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ABSTRACT 

 

Countercurrent saccharification is a promising way to minimize enzyme loading 

while obtaining high conversions and product concentrations. However, in 

countercurrent saccharification experiments, 3–4 months are usually required to acquire 

a single steady-state data point. To save labor and time, simulation of this process is 

necessary to test various reaction conditions and determine the optimal operating point. 

Previously, a suitable kinetic model for countercurrent saccharification has never been 

reported. 

 To simulate countercurrent saccharification, a kinetic model that could 

satisfactorily predict batch saccharification under various reaction conditions is 

necessary. In this study, the HCH-1 model was modified to extend its application to 

integrated enzymatic hydrolysis; it performed well when predicting 10-day cellulose 

hydrolysis at various experimental conditions. Comparison with the literature models 

showed that the modified HCH-1 model provided the best fit for batch enzymatic 

cellulose hydrolysis. 

 The Continuum Particle Distribution Modeling (CPDM) was applied to simulate 

countercurrent saccharification of α-cellulose. The modified HCH-1 model was used as 

the governing equation in the CPDM model. When validated against experimental 

countercurrent saccharification data, it predicts experimental glucose concentrations and 

conversions with the average errors of 3.5% and 4.7%, respectively. CPDM predicts 

conversion and product concentration with varying enzyme-addition location, total stage 
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number, enzyme loading, liquid residence time, and solids loading rate. In addition, 

countercurrent saccharification was compared to batch saccharification at the same 

conversion, product concentration, and reactor volume. Results show that countercurrent 

saccharification is particularly beneficial when the product concentration is low. 

Techno-economic analysis was performed for cellulosic sugar production. 

Various reaction conditions, equipment materials, enzyme unit prices, and return on 

investments (ROIs) were considered. Excluding feedstock cost but including utility cost 

(dewatering), enzyme cost, depreciation, and fixed operating costs, using geomembrane 

reactor and carbon steel mechanical vapor recompression (MVR) evaporators, the 

estimated minimum selling prices are $0.079/kg glucose with commercial CTec2 

cellulase ($6.27/kg protein) and $0.064/kg glucose with on-site cellulase production 

($4.24/kg protein).  Compared to batch saccharification at the same reaction conditions, 

equipment materials, and enzyme unit prices, countercurrent saccharification 

significantly reduces the cost of cellulosic sugar production. 
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CHAPTER I  

INTRODUCTION 

Currently, fossil fuels such as natural gas, oil, and coal are the main sources of 

energy and chemicals. However, the shortage of fossil fuels and their impact on the 

environment are increasingly severe. Developing alternative energy resources is 

necessary and urgent. Biomass is a leading possible replacement for petroleum-derived 

liquid transportation fuels, which captures solar energy and fixes carbon through 

photosynthesis (Klass, 2004; Darvekar et al., 2019). It is the only renewable energy 

resource that can be directly converted to liquid fuels and chemicals. The largest 

biomass feedstock is lignocellulose, which is found globally in many forms. Converting 

lignocellulose into biofuels could relieve shortages of liquid fuels and reduce 

dependence on fossil energy.  

In the United States, ethanol is the dominant biofuel, which is usually produced 

from corn, an important food for animals and humans. To prevent food shortages, 

cellulosic ethanol is an attractive alternative. Generally, there are four major steps for 

cellulosic ethanol production: pretreatment, hydrolysis, fermentation, and separation. 

Among these processes, hydrolysis accounts for a large portion (~30%) of the total costs 

(Wallace et al., 2005). To compete with corn ethanol and petroleum-derived gasoline, 

enzymatic hydrolysis needs optimization and cost reduction (Wooley et al., 1999).  

Batch processing is widely used in enzymatic hydrolysis; however, it cannot 

fully use substrate because as substrate is hydrolyzed, biomass becomes less reactive 

(Yang et al., 2006; Kumar and Wyman, 2009a) while the enzymes become increasingly 
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inhibited by accumulated product; therefore, high enzyme loadings are usually required 

to reach high conversions. To overcome these obstacles, countercurrent enzymatic 

saccharification was developed, where the least reactive biomass contacts the lowest 

glucose concentration and the product is removed continuously from the system, thus 

reducing product inhibition. This approach more fully utilizes enzymes and therefore 

reduces the enzyme loadings and lowers the cost of sugar and biofuel production.  

In countercurrent saccharification experiments, 3 to 4 months are usually 

required to acquire a single steady-state data point. To save labor and time, simulation of 

this process is necessary to test various reaction conditions and determine the optimal 

operating point. Previously, a suitable kinetic model for countercurrent saccharification 

has never been reported.  

The aims of this study are the followings: 

• Develop a kinetic model that could satisfactorily predict batch 

saccharification at various conditions, which is the basis of the simulation 

of countercurrent saccharification. 

• Develop a kinetic model that could satisfactorily predict countercurrent 

saccharification at various conditions. 

• Conduct techno-economic analysis to determine the operating point of 

countercurrent saccharification that has the lowest cost of cellulosic sugar 

production. 
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CHAPTER II  

COUNTERCURRENT SACCHARIFICATION 

Introduction 

 Countercurrent systems are widely used in liquid-liquid extraction (Martin and 

Synge, 1941), heat exchange (Uozu et al., 1989), and other systems. It also has great 

potential to improve enzymatic saccharification by fully utilizing enzymes resulting in 

higher sugar yields than batch saccharification thus reducing the cost of sugar and 

biofuel production.  

The benefits of countercurrent saccharification have been explored in several 

previous studies (Fox et al., 1983; Jeffries and Schartman, 1999). These previous studies 

employed only three stages; in contrast, this study uses many more stages (≥ 8 stages). 

Further, this study adds enzymes to a fixed, intermediate stage rather than a moving, 

terminal stage (Jeffries and Schartman, 1999, Zentay et al., 2016). At steady state, 

performance of countercurrent saccharification is compared to batch saccharification. 

Materials and Methods 

Materials 

Substrate 

Three kinds of substrates were used in the countercurrent saccharification 

experiments:  

(1) a-Cellulose (Sigma Aldrich C8002-5KG). Compositional analysis showed 

that the substrate contained glucan 78.5% and xylan 14.4% (Zentay et al., 2016). 
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(2) Lime-pretreated corn stover. The literature shows that lime pretreatment 

removes lignin and acetyl groups effectively (Chang and Holtzapple, 2000, Kim 2005). 

In this study, lime pretreatment procedures mainly followed the oxidative long-term 

pretreatment method (Sierra et al., 2009). Raw corn stover (glucan 32.6% and xylan 

19.3%, lignin 11.7%), Ca(OH)2, and water were placed in the pretreatment vessel with 

the following conditions: 10 kg water/kg dry biomass and 0.15 kg Ca(OH)2/kg dry 

biomass. The pretreatment time was 30 days with temperature 50°C. Then the pretreated 

corn stover was washed, dried, and used as the substrate for enzymatic hydrolysis. 

Compositional analysis showed that the substrate contained glucan 45.3%, xylan 18.1%, 

and lignin 8.6% (Liang, 2015; Sagar et al., 2017). 

  (3) Lime + shock pretreated corn stover. The lime-pretreated corn stover was 

further shock treated in a 20-L vessel with a conical section and run-up tube. The shock 

vessel was loaded with 1.4 kg dry corn stover and 14 L water (including water in 

biomass). Stoichiometric H2 and O2 were added to the head space of the apparatus and 

ignited using a glow plug. Detonation causes a rapid pressure increase to 12 MPa within 

19 ms. The resulting shock wave transferred through the aqueous slurry and 

mechanically disrupted the structure of corn stover. Finally, the lime + shock pretreated 

biomass slurry was air dried so it could be safely stored as a substrate for enzymatic 

hydrolysis. Compared with other mechanical treatments, shock pretreatment has the 

advantages of low cost (<$5/tonne) and the potential to scale up (Holtzapple, 2014). 

Compositional analysis showed that the substrate contained glucan 44.3%, xylan 19.6%, 
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and lignin 10.4% (Liang et al., 2017; Sagar et al., 2017, Falls et al., 2019; Falls et al., 

2017a; Falls et al., 2017b; Madison et al., 2017). 

Enzyme Solutions 

The enzyme used for the experiments with α-cellulose was Novozymes Ctec2 

(lot # VCPI 0007), a blend of aggressive cellulases with high levels of β-glucosidases 

and hemicellulases. The protein concentration of the enzyme solution was determined to 

be 294 mg protein/mL with Pierce BCA assay (Zentay., 2016).  

The enzymes used for the experiments with lime-pretreated and lime + shock 

treated corn stover were Novozymes CTec3 and HTec3. CTec3 is Novozymes’s newest 

commercial enzyme product for effective hydrolysis of cellulose. It contains proficient 

cellulase components boosted by proprietary enzyme activities and a new array of 

hemicellulase activities (Novozymes, 2012a). HTec3 is the newest commercial enzyme 

product from Novozymes for effective hydrolysis of insoluble and soluble 

hemicelluloses (Novozymes, 2012b). The protein concentrations of CTec3 and HTec3 

solutions were determined to be 326 and 243 mg protein/mL with Pierce BCA assay 

(Liang et al., 2017; Sagar et al., 2017; Liang, 2015).  

Citrate Buffer 

To maintain relatively high enzyme activity, citrate buffer (0.1 M, pH 4.8) was 

used in all saccharification experiments. 
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Antibiotics 

To prevent the growth of contaminating microorganisms that could consume 

produced sugars, an antibiotic cocktail was added. To prepare the solutions, tetracycline 

powder was dissolved in an aqueous solution of 70% ethanol at 10 g/L and 

cycloheximide powder was dissolved in deionized (DI) water at 10 g/L.  

Countercurrent Saccharification 

Figure 2-1 shows the system diagram for an eight-stage countercurrent 

saccharification. To begin the countercurrent experiment, all the stages (Nalgene 

centrifuge bottles, 1 L, Fisher catalog # 05-562-26) were loaded with 250 g materials, 

including 25 g dry substrate, 125 mL citrate buffer, 2 mL tetracycline solutions, 1.5 mL 

cycloheximide solutions, and given amounts of enzyme solution and DI water. (Note: 

The density of all liquid materials was assumed to be 1 g/cm3.) The bottles were placed 

in 4-in-ID PVC pipes and axially rotated at 2 rpm by a Wheaton Roller Apparatus 

located in the custom-made incubator at 50℃. The transfers were performed every 48 h. 

In every transfer, each bottle was centrifuged to achieve phase separation of liquid and 

solid wet cake (70–80% moisture content). The mass of each phase and the pH of the 

liquid phase were measured. A liquid sample (1 mL) was taken from every bottle and 

analyzed by HPLC to determine when the system reached steady state. All the liquid was 

moved from “back” to “front” and the solid phases were moved in the opposite direction. 

The amount of solid phase transferred was calculated to ensure each stage had the same 

amount of wet cake after each transfer. Then, 10 g dry substrate was loaded in the first 
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stage and 90 mL liquid consisting of 50 mL citrate buffer and 40 mL DI water was 

added to the last stage. Antibiotic solutions (0.4 mL tetracycline solution and 0.3 mL 

cycloheximide solution) were introduced to every stage and the desired amount of 

enzymes was added to a specific location. When the sugar concentrations from each 

stage did not show significant change over a relatively long time (e.g., 15 days), the 

system was determined to reach steady state. Table 2-1 summarizes the operating 

parameters of countercurrent saccharification experiments (Zentay et al., 2016; Sagar et 

al., 2017; Liang et al., 2017). 

 

 

Figure 2-1 System diagram of countercurrent saccharification (Reprinted from Zentay et 

al., 2016). 
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Table 2-1 Operating parameters of countercurrent saccharification experiments 

Train 1 2 3 4 5 6 7 

Substrate α-Cellulose 
Lime-pretreated 

corn stover 
Lime + shock treated corn stover 

Enzyme type 

and loading 

CTec2 

2 mg/g 

CTec2 

5 mg/g 

CTec3 

1 mg/g 

CTec3 1 mg/g 

+ 

HTec3 1 mg/g 

CTec3 

1 mg/g 

CTec3 1 mg/g 

+ 

HTec3 1 mg/g 

CTec3 2 mg/g 

+ 

HTec3 2 mg/g 

Total reaction 

time (days) 
24 42 120 100 120 100 80 

Total stage 

number 
8 8 16 16 16 16 16 

Enzyme-

addition location 

(stage number) 

4 5 4 4 4 4 4 

Target wet cake 

amount (g)  
85 80 90 90 90 90 90 

Reference Zentay et al., 2016 Sagar et al., 2017 Liang et al., 2017 

Note: mg/g = mg protein added/g dry biomass added. 

