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ABSTRACT

Orthogonal Frequency Division Multiplexing (OFDM) is an approach for realizing high speed

transmission of data. The OFDM modulation scheme has the advantage of providing high spectral

efficiency in multicarrier transmission of high data rate. One disadvantage of OFDM is that it

has a high Peak-to-Average Power Ratio (PAPR) which leads to stricter linearity requirements for

power amplifiers. This necessary increase in the linear range of the power amplifier results in low

power efficiency. Many PAPR reduction techniques use optimization algorithms to iteratively find

a locally optimal point. In this project, we focus on the task of training neural networks which can

produce signals with close performance to PAPR reduction methods using convex optimization.

Also, we use unsupervised learning to train neural networks to find its own algorithm to achieve

PAPR reduction.
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1. INTRODUCTION

With the development of modern communication techniques, Orthogonal Frequency Division

Multiplexing (OFDM) becomes an attractive multi-carrier modulation technology that satisfies the

requirement of high quality wireless communication. By dividing the channel into several or-

thogonal sub-channels, it reduces inter-symbol interference (ISI), provides immunity to frequency

selective fading and improves Quality of Service. So far, OFDM has been widely implemented in

4G (fourth generation) mobile Communication, Digital Audio Broadcasting (DAB), Digital Video

Broadcasting (DVB), wireless networks and World wide Interoperability for Microwave Access

(WiMAX) [1, 2].

However, an OFDM system produces a high Peak-to-Average Power Ratio (PAPR) of the trans-

mitted signal. High PAPR values require a large linear range for power amplifiers. There are many

techniques for PAPR reduction in OFDM systems. Clipping and filtering[3, 4], peak insertion

(PI)[5], selective mapping (SLM)[6, 7], partial transmit sequence (PTS)[8, 9], linear block coding

(LBC)[10] are some of the many algorithms used for PAPR reduction at transmitter. However,

those techniques still suffer from problems. In particular, it is expensive computationally for them

to perform an exhaustively search to find the optimal solution, especially when the number of sub-

carriers increases. The search complexity increases rapidly with increased number of sub-carriers

[11].

To overcome those disadvantages, in this project, we focus on the task of training a neural net-

work that requires less computational complexity to perform peak suppression. First, we train the

neural network with a data set of PAPR suppressed signal generated by convex optimization tech-

nique. Then, we use unsupervised learning and train the neural network with randomly generated

input signal and a self-defined cost function.

In Section 2, we provide detailed introduction about OFDM systems, and give an example with

a specific number of input data. In Section 3, we compare our method with other neural network

based PAPR reduction methods. The proposed research is shown in Section 4, we introduce the
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training data used for neural network training and we describe how the network model is applied in

PAPR reduction including network structure and training procedure. Experiments and simulation

results are shown in Section 5.
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2. OFDM SYSTEM AND PAPR PROBLEM

In this chapter we briefly introduce an OFDM modulation system and its relationship with fast

Fourier transform(FFT) and inverse fast Fourier transform(IFFT). We also give the mathematical

formula for PAPR.

2.1 OFDM System

In an OFDM system, as shown below, a number of n input data are first modulated. For

example, we use Quadrature Phase Shift Keying (QPSK) modulated signal.We use n orthogonal

sub-carriers as each input data is modulated by a sub-carrier. All those sub-carriers are mutually

independent. Then all modulated signals are combined together for transmission. Because the

sub-carriers are orthogonal, the transmitted data can be separated and demodulated at the receiver

without distortion. The procedure including modulation by sub-carriers and combining can be

replaced with an IFFT, as well as the procedure of separating and restoring can be replaced by an

FFT, which greatly simplifies the system.

Figure 2.1: OFDM System.
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Figure 2.2: IFFT and FFT in OFDM System.

