. The primary goal in this chapter is to describe our

model-based validation system and analyze results from its application. Our system is designed to

quantify the extent to which a preprocessing procedure degrades filament structure and the degree

that an SA successfully extracts the embedded vasculature (albeit not at the same time).

In the literature, validation is typically limited to the SA and is frequently conducted upon digi-

tal phantoms and manual-labeled volumes [96]. This is achieved by measuring the correspondence

of the medial axis of a model in some validation set against the centerline obtained by an SA or by

determining the overlap of the extracted filaments to those in a ground truth volume. The effect on

filament integrity of image processing techniques is rarely quantified. This practice occurs despite

the availability of digital phantoms and manual-labeled volumes to which image processing tech-

niques could be applied. The result of this application could then be compared against the digital

phantom or manual-labeled ground truth.

Parts of this chapter are © 2018 IEEE and have been reprinted, with permission, from [101].
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In cerebrovasculature research, it is imperative that vessel integrity is maintained. This is

because the relationship of the microvasculature to surrounding tissue is critical to perfusion, as

is the geometry and topology of the cerebrovasculature that influences the resistance to blood

flow. The implications of incorrect measurements of vasculature attributes are significant, yet are

overlooked in the literature. To emphasize this, take the Hagen-Poiseuill solution (Eq. 2.4) to

volumetric flow rate (volume/time). This equation describes flow rate as directly proportional to

the product of the radius to the fourth power and the pressure drop across the vessel; inversely

proportional to filament length. This means that the blood vessel radius does not need to change

significantly to increase (or decrease) flow, limiting the extent to which dilation (or constriction) is

required under hypoxic (or hyperoxic) conditions [15]. What this also means is that processing or

segmentation procedures that induce small damages to filament structure can have a large impact

on our conclusions drawn about blood flow and tissue perfusion in studies using imaging data.

Furthermore, inaccurate measurements of the radius can impact flow separation at bifurcations,

and this may have implications in studies of blood flow. Murray’s law (Eq. 2.3) describes the

optimal angle between parent and child vessels and is calculated for the radius of the vessels

comprising the bifurcation. As the angle changes, the velocity profile, wall shear stress, and other

attributes of the flow change too. Moreover, the geometry of the bifurcation determines how blood

is distributed to the child’s vessels and also influences the resistance to flow. Degradation at points

of bifurcation in the imaging data from processing or segmentation can also impact analyses about

blood flow and tissue perfusion.

In chapters 3 and 4, we have introduced two ways to generate synthetic models that address

some of the limitations of digital phantoms and manually-labeled volumes. In this chapter, we

will detail a model-based validation system that can be used in conjunction with those models.

Our system does not only validate segmentation algorithm performance but also can determine

whether a specific (or combination of) image processing algorithm(s) damages filament structure.
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5.2 Methodology

The generation of our cerebrovascular models in Chapters 3 and 4 results in ground truth vec-

torized skeletons, vectorized surfaces, and rasterized image volumes. Using our models, we can

assess the accuracy of different segmentation algorithms or the effect of image processing regi-

ments on the structures embedded within them. Our method presented here provides the means

to study these aspects quantitatively. We provide the ability to conduct such studies by reporting

quantitative measurements of the centerline and volumetric correspondence of experimental data

to a model’s ground truth.

5.2.1 Volumetric correspondence

5.2.1.1 Rasterize the segmented volume

If the experimental result (ER) is not already in raster graphics form, we will first generate

a binary image volume from the vectorized data using BINVOX [104]. We first align the ER to

the GT using the procedure detailed in Section 4.2.5. We then follow the same procedure as in

Section 4.2.3 to voxelize the ER, albeit without rescaling. This process results in a binary image

volume of resolution d = 1024. We subsequently compare this image volume for the ER against

that generated by BINVOX for the ground truth (GT).

5.2.1.2 Calculate sensitivity, specificity, precision, Jaccard index, and dice coefficient

We calculated sensitivity, specificity, precision, Jaccard index, and dice coefficient as measures

of correspondence of the ER to the GT. For the ER and GT binary image volumes, foreground

(FB) is denoted as the positive and the background (BG) is denoted as the negative class. True

positive (TP) is defined as the total number of voxels labeled as foreground by both the ER and

GT. Meanwhile, true negative (TN) is defined as the total number of voxels labeled as BG by both

the ER and GT. False positive (FP) and false negative (FN) are defined accordingly. Following

these definitions, we derive sensitivity, specificity, precision, Jaccard index, and dice coefficient

as:
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Sensitivity = P (y = FG |GT = FG) =
TP

TP + FN
(5.1)

Specificity = P (y = BG |GT = BG) =
TN

TN + FP
(5.2)

Precision = P (GT = FG | y = FG) =
TP

TP + FP
(5.3)

JI = P (y = SA ∩GT = FG | y = SA ∪GT = FG) =
TP

TP + FP + FN
(5.4)

DC =
2× JI
1 + JI

=
2× TP

2× TP + FP + FN
(5.5)

Both the DC and JI approach a value of 1.0 for very similar results and 0.0 when they share no

voxels. They are appropriate when the number of FG voxels is much less than BG or when the

detection accuracy of FG detection is more critical than BG [78].

We calculate these measures of correspondence by iterating over the image slices of the ER and

GT volumes, determining the TP, FP, TN, and FN values for corresponding slices, and summing

these metrics as we proceed through the volumes. The overall measures of TP, FP, TN, and FN are

used to calculate sensitivity, specificity, precision, Jaccard index, and dice coefficient.
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5.2.1.3 Report of results

Our model-based validation system reports sensitivity, specificity, false positive rate (FTR),

false negative rate (FNR), precision, Jaccard index, and dice coefficient to the user. We leave the

interpretation of these measures of correspondence up to the user. We do this as what constitutes

an acceptable level is often dependent on the application.

5.2.2 Centerline correspondence

When an SA is applied to an imaging model, and the output is filament centerline information,

quantitative analysis of SA accuracy is more complicated given the sparse nature of centerline

data [106]. If the radius is encoded, in conjunction with the centerline data, the volume can be

reconstructed and volumetric correspondence assessed according to Section 5.2.1. Depending on

the segmentation protocol, the centerline may be extracted first, and the radius calculated using

that data in conjunction with the imaging volume [7]. In these scenarios, the radius is calculated

through the evolution of a level-set surface outward from the skeleton [107], or by extracting the

network isosurface. The information acquired about the surface structure and diameter of vessel

filaments can be used to determine each element’s radius [7]; the volume can then be readily

reconstructed.

If the volume cannot be reconstructed, we can still quantify the agreement of the SA’s centerline

output to our model’s GT. Due to the sparse nature of the centerline representation, there will not

necessarily be a one-to-one correspondence between the centerline ground truth and the centerline

calculated by an SA. Therefore, we propose a novel graph-based approach to compare the ground

truth of a model to that output by an SA.

5.2.2.1 Graph construction

Before proceeding, we require that the ER and GT centerlines are stored as a series of nodes and

edges. We selected the SWC format (SWC is not an abbreviation, but the initials of the developers)

for this encoding [102] and elaborate on this scheme in Section 4.2.1. The centerlines for the ER

and GT can be represented as a sequence of nodes with a straight line-edge between them. Viewing
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the ER and GT centerlines in this fashion allows us to construct independent graph representations

of each easily.

There are many different libraries that can be used to construct a graph given the nodes and

edges. We decided to use the networkx package [108] based on our familiarity with it. Given that

the SWC format establishes a hierarchy of line endpoints connected into line segments encoding

every vascular component in the dataset, we can easily convert this encoding into graph form. For

every line endpoint in the file, we construct a new node n into our graph encoding with its unique

identifier (i.e., ID) specified in the SWC file, along with with its x, y, and z position, and its radius

(if applicable). Given that the node’s parent’s endpoint ID is also specified on its line, we insert

an edge into our graph connecting n with its parent. Based on this information, the sequence of

straight lines representing the centerlines is encoded in graph form [96].

5.2.2.2 Initialization of k-d tree with ground truth centerline nodes

We subsequently iterate over the nodes comprising the GT centerline and insert them into the

k-d tree data structure in O(log n) time.

5.2.2.3 Centerline correspondence

We iterate through the nodes comprising the ER centerline. We view each node x as an SAddle-

point of sorts and find the node closest to n to node x in the GT using the k-d tree. This process

returns node n from the GT. We then find two additional nodes, a and b, from the GT closest to

x, with the constraint that those nodes must be connected to n by an edge. We formulate a line l1

between n and a and calculate the distance d1 of x to that line. Subsequently, we formulate another

line l2 between n and b and calculate the distance d2 of x from that line. We report the minimum

distance calculated as the deviation of x from the GT. An illustrative example is shown in Figure

5.1. This process is done for each node in the graph encoding the ER centerline.

5.2.2.4 Correspondence metric reported

We indicate the correspondence of the ER centerline to that of the ground truth as the average

deviation of each node x comprising the ER from the ground truth centerline.
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Figure 5.1: Diagram describing the calculation of deviation of a node x from the line described
described by points a, n, and b with edges l1 and l2. In order to calculate the deviation distance of
node x from the line, we take the minimum Euclidean distance that it is from l1 and l2.

5.2.2.5 Length difference reported

The correspondence metric described in Section 5.2.2.4 is necessary, but not sufficient on its

own. For example, if the segmentation output consists of two nodes that both happen to lie on the

ground truth centerline, then the correspondence metric reported would suggest perfect correspon-

dence. However, if those two nodes only encoded a fraction of the ground truth centerline, then

this is wrong. Therefore, we will also report the length difference (ϕ) as:

ϕ = |1− LR

LA

|, (5.6)

where LR and LA are the length of vascular data in ground truth and segmentation output respec-

tively.

5.3 Results and analysis

5.3.1 Volumetric correspondence

To illustrate the utility of our model-based validation for volumetric correspondence, we ac-

quired a model from the KESM India Ink dataset using our method detailed in Chapter 4. The

model selected is shown in Figure 5.2. In this model, the background color is grayscale 144 and
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Figure 5.2: Cerebrovasculature model acquired from KESM India Ink dataset. This voxel-based
model is 633×633×633 pixels derived from imaging data acquired at a voxel resolution of 0.6 µm
× 0.7 µm × 1.0 µm. The total size of the voxelized model is 253.7MB.

the vessel 44. Specifically, we wanted to quantify the accuracy of the voxel scooping segmentation

algorithm [9] when applied to a dataset that had been degraded with Gaussian noise and subse-

quently processed using a two-dimensional 5× 5 median filter (n = 5) and followed-up by global

thresholding (t = 100). These are common preprocessing procedures and are detailed in Section

2.3. Thereafter, we explore how the median filter alone effects filament structure when no noise is

present.

5.3.1.1 Quantification of algorithmic performance in the presence of noise

To illustrate the utility of our model-based validation system, we degraded the model presented

in Figure 5.2 with Gaussian noise. Specifically, we constructed seven noisy models:

• Noisy Model I, a pixel’s grayscale value was offset by −5–5

• Noisy Model II, offset by −10–10
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• Noisy Model III, offset by −20–20

• Noisy Model IV, offset by −40–40

• Noisy Model V, offset by −60–60

• Noisy Model VI, offset by −80–80

• Noisy Model VII, offset by −100–100.

The probabilities for these offsets are shown in Figure 5.3 for each noisy model. The maximum

grayscale value that a pixel could become in any noisy model was 255 and the minimum 0.

Figure 5.3: The probability that a grayscale pixel in a respective model will be offset by the value
in specified range. The minimum value after the offset is 0; the maximum value is 255.
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A slice of the binary ground truth for Figure 5.2 is shown in Figure 5.4. We illustrate the level

of filament structure degradation in the noisy models in the same slice for Noisy Models I-VII in

Figures 5.5, 5.7, 5.9, 5.11, 5.13, 5.15, and 5.17. The degradation in these figures is representative

of that across each respective noisy imaging volume. We also present the histograms for each of

the noisy image volumes in Figures 5.6, 5.8, 5.10, 5.12, 5.14, 5.16, and 5.18.

Figure 5.4: Slice from the binary ground truth volume.

For each noisy model, we applied a two-dimensional median filter of neighborhood n = 5

slice-by-slice, followed by global threshold at t = 100. We subsequently applied the voxel scoop-

ing method [9] to the volume to segment the filaments. We calculated volumetric correspondence

of the segmented filaments (i.e., the ER) to the model’s GT per the procedure outlined in Section

5.2.1. We report the algorithm’s sensitivity (true positive rate), specificity (true negative rate), false

positive rate, and false negative rate in Figures 5.19, 5.20, 5.21, and 5.22 respectively. Precision

(positive predictive value), Jaccard index, and dice coefficient are reported in Figures 5.23, 5.24,

and 5.25 respectively.

It is interesting that TPR (Figure 5.19) increases in the presence of more severe noise while the

TNR decreases (Figure 5.21). Likewise, that FPR (Figure 5.21) increases while the FNR decreases

(Figure 5.21). The observed trends for TPR, TNR, FPR, and FNR are not strongly linear in nature.
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Figure 5.5: Noisy Model I. Image slice from the
middle of the image volume detailing the level
of noise representative throughout the model.

Figure 5.6: Histogram of the image volume of
Noisy Model I. The x-axis shows the potential
grayscale values and the y-axis the probability
that they occur across the volume. The grayscale
values of the filaments (vessels) are shown in
blue; the values of the background in orange.

Figure 5.7: Noisy Model II. Image slice from the
middle of the image volume detailing the level
of noise representative throughout the model.

Figure 5.8: Histogram of the image volume of
Noisy Model II. The x-axis shows the potential
grayscale values and the y-axis the probability
that they occur across the volume. The grayscale
values of the filaments (vessels) are shown in
blue; the values of the background in orange.
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Figure 5.9: Noisy Model III. Image slice from
the middle of the image volume detailing the
level of noise representative throughout the
model.

Figure 5.10: Histogram of the image volume of
Noisy Model III. The x-axis shows the potential
grayscale values and the y-axis the probability
that they occur across the volume. The grayscale
values of the filaments (vessels) are shown in
blue; the values of the background in orange.

Figure 5.11: Noisy Model IV. Image slice
from the middle of the image volume detailing
the level of noise representative throughout the
model.

Figure 5.12: Histogram of the image volume of
Noisy Model IV. The x-axis shows the potential
grayscale values and the y-axis the probability
that they occur across the volume. The grayscale
values of the filaments (vessels) are shown in
blue; the values of the background in orange.
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Figure 5.13: Noisy Model V. Image slice from
the middle of the image volume detailing the
level of noise representative throughout the
model.

Figure 5.14: Histogram of the image volume of
Noisy Model V. The x-axis shows the potential
grayscale values and the y-axis the probability
that they occur across the volume. The grayscale
values of the filaments (vessels) are shown in
blue; the values of the background in orange.

Figure 5.15: Noisy Model VI. Image slice
from the middle of the image volume detailing
the level of noise representative throughout the
model.

Figure 5.16: Histogram of the image volume of
Noisy Model VI. The x-axis shows the potential
grayscale values and the y-axis the probability
that they occur across the volume. The grayscale
values of the filaments (vessels) are shown in
blue; the values of the background in orange.

77



Figure 5.17: Noisy Model VII. Image slice
from the middle of the image volume detailing
the level of noise representative throughout the
model.

Figure 5.18: Histogram of the image volume of
Noisy Model VII. The x-axis shows the poten-
tial grayscale values and the y-axis the proba-
bility that they occur across the volume. The
grayscale values of the filaments (vessels) are
shown in blue; the values of the background in
orange.

Regardless of the shape of the trend, it is important to question the nature of it. That is, how could

TPR and FPR both increase in the presence of noise? How could TNR and FNR both decrease?

As the image volumes are degraded with more and more Gaussian noise, the pixel values of

the foreground and background can become closer together and eventually overlap. When the

median filter is applied, it is likely that more pixels comprising the filament’s structure will be

characterized correctly as foreground. However, by the same token, that filament pixels will also

be labeled incorrectly as part of the background. This increases both TPR and FPR, respectively.

With little noise, a filament’s edges are sharp as the dark foreground meets the lighter background

pixels. When the median filter is applied to datasets where the ROI presents in high contrast to

the background, the edges at the boundary of the filaments stay sharp; however, they are often

degraded. Figure 5.19 and Figure Figure 5.20 show that even in low noise and high foreground

to background contrast conditions, only 80% of the pixels are labeled correctly. Furthermore, this

percentage does not change drastically as the level of Gaussian noise present in the image volume

increases. These effects suggest that the median filter could be more responsible for the resultant
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Figure 5.19: Noise value by the true positive rate
for the correspondence of filaments segmented
from volumes degraded with varying levels of
Gaussian noise to the volume’s ground truth.
The linear regression line fit to the data pre-
sented in this plot is drawn in red; the equa-
tion for that fitted line, along with its R-squared
value, is boxed within the graph.

Figure 5.20: Noise value by the true negative
rate for the correspondence of filaments seg-
mented from volumes degraded with varying
levels of Gaussian noise to the volume’s ground
truth. The linear regression line fit to the data
presented in this plot is drawn in red; the equa-
tion for that fitted line, along with its R-squared
value, is boxed within the graph.

degradation of the filament structure than Gaussian noise in our investigation. In the next section,

we explore the effect of the median filter on a noiseless image volume.

5.3.1.2 Quantification of median filter effect on filament structure

To quantify the effect of the median filter on filament structure, we constructed 12 filtered

models. Each filtered model is derived from the model presented in Figure 5.2; it is unique in the

two-dimensional n× n median filter applied to it slice-by-slice. The models were constructed for

the different median filter neighborhoods of n = 0, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 31. We then

applied the voxel scooping method [9] to each filtered model segment the embedded filaments. We

calculated volumetric correspondence of the segmented filaments (i.e., the ER) to the model’s GT

per the procedure outlined in Section 5.2.1. We report sensitivity (true positive rate), specificity

(true negative rate), false positive rate, and false negative rate in Figures 5.26, 5.27, 5.28, and 5.29

respectively. Precision (positive predictive value), Jaccard index, and dice coefficient are reported

in Figures 5.30, 5.31, and 5.32 respectively.
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Figure 5.21: Noise value by the false positive
rate for the correspondence of filaments seg-
mented from volumes degraded with varying
levels of Gaussian noise to the volume’s ground
truth. The linear regression line fit to the data
presented in this plot is drawn in red; the equa-
tion for that fitted line, along with its R-squared
value, is boxed within the graph.

Figure 5.22: Noise value by the false negative
rate for the correspondence of filaments seg-
mented from volumes degraded with varying
levels of Gaussian noise to the volume’s ground
truth. The linear regression line fit to the data
presented in this plot is drawn in red; the equa-
tion for that fitted line, along with its R-squared
value, is boxed within the graph.

As expected, the 0 × 0 median filter (i.e., no filter) model ER showed perfect correspondence

with the GT, as filament structure was not damaged at all in the ER. Filament structure began to

degrade significantly with the application of a non-zero median filter. Simply applying a 3 × 3

median filter resulted in a reduction of approximately 20% (from 100% down to about 80%) of

the pixels labeled correctly. Qualitatively, the degradation is hardly visible along the isosurface, as

illustrated in Figure 5.33. However, these small defects accumulate into significant degenerations

across the whole, as evident by the significant difference between the ER and GT.

With the larger 7×7 median filter ER, pixel label correctness doesn’t change substantially, and

is right around 80%. Qualitatively, the aberrations along the isosurface of this ER are only slightly

more pronounced. These defects are captured in Figures 5.35 and 5.36. The correspondence

between a single slice of the GT and ER is shown in Figure 5.37. As the size of the median filter

is increased, the correspondence of the ER to GT continues to diminish. We continue to illustrate

the degradation qualitatively (quantitative data already presented in Figures 5.26, 5.27, 5.28, 5.29,
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Figure 5.23: Noise value by the precision for
the correspondence of filaments segmented from
volumes degraded with varying levels of Gaus-
sian noise to the volume’s ground truth. The
linear regression line fit to the data presented in
this plot is drawn in red; the equation for that fit-
ted line, along with its R-squared value, is boxed
within the graph.

Figure 5.24: Noise value by the Jaccard index
for the correspondence of filaments segmented
from volumes degraded with varying levels of
Gaussian noise to the volume’s ground truth.
The linear regression line fit to the data pre-
sented in this plot is drawn in red; the equa-
tion for that fitted line, along with its R-squared
value, is boxed within the graph.