 

The glucose conversion was determined as the ratio of glucose exiting the 

countercurrent system to the equivalent glucose entering the system in each transfer 

(Note: Cellobiose was not considered in this study because the enzymes CTec2 and 

CTec3 contain high levels of β-glucosidase that rapidly convert the produced cellobiose 

into glucose.) The glucose exiting the system was the summation of glucose exiting from 

the first and last stages, and glucose in liquid samples from all stages. The equivalent 

glucose entering the system was from the substrate added to the first stage. 

 Results and Discussion 

Countercurrent Saccharification 

Figure 2-2 shows the glucose concentrations as a function of stage number and 
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time (Train 2). At the beginning, the glucose concentration significantly changes until it 

eventually stabilizes when the system reaches steady state. Similar trends were observed 

for glucose concentration in other trains. More experimental results are shown in Zentay 

et al. (2016), Sagar et al. (2017), and Liang et al. (2017). 

 

 

Figure 2-2 Glucose concentrations as a function of time and stage (bottle) number 

(Train 2, Reprinted from Zentay et al., 2016).  

 

Comparison of Countercurrent to Batch 

To evaluate efficacy, countercurrent results are compared with batch reactions 

with typical reaction time (5 days). To achieve a given steady-state conversion in 

countercurrent saccharification, the corresponding enzyme loading in batch 

saccharification was determined. Table 2-2 compares the enzyme requirements for batch 

and countercurrent saccharifications and the factor reduction. 
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Table 2-2 Comparison of enzyme requirements for batch and countercurrent 

saccharification 

Train  1 2 3 4 5 6 7 

Glucose conversion (%) 56 88 61 67 64 72 82 

Total enzyme 

loading (mg/g) 

Countercurrent 2.0 5.0 1.0 2.0 1.0 2.0 4.0 

Batch (5-day) 16.0 84.0 1.6 2.8 1.9 2.8 3.2 

Factor reduction 8.0 16.8 1.6 1.4 1.9 1.4 0.8 

 

 

As shown in Table 2-2, using α-cellulose as substrate, to achieve the same glucan 

conversion, as compared to typical 5-day batch saccharification, countercurrent 

saccharification reduced enzyme requirements up to 16.8 times. The great reduction 

resulted from the inherent benefits of countercurrent saccharification as well as a longer 

residence time. Using lime-pretreated corn stover as substrate, to achieve the same 

glucan conversion, as compared to batch, countercurrent saccharification reduced 

enzyme requirements up to 1.6 times. Using lime + shock treated corn stover as 

substrate, to achieve the same glucan conversion, as compared to batch, countercurrent 

saccharification reduced enzyme requirements up to 1.9 times. Compared to α-cellulose, 

the results with pretreated corn stover show a much smaller factor reduction indicating 

that lignin may bind enzymes unproductively. 
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Conclusions 

Multi-stage countercurrent saccharifications were performed with lignocellulose 

model compound (α-cellulose), lime-pretreated corn stover, and lime + shock treated 

corn stover. Compared to batch saccharification, to reach a given glucan conversion, 

countercurrent saccharification reduced enzyme loadings up to 16.8 times using α-

cellulose. Compared to batch saccharification, to reach a given glucan conversion, 

countercurrent saccharification reduced enzyme loadings up to 1.6 and 1.9 times using 

lime-pretreated and lime + shock treated corn stover, respectively. Countercurrent 

saccharification shows great promise as a way to minimize enzyme loading while 

maintaining high conversions.
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CHAPTER III  

KINETIC MODELING OF BATCH SACCHARIFICATION1 

Introduction 

In countercurrent saccharification, the reaction in every stage between transfers 

can be considered as batch saccharification; therefore, to get a satisfactory prediction of 

countercurrent saccharification, a kinetic model that can accurately describe batch 

saccharification under various reaction conditions is necessary. 

During the last several decades, various theoretical and empirical models have 

been developed to simulate batch enzymatic hydrolysis of cellulose (Holtzapple et al., 

1984; Kadam et al., 2004; Fenila and Shastri, 2016). Because they lack a theoretical 

foundation, empirical models cannot be applied beyond the range of the data; therefore, 

this study only focuses on mechanistic (and semi-mechanistic) models.  

In 1984, Holtzapple et al. (1984) proposed a generalized mechanistic model for 

cellulose hydrolysis termed the HCH-1 (Holtzapple-Caram-Humphrey-1) model. Figure 

3-1 shows the reaction mechanism of the HCH-1 model (Holtzapple et al., 1984). As 

shown in the figure, free enzyme (𝐸𝑓) adsorbs onto a free cellulose site (𝐺𝑥
𝑓
) to become 

adsorbed enzyme (𝐸𝑎), and then complexes with the cellulose to become enzyme-

substrate complex (𝐸𝐺𝑥). This complex catalyzes the hydrolysis of the cellulose site to 

obtain soluble product (𝐺𝑠) with reaction rate k. All enzyme species can complex with 

 

1 The content of this chapter is from: Liang, C., Gu, C., Raftery, J., Karim, M.N., Holtzapple, 

M., 2019. Development of modified HCH-1 kinetic model for long-term enzymatic cellulose 
hydrolysis and comparison with literature models. Biotechnology for Biofuels. 12: 34.  
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product to become inhibited enzyme (𝐺𝑠𝐸𝑓 , 𝐺𝑠𝐸𝑎, and 𝐺𝑠𝐸𝐺𝑥). For simplicity, the 

product binding constant (β) is assumed to be the same for all enzyme species. Also, the 

adsorption constant (δ) and the complexing constant (η) are assumed not to be affected 

by the binding of product to the enzyme (Holtzapple et al., 1984).  

 

     

Figure 3-1 Reaction mechanism for the HCH-I model (Holtzapple et al., 1984). 

 

The rate-limiting step is the hydrolysis; therefore, the reaction velocity (V) is 

proportional to the concentration of uninhibited enzyme-substrate complex (𝐸𝐺𝑥). To 

express the reaction velocity in terms of known variables, substitutions can be made for 

𝐸𝐺𝑥 using material balances of substrate and enzyme species thus yielding the HCH-1 

model (Eq. 3-1). The detailed model development is described in Holtzapple et al. 

(1984). 

𝑉 =
𝜅[𝐺𝑥][𝐸]𝑖

𝛼 + φ[𝐺𝑥] + 𝜀[𝐸]
 

𝑖 =  
1

1 + 𝛽1[𝐺1] + 𝛽2[𝐺2]
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                              φ = 
[𝐺𝑥] − 𝛼 − 𝜀[𝐸] + √([𝐺𝑥] − 𝛼 − 𝜀[𝐸])2 + 4𝛼[𝐺𝑥]

2[𝐺𝑥]
         (3-1)  

where, 

Gx  is the cellulose concentration (g/L, equivalent to glucose) 

G1 is the glucose concentration (g/L) 

G2 is the cellobiose concentration (g/L, equivalent to glucose) 

E is the enzyme concentration (g/L) 

α is the lumped adsorption constant (𝛼 =  
𝜂𝛿

𝜂+1
, g/L) 

κ is the lumped kinetic constant (𝜅 =  
𝑘

𝜂+1
, h−1) 

β1 is the glucose binding constant (L/g) 

β2 is the cellobiose binding constant (L/g) 

𝜀 is the number of cellulose sites covered by adsorbed or complexed enzyme  

   (dimensionless) 

i is the fraction of total enzyme that is active (dimensionless) 

φ is the fraction of total cellulose sites which are free (dimensionless). 

Unlike the classic Michaelis–Menten model, the HCH-1 model includes a 

parameter 𝜀 that describes the number of reactive sites covered by the enzymes 

(Holtzapple et al., 1984; Brown et al., 2010). Furthermore, the HCH-1 model includes 

non-competitive inhibition by sugar products.  

Unlike empirical models that apply only in the range where the data were taken, 

the HCH-1 model is mechanistic (Figure 3-1) and therefore has broader applicability.  
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As a mechanistic model, it applies to individual enzyme species; however, it has also 

been applied successfully to an enzyme cocktail in which the mixture is treated as a 

single “lumped” enzyme. Using initial-rate data for pretreated biomass hydrolyzed by an 

enzyme cocktail, Brown et al. (2010) compared mechanistic models and showed that the 

HCH-1 model provided the best fit to experimental data.  

Previous studies show that at high degrees of conversion, the hydrolysis rate 

drops by two to three orders of magnitude (Bommarius et al., 2008; Hong et al., 2007). 

The following factors contribute to the decreasing hydrolysis rates: (1) enzyme 

deactivation, (2) product inhibition, (3) decreased substrate reactivity, (4) decreased 

substrate accessibility, and (5) decreased synergism between cellulases (Bansal et al., 

2009). In short-term enzymatic hydrolysis, these factors are not important and therefore 

are usually not incorporated into models that predict initial rates. However, in long-term 

batch saccharification, the reaction time is usually three to five days. As the reaction 

proceeds, the coefficients in short-term enzymatic hydrolysis models, such as HCH-1, 

may change because of the enumerated factors above. To describe long-term integrated 

enzymatic hydrolysis, initial-rate models must be modified. 

In this study, the original HCH-1 model was modified to describe 10-day 

enzymatic cellulose hydrolysis with commercial enzyme cocktail CTec2. The HCH-1 

mechanism (Figure 3-1) applies to individual enzymes in the cocktail; however, 

modeling each enzyme component is exceedingly complex. Understanding the kinetics 

of each enzyme component would be useful when optimizing the cocktail; however, this 

study uses a cocktail with defined components. Our approach is to treat the enzyme 
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cocktail as a single “lumped” enzyme; hence, the resulting “lumped” parameters reflect 

the collective kinetics of the cocktail, not the individual components. To describe long-

term enzymatic hydrolysis, this study investigates the relationships between the 

“lumped” parameters in the HCH-1 model and substrate conversion. The sensitivities of 

parameters in the modified model were analyzed. Additionally, literature models for 

long-term (>48 h) enzymatic hydrolysis were summarized and compared to the modified 

HCH-1 model. 

Materials and Methods 

Materials 

Substrate 

In this chapter, the substrate used for all experiments was α-cellulose (Sigma-

Aldrich, C8002). Compositional analysis showed that the substrate contained glucan 

78.5% and xylan 14.4% (Zentay et al., 2016). 

Enzyme 

The enzyme used in this chapter was Novozymes Cellic® CTec2 (lot# VCPI 

0007), a blend of aggressive cellulases with high levels of β-glucosidases and 

hemicellulases that degrade lignocellulose into sugars (Novozymes, 2010). The protein 

concentration was determined to be 294 mg protein/mL with Pierce BCA assay (Zentay 

et al., 2016). Before use, the enzyme solution was diluted ten times with DI water. 
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Citrate Buffer 

To maintain relatively high enzyme activity, citrate buffer (0.1-M) with a pH of 

4.8 was used in enzymatic hydrolysis experiments. To prepare the buffer, citric acid 

monohydrate and trisodium citrate dihydrate were added to DI water. 

Antibiotics 

To prevent growth of contaminating microorganisms that could consume 

produced sugars, an antibiotic cocktail was added. To prepare the solutions, tetracycline 

powder was dissolved in an aqueous solution of 70% ethanol at 10 g/L and 

cycloheximide powder was dissolved in DI water at 10 g/L.  

Enzymatic Hydrolysis 

In the enzymatic hydrolysis experiments, desired amounts of α-cellulose, 

glucose, and DI water together with 125 mL citrate buffer, 2 mL tetracycline solution, 

and 1.5 mL cycloheximide solution were added to a 1-L centrifuge bottle in sequence 

and then preheated. When the mixture reached 50℃, enzymes were added. Then, the 

centrifuge bottle (total working volume of 250 mL) was placed in the incubator at 50℃ 

for 10 days with an axial rotation of 2 rpm. Liquid samples of 0.5 mL were taken 

periodically and submerged in boiling water for 20 min to deactivate the enzymes. 

(Note: The volume of liquid sample is small relative to the total slurry volume, so it is 

assumed to have a negligible impact on substrate concentration.) Then, to determine the 

glucose concentration, the samples were filtered and analyzed by an HPLC, which was 

equipped with a pair of de-ashing guard columns (Bio-Rad Micro-Guard de-ashing 



 

18 

cartridges, 30 mm × 4.6 mm) and an HPLC carbohydrate analysis column (BioRad 

Aminex HPX-87P, 300 mm × 7.8 mm).  

Selection of Hydrolysis Conditions 

Experiments for Model Fitness 

Based on our previous study (Zentay et al., 2016), 16 enzymatic hydrolysis 

conditions were tested including four different substrate concentrations (40, 60, 80, and 

100 g/L), two different enzyme loadings (2 and 5 mg/g), and two different initial glucose 

concentrations (0 and 33 g/L). 

Experiments for Model Predictions 

Three enzymatic hydrolysis conditions – which were different from the 

conditions used for model fitness – were tested for model predictions: (1) substrate 

concentration: 40 g/L, enzyme loading: 1 mg/g, initial glucose concentration: 0 g/L; (2) 

substrate concentration: 70 g/L, enzyme loading: 1 mg/g, initial glucose concentration: 

28 g/L; (3) substrate concentration: 100 g/L, enzyme loading: 5 mg/g, initial glucose 

concentration: 28 g/L. 