To clearly understand the transformation from the original input data to the combined OFDM

signal, suppose we have a OFDM signal consisting of N sub-carriers with a frequency interval of

4f . The bandwidth B of the entire system is divided into N equally spaced sub-channels. Within

one symbol duration length 1
4f

, all sub-carriers are orthogonal to each other. The original input

data are first modulated (e.g., QPSK), and the combination is achieved by IFFT.

Suppose we have a set of data

X = [X0, X1, ..., XN−1]
>.

The duration for each symbol from each sub-carrier is T. Then the OFDM block for the set of input

is represented by

x(t) =
1√
N

N−1∑
k=0

XN exp j2πn4ft, for 0 ≤ t ≤ NT.

2.2 PAPR

Peak-to-average power ratio (PAPR) is a time domain parameter, which is defined as the maxi-

mum power of an transmitted OFDM signal divided by its average power. In an OFDM system, the

transmitted signal is the sum of signals each modulated with a sub-carrier. In some cases, the peak
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power of the transmitted signal will be much higher than its average power. This requires the high

power amplifier (HPA) at the transmitter have a large linear range, resulting in a low efficiency of

the HPA. As a power ratio, PAPR is normally expressed in decibels (dB).

PAPR =
max |x(n)|2

E[|x(n)|2]
.
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3. NEURAL NETWORK BASED PAPR REDUCTION APPROACHES

PAPR reduction has been a main challenge for OFDM systems in the field of communications

for a long time. There are many techniques proposed to solve the problem, most of them are di-

vided into three groups. (1) Clipping and filtering.[3, 4] (2) Coding, like linear block coding (LBC),

Golay Sequences and Reed-Muller Codes.[10, 12] (3) probabilistic techniques, like Selected Map-

ping (SLM)[6, 7], Partial Transmit Sequence (PTS)[8, 9], Tone Reservation (TR)[13, 14], Tone

Injection (TI) [13]and Active Constellation Expansion (ACE)[15].

However, there is no technique that is fully effective in reducing PAPR, they all have different

advantage and disadvantages. In the industry, the clipping and filtering technique is often used as

one of the simplest. Although this method is simple, it increases the bit error rate of the system

and introduces out-of-band noise. Coding techniques obtain the best PAPR reduction, but their

decoding complexity are usually high. They are only applicable to the case where the number of

sub-carriers is small. Probabilistic techniques do not focus on reducing the maximum value of

the signal amplitude, but rather reduce the probability of peak occurrence. They also require high

computational complexity and memory, as it’s hard to find the optimal combination by exhaustive

searching. SLM techniques require multiple IFFT operations. PTS techniques suffer an exponen-

tially increase of complexity with the number of OFDM signal blocks in order to obtain an optimal

phase rotation factor. And both methods need to send side information. For TR technique, the

selection of the optimal cutting tone is difficult in order to obtain the optimal peak reduction. And

it is also hard for TI technology to select the optimal signal constellation representation.

In recent years, few attempts related to neural networks have been made as machine learning

technology has benefited human life and realized great application in many areas. Neural network

is a useful way to decrease computation complexity and achieve good result when combining with

some traditional PAPR reduction techniques. So far the idea has been used in many works relating

to TR approach[16], clipping and filtering technique[17], SLM technique[18, 1], TI scheme[19]

and ACE[20].
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In[16], a network structure is proposed based on PRC scheme, a kind of TR technique. The

TR technique [60] is a PAPR reduction method without distortion. This method uses a part of the

sub-carriers called Peak Reduction Tones (PRT) to generate a peak-reduced signal, and this part

of the sub-carriers does not carry any data information. These Peak Reduction Tones are added to

the original OFDM signal to produce a new signal which has a lower PAPR value then the original

OFDM signal. The PAPR reduction performance of the TR method is mainly determined by the

selection of the PRT set. PRC scheme reserve a number of tones and reducing PAPR by optimizing

phases of pilot tones which are not used for carrying data. The network in [16] consists several

sub-nets, as the same number of pilot tones. Every sub-nets shares the same structure that contains

one input layer, one hidden layer and a single output node. The neural network is pretrained

by large enough training data to establish the relation between OFDM symbol and suitable pilot

phases. Produced pilot phases are combined with data tones. After doing zero padding and IFFT,

we can get the final transmitted data with a lower PAPR. It is shown that the network performs a

satisfactorily result that reduce the complementary cumulative density function (CCDF) of PAPR

for 2.4dB at a probability of 10( − 4) with one hidden layer consists of 60 neurons and 10000

training data.

