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ABSTRACT 

 

Copper (Cu) interconnect lines are widely used in advanced, high-density integrated 

circuits (ICs), large-area flat panel displays, and many nano and microelectronic and 

optoelectronic products. Compared with aluminum (Al), Cu has many advantages, such as the 

higher conductivity and longer lifetime. However, Cu is difficult to etch into fine lines using the 

conventional plasma etching method because the reaction product is nonvolatile. Another problem 

of Cu interconnect lines is that it has poor adhesion to the dielectric film unless an adhesion layer 

is used. Recently, Kuo’s group solved the etching problem with a novel room-temperature process 

that consumes the Cu thin film with a plasma reaction and then removes the reaction product with 

a liquid solution. This method has been used in the fabrication of ICs and TFT LCDs.  

One of the most critical issues in applying Cu lines in products is the reliability – 

electromigration (EM) lifetime prediction. As the IC keeps shrinking, the geometry effect on the 

lifetime of the thin Cu line is important especially for advanced products. Previously, Kuo’s group 

had studied temperature and mechanical bending effects on the Cu fine line’s lifetime. Geometry 

effects on the lifetime of the Al or Al-Cu alloy line have also been discussed before. However, 

there are few reports on the geometry effect on the Cu fine line prepared by the plasma-based etch 

process. In this research, the author investigated the relationship between the Cu line width or 

length and the EM failure time. The change of the line resistance with the stress time has also been 

studied. 

The capping layer effect is very important in multi-layer devices. There were some research 

studies on Cu capping layer before, i.e., Ag layer to protect Cu oxidation and SiN layer as interlayer 
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dielectrics. However, few studies had been done on the TiW capping layer effect on plasma etched 

Cu lines. In this study, the TiW capping layer effect on lifetime has been studied. 
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1. INTRODUCTION 

 

1.1    Research background 

In advanced, high-density ICs and microelectronic products, Copper (Cu) interconnect 

lines are widely used. Compared with aluminum (Al), Cu has many advantages, such as the lower 

resistivity and longer lifetime. However, Cu is difficult to etch into fine lines using the 

conventional plasma etching method because the reaction product is nonvolatile. Another problem 

of Cu interconnect is that it has poor adhesion to the dielectric film unless an adhesion layer is 

used. Kuo’s group first reported a solution for the etch problem with a novel room-temperature 

process that consumed the exposed Cu thin film with a plasma reaction followed by the stripping 

of the reaction product with a HCl solution [1-3]. This method has been used in the fabrication of 

Ics and TFT LCDs [4]. 

One of the most critical issues in applying Cu lines in products is the reliability – 

electromigration (EM) lifetime prediction [5]. As the IC keeps shrinking, the geometry effect on 

the lifetime of the thin Cu line is important especially for advanced products. Previously, the Kuo’s 

group had studied temperature and mechanical bending effects on the Cu fine line’s lifetime [6-7]. 

Geometry effects on the lifetime of the Al or Al- Cu alloy line have also been discussed before [8-

9]. However, there are few reports on the geometry effect on the Cu fine line prepared by the 

plasma-based etch process [10-11]. In this research, author investigated the relationship between 

the Cu line width or length and the EM failure time. The change of the line resistance with the 

stress time has also been studied. 

Cu with barrier layer, i.e., TiW/Cu was deposited on the Corning glass. Then, the TiW/Cu 

layer was etched into lines with different geometry size. After etching, lines with different width 
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were tested under the same current density, so that the line width effect can be observed. In this 

process, two kind of curves were recorded, i.e., resistance vs time and breakdown time vs current 

density. According to these two curves, a Cu EM break down model was established to explain 

the how EM happened and how did EM effect the lines lifetime. 

There were some researches on Cu capping layer before, i.e., Ag layer to protect Cu 

oxidation and SiN layer as interlayer dielectrics [12-13]. However, there are few studies on TiW 

capping layer effect on Cu lines. In this study, the TiW capping layer effect on the lifetime is 

studied. 

Two types of structures, i.e., TiW /Cu and TiW /Cu /TiW, were deposited on the Corning 

glass. Then both of two kinds of lines with same geometry character were tested under the same 

current density to observe the capping layer effect. 

 

1.2    Traditional Cu etching method introduction 

 1.2.1    CMP Cu etching method 

Chemical Mechanical Polishing (CMP) is one of the most common Cu etching methods, 

which is widely used in industry now. Figure 1.1 shows the structure of the Cu lines before and 

after CMP etching method. 
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(a) 

 

(b) 

 

Figure 1.1 Sample structure before and after CMP etching. (a) before CMP etching process, (b) 

after CMP etching process. 

 

Previous study [14] shows that Cu could be remove during CMP in Acidic H2O2 Slurry. 

The chemical reactions in this process could be summarized as follows [14]. 

    (1-1) 

   (1-2) 
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  (1-3) 

 

The Cu rate with this CMP method is shown in Figure 1.2. 

 

Figure 1.2 Cu removal and etch rate during CMP in Acidic H2O2 Slurry. Reprinted from ref. 14. 

 

According to Figure 1.2, the maximum removal rate of this CMP method is about 190 nm 

per minutes, which is lower than the Cl2 plasma etching process. Also, this 190 nm per minute 

removal rate can only be achieved at the 1% peroxide concentration. When the concentration is 

lower than 1%, the removal rate increased from 20 nm per minute to 190 nm per minute. As the 

concentration increases, the Cu removal rate decreases from 190 nm per minute to 90 nm per 

minute. The problem of this etching method is that the peroxide concentration has to been 

maintained at the concentration of 1%. During the process, the peroxide concentration decreases. 

As Figure 1.1 shows, if the concentration is not maintained, it will decrease because of the 
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chemical reaction and the etch rate will decrease drastically as well. Besides, if the peroxide 

concentration is higher than 1%, Cu layer will have the oxidation problem, which can reduce the 

Cu lines lifetime.  

There are also some lacks for the traditional CMP method, such as stress cracking, 

delaminating at the layer’s interfaces. And for the most used CMP in industry nowadays, oxide 

polishing process, has one defect. The blind polishing is hard to determine whether the required 

amount of material has been removed or not. Sometimes when the wafer is not flat or not 

uniformed, the wafer has to be remade and still has a higher chance to fail.  

As Figure 1.1 shows, CMP can only make Cu lines which are inserted to the substrate. It 

cannot achieve the salient structure, which Cu lines are on the surface of the substrate, shown in 

Figure 1.3. The Cl2/HCl plasma etching method, however, can achieve both mosaic and salient 

structure with the appropriate mask patterns. 

 

Figure 1.3 Cu lines with salient structure. 

