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ABSTRACT 

This thesis considers the long-standing problem of Peak-to-Average-Power Ratio 

(PAPR) reduction in OFDM systems. Due to the nonlinear amplifiers commonly used, 

OFDM signals often will be distorted when they are transmitted. Many methods have 

been proposed before to reduce the PAPR: block coding, clipping, and insertion are the 

most common. They all change the signal by adjusting the signal or its input data. In this 

thesis, 3 methods that take a different approach are discussed: Gradient Descent, 

Newton’s Method, and Single Peak Suppression. These methods aim to move the 

constellation points in order to lower the peak power. Different OFDM system 

parameters regarding the number of subcarriers and the constellation size are considered 

and the results show that all three methods can reduce the PAPR. Single Peak 

Suppression is the fastest and the simplest method overall. Gradient Descent can produce 

well suppressed signal at a medium complexity. While Newton’s Method can reach low 

PAPR in the fewest iterations, its computational complexity for each iteration makes it 

the least efficient overall to carry out.  
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INTRODUCTION 

As the use of wireless electronics becomes more of a necessity in everyday lives, 

it is as expected that the technology associated with them grows and adapts to new 

standards. A key component to such technology is the signals that are transmitted. There 

are many aspects to a signal that would determine and affect how it will be received and 

interpreted at the receiver. One of the most important aspects is interference. Whether it 

is with other signals, or by some environmental factor, interference will distort the 

transmitted signal and could potentially change the core message that was intended by 

the original signal. 

Orthogonal Frequency Division Multiplexing (OFDM) is a commonly used 

modulation method that could reduce problems caused by long delay spreads [1], its 

high spectral efficiency also makes the method ideal for higher data transmission rates 

[2]. OFDM has made its way into many telecommunication standards and practices. In 

the 1990s, systems such as radio LANs (local area networks) [3], DAB (digital audio 

broadcasting) [4], and DTTB (digital television terrestrial broadcasting) [5] all began 

using OFDM. Since the 2000, with the rise of cellphone network and wireless internet, 

more modern telecommunication practices such as 4G/LTE, and numerous WLAN 

(wireless local area networks) Wi-Fi protocols have started to make use of OFDM. 

Many aspects of OFDM have been studied: signal to noise ratio (SNR) vs Spectral 

CHAPTER I
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efficiency [6], throughput [7], etc. By itself or comparing with other modulation 

schemes, OFDM’s results show really high benchmarks [8-10].  

Although OFDM has many advantages and well performing qualities, due to its 

constructive nature when the signal is being formed, it has a serious problem regarding 

its Peak-to-Average-Power Ratio (PAPR). In particular, the high peaks of the signal may 

experience nonlinearity as the signal is pushed through a power amplifier, therefore 

distorting the signal and affecting the performance of the whole system [9, 11].  

In this research, I will focus on the reduction of the PAPR of OFDM signal, show 

the result of the reduction, compare the effect and the efficiency of the methods used to 

conduct the reduction. In chapter II, an overview and some basic analysis of OFDM 

systems will be discussed. In chapter III, the methods used in the research will be 

described and implemented. In chapter IV, relevant results will be shown.  
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OFDM ANALYSIS 

OFDM Overview 

A simple OFDM system model is shown in Figure 1. 

Figure 1 OFDM System Model 

Let d represent a stream of binary data to be transmitted. First, the data stream is 

divided into n groups of size m bits by a serial to parallel converter, where n is the 

number of subcarriers, 𝑚 = log2𝑀, and M represents size of the constellation map used

to modulate the data. Some common modulation methods are Phase-Shift Keying (PSK) 

and Quadrature Amplitude modulation (QAM). The modulated data are represented by 
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the vector 𝑥 of size n and each component 𝑥(𝑘) corresponds to the symbol transmitted 

over the k-th subcarrier.  