In[17], a simplified clipping and filtering (SCF) technique and artificial neural network based

method is proposed. SCF is a novel iterative clipping and filtering (ICF) algorithm[21].By adding

a frequency domain clipping operation, SCF obtain the same PAPR with less iteration time. The

proposed network establish the map between the input as the time domain OFDM signal and the

output which is the time domain SCF signal. There are two modules that can generate real part

and imaginary part of the SCF signal separately. Each network model is based on a multiple-layer

perceptron(MLP) neural network and has two hidden layers with two neurons in the first layer and

one in the second. For the proposed scheme, it shows a close performance of PAPR reduction

with 0.1dB loss and a loss of 1.5dB performance on bit-to-error ratio (BER) compared to SCF

technique.

The authors in [18, 1] proposed SLM based PAPR reduction algorithms using neural network.
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The basic idea of the SLM method [6, 7] is to multiply the original statistical signal by several

statistically independent vectors to obtain several transformed signal having the same information

as the original one. Then performing IFFT for each multiplied signals to obtain several corre-

sponding time domain signals. The one with the smallest PAPR is selected for transmission. The

probability of a PAPR exceeding a given threshold is greatly reduced by using the SLM method.

The SLM scheme is simple but the computational complexity increases when the number of vec-

tors increases. And the receiver needs side information to correctly decode. In[18], the scheme is

proposed as two neural network (NN) units employed at both the transmitter and the receiver side.

The transmitter NN is pretrained with the input of the time domain OFDM signals and with the

output of the time domain selected SLM signals. The receiver NN is pretrained with the input of

the time domain transmitted signals and with the output of the time domain OFDM signals. Each

unit is based on a MLP neural network. The authors in [1] propose a novel framework based on

NN and SLM with a kernel called modified Novel Kernel Based – Radial Basis Function (MNKB-

RBF). Radial Basis Function (RBF) is an activaiton function for NN and is often used for solving

optimizaiton problems. Conventional RBF is represented as the Euclidean distance between the

input and the centers of every neuron[1]. To better separate features, the proposed MNKB-RBF

kernel combines the Euclidean RBF and cosines RBF linearly with adaptive weights. The frame-

work based on MNKB-RBF and SLM block is proved to obtain a higher probability of selecting

carriers with low PAPR than NKB-RBF based technique in most cases.

In[20], the NN based model is proposed based on ACE. In ACE technique, some external

signal constellation points in the data block expand substantially to the outside of the original con-

stellation to reduce the PAPR of the data block. For QPSK modulation, there are four possible

constellation points in each sub-carrier, which are located in each quadrant of the complex plane

and are equidistant from the real axis and the imaginary axis. To maintain the BER performance,

constellation points are allowed a little adjustment. ACE technique can reduce PAPR by doing

time domain clipping and frequency domain constellation point extension iteratively. The pro-

posed model replace conventional ACE algrithm by NN structure to overcome large computation

8



complexity of discrete Fourier transform (DFT). The neural network (NN) units are employed at

both the transmitter and the receiver side. The transmitter NN is pretrained with the input of the

time domain OFDM signals and with the output of the time domain selected ACE signals. The

receiver NN is pretrained with the input of the time domain transmitted signals and with the output

of the time domain OFDM signals. With a structure of two hidden layers with each layer of two

neurons, the proposed approach achieves low computation complexity and 3dB PAPR reduction,

which is only 0.75dB higher than ACE scheme. Also, the BER performance is proved to be better

than ACE shceme.