 

 1.2.2    Cu wet etching with FeCl3/CuCl2 solution 

There are also some Cu wet etching methods with FeCl3 or CuCl2 solution to achieve Cu 

lines with salient structure. These solution etching methods are leading technique for creating 
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circuit boards. Previous study [15] shows the wet etching method has higher etch rate than the 

plasma etching method. Figure 1.4 shows relationship between the etch rate and the concentration 

of enchant with different solution (FeCl3 and CuCl2). 

 

Figure 1.4 Relationship between concentration and Cu etching rate with different solution (FeCl3 

and CuCl2). Adapted from ref. 15. 

 

According to Figure 1.4, FeCl3 solution has higher Cu etch rate than CuCl2 solution under 

the same concentration. The reactions during the etching with FeCl3 solution could be described 

as follows [15]. 

   (1-4) 

   (1-5) 
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    (1-6) 

 

The chemical reaction of Cu etching is determined by diffusion of Fe3+. The Fe3+ ions in 

the solution diffuse to Cu surface, because the Fe3+ ions concentration is low at the Cu surface 

due to Cu-Fe3+ reaction. However, the CuCl formation on Cu surface slows down the reaction, 

because CuCl film is passive for Fe3+ ions to penetrate. Figure 1.5 shows the etch rate change 

during the Cu etching process. 

 

Figure 1.5 Cu etch rate during the Cu wet etching process. Reprinted from ref. 15. 

 

According to Figure 1.5, the Cu etch rate decreases during the Cu etching process. In the 

first 60 s, the etch rate drops dramatically and starts to decrease slowly after one minute. The etch 

rate drop could explained by the CuCl formation on the Cu surface. At first, the etch rate is high 
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because there are plenty of FeCl3+ on the Cu surface. As the reaction continuing, the concentration 

of Fe3+ ions start to decrease. CuCl also starts to form on the Cu surface to prevent the reaction 

between the Fe3+ and Cu. After one minute, the etch rate is determined by the time that Fe3+ ions 

need to travel through the CuCl passivation layer, not the Fe3+ ions concentration, so the decreasing 

speed of the etch starts to slow down. The inconsistent etch rate is hard to control, especially when 

it comes to nanoscale. A few seconds difference may cause undercut or incomplete etching 

problems. In the plasma etching process, when high energy is added, the ions can travel through 

the swell CuClx and react with Cu atoms, so the etch rate of plasma etching method is more 

consistent than wet etching. 

Another problem of the wet etching is that the etch rate is too high for some nanoscale 

structures. According to Figure 1.5, it only takes about 1 second to etch a Cu layer with thickness 

of 200 nm. In this case, when the samples are immersed into the solution, they need to be taken 

out immediately, otherwise the over etch would become a problem. This operation requires high 

time precision and it is hard to control when the Cu lines comes to nanometer scale.  

A common drawback of wet etching method is the isotropic etching direction. The 

chemical reaction not only happens at the vertical direction, but also happens at the horizontal 

direction. The isotropic etching direction can cause serious undercut problem. The plasma etching, 

however, the undercut is not a very serious issue because most of the etching reaction happens at 

the vertical direction. Figure 1.6 shows the different cross section structure after wet etching and 

plasma etching. The actual proportion of each layer is different with the proportion shown in Figure 

1.6. Figure 1.6 only shows the mechanism. 
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(a) 

 

(b) 

 

 

       (c) 

Figure 1.6 Structure difference between wet etching and plasma etching. (a) original structure, (b) 

after wet etching, (c) after plasma etching.  
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1.3    Cl2/HCl plasma-based Cu etching 

 1.3.1    Cl2/HCl plasma-based etching with HCl dipping 

The Cl2/HCl plasma etching method is first discovered by Dr. Kuo’s group in 1999 [16]. 

This etching procedure can be summarized Figure 1.7. 

 

Figure 1.7 Cu plasma etching process. Adapted from ref. 16.  

 

 The Cu compound in Figure 1.7 is CuClx, which is consisted of CuCl2 and CuCl. The 

etching process pressure is usually from 10 mTorr to 100 mTorr at room temperature. At higher 

process temperature, the Cu etch rate is higher. After the Cu is exposed to the Cl2/HCl plasma, Cu 

will be converted into CuClx. CuClx has larger volume than Cu, resulting in the swelling effect. 

After conversion, the CuClx part is even thicker than the photoresist layer. Figure 1.8 shows the 

mechanism of the conversion form Cu to CuClx. 
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Figure 1.8 Simplified Cu swelling mechanism during the Cl2/HCl plasma exposure. Adapted from 

ref. 16. 

 

The main reaction shows in Figure 1.8 is between Cu and Cl. The Cl2 flow rate is half as 

the HCl flow rate to achieve the same Cu etch rate. For example, if the Cu conversion rate is 100 

nm per minute with 20 sccm HCl gas under the room temperature condition, it only needs 10 sccm 

Cl2 to achieve the same Cu etch rate under the same condition [17].  

 The volume of the CuClx is about 6 times larger than the original Cu. Figure 1.8 shows the 

Cu swelling effect after exposed to the Cl2/HCl plasma. 
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(a) 

 

(b) 

Figure 1.9 CuClx SEM images from different views. (a) side view of Cu and photoresist surface 

after exposed to Cl2/HCl plasma, (b) top view of CuClx compound. Adapted from ref. 16. 

 

Figure 1.9 (a) shows that the CuClx rough and granular surface from the side view. Figure 

1.9 (b) shows the columnar structure of the surface CuClx from top view. The rough and granular 

surface of the CuClx surface may be caused by the uneven plasma reaction on the Cu surface.  
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The columnar structure can increase the anisotropic etching rate on the vertical direction. 

The CuClx columnar structure is due to the grain boundaries orientation in the original Cu layer. 

In the original Cu film, most of the grain boundaries are almost perpendicular to the substrate [16]. 

The vertical direction of the grain boundaries also causes the Cu chlorination reaction proceeds 

anisotropically from the surface toward the bulk of the film. The Cu conversion rate in the vertical 

direction is much faster than that in the horizontal direction. Most of other metals can form gas 

compound with Cl and can be removed from the chamber. CuCl, however, is very sticky 

compound. It accumulates on Cu surface. Once CuCl forms at the grain boundary area, ions 

bombardment can knock it down to the bottom, because the molecule support at the grain boundary 

area is weak. That’s why when CuCl grows, the ions bombardment from the vertical direction can 

force the CuCl keeps the granular structure. 

Figure 1.10 shows a vertical Cu profile after the removal of the CuClx reaction product 

and the photoresist. This kind of profile could be obtained under different etching conditions. 