Then an n-point Inverse Fast Fourier Transform (IFFT) is performed onto 𝑥. The 

output signal is calculated as the following equation: 

𝑆(𝑗) =
1

𝑛
∑𝑥(𝑘)(𝑒

2𝜋𝑖
𝑛 )(𝑗−1)(𝑘−1)

𝑛

𝑘=1

(1) 

The IFFT formula (1) can also be written as a matrix multiplication 

𝑆 =
1

𝑛
⋅ 𝑊𝑛 ⋅ 𝑥 (2) 

where 𝑊𝑛 is called the IFFT matrix

𝑊𝑛 =

{
 
 

 
 
𝑤0 𝑤0 𝑤0 … 𝑤0

𝑤0 𝑤1 𝑤2 ⋯ 𝑤𝑛−1

𝑤0 𝑤2 𝑤4 ⋯ 𝑤2(𝑛−1)

⋮ ⋮ ⋮ ⋱ ⋮
𝑤0 𝑤(𝑛−1) 𝑤2(𝑛−1) ⋯ 𝑤(𝑛−1)(𝑛−1)}

 
 

 
 

 , 𝑤 = 𝑒
2𝜋𝑖
𝑛 (3) 

Before the signal is transmitted, an extra layer of interference protection is added 

in the form of a Cyclic Prefix (CP). By repeating the end of the signal in an appropriate 

length, Inter-Symbol Interference (ISI) can be mitigated to a certain degree [12].  

When the signal is received at the receiver, the CP is discarded and a n-point Fast 

Fourier Transform (FFT) is performed on the remaining segment of the signal.  

𝑌(𝑗) = ∑𝑟(𝑘)(𝑒
−2𝜋𝑖
𝑛 )(𝑗−1)(𝑘−1)

𝑛

𝑘=1

(4) 

where the last part can be written as an FFT matrix similar to (3) 
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Each point in the array 𝑌(𝑗) is then decoded to binary data by reverse mapping 

the point to its closest constellation point. In the presence of noise, the decoded 

constellation points could cross over to a wrong region and be interpreted wrongly, thus 

causing an error. This can be measured by symbol error rate, which is the ratio of 

symbol errors to the total number of symbols in relation to the amount of noise present. 

It is highly correlated to the SNR presented in the transmission channel. 

Initial Analysis 

The PAPR is not dependent on the constellation maps used in the OFDM system. 

In Table 1, PAPR statistics for some common constellation maps with 72 subcarriers are 

presented.  

(dB) Average Maximum Minimum Standard Deviation 

QPSK 7.53 11.96 4.60 0.88 

16QAM 7.50 11.83 4.58 0.92 

64QAM 7.48 11.64 4.66 0.94 

256QAM 7.51 11.96 4.46 0.93 

Table 1 PAPR Statistics for QPSK, 16QAM, 64QAM, 256QAM with 72 subcarriers 

Given the same number of subcarriers, all constellation maps show similar 

average, maximum and minimum PAPR. As the number of subcarriers increase, the 

PAPR increases logarithmically [13].  
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METHODS 

Previous Suppression Methods 

There have been many methods proposed: block coding [14], clipping and 

filtering [15], insertion [16] and partial transmit sequence (PTS) [17], etc. Block coding 

can lower the PAPR by coding the data bits into codewords that are designed to have 

lower PAPR, but the added length on the codewords would result in lower data rate [14]. 

PTS among other phase control methods multiplies the signal by phase factors to 

produce a low PAPR, distortion can be avoided in this method, however extra side 

information is needed so the receiver can correctly decode the signal, and it will slow 

down the bit rate and potentially degrade the performance [17].  

Most of these methods require a change to the existing standards to work 

properly, in particular the receiver needs to adjust for the additional information to 

decode the data correctly. Since this is unlikely to occur, methods that only alter the 

signal or the input without extra information are more probable. Clipping and filtering is 

a good example of such methods. After the signal is created through IFFT, the peaks are 

reduced by cutting off excessive power above an assigned threshold. However, this will 

create distortion across all frequency components. The undesired information outside the 

designated frequencies could be negated by filtering the signal. But the distortion within 

the specified frequencies will affect the constellation points adversely, causing them to 
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change their positions and reducing their margin of error. Therefore, an increase in the 

error rate is an uncontrollable side effect to this method.  

Basic Suppression Technique 

The disadvantage of moved constellation points inspired a different approach to 

the problem of PAPR reduction. Since moving the constellation points is unavoidable, 

this approach views the movement of these constellation points as the main component 

of reducing the peak power. The new signal is formed by taking the IFFT of the 

modified constellation points as before, and the receiver would be able to decode the 

signal into these modified constellation points by an FFT. Therefore, it requires no side 

information or change to the receiver, so it can be implemented into existing standards 

and protocols. 