Enzyme Stability 

Enzyme stability was measured by quantifying the soluble protein concentration 

over the course of 20 days. In this experiment, the desired amount of CTec2 was added 

to the preheated mixture of citrate buffer, DI water, and antibiotic cocktail. The resulting 

solution was placed in the incubator at 50℃. Samples of 0.5 mL were taken periodically 
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and then centrifuged at 13,000 rpm for 10 min. The protein concentration of the 

supernatant was measured by the Pierce BCA method.  

Modification of HCH-1 Model 

Simulation of Enzyme Stability 

Wallace et al. (2016) reported that unproductive binding with lignin and thermal 

deactivation may play a significant role in enzyme deactivation. Considering the 

substrate used in this chapter is lignin-free, we assume that enzyme deactivation is solely 

due to thermal deactivation. Rosales-Calderon et al. (2014) observed that the protein 

concentration of a mixture of glucanase and β-glucosidase dropped 34% after incubating 

at 50℃ for 4 days. It was hypothesized that the enzyme proteins suffered a structural 

change at 50℃, which led to protein aggregation and precipitation. Additives, whose 

concentration was assumed constant and proportional to the initial enzyme protein 

concentration, were supposed to be present in the cocktail to stabilize the enzyme protein 

against aggregation. Eq. 3-2 incorporates the presence of additives and is proposed to 

model protein stability (Rosales-Calderon et al., 2014). The development of Eq. 3-2 is 

described in detail by Rosales-Calderon et al. (2014). 

                                     −
𝑑[𝐸]

𝑑𝑡
= 𝑘1[𝐸] − 𝑘2([𝐸0] − [𝐸])[𝐸0]                                (3-2)  

where,  

E is the native enzyme protein concentration (g/L)  

E0 is the initial enzyme protein concentration (g/L) 

k1 and k2 are the rate constants (h−1). 
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The stability of CTec2 with three different initial concentrations was tested. Eq. 

3-2 was used to fit the experimental data. 

Modification of HCH-1 Model 

The HCH-1 model was modified by the following steps: 

Step 1: Use an empirical equation (Eq. 3-3) to fit the experimental data of the 16 

enzymatic hydrolysis conditions (Section: Experiments for model fitness) with high 

accuracy.  This smoothed version of the data provides the reaction rates needed to fit the 

parameters in the modified HCH-1 model of enzymatic hydrolysis. 

𝑑[𝐺1]

𝑑𝑡
                                                                                                                                                                                             

=

3.7798([𝐺𝑥
0] − [𝐺1])0.6410 (

[𝐸0](0.0574[𝐸0] + 0.4370 exp(−𝑡(0.4370 + 0.0574[𝐸0])))
0.4370 + 0.0574[𝐸0]

)

0.8500

1 + 0.0247[𝐺1]1.1579
 (3-3)

 

where, 

𝐺𝑥
0

 is the initial cellulose concentration (g/L, equivalent to glucose). 

Eq. 3-3 was developed based on the integrated version of Eq. 3-2 and an 

empirical model for batch fermentation (Fu and Holtzapple, 2010a). Detailed 

development of this equation is described in Appendix A. To fit the parameters, Eq. 3-3 

was solved with the ode45 routine in MATLAB and nonlinear optimization was 

achieved by the fmincon routine. The objective function was the sum of square errors 

(SSE), which is the sum of the squared difference between experimental data and the 

predicted value (Ordoñez et al., 2016). The optimal set of parameters corresponds to the 

smallest SSE value. This empirical correlation of the data provided a coefficient of 

determination R2 = 0.994. 



 

21 

Step 2: Divide substrate conversion (from 0 to 1) into 50 equal segments. Using Eq. 3-3, 

calculate the reaction rate at each conversion and get a 16 × 50 dataset. 

Step 3: Determine product inhibition. 

The inhibition parameter i in the HCH-1 model was calculated by determining 

the initial velocities with and without inhibitor (Eq. 3-4) (Holtzapple et al., 1990). To 

estimate this value, the same enzyme and cellulose concentrations should be used. 

                                𝑖 =
𝑉𝑤𝑖𝑡ℎ 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟

𝑉𝑛𝑜 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟
=

[
𝜅[𝐺𝑥

0][𝐸]
𝛼 + [𝐺𝑥

0] + 𝜀[𝐸]
] 𝑖

𝜅[𝐺𝑥
0][𝐸]

𝛼 + [𝐺𝑥
0] + 𝜀[𝐸]

                                           (3-4)  

  The inhibition of enzymatic hydrolysis by cellobiose was not considered in this 

study because CTec2 contains a high level of β-glucosidase that rapidly converts 

produced cellobiose into glucose; the cellobiose peak was not found in the HPLC results. 

For a single inhibitor, the inhibition parameter i is expressed in Eq. 3-5 and the glucose 

binding constant β1 is calculated with Eq. 3-6. 

                                                          𝑖 =  
1

1 + 𝛽1[𝐺1]
                                                              (3-5)  

                                                           𝛽1 =  
(1 − 𝑖)

𝑖[𝐺1]
                                                                 (3-6)  

Step 4: Use the HCH-1 model to fit the 16 reaction conditions at each conversion, and 

determine the best-fit coefficients κ, α, and 𝜀. 

Step 5: Determine the relationship between parameter κ and conversion x. 

Figure 3-2 presents the relationship between parameter κ in the HCH-1 model 

and substrate conversion x. The data were obtained from Steps 1−4. As shown in the 
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figure, κ drops very fast in the beginning and then stabilizes after conversion reaches 

0.38. Nidetzky and Steiner (1993) assumed that cellulose consists of an easily 

hydrolyzable part and a recalcitrant part. Based on their two-substrate hypothesis, the 

authors derived a mathematical model to describe the kinetics of cellulose hydrolysis. 

According to the simulation results, the obtained rate constant for easily hydrolyzable 

cellulose was much higher than that of recalcitrant cellulose. Using α-cellulose as 

substrate, they determined that the fraction of easily hydrolyzable cellulose was 0.3 

((Nidetzky and Steiner, 1993). Figure 3-2 can be explained by this hypothesis, but the 

rate constant for the easily hydrolyzable cellulose decreases as conversion increases 

instead of being constant. In our experiments, the fraction of easily hydrolyzable 

cellulose (0.38) is close to the result in Nidetzky and Steiner (1993).  
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Figure 3-2 The relationship between parameter κ and conversion x. 

 

Eq. 3-7 was developed to describe the relationship between parameter κ and 

conversion x.  

                                                 𝜅 =
𝑘3

(1 + 𝑥𝑘4)𝑘5
+ 𝑘6                                                               (3-7)    

where, 

x is the substrate conversion 

k3, k4, k5, and k6 are the parameters. 

The conversion x in the denominator is used to describe the negative effect of 

conversion on the rate constant. The parameter 𝑘6 is considered as the rate constant for 

recalcitrant cellulose. The parameter 𝑘3 is used to describe the difference in rate 
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constants between the easily hydrolyzable cellulose (initial) and recalcitrant cellulose 

(height of the curve). The parameters 𝑘4 and 𝑘5 are used to describe the decrease rate of 

the rate constant (steepness of the curve) for the easily hydrolyzable part. To fit the data, 

the MATLAB curve fitting tool was used and a coefficient of determination R2 = 0.998 

was acquired. The values of parameters k3, k4, k5, and k6 were determined in this step. 

Step 6: Determine the relationship between parameter ε and conversion x. 

Figure 3-3 shows the relationship between parameter ε in the HCH-1 model and 

conversion x. As shown in the figure, parameter ε has a very narrow range (0–0.5) over 

the entire conversion and remains almost unchanged (nearly zero) at conversion 

0.1−0.95. Therefore, in this study, parameter ε is assumed not to be affected by 

conversion and its optimal value should be close to zero. Brown and Holtzapple (1990) 

reported that if [𝐺𝑥
0]/[𝐸0] > 35, assuming ε = 0 would not introduce considerable error 

(<1%). (Note: In our study, [𝐺𝑥
0]/[𝐸0] ≥ 200.) The parameter ε is needed only at high 

enzyme loadings. In industrial-scale saccharification, considering the high cost of 

enzymes, the enzyme dosage must be very low; therefore, if modeling a commercial 

process, the value of ε can be set as zero. 
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Figure 3-3 The relationship between parameter ε and conversion x. 

 

Step 7: Determine the relationship between parameter α and conversion x. 

The parameter α in the original HCH-1 model may be expressed by Eq. 3-8, 

which is related to enzyme adsorption.  

                                                        𝛼 =
[𝐸𝑓][𝐺𝑥

𝑓
]

[𝐸𝑎] + [𝐸𝐺𝑥]
                                                              (3-8) 

Kumar and Wyman (2008) showed that glucose addition and enzyme dosage can 

affect the percentage of cellulase adsorption. Therefore, besides the impact of 

conversion, the effects of glucose and enzyme concentration on the value of α were 

tested. Using the best-fit coefficients κ and 𝜀 obtained from Step 4, two optimal α values 
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corresponding to two initial glucose concentrations were determined by fitting the data 

(eight data at each initial glucose concentration) from Step 2 at each conversion with the 

HCH-1 model (Figure 3-4a). Another two optimal α values corresponding to two 

enzyme concentrations were determined by repeating this procedure at each conversion 

(Figure 3-4b). As shown in Figure 3-4, as the reaction proceeds, the value of α increases 

and then is unchanged when the conversion reaches a certain point. It is obvious that 

high initial glucose concentration and low enzyme dosage improves the value of α 

significantly over the entire conversion range. Eq. 3-9 was proposed to describe the 

relationship among α, conversion x, enzyme concentration E, and glucose concentration 

G1. As shown in Figure 3-4, all four curves show an “S” shape; therefore, the sigmoid 

function – which has an S-shaped curve – was used.  The core structure of Eq. 3-9 is a 

sigmoidal function that describes the relationship between parameter 𝛼 and conversion x. 

(Note: a2 and a3 are the parameters of the sigmoid function.) Also, because of the 

significant effect of glucose and enzyme concentrations on the value of α, the terms [𝐺1] 

and [E] were included in the numerator and denominator of the sigmoid function, 

respectively. The parameter a1 was added to describe the weight of terms [𝐺1] and [E]. 

                                              𝛼 =
𝑎1[𝐺1]

[𝐸](1 + exp(−𝑎2𝑥 + 𝑎3))
                                               (3-9) 

where, 

a1, a2, and a3 are the parameters.  
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Step 8: Modify HCH-1 model 

Summarizing the proposed equations, Eq. 3-10 is the modified HCH-1 model, 

where k1, k2, k3, k4, k5, k6, a1, a2, a3, ε, and β1 are parameters. Estimates for k1, k2, k3, k4, 

k5, k6, and β1 were determined in previous steps. In this step, the optimal values of a1, a2, 

a3, and ε were determined by simultaneously fitting the experimental data of the 16 

enzymatic hydrolysis conditions (Section: Experiments for model fitness) with Eq. 3-10. 

𝑑[𝐺1]

𝑑𝑡
=

𝜅[𝐺𝑥][𝐸]𝑖

𝛼 + φ[𝐺𝑥] + 𝜀[𝐸]
 

where, 

𝑖 =  
1

1 + 𝛽1[𝐺1]
 

φ = 
[𝐺𝑥] − 𝛼 − 𝜀[𝐸] + √([𝐺𝑥] − 𝛼 − 𝜀[𝐸])2 + 4𝛼[𝐺𝑥]

2[𝐺𝑥]
 

−
𝑑[𝐸]

𝑑𝑡
= 𝑘1[𝐸] − 𝑘2([𝐸0] − [𝐸])[𝐸0] 

𝜅 =
𝑘3

(1 + 𝑥𝑘4)𝑘5
+ 𝑘6 

                                                    𝛼 =
𝑎1[𝐺1]

[𝐸](1 + exp(−𝑎2𝑥 + 𝑎3))
                                       (3-10) 

Integration of the differential equations described in Eq. 3-10 was performed 

using the same numerical methods described in Step 1.  
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Figure 3-4 The relationship between parameter α and conversion x with (a) different 

initial glucose concentrations and (b) different enzyme loadings. 
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Sensitivity Analysis  

Local Sensitivity Analysis 

Local sensitivity analysis assesses the local impact of variation in input factors 

on model outputs. To do this analysis, the direct differential method (Peri et al., 2007) 

was used by calculating the sensitivity indices (Eq. 3-11). The sensitivities of parameters 

k1, k2, and β1 were not analyzed because their values were obtained from independent 

experiment or calculation.  