 

Figure 1.10 Vertical Cu profile after the removal of CuClx and photoresist. Reprinted from ref. 16.  
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Another explanation for this anisotropic etching is the ion bombardment effect. According 

to Kuo’s group previous study [16], during the Cu conversion process, the ion bombardment effect 

is much deeper than 10 nm because the chlorination reaction can proceed through the whole 500 

nm thick Cu layer without stopping. One possible explanation is that the CuClx film was porous, 

which is easy to transport through by the energized ions. Although the mechanism needs to be 

further verified, it is clear that ion bombardment is an important factor in this Cu conversion 

process. The ions and atoms gain momentum on the vertical direction because the applied voltage 

Vdc is perpendicular to the substrate. As the applied – Vdc increases, the residue on the bottom is 

reduced after the HCl dipping. When the -Vdc reaches at 250V level, the residue is totally removed 

for most of the circumstances. Both grain boundaries vertical orientation and the ion bombardment 

effect could explain why the plasma reaction prefer to occur on the direction perpendicular to the 

substrate. However, more researches needed to be done to figure out which effect is dominating 

this mechanism.    

If HCl is used as the feeding gas, swelling effect has been detected on the photoresist. 

According to ref. 16, during the plasma exposure, Hydrogen atoms from HCl can diffuse into 

photoresist and react with carbon. The reaction between Hydrogen and carbon can form new 

Hydrocarbon bonds resulting in the photoresist swelling effect. The new polymer formation 

doesn’t have any chemical effect on Cu conversion, because this new polymer is resistant to the 

HCl plasma and won’t induce any extra ions into the chamber. The drawback of the photoresist 

swelling effect is that the swelling photoresist may block some of the uncover Cu from being 

etched. When Cl2 is used as the feeding, photoresist swelling effect is not observed.  
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Since Br has similar chemical characteristic with Cl, HBr can be used as the substitute for 

HCl [18]. According to the previous study [18], the swelling effect could also be observed when 

using HBr as the feeding gas.  

In summary, Cl2 is a better option for the feeding gas than HCl. Because when the gas flow 

rates are the same, Cl2 plasma has higher conversion rate than HCl plasma and Cl2 plasma won't 

cause swelling effect on the photoresist. 

Figure 1.11 shows a 0.8 micrometer Cu line etched by HCl/Ar plasma. 

 

Figure 1.11 A 0.8 micrometer Cu line etched by HCl/Ar plasma. Adapted from ref. 19. 

 

The Cu lines shown in Figure 1.1 has good uniformity. After enlarge, the roughness on the 

Cu line’s side is about 25 nm. Rough lithography and photoresist swelling effect may be the cause 

of the roughness. With a more exquisite mask and a more accurate mask aligner, the line width 

can be further narrowed. The roughness on the Cu line sides can also be reduced.  

Other gasses besides Ar, have been used to mitigate the sides roughness and the undercut, 

such as CF4 and N2. According to the previous study [20], CF4 or N2 plasma reaction with Cu can 

form a thin film on the Cu line sidewall to protect the sidewall and reduce the undercut problem. 

The Cu compound formed on the sidewall could be CuNx or CuFx, depending on what kind of 

feeding gas is used. This compound cannot form in the bulk area, because the strong ion 
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bombardment can breakdown CuNx or CuFx immediately once it forms. Figure 1.12 shows the 

simplified mechanism of the sidewall protection. The actual proportion of each layer is different 

with the proportion shown in Figure 1.12. Figure 1.12 only shows the mechanism. 

 

(a) Without CF4 or N2 added to the HCl plasma 

 

(b) With CF4 or N2 added to the HCl plasma 

 

Figure 1.12 Simplified mechanism of the sidewall protection. (a) without side effect protection, 

(b) with CF4 or N2 gas protection. 
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Figure 1.12 shows that, due to the reaction between Cu and HCl plasma and the CuClx 

swelling effect, there would be slightly undercut on the sidewall of the Cu line.  

Using diluted HCl solution to remove the CuClx, have a drawback of this Cl2/HCl plasma 

etching method. When the substrate is made of oxide or metal that can react with HCl solution, 

the Cu layer may separate from the substrate after dipped in to HCl solution. This etching method 

could only use to etch Cu that deposited on the substrate cannot react with HCl solution, such as 

inert metal, silicon and dielectric material. Additional barrier layer is required, if Cu needs to be 

deposited on the substrate that can react with HCl solution.  

 

1.3.2    Cl2/HCl plasma etching with H2 feeding gas  

It is difficult to etch Cu with the conventional plasma etching process because it does not 

form volatile products. Additional energy has to be used to vaporize the Cu compound and the 

etching process is slow. A modified method, i.e., replacing the HCl solution dip with a H2 plasma 

exposure in an ICP reactor to remove the CuClx, has been reported [21-22]. However, the H2 

plasma need to be carried at a low temperature, e.g., 10oC, and the CuClx removal rate is low. The 

overall Cu etch rate is about 13 nm per minute. When the sample thickness is 300nm, it will take 

approximately 20 minutes to finish the etching process. If the plasma system keeps running for 

more than 20 minutes, the power consumption is high. Besides, low temperature has to be remained 

during the whole process, which can also consume mass of power. In addition, the hydrogen 

plasma exposed photoresist is cross-linked and swollen [23], which is difficult to strip with a wet 

solution. 
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According to the experiments, after the Cl2/HCl plasma exposure, when the samples are 

dipped into high concentration HCl solution, the dipping process usually takes less than one 

minute. It consumes less time than Cu conversion process. During the whole process, the Cu 

conversion process will occupy most of the time. The Cu conversion rate is directly related to the 

substrate temperature due to the reaction kinetics [16]. For instance, When Cl2
 is used as the 

etching gas, at a 600 W and 20 mTorr plasma condition, the Cu conversion rate is about 600 nm 

per minutes at the room temperature, which is about 25 °C. When the substrate temperature is 

higher, the Cu conversion rate will also be higher. When the substrate temperature increases from 

25 °C to 100 °C, the Cu conversion rate increases from 600 nm per minute to 1200 nm per minute 

[16]. The temperature effect is not very obvious. The ions need time to travel to the Cu surface. 

The ions travel speed is not only related to the temperature. It also related to the applied voltage, 

so that may explain why temperature doesn’t affect the conversion rate much. Combined with the 

diluted HCl washing process, the whole process will take only 2 minutes for a 500 nm thickness 

Cu sample. However, it will take about 40 minutes to finish the etching process with the H2 plasma 

exposure. 

 

1.4    Cu etching method comparison 

Table 1.1 shows the main advantages and disadvantages of different kind of etching 

methods. After comparing all these Cu etching methods, the Cl2/HCl plasma conversion with 

diluted HCl solution removal method has optimum etch rate, can etch both mosaic and salient 

structures, can be operated with eligible power at room temperature and has only slight undercut. 

This etching method has no obvious disadvantage and has several advantages when compared with 

other etching methods, which makes it the most optimum etching method for this research. 
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Table 1.1 Advantages and drawbacks of different kind of Cu etching method. 