Figure 5.25: Noise value by the dice coefficient
for the correspondence of filaments segmented
from volumes degraded with varying levels of
Gaussian noise to the volume’s ground truth.
The linear regression line fit to the data pre-
sented in this plot is drawn in red; the equa-
tion for that fitted line, along with its R-squared
value, is boxed within the graph.
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5.30, 5.31, and 5.32) of the application of a:

• 15× 15 median filter in Figures 5.38, 5.39, and 5.40;

• 17× 17 median filter in Figures 5.41, 5.42, and 5.43; and,

• 23× 23 median filter in Figures 5.44, 5.45, and 5.46; and,

The increase in degradation is observed as the pixels involved in the neighborhood of the

median filter becomes more dominated by “background” grayscale values. This effect is most

prevalent when the size of the median filter exceeds that of an embedded filament element: the

filament element is absorbed into the background and thus “removed” from the image. An n × n

median filter has n2 pixels involved in the computation of the pixel under consideration’s value.

Therefore, isolated clusters of filament pixels whose area is less than n2/2 are eliminated from the

image (will receive the value of background). In our experiments, as the median filter increased in

size, we saw degradation along the surface of filaments in the ER. Once n2/2 exceeded the diameter

of isolated filaments, the ER became discontinuous as filaments pieces are lost to the background.

It is important to emphasize that even with the smallest median filter, there is a degeneration of the

quality of the surface.
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Figure 5.26: Median filter of neighborhood n
by true positive rate for the correspondence of
filaments segmented from volumes with applied
n× n median filter to the volumes ground truth.
The linear regression line fit to the data pre-
sented in this plot is drawn in red; the equa-
tion for that fitted line, along with its R-squared
value, is boxed within the graph.

Figure 5.27: Median filter of neighborhood n
by true negative rate for the correspondence of
filaments segmented from volumes with applied
n× n median filter to the volumes ground truth.
The linear regression line fit to the data pre-
sented in this plot is drawn in red; the equa-
tion for that fitted line, along with its R-squared
value, is boxed within the graph.
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Figure 5.28: Median filter of neighborhood n
by false positive rate for the correspondence of
filaments segmented from volumes with applied
n× n median filter to the volumes ground truth.
The linear regression line fit to the data pre-
sented in this plot is drawn in red; the equa-
tion for that fitted line, along with its R-squared
value, is boxed within the graph.

Figure 5.29: Median filter of neighborhood n
by false negative rate for the correspondence
of filaments segmented from volumes with ap-
plied n× n median filter to the volumes ground
truth. The linear regression line fit to the data
presented in this plot is drawn in red; the equa-
tion for that fitted line, along with its R-squared
value, is boxed within the graph.

Figure 5.30: Median filter of neighborhood n by
positive predictive value for the correspondence
of filaments segmented from volumes with ap-
plied n× n median filter to the volumes ground
truth. The linear regression line fit to the data
presented in this plot is drawn in red; the equa-
tion for that fitted line, along with its R-squared
value, is boxed within the graph.

Figure 5.31: Median filter of neighborhood n
by Jaccard index for the correspondence of fil-
aments segmented from volumes with applied
n× n median filter to the volumes ground truth.
The linear regression line fit to the data pre-
sented in this plot is drawn in red; the equa-
tion for that fitted line, along with its R-squared
value, is boxed within the graph.
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Figure 5.32: Median filter of neighborhood n
by dice coefficient for the correspondence of fil-
aments segmented from volumes with applied
n× n median filter to the volumes ground truth.
The linear regression line fit to the data pre-
sented in this plot is drawn in red; the equa-
tion for that fitted line, along with its R-squared
value, is boxed within the graph.
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Figure 5.33: Surface of 3×3 median filtered ER
(in purple), overlaid atop the GT, which presents
in low opacitiy red as it “bleeds” through the ER
in areas of lack of correspondence.

Figure 5.34: Diff image of the same slice ac-
quired from the middle of the 3 × 3 median fil-
tered ER and the GT. Black pixels are common
to both the ER and GT slice; green pixels are in
the GT but not the ER; red pixels are in the ER
but not the GT.
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Figure 5.35: Surface of 7×7 median filtered ER
(in blue), overlaid atop the GT, which presents
in low opacity red as it “bleeds” through the ER
in areas of lack of correspondence.

Figure 5.36: Close-up of Figure 5.35.

Figure 5.37: Diff image of the same slice ac-
quired from the middle of the 7 × 7 median fil-
tered ER and the GT. Black pixels are common
to both the ER and GT slice; green pixels are in
the GT but not the ER; red pixels are in the ER
but not the GT.
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Figure 5.38: Surface of 15 × 15 median fil-
tered ER (in blue), overlaid atop the GT, which
presents in low opacitiy red as it “bleeds”
through the ER in areas of lack of correspon-
dence.

Figure 5.39: Close-up of Figure 5.38.

Figure 5.40: Diff image of the same slice ac-
quired from the middle of the 15 × 15 median
filtered ER and the GT. Black pixels are com-
mon to both the ER and GT slice; green pixels
are in the GT but not the ER; red pixels are in
the ER but not the GT.
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Figure 5.41: Surface of 17 × 17 median fil-
tered ER (in blue), overlaid atop the GT, which
presents in low opacitiy red as it “bleeds”
through the ER in areas of lack of correspon-
dence.

Figure 5.42: Close-up of Figure 5.41.

Figure 5.43: Diff image of the same slice ac-
quired from the middle of the 17 × 17 median
filtered ER and the GT. Black pixels are com-
mon to both the ER and GT slice; green pixels
are in the GT but not the ER; red pixels are in
the ER but not the GT.
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Figure 5.44: Surface of 23 × 23 median fil-
tered ER (in blue), overlaid atop the GT, which
presents in low opacitiy red as it “bleeds”
through the ER in areas of lack of correspon-
dence.

Figure 5.45: Close-up of Figure 5.44.

Figure 5.46: Diff image of the same slice ac-
quired from the middle of the 23 × 23 median
filtered ER and the GT. Black pixels are com-
mon to both the ER and GT slice; green pixels
are in the GT but not the ER; red pixels are in
the ER but not the GT.
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5.3.2 Centerline correspondence

5.3.2.1 Digital phantom experiment

Figure 5.47: Centerlines of
spiral pattern model used to
illustrate our procedure.

Figure 5.48: Tubular surface
fit to centerlines in Figure
5.47 with constant radius.

Figure 5.49: Centerlines
of spiral pattern model
described in Figure 5.47
overlaid with its surface as
shown in Figure 5.48.

We elected to use a 40 pixel × 40 pixel × 70 pixel spiral pattern to illustrate our method de-

tailed in Section 5.2.2; the validation techniques illustrated here are directly applicable to more

complicated, and more vascular-like, geometries without modification. To construct the spiral ge-

ometry from which surface, skeleton, and image volumes used in this experiment were derived, we

used The Visualization Toolkit 8.0 (vtk) [103] in conjunction with the Python 2.7 programming

language to draw a spiral using geometric primitives. The first step of our procedure was to cal-

culate the three-dimensional points and connect those points through line segments. We used the

following algorithm to calculate the point sequence necessary to construct a spiral geometry:

Algorithm 1 Generating spiral coordinate points
Input: Number of vertices, cycles, radius of spiral, height, and number of sides
Output: Coordinates for line describing the spiral provided as input

1: pts = {}
2: for i = 1 to number of verticies do
3: calculate vx, vy, vz
4: pts += {i, vx, vy, vz}
5: end for
6: return pts
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where

vx = rSpiral ∗ cos(2 ∗ π ∗ nCycles ∗ i/(nV ertices− 1)) (5.7)

vy = rSpiral ∗ sin(2 ∗ π ∗ nCycles ∗ i/(nV ertices− 1)) (5.8)

vz = height ∗ i/nV ertices (5.9)

for nV erticies number of vertices, rSpiral radius, height height, and i vertex number composing

the coordinated spiral.

This series of points, connected through line segments, comprised the skeleton of the spiral ge-

ometry, and this was written out in vector graphics format. We did this using a Serial vtkPolyData

(vtp) [103] formatted file due to our familiarity with its encoding scheme. Specifically, this file

served as the centerline GT and is shown in Figure 5.47. About the centerline GT, we fit a tube

of fixed radius to represent a vascular-like cylindrical structure and wrote the geometrical data de-

scribing the resultant polydata surface to a vtp formatted file. The result of this process is shown in

Figure 5.48. Finally, we then constructed a volumetric imaging file containing this vessel-like ge-

ometry encoded. We wrote the volumetric imaging file out in raster graphics format. Specifically,

we chose the meta image format (MDH), due to our experience with it. The surface overlaid with

the skeleton can be seen in Figure 5.49.

The ERs are presented in Figures 5.50 in blue alongside the ground truth centerlines shown

in green. A close-up detailing the deviation more profoundly is presented in Figure 5.51. In

Figure5.52 we present the representation of the ground truth centerline as series of nodes connected

by edges. We show the same for the ERs Figure5.53.

Using our centerline correspondence procedure detailed in Section 5.2.2, we found that on av-

erage, each node comprising the ER centerline was 0.129,4 pixels from the ground truth centerline.

The nodes in the ER exceeding that value are shown in Figure 5.54.
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Figure 5.50: Centerline determined by superel-
lipsoid tracing algorithm upon application to
image volume containing the spiral geometry
described by the surface in Figure5.48 shown
in blue against the ground truth data shown in
green.

Figure 5.51: Close-up of the centerline deter-
mined by superellipsoid tracing algorithm upon
application to image volume containing the spi-
ral geometry described by the surface in Fig-
ure5.48 shown in blue against the ground truth
data shown in green.

Figure 5.52: Graph representation of the spiral
geometry skeleton described in Figure 5.47.

Figure 5.53: Graph representation of the cen-
terline determined by superellipsoid tracing al-
gorithm upon application to image volume con-
taining the spiral geometry described in green
in Figure 5.50.
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Figure 5.54: The nodes (as green squares) composing the ER (shown in green) that exceeded
0.129,4 pixels from the ground truth centerline (shown in blue).

5.3.2.2 Data-driven model experiment

Figure 5.55: Sample of C57BL/6J mouse cerebrovasculature obtained from the KESMBA India
Ink whole-brain dataset for use in this study.

We isolated an arbitrary region of cerebrovasculature – 256 pixel × 256 pixel × 256 pixel at a

voxel resolution 1.2 µm× 1.4 µm× 1.0 µm – from the KESMBA C57BL/6J whole-brain India Ink

dataset. We subsequently composed a volume from the obtained image slices (Figure 5.55) and
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Figure 5.56: Overlay of the ground truth centerline (red) and the algorithm centerline (blue) for the
reconstructed volume. These centerlines are bound within a of 256 pixel × 256 pixel × 256 pixel
volume.

wrote out this “imaging volume” in a raster graphics format. We reconstructed constructed a data-

driven model from this imaging volume using our method described in [101], a precursor to that

detailed in Chapter 4. Once we derived the imaging volume along with the ground truth centerline

data, we applied the superellipsoid tracing method [76] from the Farsight Tool Kit v0.4.4 to extract

the centerline of the embedded filaments. We did not fine-tune any of the tracing parameters;

Farsight’s default values were used.

We compare the acquired ER centerline to the GT centerline using our method detailed in

Section 5.2.2. We present these centerlines overlaid in Figure 5.56. For each node in the ER graph,

we calculated its deviation for a corresponding node in the GT accordingly. We took the average

of this value over all nodes and found an average deviation to be approximately 2.45 µm.
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5.3.3 Summary

The primary contribution of this work is our model-based validation system that consolidates

metrics of correspondence for the quantitative evaluation of image processing techniques and seg-

mentation algorithm accuracy in large-scale datasets composed of embedded filaments. Our val-

idation system provides the capability to quantify the volumetric agreement between an ER and

corresponding GT of the model used in that experiment. Furthermore, our model-based valida-

tion system provides the capability to quantitatively analyze centerline deviation as the distance

between ER and GT.

The introduction of our system is a critical step towards easier quantitative analyses into the

effect of different image processing regiments, or the accuracy of segmentation algorithms, applied

to large volumes of imaging data. Moreover, our centerline graph-based approach will provide

enhanced utility in predicting the accuracy on high-resolution, high-volume cerebrovasculature

data. For example, a correspondence measure based on voxel deviation works well for digital

phantoms composed of simple geometries or with small volumes of expert-labeled ground truths.

It’s easy to assess where the algorithm went astray qualitatively. We make the argument for the

use of more complex geometries as validation sets that represent aspects of the brain vasculature

in Chapters 3 and 4 and in [11, 101]. When dense synthetic datasets are applied, it is difficult to

assess the discrepancies between the segmentation result and ground truth occur.

Our contribution is not only a method that reports centerline deviation but one that also collects

the exact locations where the segmentation algorithm’s performance deteriorates. The geometry

and topology at such areas can then be examined and the algorithm revised accordingly. However,

we do not believe that this approach is sufficient on its own. Understanding the true correspondence

at a voxel-based level between an ER and GT is extremely important. We previously discussed in

Section 2.1 how small changes in morphology can have a profound effect on cerebrovasculature

studies. Therefore, we believe that a multi-faceted approach, using both volumetric and centerline

correspondence, is important and that our model-based validation system provides the foundation

for such an approach.
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6. INFORMATICS PLATFORM

6.1 Motivation

There are many high-throughput LM modalities capable of complete imaging of organs of

small animals at sub-micron resolution (review, Section 2.2). In cerebrovasculature research, the

number of and diversity in whole-brain filament acquisition protocols is growing each day. Com-

mon to all of these techniques is that the acquisitions are large in volume, high in resolution (sub-

micrometer), and multi-scale by nature (spanning from cellular-scale to whole-brain scale). For

cerebrovasculature datasets, these characteristics make the quantitative analysis of the embedded

filaments challenging.

Whole-brain datasets have become increasingly easier to acquire with the introduction of new

LM techniques. However, lagging behind is the development of informatics platforms capable

of analyzing the acquired image volumes. Recently, research has started to shift away from ac-

quisition modalities and towards quantitative analysis. For cerebrovasculature data, many groups

go about the extraction process in diverse ways (see Section 2.3) and report different attributes

about the filaments and characteristics about the volume (see Section 2.4). Due to these various

directions in processing and analysis, a standardized means of quantitative analysis for whole-

brain cerebrovasculature datasets has yet to emerge. Given the variety in acquisition protocols for

complete cerebrovasculature systems, an informatics platform that can be applied to data acquired

across an array of LM modalities is required.

The development of such an informatics framework would help elucidate filament attributes

across the whole-brain, whether these attributes vary depending on the cerebral region, and how

they differ between physiological and pathophysiological states. The structural and functional

integrity of the brain critically depends on the interdependence between neuronal activity and vas-

cular dynamics, which ensures that adequate oxygen and nutrients are delivered to neurons by

matching local blood flow to metabolic demand [14]. Disruptions to the integrity of the cere-
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brovasculature architecture can have a profound impact on the cellular constituents of the brain,

which can lead to cognitive decline and a diminished quality of life [14]. In fact, the pathogenesis

of many acute conditions (such as ischemic stroke) and chronic illnesses (including Alzheimer’s

and Parkinson’s) are associated with changes to the cerebral microcirculation.

To better understand the processes underlying healthy and diseased brains, there is a critical

need to foster an accessible and standardized open-source informatics framework that facilitates

the quantitative analysis of the cerebrovascular system. In the current chapter, we develop an

open-source informatics framework that can be applied to data acquired across an array of LM

modalities. Our method focuses on the utilization of a graph-based representation of vascular

topology and geometry. The first part of this chapter covers the construction of such a graph.

Thereafter, we detail procedures that calculate vascular volume characteristics across the whole

brain and the attributes of the individual vascular segment comprising it. Finally, we present two

case studies that illustrate the utility of our informatics platform.

6.2 Methodology

6.2.1 Graph construction

Before the graph can be constructed, we require that the filaments are extracted from the imag-

ing volume and encoded in a format that stores the filaments as a series of nodes and edges. We

selected the SWC format for this encoding [102] and elaborate on this scheme in Section 4.2.1. In

short, the idea behind this format is that each vascular segment (vessel between two bifurcations)

can be embedded as a series of line segments. The filaments are stored in the SWC format as a

hierarchy of line segments for every connected vascular component in the dataset.

In studies of the brain’s vascular system, graph representations of vessel connectivity are used

to analyze the underlying structural properties of its networks [92, 28, 29, 91, 96, 101]. This de-

scription G is composed of a set of nodes (i.e., vertices) V and a set describing the relationships

between the nodes (i.e., edges) E. In our representation, we define a vessel segment as a sequence

of interconnected edges by nodes of degree two presenting between two nodes of degree at least
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three (i.e., a bifurcation point) or exactly one. We extend this topological encoding by associat-

ing geometrical properties with the vertices and edges to create a more biologically meaningful

description of the vessel segments comprising the vascular network.

To construct a graph representation of a filament network, we construct nodes and edges from

the hierarchy of line segments stored in the SWC file. We do this by iterating over the nodes in

the SWC file that comprise the vascular filaments. During this process, we store each respective

endpoint’s unique ID along with its coordinates and radius in a “container of nodes”. While iterat-

ing over an endpoint, we also establish a relationship between its unique ID and that of its parents.

We store this connectivity information in a “container of edges”. Once the nodes and edges are

realized, there are many different graph libraries that handle the encoding of nodes and edges into

graph form. We elected to construct a NetworkX [108] graph primarily due to our familiarity with

it and due to the breadth of graph algorithms that it provides.

To build the NetworkX graph, we begin by initializing a new NetworkX graph. Given the bi-

directional nature of blood flow through the cerebral arterial [31] and venous circulation [16], we

model undirected relationships between nodes in the graph model. We add into the graph our

“container of nodes”, along with the edges in our “container of edges”. If desired, during this

process, we can use segment radius [91] or resistance [17] to discriminate between capillaries and

non-capillaries. Each node can be labeled before it is entered into the graph, thereby estimating the

separation between the tree-like arterioles [17] and venules from the mesh-like capillary network

[29]. Our graph construction process results in a NetworkX graph that encodes both the topology

and geometry of the vascular data.

6.2.2 Metrics reported

Our informatics framework will report an array of attributes for each vessel segment and gen-

eral characteristics of a complete network. The analysis commences on filament data stored in

graph representations in full or upon a subgraph obtained from it for a region of interest. A sub-

graph can be obtained using traversal operations such as breadth-first and depth-first search or

through the application of a more sophisticated graph algorithm that identifies a subgraph satisfy-
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ing some constraints

6.2.2.1 Vascular volume characteristics

For the graph representation (or subgraph) under consideration, we report the following vascu-

lar volume characteristics:

• Total length

• Total surface area

• Total volume

To perform these calculations, we iterate over every edge e in our graph G. We look up the

two nodes, n1 and n2, that are connected through e in G. The Euclidean distance length be-

tween n1 and n2 is used to calculate length and is added to an accumulator for length across the

edges. Subsequently, we imagine the edge as a truncated cone, with circles of radius n1.radius

and n2.radius presenting at either end, separated by some distance length, and connected

through a trapezoid funnel. We diagram this structure in Figure 6.1.

In order to calculate the surface area of the imagined truncated cone, we flattened it into three

geometric primitives, two circles, and a trapezoid, as shown in Figure 6.2. We subsequently cal-

culate the circumference of the base circles, and multiply their average by the distance length

between them.
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Figure 6.1: Truncated cone used to model an edge e in graph G during the calculation of vascular
volume characteristics across e. As illustrated in this figure, we imagine the edge as a truncated
cone, with circles of radius n1.radius and n2.radius presenting at either end, separated by
some distance length, and connected through a trapezoid funnel.