                                                                𝑆𝑝𝑗
=  

∂𝑦

∂𝑝𝑗

𝑝𝑗

𝑦
                                                              (3-11) 

where, 

   𝑆𝑝𝑗
 is the non-dimensional sensitivity index of the jth parameter 

                    y is the glucose concentration (g/L) 

                    𝑝𝑗 is the jth parameter in the parameter vector p. 

Global Sensitivity Analysis 

 Local sensitivity only analyzes the sensitivity of a solution close to the optimal 

parameter set. In contrast, global sensitivity analysis assesses the sensitivity of the model 

for the full range of possible parameter values (Ordoñez et al., 2016). Also, global 

sensitivity indices can evaluate the combined impact of multiple parameters on model 

output.  

 To calculate a global sensitivity index, a normally distributed search of parameter 

space using the Monte Carlo method was performed and subsequent analysis of the 
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variance in the model outputs was used. In this study, two global sensitivity indices were 

calculated: first-order index and total-effect index (Ordoñez et al., 2016; Sobol, 2001). 

The first-order index measures the effect of the parameter of interest alone on the output 

variance. The total-effect index accounts for not only the effect of the parameter of 

interest, but also interactions between other parameters and the parameter of interest at 

any order. 

Model Evaluation 

 The modified HCH-1 model was compared with literature models for long-term  

enzymatic hydrolysis. As described in Step 1, the same differential equation integration 

method, nonlinear optimization constraint algorithm, and objective function were used. 

The Akaike information criterion (AIC) was used to evaluate model quality for the 

experimental data. The corrected version of AIC (AICc, Eq. 3-12) was used because the 

number of observations was not large enough. 

    𝐴𝐼𝐶𝑐 = 𝑁 ∙ ln (
𝑆𝑆𝐸

𝑁
) + 2(𝑃 + 1) + 2

(𝑃 + 1)(𝑃 + 2)

𝑁 − 𝑃
               (3-12) 

where,                              

                N is the number of observations 

                P is the number of model parameters 

                SSE is the sum square error. 
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Results and Discussion 

Enzyme Deactivation 

Figure 3-5 shows that after incubating at 50℃ for 20 days, soluble protein 

concentrations of CTec2 dropped to 74%, 77%, and 83% of their initial values of 0.15, 

0.26, and 0.61 g/L, respectively. This result is consistent with a previous study (Rosales-

Calderon et al., 2014) that shows higher initial protein concentrations favor lower 

deactivation rates and supports the additive hypothesis. Eq. 3-2 successfully describes 

the time profiles of CTec2 protein concentration with a coefficient of determination R2 = 

0.999. The rate constants in Eq. 3-2 were determined to be k1 = 0.0225 h−1 and k2 = 

0.1740 L/(g·h). It should be noted that the modified HCH-1 model is a “lumped” model, 

the performance of each enzyme was not modeled individually; therefore, the stability of 

each component in the enzyme cocktail was not investigated. Eq. 3-2 describes the 

overall deactivation of the cocktail. 
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Figure 3-5 Time profiles and model predictions for soluble CTec2 protein concentration 

at 50℃. Experimental data are presented by the markers and the optimal fit by 

the solid lines. 

 

Production Inhibition 

Table 3-1 lists the values of glucose binding constant calculated from various  

reaction conditions. The eight β1 values are very close to each other and have a standard 

deviation of 6×10−6 L/g. The mean value 0.0429 L/g is considered to be the “true” β1 

value and is used for later calculations.  
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Table 3-1 Glucose binding constant from various reaction conditions 

Reaction condition 

𝜷𝟏 (L/g) 
Substrate concentration 

(g/L) 

Enzyme loading 

(mg/g) 

40 2 0.042908 

40 5 0.042915 

60 2 0.042912 

60 5 0.042918 

80 2 0.042920 

80 5 0.042923 

100 2 0.042922 

100 5 0.042925 

 

 

Model Validation 

Figure 3-6 shows the experimental data and modified HCH-1 model fitting 

results for enzymatic hydrolysis with 16 reaction conditions (Section: Experiments for 

model fitness). Table 3-2 shows the values of the parameters obtained from the previous 

section. The model simulation provided the coefficient of determination R2 = 0.992, 

which indicates the modified HCH-1 model describes enzymatic hydrolysis of α-

cellulose very well.  
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Figure 3-6 Time profiles and modified HCH-1 model fitting results for enzymatic 

hydrolysis of α-cellulose. 
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Table 3-2 Optimal parameter estimates for the modified HCH-1 model 

Parameter Value Unit 

k1 0.0225 h−1 

k2 0.1740 L/(g·h) 

k3 84.7500 h−1 

k4 2.5800 dimensionless 

k5 26.3600 dimensionless 

k6 38.5000 h−1 

a1 1.6791 g/L 

a2 31.1485 dimensionless 

a3 2.8452 dimensionless 

ε 5.5248×10−5 dimensionless 

𝛽1 0.0429 L/g 

 

 

As a comparison, Figure 3-7 shows the original HCH-1 model fit to the 

experimental data with 16 reaction conditions (Section: Experiments for model fitness). 

The value of β1 (0.0429 L/g) was obtained from the previous section (Product 

inhibition). The optimal values (α = 2.0776 × 106 g/L, κ = 9.2889 × 105 h−1, 𝜀 = 0.9996) 

were determined.  (Note: Because the original HCH-1 model was not developed for 

integrated cellulose hydrolysis, these parameter values are not be meaningful.) The 
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model simulation provided the coefficient of determination R2 = 0.947. The calculated 

SSE and AICc are listed in Table 3-3. 

 

 

Figure 3-7 Time profiles and original HCH-1 model fitting results for enzymatic 

hydrolysis of α-cellulose. 

 

Model Predictions 

The modified HCH-1 model (Eq. 3-10) was used to predict the experimental 

results of the three conditions described in “Experiments for model prediction.” The 

parameter values were obtained from the fitness of the 16 conditions (Table 3-2). The 

experimental and predicted results are shown in Figure 3-8. The simulation provided the 

coefficient of determination R2 = 0.991, which indicates the modified HCH-1 model 

predicts enzymatic hydrolysis of α-cellulose with high accuracy. 
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Figure 3-8 Time profiles and modified HCH-1 model predictions for enzymatic 

hydrolysis of α-cellulose. Experimental data are presented by the markers and 

the values of parameters are from Table 3-2. 

 

Sensitivity Analysis 

To explore the controlling factors in the proposed model at different hydrolysis 

stages, local and global sensitivity analyses were performed. Figure 3-9 shows the 

parameter sensitivity indices from local sensitivity analysis of the modified HCH-1 

model over the course of 10 days. As shown in the figure, the sensitivity of k3 drops to 

nearly 10% of its initial value at Day 10. The sensitivity of k4 increases first and reaches 

up to 0.4 at around Day 1 and then slightly decreases from Day 2 to Day 10. For the 

parameters about α, the sensitivity of a1 (absolute value) increases as the hydrolysis time 

increases. The sensitivities of a2 and a3 only change within the first several reaction 
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days, and then are close to zero after Day 3. The sensitivity of ε is close to zero during 

the entire reaction time.  

 

 

Figure 3-9 Local sensitivity analysis of the modified HCH-1 model at the optimal 

solution. 

 

Figures 3-10a and 3-10b show the global sensitivity analysis results of the 

modified HCH-1 model. According to the figures, the first-order indices and total-effect 

indices of all variables are almost identical at any time, which means the variance in this 

model is not related to any interaction between parameters. At the initial stage of 

hydrolysis, the variance in the model output only depends on k3 and k6. Then, the 
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sensitivity index of k3 decreases very fast during the first two days whereas k4 increases 

up to 0.6. From Day 2 to Day 10, the effects of k6 and a1 on the model increase. The 

variables a2, a3, and ε do not show significant effects on the variance in model 

predictions.  

According to Figures 3-9 and 3-10, the local and global sensitivity analyses of 

the modified HCH-1 model show a similar trend during the entire reaction time. Figure 

3-11 shows the sensitivity indices calculated from both analyses at Day 10. The rankings 

of the eight sensitivity indices from both analyses are almost the same (k6 > a1 > k4 > k5 > 

k3 > a2 ≈ a3 ≈ ε).  

The sensitivity analyses not only determine which parameters have the most 

influence on model results, but also verify the assumption in Step 6 that the parameter ε 

is not needed at low enzyme loadings. These analyses provide direction for further 

modification of the HCH-1 model to apply it to real-world lignocellulose that contains 

lignin. 

 

 



 

40 

 

 

Figure 3-10 Global sensitivity analysis of the modified HCH-1 model over the course of 

10 days, (a) first-order indices, (b) total-effect indices. 
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Figure 3-11 The local and global sensitivity indices of the modified HCH-1 model at 

Day 10. (a) local sensitivity analysis, (b) global sensitivity analysis (first-order 

indices). 

 

Model Comparison 

Based on the methodology used, published mechanistic and semi-mechanistic 
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models for cellulose and lignocellulose can be broadly divided into two classes: 

Michaelis–Menten and enzyme-adsorption models (Bansal et al., 2009). The models 

following Michaelis–Menten kinetics can also be divided into two subclasses: full 

Michaelis–Menten models (all rate equations follow Michaelis–Menten kinetics, 

including the steps of cellulose to cellobiose, cellulose to glucose, and cellobiose to 

glucose) and partial Michaelis–Menten models (only the step of cellobiose to glucose 

follows these kinetics). Models employing enzyme adsorption typically use Langmuir 

adsorption isotherms or the help of kinetic equations (Bansal et al., 2009). Some 

literature models incorporate both enzyme adsorption and Michaelis–Menten kinetics. 

In this study, published models for long-term enzymatic hydrolysis of cellulose 

and lignocellulose were fit to the experimental data using the numerical methods 

described in Step 1. Some models do not consider product inhibition. To make a fair 

comparison, these models were only fit to experimental conditions with no initial sugar 

added (0 g/L initial glucose, four substrate concentrations × two enzyme loadings). 

Some models teased out fine details in the elementary reaction steps and included some 

variables that were not determined in this study, such as exocellulase concentration and 

associated enzyme concentration (Shang et al., 2013; Cruys-Bagger et al., 2016; Jeoh et 

al., 2017). These models are not included in this section. Table 3-3 summarizes the 

number of observations and parameters, calculated SSE and AICc values, and the 

methodology used for the published models. According to the table, the modified HCH-

1 model has the least SSE and AICc values, which indicates this model provides the best 

fit for long-term enzymatic hydrolysis of α-cellulose. 
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Table 3-3 Comparison of long-term enzymatic hydrolysis models 

Model N (Obs) Parameter SSE AICc Methodology 

Modified HCH-1 (16) 112 11 236.7 110.9 Ads 

Holtzapple et al. (1984) 

(original HCH-1) 

112 4 1630.7 310.5 Ads 

Drissen et al. (2007) 112 11 600.8 215.2 Ads, M–M 

Fan and Lee (1983) 112 11 679.7 229.0 Ads 

Liao et al. (2008) 112 5 1313.7 288.5 Ads 

Peri et al. (2007) 112 12 2657.6 384.3 Ads, M–M 

Fenila and Shastri (2016) 112 22 2080.9 385.5 Ads, M–M 

Kadam et al. (2004) 112 18 2338.6 386.4 Ads, M–M 

Gusakov et al. (1985) 112 16 2879.2 404.0 M–M 

Philippidis et al. (1993) 112 7 9139.8 510.4 Ads, M–M 

Modified HCH-1 (8)a 56 11 115.2 71.3 Ads 

Shen and Agblevora (2008) 56 4 493.8 133.1 Ads 

Zhang et al.a (2010) 56 3 692.6 149.6 Ads 

Rosales-Calderon et al.a (2016) 56 3 692.6 149.6 Ads 

Nidetzky and Steinera (1994) 56 5 743.9 158.5 Ads 

M–M: Michaelis–Menten kinetics, Ads: Adsorption-based approach. 

a Only eight reaction conditions were fit (0 g/L initial glucose, four substrate 

concentrations (40, 60, 80, and 100 g/L) × two enzyme loadings (2 and 5 mg/g)). 
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Conclusions 

The original HCH-1 model was modified to extend its application to integrated 

enzymatic hydrolysis; it performed well when fitting 10-day cellulose hydrolysis at 

various experimental conditions. Local and global sensitivity analyses were performed to 

determine the controlling parameters at different hydrolysis stages. Mechanistic (and 

semi-mechanistic) literature models for long-term enzymatic hydrolysis were compared 

with the modified HCH-1 model and evaluated by AICc. Comparison results show that 

the modified HCH-1 model provides the best description of enzymatic cellulose 

hydrolysis. The “lumped” modified HCH-1 model developed in this study has a simpler 

form and fewer parameters than mechanistic models of each enzyme component. When 

each enzyme is modeled separately, the kinetics are extremely complex with the 

potential to over-parameterize.  For the specific commercial enzyme cocktail used in this 

study, excellent fits to the data were obtained without the need to model each enzyme 

component individually. 
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CHAPTER IV  

KINETIC MODELING OF COUNTERCURRENT SACCHARIFICATION2 

Introduction 

As shown in Chapter Ⅱ, compared to traditional batch saccharification, 

countercurrent saccharification more fully utilizes enzymes and therefore reduces the 

enzyme loadings and lowers the cost of sugar and biofuel production. However, in 

countercurrent saccharification experiments, 3 to 4 months are usually required to 

acquire a single steady-state data point. To save time and labor, simulation of this 

process is necessary to test various reaction conditions and determine the optimal 

operating point. Previously, a suitable kinetic model for countercurrent saccharification 

has never been reported.  