Three methods of such approach will be discussed: Single Peak Suppression 

Method, Gradient Descent Method, and Newton’s Method. The problem can be viewed 

as a constrained optimization problem: reduce the peaks by moving the constellation 

points, subject to a constraint on the allowed deviation in the constellation points. 

Previously, this has been studied by customizing the problem so Interior-Point Method 

(IPM) can be used to reach the optimal solution [18]. Gradient Descent and Newton’s 

Method are common numerical methods to find solutions to optimization problems. 

They are alternative methods to IPM at solving optimization problems. They both 

require some modifications to the problem as IPM did before they can be implemented. 

The details of such modifications will be discussed in a later section. 
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Besides the constellation points, the IFFT matrix is the other major part of the 

formula in (2). Its size and content are dependent on the desired resolution of the output 

signal. However, the peak power of the output signal from an n-point IFFT may not 

represent the true peak of its equivalent continuous-time signal, therefore it is necessary 

to oversample the output signal. Typically, it is enough to oversample the signal by 4-

times to find a relatively accurate PAPR [19].  

In order to keep the average power at 1, the scaling factor before the IFFT matrix 

is changed to 
1

√𝑛
 and it is now a part of the IFFT matrix, which will now be a l by n

matrix to compensate for the oversampling, with 𝑙 being the oversampled IFFT length.

𝑊𝑙∗𝑛 =
1

√𝑛
∗

{

𝑤0 𝑤0 𝑤0 … 𝑤0

𝑤0 𝑤1 𝑤2 ⋯ 𝑤𝑛−1

𝑤0 𝑤2 𝑤4 ⋯ 𝑤2(𝑛−1)

⋮ ⋮ ⋮ ⋱ ⋮
𝑤0 𝑤(𝑙−1) 𝑤2(𝑙−1) ⋯ 𝑤(𝑙−1)(𝑛−1)}

 , 𝑤 = 𝑒
2𝜋𝑖
𝑙 (5) 

Thus, the updated formula to calculate the signal is 

𝑆 = 𝑊𝑙∗𝑛 ⋅ 𝑥 (6) 

Single Peak Suppression 

Description 

Single Peak Suppression (SPS) is the simplest method out of the three. The peak 

is identified and lowered to a desired threshold. Then another peak is identified and 

lowered to a desired threshold. Then the process repeats until there are no more peaks 

above the threshold.  
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Let the peak power 𝑃𝑝 fall on the j-th element in the signal S, the peak power is

calculated according to (7) 

𝑃𝑝 = |𝑆(𝑗)|
2 = |𝑊(𝑗) ∗ 𝑥|2 (7) 

Where 𝑊(𝑗) is the j-th row of the extended IFFT matrix (5). 

If the desired threshold is denoted by 𝑃𝑡, then the new modified constellation

points 𝑥′ must satisfy the following equation

|𝑆′(𝑗)|2 = |𝑊(𝑗) ∗ 𝑥′|2 = 𝑃𝑡 
(8)

Where 𝑥′ = 𝑥 + 𝛽 ∗ 𝑣 with 𝛽 being the step size, and 𝑣 being the step direction.

The calculation of step size and step direction will be discussed in the following 

section. The new constellation points can be found and will act as the new starting point 

for the next iteration. Then the procedure continues by identifying the next peak and 

finding the next step size and step direction. 

Calculation and MATLAB Implementation 

The step direction for this algorithm will be the vector that represents the steepest 

descent, which is the negative gradient of |𝑆(𝑗)|2

𝑣 = −2 ∗ 𝑆(𝑗) ∗ 𝑊(𝑗) (9) 

Next, by substituting 𝑣 into 𝑥′, (8) transforms into the following

|𝑆(𝑗)(1 − 2𝛽)|2 = 𝑃𝑡 (10) 

Then the step size can be solved as  
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𝛽 =
1

2
(1 −

√𝑃𝑡

√𝑃𝑝
) 

With the gradient and step size calculated, the modified constellation points can 

be found and the peak can be suppressed. However, the average power will be inevitably 

brought down as one peak is suppressed. So, to combat this, the signal is normalized 

after the peak is suppressed. But doing so will bring up the suppressed peak over the 

desired level. Therefore, in order to keep the peak lower than the desired threshold after 

normalization, 𝑃𝑡 needs to be slightly lower than the desired level. Let 𝑝 represent the

lowered amount. In chapter IV, different values of 𝑝 are considered to show the affect it 

has on the method’s output and efficiency. 