Figure 6.2: Truncated cone presented in Figure 6.1 flattened into three geometric primitives, two
circles and a trapezoid.
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Algorithm 2 Vascular volume characteristics
Input: Graph graph
Output: Calculation of vascular volume characteristics

1: Let total_length be 0
2: Let total_surface_area be 0
3: Let total_volume be 0
4: for each edge e in graph G do
5: Let n1 and n2 be the nodes comprising e
6: Let length be the Euclidean distance between n1 and n2
7: Increment total_length by length
8: Let circC1 be 2π× n1.radius
9: Let circC2 be 2π× n2.radius

10: Let surface_area be (circC1+ circC2)÷ 2× length
11: Increment total_surface_area by surface_area
12: Let volume be π × ((n1.radius+ n2.radius)÷ 2)2 × length
13: Increment total_volume by volume
14: end for
15: return total_length, total_surface_area, total_volume,

total_surface_area÷ total_volume
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6.2.2.2 Vessel segments attributes

Our framework will report the following attributes for each vessel segment present in the graph

representation (or subgraph) under analysis:

• Radius

• Length

• Tortuosity, using the distance metric defined in [87]

• Distance (between beginning and terminal end of segment)

• Surface area

• Volume

• Surface-area-to-volume ratio (i.e., SA:V)

• Length-to-diameter ratio (i.e., LEN:DIA)

In order to compute the attributes of vessel segments, we create a copy of the graph constructed

in section 6.2.1 and reduce it such that only topological information for points of bifurcation and

endpoints remain (we call this graph the “reduced graph”). This process is carried out per Algo-

rithm 3. In short, this procedure isolates each vessel segment. To perform this operation, we pick

an arbitrary node of degree 2 from the graph, bag it, and then visit its neighbors in either direction,

bagging each until we arrive at a point of bifurcation or a node of degree 1 in both directions. Let

these two “endpoint” nodes be called end1 and end2. At this point, we have determined all of

the nodes comprising one vessel segment.

We calculate the attributes of that respective vessel segment using end1 and end2 along with

the nodes and edges presenting between them. The radius is taken simply the average radius across

all of the nodes comprising the vessel segment. Length, surface area, and volume are calculated

using the same procedure used for the volume (described in Section 6.2.2.1). The only difference
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Figure 6.3: Lollipop graph used as input to Al-
gorithm 3 to illustrate graph reduction.

Figure 6.4: Output of Algorithm 3 after being
applied to lollipop graph shown in Figure 6.3.

is that instead of using all of the edges in the graph, we’re considering only those for a respective

vessel segment. Surface to volume ratio and length to diameter ratio are calculated as ratios are.

Tortuosity for the vessel segment is calculated as the length divided by the Euclidean distance

between end1 and end2. If the vessel segment forms a cycle, the denominator will be zero, and

tortuosity will be reported as inf (infinity).

After calculating the attributes of a vessel segment, we connect the two-node endpoints, end1

and end2, through an edge in the reduced graph and assign that edge a unique index for the

vessel segment. We then store calculated attributes for that vessel segment in the new edge and

subsequently eliminate the transition nodes between end1 and end2 to reduce the graph. In the

original graph, we subsequently label all edges within that segment with this unique index. This

creates a mapping between the reduced graph and the original graph. We continue this process for

each vessel segment. At the end of this procedure, only edges at bifurcations and endpoints remain

in the reduced graph [91]. We show the application of our graph reduction algorithm (Algorithm

3) applied to the lollipop graph shown in Figure 6.3 in Figure 6.4. The beauty of our procedure

is that each edge in the reduced graph represents a uniquely identifiable vessel segment with that

segment’s attributes. Using a vessel segment’s unique index label in the reduced graph, we can

easily isolate the nodes and edges comprising that segment from the original graph, allowing that

segment to be easily reconstructed, should that be desired.
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Algorithm 3 Graph reduction and vessel segment attributes calculation algorithm
Input: Graph G
Output: Graph R reduced

1: Let R be a copy of G
2: for each node n in R do
3: if degree of n is 2 or 1 then
4: determined adjacent nodes n1 and n2 to n in R
5: while degree of n1 is 2 do
6: bag edge e1 between n1 and its predecessor
7: assign n1 its adjacent node, moving away from n
8: end while
9: while degree of n2 is 2 do

10: bag edge e2 between n2 and its predecessor
11: assign n2 its adjacent node, moving away from n
12: end while
13: calculate attributes for each edge in the bag
14: let id be a unique ID for isolated vessel segment
15: connect n1 and n2 in R with an edge e; label e with id
16: store accumulated vessel segment attributes in edge e
17: label all corresponding edges of bag in G with id
18: remove all nodes between n1 and n2 from R
19: end if
20: end for
21: return G, R

6.2.3 Open-source dissemination

The source code for our informatics platform is published in a Github repository available via

www.github.com/michaelrnowak.

6.3 Results and analysis

6.3.1 Case study #1, digital phantoms

We will first validate our informatics platform using six digital phantoms. These phantoms

have been developed to capture different junctions that might present in the graphs derived from

biological datasets. Therefore, some of our phantoms include aspects such as cycles and bridges.

The first digital phantom that we use is presented in Figure 6.5. This phantom exhibits two

branches that are connected through a bridge. The result of the graph construction process on
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this volume, per our procedure detailed in Section 6.2.1, is shown in Figure 6.6. We present the

location of these nodes in the phantom volume in Table 6.1, along with the radius measurements

at those node positions. The application of graph reduction to this “original” graph (i.e., that

in Figure 6.6) is shown in Figure 6.7. Each edge in our “reduced” graph is labeled with a vessel

segment number that maps to edges composing that vessel segment in the “updated original” graph

(shown in Figure 6.8). This allows for the easy reconstruction of the different vessel segments. For

instance, to reconstruct the vessel segment denoted by edge 1 in the “reduced” graph (i.e., 6.7), we

would derive all edges labeled with 1 from the original graph (i.e., Figure 6.8).

The attributes (as defined in Section 6.2.2.2) for each vessel segment (i.e., vessel arising be-

tween branch points/endpoints) in the digital phantom are reported in Table 6.2. The overall charac-

teristics (as defined in Section 6.2.2.1) for the vascular volume follow: total volume, 188.20 pixel3;

total surface area, 376.40 pixel2; and total length, 59.91 pixel.

Figure 6.5: Phantom 1 volume. Figure 6.6: Graph representation of phantom 1
volume (Figure 6.5).
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Table 6.1: Correspondence of nodes in the graph representation of phantom 1 (Figure 6.6) to their
location in the volume (Figure 6.5), along with the radius measurement at that position.

Node No. x y z Radius
(pixel)

1 -10 -10 0 1
2 -5 -5 0 1
3 0 0 0 1
4 -5 5 0 1
5 -10 10 0 1
6 4 2 0 1
7 8 0 0 1
8 12 -2 0 1
9 4 10 0 1

10 5 14 0 1
11 6 20 0 1

Table 6.2: Vessel segment attributes (defined in Section 6.2.2.2) calculated across the unique seg-
ments composing phantom 1.

Segment ID Length
(pixel)

Surface Area
(pixel2)

Volume
(pixel3)

Distance
(pixel) SA:V LEN:DIA Tortuosity

1 14.14 88.86 44.43 14.14 2.00 7.07 1.00
2 14.14 88.86 44.43 14.14 2.00 7.07 1.00
3 8.94 56.20 28.10 8.94 2.00 4.47 1.00
4 18.21 114.39 57.20 18.11 2.00 9.10 1.01
5 4.47 28.10 14.05 4.47 2.00 2.24 1.00
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Figure 6.7: “Reduced” graph representation of
phantom 1 (Figure 6.6) obtained by algorithm 3.
The labels on each edge serve as a unique index
for a respective vessel segment presenting in the
volume (Figure 6.5).

Figure 6.8: Graph representation of phantom 1
(Figure 6.6) updated to contain labeled edges
denoting the unique index of the vessel segment
that each serves as a filament in.

The second phantom used is also branch-like and is nearly identical to the first phantom (Figure

6.5). The second phantom exhibits two branches that are connected through a bridge; however,

unlike phantom one, this model has variable radius measures (not all the same). We present this

phantom in Figure 6.9. The result of the graph construction process is shown in Figure 6.10. We

present the location of these nodes in the phantom volume in Table 6.3, along with the radius

measurements at those node positions. The application of graph reduction to the “original” graph

is shown in Figure 6.11. The “updated original” graph is shown in Figure 6.12.

The attributes (as defined in Section 6.2.2.2) for each vessel segment in the digital phantom are

reported in Table 6.4. The overall characteristics (as defined in Section 6.2.2.1) for the vascular

volume follow: total volume, 617.03 pixel3; total surface area, 675.22 pixel2; and total length,

59.91 pixel.
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Figure 6.9: Phantom 2 volume.

Figure 6.10: Graph representation of phantom 2
volume (Figure 6.9).

Table 6.3: Correspondence of nodes in the graph representation of phantom 2 (Figure 6.6) to their
location in the volume (Figure 6.9), along with the radius measurement at that position.

Node No. x y z Radius
(pixel)

1 -10 -10 0 1
2 -5 -5 0 2
3 0 0 0 2
4 -5 5 0 2
5 -10 10 0 1
6 4 2 0 2
7 8 0 0 2
8 12 -2 0 1
9 4 10 0 2

10 5 14 0 2
11 6 20 0 1
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Figure 6.11: “Reduced” graph representation of
phantom 2 (Figure 6.10) obtained by algorithm
3. The labels on each edge serve as a unique
index for a respective vessel segment presenting
in the volume (Figure 6.9).

Figure 6.12: Graph representation of phantom 2
(Figure 6.10) updated to contain labeled edges
denoting the unique index of the vessel segment
that each serves as a filament in.

Table 6.4: Vessel segment attributes (defined in Section 6.2.2.2) calculated across the unique seg-
ments composing phantom 2.

Segment ID Length
(pixel)

Surface Area
(pixel2)

Volume
(pixel3)

Distance
(pixel)

Radius
(pixel) SA:V LEN:DIA Tortuosity

1 14.14 155.50 138.84 14.14 1.5 1.12 4.71 1.00
2 14.14 155.50 138.84 14.14 1.67 1.12 4.71 1.00
3 8.94 98.35 87.81 8.94 1.67 1.12 2.98 1.00
4 18.21 209.67 195.34 18.11 1.75 1.07 6.07 1.01
5 4.47 56.20 56.20 4.47 2.00 1.00 1.49 1.00

110



The third phantom used is kite-like by nature: it includes a tail connected to a square. This

geometry comprises a cycle connected to a line. We present this phantom in Figure 6.13. The

result of the graph construction process is shown in Figure 6.14. We present the location of these

nodes in the phantom volume in Table 6.5, along with the radius measurements at those node

positions. The application of graph reduction to the “original” graph is shown in Figure 6.15. The

“updated original” graph is shown in Figure 6.16.

The attributes (as defined in Section 6.2.2.2) for each vessel segment in the digital phantom

are reported in Table 6.6. The overall characteristics (as defined in Section 6.2.2.1) for the vascu-

lar volume follow: total volume, 57,136.84 pixel3; total surface area, 22,854.74 pixel2; and total

length, 727.49 pixel.

Figure 6.13: Phantom 3 volume. Figure 6.14: Graph representation of phantom 3
volume (Figure 6.13).
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Table 6.5: Correspondence of nodes in the graph representation of phantom 3 (Figure 6.14) to their
location in the volume (Figure 6.13), along with the radius measurement at that position.

Node No. x y z Radius
(pixel)

1 -50 0 0 5
2 0 0 0 5
3 100 100 0 5
4 200 0 0 5
5 100 -100 0 5
8 -150 0 0 5
9 -100 -25 0 5

Figure 6.15: “Reduced” graph representation of
phantom 3 (Figure 6.14) obtained by algorithm
3. The labels on each edge serve as a unique
index for a respective vessel segment presenting
in the volume (Figure 6.13).

Figure 6.16: Graph representation of phantom 3
(Figure 6.14) updated to contain labeled edges
denoting the unique index of the vessel segment
that each serves as a filament in.

Table 6.6: Vessel segment attributes (defined in Section 6.2.2.2) calculated across the unique seg-
ments composing phantom 3.

Segment ID Length
(pixel)

Surface Area
(pixel2)

Volume
(pixel3)

Distance
(pixel) SA:V LEN:DIA Tortuosity

1 161.80 5083.20 12708.01 150.00 0.40 16.18 1.08
2 565.69 17771.53 44428.83 0.00 0.40 56.57 inf
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The fourth phantom used is also kite-like by nature: it includes a tail along with a square

partitioned in two by a line down the middle. This partition creates a bridge between one cycle and

two paths to the tail. We present this phantom in Figure 6.17. The result of the graph construction

process is shown in Figure 6.18. We present the location of these nodes in the phantom volume in

Table 6.7, along with the radius measurements at those node positions. The application of graph

reduction to the “original” graph is shown in Figure 6.19. The “updated original” graph is shown

in Figure 6.20.

The attributes (as defined in Section 6.2.2.2) for each vessel segment in the digital phantom

are reported in Table 6.6. The overall characteristics (as defined in Section 6.2.2.1) for the vascu-

lar volume follow: total volume, 72,844.80 pixel3; total surface area, 29,137.92 pixel2; and total

length, 927.49 pixel.

Figure 6.17: Phantom 4 volume.
Figure 6.18: Graph representation of phantom 4
volume (Figure 6.17).
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Table 6.7: Correspondence of nodes in the graph representation of phantom 4 (Figure 6.18) to their
location in the volume (Figure 6.17), along with the radius measurement at that position.

Node No. x y z Radius
(pixel)

1 -50 0 0 5
2 0 0 0 5
3 100 100 0 5
4 200 0 0 5
5 100 -100 0 5
8 -150 0 0 5
9 -100 -25 0 5

Figure 6.19: “Reduced” graph representation of
phantom 4 (Figure 6.18) obtained by algorithm
3. The labels on each edge serve as a unique
index for a respective vessel segment presenting
in the volume (Figure 6.17).

Figure 6.20: Graph representation of phantom 4
(Figure 6.18) updated to contain labeled edges
denoting the unique index of the vessel segment
that each serves as a filament in.

Table 6.8: Vessel segment attributes (defined in Section 6.2.2.2) calculated across the unique seg-
ments composing phantom 4.

Segment ID Length
(pixel)

Surface Area
(pixel2)

Volume
(pixel3)

Distance
(pixel) SA:V LEN:DIA Tortuosity

1 161.80 5083.20 12708.01 150.00 0.40 16.18 1.08
2 282.84 8885.77 22214.41 200.00 0.40 28.28 1.41
3 141.42 4442.88 11107.21 141.42 0.40 14.14 1.00
4 141.42 4442.88 11107.21 141.42 0.40 14.14 1.00
5 200.00 6283.19 15707.96 200.00 0.40 20.00 1.00
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The fifth phantom used is figure-eight, like in its appearance. This structure includes two cycles

spanning from the same node. We present this phantom in Figure 6.21. The result of the graph

construction process is shown in Figure 6.22. We present the location of these nodes in the phantom

volume in Table 6.9, along with the radius measurements at those node positions. The application

of graph reduction to the “original” graph is shown in Figure 6.23. The “updated original” graph

is shown in Figure 6.24.

The attributes (as defined in Section 6.2.2.2) for each vessel segment in the digital phantom are

reported in Table 6.10. The overall characteristics (as defined in Section 6.2.2.1) for the vascular

volume follow: total volume, 355,430.64 pixel3; total surface area, 71,086.13 pixel2; and total

length, 1,131.37 pixel.

Figure 6.21: Phantom 5 volume. Figure 6.22: Graph representation of phantom 5
volume (Figure 6.21).
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Table 6.9: Correspondence of nodes in the graph representation of phantom 5 (Figure 6.22) to their
location in the volume (Figure 6.21), along with the radius measurement at that position.

Node No. x y z Radius (pixel)

1 0 0 0 10
2 100 100 0 10
3 200 0 0 10
4 300 100 0 10
5 400 0 0 10
6 300 -100 0 10
8 100 -100 0 10

Figure 6.23: “Reduced” graph representation of
phantom 5 (Figure 6.22) obtained by algorithm
3. The labels on each edge serve as a unique
index for a respective vessel segment presenting
in the volume (Figure 6.21).

Figure 6.24: Graph representation of phantom 5
(Figure 6.22) updated to contain labeled edges
denoting the unique index of the vessel segment
that each serves as a filament in.

Table 6.10: Vessel segment attributes (defined in Section 6.2.2.2) calculated across the unique
segments composing phantom 5.

Segment ID Length
(pixel)

Surface Area
(pixel2)

Volume
(pixel3)

Distance
(pixel) SA:V LEN:DIA Tortuosity

1 565.69 35543.06 177715.32 0.00 0.20 28.28 inf
2 565.69 35543.06 177715.32 0.00 0.20 28.28 inf
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The sixth and final phantom used is composed of two figure-eight like structures overlapped

such that the top ’O’ of one is shared with the bottom ’O’ of the other. This composition results in

two cycles at either end of the structure, with two bridges emerging from the same points that con-

nect these two cycles. We present this phantom in Figure 6.25. The result of the graph construction

process is shown in Figure 6.26. We present the location of these nodes in the phantom volume in

Table 6.11, along with the radius measurements at those node positions. The application of graph

reduction to the “original” graph is shown in Figure 6.27. The “updated original” graph is shown

in Figure 6.28.

The attributes (as defined in Section 6.2.2.2) for each vessel segment in the digital phantom are

reported in Table 6.12. The overall characteristics (as defined in Section 6.2.2.1) for the vascular

volume follow: total volume, 533,145.95 pixel3; total surface area, 106,629.19 pixel2; and total

length, 1,697.06 pixel.

Figure 6.25: Phantom 6 volume. Figure 6.26: Graph representation of phantom 6
volume (Figure 6.25).
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Table 6.11: Correspondence of nodes in the graph representation of phantom 6 (Figure 6.26) to
their location in the volume (Figure 6.25), along with the radius measurement at that position.

Node No. x y z Radius (pixel)

1 0 0 0 10
2 100 100 0 10
3 200 0 0 10
4 300 100 0 10
5 400 0 0 10
6 300 -100 0 10
8 100 -100 0 10

10 -100 -100 0 10
11 -200 0 0 10
12 -100 100 0 10

Figure 6.27: “Reduced” graph repre-
sentation of phantom 6 (Figure 6.26)
obtained by algorithm 3. The labels on
each edge serve as a unique index for
a respective vessel segment presenting
in the volume (Figure 6.25).

Figure 6.28: Graph representation of phantom 6 (Fig-
ure 6.26) updated to contain labeled edges denoting the
unique index of the vessel segment that each serves as a
filament in.
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Table 6.12: Vessel segment attributes (defined in Section 6.2.2.2) calculated across the unique
segments composing phantom 6.

Segment ID Length
(pixel)

Surface Area
(pixel2)

Volume
(pixel3)

Distance
(pixel) SA:V LEN:DIA Tortuosity

1 282.84 17771.53 88857.66 200.00 0.20 14.14 1.41
2 565.69 35543.06 177715.32 0.00 0.20 28.28 inf
3 282.84 17771.53 88857.66 200.0 0.20 14.14 1.41

565.69 35543.06 177715.32 0.00 0.20 28.28 inf

6.3.2 Case study #2, data-driven synthetic model

To further illustrate the utility of our informatics platform, we provide an analysis of the fil-

aments presenting in one of our data-driven models constructed in Chapter 4. The model we

selected for this case study is presented in Figure 6.29 (for full-page image, see Figure 4.5) and

was imagined as isotropic in resolution at 1.0 µm.

Figure 6.29: Cerebrovasculature model acquired from KESM India Ink dataset. This voxel-based
model is 1158 × 1158 × 1158 pixels derived from imaging data acquired at a voxel resolution of
0.6 µm × 0.7 µm × 1.0 µm. The total size of this model is 1.4GB.
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The graph for this model is shown in Figure 6.38 and the “reduced” graph in Figure 6.39. The

overall characteristics for the vascular volume follow: total volume, 2,286,872.45 µm3; total sur-

face area, 636,994.41 µm2; and total length, 16,293.23 µm. We found that this volume is comprised

of N = 286 vessel segments. For the vessel segment attributes, we detail the mean, median, min,

and max values in Table 6.13. We also present the distributions of these attributes across the vessel

segments embedded in the model in Figures 6.30, 6.31, 6.32, 6.33, 6.34, 6.35, 6.36, and 6.37.

Table 6.13: Mean, median, minimum, and maximum values for vessel segment attributes calcu-
lated for the synthetic model presented in Figure 6.29.

Vessel Attribute Mean Median Min Max

Radius 6.00 µm 5.08 µm 4.80 µm 16.11 µm
Length 56.97 µm 40.67 µm 4.20 µm 474.25 µm

Surface Area 2,227.25 µm2 1,499.82 µm2 126.59 µm2 38,630.19 µm2

Volume 7,996.06 µm3 4,434.60 µm3 303.83 µm3 269,709.58 µm3

Distance 52.77 µm 38.29 µm 4.20 µm 450.14 µm
Tortuosity 1.06 1.02 1.00 1.93
LEN:DIA 4.93 3.68 0.42 27.25

SA:V 0.35 0.39 0.12 0.42
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Figure 6.30: Number of segments by radius (µm) for the synthetic model presented in Figure 6.29.
The total segments in the model is N = 286.