Loescher (1996) developed Continuum Particle Distribution Modeling (CPDM) 

theory and derived it for various reactor configurations (batch, fed batch, continuous 

stirred tank reactor (CSTR), plug flow reactor (PFR), countercurrent and cocurrent 

CSTR cascades, PFR-CSTR cascades, and CSTR-PFR cascades). Previous studies 

(Loescher, 1996; Ross, 1998; Thanakoses, et al., 2003; Fu and Holtzapple, 2010b; 

Darvekar and Holtzapple, 2016) showed that the CPDM model satisfactorily predicts 

countercurrent fermentation using mixed microbial cultures that digest various 

 

2 The content of this chapter is from: Liang, C., Gu, C., Karim, M.N., Holtzapple, M., 2019. 
Kinetic modeling of countercurrent saccharification. Biotechnology for Biofuels. 12: 179. 
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feedstocks. Here, CPDM is applied to countercurrent enzymatic saccharification of 

lignocellulose.  

In this study, the CPDM model was used to simulate multi-stage countercurrent 

saccharification. α-Cellulose was used for modeling because of its simpler composition 

compared to real-world lignocellulose, which contains lignin. Lignin is known to bind 

cellulase enzymes non-productively (Kumar and Wyman, 2009b), which complicates the 

kinetic modeling. The predicted glucose concentrations and conversions were compared 

with experimental data and the average errors were calculated. In addition, the model 

estimated the effects of enzyme-addition location, total stage number, enzyme loading, 

liquid residence time (LRT), and solids loading rate (SLR) on conversion and product 

concentration, thus allowing the benefits of countercurrent saccharification over batch to 

be quantified.  

Materials and Methods 

Materials 

In this chapter, the substrate used for all experiments was α-cellulose (Sigma 

Aldrich, C8002-5KG). Compositional analysis showed that the substrate contained 

glucan 78.5% and xylan 14.4% (Zentay et al., 2016). The enzyme used for all 

experiments was Novozymes Ctec2 (lot # VCPI 0007), a blend of aggressive cellulases 

with high levels of β-glucosidases and hemicellulases (Zentay et al., 2016; Lonkar et al., 

2017). The protein concentration of the enzyme solution was determined to be 294 mg 

protein/mL with Pierce BCA assay (Zentay et al., 2016). To maintain relatively high 

enzyme activity, citrate buffer (0.1 M, pH 4.8) was used in all experiments in this 
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chapter. To prevent microbial growth, an antibiotic cocktail (tetracycline 10 g/L 70% 

ethanol and cycloheximide 10 g/L DI water) was used in all experiments in this chapter. 

Countercurrent Saccharification 

Experimental data of countercurrent saccharification were obtained from Zentay 

et al. (2016). In the experiments, two trains were performed with enzyme loadings of 2 

and 5 mg/g, respectively (Trains 1 and 2 in Chapter Ⅱ). Details of the experiments are 

shown in Chapter Ⅱ and Table 2-1. 

Continuum Particle Distribution Model 

In CPDM, a “continuum particle” is defined as one gram of solids in the initial 

unreacted state and is representative of the substrate (Loescher, 1996; Ross, 1998; 

Darvekar and Holtzapple, 2016). This model tracks the reaction progress of the 

continuum particle as it transfers through the stage, digests, and releases products (Fu 

and Holtzapple, 2010c). Conversion of the particle from 0 to 1 is divided into a given 

number of intervals. A conversion distribution function (implicitly defined by Eq. 4-1) is 

used to express the number of continuum particles in each specific conversion interval at 

a particular reaction time.  

𝑛0 = ∫ 𝑛̂(𝑥)
1

0

𝑑𝑥 (4-1) 

where, 

𝑛̂(𝑥) is the particle conversion distribution function 

𝑛0 is the initial particle concentration (particle/L). 
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Eq. 4-2 relates the total reaction rate (rt) with the reaction rate at a given 

conversion (r) as a function of particle conversion (x), product concentration (G1), 

enzyme concentration (E), and particle conversion distribution 𝑛̂(𝑥), which contains 

information about substrate concentrations (Gx) and conversions (x). (Note: The CPDM 

model was previously used to simulate countercurrent fermentation only. The governing 

rate equation used in the CPDM model was for batch fermentation. To simulate 

countercurrent saccharification, in this study, the governing rate equation of the CPDM 

model was changed.) 

𝑟𝑡 = ∫ 𝑟(𝑛̂(𝑥), 𝑥, [𝐺1], [𝐸])𝑑𝑥
1

0

(4-2) 

where, 

rt is the total reaction rate (g/(L·d)) 

r is the reaction rate at a given conversion (g/(L·d)) 

G1 is the glucose concentration (g/L) 

E is the (native) enzyme concentration (g/L) 

x is the substrate conversion (0 to 1) 

To get a satisfactory prediction, the governing rate equation 

(𝑟(𝑛̂(𝑥), 𝑥, [𝐺1], [𝐸]]) employed in the CPDM model should accurately describe batch 

enzymatic hydrolysis under various reaction conditions. The HCH-1 model, proposed by 

Holtzapple et al. (1984), is a generalized mechanistic model for cellulose hydrolysis. 

Compared to the classic Michaelis–Menten model, the HCH-1 model includes non-

competitive inhibition and an added parameter 𝜀 that describes the number of reactive 
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sites covered by the enzymes (Holtzapple et al., 1984; Brown et al., 2010). Previous 

studies (Brown et al., 2010) showed that the HCH-1 model could predict short-term 

(initial-rate) enzymatic hydrolysis with high accuracy and better than other models that 

appeared in the literature. Chapter Ⅲ modified the HCH-1 model to extend its 

application to long-term (>48 h) batch enzymatic hydrolysis. Comparison of mechanistic 

models under various reaction conditions showed that the modified HCH-1 model 

provided the best fit to experimental data of enzymatic hydrolysis of α-cellulose (Brown 

et al., 2010; Liang et al., 2019a; Chapter Ⅲ). Therefore, the modified HCH-1 model (Eq. 

3-10, parameter values from Table 3-2) was used as the governing rate equation in the 

CPDM model.  

In the simulation of countercurrent saccharification, all stages were set to have 

the same initial conditions identical to the experiments. Combining Eq. 3-10 and Eq. 4-1, 

the reaction rate r of each conversion interval was calculated. Using Eq. 4-2, the total 

reaction rate 𝑟𝑡 of each stage was calculated and the glucose concentration of each stage 

after 48-h reaction was obtained. Accordingly, the conversions of the continuum 

particles were changed from the previous conversion intervals to the higher intervals. 

Then, just like the experiments, a 1-mL liquid sample was taken from each stage; 

specific amounts of solids and liquid phases were transferred between stages; solids and 

liquids were removed from the last and first stages, respectively; and fresh solids, liquid, 

and enzymes were added to the system. The conversion distribution of continuum 

particles and glucose concentration of each stage were further changed based on the 



 

50 

transfer. Afterwards, the next 48-h reaction started. The previous steps were repeated 

until the total reaction time was reached. 

Enzyme Stability 

The operating time of the countercurrent experiments was usually longer than 

one month. To improve the countercurrent saccharification model, it is necessary to 

determine enzyme stability over a relatively long time. Rosales-Calderon et al. (2014) 

showed that the soluble protein concentration of a mixture of glucanase and β-

glucosidase dropped significantly after incubating at 50℃ for 4 days and hypothesized 

that the enzyme proteins suffered a structural change, which led to protein aggregation 

and precipitation. Based on this hypothesis, Chapter Ⅲ measured the stability of CTec2 

by quantifying soluble protein concentration over the course of 20 days. Results showed 

that soluble CTec2 protein concentration dropped up to 26% after 20-day incubation at 

50℃. Eq. 4-3 (proposed by Rosales-Calderon et al. (2014), parameter values from 

Chapter Ⅲ) was used to model the stability of CTec2 successfully. To predict active 

enzyme concentration in the countercurrent process accurately, Eq. 4-3 was incorporated 

into the simulation of countercurrent saccharification. It should be noted that in batch 

simulation, Eq. 4-3 was part of the modified HCH-1 model. Here, it is incorporated into 

the CPDM model independently instead of being included in the governing equation 

because the addition locations of substrate and enzymes were different in the 

countercurrent system.  

−
𝑑[𝐸]

𝑑𝑡
= 0.023[𝐸] − 0.174([𝐸0] − [𝐸])[𝐸0] (4-3) 
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Enzyme Distribution 

In every transfer of the countercurrent experiment, solid and liquid phases were 

separated by a centrifuge and transferred in the opposite direction. As the liquid/solid 

phases moved, the enzymes suspended in the liquid phase or absorbed on the solid phase 

would move with them. To predict accurately the enzyme concentration of each stage 

after every transfer, it is important to determine the distribution of enzymes between the 

two phases. Kumar and Wyman (2008) showed that glucose addition and enzyme dosage 

can affect the fraction of cellulase adsorption. In this study, glucose concentrations 

ranging from 0 to 93.35 g/L and enzyme loadings ranging from 1 to 5 mg/g were tested.  

In the enzyme distribution experiments, the desired amounts of glucose, enzyme 

solution, and DI water together with 25 g α-cellulose, 125 mL citrate buffer, and 3.5 mL 

antibiotic solutions were added to a 1-L centrifuge bottle (total 250 g). Control 

experiments were also performed, which had the same loadings, but without substrate. 

To avoid hydrolysis, the loaded bottles were placed in the refrigerator (4℃). After 

equilibration overnight, the bottles were centrifuged to separate solid and liquid phases. 

The protein concentrations of supernatants were measured by the Bradford protein assay 

and the glucose concentrations of supernatants were analyzed by an HPLC that was 

equipped with a refractive index detector, autosampler, a pair of de-ashing guard 

columns (Bio-Rad Micro-Guard de-ashing cartridges, 30 mm × 4.6 mm), and an HPLC 

carbohydrate analysis column (BioRad Aminex HPX-87P, 300 mm × 7.8 mm). The 

fraction of enzyme absorbed on the solid phase was expressed by Eq. 4-4.  
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 Enzyme absorbed (fraction) = 

1 −
protein concentration of supernatant in test experiment

protein concentration of supernatant in corresponding control experiment
(4-4)  

Reactor Volume Calculation 

The volume of the batch reactor was determined as follows:  

Batch reactor volume (L)

=
Glucose production rate (

g glucose
day

)  ×  Batch residence time (day)

Product concentration (
g glucose
L solution

) ×  Ratio A (
L solution

L slurry
)

                 (4-5)   

where Ratio A is the volume of sugar solution per the measured volume of the slurry 

before reaction. For example, if the glucose concentration of the product is 100 g/L, the 

density of the solution is approximately 1040 g/L solution (The Engineering Toolbox, 

2019). In 1 L of sugar solution, there are 100 g of glucose and 940 g water. To make that 

amount of glucose requires 90 g cellulose and 10 g of water; therefore, the slurry would 

be composed of 90 g cellulose and 950 g water.  Assuming the density of solid is 1 

g/mL, then Ratio A is 0.962. 

The volume of the countercurrent reactor was determined as follows: 
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Countercurrent reactor volume (L)

= Glucose production rate (
g glucose

day
) ×  Ratio B (

g water

g glucose
)  

×  Water density (
L water

1000 g water
)  ×  Ratio C (

L slurry

L water
)

× Liquid residence time (day)                                                              (4-6)  

where Ratio B is the ratio of the water mass to glucose mass at a specific glucose 

concentration, and Ratio C is the ratio of the initial total working volume to the loaded 

liquid volume.  For example, if the solid concentration in the reactor is 250 g solids/L 

liquid, then Ratio C is the volume of 250 g solids + 1000 g water divided by the volume 

of 1000 g water. Assuming the density of solid is 1 g/mL, then Ratio C is 1.25. 

In this study, to achieve a fair comparison, the batch reactor volume was 

considered identical to the continuous plug-flow reactor volume.  