Green: advantages  Yellow: mediocre Red: disadvantages Blue: undefined  

 Etch rate Structure Power 

consumption 

Undercut Environment 

temperature 

CMP Depending on 

slurry 

Mosaic only Depending on 

wafer size 

No undercut Room 

temperature 

FeCl3 wet 

etching 

 

Very fast  

(20 µm/min) 

Both mosaic 

and salient 

No power 

consumption 

Serious Room 

temperature 

Cl2/HCl 

plasma 

conversion 

with H2 

plasma 

removal 

Slow 

(13 nm/min) 

Both mosaic 

and salient 

High power  

(300-600 W) 

 

Slight Low 

temperature 

Cl2/HCl 

plasma 

conversion 

with HCl 

removal 

Optimum 

(200 nm/min) 

Both mosaic 

and salient 

High power 

(300-600 W) 

 

Slight Room 

temperature 
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1.5 Sample preparation 

 Two kinds of structures were prepared, Cu lines with TiW barrier layer, and Cu lines not 

only with the TiW barrier layer but also with TiW capping layer on top. Most of time, the TiW 

capping layer is used for connecting another layer on top.  

 In order to observe isolated Cu line electromigration, both two structures were both 

deposited on the Corning glass, which is a very good heat isolated material. Corning glass is 

basically made of SiO2 and SiNx. If Cu is deposited on the Corning glass directly, poor adhesion 

and Cu diffusion effect are always two serious problems, so for both two kind of structures, a 10 

nm thin TiW film was deposited as barrier layer to enhance the adhesion and prevent the diffusion 

effect. It is reported that TiW can stand again high temperature and has higher melt point than 

most of other barrier layer materials [24]. TiW has poor performance when the humidity is high, 

but in our lab the humidity is extremely low, so TiW is one of the best options. 

 After barrier layer deposition, Cu was deposited for both two kinds of structures. The 

deposited Cu film has the polycrystalline structure with the large (111) main peak, a small (200) 

peak, and a very small (220) peak. In order to observe the relationship between the geometry 

(which is much larger than the grain size) and lifetime, the average grain size is kept at about 20 

nm [25]. It is controlled by the deposition temperature. For lines with TiW capping layer, an 

additional 10 nm thin TiW capping layer is deposited on the top of Cu layer. 

After deposition, two kinds of samples were patterned with a lithography process using a 

line-and-space mask. Line width of the samples are from 2 µm to 30 µm.  

  Reactive ion etching method was used to etch pattern samples. CF4 was used to etch TiW 

capping layer and barrier layer. HCl plasma was used to etch Cu. CF4 plasma could convert TiW 

into gas compound, which can be easily removed from the vacuum chamber. Cu, however, is hard 
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to form volatile compound. HCl plasma was used to convert Cu into CuClx. In order to mitigate 

the sample’s undercut, during the Cu etching process, CF4 gas was added into the chamber to 

prevent the sidewall from being over etched. Then diluted HCl was used to remove CuClx. 

   

 

(a) 

Fig 1.13 Cu lines deposition and etching process. (a) without TiW capping layer (b) with TiW 

capping layer. 
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(b) 

Fig 1.13 Continued. 

 

 Figure 1.13 shows change of the cross-section structure of Cu lines without and with TiW 

capping layer during the deposition and etching process. For the Cu lines with TiW capping layer, 

only 2 steps are extra, capping TiW deposition and capping TiW etching. All the other steps remain 

the same, which can guarantee materials of Cu lines are the same, regardless the structure. The 

actual proportion of each layer is different with the proportion shown in Figure 1.13. Figure 1.13 

only shows the mechanism.  

 The detailed deposition and RIE conditions could be found in appendix A. 

 

1.6 Electromigration of Cu and Al lines 

 Electromigration is caused by the momentum transfer from the electrons moving in a wire 

to the conducting metal atoms. When the voltage is applied to the Cu line, electrons start to flow 
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through the wire. Some electrons will collide with the Cu atoms. Because of the collision, some 

Cu atoms are removed from the original place and leave vacancies. Vacancies keep accumulating, 

until the line breaks down. It was first known 100 years ago. As ICs industry appeared, 

electromigration started to attract practical interest. Black’s equation is first mentioned in late 

1960’s by Jim Black of Motorola [26],  

      𝑀𝑇𝑇𝐹 =
𝐴

𝑗𝑛
𝑒(

𝑄

𝑘𝑇
)
     (1-7) 

 where A is a constant related to the cross-section area, j is the current density, n is a model 

number related to the temperature, the stress condition and the conducting material, k is the 

Boltzmann’s constant, Q is the activation energy, and T is the absolute temperature in K. 

 Black’s equation has been used to predict lines lifetime for more than 50 years. But back 

in 1960’s, the lines scales were no narrower than 10 µm. Nowadays, as the lines scale keeps 

shrinking. When it approaches the grain size (20-200 nm), some studies show the black equation 

cannot fit some circumstances, so research in electromigration area becomes increasingly 

significant. 

 Al electromigration has been studied for a long time [27-29]. Back at 1970’s, the popular 

metal interconnect was still Al, so most of the early electromigration test was done on Al lines. 

The line width and length effects on Al lines have been studied [30-32]. Since Cu 

electromigration has similar mechanism with Al electromigration, these previous researches are 

very helpful to study Cu lines geometry effect. Figure 1.14 shows the relationship between the line 

width and lifetime. 
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Figure 1.14 Relationship between Al line with and lifetime under the same current density. 

Adapted from ref. 9. 

 

The grain size of the samples shown in Figure 1.14 is from 2 µm to 5 µm. According to ref. 

32 and Figure 1.14, as the width increases, the line lifetime decreases fast when the line width is 

smaller than 2 µm. However, when the line width is larger than 2 µm, the line lifetime increases. 

Other previous also show the same trend that line lifetime doesn’t have a monotonous relationship 

with line width. Some researches show the same phenomenon on the relationship between Cu line 

width and lifetime. One common premise of these previous result is that the grain sizes of their 

samples have the same scale with the line widths. In this research, Cu grain size is 20 nm [25] 

which is much smaller than the line width. With this premise, a monotonous relationship between 
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lifetime and line width has been discovered in this research. Line lifetime decreases as line width 

increases. This phenomenon will be further discussed in Chapter II. 

Also, the line length effect on line lifetime has been studied before. Figure 1.15 shows the 

relationship between line length and line lifetime under the same current density. 

 

 

Figure 1.15 Relationship between line length and line lifetime under the same current density. 

Reprinted from ref. 32. 
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The grain size of the samples shown in Figure 1.15 still has the same scale with line width, 

which is about 2 µm. Figure 1.15 shows that line with shorter length has longer lifetime. When the 

line is shorter than 5 mils, the lifetime decreases dramatically as the line length increases. When 

the line is longer than 5 mils, the lifetime still decreases as the line length increases, however, the 

decreasing rate is much slower. 