Figure 6.31: Number of segments by length (µm) for the synthetic model presented in Figure 6.29.
The total number of segments in the model is N = 286.
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Figure 6.32: Number of segments by surface area (µm2) for the synthetic model presented in Figure
6.29. The total number of segments in the model is N = 286.

Figure 6.33: Number of segments by volume (µm3) for the synthetic model presented in Figure
6.29. The total number of segments in the model is N = 286.
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Figure 6.34: Number of segments by distance (µm) between their beginning and terminal end
for the synthetic model presented in Figure 6.29. The total number of segments in the model is
N = 286.
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Figure 6.35: Number of segments by distance-based tortuosity for the synthetic model presented
in Figure 6.29. The total number of segments in the model is N = 286.

Figure 6.36: Number of segments by length-to-diameter ratio for the synthetic model presented in
Figure 6.29. The total number of segments in the model is N = 286.

124



Figure 6.37: Number of segments by surface-area-to-volume ratio for the synthetic model pre-
sented in Figure 6.29. The total number of segments in the model is N = 286.
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Figure 6.38: “Updated original” graph calculated for the synthetic model shown in Figure 6.29.
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Figure 6.39: “Reduced” graph calculated for the synthetic model shown in Figure 6.29.

127



6.3.3 Summary

The principal contribution of this chapter is a framework for the analysis of cerebrovasculature

acquired through different modalities, resolution, and volume. Our system directly addresses the

need for a standardized informatics platform for the quantitative analysis of the high-resolution,

high-volume, and multi-scale datasets procured using modern imaging techniques. Our platform

can be applied irrespective of the resolution, size, or scale of the dataset and regardless of the

modality used to acquire it. The implementation of our informatics platform is novel in that vessel

connectivity information is readily available in its graph encoding. Our graph representation facil-

itates graph-theoretical analyses of the structural properties of the underlying vascular networks.

It enables the seamless report of volume characteristics, including:

• Total length

• Total surface area

• Total volume

• Total-surface-area-to-total-volume ratio

In addition to volume characteristics, our framework also has attributes for each vessel segments

comprising the cerebrovasculature under analysis. These attributes include:

• Radius

• Length

• Tortuosity, using the distance metric defined in [87]

• Distance (between beginning and terminal end of segment)

• Surface area

• Volume
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• Surface-area-to-volume ratio (i.e., SA:V)

• Length-to-diameter ratio (i.e., LEN:DIA)

Given that our informatics platform stores both geometrical and topological data in graph form,

we can apply different graph algorithms to isolate subgraphs meeting some criteria to be isolated.

All that is required is a node in the vicinity of the region of interest, a springboard from which we

traverse the local network. The structural organization of these areas can then be elucidated. We

will elaborate more on this capability in the next chapter.

Our informatics platform is expected to have a significant scientific impact as it opens the

door to data-driven, quantitative investigation of the brain’s vascular system. We believe that our

representation and storage of vasculature data in graph form with each vessel segment labeled

and quantified through its attributes will provide researchers with a crucial resource towards the

discovery of novel biomarkers of processes underlying healthy and diseased brains. In conclusion,

our informatics platform will contribute a means for a standardized, quantitative approach to the

study of cerebrovasculature datasets acquired using modern imaging techniques.
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7. QUERYABLE DATABASE

7.1 Motivation

In chapter 6, we detailed how angiome topological and geometrical information can be stored

in a graph representation. We described how our method employs a “reduced” graph that contains

an edge for each vessel segment in the vasculature, that stores its attributes (as specified in Section

6.2.2.1) and an index into an “updated original” graph that stores the geometry of the filaments

comprising that segment. The filaments comprising a respective segment can be retrieved from

the “updated original” graph using a segment’s index. Therefore, the “reduced” graph stores the

topology and maps into the “updated original” graph for the geometry.

Our graph representation of a vascular volume can be entered into a graph database manage-

ment system (i.e., graph database) to provide a better interface to the data. Such a database system

provides create, read, update, and delete (CRUD) methods that expose the underlying data model;

the database can also be accessed through the Internet. Storing vascular connectivity and geo-

metrical information in a graph database, and providing an adequate interface to the data stored

within it, will allow researchers to search and interact with that data from anywhere in the world.

A researcher would be able to query for vessel segments meeting certain criteria (morphometry,

taxonomy, type, etc.), within a specific scale (as organization and morphometry vary depending

on size), or using a heuristic algorithm based on vessel characteristics. Furthermore, once data of

interest are acquired, the volume can be reconstructed using the geometry information stored in

the graph database. This would allow for seamless integration into applications such as blood flow

simulations [18].

The Neo4j graph database platform can be used to store the graph representations of vascular

data. Neo4j not only allows one to query the database but also provides standard graph algorithms

[100] that can be used to analyze the network properties of the encoded data. The system that

supports this is the Neo4j analytics platform; it runs atop the Neo4j graph database and provides a
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suite of dynamic graph analytic tools through a library of high-performance algorithms. Included

are algorithms that can be used for traversals, pathfinding, centrality, and community detection

[100]. For vascular data, the traversal algorithms, such as breadth-first search (BFS) and parallel

depth-first search (DFS), could be used to reconstruct particular aspects of the vascular network

beginning from some starting point of interest. Pathfinding algorithms, such as single-source short-

est path and all-pairs shortest path, would be useful in determining direct and alternating routing

to different regions or in the analysis of network capacity [id.]. The Neo4j analytics platform also

provides measures of centrality. This could provide researchers an ability to ascertain bottlenecks

of blood flow into different regions of the volume under consideration [100]. Community detection

algorithms, including the Louvain algorithm [109], are also offered. These algorithms could prove

helpful in determining a region’s robustness to occlusion [id.], given that communities are inter-

connected groups within a network whose nodes are more connected to one another than to other

nodes. The application of these algorithms would be supported by the vessel segments attributes

(section 6.2.2.2) computed by our informatics platform and stored in the graph representation.

In this chapter, we detail our procedure for the construction of a queryable database of vascu-

lature data derived from its graph representation. Furthermore, we describe the interface that we

developed to interact with that database and how it provides seamless access to the Neo4j analytical

platform. Finally, we show how researchers can explore the topology and geometry of vasculature

data using through that interface.

7.2 Methodology

7.2.1 Graph database platform set-up

We selected Neo4j (Neo4j, Inc., San Mateo, CA) primarily due to the graph analytical libraries

that it provides, along with our familiarity with it; there are many different graph database plat-

forms currently available. We installed the Neo4j community (v3.5.2) database engine following

the documentation available on the Neo4j website. Subsequently, we installed The APOC (A Pack-

age of Component) library (v3.5.0.1) following the procedure detailed in the APOC User Guide
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3.5. This plug-in consists of about 450 procedures and functions that help with data integration,

graph algorithms, and data conversion. We also installed the Graph Algorithms library (v3.5.0.1)

according to the Neo4j Graph Algorithms User Guide v3.5. This library provides efficiently im-

plemented, parallel versions of many different graph algorithms for Neo4j v3.x. Both libraries

allow access to the algorithms that they provide through Cypher procedures (Neo4j’s query lan-

guage). Using the Neo4j Graph Algorithms library, we achieve increased throughput through

parallelization. Neo4j is also highly scalable and can be integrated into Amazon Web Services,

Microsoft Azure, Google Cloud Platform, and other cloud services; a Neo4j graph database is

entirely portable and can be distributed via popular cloud platforms.

7.2.2 Graph data model construction

Once Neo4j has been set-up, the next step is to import the graph representation to the database

as the data model. Neo4j supports the importation of nodes or edges from comma-separated values

(CSV) files with headers describing the data fields on each line. Therefore, we generate three

CSV files composed of: (1), the nodes from the “updated original” graph; (2), the edges from

the “updated original” graph; and (3), the edges from the “reduced” graph (including the segment

attributes). The CSV file containing the nodes includes each node’s ID, radius measure (r), x-

coordinate, y-coordinate, and z-coordinate. In order to construct this file, we iterate through each

node in the “updated original” graph, writing its id, x, y, z, and radius to the nodes CSV file.

We use Cypher, Neo4j’s query language, to perform the insertion. The query used to perform this

action is shown in Figure 7.1, which populates the graph data model line-by-line with the nodes

from the CSV file. For each line read, a node is created in the database with the attributes specified

in the file.

Next we construct the CSV for the edges from the “updated original” graph. We accomplish

this by iterating through that graph’s edges, writing out the ID of the from node, the ID of the to

node, along with the segment’s unique index (sid) for which that filament is apart. We then make

a Cypher request to the Neo4j database to construct relationships in the data model for the edges

stored in that CSV file. This is completed using the query presented in Figure 7.2.
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LOAD CSV WITH HEADERS FROM "file:///path/to/nodes.csv" AS
csvLine↪→

CREATE (n:Node {id: toInt(csvLine.id), x:
toFloat(csvLine.x), y: toFloat(csvLine.y), z:
toFloat(csvLine.z),r: toFloat(csvLine.r)});

↪→

↪→

Figure 7.1: Cypher query used to construct nodes in the Neo4j database from a CSV file that has
headers describing the data fields on each line. Each line of the CSV file describes a node and its
attributes; the query reads line-by-line, populating the new node’s attributes with those read from
the file.

LOAD CSV WITH HEADERS FROM
"file:///path/to/updatedOriginalEdges.csv" AS csvLine↪→

MATCH (n1:Node { id: toInt(csvLine.from)}),(n2:Node { id:

toInt(csvLine.to)})↪→

CREATE (n1)-[r1:FILAMENT {sid:toInt(csvLine.sid)}]->(n2);

Figure 7.2: Cypher query used to construct FILAMENT relationships (i.e., edges) in the Neo4j
database from a CSV file of “updated original” graph edges. This file has headers describing the
data fields on each line. Each line of the CSV file describes a edge and its properties. The query
reads line-by-line, populating the new relationship’s properties with those of the edge read from
the file.

The relationships in the graph model (i.e., edges) are labeled and can have additional attributes

(such as sid). We label all the edges imported from the “updated original” graph as FILAMENT

to recognize that they store the geometry of a particular segment; the segment to which they belong

is denoted by their sid. We use these edges when reconstructing an individual or series of vessel

segments. We also import the edges comprising the “reduced” graph. These edges represent a

single vessel segment and are uniquely identified by a segmentation index (sid); a FILAMENT’s

sid maps to a unique segment with the corresponding sid.

The CSV file containing these edges is similarly generated by iterating over each edge of the

“reduced” graph, writing out the ID of the from node, the ID of the to node, the segment’s unique

index (sid), along with all of the attributes calculated for that segment (see Section 6.2.2.2).
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Again, we use Cypher to tell Neo4j to construct relationships in the graph data model according

to the edges stored in the CSV file. We request this using the query presented in Figure 7.3. The

relationships formed from these edges receive the label SEGMENT in the data model.

LOAD CSV WITH HEADERS FROM
"file:///path/to/reducedEdges.csv" AS csvLine↪→

MATCH (n1:Node { id: toInt(csvLine.from)}),(n2:Node { id:

toInt(csvLine.to)})↪→

CREATE (n1)-[r1:SEGMENT {sid:toInt(csvLine.sid),
length:toFloat(csvLine.length),
surface_area:toFloat(csvLine.surface_area),
volume:toFloat(csvLine.volume),
dist:toFloat(csvLine.dist),
avg_radius:toFloat(csvLine.avg_radius),
surface_to_volume_ratio:
toFloat(csvLine.surface_to_volume_ratio),
length_to_diameter_ratio:
toFloat(csvLine.length_to_diameter_ratio),
tortuosity:toFloat(csvLine.tortuosity)}]->(n2);

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Figure 7.3: Cypher query used to construct FILAMENT relationships (i.e., edges) in the Neo4j
database from a CSV file of “reduced” graph edges. This file has headers describing the data
fields on each line. Each line of the CSV file describes a edge and its properties. The query reads
line-by-line, populating the new relationship’s properties with those of the edge read from the file.

After importing the nodes and edges from the “updated original” graph, along with the edges

from the “reduced” graph, we have two relationships in the graph data model: SEGMENT and

FILAMENT. Edges labeled SEGMENT encodes the connectivity of a vessel segment along with

that segment’s attributes; those labeled FILAMENT comprise the individual twists and turns to

comprise the geometry of a respective segment. The sid of a SEGMENT indexes the FILAMENTs

comprising that SEGMENT. Performing a traversal on edges labeled SEGMENT will move one from

one vessel segment to another. We isolate segments meeting some criteria by querying for edges

with the label SEGMENT for that criteria. We then get the geometry of that segment with unique
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sid by querying the database for all FILAMENT with that sid.

It is important to note that Neo4j only supports directed edges in its graph data model. There-

fore, the edges that we’ve inserted into the graph are directed. However, we stated in section 6.2.1

that our graph representation would store undirected edges due to the nature of blood flow. The

limitation that Neo4j can only store directed edges is easily overcome: when querying the database,

we can tell the database engine to treat the edges as non-directed.

7.2.3 Database custom interface

In order to interact with the Neo4j database, we created a custom interface written in the Python

programming language. This interface leverages the existing Python library py2neo which provides

the means to connect to a Neo4j database, execute a query, and receive the result back. Our

assumption is the Neo4j database containing vascular data will be hosted remotely; that our users

will query the remote database and interact with results locally. We have written four algorithms

to aid in this process.

Our first algorithm allows one to query the database with any native Neo4j or Neo4j library

query that returns a path and construct a graph representation of its result. The second runs a

depth-first traversal to level l from starting node n, traverses out l SEGMENTs from n, and returns a

networkx graph embedding the geometry of the segments traversed. This is done by mapping into

the FILAMENTS relationships with the sid of each segment visited. The third searches for the

shortest path across SEGMENT relationships between two nodes, using the values of some property

(Table 7.1) as the relationship’s weight in the process, and returns a networkx graph embedding the

geometry of the segments traversed. The fourth looks up a SEGMENT by its sid and returns all

properties stored within that relationship; i.e., that vessel segment’s attributes (Table 7.1).
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Table 7.1: Vessel segment attributes reported (defined in Section 6.2.2.2).

Segment Attribute

Radius
Length

Tortuosity
Distance

Surface Area
Volume
SA:V

LEN:DIA

7.2.3.1 General database query result to graph representation

The majority of queries into our database will return relationships and nodes. For instance,

one might want to query the database to select all FILAMENTS with a sid of 2, 3, or 4 to isolate

segments 2, 3, or 4. Or perhaps we initiate a depth-first search query starting from some segment

and expanding out n segments from the starting point. In these cases and many others, the result

of the query is a list of relationships (i.e., edges) coded with their properties and a list of nodes

coded with their attributes. Using the information returned by a query, we construct a networkx

graph that is compatible with our informatics platform (detailed in chapter 6). This is achieved

using algorithm 4.
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Algorithm 4 General database query result to graph representation
Input: Database connection and query
Output: Graph representation of query result

1: Run query on database
2: Let nodes, edges be the nodes and relationships returned by the query
3: Let G be initialized to a networkx graph
4: for each node n in nodes do
5: Let id be n’s ID
6: Let x, y, z, be n’s x-, y-, and z-coordinate points respectively.
7: Let r be n’s radius
8: Insert a new node into G with attributes id:id, x:x, y:y, z:z, and r:r
9: end for

10: for each edge e in edges do
11: Let n1 be one node comprising the edge
12: Let n2 be the other node comprising the edge
13: Insert a new edge into G connecting n1 and n2
14: end for
15: return G

7.2.3.2 Depth-first traversal of l segments from node n

Leveraging Neo4j’s APOC library, we perform a depth-first traversal l levels away from some

node n with the library’s expandConfig algorithm. This is done by traversing relationships

in the data model labeled as SEGMENT, meaning that the level of the depth-first traversal is the

number of segments away from the starting node n. This query is written according to Figure 7.4.

MATCH (n:Node)
WHERE n.id = STARTING_NODE_ID
CALL apoc.path.expandConfig(n,

{relationshipFilter:"SEGMENT",

maxLevel:NO_SEGMENTS_AWAY, uniqueness:"NODE_GLOBAL"})

YIELD path

↪→

↪→

↪→

RETURN path, nodes(path) as nodes, rels(path) as rels

Figure 7.4: Cypher query used to perform a depth first traversal starting from the node with ID
STARTING_NODE_ID, moving NO_SEGMENTS_AWAY segments from that node, returning the
nodes and their attributes, along with relationships and their properties, traversed.
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The result of this depth-first traversal query is the nodes and relationships traversed in the graph

model. We apply algorithm 4 to construct a networkx graph of that result, allowing our informatics

platform to be applied only to those segments l levels away from n. The overall procedure is

presented as an algorithm 5.

Algorithm 5 Depth-first traversal l segments from node n and graph construction of that result
Input: Database graph_db and query db_query
Output: Graph representation of query result

1: Execute db_query on graph_db
2: Let edges be the relationships returned after execution of db_query
3: Let sids be a list of sids
4: for each edge e in edges do
5: Append e’s sid to sids
6: end for
7: Let sid_query be a query string that selects all FILAMENT relationships having a sid in
sids

8: return Output of algorithm 4 provided graph_db and sid_query as inputs.

7.2.3.3 Shortest path from node start to node end

This algorithm finds the minimum number of segments needed to be traversed to get from node

start to node end. This algorithm proceeds across SEGMENT labeled relationships in the graph

database, using some property (Table 7.1) as the relationship’s weight in the process. We achieve

this behavior by leveraging Neo4j’s APOC library and executing its implementation of Dijkstra’s

algorithm. This query is shown in Figure 7.5.

The query returns the overall weight, nodes, and their attributes, along with relationships and

their properties, for the shortest path found. We apply algorithm 4 to construct a networkx graph

of that result, allowing our informatics platform to be applied to the vasculature of comprising the

pathway that was found. Our implementation of this is nearly identical to algorithm 5. The only

minor differences are the query being executed and the parameters: (1) graph database; (2) starting

node; (3) terminal node; (4) the attribute to be used as a weight. Parameters (2-4) are substituted

138



MATCH (from:Node{id:NODE_FROM}), (to:Node{id:NODE_TO})
CALL apoc.algo.dijkstra(NODE_FROM, NODE_TO, 'SEGMENT',

'WEIGHT_ATTRIBUTE') yield path as path, weight as weight↪→

RETURN path, nodes(path) as nodes, rels(path) as rels,
weight↪→

Figure 7.5: Cypher query used to search for the shortest path across relationships labeled as
SEGMENT from NODE_FROM to NODE_TO. The query returns the nodes and their attributes, along
with relationships and their properties, composing the shortest path. In addition, the overall weight
across that is also returned.

accordingly into the query (Figure 7.5).

7.2.3.4 Segment property look-up

For a vessel segment encoded in our graph database, it is likely that we would like to query the

properties of that segment via the relationship SEGMENT storing those properties. We perform this

lookup by writing an algorithm that performs a query into the database returning that relationship

SEGMENT and enters its properties (Table 7.1) into a dictionary that is returned to the user. The

actual database query to get the segment is shown in Figure 7.6.

MATCH ()-[r:SEGMENT]-()
WHERE r.sid = SEGMENT_ID
RETURN r

Figure 7.6: Cypher query used retrieve the relationship SEGMENT with specified sid value
SEGMENT_ID.

After executing the query, we simply iterate through the properties for the relationship returned,

constructing a dictionary of those properties in the process. That dictionary is then presented to

the user.
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7.2.4 Reconstruction from graph representation

After querying the database and constructing a graph representation of that result, it is possible

to employ our informatics platform to characterize the vascular data returned by that query. Algo-

rithms provided by networkx that are not included in our informatics platform can also be applied.

However, in most cases, we would like to reconstruct the vascular data embedded in the graph

representation constructed from the database query result. To do this, we first construct a SWC file

(ref: sections 6.2.1 and 4.2.1) from the networkx graph according to algorithm 6.