All of those NN based PAPR reducing models learn the relationship between original time

domain OFDM signal and optimized tima domain signal and improve the conventional technique

with low computation complexity. Trained with a collection of data set generated by the conven-

tional approaches, those NN can achieve a satisfactory PAPR and BER performance close to the

conventional one. However, the performance mostly depends on training data set, as those are used

to renew the parameters of the NN.

In this research, it is proposed to train the neural network that learn the relationship between

original frequency domain OFDM signal and the PAPR suppressed frequency domain signal with a

given input-output data set. Furthermore, with a self-defined renewing strategy, the neural network

is supposed to learn the relation between the OFDM signal and its PAPR independently.
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4. PROPOSED RESEARCH

In this chapter, we will present specific discussions on how we are going to train the neural

network to reduce PAPR for supervised learning and unsupervised learning, including the network

structure and the training procedure.

4.1 Dataset

We select Quadrature Phase Shift Keying(QPSK) modulated data for training. QPSK is a form

of quadratic modulation that every two bits (00, 01, 10, 11) are translated into one complex number.

Figure 4.1: Transforming Format of QPSK Modulation.

As shown in Figure 4.2, for each symbol in each sub-carrier there are four possible constellation

points. Each point in the complex plane equals to x ∈ ±0.7071± 0.7071. We have thousands of

examples that suppressed PAPR to a lower value by using convex optimization technique. We are

going to train the neural network that learn the relationship between the original frequency domain

OFDM signal and the PAPR reduced frequency domain optimized signal. Finally, we will obtain a

neural network(NN) that find the algorithm between PAPR reduced signal and the original OFDM

signal without a given training data set.

Figure 4.2 shows the constellation plot for the original frequency domain OFDM symbol.

10



Figure 4.2: Constellation Plot of Original QPSK Modulated Data.

Figure 4.3 shows the constellation plot for the PAPR reduced frequency domain optimized

OFDM signal.
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Figure 4.3: Constellation Plot of PAPR Suppressed QPSK Modulated Data.

4.2 Network Structure

The OFDM symbols are QPSK modulated with different number of sub-carriers. For different

number of sub-carriers, we need to train different networks to fit the number of input and output

neurons. For example, an OFDM signal with 12 sub-carriers contains 12 complex numbers, we

need 24 neurons for the input layer to express real and imaginary part separately. The same as the

output layer. Hidden layers can have many different sets of combinations and different structures.

PAPR is a time domain feature for OFDM signal. In order to make it easier for the neural

network to understand features of signal in time domain, we use hidden layers to mimic fast Fourier

transform algorithm. The IFFT expression below shows an example for OFDM signal with N sub-

carriers.

x(t) =
1√
N

N−1∑
k=0

XN exp j2πn4ft, for 0 ≤ t ≤ NT

Both XN and x(t) are complex numbers, we need to consider both real and imaginary parts.

12



We can expand the equation as following,

x(t) =
1√
N

N−1∑
k=0

{(Re[XN ]Re[exp j2πn4ft]− Im[XN ]Im[exp j2πn4ft])+

j(Re[XN ]Im[exp j2πn4ft] + Im[XN ]Re[exp j2πn4ft])}, for 0 ≤ t ≤ NT

Instead of separating real part and imaginary part and operate two NN units, we double the

number of neurons to express one complex number with two neurons in order to simplify NN

module. In this case, we use 2N as the number of input neurons. With a oversampling factor

T = 4, the original signal is extened by N(T − 1) zeros. The matrix expression of IFFT is shown

as


x0
...

xNT

 =


W 0

N · · · W 0
N

... . . . ...

W 0
N · · · W

−(NT−1)(N−1)
N




X1

...

XN

 (4.1)

where WN = exp j2πn4ft. The expression can be simplified as ~x = WN
~X .

We use a fully connected neural network to mimic the map of IFFT by setting the first hidden

layer with 2NT neurons. The proposed neural network structure is shown as below.
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Figure 4.4: Network Structure.