The MATLAB function can now be realized and the results will be discussed in 

the following chapter. 

Gradient Descent Method 

Description 

The general steps for Gradient Descent are as follows: with a predetermined 

starting point, the gradient is first calculated. Then the method searches along the 

direction of negative gradient of the cost function. Next, an appropriate step size is 

determined. Lastly the new point of interest is found by subtracting the product of the 

search direction and the step size from the original point. The algorithm repeats these 

three steps until a stopping criterion is met. 

Problem Modification and Calculation 

The problem can be expressed mathematically as the following: 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  max(|𝑆|2) (11) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |𝑥 − 𝑥𝑜|
2 ≤ 𝜖 (12) 

 𝐸[|𝑆|2] > 1 (13) 

where S is the left-hand side of the equation (6), 𝑥 is the current vector of modified 

constellation points, 𝑥𝑜is the vector of original constellation points, and 𝜖 is the upper

bound of total deviation and can be any real positive number. 

(13) is the average power constraint. As mentioned before, the average power

will shift when the constellation points are moved. To benefit the PAPR, the new 

average power needs to be larger than the original average power.  

In order to be able to apply Gradient Descent, the cost function needs to be 

differentiable. Therefore, the cost function (11) needs to be modified so that it is 

differentiable and retains the same output. This can be achieved by the softmax, or the 

log-sum-exp function. There are methods discovered and tested to improve upon the 

basics of softmax [20], however they include extra calculations which are not necessary 

for this problem. The new cost function now looks like the following: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

𝛼
log (∑𝑒𝛼|𝑆(𝑖)|

2

𝑙

𝑖=1

) (14) 

The softmax function utilizes the advantage that, in most cases, the output signal 

has one dominant maximum: every value in the signal is first either increased or 

decreased exponentially, leaving the maximum value dominating the sum, and the log 
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operation will return a value that is slightly higher than the maximum of the signal. The 

variable 𝛼(>>1) helps further amplify bigger values in the signal, whereas the smaller 

values will not be affected too much. By having an 𝛼 large enough, the result of the new 

cost function (14) is effectively the same as the old cost function (11). It is also easy to 

see that this function is indeed differentiable. 

Next, Log Barrier Method [18] is applied to both constraints because Gradient 

Descent does not take constraints into account. Before that can be done, both constraints 

need to be modified to accommodate the step size calculation. 

Let 𝑥𝑜 be the original constellation points, then let 𝑧 = 𝑥 − 𝑥𝑜 be the current

modification vector (initially 𝑧 = 0). Then, with the previous assumption of 𝑥′, 𝛽,  and

𝑣. The next iteration of modification vector is 𝑧′ = 𝑥′ − 𝑥𝑜 = 𝑧 + 𝛽 ∗ 𝑣.

With the above definitions, the deviation constraint (12) now looks like 

|𝑧|2 ≤ 𝜖 (15) 

It can be assumed that the best solution to minimize PAPR will be such that 

|𝑧|2 ≈ 𝜖.

More importantly, all modification vector including the next iteration of the 

modification vector must satisfy (15) as well, hence  

|𝑧′|2 = |𝑧 + 𝛽 ∗ 𝑣|2 ≤ 𝜖 (16) 

By expanding and then using quadratic formula, the upper bound for step size 

derived from the deviation constraint will come out as 
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𝛽 ≤
−2𝑅𝑒[𝑧 ⋅ 𝑣] + √(2𝑅𝑒[𝑧 ⋅ 𝑣])2 − 4|𝑣|2 ∗ (|𝑧|2 − 𝜖)

2|𝑣|2
(17) 

There is a lower bound to the step size that will be negative so it will be ignored 

as any positive step size will satisfy the constraint. 