Algorithm 6 Depth-first traversal l segments from node n and graph construction of that result
Input: Graph representation G
Output: SWC file f of G

1: Let f be a file opened for writing
2: for each connected component cc in G do
3: Let leafs be a list of all nodes in cc with degree less than or equal to 1
4: Get the first node n from leafs
5: Let id be n’s ID
6: Let x, y, z, be n’s x-, y-, and z-coordinate points respectively.
7: Let r be n’s radius
8: Write to new line to f: "id 3 x y z r -1"
9: Get list successors of all connected successors to n from G as (parent node parent,

child node child) tuples.
10: for each (parent, child) pair in successors do
11: Let id be child’s ID
12: Let x, y, z, be child’s x-, y-, and z-coordinate points respectively.
13: Let r be child’s radius
14: Let parent_id be parents’s ID
15: Write to new line to f: "id 3 x y z r parent_id"
16: end for
17: end for

After constructing the SWC file from the graph representation, we employ Daisuke Miyamoto’s

swc2vtk converter [110]. This creates a VTK file encoding the vascular data in vector graphics

format, which can be viewed in an application such as ParaView [111].
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7.3 Results and analysis

7.3.1 Case study #1, digital phantoms

We first illustrate the utility of encoding a vasculature as a data model in a graph database using

two digital phantoms.

7.3.1.1 Digital phantom #1

The first digital phantom that we use is presented in Figure 7.7. This phantom exhibits two

branches that are connected through a bridge. The result of the graph construction process on

this volume, per our procedure detailed in Section 6.2.1, is shown in Figure 7.8. We present the

location of the nodes in the phantom volume in Table 7.2, along with the radius measurements at

those node positions. The application of our graph reduction algorithm to this “original” graph

(i.e., that in Figure 7.8) is shown in Figure 7.10. Each edge in our “reduced” graph is labeled

with a vessel segment number that maps to edges composing that vessel segment in the “updated

original” graph (shown in Figure 7.9). This allows for the easy reconstruction of the different vessel

segments. For instance, to reconstruct the vessel segment denoted by edge 1 in the “reduced” graph

(i.e., 7.10), we would derive all edges labeled with 1 from the “updated original” graph (i.e., Figure

7.9).

The attributes (as defined in Section 6.2.2.2) for each vessel segment (i.e., vessel arising be-

tween branch points/endpoints) in the digital phantom are reported in Table 7.3. The overall charac-

teristics (as defined in Section 6.2.2.1) for the vascular volume follow: total volume, 331.28 pixel3;

total surface area, 662.55 pixel2; and total length, 105.45 pixel. For the vessel segment attributes,

we detail the mean, median, min, and max values in Table 7.4

The Neo4j data model constructed from the graph representation of this phantom is shown in

Figure 7.11. In the figure, the nodes are shown as light blue circles, with the FILAMENT rela-

tionships between them in blue and SEGMENT relationships in drawn in red. The labels on those

“edges” denotes that relationship’s sid value. These values are used to map from a SEGMENT to

its FILAMENTS. For example, the FILAMENTs labeled 1 store the geometry of SEGMENT 1.
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Figure 7.7: Phantom 1 volume. Figure 7.8: Graph representation of phantom 1
volume (Figure 7.7).

Table 7.2: Correspondence of nodes in the graph representation of phantom 1 (Figure 7.8) to their
location in the volume (Figure 7.7), along with the radius measurement at that position.

Node No. x y z Radius
(pixel)

1 -10 -10 0 1
2 -5 -5 0 1
3 0 0 0 1
4 -5 5 0 1
5 -10 10 0 1
6 4 2 0 1
7 8 0 0 1
8 12 -2 0 1
9 4 10 0 1

10 5 14 0 1
11 6 20 0 1
12 10 25 0 1
13 1 25 0 1
14 16 -6 0 1
15 16 3 0 1
16 10 -7 0 1
17 10 12 0 1
18 0 18 0 1
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Figure 7.9: Graph representation of phantom 1 (Figure 7.8) updated to contain labeled edges de-
noting the unique index of the vessel segment that each serves as a filament in.

Figure 7.10: “Reduced” graph representation of phantom 1 (Figure 7.8) obtained by algorithm 3.
The labels on each edge serve as a unique index for a respective vessel segment presenting in the
volume (Figure 7.7).
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Table 7.3: Vessel segment attributes (defined in Section 6.2.2.2) calculated across the unique seg-
ments composing phantom 1.

Segment ID Length
(pixel)

Surface Area
(pixel2)

Volume
(pixel3)

Distance
(pixel) SA:V LEN:DIA Tortuosity

1 14.14 88.86 44.43 14.14 2.00 7.07 1.00
2 14.14 88.86 44.43 14.14 2.00 7.07 1.00
3 6.40 40.23 20.12 6.40 2.00 3.20 1.00
4 7.07 44.43 22.21 7.07 2.00 3.54 1.00
5 5.66 35.54 17.77 5.66 2.00 2.83 1.00
6 6.40 40.23 20.12 6.40 2.00 3.20 1.00
7 7.28 45.74 22.87 7.28 2.00 3.64 1.00
8 6.32 39.74 19.87 6.32 2.00 3.16 1.00
9 6.40 40.23 20.12 6.40 2.00 3.2 1.00

10 4.47 28.10 14.05 4.47 2.00 2.24 1.00
11 8.00 50.27 25.13 8.00 2.00 4.00 1.00
12 4.47 28.10 14.05 4.47 2.00 2.24 1.00
13 4.47 28.10 14.05 4.47 2.00 2.24 1.00
14 4.12 25.91 12.95 4.12 2.00 2.06 1.00
15 6.08 38.22 19.11 6.08 2.00 3.04 1.00

Table 7.4: Mean, median, minimum, and maximum values for vessel segment attributes calculated
for the synthetic model presented in Figure 7.7.

Vessel Attribute Mean Median Min Max

Radius 1.00 pixel 1.00 pixel 1.00 pixel 1.00 pixel
Length 7.03 pixel 6.40 pixel 4.12 pixel 14.14 pixel

Surface Area 44.17 pixel2 40.23 pixel2 25.91 pixel2 88.86 pixel2

Volume 22.09 pixel3 20.12 pixel3 12.95 pixel3 44.43 pixel3

Distance 7.03 pixel 6.40 pixel 4.12 pixel 14.14 pixel
Tortuosity 1.00 1.00 1.00 1.00
LEN:DIA 3.51 3.20 2.06 7.07

SA:V 2.00 2.00 2.00 2.00
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Figure 7.11: Neo4j data model constructed for the phantom shown in Figure 7.7. In this figure,
the node light blue circles, with the FILAMENT relationships between them in blue and SEGMENT
relationships in drawn in red. The labels on an “edges” denotes its sid value; the labels on a node
is its unique ID.
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Once the data model has been entered into the database, we can query the database using

algorithm 4 and reconstruct the result using our procedure detailed in section 7.2.4. For instance,

if we wanted to query the database for the filaments comprising segments 3, 11, 14, and 15 we

would pass algorithm 4 the query presented in Figure 7.12. This query (Figure 7.12) returns the

FILAMENT relationships and nodes shown in Figure 7.13.

MATCH path = (start:Node)-[n:FILAMENT]-(end:Node)
WHERE n.sid=3 or n.sid = 11 or n.sid = 14 or n.sid = 15
RETURN path, nodes(path) as nodes, rels(path) as rels

Figure 7.12: Cypher query used retrieve the relationship FILAMENTS with specified sid value 3,
11, 14, or 15.
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Figure 7.13: Subgraph isolated after executing the query presented in Figure 7.12.

We reconstructed the volume from the query (Figure 7.12) result according to the procedure de-

tailed in section 7.2.4. We present this volume in Figure 7.14 and overlaid the original volume

(Figure 7.7) in Figure 7.15.

Using our informatics platform, we calculated the total volume, total surface area, total length for

the vasculature isolated by the query (Figure 7.12) as 77.31 pixel3, 154.62 pixel2, and 24.61 pixel

respectively.
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Figure 7.14: Vasculature reconstructed from re-
sult of query shown in Figure 7.12.

Figure 7.15: Vasculature reconstructed (green)
from result of query shown in Figure 7.12 over-
laid the original volume (red) (Figure 7.7).

We can also query the database for vessel segments that fit some criteria. For example, per-

haps we’d like to look for all LEN:DIA greater than, or equal to, the mean LEN:DIA. We would

write the query to that presented in Figure 7.16. This query (Figure 7.16) returns the FILAMENT

relationships and nodes shown in Figure 7.13. We reconstructed the volume from the result of this

query (Figure 7.16) according to the procedure detailed in section 7.2.4. We present this volume

in Figure 7.17 and overlaid the original volume (Figure 7.7) in Figure 7.19.

MATCH path = ()-[n:SEGMENT]-()
WHERE n.length_to_diameter_ratio >= 3.51
RETURN path, nodes(path) as nodes, rels(path) as rels

Figure 7.16: Cypher query used retrieve the SEGMENTS with LEN:DIA greater than
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Figure 7.17: Subgraph isolated after executing the query presented in Figure 7.16.

Using our informatics platform, we also calculated the total volume, total surface area, total length

for the vasculature isolated by this query (Figure 7.16) as 159.08 pixel3, 318.15 pixel2, and 50.64

pixel respectively.
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Figure 7.18: Vasculature reconstructed from re-
sult of query shown in Figure 7.12.

Figure 7.19: Vasculature reconstructed (green)
from result of query shown in Figure 7.12 over-
laid the original volume (red) as presented in
Figure 7.7.

We will now illustrate our depth first traversal that was detailed in section 7.2.3.2 on the graph

database storing this digital phantom. We elected to begin all of our traversals from node 6 of the

data model (Figure 7.11) and show the results of traversing to different levels, beginning with 1.

The subgraph generated by this traversal is shown in Figure 7.20. We reconstructed the volume

from the result of this traversal according to the procedure detailed in section 7.2.4. We present

this volume in Figure 7.21 and overlaid the original volume (Figure 7.7) in Figure 7.22. Using

our informatics platform, we calculated the total volume, total surface area, total length for the

vasculature isolated by the query as 53.23 pixel3, 106.46 pixel2, and 16.94 pixel respectively.
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Figure 7.20: Subgraph isolated after executing a depth-first traversal to level 1 from node 6 of the
data model (Figure 7.11) to level 1.

Figure 7.21: Vasculature reconstructed after ex-
ecuting a depth-first traversal to level 1 from
node 6 of the data model shown Figure 7.11 of
the phantom shown in Figure 7.7.

Figure 7.22: Vasculature reconstructed (green)
after executing a depth-first traversal to level 1
from node 6 of the data model shown Figure
7.11 overlaid on the original volume (red) as
presented in Figure 7.7.
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We now will present the results of traversing from node 6 to a level of 2. The subgraph gener-

ated by this traversal is shown in Figure 7.23. We reconstructed the volume from the result of this

traversal according to the procedure detailed in section 7.2.4. We present this volume in Figure

7.24 and overlaid the original volume (Figure 7.7) in Figure 7.25. Using our informatics platform,

we calculated the total volume, total surface area, total length for the vasculature isolated by the

query as 211.83 pixel3, 423.67 pixel2, and 67.43 pixel respectively.

Figure 7.23: Subgraph isolated after executing a depth-first traversal from node 6 of the data model
(Figure 7.11) to level 2.
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Figure 7.24: Vasculature reconstructed after ex-
ecuting a depth-first traversal to level 2 from
node 6 of the data model shown Figure 7.11 of
the phantom as shown in Figure 7.7.

Figure 7.25: Vasculature reconstructed (green)
after executing a depth-first traversal to level 2
from node 6 of the data model shown Figure
7.11 overlaid on the original volume (red) pre-
sented in Figure 7.7.

Finally, we present the results of traversing from node 6 to a level of 3. This traversal almost

captures the entire vasculature of the phantom. The subgraph generated by this traversal is shown

in Figure 7.26. We reconstructed the volume from the result of this traversal according to the

procedure detailed in section 7.2.4. We present this volume in Figure 7.27 and overlaid the original

volume (Figure 7.7) in Figure 7.28. Using our informatics platform, we calculated the total volume,

total surface area, total length for the vasculature isolated by the query as 288.95 pixel3, 577.89

pixel2, and 91.97 pixel respectively.
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Figure 7.26: Subgraph isolated after executing a depth-first traversal from node 6 of the data model
(Figure 7.11) to level 3.

Figure 7.27: Vasculature reconstructed after ex-
ecuting a depth-first traversal to level 3 from
node 6 of the data model shown Figure 7.11 of
the phantom shown in Figure 7.7.

Figure 7.28: Vasculature reconstructed (green)
after executing a depth-first traversal to level 3
from node 6 of the data model shown Figure
7.11 overlaid on the original volume (red) as
presented in Figure 7.7.
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7.3.1.2 Digital phantom #2

The second digital phantom that we use is presented in Figure 7.29. This phantom exhibits

a simple loop structure. The result of the graph construction process on this volume, per our

procedure detailed in Section 6.2.1, is shown in Figure 7.30. We present the location of these

nodes in the phantom volume in Table 7.5, along with the radius measurements at those node

positions. The application of our graph reduction algorithm to this “original” graph (i.e., that in

Figure 7.30) is shown in Figure 7.32. Each edge in our “reduced” graph is labeled with a vessel

segment number that maps to edges composing that vessel segment in the “updated original” graph

(shown in Figure 7.31). This allows for the easy reconstruction of the different vessel segments.

As stated earlier, to reconstruct the vessel segment denoted by edge 1 in the “reduced” graph (i.e.,

7.32), we would derive all edges labeled with 1 from the original graph (i.e., Figure 7.31).

The attributes (as defined in Section 6.2.2.2) for each vessel segment (i.e., vessel arising be-

tween branch points/endpoints) in the digital phantom are reported in Table 7.6. The overall charac-

teristics (as defined in Section 6.2.2.1) for the vascular volume follow: total volume, 331.28 pixel3;

total surface area, 662.55 pixel2; and total length, 105.45 pixel. For the vessel segment attributes,

we detail the mean, median, min, and max values in Table 7.7
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Figure 7.29: Phantom 2 volume.

Figure 7.30: Graph representation of phantom 2
volume (Figure 7.29).

Table 7.5: Correspondence of nodes in the graph representation of phantom 2 (Figure 7.30) to their
location in the volume (Figure 7.29), along with the radius measurement at that position.

Node No. x y z Radius
(pixel)

1 0 0 0 3
2 5 0 0 3
3 75 0 0 3
4 100 0 0 3
5 70 -10 0 2
6 60 -15 0 2
7 50 -18 0 2
8 40 -20 0 2
9 30 -18 0 2

10 20 -15 0 2
11 10 -10 0 2

156



Figure 7.31: Graph representation of phantom 2 (Figure 7.30) updated to contain labeled edges
denoting the unique index of the vessel segment that each serves as a filament in.

Figure 7.32: “Reduced” graph representation of phantom 2 (Figure 7.30) obtained by algorithm 3.
The labels on each edge serve as a unique index for a respective vessel segment presenting in the
volume (Figure 7.29).
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Table 7.6: Vessel segment attributes (defined in Section 6.2.2.2) calculated across the unique seg-
ments composing phantom 2.

Segment ID Length
(pixel)

Surface Area
(pixel2)

Volume
(pixel3)

Distance
(pixel) SA:V LEN:DIA Tortuosity

1 5.0 94.25 141.37 5.0 0.6667 0.83 1.0
2 25.0 471.24 706.86 25.0 0.6667 4.17 1.0
3 86.0 1150.93 1238.74 70.0 0.9291 14.33 1.23
4 70.0 1319.47 1979.2 70.0 0.6667 11.67 1.0

Table 7.7: Mean, median, minimum, and maximum values for vessel segment attributes calculated
for the synthetic model presented in Figure 7.29.

Vessel Attribute Mean Median Min Max

Radius 2.81 pixel 3.00 pixel 2.22 pixel 3.00 pixel
Length 46.50 pixel 47.50 pixel 5.00 pixel 86.00 pixel

Surface Area 758.97 pixel2 811.09 pixel2 94.25 pixel2 1,319.47 pixel2

Volume 1,016.54 pixel3 972.80 pixel3 141.37 pixel3 1,979.20 pixel3

Distance 42.50 pixel 47.50 pixel 5.00 pixel 70.00 pixel
Tortuosity 1.06 1.00 1.00 1.22
LEN:DIA 7.75 7.92 0.83 14.33

SA:V 0.73 0.67 0.67 0.93
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The Neo4j data model constructed from the graph representation of this phantom is shown

in Figure 7.33. In that figure, the nodes are shown as light blue circles, with the FILAMENT

relationships between them in blue and SEGMENT relationships is drawn in red. The labels on

those “edges” denotes that relationship’s sid value. Again, these values are used to map from a

SEGMENT to its FILAMENTS.

We will now illustrate our ability to derive a shortest path between two nodes, with a relation-

ship property as the weight, per our procedure in section 7.2.3.3. We will determine the shortest

path between nodes 1 and 4 (see Figure 7.30) using length as the edge weight. After executing

algorithm 4 with this query, the subgraph containing the shortest path that was found is presented

in Figure 7.34. We reconstructed the volume from the result according to the procedure detailed

in section 7.2.4. We present this volume in Figure 7.35 and overlaid the original volume (Figure

7.29) in Figure 7.36. Using our informatics platform, we calculated the total volume, total surface

area, total length for the vasculature isolated by the query as 2,827.43 pixel3, 1,884.96 pixel2, and

100.00 pixel respectively.
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Figure 7.33: Neo4j data model constructed for the phantom shown in Figure 7.29. In this figure,
the node light blue circles, with the FILAMENT relationships between them in blue and SEGMENT
relationships in drawn in red. The labels on an “edges” denotes its sid value; the labels on a node
is its unique ID.
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Figure 7.34: Subgraph isolated after finding the shortest path between nodes 1 and 4 (see Figure
7.30) with length as the edge weight.

Figure 7.35: Vasculature reconstructed after
finding the shortest path between nodes 1 and 4
(see Figure 7.30) with length as the edge weight.

Figure 7.36: Vasculature reconstructed (green)
after finding the shortest path between nodes 1
and 4 (see Figure 7.30) with length as the edge
weight, overlaid on the original volume (red) as
presented in Figure 7.29.
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7.3.2 Case study #2, data-driven synthetic model

To further illustrate the utility of our queryable database, we will construct a data model for

one of our synthetic models constructed in Chapter 4. The model that we selected for this case

study is presented in Figure 7.37 (for full-page image, see Figure 4.5) and was treated as isotropic

in resolution at 1.0 µm. It is the same model that was selected for analysis using our informatics

platform in Chapter 6.

Figure 7.37: Cerebrovasculature model acquired from KESM India Ink dataset. This voxel-based
model is 1158 × 1158 × 1158 pixels derived from imaging data acquired at a voxel resolution of
0.6 µm × 0.7 µm × 1.0 µm. The total size of this model is 1.4GB.

The graph representation for this model was shown previously in Figure 6.38 and its “reduced”

graph in Figure 6.39. The overall characteristics for the vascular volume are reported as follows:

total volume, 2,286,872.45 µm3; total surface area, 636,994.41 µm2; and total length, 16,293.23

µm. We also found that this volume was comprised of N = 286 vessel segments. For the vessel

segment attributes, we detailed the mean, median, min, and max values in Table 6.13. We also

presented the distributions of these attributes for the vessel segments embedded in the model in

Figures 6.30, 6.31, 6.32, 6.33, 6.34, 6.35, 6.36, and 6.37.
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The Neo4j data model constructed from the graph representation of this synthetic model is

shown in Figure 7.38. In this figure, the nodes are shown as light blue circles, with the FILAMENT

relationships between them in blue and SEGMENT relationships is drawn in red. Once the data

model is constructed in the database, we can query the database using algorithm 4. As before, we

can reconstruct the result of any supported query using the procedure detailed in section 7.2.4. All

of the queries illustrated in Section 7.3.1.1 are applicable to this (and any) data model. We can also

write more elaborate queries that isolate vessel segments by attribute.

For instance, if we were interested in all segments whose radius is greater than the median

radius of the synthetic volume (5.08 µm) and whose length is greater than the median length (40.67

µm), we’d write the query presented in Figure 7.39. This query (Figure 7.39) returns the SEGMENT

relationships and nodes shown in Figure 7.40. The reconstructed volume is shown overlaid the

original volume in Figure 7.41.

Using our informatics platform, we can quantitatively describe the segments we isolated, whose

radius is greater than the median radius of the synthetic volume (5.08 µm) and whose length is

greater than the median length (40.67 µm). The overall characteristics for the isolated volume are

reported as follows: total volume, 1,437,201.76 µm3; total surface area, 328,575.46 µm2; and to-

tal length, 6,921.51 µm. The volume, surface area, and length of the isolated volume comprised

62.85%, 51.58%, and 42.48% of the overall volume, surface area, and length respectively. Descrip-

tive statistics of the vessel segment attributes are presented in Table 7.8.