 In order to mitigate the electromigration effect and make long life Al lines. Many studies 

have been done on the Al-Cu alloy electromigration since Cu doping could improve Al lines 

performance [33-35]. Figure 1.16 shows the relationship between test time and failure chance. 

 

Figure 1.16 Relationship between test time and line failure chance. Reprinted from ref. 16. 

 

Figure shows that, after doping 4% Cu into Al, the Al lines have increased lifetime. The 

explanation for this phenomenon is that Cu atoms have higher mass than Al atoms, which means, 

higher electrons drift velocity is needed to cause the same scale electromigration.  
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The bending effect on Cu lines electromigration test had also been studied before [6]. Figure 

1.17 shows the voids formation distribution on part without and with bending effect. 

 

 

 

Figure 1.17 Voids distribution in area with and without bending effect. (a) without                               

bending effect, (b) with bending. Reprinted from ref. 6. 

 

Figure 1.17 shows that for lines without bending effect, the voids formation distribution is 

horizontal with the direction of the current flow. But for lines with bending effect, the voids 

formation distribution is vertical to the current flow direction, because Cu at the bending point has 

more fragile structure. With more void formation on the bending point, these voids reduce the 

effective cross section area of the bending line. However, on the macroscopic view, the same 

current is still applied. The actual applied current density is higher than before. According to the 
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Black’s equation, higher current density will cause shorter lifetime. This explains why lines with 

bending effect have shorter lifetime. The line breakdowns fast at the bending point, before other 

voids can form on the plat part of the line. This explains why voids distribute vertically. 

Besides, previous Al lines capping layer effect studies [36] are helpful to the Cu capping 

layer effect study. Most capping layers can protect the metal from the surface oxidation. Previous 

study [36] shows that after Al3Ti deposition, Al lines have increased the lifetime slightly. Figure 

1.18 shows the lifetime difference of Al lines with and without Al3Ti capping layer. 

 

Figure 1.18 Lifetime difference between lines with and without Al3Ti capping layer. Reprinted 

from ref. 36. 

 

Figure 1.18 shows that after the alloy capping deposition, the median time to failure has a 

more linear distribution with 1000/T. The capping layer not only increases the lifetime, but also 

makes the Al lifetime more predictable. 

Similarly, in this research, alloy TiW is deposited on the Cu line to find out if the TiW 

capping layer has the similar effect on Cu lines. 
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Most of the recent capping layer effect on Cu lines researches are based on the mosaic 

structure, which means each side of the Cu line surface, except for the top surface, is attached with 

other materials, shown as Figure 1.1. Mosaic structure Cu lines are made by chemical mechanical 

polishing method. Study shows [37], dielectric materials such as SiCN, can increase the line 

lifetime by preventing the surface oxidation. In this study, capping layer effect on salient structure 

Cu lines has been studied.   

 

1.7    Electromigration test method and algorithm  

For electromigration test, the Cu line failure time was determined by stressing the sample 

with a constant current density at room temperature until the resistance suddenly jumped by several 

orders of magnitude or the current loss. Figure 1.19 shows the 4-point test pattern for the EM 

measurement. A voltage was applied between pads 1 and 2, which was constantly adjusted with a 

computer program to keep the current at a steady value. The resistance of the Cu line was 

calculated from the voltage drop between pads 3 and 4 at the steady current.    

 

Fig 1.19 A 4-point electromigration test pattern. Reprinted from ref. 38. 
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 The program used to process the electromigration test is based on Labview. The structure 

detail of the Labview program is in Appendix B. Table 1.2 shows the essential input/output 

parameters when a 0.6×106 A/cm2 current density is applied to a Cu lines with width of 1.5 µm 

and length of 20 µm. Figure 1.20 shows flow chart of the EM test process. 

  

Table 1.2 Essential input/output parameters. 

Parameters Input Output 

Line width (µm) 1.5  

Film thickness (µm) 0.18  

Line length (µm) 20  

Current density 

(MA/cm2) 

0.6  

Voltage level (V) 0.5  
Voltage limit (V) 30  

Failure criteria 

 

1000  

Maximum R allowed  8312.72 
Current limit (A)  1.62m 

R measurement  8.29079 

Voltage monitoring  0.014696 

Current monitoring  1.77m 
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Figure 1.20 Program flow chart of the EM test process. 

 

 Figure 1.20 shows that the applied current is calculated by the input sample thickness, 

current density and sample width. After the current is applied to Cu line, Cu line resistance is 

detected. The first-time detected Cu line resistance is recorded as the initial resistance. The failure 

resistance is calculated by multiplying the initial resistance and the input criteria. When the 

detected resistance is smaller than the failure resistance, the program keeps running. Each time 

period is set as 1 second. After each time period, the Cu line resistance may have some change 

when compared with the last period. When the detected resistance is larger than failure resistance, 

the program will report the breakdown and stop running. 
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Sometimes, current loss may happen suddenly without detecting the resistance is higher 

than the failure resistance. Because the test period is set as 1 second, when resistance increases to 

infinity in less than 1 second, the system is unable to detect it. So, another judging point is set to 

detect whether there is a current loss. 

Line width, film thickness, current density and failure criteria are the essential input factors. 

They control the applied current density and what is the break down critical point. Without these 

factors the program cannot work. 

The line length factor doesn’t affect much of the program. It doesn’t change the current 

density and any other important factors. The voltage level represents the initial voltage applied to 

the Cu line. After the initial voltage is added, the program will detect the resistance. According to 

the detected resistance and input current factor, program calculates the correct voltage should be 

applied. The value of the initial voltage should have similar value as the one when the required 

current is applied. If the initial voltage is too high, the line may break down immediately. The 

voltage limit factor keeps the device safe. When an over limit voltage is detected, the program will 

stop to protect the system from overheat.  
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2. LINE GEOMETRY EFFECT ON LIFETIME OF PLASMA ETCHED COPPER LINE 

 

2.1 Line width and length effects on EM failure time  

 

Fig. 2.1 Line broken time vs. current density for Cu lines of various lengths and widths. Reprinted 

from ref. 38. 

 

 Figure 2.1 shows the relationship between the line width W or length L and the EM failure 

time at various current densities. Several conclusions can be summarized from this figure. First, 

the line failure time is consistently shortened with the increase of the current density. Second, 

under the same current density, the narrow line has a longer lifetime than the wide line. Third, the 

influence of the line length to the failure time is dependent on the line width. For the 30 µ wide 

lines, the 800 µ long line has a slightly longer lifetime than that of the 400 µ long line. However, 

for the 1.5 µ wide lines, the 20 µ long line has a lifetime similar to that of the 150 µ long line at 

the current density of 3×106 A/cm2.  