The power constraint (13) can now be rewritten like the following. 

|𝑥|2 ≥ |𝑥𝑜|
2 (18) 

Upon expanding, with the assumption of |𝑧|2 ≈ 𝜖

𝑅𝑒[𝑥𝑜 ⋅ 𝑧] ≥ −
𝜖

2
(19) 

Then, because any future iteration must also satisfy this inequality as well, the 

following must be true as well 

𝑅𝑒[𝑥𝑜 ⋅ (𝑧 + 𝛽 ∗ 𝑣)] ≥ −
𝜖

2

⇒ 𝛽 ∗ 𝑅𝑒[𝑥𝑜 ⋅ 𝑣] ≥ −
𝜖

2
− 𝑅𝑒[𝑥𝑜 ⋅ 𝑧] (20) 

Note the right-hand side of (20) will never be positive given (19) is true. 

Next, one of the following two scenarios can happen. 

1. If 𝑅𝑒[𝑥𝑜 ⋅ 𝑣] ≥ 0, then 𝛽 ≥
−
𝜖

2
−𝑅𝑒[𝑥𝑜⋅𝑧]

𝑅𝑒[𝑥𝑜⋅𝑣]
(21) 

2. If 𝑅𝑒[𝑥𝑜 ⋅ 𝑣] ≤ 0, then 𝛽 ≤
−
𝜖

2
−𝑅𝑒[𝑥𝑜⋅𝑧]

𝑅𝑒[𝑥𝑜⋅𝑣]
(22)
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In the first case, the right-hand side will always be negative, any positive step 

size will satisfy so the upper bound for the step size is (17). In the second scenario, the 

smaller value between (17) and (22) will be chosen as the upper bound for the step size. 

With a lower bound of 0 and an appropriate upper bound, the step size value that leads to 

the lowest output to the cost function (24) will be used and its corresponding set of 

modified constellation points will be the starting points for the next iteration. 

With the step size calculation properly outlined, the two constraints also 

transformed nicely (15)(19) and can now be modified by Log Barrier Method 

𝜙(𝑥) = −
1

𝑢
(log(𝜖 − |𝑧|2)  − log(

𝜖

2
+ 𝑅𝑒[𝑥𝑜 ⋅ 𝑧]))

(23) 

Adding the log barriers (23) onto the cost function, the optimization problem can 

be stated as the following: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

𝛼
log (∑𝑒𝛼|𝑆(𝑖)|

2

𝑙

𝑖=1

) −
1

𝑢
(log(𝜖 − |𝑧|2)  − log(

𝜖

2
+ 𝑅𝑒[𝑥𝑜 ⋅ 𝑧]))

(24) 

Now that the cost function is fully modified, the gradient of (24) can be 

calculated and the method can proceed.  

MATLAB Implementation 

To simulate this method in MATLAB and to keep the total execution time to a 

minimum, the function will run until it does not reduce the cost function anymore or 15 

iterations are run in which case the current constellation points are returned.  
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Now all the necessary details are outlined. The following parameters are used in 

the realization of Gradient Descent function: 

1. Softmax function parameter α is set to be 10.

2. Log Barrier function parameter is initially set to 10, and increasing

multiplicatively by 3 every time the updated reduction amount is lower than

0.5dB; This is because if the initial value is set too high or too low, the

method will sometimes stop too early when there is clear more room for

improvement. With these two parameters, good reduction is possible in

almost all cases.

3. Deviation constraint is set to 1. This is selected to limit the SNR increase at

1% error rate less than approximately 0.5dB. (Error rates graphs shown in

Chapter IV)

4. 10 potential step sizes between the lower and upper bounds are chosen to be

calculated and compared.

With these numbers specified, the MATLAB function can be fully realized, and 

the results will be shown in the next chapter. 

Newton’s Method 

Description 

Newton’s Method is a second order optimization algorithm that utilizes the same 

concept as Gradient Descent. Through a different search direction, each iteration for 

Newton’s Method will be much more efficient at finding the next minimum point. 
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Newton’s method follows the same 3 steps as Gradient Descent. But instead of 

using the negative gradient as the search direction, the Hessian is calculated and the 

search direction is the negative of the product of the inverse Hessian matrix and the 

gradient. 

Theoretically, this search direction makes the method more efficient at finding 

the optimal solution than Gradient Descent. 