163



Figure 7.38: Neo4j data model constructed for the synthetic model in Figure 7.37. In this figure,
the node light blue circles, with the FILAMENT relationships between them in blue and SEGMENT
relationships in drawn in red.

MATCH path = (start:Node)-[f:SEGMENT]-(end:Node)
WHERE f.avg_radius > 5.08 and f.length > 40.67
RETURN path, nodes(path) as nodes, rels(path) as rels

Figure 7.39: Cypher query used retrieve the relationship SEGMENTS whose radius is greater than
5.08 µm and length greater than 40.67 µm.
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Figure 7.40: Subgraph isolated after executing the query presented in Figure 7.39.
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Figure 7.41: Vasculature reconstructed (green) after executing the query presented in Figure 7.39
on the data model. This result is overlaid upon the original volume (red).
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Table 7.8: Mean, median, minimum, and maximum values of the attributes calculated for the vessel
segments isolated by the query in Figure 7.39 performed on the data model in Figure 7.38.

Vessel Attribute Mean Median Min Max

Radius 6.93 µm 5.91 µm 5.09 µm 12.33 µm
Length 133.11 µm 99.43 µm 42.75 µm 823.25 µm

Surface Area 6,318.76 µm2 3,758.12 µm2 1,417.49 µm2 56,880.97 µm2

Volume 27,638.50 µm3 13,600.75 µm3 3,640.85 µm3 351,110.22 µm3

Distance 98.66 µm 76.76 µm 17.99 µm 466.69 µm
Tortuosity 1.33 1.06 1.0 5.67
LEN:DIA 10.54 6.08 2.45 60.99

SA:V 0.30 0.33 0.16 0.40

One may be interested in the segments occupying a specific region of the volume instead of

vessels exhibiting specific attribute(s). In Figure 7.42, we present a modified Figure 7.37 to include

the x-axis with respect to the geometry of the synthetic model. We calculated the mid-point of a

bounding-box encompassing that geometry along its x-axis as 920.84 based on a minimum x-value

of 346.47 and maximum x-value of 1495.20. To illustrate our ability to extract all FILAMENT

segments within a specific region, we decided to query for all FILAMENTs whose nodes have x-

coordinates less than 920.84. We write the query presented in Figure 7.43 to accomplish just that.

After executing algorithm 4 with that query, the subgraph returned by the graph database is shown

in Figure 7.44. The reconstructed volume is shown overlaid the original volume in Figure 7.45.
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Figure 7.42: We present a modified Figure 7.37 to include the x-axis (shown in cyan) with respect
to the geometry of the synthetic model.
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MATCH path = (n1:Node)-[f:FILAMENT]-(n2:Node)
WHERE n1.x <= 920.84 and n2.x <= 920.84
RETURN path, nodes(path) as nodes, rels(path) as rels

Figure 7.43: Cypher query used retrieve all FILAMENTs whose endpoint’s x-coordinates are less
than 920.84.

Figure 7.44: Subgraph isolated after executing the query presented in Figure 7.43.
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Figure 7.45: Vasculature reconstructed (green) after executing the query presented in Figure 7.43
on the data model. This result is overlaid upon the original volume (red). The x-axis with respect
to the underlying geometry of the synthetic model (and not our viewing perspective) is shown in
cyan.
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Using our informatics platform, we can quantitatively describe the filaments that were returned

by this query (i.e., Figure 7.43). The overall characteristics for the isolated filaments are reported

as: total volume, 1,222,739.68 µm3; total surface area, 308,978.47 µm2; and total length, 7,435.96

µm. The volume, surface area, and length of the isolated volume comprised 53.47%, 48.51%, and

45.64% of the overall volume, surface area, and length respectively. Descriptive statistics of the

vessel segment attributes are presented in Table 7.9.

Table 7.9: Mean, median, minimum, and maximum values of the attributes calculated for the vessel
segments isolated by the query in Figure 7.43 performed on the data model in Figure 7.38.

Vessel Attribute Mean Median Min Max

Radius 6.00 µm 4.99 µm 4.8 µm 16.11 µm
Length 51.28 µm 36.95 µm 4.20 µm 474.25 µm

Surface Area 2,130.88 µm2 1,253.56 µm2 126.59 µm2 38,630.19 µm2

Volume 8,432.69 µm3 3,640.85 µm3 303.83 µm3 269,709.58 µm3

Distance 47.60 µm 35.18 µm 4.20 µm 450.14 µm
Tortuosity 1.06 1.01 1.00 1.56
LEN:DIA 4.44 3.28 0.42 27.25

SA:V 0.36 0.40 0.12 0.42

7.4 Summary

The contributions of the work detailed in this chapter are multifaceted. First, we implement the

necessary infrastructure to translate a graph representation of vascular connectivity and geometry

into a Neo4j graph database model. At the time of writing, and to the best of our knowledge, this

is the first time that vascular topological and geometrical data has been warehoused in a highly

optimized database for graph data models. Second, we provide a platform to interact with that

data. We offer users a means to execute a user-defined query on the database, as well as the ability

to perform a depth-first traversal or determine the shortest path between two points (for any vessel

attribute). Queries for vessel segments that meet certain criterion (morphometry, taxonomy, type,

etc.) and/or that are within a specific scale (as organization and morphometry vary depending on
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size) are possible as user-defined queries. It is important to note that there are many user-defined

queries that can be executed than those listed in this chapter. Such queries include (but are not

limited to) pathfinding algorithms (such as single-source shortest path and all-pairs shortest path),

measures of centrality, and community detection algorithms. We refer the reader to the Neo4j

documentation on how to construct these (and many other) queries. Finally, our platform translates

the result of any of these queries returning a path to a networkx graph representation. The networkx

graph representation integrates with our informatics platform (chapter 6) for quantitative analysis

and also affords seamless reconstruction of the vasculature in vector graphics format.

These contributions are important in cerebrovasculature research. Using a graph database

to store cerebrovasculature topological and geometrical database allows researchers to query the

database for vascular segments with some attribute. For instance, all segments with a radius mea-

surement less than x, but greater than or equal to y, could be retrieved, and our informatics platform

could be applied to quantify the vessels within that range. Alternatively – or in conjunction with

constraint(s) on segment attribute(s) – we could query the database for vascular filaments pre-

senting within some region of the brain. This would allow vessels presenting within an ROI – or

within some distance of an anatomical marker of interest – to be isolated. These vessels could then

be quantified using our informatics platform to characterize the cerebrovasculature within a given

area.

We expect the frameworks and platforms developed in this chapter and the last (chapter 6) to

have a significant scientific impact. Specifically, we believe that they will open the door for data-

driven, quantitative investigation of the brain’s vascular system. The analytical metrics provided

for quantitative analysis coupled with high-performance graph analytics and reconstruction ability

in these resources will aid in the discovery of novel biomarkers of processes underlying healthy

and diseased brains. We believe that these resources will contribute a standardized means for the

quantitative study of whole-brain vascular datasets acquired using modern imaging techniques.
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8. WHOLE-BRAIN CEREBROVASCULATURE DATABASE AND ANALYSIS

8.1 Motivation

To better understand the development and function of cerebral vasculature in the brain, it is es-

sential to map out its anatomical structure in the healthy brain and compare differences in the disor-

dered mind. For instance, local variations in vascular morphometry can have a profound effect on

the neuronal composition in surrounding areas. Therefore, charting the alterations in cerebrovascu-

lature across the brain will help elucidate how these changes affect the neuronal structure. Datasets

acquired by the modern technology described in Section 2.2 will provide the means necessary for

data-driven, quantitative investigations at the whole-brain scale.

The Brain Networks Laboratory at Texas A&M University has developed a high-resolution 3D

microscopy method capable of imaging whole small animal brains at sub-micrometer resolution

The Knife-Edge Scanning Microscope (KESM). KESM fills the critical gap in neuroimaging be-

tween large scales, lower-resolution methods such as magnetic resonance imaging and small-scale,

higher-resolution methods like Serial Block-Face Scanning Electron Microscopy. KESM imaging

can achieve 0.7 µm resolution laterally and 1 µm axially, sufficient to perform accurate morphome-

try of neuronal and vascular networks. This imaging modality (KESM) enables the reconstruction

of key microstructures, such as the full vascular network of the mouse brain, for quantitative anal-

ysis across the whole small animal organ [39].

The KESM has acquired the complete cerebrovasculature system of the C57BL/6J mouse

model [13]. This dataset comprises 15,580× 12,100× 8,560 pixels, at a resolution of

0.6× 0.7× 1.0 µm3. In his Ph.D. dissertation [6], Junseok Lee reconstructed this dataset: he

split it into ten parts, used Otsu thresholding followed by the voxel scooping method [9] to the ex-

tract filaments embedded in each part. Lee measured diameter and length across the whole-volume

on binarized image raster.

In this chapter of my dissertation, I plan to extend the whole-brain results reported by [6]. I will
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accomplish this using my informatics platform (Chapter 6), which includes additional quantitative

metrics describing the vascular segments. I will also construct a whole-brain graph database of the

cerebrovasculature embedded within [6]’s dataset (using my method from Chapter 7). Some of the

questions motivating this work to follow:

• How accurate is the segmentation algorithm that was used to extract the whole-brain cere-

brovasculature data in [6]?

– Validation of the voxel scooping method was performed on an expert-labeled volume

containing a single three-dimensional neuron [9].

• How does the vascular morphometry present across the whole brain?

– Are the diameter and length measurements reported in [6] reproducible?

– What are the attributes of the capillaries (Diameter ≤ 10 µm), medium-sized vessels

(10 µm < Diameter ≤ 20 µm), medium-large-sized vessels (20 µm < Diameter ≤ 40

µm), and large-sized vessels (40 µm < Diameter)?

Studies into the brain’s angioarchitecture have long focused on the cerebral cortex, where the

morphometry of vessels residing near the cortical surface and in the intracortical region have been

characterized (ref: Section 2.1.7). Meanwhile, investigations into the angioarchitecture of subcor-

tical nuclei, such as the basal ganglia, have not been examined to the same extent. The whole-brain

analysis proposed in this section will be amongst the first studies to characterize the cerebrovas-

culature across the entire brain, from the cerebral cortex to that of the nuclei residing deep within.

This is extremely important as it is necessary to understand cerebrovasculature organization within

the healthy brain to know how it changes within the diseased brain. Since local variations in vas-

cular morphometry have a profound effect on the neuronal composition in surrounding areas, a

connectivity map of the vascular variations across the entire brain will be beneficial to cerebrovas-

culature research. Our database will provide such a connectivity map (topology), along with the
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geometry and attributes noted for every vessel segment presenting within the KESM cerebrovas-

culature dataset.

8.2 Methodology

8.2.1 Dataset acquisition

We received the completed segmentation of the KESM cerebrovasculature data from [6]. As

mentioned in Section 8.1, this dataset comprises 15,580 pixel × 12,100 pixel × 8,560 pixel at a

resolution of 0.6 µm × 0.7 µm × 1.0 µm. Due to the computational complexity of segmenting

filaments from this large-scale dataset, [6] elected to split the volume into ten parts and perform

the segmentation for each part individually. We will refer you to [6] for the precise methodology;

however, we do summarize it briefly in Section 8.2.2. Ultimately, what we’ve received from [6]

are ten SWC files describing the filament structure for each part and ten vector graphics files that

store geometric primitives illustrating the cerebrovasculature of each part.

8.2.2 Compose single, connected whole-brain dataset

Figure 8.1: The whole-mouse brain, as seg-
mented by [6] into 10 parts. Reprinted, with
permission, from [6].
(←: Anterior,→: Posterior)

Figure 8.2: Close-up of the boundary between
two of the adjacent parts shown in Figure 8.1.
The green vasculature occupies the part ante-
rior to the part containing the red vasculature.
Reprinted, with permission, from [6].
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The vascular filaments embedded in the KESM whole-mouse brain cerebrovasculature dataset

[39] were extracted by [6]. This was accomplished by splitting the volume into ten parts, which

are shown in Figure 8.1. The voxel scooping method [9] was then applied on a part-by-part basis

to extract the embedded vasculature. [6]’s reported measures of vascular diameter and length

were then calculated across each part individually. Therefore, vessels traversing multiple parts

were not considered in full as they were partitioned into two vessels (one in each part) at the

part-boundary divide. The fact that the whole-brain was partitioned into parts means that even by

merging the parts, the vector graphics encodings of vessels along the boundary will be disconnected

(and encoded as two separate cylinders). We illustrate this disconnectedness in Figure 8.2, where

we’ve opened two raster files encoding adjacent regions of the brain. In Figure 8.2, the green

vasculature occupies the part anterior to the part containing the red vasculature. We can see that

although they align, they are not connected but instead are generated from two unique sets of

geometric primitives. To conduct a more comprehensive analysis, we need to connect up the

vasculature presenting along the boundaries of adjacent parts into single encoded segments. That

is, we need to go from two separate cylinders at the boundary into one continuous cylinder across

that boundary. This will ensure that our informatics platform calculates the attributes for the entire

segments and not piecewise data for “two segments” that are one. The problem with the piecewise

approach is that it skews the descriptive statistics for metrics such as length, surface area, volume,

etc. as the calculated segment attributes would be incorrect. To illustrate this, imagine that we

have a segment that is split equally between parts and left unconnected. If the overall length is 10

units, we would observe two segments of length 5 units when we really should have observed a

single segment of length 10 units. Therefore, we must resolve the issue of having two segments

that should be analyzed as one continuous segment. Our procedure for constructing a connected

whole from these disconnected parts follows.

Before proceeding, we require that the adjacent parts have the vasculature topology and geom-

etry stored as a series of nodes and edges. We selected the SWC format for this encoding [102]

and elaborate on this scheme in Section 4.2.1. In short, the idea behind this format is that each
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vascular segment (vessel between two bifurcations) can be embedded as a series of line segments.

The filaments are stored in the SWC format as a hierarchy of line segments for every connected

vascular component in the dataset.

We subsequently construct a graph representation of the two adjacent parts according to our

procedure in section 6.2.1, ensuring that the node IDs are unique between and within the graphs.

The next step is to calculate the bounds of the encoded vessels along the axis of partition. In this

case, [6] partitioned the whole-brain along the z-axis. We will refer to the graph containing nodes

with the smaller maximum z-axis value as Gs and that with the larger minimum z-axis value as

Gl. We calculate the largest observed z-axis value for Gs and the smallest observed z-axis value

for Gl, and take the difference. We then offset the z-axis of every node in Gl by that difference.

This process closes any potential gaps between the adjacent parts. This gap corresponds to about

four units, where we define a unit as being the z-axis length of a voxel.

After this adjustment, we construct a k-D tree t initialized with the nodes from Gl that are

within four units of the boundary; the k-dimensions are the x-, y-, and z- coordinates. Next, we

construct a list l of nodes from Gs that are within four units of the boundary. We then compose

Gs and Gl into a single graph G. For each node n1 in l, we look up the node n2 closest to it in

t, and create a new edge in G between n1 and n2. We store G as the “stitched” result of the two

adjacent parts under consideration. We will use this result as Gs for the next part. That is, once

we’ve stitched parts 1 and 2 together, we will stitch the 1− 2 result with 3. Following this process

for all of the parts, we compose a single, connected whole-brain dataset.

8.2.3 Quality assessment of the whole-brain dataset

The next step towards quantitative analysis of the whole-mouse brain cerebrovasculature dataset

[39] is the validation of the segmentation algorithm used to extract the vascular filaments embed-

ded within it. In [6], the voxel scooping method [9] was used. The validation of this algorithm was

conducted on a single neuron [i.d.]. To assess the quality of the methods used by [6] to extract the

cerebrovasculature, including the accuracy of the segmentation algorithm, we will first inspect the

dataset qualitatively. If the dataset appears coherent and the vascular connectivity looks reason-
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able, we will follow-up this qualitative assessment with a quantitative study using our model-based

system (detailed in Chapter 5) against [6]’s extraction methodology of the cerebrovasculature from

the imaging volume.

8.2.4 Whole-brain analysis

After stitching the segmented parts from [6] together and into a single, connected dataset (Sec-

tion 8.2.2) and assessing the quality of the dataset, we will apply our informatics platform to the

stitched result per our procedure in Chapter 6 and construct a graph database according to Chapter

7. The application of our informatics platform will extend the results obtained by [6] by incorporat-

ing additional attributes calculated for each vessel segment in our analysis. We will then construct

a graph database of the whole-brain cerebrovasculature, which will provide a means for storage

and dissemination of those results. We will verify [6] results against our own and also determine

the implications of using a single, connected dataset (done here) as opposed to performing analy-

sis on a part-by-part basis (as completed by [6]). In toto, we will report descriptive statistics for

the following vessel segment attributes across the whole-brain KESM cerebrovasculature dataset

prepared by [6]:

• Radius

• Length

• Tortuosity, using the distance metric defined in [87]

• Distance (between beginning and terminal end of segment)

• Surface area

• Volume

• Surface-area-to-volume ratio (i.e., SA:V)

• Length-to-diameter ratio (i.e., LEN:DIA)
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We will also report the following vascular volume characteristics:

• Total length

• Total surface area

• Total volume

• Total-surface-area-to-total-volume ratio

Thereafter, using our database we will focus our study to describe these characteristics and

attributes within the: capillaries (Diameter ≤ 10 µm), small-sized vessels (10 µm < Diameter ≤

20 µm), medium-sized vessels (20 µm < Diameter ≤ 40 µm), and large-sized vessels (40 µm <

Diameter). Vessels meeting these criteria will be isolated through the relevant database queries and

following the procedures detailed in Chapter 7. We will analyze the results using our informatics

platform described in Chapter 6.

8.2.5 Validation against piecemeal data in the literature

While our whole-brain analysis will report new results with no comparable data at the whole-

brain scale, we will compare our results against the relevant piecemeal data in the literature. These

sources will include the comparison of the morphological results obtained from our whole-brain

against those reported in the region of the Middle Cerebral Artery by [92], [29], and [112]. We

will also include the relevant cerebrovasculature characteristics reported by [2] in the forebrain and

cerebellum, along with that of the neocortex and cerebellum by [7]. Such ‘validation’ will ensure

that our method computes results in the ‘right ballpark.’

8.2.6 Dissemination of connectivity data

We will disseminate the raw whole-brain cerebrovasculature connectivity data online, through

the Neo4j graph database [100]. To do this, we first make the database read-only and then disable

authentication (so that anyone can access it, but no one can write to it). We also limit the time that

a query can run. Interactions with the connectivity data are provided through the Neo4j Browser,

which provides a means of visualizing the nodes and their relationships across the dataset. Queries
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will be issued in Cypher, Neo4j’s query language, on the graph data model. The results of a query

will be displayed as a visual graph or in tabular form. Those who wish to interact more intimately

with our data will be able to do so by using our informatics platform (Chapter 6), which supports

database queries and the analysis and reconstruction of query results.

8.3 Results

8.3.1 Compose single, connected whole-brain dataset

The KESM whole-brain cerebrovasculature dataset was partitioned along the z-axis of the

imaging plane as shown in Figure 8.1. For each of these parts, our procedure calculated the mini-

mum and maximum z-axis of a bounding box encompassing the data. These values are shown in

Table 8.1. Based on this data, our method calculated the offset between each partition as 4 vector

graphic units. Accordingly, as our procedure went through each part, the correct multiple of 4 vec-

tor graphic units was used to offset the part being composed with everything already composed.

For a refresher on our composition method, please see Section 8.2.2.

Table 8.1: Minimum and maximum z-axis bounds for each part (as partitioned in Figure 8.1) of
the KESM whole-brain cerebrovasculature dataset.

Segment Number Min (z-axis bound) Max (z-axis bound)

1 800 1596
2 1600 2396
3 2400 3196
4 3200 3996
5 4000 4796
6 4800 5596
7 5600 5996
8 6000 6396
9 6400 7196
10 7200 7996
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Figure 8.3: Largest connected component (presented in green) found after stitching [6]’s parts
(Figure 8.1) into a connected whole along the part-boundary divide. This component is overlaid
upon the original, individual parts (shown in red and blue).
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Figure 8.4: Second largest connected component (presented in green) found after stitching [6]’s
parts (Figure 8.1) into a connected whole along the part-boundary divide. This component is
overlaid upon the original, individual parts (shown in red and blue).