4.3 Training Procedure

The main idea of renewing neural network parameters is the Back-propagation (BP) algorithm.

BP algorithm reflects how parameters like weights and biases effect the loss function. With the

help of the chain rule, we can obtain the partial derivative of the loss function with respect to any

weight or bias by deriving the partial derivative between loss function with respect to the network

output.

Suppose the data D = {(Xi, Yi)}Ni=1 are given for training and D̂ = {(Xi, Ŷi)}Ni=1 is the NN

input-output data set. First, we train the NN to mimic the performance of the give data set. Here

the loss function is:

L =Mean Square Error(MSE) =
1

2

∑
i

(Yi − Ŷi)2

The partial derivative between loss function with respect to the network output is:

∂L

∂Ŷi
=
∂ 1

2

∑
i(Yi − Ŷi)2

∂Ŷi
= Ŷi − Yi

14



After doing the supervised learning. We are going to train a neural network without the help of

other PAPR reduction techniques. Here we propose a self-defined loss function to renew weights

and biases in the network. The loss function contains two parts, MSE and PAPR with mixing

parameters α, β. The MSE between NN output layer and input layer constrains signal deviation

to prevent BER distortion. The PAPR part is the main composition for reducing PAPR. For each

sample, the output vector is ~̂Y = (Y1, Y2, ..., YN). Suppose the IFFT for the output vector is

expressed as ~̂y = IFFT (
~̂
Y ) = WN

~̂
Y . So the loss function is:

Loss = αMSE + βPAPR = α
1

2

∑
i

(Yi − Ŷi)2 + β
max |~̂y|2

E[|~̂y|2]
.

To infer the partial derivative of the loss function with respect to every output variables, we

analyze the formula for PAPR as the MSE part is similar to above. Suppose the partial derivative

of PAPR with respect to output layer is

∂PAPR

∂Ŷi
=
∂max |~̂y|2

E[|~̂y|2]

∂Ŷi

=
∂max |IFFT (

~̂
Y )|2

E[|IFFT (
~̂
Y )|2]

∂Ŷi

=
∂max |WN

~̂
Y |2

E[|WN
~̂
Y |2]

∂Ŷi

Max function is not differentiable, so we use soft-max function instead that is differentiable.

Also, we ignore the average power part because the average power of OFDM signal remains same

for different data samples. The approximate formula is proposed as

∂PAPR

∂Ŷi
≈ ∂softmax|WN

~̂
Y |2

∂Ŷi
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=
∂ ln

∑
j exp | ~WNj

~̂
Y |2

∂Ŷi

=
∂ ln

∑
j exp |(Re[ ~WNj]Re[

~̂
Y ]− Im[ ~WNj]Im[

~̂
Y ]) + j(Re[ ~WNj]Im[

~̂
Y ] + Im[ ~WNj]Re[

~̂
Y ])|2

∂Ŷi

=
∂ ln

∑
j exp {(Re[ ~WNj]Re[

~̂
Y ]− Im[ ~WNj]Im[

~̂
Y ])2 + (Re[ ~WNj]Im[

~̂
Y ] + Im[ ~WNj]Re[

~̂
Y ])2}

∂Ŷi

We have doubled the number of neurons of the output layer to express one complex number

with two real neurons. So the formula above need to be separated into two cases. Here is the

example for the real part. For simplicity, assume Zj = (Re[ ~WNj]Re[
~̂
Y ] − Im[ ~WNj]Im[

~̂
Y ])2 +

(Re[ ~WNj]Im[
~̂
Y ] + Im[ ~WNj]Re[

~̂
Y ])2, so

∂PAPR

∂ ˆRe[Yi]
≈
∂ ln

∑
j expZj

∂ ˆRe[Yi]

=
1∑

j expZj

∑
j

expZj
∂Zj

∂Re[Yi]

where
∂Zj

∂Re[Yi]
= 2Re[WNj,i](Re[ ~WNj]Re[

~̂
Y ]− Im[ ~WNj]Im[

~̂
Y ])