Calculation and MATLAB Implementation 

The set-up for Newton’s Method is identical to that of Gradient Descent. The 

gradient and the hessian matrix of the cost function (24) will be used to calculate the 

search direction. The step size calculation is the same as explained in Gradient Descent. 

But due to its huge computational cost as shown in chapter IV, the stopping criterion is 

set to 5 total iterations. The necessary parameters for the MATLAB function are also the 

same as used for the Gradient Descent function.  

The MATLAB implementation can be realized and the results will be discussed 

in the next chapter. 
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RESULTS 

Most of the following results are concluded from OFDM simulations with QPSK 

mapping of 72 subcarriers. Because PAPR is independent from the mapping, QPSK is 

sufficient to show the effect of the peak reduction by all three methods. The number of 

subcarriers (72, 180, 300, 1200) used in this research is taken from LTE standards [21]. 

SPS Overshot 

First, as mentioned in chapter III, to properly suppress the peaks, SPS needs to 

set the 𝑃𝑡 lower than the desired threshold by 𝑝. A few numbers for 𝑝 are selected and

tested. Their results in terms of iterations to reach the optimal solution and the final 

PAPR are shown in Table 2 and 3. One iteration is defined as when the new 

constellation points are found and the new signal is produced. 

𝑝 (dB) Average Maximum Minimum Standard Deviation 

0.1 32.73 88 11 9.34 

0.2 27.16 55 10 7.26 

0.5 22.31 45 9 5.65 

0.8 21.01 43 9 5.91 

1.0 20.71 41 9 4.87 

Table 2 Iteration statistics for different values of 𝑝. 10,000 randomly generated signals 

were reduced with each value of 𝑝, and all with the threshold of 4dB. 

CHAPTER IV
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𝑝 (dB) Average Maximum Minimum Standard Deviation 

0.1 3.9907 4.0000 3.9410 0.0078 

0.2 3.9825 4.0000 3.9129 0.0147 

0.5 3.9596 3.9999 3.7878 0.0364 

0.8 3.9450 3.9999 3.6821 0.0476 

1.0 3.9359 4.0000 3.6435 0.0560 

Table 3 Final PAPR statistics for different values of 𝑝. 10,000 randomly generated 

signals were reduced with each value of 𝑝, and all with the threshold of 4dB. 

It is easy to see that the suppressed PAPR show very similar characteristics. With 

the increase of 𝑝, the average does not change significantly. But as 𝑝 goes from 0.1dB to 

0.5dB, the average number of iterations reduces by a lot, while as 𝑝 gets bigger than 

0.5dB, the decrease in iterations required slows down. Therefore, to avoid over- 

suppressing the signal when it is not needed, the desired threshold will be overshot by 

0.5dB for the remaining simulation results. 

PAPR Reduction 

To show that all three methods can reach the same level of PAPR, Gradient 

Descent and Newton’s Methods are executed first, and their average final PAPR was 

used as the desired level for SPS function. Figure 2 illustrates part of a randomly 

generated signal and its PAPR before and after the reduction via all three methods.  

For this one randomly generated signal, Gradient Descent and Newton’s Method 

produced very close PAPRs, 5.21dB and 5.12dB respectively. Since SPS’s threshold was 
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to match the other two methods, all three final PAPRs were all similar to each other. 

Also, their final signals all present similar shapes. This can be generalized as the 

comparison between the results of all three methods. If SPS has a threshold on the same 

level as the other two methods, all final signals and PAPRs show similar characteristics. 

Figure 2 Part of a randomly generated signal before and after reduction. The threshold 

was the average final PAPR of Gradient Descent and Newton’s Method. All respective 

PAPRs are also shown. (72 subcarriers with QPSK) 

To showcase the reduction consistency of all three methods, 10,000 data 

sequences were generated, and each sequence was reduced by all three methods. Table 4 
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shows PAPR statistics for all three methods. SPS produces the most consistent PAPR 

due to its goal of aiming for the same PAPR level (average of the averages for Gradient 

Descent and Newton’s Method) regardless of data. Gradient Descent and Newton’s 

Method show comparable results. Their similarities can be seen in their CCDF graphs 

shown in Figure 3. 