The grain size and grain boundaries intersection points distribution may be the reason of 

the longer lifetime of the narrow line than that of the wide line under the same stress current density 
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condition. According to ref. 38, electrons transferred through grain boundaries have higher 

momentum than through the bulk of the grain. According to previous studies [39,40], EM could 

be described as the mass flux J expressed below:  

𝐽 = −
𝑁𝐴

𝑘⋅𝑇
⋅ 𝐷0 ⋅ 𝑒−

𝑄

𝑘𝑇 ⋅ 𝑒 ⋅ 𝑍∗ ⋅ 𝜌 ⋅ 𝑗                                  (2-1) 

where 𝑁𝐴 is the density of lattice atoms, 𝐷0 is the diffusion coefficient, 𝑄 is the activation energy, 

𝑒 ⋅ 𝑍∗ is the effective charge, 𝜌 is the specific resistance, 𝑗 is the current density, 𝑘 is Boltzmann's 

constant, and 𝑇 is temperature (K). At the grain boundary, the diffusion coefficient is large and the 

mass flux is high. Therefore, atoms at grain boundaries especially at intersection points are subject 

to the bombardment of the high electron flux. Voids and hollows are formed at these locations, 

which initiates the electromigration failure process. Sizes of voids and hollows grow with the stress 

time until the whole line is broken.   

 

 

 

 

Wide line  

 

 

 

 

 

 

Narrow line 

 
 

Fig 2.2 Distributions of grain boundary intersection points in wide and narrow lines. 

Reprinted from ref. 38. 
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Figure 2.2 shows distributions of grain boundary intersection points in wide and narrow 

lines assuming both have the same distribution of grains. Some of the intersection points are 

marked as red dots in Figure 2.2. Under the same current density, it is assumed that all these red 

dots have the same chance to fail, also the failure chance increases as time increases [5]. Since the 

wide line has more intersection points than the narrow line, the void’s formation has higher chance 

to appear earlier in wide line.   

The line width effect on the EM failure of the Al line has been investigated [8].  In specific 

range, the narrower line has a longer lifetime than the wide line, which is similar to the result of 

Figure 2.1 Others had observed the same trend on Cu lines [10,11]. 

For our samples, the grain size in the Cu thin film is about 20 nm [25]. It is assumed that 

the film has the uniform columnar grain structure across the whole line. For a 1.5 µ wide line, on 

the average, there are about 75 grains boundary intersection points at each line location. For a 10 

µ wide line, there should be 500 intersection points at each line location. Then, the narrower line 

has less chance to fail from the current crowding at grain boundary intersection points. Separately, 

the relationship between the Cu grain size and the lifetime has been reported [25, 41]. The lifetime 

of the Cu line can be extended when it is composed of larger grains, because larger grains 

potentially reduce the intersection points. 

 

2.2 Line width and length effects on line resistance 

Fig 2.3 shows curves of resistance vs. stress time of Cu lines of various widths and lengths 

at different current densities. Fig 2.3(a) shows the result of Cu lines of the same W/L 10 µ/800 µ 

but stressed with different current densities, i.e., 106 A/cm2, 0.8×106 A/cm2, and 0.75×106 A/cm2. 

The line resistance increases little with the increase of time at the beginning. At near the breakdown 



 

36 

 

 

 

point, the resistance increases abruptly. Besides, the breakdown time increases with the decrease 

of the stress current density. Fig 2.3(b) shows the similar result on Cu lines of the same line length 

but different line width from that of Fig 2.3(a) samples, i.e., W/L 30 µ/800 µ vs. 10 µ/800 µ. 

Samples were also stressed with three different current densities, i.e., 0.67×106 A/cm2, 0.5×106 

A/cm2, and 0.417×106 A/cm2. Fig 2.3(c) shows the result of Cu lines of the same line width but 

different length from that of Fig 2.3(a) samples, i.e., W/L 10 µ/400 µ vs. 10 µ/800 µ, with four 

different current densities, i.e., 0.5×106 A/cm2, 0.458×106 A/cm2, 0.4375×106 A/cm2, and 

0.417×106 A/cm2. The influence of the current density on the line breakdown time is similar with 

that of Fig 2.3(a) or (b). Fig 2.3(d) shows the result of narrow and short Cu lines, i.e., W/L 3 µ/20 

µ, stressed at 2 different current densities, i.e., 2.5×106 A/cm2 and 3.0×106 A/cm2. Again, the same 

result, i.e., shorter lifetime for the high current density stress condition, is observed.  Fig 2.3(e) 

shows the result of the very narrow Cu lines, i.e., W/L 1.5 µ/150 µ, stressed with three different 

current densities, i.e., 3.0×106 A/cm2, 3.5×106 A/cm2, and 4.0×106 A/cm2. In addition to the same 

result that Cu stressed at the low current density has a long lifetime, another phenomenon is 

observed. Under the low current density stress condition, the resistance changes little with time 

until reaching the broken point where the resistance abruptly increased. Under the high current 

density stress condition, the resistance increased with time appreciably even before reaching the 

broken point. Fig 2.3(f) shows the same result as that of Fig 2.3(e) except the Cu line had a longer 

length, i.e., W/L 1.5 µ/800 µ vs. 1.5 µ/150 µ, and two different stress current densities, i.e., 3.0×106 

A/cm2 and 3.5×106 A/cm2, were used. The line resistance changed little until it broke sharply.  
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            (a) 

   

 
 

        (b) 

 

 
 

     (c)  

 
 

              (d)  

 
 

              (e) 

 
 

           (f) 

 

Fig 2.3 Cu line resistance change with stress time. (a) W/L 10 µ/800 µ, (b) W/L 30 µ/800 µ, (c) 

W/L 30 µ/400 µ, (d) W/L 3 µ/20 µ, (e) W/L 1.5 µ/150 µ, (f) W/L 1.5 µ/800 µ. Adapted from ref. 
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Fig. 2.4 lines breakdown mechanism under constant current density. 

 

Figure 2.4 shows how lines breakdown because of the voids’ formation and actual current 

density change. After the first void has formed, the effective cross section area (area that electrons 

can pass through) decreases, but from the macroscopic view, the applied current remains the same. 

So according to  𝐽 =
𝐼

𝐴
 , the actual current density increases. According to mass flux J equation, 

higher current density can cause higher mass flow. Higher Cu mass flow induces more voids into 

the Cu lines, which can further decrease the effective cross section area. This loop keeps running 

until the last point on this cross-section area fails. 

Fig 2.3(a) and Fig 2.3(f) show that the narrow line breaks down more abruptly than the 

wider one. For the one-unit width line, once there is a point failure, the line resistance will increase 

from normal to infinity instantly. For the wider lines, however, one-point failure will not cause the 

break down immediately. It will increase the resistance gradually, so the loop shows in Figure 2.4 
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can sustain for a longer time than the narrower line can. This explain why the wider lines have 

smoother resistance profile than the narrower lines before breakdown.  