+ 2Im[WNj,i](Re[ ~WNj]Im[
~̂
Y ] + Im[ ~WNj]Re[

~̂
Y ])

Furthermore, we combine supervised learning and self-defined loss to see if it is possible to

surpass the existing performance of suppressed data used for training. We test for different mixing

parameters to find the optimal combination. For different data sizes the optimal parameter com-
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Operations Convex OPT(N=12) Convex OPT(N=36) Proposed NN(N=12) Proposed NN(N=36)
(I)FFT 48 144 - -
Multiplications 437,400 3,696,840 13,920 124,704
Additions 249,120 1,991,520 14,016 124,992
Exponential 7,920 23,760 96 288

Table 4.1: Computational Complexity Comparison of the Convex Optimization and the Proposed
Neural Network with N Sub-carriers

binations are different. In future research, we will propose an adaptive optimization algorithm for

those mixing parameters.

4.4 Complexity Analysis

The computational complexity of the convex optimization method and proposed NN is com-

pared in Table 4.1. The table shows the number of (I)FFT, multiplication, addition and exponential

operations due to convex optimization algorithm and NN models. For each N point (I)FFT, the

number of multiplications and additions are N
2
log2(N) and N log2(N). The NN models based on

a fully connected structure with the number of neurons in each layer of {N, h1, h2, N} requires

(N × h1 + h1 × h2 + h2 × N) times multiplications and additions if not considering activation

functions.
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5. EXPERIMENTS AND RESULTS

5.1 Determine Mixing Parameters of Loss Function

In our loss function

Loss = αMSE + βPAPR,

α and β are mixing parameters that constrain signal deviation and signal PAPR respectively. It’s

a trade-off problem. In this section, we compare the results between different parameter combi-

nations. The goal is to find a set of mixing parameters that can reduce PAPR under an acceptable

derivation.

Figure 5.1: PAPR CCDF Comparison of Different Parameter Combinations for 12 Sub-carriers.
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Mean Deviation Max Deviation 10−3 CCDF PAPR(dB)
Original 0 0 9.37
Convex OPT 0.007 0.09 8.64
α = 10, β = 0.01 0.002 0.08 9.01
α = 10, β = 0.02 0.006 0.18 8.73
α = 10, β = 0.05 0.016 0.25 8.37
α = 10, β = 0.1 0.027 0.54 7.98
α = 10, β = 1 0.059 0.82 4.0

Table 5.1: Deviation and PAPR Performance of Different Parameter Combinations with 12 Sub-
carriers

Figure 5.2: PAPR CCDF Comparison of Different Parameter Combinations for 36 Sub-carriers.

Figure 5.1 and 5.2 compare the complementary cumulative distribution function(CCDF) of

PAPR for different parameter combinations. By fixing α = 10, PAPR changes as expected when

the value of β changes.

As shown in Table 5.1 and 5.2, we use the results of the convex optimization method for

comparison. In order to have a fair comparison, we want to keep the same degree of average

deviation with the convex optimization method. So we choose the parameter set with α = 10 and

19



Mean Deviation Max Deviation 10−3 CCDF PAPR(dB)
Original 0 0 10.48
Convex OPT 0.007 0.17 8.60
α = 10, β = 0.01 0.005 0.12 9.52
α = 10, β = 0.02 0.016 0.31 9.20
α = 10, β = 0.05 0.031 0.64 8.59
α = 10, β = 0.1 0.053 1.26 8.55
α = 10, β = 1 0.51 1.27 4.38

Table 5.2: Deviation and PAPR Performance of Different Parameter Combinations with 36 Sub-
carriers

β = 0.02 for 12 sub-carriers and the set with α = 10 and β = 0.01 for 36 sub-carriers.