         (dB) Average Maximum Minimum Standard Deviation 

Gradient Descent 5.23 10.15 3.27 0.69 

Newton’s Method 5.10 9.81 3.30 0.65 

Single Peak Suppression 5.13 5.16 4.66 0.07 

Table 4 PAPR statistics post reduction by all three methods. 10,000 randomly generated 

signals were used. SPS used the average of the averages of Gradient Descent and 

Newton’s Method as the threshold and 0.5dB as the overshot amount. 
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Figure 3 CCDF of the PAPR of the 10,000 signals shown in Table 4. 

Reduction Efficiency 

Gradient Descent and Newton’s Method follow the same principle. However, 

their difference in the search directions makes Newton’s Method more efficient at 

finding the optimal solution with each iteration. This can be shown in Figure 4, where 

the PAPR after each iteration for the two methods is recorded. Newton’s Method descent 

to a low PAPR in fewer iterations, whereas Gradient Descent’s reduction is smoother 

and steadier after the initial iteration.  

SPS cannot be compared properly with Gradient Descent and Newton’s Method 

because it does not produce a desirable PAPR until all peaks are suppressed, therefore it 

is not included in this figure.  
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Figure 4 PAPR after each iteration of Gradient Descent and Newton’s Method. 

Method Complexity 

To fully understand the efficiency of each method, their complexities need to be 

evaluated. The complexity is measured in the number of operations per iteration. 3 

operation types are tallied up and compared in Table 5. Complexity for typical clipping 

and filtering (assuming 12 iterations) [22] is included in the table to cast a comparison of 

the complexity between these proposed methods and an existing method. 
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Add./Sub. Mul./Div. Exp./Log./Other 

Gradient Descent 1440N2+3480N 2760N2+3330N 660N Exp. 

Newton’s Method 380N3+580N2 460N3+1110N2 220N Exp. 

Single Peak Suppression 72N2+108N 144N2+216N 27 square roots 

Clipping and Filtering 192NF+96N 192NF+96N N.A. 

Table 5 Approximated number of operations for each category (real addition/subtraction; 

real multiplication/division; exponential/logarithmic and square roots) for all methods 

(including clipping and filtering). N = number of subcarriers, F = Finite Impulse 

Response (FIR) Filter Length 

Assuming IFFT length is 4 times the number of subcarriers. The complexity for 

some calculation parts is summarized below 

1) To calculate the gradient of (24), 24N2 +30N multiplications/divisions and

16N2+20N additions/subtractions are needed.

2) The Hessian matrix and its inversion, assuming gaussian elimination method

is used to invert the matrix, need about 92N3+38N2 multiplication/divisions

and 76N3+20N2 additions/subtractions.

3) To find the best step size results requires 160N2+192N

multiplications/divisions and 80N2+212N additions/subtractions.

4) Calculate the signal requires 16N2+4N multiplications/divisions and 8N2

addition/subtractions.
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Gradient Descent requires the calculation of 1) and 3), and the total complexity 

assumes 15 iterations. Newton’s Method requires the calculation of 1), 2), and 3), and 

the total complexity assumes 5 iterations. The complexity for SPS is dominated by the 

renormalization of the signal as in 4), 20N multiplications/divisions and 12N 

additions/subtractions are needed to calculate its gradient and finding the new 

constellation points. The total complexity for SPS assumes 9 iterations. 

The relative speed between the proposed three methods’ iterations can be roughly 

proven by the average for total method execution time recorded in MATLAB shown in 

Table 6. However, this is not a true indicator as it depends on program and machine 

efficiency, but the MATLAB functions were written to be as efficient as possible so this 

is a relatively good representation of the three methods’ speed. 

Average Total Time(s) 

Gradient Descent 0.0256 

Newton’s Method 0.7821 

Single Peak Suppression 0.0013 

Table 6 Average time for each method’s total time recorded in MATLAB. 

Error Rate 

The symbol error rate is computed by summing the likelihood of each symbol 

decoded as a wrong symbol when white additive white Gaussian noise (AWGN) is 
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present. In addition, Error Vector Magnitude (EVM) are calculated with each error rate 

graph. All three method’s error rate graphs are show in the Figure 5.  

The same data sequence that produced the result in Figure 2 was used. The error 

rate for all three methods are very similar. As noise level decreases, their difference 

becomes more noticeable, with Newton’s Method being slightly better than Gradient 

Descent which is slightly better than SPS. The SNR increase at 1% error rate is about 

0.5dB. This is consistent with the parameters used across all three methods. 