Glucose production rate (
g glucose

day
) ×  Batch residence time (day)

Product concentration (
g glucose
L solution

) ×  Ratio A (
L solution

L slurry
)

= Glucose production rate (
g glucose

day
)  ×  Ratio B (

g water

g glucose
)  

×  Water density (
L water

1000 g water
)  ×  Ratio C (

L slurry

L water
)

× Liquid residence time (day)                                                                (4-7)  

The glucose production rates of batch and countercurrent saccharifications were 

set equal, then, 
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Liquid residence time (day)                                                                                                                                                                                                                              

=
Batch residence time (day)

Product concentration (
g glucose
L solution

) ×  Ratio A (
L solution

L slurry
) ×  Ratio B (

g water
g glucose

) ×  Water density (
L water

1000 g water
) ×  Ratio C (

L slurry
L water

)

 

(4-8) 

The denominator has typical values of 1 to 1.25. 

Eq. 4-8 specifies the required LRT for the countercurrent system that has the 

same volumetric productivity (g glucose/(L reactor·day)) as the batch reactor. Using this 

approach, the amount of enzyme required by each system can be compared on an equal 

and fair basis. 

Results and Discussion 

Enzyme Distribution 

Figure 4-1 shows the effects of glucose and enzyme concentrations on the 

fraction of enzyme absorbed. As shown in this figure, additional glucose negatively 

affects enzyme absorption, which is consistent with the literature (Kumar and Wyman, 

2008). As glucose concentration increases, more enzyme combines with glucose in the 

liquid, thus reducing the enzyme absorbed onto the solid phase. Also, as expected, 

higher enzyme loadings favor lower fractions of absorption because high dosage might 

saturate the adsorption of enzymes on the cellulose surface.  
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Figure 4-1 Effects of glucose and enzyme concentrations on the fraction of enzyme 

absorbed and fitted with Eq. 4-9. Experimental data are presented by the 

markers and the optimal fit by the solid lines. 

 

To describe the experimental data, a linear equation (Eq. 4-9) was proposed and 

resulted in a high coefficient of determination (R2 = 0.99). This equation was 

incorporated into the simulation of countercurrent saccharification to quantitatively 

determine the amount of enzymes in liquid and solid phases, thereby acquiring the 

transfer amounts and directions of enzymes. 

𝑦 = 𝑑1[𝐸] + 𝑑2[𝐺1] + 𝑑3 (4-9) 

where, 

y is the fraction of CTec2 absorbed 
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d1, d2, and d3 are the parameters (d1 = −0.550 L/g; d2 = −8.04×10−4 L/g; d3 =   

0.795). 

Verification of the CPDM Model 

Figure 4-2 shows the predicted glucose concentrations as a function of time and 

stage number at enzyme loading of 5 mg/g. The predicted and experimental results 

(Figure 2-2) show similar trends. At the beginning, the glucose concentration 

significantly changes until it eventually stabilizes when the system reaches steady state. 

At steady state, the glucose concentration increases gradually from Stage 8 to Stage 1. 

Table 4-1 compares the experimental glucose concentrations (Stage 1) and conversions 

to the CPDM predictions at enzyme loadings of 2 and 5 mg/g. To be consistent with 

experiments, the operation time of the two trains in the simulation was set to be 24 and 

42 days, respectively, when the systems have been verified to reach steady state in the 

experiments. According to Table 4-1, the CPDM predictions agree well with glucose 

concentrations from countercurrent experiments with an average error of 3.5%. The 

average error between experimental and predicted conversions is 4.7%. 
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Figure 4-2 Predicted glucose concentration as a function of time and stage (bottle) 

number. Operation conditions in the simulation are set to be the same as the 

experimental conditions (listed in Table 2-1, Train 2). 
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Table 4-1 Comparison of experimental and predicted glucose concentrations and 

conversions for countercurrent saccharification of α-cellulose 

Train 1 2 Average 

Enzyme loading (mg/g) 2 5  

Glucose concentration (g/L)    

Experimental1 54 78  

Predicted from CPDM  51 77  

Error (%)2 5.6 1.3 3.5 

Conversion (%) 

Experimental1 56 88  

Predicted from CPDM 52 86  

Error (%)2 7.1 2.3 4.7 

1 Data obtained from Zentay et al., 2016. 

2 Error (%) = |Predicted – Experimental|/Experimental × 100%. 

 

Sensitivity Analysis 

 To explore the controlling parameters in the proposed model, sensitivity analyses 

were performed. Chapter Ⅲ showed that k3, k4, k6, and α1 had the most influence on the 

modified HCH-1 model results. Therefore, the sensitivities of the four parameters 
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together with the three parameters d1, d2, and d3 in the enzyme distribution equation (Eq. 

4-9) were analyzed in this section (Figure 4-3).  

 As shown in Figure 4-3, in the space of 75–125% of parameter values, α1 and d3 

–which are both related to enzyme adsorption – have the most influence on conversion. 

Among the parameters related to kinetics, k6 – which is considered as the rate constant 

for recalcitrant cellulose (Chapter Ⅲ) – has the most influence on conversion. The 

parameter d2 – which weighs the effect of glucose concentration on the fraction of 

enzyme adsorbed – has the least influence on simulation results. These analyses provide 

insights to directions that would further optimize the countercurrent system. 

 

 

Figure 4-3 Sensitivity analysis of countercurrent saccharification simulation. Operation 

conditions in the simulation are set to be the same as the experimental 

conditions (listed in Table 2-1, Train 2). 
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Predictions from the CPDM Model 

According to the verification results, CPDM is sufficiently accurate to determine 

the optimal operating conditions in countercurrent saccharification. In this section, 

CPDM was used to test the effects of enzyme-addition location, total stage number, 

enzyme loading, LRT, and SLR on conversion and product concentration. To ensure the 

simulated countercurrent systems reach steady state, the operation time of all simulations 

was set to 200 days.  

Effect of Enzyme-addition Location 

Determining the optimal enzyme-addition location maximizes the retention time 

of enzymes in the system and therefore fully uses substrate and enzymes. In this 

simulation study, various enzyme-addition locations were tested in the eight-stage 

countercurrent system at enzyme loadings of 2 and 5 mg/g (Figure 4-4). According to 

Figure 4-4, for both tested enzyme loadings, conversions increase as the enzyme-

addition location moves from “front” to “back” of the system. For enzyme loading of 2 

mg/g, the highest conversion is obtained when adding enzymes to Stage 7. For enzyme 

loading of 5 mg/g, the optimal addition location is Stage 8. Compared to low enzyme 

dosages, at high enzyme dosages, adding enzymes to the downstream brings more 

benefits. For example, at 2 mg/g, ConversionStage 7 – ConversionStage 1 = 16%. In contrast, 

at 5 mg/g, ConversionStage 8 – ConversionStage 1 = 45%. At high enzyme dosages, a larger 

proportion of enzymes are in the liquid phase (Section: Enzyme distribution between 

solid and liquid phases); therefore, adding enzymes near the “back” of the system 

increases enzyme retention. 
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Figure 4-4 Effect of enzyme-addition location on conversion in the eight-stage 

countercurrent system at enzyme loadings of (a) 2 mg/g and (b) 5 mg/g using 

α-cellulose as substrate. Operation time is 200 days. Other conditions in this 

simulation are set to be the same as the experimental conditions. Simulation 
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data are presented by the markers and the lines are added to show the changing 

trend. 

 

Effect of Total Stage Number 

Figure 4-5 shows the effect of total stage number on conversion at enzyme 

loadings of 2 and 5 mg/g. In this simulation study, the transfer frequency was adjusted to 

ensure the LRTs of all tested conditions were the same (29 days). The enzyme-addition 

locations were set to the penultimate stage for enzyme loading of 2 mg/g (Figure 4-5(a)) 

and the last stage for enzyme loading of 5 mg/g (Figure 4-5(b)) (Section: Effect of 

enzyme-addition location). According to Figure 4-5, the optimal total stage number is 

affected by enzyme loading. For enzyme loading of 2 mg/g, the highest conversion is 

obtained with a 16-stage system. For enzyme loading of 5 mg/g, the highest conversion 

is obtained with a four-stage system. This result indicates that for the same LRT, a 

higher-stage system is more beneficial when the enzyme loading is low. In the later 

simulations, various enzyme loadings were used; therefore, to make a fair comparison, a 

constant eight-stage system was used. 
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Figure 4-5 Effect of total stage number on conversion with (a) 2 mg/g and (b) 5 mg/g of 

CTec2 using α-cellulose as substrate. The enzyme-addition locations are set to 

be the (a) penultimate stage and the (b) last stage. Operation time is 200 days. 
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Other conditions in this simulation are set to be the same as the experimental 

conditions. Simulation data are presented by the markers and the lines are 

added to show the changing trend. 

 

Effect of Enzyme Loading 

The effect of enzyme loading on glucose concentration and conversion was 

simulated in the eight-stage countercurrent system (Figure 4-6). To make a fair 

comparison, the same enzyme-addition location (Stage 7) was used for all test points. 

According to Figure 4-6, as expected, both glucose concentration and conversion 

increase significantly as the enzyme loading increases from 1 to 6 mg/g. When the 

enzyme loading is 6 mg/g, the glucose concentration is 90 g/L and conversion is nearly 

100%. 
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Figure 4-6 Effect of enzyme loading on (a) glucose concentration and (b) conversion in 

the eight-stage system using α-cellulose as substrate. Enzyme-addition location 

is Stage 7. Operation time is 200 days. Other conditions in this simulation are 
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set to be the same as the experimental conditions. Simulation data are 

presented by the markers and the lines are added to show the changing trend. 

 

Effect of Liquid Residence Time and Solids Loading Rate 

The LRT (Eq. 4-10) determines how long the liquid remains in the 

countercurrent system. A longer LRT allows higher product concentration (Fu, 2007; 

Holtzapple et al., 1999). To obtain various LRTs, in this study, the transfer frequency 

was adjusted, which corresponds to the t in Eq. 3-10. 

LRT (day) =
total liquid volume in the system (L)

flowrate of liquid out of the system (
L

day
)

  (4-10)
 

The SLR (Eq. 4-11) represents the rate that biomass is added to the system. A 

lower SLR allows longer solid residence time, which is a measure of how long the solids 

remain in the countercurrent system. Longer solid residence times increase digestion, 

and therefore improve conversion (Fu, 2007; Holtzapple et al., 1999). To obtain various 

SLRs, in this study, during each transfer, the amount of solid feed added to Stage 1 was 

adjusted, which corresponds to the continuum particles (𝑛̂(𝑥)) added to conversion = 0 

interval in Stage 1. 

SLR (
g

L · day
) =

solids fed per day (
g

day
)

total liquid volume in the system (L)
   (4-11)

 

Figure 4-7 shows the CPDM “map” for countercurrent saccharification of α-

cellulose at enzyme loadings of 3.5 and 5 mg/g with various LRTs and SLRs. The solid 

concentration in the reactors is 124 g solids/L liquid (0.11 g solids/g (solids + liquid)), 
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the same as the experimental concentration. As shown in Figure 4-7, as LRT increases, 

glucose concentration increases significantly whereas conversion decreases. As SLR 

decreases, conversion increases significantly whereas glucose concentration decreases. 

Both observations are consistent with previous studies using mixed-culture fermentation 

(Fu, 2007; Holtzapple et al., 1999). Furthermore, as expected, at every LRT and SLR, 

using enzyme loading of 5 mg/g obtains a higher glucose concentration and conversion 

compared to 3.5 mg/g. For enzyme loading of 5 mg/g, the “map” predicts a glucose 

concentration of 152 g/L and a conversion of 67% at LRT of 43 days and SLR of 4.9 

g/(L·day). A glucose concentration of 83 g/L and conversion of 100% can be obtained at 

LRT of 43 days and SLR of 2.2 g/(L·day). A relatively high glucose concentration (>100 

g/L) and high conversion (>90%) can be obtained at LRT of 43 days and SLR of 3 

g/(L·day).  
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Figure 4-7 CPDM “map” for countercurrent saccharification of α-cellulose at enzyme 

loadings of 3.5 and 5 mg/g. Solid concentration in the reactors is 124 g 

solids/L liquid. Enzyme-addition location is Stage 8. Operation time is 200 

days. 

 

Figures 4-8 and 4-9 show the effect of SLR and LRT on glucose concentration, 

inhibition parameter i, and conversion of each stage. For 3.5 mg/g added to Stage 7, 

when using LRT of 43 days, SLR of 3.4 g/(L·day), and solid concentration of 124 g 

solids/L liquid, the obtained glucose concentration of Stage 1 is 93 g/L (Figure 4-8(a)). 
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When decreasing the LRT to 29 days and keeping SLR and solid concentration constant, 

the obtained glucose concentration of all stages decreases; the glucose concentration of 

Stage 1 decreases to 64 g/L. 
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Figure 4-8 Effect of liquid residence time on (a) glucose concentration, (b) inhibition 

parameter i, and (c) conversion of each stage. Substrate is α-cellulose. Solid 

concentration in the reactors is 124 g solids/L liquid. Enzyme-addition location 

is Stage 7. Enzyme loading is 3.5 mg/g. Solids loading rate is 3.4 g/(L·day). 