5.2 Results

The simulations are performed for 12 and 36 sub-carriers. They are all QPSK modulated. In

this section, our experiments illustrate the performance of signal PAPR and deviation for proposed

three NN based methods. In method 1, we train our neural network based on a given data set

generated with convex optimization method. In method 2, we use unsupervised learning and train

with our loss function Loss = αMSE + βPAPR. Mixing parameters are determined in the

previous section. In method 3, we combine method 1 and 2 to improve the performance. We

replace the original signal in the MSE part of the loss function by OFDM reduced signal and

use the same mixing parameter with method 2. All those three methods share the same network

structure.
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Mean Deviation Max Deviation 10−3 CCDF PAPR(dB)
Original 0 0 9.37
Convex Optimization 0.007 0.09 8.64
Method 1 0.005 0.09 8.10
Method 2 0.006 0.11 8.73
Method 3 0.009 0.17 7.95

Table 5.3: Deviation and PAPR Performance of Different Methods with 12 Sub-carriers

5.2.1 12 Sub-carriers

Figure 5.3: PAPR CCDF Comparison of Different methods for 12 Sub-carriers.

Figure 5.3 illustrates the CCDP of PAPR for original OFDM, convex optimization and pro-

posed schemes with 12 sub-carriers and QPSK modulated OFDM signals. It is shown that the

PAPR performance of proposed methods are close to the convex optimization method. They all

achieve a significant PAPR reduction compared to the original signal.

Table 5.4 gives an explicit comparison of the PAPR and deviation performance of different
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methods. With a close average deviation, proposed methods show a good approximation to the

given PAPR suppressed signal. For a 10−3 CCDF, method 1 achieves 1.27dB PAPR reduction,

method 2 achieves 0.64dB PAPR reduction and method 3 achieves 1.42dB PAPR reduction.

Method 1 and method 3 outperform the convex optimization method. Method 3 shows the best

performance as taking advantages of both method 1 and method 2.

5.2.2 36 Sub-carriers

Figure 5.4: PAPR CCDF Comparison of Different methods for 36 Sub-carriers.

Figure 5.4 illustrates the CCDP of PAPR for original OFDM, convex optimization and pro-

posed schemes for 36 sub-carriers. Same as the results for 12 sub-carriers, the PAPR performance

of proposed methods are close to the convex optimization method. Both method 1 and mothe 2

achieve a significant PAPR reduction compared to the original signal.

Table 5.4 gives an explicit comparison of the PAPR and deviation performance of different

methods. With a close average deviation, we can make a fair comparison of the PAPR performance.
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Mean Deviation Max Deviation 10−3 CCDF PAPR(dB)
Original 0 0 10.48
Convex Optimization 0.007 0.17 8.60
Method 1 0.004 0.08 8.13
Method 2 0.005 0.12 9.52
Method 3 0.009 0.19 8.43

Table 5.4: Deviation and PAPR Performance of Different Methods with 36 Sub-carriers

For a 10−3 CCDF, method 1 achieves 2.35dB PAPR reduction, method 2 achieves 0.96dB PAPR

reduction and method 3 achieves 2.05dBPAPR reduction. Method 1 and method 3 outperform the

convex optimization method.
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6. CONCLUSION AND FUTURE WORK

In this research, we have proposed neural network based PAPR reduction methods to solve the

important issue for the attractive multi-carrier transmission technique called OFDM. We propose

both supervised and unsupervised schemes and try to figure out its ability in learning the relation-

ship between original frequency domain OFDM signal and PAPR suppressed frequency domain

optimized OFDM signal. Our methods are simple for implementation and can work for cases

lacking training data set.

From the simulation results, it is shown that we achieve a significant PAPR reduction for both

12 and 36 sub-carriers cases with a much lower computational complexity than convex optimiza-

tion method. For a 10−3 CCDF, method 1 and method 3 can outperform the convex optimization

method. The reduction technique can be further enhanced by using different variables and con-

strains on loss function that can optimize signal features benefit communication quality.
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