Fig 2.3(e) and Fig 2.3(f) show that, for lines of the same width, the longer lines show more 

abrupt resistance change before break down than the shorter lines do. The shape of the resistance 

vs. time curve is related to the temperature of the Cu line, which is width-, length- and current 

density-dependent.    

Figure 2.5(a) shows the 100× magnification image of a W/L 30 µ/400 µ Cu line that was 

broken under EM at the current density of 0.3×106 A/cm2. Most of the line changed color 

symmetric to the broken point. Macroscopically, the width of the line remained unchanged even 

at the broken point. Fig. 2.5(b) shows the 100× magnification image of a narrow and long W/L 10 

µ/800 µ Cu line that was EM stressed at the current density of 0.8×106 A/cm2.  Although this line 

was not broken, it narrowed apparently at 2 separate places where the color changed dramatically. 

Since the narrow line contains a few grain boundary intersection points, the EM failure may occur 

randomly, which is different from that of the wide line. When the lines were further narrowed, the 

pattern of the EM broken line became uneven. Fig. 5(c) and (d) show 100× and 1,000× 

magnification images, separately, of a W/L 1.5 µ/800 µ Cu line broken from a stress current 

density of 0.3×106 A/cm2. In both figures, most area of the line had the same color except at the 

broken point. Therefore, the failure of the very narrow line probably occurred at the weakest point 

locally rather than randomly.  

The uneven electromigration distribution could also explain why the narrower line has a 

more abrupt resistance profile before break down. For the wider lines, most of parts have increased 

the resistance because of the electromigration. The total resistance of the wider line has already 

increased a lot right before break down. For the narrower line, only the part near the break down 
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point has increased its resistance because of the uneven distribution of electromigration. The total 

resistance of the narrower line hasn’t increased a lot right before break down. When the break 

down happens on the narrower line, the resistance increases from its normal value to infinity 

suddenly. 

 

(a)  

(b)  

(c)  

(d)  

Fig 2.5 Images of EM broken lines. (a) W/L 30 µ/400 µ, J = 0.3×106 A/cm2, 100× magnification, 

(b) W/L 10 µ/800 µ, J = 0.8×106 A/cm2, 100× magnification, (c) W/L 1.5 µ/800 µ, J = 3×106 

A/cm2, 100× magnification, (d) W/L 1.5 µ/800 µ, J = 3×106 A/cm2, 1000× magnification. 

Reprinted from ref. 38. 

 

The uneven electromigration distribution could also explain why longer line has a more 

abrupt resistance profile before break down. For the longer line, the electromigration break down 

area only occupies a few percentages of the total area. For the shorter line, however, the break 

down area occupies most of the area. This also means that electromigration happens more evenly 

in the shorter line that in the longer line. The same mechanism will lead to the same effect that the 

longer line has more abrupt resistance profile than the shorter line.  

 

2.3 Conclusion 

 The narrow Cu line has a longer EM lifetime than the wide line when stressed under the 

same current density, which can be explained by the grain boundary intersection points effect. 
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From the resistance vs. time curve, the narrow line breaks down more abruptly than the wide line 

because electromigration happens unevenly in the narrow line. At the location of the 

electromigration failure point, the local resistance changes drastically. Therefore, when the narrow 

line is broken, a large portion of the line still remains low resistance. For the wide line, 

electromigration happens evenly. The resistance of most part of the line changes little with the 

stress time until the whole line is broken. Patterns of the broken lines show that for the wide line, 

the color changes even along the line. As the line is 10 µ wide, the color change along the line is 

random. When the line width is further reduced to 1.5 µ, the color change becomes more uneven. 

The EM lifetime of the Cu line is related to the distribution of the grain boundary intersection 

points and the grain size. Therefore, the grain structure of the Cu line is important to the EM 

lifetime.  

 In the previous studies, the Cu grain size is on µm scale, which is similar with the line 

width. Some of the lifetime tests result show that the narrower line has shorter lifetime when the 

line width is too narrow. This is because when the line width is narrower than the grain size, the 

grain structure turns into bamboo structure, shown in Figure 2.8 (b). 
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(a) 

 

(b) 

Figure 2.6 Electrons flow path for different grain structure. (a) grain size is much smaller than the 

line geometry scale, (b) grain size is approaching or larger than the line geometry scale (bamboo 

structure). 

 

 Figure 2.6 shows different electrons flow path of Cu lines with different grain structure. 

When gain size is approaching or larger than the line geometry scale, the electrons can no longer 

travel through the grain boundaries. In the bamboo structure, because there are only few electrons 
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travel through the grain boundaries and there are not many grain boundaries intersections. Most of 

the electromigration may not happen at the intersection points. The electromigration failure 

mechanism is totally different and cannot be explained by the intersection points distribution 

theory mentioned in this research.   

This study first reveals that, when the grain size is much smaller than the line width, 

electromigration prefer to happen at the grain boundaries intersection points, which will lead to 

the fact that wider line has shorter lifetime than narrower line. Cu grain size has significant effect 

on the relationship between Cu lines width and lifetime. Grain size and line width should be 

considered together. When the line width has the same scale with Cu grain size, there may be more 

than one electromigration break down mechanisms. In this study, Cu size is limited under 20 nm, 

which is much smaller than the Cu line width. The grain boundaries intersection points distribution 

is the dominate mechanism to explain why wider lines have shorter lifetime. 
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3. CAPPING LAYER EFFECT ON LIFETIME OF PLASMA ETCHED COPPER LINE  

 

3.1 Capping layer effect on EM line broken time 

Figure 3.1(a) shows curves of the line broken time vs. stress current density of TiW capped 

and noncapped Cu lines of different widths. Samples were of the same length of 800 µm but 

different widths of 10 µm, 30 µm, or 2.5 µm. First, the line broken time reduced with the increase 

of the current density. This is consistent with the previous report that the lifetime decreased with 

the increase of the stress current density exponentially [5]. Second, the 30 µm wide line has a 

shorter lifetime than the 10 µm wide line independent of the existence or absence of the TiW 

capping layer. This is also consistent with our previous observation that wide lines are subject to 

earlier failure than narrow lines due to the higher opportunity of forming voids at the larger number 

of grain boundaries [38]. Third, based on the same line width, Cu with a TiW capping layer has a 

shorter lifetime than that without the capping layer. According to a previous study [42], the capping 

layer might induce void defects in the Cu layer, which could shorten the EM lifetime.  