182



While one would expect the volume to be a single, fully connected component at this stage, this

is not the case: there are many discontinuities of cerebrovasculature presenting across the volume,

causing the volume to be composed of many connected components. We will address this later

in Section 8.3.2. The focus here is that both of these components span multiple parts, thereby

illustrating that our composed result stitches the individual parts together across the part-boundary

divide.

8.3.2 Quality assessment of the whole-brain dataset

The cerebrovasculature acquired from a C57BL/6J mouse by Mayerich et al. ([13]) was ex-

tracted by Lee ([6]) using a series of morphological operations followed by the application of the

voxel scooping method [9]. The morphological operations transformed the raw images slices into

a sequence of binary images contrasting the foreground (i.e., vessels) from the background. Ap-

plication of the voxel scooping method simply extracted the foreground from these binary images,

an easy procedure given the sharp contrast. Lee’s procedure is broadly described in [6]; however,

not specific enough to implement their procedure. Thus, we could not replicate [6]’s process to

quantitatively assess the quality of the dataset using our model-based validation system detailed in

Chapter 5; however, this was not needed.

During our qualitative assessment, we visually inspected the dataset. We found the dataset

to be extremely discontinuous, with isolated segments displaced throughout the volume. This

spaghetti-like appearance is shown in Figure 8.5; the quality of the dataset is not very good from

our perspective. While it is hard to determine the amount of loss across this dataset, we can

confidently state where it has come from. The raw images acquired by the KESM are imperfect,

with various artifacts disrupting the continuous nature of the cerebrovasculature. This has been

recognized since the advent of the device [13].

Compounding the imaging artifacts are the results of the morphological processes carried out

by [6]. The downsampling and upsampling of the dataset inevitably resulted in some data being

drowned out. Furthermore, the application of different filters to the raw images, including the

median filter, would have also resulted in some data loss. In Chapter 5, we illustrated that even
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with the smallest median filter there is a degeneration of quality of the surface; the smallest filter

that we tested (3 × 3) resulted in a 20% reduction in the true positive rate for the voxel scooping

method [9] from baseline. Therefore, due to imaging artifacts in the raw images and the side effects

of the morphological processes that were applied to those images, we expect that this dataset is

missing a large percentage of data. We understand that false positives may “make up” for some of

the low true positive rate contributing to the vessel isosurfaces. We imagine this scenario taking

place when a vessel pixel is labeled as the background, but a background pixel along the periphery

is also absorbed into the vessel. These two competing factors could balance one another out. The

problem with this is that the density of the vessel is no longer centered where it should be, and

this can have profound implications when considering blood flow to the surrounding tissues (see

Section 2.1).

Figure 8.5: View into arbitrarily selected region of part six (Figure 8.1) of [6]’s segmentation of
the KESM cerebrovasculature dataset [13]. Throughout the volume, vessel discontinues are clearly
present.
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8.3.3 Whole-brain analysis

8.3.3.1 Whole-brain graph representation

We constructed the graph representation of the connected whole-brain dataset (that we com-

posed) according to our procedure detailed in Chapter 7. The construction of the graph G con-

taining the geometry of the cerebrovasculature went smoothly and was completed within minutes.

Recall, G encodes the twists and turns of each vessel segment, and is frequently used during the

reconstruction of vascular segments of interest. Furthermore, that we reduce this G to a graph

G_reduced which has an edge for each individual vascular segments presenting in the dataset.

G_reduced stores the attributes of each segment as properties within that segment’s edge. We

say that G_reduced also encodes the topology, or connectivity, of the cerebrovasculature. The

construction of G resulted in a graph with 1,750,823 nodes and 1,616,258 edges. The size of the

graph G serialized was 264MB. We present an illustration of G in Figure 8.6 and zoomed into an

arbitrary region of that graph in Figure 8.7

In Chapter 6, we illustrate the construction of G_reduced according to Algorithm 3. The

application of Algorithm 3, which was written without parallelization and multi-threading. Due

to the massive scale of our cerebrovasculature dataset, this algorithm would run for days without

finishing had we applied it to G. Therefore, we decided to write a graph reduction algorithm that

“solves” each segment in parallel while simultaneously calculating the attributes for that segment.

We achieved this by writing Algorithm 7, which “solves” each segment in a dedicated thread. The

construction of G_reduced resulted in a graph with 635,219 nodes and 500,654 edges. The size

of the graph G_reduced serialized was 198MB. We present an illustration of G_reduced in

Figure 8.8 and zoomed into an arbitrary region of that graph in Figure 8.9. The overall appearance

of this graph is redder by nature of its reduction in nodes that exposes the red coloring of its edges.

This is in contrast to the whole-brain graph (Figures 8.6 and 8.7), where blue coloring dominates

due to its high density of blue nodes (encoding the geometry) covering its red edges.
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Figure 8.6: Illustration of the graph encoding the geometry of the cerebrovasculature of the mouse.
We’ve elected to place the nodes (blue) and edges (red) at their position in the imaging volume and
draw the graph across three-dimensions.
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Figure 8.7: Zoomed perspective into an arbitrarily selected region of the whole-brain graph from
Figure 8.6. The nodes (blue) and edges (red) in this graph can be used during reconstruction as
they encode the individual filaments comprising the twists and turns of the vessel segments.
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Figure 8.8: Illustration of the reduced graph derived from Figure 8.6. Each edge (red) in this graph
represents a vessel segment in the cerebrovasculature system and stores that segment’s properties
as calculated by our informatics platform. The nodes (blue) in this graph are points of bifurcation
between two segments or the terminal end of one segment.
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Figure 8.9: Zoomed perspective into an arbitrarily selected region of the whole-brain reduced
graph presented in Figure 8.8.
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Algorithm 7 Parallel graph reduction and vessel segment attributes calculation algorithm
Input: Graph G
Output: Graph G_reduced is G reduced

1: let R be a copy of G
2: let G_reduced be an empty graph
3: add all nodes from G to G_reduced
4: isolate all segments in R by removing all nodes with degree ≥ 3
5: let graphsCCs be subgraphs for each isolated segment in R
6: for each segment gcc in graphsCCs in parallel do
7: for each node n of degree 1 in gcc do
8: Look up n’s edges in G
9: Add edges found to gcc, ignoring duplicate edges but adding nodes if necessary to form

the connections
10: end for
11: calculate attributes for each edge in gcc
12: let id be a unique ID for isolated vessel segment
13: let n1 and n2 be the start and end nodes for the segment (possible that n1 = n2)
14: connect n1 and n2 in G_reduced with an edge e
15: label e with id
16: store accumulated vessel segment attributes in edge e
17: label edges for gcc in G with id
18: end for
19: return G, R

8.3.3.2 Whole-brain graph database

We constructed the whole-brain graph database from the constructed graph and reduced graph

representations of the cerebrovasculature dataset. We found a performance issue when importing

with the CSV file method described in Section 7.2.2 and resolved this issue with a slight modifi-

cation of the CSV file being constructed and using neo4j-admin to perform the batch import

opposed to the cypher query. After making these changes, we executed the command in Figure

8.10 to construct a data model from the nodes and relationships using neo4j-admin. The import

operation completed in 25 s, which resulted in the construction of approximately 1.88 M nodes and

2.12 M relationships resulting in a database consuming about 564 MB of storage.

It is important to emphasize that once the files have been prepared for import, the data model

of the whole-brain is completely constructed through the command referenced in Figure 8.10.
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./neo4j-admin import --nodes "file:///path/to/nodes.csv"\
--relationships "file:///path/to/updatedOriginalEdges.csv" \
--relationships "file:///path/to/reducedEdges.csv"

Figure 8.10: neo4j-admin command and its arguments used to construct the data model from
our graph representations encoding the cerebrovasculature and its attributes across the whole brain.

Relevant optimization is performed once the data model has been constructed, a process similar to

indexing in a relational database.

8.3.3.3 Whole-brain study

For our whole-brain study, we classified the blood vessels by their radius to differentiate them

into four groups. These groups are shown in Table 8.2 and were also used by [6] in their whole-

brain analysis. We determined the distribution of vessels across these groups and present our results

in Figure 8.11. In toto, 500,654 segments were isolated, of which 355,734 segments (≈ 71%) were

capillaries, 113,930 segments (≈ 23%) were small vessels, 25,416 segments (≈ 5%) were medium

vessels, and 5,574 segments (≈ 1%) were large vessels. We illustrate this variation qualitatively

across the transverse, coronal, and saggittal in Figures 8.12, 8.13, and 8.14 respectively.

Table 8.2: Criteria used to classify blood vessels segments by their radius in our study.

Group name Size of vessels

Large-sized vessels 20 µm < Radius
Medium-sized vessels 10 µm < Radius ≤ 20 µm

Small-sized vessels 5 µm < Radius ≤ 10 µm
Capillaries Radius ≤ 5 µm
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Figure 8.11: Histogram of the percent of total segments classified as each vessel type: capillaries
(radius ≤ 5 µm), small vessels (5 µm < radius ≤ 10 µm), medium vessels (10 µm < r ≤ 20 µm)
and large vessels (20 µm < radius).
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Figure 8.12: Visualization of vessels by category (Table 8.2) across the whole-mouse brain. Cap-
illaries are shown in blue; small-, medium-, and large-sized vessels are shown in purple, green,
and red respectively. The perspective of this figure is from the ventral aspect of the brain across its
transverse plane (↑, anterior; ↓, posterior).
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Figure 8.13: Visualization of vessels by category (Table 8.2) across the whole-mouse brain. The
perspective of this figure is from the ventral aspect of the brain through its coronal plane (↑, su-
perior; ↓, inferior). Capillaries are shown in blue; small-, medium-, and large-sized vessels are
shown in purple, green, and red respectively.
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Figure 8.14: Visualization of vessels by category (Table 8.2) across the whole-mouse brain. The
perspective of this figure is along the lateral aspect of the left-side of the brain (↙, anterior; ↗,
posterior), about through the sagittal plane. Capillaries are shown in blue; small-, medium-, and
large-sized vessels are shown in purple, green, and red respectively.
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In Chapter 7 we detailed how our database encodes both FILAMENTs and SEGMENTs; the

SEGMENTs store the quantitative data describing each respective segment from the cerebrovas-

culature dataset. Using this data, we report the vascular volume characteristics total volume as

3,672,591,422.51 µm3, total surface area as 866,686,947.68 µm2, and total length as 21,985,119.12

µm. Assuming that the brain is 1 cm3 in volume, we estimate the fractional volume of the vascu-

lature as 0.367% of the whole-brain. We describe the vessel segment attributes across the whole

brain in Table 8.3. We also present the distribution of vessel segment attributes across the en-

tire dataset. The distribution of radii measurements across the dataset is shown in 8.15, with the

log number of segments taken by radius. This histogram shows a power function of log number

of segments by radius measurement, with smaller radii values appearing with greater frequency

than larger values. The distributions for segment length (Figure 8.16), surface area (Figure 8.17),

volume (Figure 8.18), distance (Figure 8.19), and surface-area-to-volume ratio follow a similar

trend to that of radius (for log number of segments). Meanwhile, the tortuosity of log segments

is dominated by those that exhibit only slight twists and turns, with those curved vessels still pre-

senting albeit smaller in number and interspersed in value (Figure 8.20). Finally, the log number

of segments grows as a fractional power function of length-to-diameter ratio (Figure 8.21).

Table 8.3: Mean, median, minimum, and maximum values for vessel segment attributes calculated
across the whole-mouse brain.

Vessel Attribute Mean Median Min Max

Radius (DIA/2) 5.92 µm 4.80 µm 4.80 µm 72.00 µm
Length (LEN) 43.92 µm 29.27 µm 0.18 µm 1,167.92 µm
Surface Area (SA) 1,731.28 µm2 991.15 µm2 7.54 µm2 165,663.09 µm2

Volume (V) 7,336.31 µm3 2,545.96 µm3 18.10 µm3 2,430,766.41 µm3

Distance 40.45 µm 27.89 µm 0.18 µm 1,075.49 µm
Tortuosity 1.06 1.01 1.00 171.10
LEN:DIA 3.94 0.01 2.59 73.59
SA:V 0.38 0.42 0.03 0.42
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Figure 8.15: Whole brain analysis: number of vessel segments (log) by radius.

Figure 8.16: Whole brain analysis: number of vessel segments (log) by length.
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Figure 8.17: Whole brain analysis: number of vessel segments (log) by surface area.

Figure 8.18: Whole brain analysis: number of vessel segments (log) by volume.
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Figure 8.19: Whole brain analysis: number of vessel segments (log) by distance.

Figure 8.20: Whole brain analysis: number of vessel segments (log) by tortuosity.
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Figure 8.21: Whole brain analysis: number of vessel segments (log) by length-to-diameter ratio.

Figure 8.22: Whole brain analysis: number of vessel segments (log) by surface-area-to-volume
ratio.
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8.3.3.3.1 Analysis of the Large-sized Vessels (20 µm < radius)

Figure 8.23: Large-sized vessels (20 µm < radius) presenting in the whole-brain dataset (coronal
view: ↑, superior; ↓, inferior).

We isolated the large vascular segments by querying our database for segments with an average

radius greater than 20 (Figure 8.23). This query is presented in 8.24. The point of showing the

query here is to reinforce the notion that all that is required to isolated segments for analysis is

the correct database query. Using this result we report the vascular characteristics for all large

segments: total volume as 756,958,128.53 µm3 , total surface area as 52,782,719.59 µm2, and total

length as 328,727.76 µm. We estimate the fractional volume of the vasculature as 0.076% of a

1 cm3 brain. We describe the attributes of these segments in Table 8.4. We detail the distributions

for radius in Figure 8.25, length in Figure 8.26, surface area in Figure 8.27, volume in Figure 8.28,
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and distance in Figure 8.29. We also present the distributions for tortuosity, length-to-diameter

ratio, and surface-area-to-volume ratio in Figures 8.30, 8.31, and 8.32 respectively.

MATCH path = (start:NODE)-[s:SEGMENT]-(end:NODE)
WHERE s.avg_radius > 20
RETURN path, nodes(path) as nodes, rels(path) as rels

Figure 8.24: Cypher query used retrieve the relationship SEGMENTs with an average radius greater
than 20.

Table 8.4: Mean, median, minimum, and maximum values for vessel segment attributes calculated
across the large-sized vessel segments.

Vessel Attribute Mean Median Min Max

Radius (DIA/2) 28.21 µm 25.35 µm 20.00 µm 72.00 µm
Length (LEN) 58.98 µm 40.51 µm 1.17 µm 846.74 µm
Surface Area (SA) 9,469.45 µm2 6,617.24 µm2 220.29 µm2 138,101.36 µm2

Volume (V) 135,801.60 µm3 86,564.09 µm3 3,022.02 µm3 2,430,766.41 µm3

Distance 56.25 µm 39.70 µm 1.17 µm 839.69 µm
Tortuosity 1.03 1.00 1.00 5.97
LEN:DIA 1.15 0.76 0.02 18.44
SA:V 0.08 0.08 0.03 0.17
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Figure 8.25: Large-sized vessels: number of vessel segments (log) by radius.

Figure 8.26: Large-sized vessels: number of vessel segments (log) by length.
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Figure 8.27: Large-sized vessels: number of vessel segments (log) by surface area.

Figure 8.28: Large-sized vessels: number of vessel segments (log) by volume.

204



Figure 8.29: Large-sized vessels: number of vessel segments (log) by distance.

Figure 8.30: Large-sized vessels: number of vessel segments (log) by tortuosity.
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Figure 8.31: Large-sized vessels: number of vessel segments (log) by length-to-diameter ratio.

Figure 8.32: Large-sized vessels: number of vessel segments (log) by surface-area-to-volume ratio.
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8.3.3.3.2 Analysis of the Medium-sized Vessels (10 µm < radius ≤ 20 µm)

Figure 8.33: Medium-sized vessels presenting in the whole-brain dataset (transverse view: ↑,
anterior; ↓, posterior).

We isolated the medium vascular segments by querying our database for segments with an

average radius r such that 10 µm < r ≤ 20 µm (Figure 8.33). This query is presented in 8.34; it

is all that is required to isolated the relevant segments for analysis. Using this data, we report the

vascular characteristics for all medium-sized vessels as follows: total volume as 932,969,299.53

µm3 , total surface area as 131,645,344.71 µm2, and total length as 1,651,778.83 µm. We estimate

the fractional volume of the vasculature as 0.093% of the whole-brain. We describe the attributes of

these segments in Table 8.5. We present the distributions for radius in Figure 8.35, length in Figure

8.36, surface area in Figure 8.37, volume in Figure 8.38, and distance in Figure 8.39. Furthermore,

207



we detail the distributions for tortuosity, length-to-diameter ratio, and surface-area-to-volume ratio

in Figures 8.40, 8.41, and 8.42 respectively.

MATCH path = (start:NODE)-[s:SEGMENT]-(end:NODE)
WHERE s.avg_radius <= 20 and s.avg_radius > 10
RETURN path, nodes(path) as nodes, rels(path) as rels

Figure 8.34: Cypher query used retrieve the relationship SEGMENTs with an average radius greater
than 20.

Table 8.5: Mean, median, minimum, and maximum values for vessel segment attributes calculated
across the medium-sized vessel segments.

Vessel Attribute Mean Median Min Max

Radius (DIA/2) 13.11 µm 12.20 µm 10.00 µm 20.00 µm
Length (LEN) 64.99 µm 45.89 µm 0.98 µm 1,167.92 µm
Surface Area (SA) 5,179.62 µm2 3,542.14 µm2 88.29 µm2 165,663.09 µm2

Volume (V) 36,707.95 µm3 21,626.68 µm3 567.40 µm3 2,269,249.39 µm3

Distance 61.10 µm 44.21 µm 0.66 µm 1,066.74 µm
Tortuosity 1.05 1.00 1.00 10.96
LEN:DIA 2.54 1.78 0.03 41.41
SA:V 0.16 0.16 0.05 0.36
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Figure 8.35: Medium-sized vessels: number of vessel segments (log) by radius.

Figure 8.36: Medium-sized vessels: number of vessel segments (log) by length.
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Figure 8.37: Medium-sized vessels: number of vessel segments (log) by surface area.

Figure 8.38: Medium-sized vessels: number of vessel segments (log) by volume.
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Figure 8.39: Medium-sized vessels: number of vessel segments (log) by distance.

Figure 8.40: Medium-sized vessels: number of vessel segments (log) by tortuosity.
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Figure 8.41: Medium-sized vessels: number of vessel segments (log) by length-to-diameter ratio.

Figure 8.42: Medium-sized vessels: number of vessel segments (log) by surface-area-to-volume
ratio.
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8.3.3.3.3 Analysis of the Small-sized Vessels (5 µm < radius ≤ 10 µm)

Figure 8.43: Small-sized vessels presenting in the whole-brain dataset (transverse view: ↑, anterior;
↓, posterior).

We isolated the small vascular segments by querying our database for segments with an average

radius r such that 5 µm< r≤ 10 µm (Figure 8.43). Using this data, we report the vascular charac-

teristics for all small-sized vessels as follows: total volume as 1,007,300,014.21 µm3 , total surface

area as 280,200,401.66 µm2, and total length as 6,768,182.89 µm. We estimate the fractional vol-

ume of the vasculature as 0.10% of the whole-brain. We describe the attributes of these segments

in Table 8.6. We detail the distributions for radius in Figure 8.44, length in Figure 8.45, surface

area in Figure 8.46, volume in Figure 8.47, and distance in Figure 8.48. We also present the distri-

butions for tortuosity, length-to-diameter ratio, and surface-area-to-volume ratio in Figures 8.49,

8.50, and 8.51 respectively.
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Figure 8.44: Small-sized vessels: number of vessel segments (log) by radius.

Figure 8.45: Small-sized vessels: number of vessel segments (log) by length.
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Figure 8.46: Small-sized vessels: number of vessel segments (log) by surface area.

Figure 8.47: Small-sized vessels: number of vessel segments (log) by volume.
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Figure 8.48: Small-sized vessels: number of vessel segments (log) by distance.

Figure 8.49: Small-sized vessels: number of vessel segments (log) by tortuosity.
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Figure 8.50: Small-sized vessels: number of vessel segments (log) by length-to-diameter ratio.

Figure 8.51: Small-sized vessels: number of vessel segments (log) by surface-area-to-volume ratio.
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Table 8.6: Mean, median, minimum, and maximum values for vessel segment attributes calculated
across the small-sized vessel segments.