Operation time is 200 days. 
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Figure 4-9 Effect of solids loading rate on (a) glucose concentration, (b) inhibition 

parameter i, and (c) conversion of each stage. Substrate is α-cellulose. Solid 

concentration in the reactors is 124 g solids/L liquid. Enzyme-addition location 

is Stage 7. Enzyme loading is 3.5 mg/g. Liquid residence time is 29 days. 

Operation time is 200 days. 
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The inhibition parameter i relates to glucose concentration only and represents 

the fraction of total enzyme that is not inhibited. At 93 g/L of glucose concentration 

(LRT: 43 days, Stage 1), only 20% of enzymes remain active (Figure 4-8(b)). Figures 4-

8(b) and (c) show that as the inhibition parameter i increases, the conversion in Stages 

5–8 increases significantly. (Note: The conversion of each stage is calculated by using 

particle conversion distribution function: Conversion of each stage (%) = 

1

𝑛0
∫ 𝑥𝑛̂(𝑥)𝑑𝑥

1

0
× 100%, which is different from the previously mentioned conversion 

for the entire reactor train.) Similar patterns are shown when increasing SLR from 1.7 to 

3.4 g/(L·day) and keeping LRT (29 days) and solid concentration (124 g solids/L liquid) 

constant (Figure 4-9). 

Comparison of Countercurrent to Batch 

To evaluate the efficacy of countercurrent saccharification, an eight-stage 

countercurrent system is compared with batch saccharification (Figure 4-10).  Batch 

simulations use the modified HCH-1 model, and countercurrent simulations use the 

CPDM model with the modified HCH-1 equation as the governing equation. To compare 

the enzyme requirement on an equal basis, in this section, batch and countercurrent 

saccharifications have the same: 

  (1) Conversion – Total conversion (100%) was used. 

 (2) Product concentration – In countercurrent saccharification, the sugar 

concentration in the product is based on the solid:liquid ratio added to the reactor train; 

therefore, the batch solid concentration (g solids/L liquid) was set equal to the 
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solid:liquid ratio added to the reactor train (g added solids/L added liquid) in every 

countercurrent transfer. 

 

 

Figure 4-10 Comparison of enzyme requirements for batch and countercurrent 

saccharifications at various batch residence time and glucose concentrations, 
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(a) low glucose concentrations and (b) high glucose concentrations. The 

conversion of all conditions is 100%. Solid concentration in batch (g solids/L 

liquid) = solid:liquid ratio added to the reactor train (g added solids/L added 

liquid) in every countercurrent transfer. The liquid residence time in 

countercurrent saccharification is adjusted to reach the same batch reactor 

volume using the method in the previous section (Reactor volume calculation). 

The solid concentration in every stage in countercurrent saccharification is 250 

g solids/L liquid. Enzyme-addition location is Stage 8. Operation time is 200 

days. The substrate is α-cellulose. Batch simulations use the modified HCH-1 

model. Countercurrent simulations use the CPDM model with the modified 

HCH-1 equation as the governing equation. (Note: In this section, sampling 

was not included in the simulation of countercurrent saccharification.) 

 

(3) Reactor volume – This ensures the same capital cost. Using the method in the 

previous section (Reactor volume calculation), the LRT in countercurrent 

saccharification is adjusted to reach the same reactor volume as batch saccharification. 

 Some industrial reactors, such as percolation reactors, allow for high solid 

concentrations, which reduces capital costs. In this section, the solid concentration in the 

reactors in countercurrent saccharification was 250 g solids/L liquid (0.2 g solids/g 

(solids + liquid)) and the enzyme-addition location was Stage 8. 

 As shown in Figure 4-10, to reach 50 g glucose/L, using 5-day batch residence 

time, the countercurrent system reduces enzyme loadings by 4.1 times compared to 
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batch; however, the enzyme requirement is still more than 10 mg/g. As batch residence 

time increases, as expected, the enzyme requirements of all conditions decrease 

significantly. To reach 50 g glucose/L, at batch residence times of 40 and 80 days, the 

enzyme loadings of countercurrent saccharification are 4.9 and 4.4 mg/g respectively, 

which reduce enzyme loadings by 3.6 and 3 times compared to batch. To reach 100 g 

glucose/L, at batch residence times of 40 and 80 days, the enzyme loadings of 

countercurrent saccharification are 7.5 and 6.4 mg/g respectively, which reduce enzyme 

loadings by nearly 2 times compared to batch (Figure 4-10(a)). To reach 125 g 

glucose/L, at batch residence time of 40 days, the enzyme loading of countercurrent 

saccharification is 9 mg/g, which reduces enzyme loading by 1.9 times compared to 

batch. To reach 125, 150, and 175 g glucose/L, at batch residence time of 80 days, the 

enzyme loadings of countercurrent saccharification are all less than 10 mg/g, which 

reduce enzyme loadings by more than 1.25 times compared to batch (Figure 4-10(b)). 

 These results indicate that under all conditions, countercurrent saccharification 

requires less enzyme than batch saccharification; however, it is particularly effective at 

low product concentrations. In the countercurrent system, when product concentrations 

are high, the glucose concentrations in the first several stages are all high (such as Figure 

4-8(a)).  At high product concentrations, enzymes are highly inhibited and the benefits of 

countercurrent saccharification are less pronounced. 

Conclusions 

This chapter reports kinetic modeling of countercurrent saccharification. The 

CPDM model was used to simulate multi-stage countercurrent saccharification of α-



 

75 

cellulose with the modified HCH-1 model as the governing equation. This model 

predicted the experimental glucose concentration and conversion with average errors of 

3.5% and 4.7%, respectively, which is sufficiently accurate to determine optimal 

operating conditions with α-cellulose. CPDM prediction results showed that enzyme-

addition location, enzyme loading, LRT, and SLR significantly affected the glucose 

concentration and conversion. Compared to batch saccharification at the same 

conversion, product concentration, and reactor volume, countercurrent saccharification is 

more beneficial when the product concentrations are low. 

This study provides a foundation for simulating countercurrent saccharification 

using real-world lignocellulose as substrate. However, because of the complicated 

composition and structure of lignocellulose, more factors must be considered in future 

models, such as lignin-enzyme interaction. 
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CHAPTER V  

TECHNO-ECONOMIC ANALYSIS OF ENZYMATIC CELLULOSE HYDROLYSIS 

Introduction 

As shown in Chapter IV, in countercurrent saccharification, lower product 

concentration and higher residence time allow lower enzyme loading to reach 100% 

conversion, which means lower enzyme cost. However, higher residence time usually 

requires larger reactor volume, which means higher capital cost; lower product 

concentration usually requires both higher energy consumption to get a concentrated 

product and larger reactor volume, which means both higher utility cost and higher 

capital cost. Therefore, a techno-economic analysis is necessary to determine the 

operating point of countercurrent saccharification that has the lowest cost of cellulosic 

sugar production. 

In this analysis, besides countercurrent saccharification, a dewatering process 

that concentrates the sugar solution obtained from the saccharification process was 

included. The concentrated sugars can be readily transported, thereby allowing the 

biomass to be processed in a distributed manner. The concentrated sugars can be 

processed in centralized plants to make a variety of products, such as ethanol, butanol, 

succinic acid, and lactic acid (Liang et al., 2017).  

Process Description 

Figure 5-1 shows the process scheme for enzymatic hydrolysis of α-cellulose. As 

shown in the figure, there are two sections: (1) countercurrent saccharification – 
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substrate is hydrolyzed by enzyme to obtain saccharification sugar solution; (2) 

dewatering – saccharification sugar solution is dewatered to obtain concentrated sugar 

solution. 

 

 

Figure 5-1 Process scheme for enzymatic hydrolysis of α-cellulose. 

 

Countercurrent Saccharification 

Figure 5-2 shows the schematic of countercurrent saccharification. Substrate, 

enzyme, and preheated liquid materials are added to the different locations of the 

reactors. In the laboratory, using multiple centrifuge bottles as reactors to achieve 

countercurrent movement of solids and liquids is convenient and practical. However, at 

industrial scale, a continuous and simpler configuration, such as a packed column (Liang 

et al., 2017), is envisioned for countercurrent saccharification. This study did not involve 

the detailed design of the countercurrent saccharification reactor. To simplify the 

economic analysis, unless otherwise specified, the reactor was considered as a tank. The 

conversion of this process was assumed to be 100%. 
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Figure 5-2 Schematic of countercurrent saccharification. 

 

Dewatering 

The dewatering process utilizes mechanical vapor recompression (MVR) 

evaporators, which are primarily driven by electricity and was deemed to be preferable 

over standard thermal (steam)-driven evaporators (Davis et al., 2013). In this study, the 

MVR evaporators followed National Renewable Energy Laboratory (NREL) design 

(Figure 5-3, Davis et al., 2013). The concentration of the concentrated sugar solution 

was assumed to be 909 g/L, which is saturated glucose solution at 25℃. The sugar 

recovery was assumed to be 100%. According to the NREL design, the operating 

temperature of the evaporators is kept below 80℃ to avoid possible sugar degradation at 

high temperatures. The electricity consumption is 0.021 kWh/kg water vaporized (Davis 

et al., 2013). 
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Figure 5-3 Schematic of dewatering process (Davis et al., 2013). 

 

Cost Estimation 

Fixed Capital Investment (FCI) 

Countercurrent Saccharification 

The purchase equipment cost mainly depends on equipment size and materials of 

construction. In countercurrent saccharification, equipment size is mainly affected by 

saccharification sugar concentration and residence time. In this study, the 

saccharification sugar concentration ranging from 50 g/L to 175 g/L and residence time 

(equivalent to batch) ranging from 5 days to 80 days were tested. The key parameters for 

equipment size (e.g. reactor volume, heat exchanger area, etc.) at various conditions 

were determined. 
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For the reactor material, three cases were considered: geomembrane (C1), carbon 

steel (C2), and stainless steel (C3). Case C1 followed the design from Granda et al. 

(2009), which used pile reactors made with geomembrane to perform countercurrent 

fermentation. The countercurrent saccharification system is similar to the countercurrent 

fermentation system, and Granda et al. (2009) provided the estimated FCI for the whole 

countercurrent fermentation process. Therefore, for this case, using Granda et al. (2009) 

design as the base case, the FCI of the whole countercurrent saccharification process 

(including reactor, pump, heat exchanger, etc.) was scaled with the scaling exponent of 

0.62 based on the reactor volume. For Cases C2 and C3, after key parameters for 

equipment size were specified, purchase equipment costs were estimated based on 

matche.com. Subsequently, the FCIs were estimated by multiplying the revised Lang 

factor (4.3) and purchased equipment costs. 

Dewatering 

The equipment size in the dewatering process is mainly affected by the 

saccharification sugar concentration. In this study, the saccharification sugar 

concentration ranged from 50 g/L to 175 g/L. In the dewatering process, the 

saccharification sugar flowrate was considered as the key parameter for equipment size, 

and its value at various conditions was determined. 

For the equipment material in the dewatering process, two cases were 

considered: carbon steel (D1) and stainless steel (D2). In the NREL design, the MVR 

evaporators are made with stainless steel. Therefore, for Case D2, the NREL design was 

considered as the base case and the purchase equipment costs at various saccharification 
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sugar concentrations were scaled with the scaling exponent of 0.7 based on the 

saccharification sugar flowrates. For Case D1, the purchase equipment costs at various 

conditions were obtained by using the costs in Case D2 over the materials factor (1.8). 

Subsequently, the FCIs were estimated by multiplying the revised Lang factor (4.3) and 

purchased equipment costs. 

Scenarios 

In the countercurrent saccharification and dewatering process, three 

combinations of the cases were considered: 

Scenario A: Case C1 + Case D1 

This scenario includes the low-cost geomembrane design and MVR evaporators 

made with carbon steel, which has the lowest FCI in all combinations. 

Scenario B: Case C2 + Case D1 

The equipment in the countercurrent saccharification and dewatering process are 

all made with carbon steel. This scenario has the lowest FCI in all combinations without 

the geomembrane design included. 

Scenario C: Case C3 + Case D2 

The equipment in the countercurrent saccharification and dewatering process are 

all made with stainless steel. This scenario has the highest FCI in all combinations. 

Utility Cost (Dewatering) 

The MVR evaporators are primarily driven by electricity; therefore, in this study, 

the utility cost of dewatering process was assumed to be equal to the electricity cost. 
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According to the U.S. Energy Information Agency (2018), the Texas electricity rate for 

industrial use in 2018 is $0.0554/kWh. Using Eq. 5-1, the utility cost (dewatering) was 

calculated. 

Utility Cost ($/h)

= Electricity rate ($/kWh)

× Electricity consumption per kg water evaporated (kWh/kg)

× Water evaporation amount per hour (kg/h)                                    (5-1) 

Enzyme Cost 

The enzyme cost depends on enzyme loading and enzyme unit price. To reach 

100% conversion in countercurrent saccharification, the enzyme loadings at various 

conditions have been determined (Figure 4-10, Liang et al., 2019b). For enzyme unit 

price, four cases ranging from $1.25/kg protein to $10.14/kg protein were considered. 