Figure 5 Error rate of the constellation points before and after reduction (72 subcarriers 

with QPSK). EVMs: -19.44dB (GD), -18.68dB (NM), -18.12dB (SPS). 
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Additional Results 

All three methods are not specified to any constellation size. To illustrate that, 

16QAM will be used instead of QPSK. Without changing any other parameters, the final 

PAPRs for all three methods are shown in Figure 6. And their respective error rates are 

shown in Figure 7.  

To keep the error rates at 1%, signal power needs to be increased by 3dB, which 

makes the PAPR reduction (roughly 3dB) ineffective overall. This huge increase in error 

rate is due to the tight spacing between the constellation points, there are less room for 

the modified points to be affected by noise before they are decoded as wrong data 

symbols.  

Figure 6 Part of a randomly generated signal before and after reduction (72 subcarriers 

with 16QAM). The respective PAPR is also shown.  
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Figure 7 Error rate of the constellation points before and after reduction (72 subcarriers 

with 16QAM). EVMs: -18.57dB (GD), -18.69dB (NM), -17.50dB (SPS) 

By increasing the number of subcarriers, each constellation point is allowed to 

move less which could potentially decrease the error rates. First, 180 subcarriers are 

considered. The reduced PAPRs and signals with 180 subcarriers are shown in Figure 8. 

The error rate shows improvement in Figure 9. But it can still be improved further (1dB 

signal increase at 1% error rate).  

Next, 300 and 1200 subcarriers are used, and their respective error rates are 

shown in Figure 10. It can be assumed that all three methods would produce similar 

error rates as the number of subcarriers increase. Thus, only error rates from Gradient 

Descent is shown. Both curves exhibit acceptable SNR at 1% error rate.  
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Figure 8 Part of a randomly generated signal before and after reduction (180 subcarriers 

with 16QAM). The respective PAPR is also shown. 

Figure 9 Error rate of the constellation points before and after reduction (180 subcarriers 

with 16QAM). EVMs: -22.56dB (GD), -23.20dB (NM), -21.11dB (SPS). 
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Figure 10 Error rate of the constellation points before and after Gradient Descent (300 

and 1200 subcarriers with 16QAM). EVMs: -24.78dB (300), -30.80dB (1200). 

Instead of changing the number of subcarriers, the total deviation 𝜖 can be 

lowered to achieve the same effect. The result with 𝜖 = 0.2 is shown in Figure 11 and 

Figure 12. 

The PAPR reduction is expectedly smaller. But the error rates’ improvement can 

be easily seen. Following the same reasoning, higher order constellation maps (64QAM 

and 256QAM) can be used and reduced by these methods with the appropriate number 

of subcarriers and deviation limit. 
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Figure 11 Part of a randomly generated signal before and after reduction (72 subcarriers 

with 16QAM, 𝜖 = 0.2). The respective PAPR is also shown.  

Figure 12 Error rate of the constellation points before and after reduction (72 subcarriers 

with 16QAM, and 𝜖 = 0.2). EVMs: -28.58dB (GD), -28.67dB (NM), -26.13dB (SPS). 
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CONCLUSION 

In this thesis, 3 PAPR reduction methods for the OFDM systems are provided. 

The most traditional methods cannot be realistically implemented in existing standard as 

most require extra side information. These methods focus on changing the mapped 

constellation points in order to manipulate the peak power. The 3 methods’ algorithms 

are described in detail, including the modification to the problem in order to apply 

Gradient Descent and Newton’s Method. Their simulation is done in MATLAB, and 

their reduction results are discussed.  

To measure the method’s effectiveness, a large number of samples are generated 

and their post reduction PAPR are compared. In addition, each method’s complexity is 

summarized and roughly examined via the timing function in MATLAB. Each method’s 

effect on error rate is also compared.  

In conclusion, all three methods can be used to suppress any OFDM system. 

However, if the system has a large number of subcarriers, Newton’s Method is not 

recommended due to its intense computational complexity. Gradient Descent has much 

less complexity and it can reach similar results as Newton’s Method. But Single Peak 

Suppression can both suppress the signal most efficiently as it takes the least amount of 

operations in most scenarios.  

  CHAPTER V
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