Vessel Attribute Mean Median Min Max

Radius (DIA/2) 6.69 µm 6.34 µm 5.00 µm 10.00 µm
Length (LEN) 59.41 µm 42.25 µm 0.18 µm 1,109.14 µm
Surface Area (SA) 2,459.41 µm2 1,731.67 µm2 11.10 µm2 91,064.73 µm2

Volume (V) 8,841.39 µm3 5,595.21 µm3 53.29 µm3 1,370,950.58 µm3

Distance 54.89 µm 39.94 µm 0.18 µm 1,075.49 µm
Tortuosity 1.07 1.01 1.00 44.69
LEN:DIA 4.60 3.21 0.01 73.59
SA:V 0.31 0.32 0.06 0.42

8.3.3.3.4 Analysis of the Capillaries (radius ≤ 5 µm)

Figure 8.52: Capillaries presenting across the whole-brain dataset (transverse view: ↑, anterior; ↓,
posterior).
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We isolated the capillary segments by querying our database for segments with an average

radius less than 5 (Figure 8.52). Using this data, we report the vascular characteristics for all

capillaries as follows: total volume as 975,363,980.24 µm3 , total surface area as 402,058,481.73

µm2, and total length as 13,236,429.63 µm. We estimate the fractional volume of the vasculature as

0.10% of the whole-brain. We describe the attributes of these segments in Table 8.7. We present the

distributions for radius in Figure 8.53, length in Figure 8.54, surface area in Figure 8.55, volume

in Figure 8.56, and distance in Figure 8.57. We also detail the distributions for tortuosity, length-

to-diameter ratio, and surface-area-to-volume ratio in Figures 8.58, 8.59, and 8.60 respectively.

Table 8.7: Mean, median, minimum, and maximum values for capillary segment attributes calcu-
lated across the whole-mouse brain.

Vessel Attribute Mean Median Min Max

Radius (DIA/2) 4.81 µm 4.80 µm 4.80 µm 5.00 µm
Length (LEN) 37.21 µm 24.20 µm 0.25 µm 692.48 µm
Surface Area (SA) 1,130.38 µm2 731.03 µm2 7.54 µm2 40,423.75 µm2

Volume (V) 2,742.21 µm3 1,757.41 µm3 18.10 µm3 475,023.82 µm3

Distance 34.10 µm 23.20 µm 0.25 µm 663.95 µm
Tortuosity 1.06 1.01 1.00 171.10
LEN:DIA 3.87 2.52 0.03 72.13
SA:V 0.42 0.42 0.09 0.42
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Figure 8.53: Capillaries: number of vessel segments (log) by radius.

Figure 8.54: Capillaries: number of vessel segments (log) by length.

220



Figure 8.55: Capillaries: number of vessel segments (log) by surface area.

Figure 8.56: Capillaries: number of vessel segments (log) by volume.
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Figure 8.57: Capillaries: number of vessel segments (log) by distance.

Figure 8.58: Capillaries: number of vessel segments (log) by tortuosity.
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Figure 8.59: Capillaries: number of vessel segments (log) by length-to-diameter ratio.

Figure 8.60: Capillaries: number of vessel segments (log) by surface-area-to-volume ratio.
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Comparing and contrasting the different sized-vessels, including the capillaries

We present the distributions of vessel segment attributes side-by-side in Figure 8.61. We cau-

tion the reader to carefully analyze the histograms presented within that figure as the y-axis scales

are different across the different vessel sizes. Half-page representations of these graphs have been

presented earlier in this section, and we refer the reader to them if readability is difficult. Across the

different classifications of vessels based on size (Table 8.2), we observe similar trends for number

of segments (log) by segment attribute. We see the radius decrease in number within and across

each class. For the large-sized vessels, the observed decrease in size can almost be modeled as

a linear function for the log number of segments, albeit it does exhibit more characteristics of a

power function. As we move towards smaller classifications of vessels, the linear characteristics

diminish, and the power relationship begins to show more prevalence. Along the way, we see

more spikes in radius for the medium- and small-sized vessels compared to the large-sized vessels

and capillaries. While we are not sure as to the cause of these spikes (could be image processing

artifacts or biological in nature), they do illustrate our method’s potential to generate interesting

questions. As for length, surface area, and volume, the shape of the number of segments (log) by

respective attribute share similar trends to one another, which makes sense given their geometrical

relationships to one another mathematically.

Tortuosity seems to be more variable within the larger classifications of vessels compared to the

smaller-sized vessel groups. The values between groups are similar to one another, with each group

exhibiting a small number of outliers and dominated by straight vessel segments, which was unex-

pected especially for the capillaries that should form a mesh-like network (and thus be tortuous).

Tortuosity, like all the other distributions of attributes, is likely biased due to the preparation of the

dataset by [6], primarily due to the damage to filament structure inevitably encountered during their

extraction procedure. The length-to-diameter ratio shows similar trends across all vessel groups

and exhibits the smoothest power function of all the vessel attributes. The surface-area-to-volume

(SA:V) ratio distributions exhibit a seemingly normal distribution for the large- and medium-sized

vessel groups that are positively skewed with some kurtosis. Therefore, the log segment count
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decrease in number as SA:V increases. Meanwhile, the small-sized vessel and capillary groups

exhibit a power function relationship of increasing log segment count with increasing SA:V value.

8.3.4 Validation against piecemeal data in the literature

Numerous studies in the literature have analyzed many aspects of the cerebrovasculature sys-

tem, albeit with distinct focuses and across different cerebral regions. Such investigations have

contributed vast amounts of piecemeal data about the brain’s vascular system to the neurosciences.

In this section, we intend to compare our results against the pre-existing data derived from the

more authoritative of these studies as relevant to our whole-brain investigation.

First, we would like to determine the validity of the radius measurements that we have reported

in Table 8.3. Our rationale for exploring this vessel attribute first is due to its use in the calculation

of other attributes (e.x., surface area). For radius, we reported a means value of 5.92 µm and

medium of 4.80 µm. These results confirm those reported by Lee (2018) [6], who described an

average radius of 5.31 µm and a medium of 4.80 µm. Lee extracted the cerebrovasculature dataset

used in our study and therefore it is not surprising that our results corroborate this. However,

neither of our findings match exactly the piecemeal data reported in the literature.

Blinder et al. (2013) [29] reported a mean and median radius value approximately 2 µm. This

result was acquired after the analysis of a small dataset acquired using all-optical histology. Their

focused result has been confirmed across the whole-brain by Zhang et al. (2018) [4], who applied

the CLARITY protocol to the brain and subsequently imaged it using light-sheet microscopy. It

would appear that our measurements of radius are off by a factor of two. We hypothesize that this

difference is due to the preparation process, that the subsampling and morphological operations

applied by Lee (2018) [6] lost the smallest vessels.

Meanwhile, the maximum radius size that we observed was 72.00 µm. This observation is

sensible. The major arteries and veins that were occupying the cerebrovasculature system of the

mouse model used in our study measure to about this value [113]. In contrast, the minimum value

that we recorded was 4.80 µm. However, earlier investigations from our laboratory using small

samples of the KESMBA India Ink dataset (the same dataset used in our investigation) measured
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Figure 8.61: Side-by-side comparisons of vessel attributes across whole-brain.
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radius values that were less than 4.80 µm [7, 13] at approximately 2.00 µm. Therefore, we hypoth-

esize that during the preparation process, the subsampling and morphological operations applied

by Lee (2018) [6] inadvertently removed the smaller filaments. We would like the reader to keep

in mind that the segmentation of filament data remains a challenge and, in most cases, the com-

pleteness and accuracy of the reconstruction of whole-brain datasets should always be questioned

and challenged.

The range of vessel segment lengths that we reported across the whole-brain was broad, with a

minimum segment length of 0.18 µm and maximum length of 1,167.92 µm. The careful reader will

notice that 0.18 µm is below the resolution of KESM. This is due to the image processing regiment

applied by [6] to the raw data: small parts of a vessel can break off or become discontinuous

with the parent vessel. We reported the mean and median lengths as 43.92 µm and 29.27 µm

respectively. The most relevant data that we could find for comparison was a description of the

median microvasculature length of 50 µm in the mouse by Blinder et al. (2010) [28]. Blinder

et al.’s investigation were focused within the territory of the middle cerebral artery and near the

cortical surface. We suspect that the length measures that we’ve reported are reasonable for our

dataset. However, given the quality of the dataset, we believe that our measurements of length are

also underestimated.

Our informatics platform uses the radius and length measurements of a segment to calculate

its surface area and volume directly. The distributions of log segments by each of these attributes

appear to follow the biological distributions, given that similar trends have been observed for rats

[25], pigs [114, 115], and even humans [24, 10]. Therefore, the overall trends observed for radius,

length, surface area, and volume (see Figure 8.61) in this study appear validated.

We used vessel segment length and distance to calculate tortuosity using the distance metric

[87]. While we have not been able to find an adequate resource to compare our observations for

distance, there are numerous investigations exploring tortuosity in the literature. The vasculature

in the capillary network has been shown to be more torturous than the larger-sized vessels [84].

This is because the capillary network is mesh-like by nature [28]. The pial surface arteriole and
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venule networks are also highly interconnected [31] and are likely to exhibit multiple twists and

turns too. The penetrating vessels that connect the surface to the capillary networks, however, tend

to dive straight into the cortex, at approximately 90-degrees [29]. The penetrating vessels have

been characterized as being approximately 9 µm to 11 µm in diameter.

In our study, we have captured some of this variation. However, with our characterization of a

vessel segment as simply the filaments presenting between branch points and/or endpoints, there

is some information loss. In most studies, a vessel segment might have branches coming off of it.

For instance, the middle cerebral artery would be considered a full vessel segment through some

points, despite many branches coming off it. In our study, the middle cerebral artery is partitioned

into many individual segments, which can affect the histogram distributions of the attributes. This

means that the histograms for tortuosity in Figure 8.61 may be skewed as there may be many small

segments hiding the true distribution. Therefore, we caution the reader against using the “absolute”

values presented. Nonetheless, when looking at log vessel segments by tortuosity in Figure 8.61,

the “relative” nature of our results does follow the biological predisposition that smaller vessels

exhibit more tortuosity than the larger vessels.

The distributions of length-to-diameter ratios (LDR) and surface-area-to-volume ratios (SA:V)

also follow the natural tendencies of nature when considered the vessel segments are grouped by

size. This is evident in Figure 8.61, where we look at the distributions of log vessel segments

by these attributes and compare them between our vessel size groupings (large-, medium, small-

sized vessels and capillaries; Table 8.2). For LDR, the almost fractal nature of the tree-like tubes

directing flow to the capillary mesh-like networks sees the steep decrease in LDR moving from

large-sized vessels down to the capillaries [84]. This trend is reflected in our data. For SA:V, the

geometrical implications of SA:V are reflected in biology. The large-sized vessels have a small

SA:V as the pipes directing cerebral blood flow are interested in transport. As flow is directed to

the capillary beds, SA:V will increase as to maximize the surface area available for fluid exchange

to occur through diffusion and other means [15]. This trend is also reflected in our data due to the

fluid mechanics of blood flow.
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8.3.5 Dissemination of connectivity data

Currently, we disseminate our connectivity data as Neo4j data model files and through serial-

ized Networkx graph binary files for the whole brain “updated original” and “reduced” graphs. The

former allows researchers to download the data model and seamlessly import it into an instance

of Neo4j. Meanwhile, the latter allows users to load the connectivity data directly into our infor-

matics platform. The connectivity data can be queried and interacted with using either method; we

provide the serialized files to increase accessibility to the data. All of these files are distributed in

our Github repository, accessible via www.github.com/michaelrnowak.

8.4 Summary

The principal contribution of this work is the first (to our knowledge) queryable database of

vascular connectivity across the whole brain. Our database contains an edge for every single vessel

segment that was segmented successfully from the KESMBA India Ink dataset by Lee (2018) [6]

along with that vessel’s attributes. Each of these SEGMENT edges can be used to index into the

FILAMENT edges encoding the geometry of that respective vessel segment. In this whole-brain

study, we report the following volume characteristics across the whole brain:

• Total length

• Total surface area

• Total volume

• Total-surface-area-to-total-volume ratio

In addition to the volume characteristics, we also investigated the attributes of vessel segments and

their distributions across the brain. Those attributes are:

• Radius

• Length

• Tortuosity, using the distance metric defined in [87]
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• Distance (between the beginning and the terminal end of the segment)

• Surface area

• Volume

• Surface-area-to-volume ratio (i.e., SA:V)

• Length-to-diameter ratio (i.e., LEN:DIA)

We reported the distributions of log number of segments by each of these attributes across the

entire mouse brain. Subsequently, we used our database to retrieve large-, medium-, small-sized

vessels, and the capillaries to focus our analysis to blood vessels meeting the size criteria denoted

in Table 8.2. We analyzed each group of vessels individually, describing their volume character-

istics and exploring their distributions of attributes. Although not illustrated, we emphasize that

different graph algorithms can be applied to our database to isolate subgraphs meeting some cri-

teria, upon which additional analyses can be performed. Finally, we compared the trends that we

observed across the whole-brain against the relevant piecemeal data available in the literature. We

understand that there are some quality issues associated with the dataset used in this study; we af-

firm and acknowledge those issues here. However, it is important to recognize that the framework

presented throughout this dissertation can be applied to cerebrovasculature datasets acquired with

different modalities, resolution, and volume. Further, by incorporating our work, all that is needed

to explore the whole-brain are database queries.

We expect that our methods will open the door for data-driven, quantitative investigation of

the brain’s vascular system. For instance, in order to understand the development and function of

cerebral vasculature in the brain, it is important to map out its anatomical structure in the healthy

brain and compare differences to the disordered brain. Accordingly, we could construct databases

of many healthy brains and explore the variance of many vessel attributes within them. Interesting

attributes of the network can be elucidated using our data-driven approach, such as the profound

spikes in radius for the medium-sized and small-sized vessels evident in Figures 8.35 and 8.44.
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While we are not sure as to the cause of these spikes (could be image processing artifacts or

biological in nature), they do illustrate our method’s potential to generate interesting questions.

In general, our data models for healthy brains could be compared against those acquired from

an animal model of human pathology. We believe that such whole-brain studies are the key to the

discovery of novel biomarkers of processes underlying healthy and diseased brains. In this chapter,

we have shown that such studies are indeed achievable with our methods.
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9. DISCUSSION AND CONCLUSION

In this chapter, we will consider the future directions of our work, provide a summary of

the specifics aims that we have accomplished, detail the contributions of our work, and close by

discussing the expected impact of our dissertation.

9.1 Future Work

In future work, we should investigate the cerebrovasculature of healthy murine brains further

and begin studying its presentation in murine models of human pathology. This would begin

through the construction of a whole-brain connectivity database that is more complete and exhibits

greater coherence than that prepared by [6] and used in Chapter 8 to illustrate our methodologies.

Once that connectivity database is prepared, a comparable analysis to that presented in Chapter 8

should commence. The results of this analysis should be compared to both our own and the piece-

meal data in the literature. If the conformance is acceptable, we believe that the graph database

should be leveraged to its fullest potential for further analysis. This would include the application

of graph algorithms similar to those applied [31] to determine the robust and fragile aspects of

the cerebrovasculature network. Indeed, [31] has characterized this well within the territory of the

middle cerebral artery. Therefore, future investigations would first confirm the findings of [31]

before charting the less studied regions of the brain.

The study of a single, healthy brain at micrometer resolution yields significant information

about the individual specimen. However, this provides little information about the variation of

cerebrovasculature across healthy brains. Therefore, the next step would be to acquire many

whole-brain datasets for healthy brains and construct a database for each. The variation in cere-

brovasculature structure could then be reported globally and for localized regions of interest.

Once the cerebrovasculature of healthy brains has been characterized, the next step is to ac-

quire databases of murine models of human pathology. The variation in cerebrovasculature struc-

ture could be determined globally and for localized regions of interest within the disease model.
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These results would then be compared between the healthy and pathological brains. This would

provide significant insight as to how the pathophysiology of some disease may affect the cere-

brovasculature system. Furthermore, whether pathogenesis is biased to the disruption of a specific

cortical, or subcortical, the region could be explored. These are questions that could be answered

using our technique. More elaborate studies could be conducted by obtaining brain datasets ac-

quired at different periods from disease onset. Such longitudinal data could help elucidate how the

cerebrovasculature is disrupted as a function of time since the onset of the pathological condition.

Future work using the application of our methods for investigations into the cerebrovasculature

and of cerebral blood flow will require significant collaboration with neuroscientists and others in-

terested in those topics. In the interim, it would make sense to focus on expanding our informatics

platform and graph database as they do have such dependencies on outside personnel. We believe

that the most significant addition would be to label whole segments. For instance, in our method,

the middle cerebral artery is encoded as several segments presenting between bifurcations. To-

gether, these segments comprise this major artery; however, they are analyzed independently. We

would like to represent and calculate attributes for the middle cerebral artery in its entirety. We

would intend to do this for all vessels. There are many approaches to determining where one vessel

starts, and another vessel ends. It all comes down to a new definition of a segment and an algorithm

that can extract segments based upon that definition. For instance, in our work, we stated that a

segment was the vasculature presenting between points of bifurcation. Using a diameter-defined

Strahler model scheme, one can define a segment in a manner that allows the segment to be defined

across points of bifurcation. The representation of such a segment in our graph database would

need to be considered.

We also need to publish our whole-brain vascular connectivity data model online (in a Neo4j

database) eventually. Doing so will allow users to interact with the data through the Neo4j Browser

and/or query with the database from our informatics platform. For instance, by interacting with the

database in this manner, relevant information can be pulled down from the Internet, alleviating the

need for the user to store the whole-brain connectivity data locally. Therefore, future work should
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incorporate a plan to publish the data model once funding is in place to support the necessary

infrastructure.

9.2 Conclusion

In this dissertation I have accomplished the following specific aims:

1. Generation of synthetic cerebrovasculature models. Create large-scale, biologically-grounded,

artificial cerebrovascular volumes for the validation of segmentation procedures. Completed

in Chapters 4 and 3.

2. Model-based validation system. Design a validation method that evaluates the correctness

of segmentation algorithms over large-scale, biologically-grounded, synthetic cerebrovascu-

lature models. Completed in Chapter 5.

3. Informatics platform. Develop an open-source informatics platform that: (1) converts data

to graph representation; (2), calculates descriptive statistics describing vascular filament at-

tributes across every element in the model, while characterizing the encoded cerebrovascu-

lar volume as a whole; and, (3) convert graph representation to the data model for a graph

database. Completed in Chapter 6.

4. Whole-brain analysis. Perform quantitative analysis across the Knife-Edge Scanning Mi-

croscope Brain Atlas India ink whole-brain dataset: (1) assess algorithmic performance of

the segmentation algorithm used to extract the vascular filaments using the model-based

validation system; (2) use the informatics platform to quantitatively the describe specific

attributes and characteristics of the mouse cerebrovascular system; and, (3) disseminate raw

connectivity data online. Completed in Chapter 8.

Our work has contributed a synthetic model-based validation system to assess segmentation

algorithm performance, an informatics platform for vascular analysis, and queryable database of

vascular connectivity. Together, these contributions provide an intuitive and systematic way to
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characterize the cerebrovasculature system of murine animal models. We have illustrated the capa-

bility of the final product of this system in Chapter 8. Using our cerebrovasculature database, we

were able to study the cerebrovasculature system by issuing text-based queries to extract the vessel

segments that we were interested in. The outcome of our investigation was a wealth of information

about the cerebrovasculature system as a whole, and about the different classifications of vessels

comprising it. These simple queries even revealed profound spikes in radius for the medium-sized

and small-sized vessels evident in Figures 8.35 and 8.44. While we are not sure as to the cause

of these spikes – they could be image processing artifacts or biological – they do illustrate the

potential for queries to generate interesting biological questions.

We expect that the methods described in this dissertation will open the door for data-driven,

quantitative investigation across the whole-brain. At the time of writing – and to the best of our

knowledge that prior to this work – there was not a systemic way to assess segmentation algorithm

performance, calculate attributes for each segment of vasculature extracted across the whole brain,

and store those results in a queryable database that also stores geometry and topology of the entire

cerebrovasculature system. We believe that our method can and will set the standard for large-

scale cerebrovasculature research. Therefore, in conclusion, we state that our methods contribute

a standardized, quantitative approach to the study of cerebrovasculature datasets acquired using

modern imaging techniques.
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