Table 5-1 summarizes the key information. 
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Table 5-1 Enzyme unit price 

Case 

Enzyme unit price 

($/kg protein) 

Source 

E1 6.27 CTec2 price, estimated by Liu et al., 2016. 

E2 1.25 

Assume cellulase protein price = soy protein price, 

the cheapest protein on the market. 

E3 4.24 

On-site cellulase production cost, cited from NREL 

design and Liu et al., 2016. 

E4 10.14 

Cellulase protein price, estimated by Klein-

Marcuschamer et al., 2012. 

 

 

Assumptions 

Table 5-2 summarizes the assumptions for economic evaluation. In this study, the 

feedstock cost was not considered because α-cellulose is not a real-world substrate. The 

minimum selling price was determined as the summation of enzyme cost, utility cost 

(dewatering), depreciation, and fixed operating costs (Eq. 5-2). 

Minimum selling price (no feedstock cost, $ kg glucose⁄ )

= Enzyme Cost ($ kg glucose⁄ ) + Utility Cost ($ kg glucose,⁄ dewatering only)

+ Depreciation ($ kg glucose⁄ )

+ Fixed operating costs ($ kg glucose,⁄ including local taxes, insurance, maintenance, and labor)   

(5-2)  
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Table 5-2 Assumptions for economic evaluation 

Title Parameter 

Plant capacity 40 dry tonne biomass/h 

Plant life 20 years 

Financing 100% equity 

Plant operation 8000 h/year 

Working capital (WC) 0.05 × FCI 

Depreciation straight-line model, 0.05/year × FCI 

Local taxes 0.03/year × FCI 

Insurance 0.007/year × FCI 

Maintenance 0.03/year × FCI 

Labor $1.6 million/year 

Dollars Dec. 2018 

Note: income tax was not included. 

 

Results and Discussion 

Minimum Selling Price 

Using estimated CTec2 price (E1) as the enzyme unit price, Figure 5-4 shows the 

minimum selling prices at various residence time and saccharification sugar 

concentrations with the three scenarios. As expected, when using equipment with 

inexpensive materials, higher residence time and lower saccharification sugar 

concentration favor lower minimum selling prices. For Scenarios A, B, and C, the lowest 

minimum selling prices are $0.079, $0.121, and $0.160/kg glucose, respectively. Figure 

5-5 shows the cost distribution of the three lowest minimum selling prices. As shown in 
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the figure, enzyme costs contribute most to the minimum selling prices at all three 

scenarios, followed by fixed operating costs. When using equipment with more 

expensive materials, the contributions of fixed operating costs and depreciation increase, 

whereas the contribution of utility costs decreases.  

 

 

Figure 5-4 Minimum selling prices at various residence time and saccharification sugar 

concentrations with (a) Scenario A, (b) Scenario B, and (c) Scenario C. Lowest 
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minimum selling prices are presented by markers. Enzyme unit price is 

$6.27/kg protein (E1). 

 

 

Figure 5-5 Cost distribution of the lowest minimum selling prices at (a) Scenario A (b) 

Scenario B, and (c) Scenario C. Enzyme unit price is $6.27/kg protein (E1). 

 

Effect of Enzyme Unit Price 

Using various enzyme unit prices and equipment materials, the minimum selling 

prices at various saccharification sugar concentrations and residence time were 
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calculated. Figure 5-6 summarizes the lowest minimum selling prices at various cases 

and the corresponding conditions are listed. As shown in the figure, enzyme unit price 

significantly affects the minimum selling price. Besides, as expected, for cases with low 

enzyme unit price, the lowest minimum selling prices are obtained at high 

saccharification sugar concentrations, which lowers the utility cost and capital cost. 

When the enzyme unit price was assumed to be equal to soy protein (E2), using 

geomembrane reactor and carbon steel MVR evaporators (Scenario A), the lowest 

minimum selling price is $0.036/kg glucose. When the enzyme unit price was assumed 

to be equal to the on-site cellulase production cost in NREL design (E3), using 

geomembrane reactor and carbon steel MVR evaporators (Scenario A), the lowest 

minimum selling price is $0.064/kg glucose; using carbon steel reactor and MVR 

evaporators (Scenario B), the lowest minimum selling price is $0.102/kg glucose.  
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Figure 5-6 Lowest minimum selling prices at various enzyme unit prices and equipment 

materials with countercurrent saccharification and comparison with batch 

saccharification. 

 

Effect of Return on Investment (ROI) 

In this study, the total cost was determined as the summation of minimum selling 

price and ROI, where ROI was a factor of total capital investment (FCI + WC). Using 

various enzyme unit prices, equipment materials, and ROIs, the total costs at various 

saccharification sugar concentrations and residence time were calculated. Figure 5-7 

shows the lowest total costs at various cases. As shown in the figure, ROI significantly 

affects the total cost. When including a 15% ROI, using geomembrane reactor and 

carbon steel MVR evaporators (Scenario A), the total costs are as low as $0.100/kg 
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glucose with estimated CTec2 price ($6.27/kg protein) and $0.082/kg glucose with on-

site cellulase production cost ($4.24/kg protein). 

 

 

Figure 5-7 Effect of ROI on the total costs at various enzyme unit prices and equipment 

materials. 

 

Comparison of Countercurrent to Batch 

Figure 5-6 also shows the additional costs if using batch saccharification at the 

same condition, equipment material, and enzyme unit price. Generally, compared to 

countercurrent saccharification, batch saccharification increases the minimum selling 

prices significantly. For the cases with CTec2 price (E1) and on-site cellulase production 
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cost (E3), batch saccharifications increase the minimum selling prices by $0.022–

0.10/kg glucose. As expected, higher enzyme unit prices increase the costs of sugar 

production.  Additionally, higher enzyme costs provide more benefits of countercurrent 

over batch, particularly at low saccharification sugar concentrations (Chapter IV).  

Conclusions 

In this chapter, techno-economic analysis was performed for cellulosic sugar 

production, which included countercurrent saccharification and dewatering. Various 

reaction conditions, equipment materials, enzyme unit prices, and ROIs were considered. 

When including utility cost (dewatering), enzyme cost, depreciation, and fixed operating 

costs, using a geomembrane reactor and carbon steel MVR evaporators, the minimum 

selling prices are as low as $0.079/kg glucose with estimated CTec2 price ($6.27/kg 

protein) and $0.064/kg glucose with on-site cellulase production ($4.24/kg protein); 

when including an additional 15% ROI, the total costs are as low as $0.100/kg glucose 

and $0.082/kg glucose, respectively. Compared to batch saccharification at the same 

reaction conditions, equipment materials, and enzyme unit prices, countercurrent 

saccharification significantly reduces the cost of cellulosic sugar production. 
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CHAPTER VI  

CONCLUSIONS 

Countercurrent saccharification is a promising way to minimize enzyme loading 

while maintaining high conversions. Experimental results showed that using α-cellulose 

as substrate, to reach a given glucose conversion compared to typical (5-day) batch 

saccharification, countercurrent saccharification reduced enzyme loadings by 8–16.8 

times. The great reduction resulted from the inherent benefits of countercurrent 

saccharification as well as a longer residence time. Using pretreated corn stover as 

substrate, to reach a given glucose conversion compared to typical (5-day) batch 

saccharification, countercurrent saccharification reduced enzyme loadings up to 1.9 

times. However, in countercurrent saccharification experiments, 3–4 months are usually 

required to acquire a single steady-state data point. To save time and labor, simulation of 

this process is necessary to test various reaction conditions and determine the optimal 

operating point.  

In this study, α-cellulose was used for modeling because of its simpler 

composition compared to real-world lignocellulose, which contains lignin. Lignin is 

known to bind cellulase enzymes non-productively (Kumar and Wyman, 2009b), which 

complicates the kinetic modeling.  

 To simulate countercurrent saccharification, a kinetic model that can accurately 

predict batch saccharification under various reaction conditions is necessary. This study 

modified the HCH-1 model to extend its application to integrated batch enzymatic 

hydrolysis; it performed well when fitting 10-day batch cellulose hydrolysis at various 
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experimental conditions. Local and global sensitivity analyses were performed to 

determine the controlling parameters at different hydrolysis stages. Mechanistic (and 

semi-mechanistic) literature models for long-term batch enzymatic hydrolysis were 

compared with the modified HCH-1 model and evaluated by AICc. Comparison results 

show that the modified HCH-1 model provides the best description of enzymatic 

cellulose hydrolysis.  

 To simulate multi-stage countercurrent saccharification of α-cellulose, the 

CPDM model was used with the modified HCH-1 model as the governing equation. This 

model predicted the experimental glucose concentration and conversion with average 

errors of 3.5% and 4.7%, respectively, which is sufficiently accurate to determine 

optimal operating conditions with α-cellulose. CPDM prediction results showed that 

enzyme-addition location, enzyme loading, LRT, and SLR significantly affected the 

glucose concentration and conversion. Compared to batch saccharification at the same 

conversion, product concentration, and reactor volume, countercurrent saccharification is 

more beneficial when the product concentrations are low.   

Techno-economic analysis was performed for cellulosic sugar production, which 

included countercurrent saccharification and dewatering. Various reaction conditions, 

equipment materials, enzyme unit prices, and ROIs were considered. When including 

utility cost (dewatering), enzyme cost, depreciation, and fixed operating costs, using 

geomembrane reactor and carbon steel MVR evaporators, the minimum selling prices 

are as low as $0.079/kg glucose with estimated CTec2 price ($6.27/kg protein) and 

$0.064/kg glucose with on-site cellulase production cost ($4.24/kg protein); when 
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including an additional 15% ROI, the total costs are as low as $0.100/kg glucose and 

$0.082/kg glucose, respectively. Compared to batch saccharification at the same reaction 

conditions, equipment materials, and enzyme unit prices, countercurrent saccharification 

significantly reduces the cost of cellulosic sugar production. 
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APPENDIX A DEVELOPMENT OF EQ. 3-3 

 

The core structure of Eq. 3-3 was inspired by the empirical equation for batch 

fermentation (Eq. A-1, Fu and Holtzapple (2010a)), where sugarcane bagasse and 

chicken manure were anaerobically fermented to carboxylic acids. 

𝑟̂ =
𝑒(1 − 𝑥)𝑓

1 + 𝑔(𝜙 · 𝐴𝑐𝑒𝑞)ℎ
(A-1) 

where,  

x is the fraction conversion of volatile solid 

e, f, g, and h are the empirical constants 

𝜙 is the ratio of total grams of carboxylic acid to total grams of acetic acid 

equivalents (Aceq). 

This equation relates the specific reaction rate 𝑟̂(x, Aceq) with Aceq 

concentration and conversion (x). The term (1 − x) is described as the “conversion 

penalty function,” which means the reaction rate decreases as the substrate is converted 

(South and Lynd, 1994; Fu and Holtzapple, 2010a). The denominator term describes the 

inhibitory effect of product (Aceq) on reaction rate. 

To model enzymatic hydrolysis process, Eq. A-1 was modified to Eq. A-2 with 

the following two major adjustments: (1) the effect of enzyme concentration [𝐸], and (2) 

the effect of substrate concentration [𝐺𝑥
0]. 

       
𝑑[𝐺1]

𝑑𝑡
=

𝑒([𝐺𝑥
0](1 − 𝑥))𝑓([𝐸])𝑐

1 + 𝑔[𝐺1]ℎ
 (A-2) 

Solving Eq. 4-3, taking [𝐸] = [𝐸0] (g/L) at 𝑡 = 0 yields: 
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[𝐸] =
[𝐸0] (𝑘2[𝐸0] + 𝑘1exp(−𝑡(𝑘1 + 𝑘2[𝐸0])))

𝑘1 + 𝑘2[𝐸0]
         (A-3) 

Eq. A-4 can be obtained by replacing the term [E] in Eq. A-2 with Eq. A-3. 

𝑑[𝐺1]

𝑑𝑡
=

𝑒([𝐺𝑥
0](1 − 𝑥))𝑓 (

[𝐸0](𝑘2[𝐸0] + 𝑘1exp(−𝑡(𝑘1 + 𝑘2[𝐸0])))

𝑘1 + 𝑘2[𝐸0]
)

𝑐

1 + 𝑔[𝐺1]ℎ
(A-4)

 

The optimal values of the parameters e, f, g, h, c, 𝑘1, and 𝑘2 were determined by 

fitting the experimental data of the 16 enzymatic hydrolysis conditions (Section: 

Experiments for model fitness) with Eq. A-4 simultaneously. Eq. 3-3 was obtained by 

replacing the parameters in Eq. A-4 with the optimal values. 

 

 

 

 

 

 

 

 

 

 

 

 

 