Figure 3.1(b) shows the same data as Figure 3.1(a) expressed as the mean time to failure 

(MTTF) vs. current density. The following modified Black equation was used to fit each curve 

[26],  

                                         𝑀𝑇𝑇𝐹 =
𝐴

𝑗𝑛
𝑒(

𝑄

𝑘𝑇
) = 𝐴 ∙ 𝑒−𝑛∙𝑙𝑛𝑗+

𝑄

𝑘𝑇 = 𝐶 ∙ 𝑒−𝑛∙𝑙𝑛𝑗(3-1)  

where 𝐴 is a constant related to the lines structure, 𝑗 is the current density, 𝑛 is a model number 

related to the temperature, the stress condition and the conducting material, 𝑘 is the Boltzmann's 

constant, 𝑄 is the activation energy, and 𝑇 is the absolute temperature in K, and 𝐶 is a constant 

dependent on 𝐴, 𝑄 and the absolute temperature T (𝐶 = 𝐴 ∙ 𝑒
𝑄

𝑘𝑇 ). 

https://en.wikipedia.org/wiki/Boltzmann%27s_constant
https://en.wikipedia.org/wiki/Boltzmann%27s_constant
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In Fig 3.1(b), the n-values of lines with same width are almost the same. The capping layer 

has no obvious effect on the n-value. For the 30 µm and 2.5 µm wide lines, the n-values are 4.25-

5.64. For the 10 µm wide lines, the n-values are 1.1-1.36. According to the recent study [43] on 

the temperature effect during the EM test, it shows that the temperature changes for both two kinds 

of structure are almost the same. This is because the capping TiW layer is only 10 nm, which is 

much less than the thickness of Cu layer (280 nm). The main part of the Cu line is still made of 

Cu. The temperature change rate won’t change much for the same kind of material. 

For the lines with same width, samples without the thin TiW capping layer have a larger 

A-factor and therefore, a longer broken time. However, it was reported that the Black equation did 

not consider factors such as the temperature gradient and Joule heating effect [44]. They might 

lead to the inaccurate n-and A-values.    

Separately, it was reported that the temperature of the Cu line was increased by the EM 

stress [44-46]. At high temperature, Cu could easily diffuse into the TiW capping layer [24]. Once 

Cu atoms are lost to the adjacent layer, voids could be formed in the bulk Cu line. In previous 

studies on the relationship between the Cu vacancy and diffusion [47-48], it was found that the 

increase of vacancy could enhance the Cu diffusion rate. Vacancies could even change the shape 

and location of the local grain boundaries [49]. The following equation, which has been mentioned 

in Chapter 1, expresses the mass flux under the EM condition [39, 40]. 

𝐽 =
𝑁𝐴

𝑘𝑇
∙ 𝐷0 ∙ 𝑒(−

𝑄

𝑘𝑇
) ∙ (𝑒 ∙ 𝑍∗) ∙ 𝜌 ∙ 𝑗                              (3-2) 

When the diffusion constant increases, the mass flux J increases. Then, the 

electromigration phenomenon becomes serious and the Cu line lifetime is shortened.  
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 (a) 

 

(b) 

 

Fig 3.1 (a) ‘Line broken’ time vs. stress current density of TiW capped and uncapped Cu lines 

of different widths and (b) MTTF vs. current density of (a) samples fitted with Black equation. 

Reprinted from ref. 50. 

 

 

The color of the TiW capped Cu line changed with the EM stress time. The original line 

color was purple, as shown in Fig 3.2(a). It changed to the white color, as shown in Fig 3.2(b), 
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where the broken area showed as the dark color. Since the reflection of the light from the surface 

is dependent on the composition of the TiW capping layer, the color change may be related to its 

composition change. Table 3.1 shows the XPS elemental ratios of the TiW capping layer before 

and after the line broken. The W/Cu and Ti/Cu ratios decreased after the EM stress while the Ti/W 

ratio remained the same. Therefore, Cu was diffused into the TiW layer during the EM stress. The 

shortening of the line broken time from the addition of the TiW capping layer can be explained by 

the loss of Cu atoms in the bulk Cu line.    

 

  

(a) (b) 
 

Figure 3.2 Light microcopy images showing the color of a 30 µm wide TiW/Cu/TiW line. (a) 

before and (b) after line broken from EM stress at J = 1.39×106A/cm2. Reprinted from ref. 50. 

 

Table 3.1 XPS elemental ratios of TiW capping layer before and after EM stress. Reprinted from 

ref. 50. 

 

 

 

 

3.2 Capping layer effect on Cu line resistance 

Figure 3.3(a) shows the resistances of 10 µm lines with and without TiW capping layer vs. 

the EM stress time at J = 2.06×106A/cm2. First, the resistance of the line changed little with 

increasing time until near the broken point. Second, the resistance of the sample with TiW capping 

layer is larger than that without the capping layer. According to previous studies [51-53], for Cu 

lines with the capping layer, EM prefers to happen at the interface. At the interface, Ti-Cu or W-

 Before After 

Ti/Cu 3.5 3.4 

W/Cu 18.9 17.7 

Ti/W 0.19 0.19 
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Cu bonds provide lower conductivity than Cu-Cu bonds, which causes the larger resistance. Third, 

for lines without TiW capping layer, the broken phenomena occurred earlier than those without 

the TiW capping layer. This can be explained by the easy formation of voids in the bulk Cu line 

from the loss of atoms to the capping layer.   

Figure 3.3(a) shows the resistance vs. EM stress time curves of the TiW capped and 

uncapped 10 µm lines at J = 2.06×106A/cm2. Figure 3.3(b) shows the resistance vs. EM stress time 

curves of the TiW capped and uncapped 2.5 µm lines at J = 2.57×106A/cm2. Similar with the 10 

µm lines, the TiW capped lines have larger resistance than the uncapped lines. For both samples, 

the line resistances change slightly with the increase of the stress time until near the broken point.   

 

(a)                                                                  (b) 

Fig 3.3 Line resistance vs. stress time of TiW capped and uncapped Cu lines. (a) 10 µm line at J = 

2.06×106A/cm2, (b) 2.5 µm line at J = 2.57×106A/cm2. Reprinted from ref. 50. 

 

 Fig 3.4 shows the difference of resistance and cross section area for two kinds of structure. 

Both cross section area and resistance of Cu lines with TiW capping layer are larger than the 

uncapped lines. The power consumption can be calculated by the following equation. 
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Lines without capping layer:                                            (3-1) 

Lines with capping layer:                                              (3-2) 

 

The Cu layer thickness is 280 nm, which is much thicker than the capping layer (10 nm), 

so when the power consumption is calculated, the cross-section area part doesn’t attribute much 

increase because the cross-section only increases about 3-4%. According to Fig 3.3(a), the 

resistance of 10 µm width line increases about 25% after the line is capped. For the 2.5 µm width 

line, the resistance increases even more. The final consequence of higher resistance and larger 

cross-section area is that, when the same current density is applied, lines with capping consume at 

least 25% more power than the uncapped lines. As mentioned before, these lines were deposited 

on the corning glass, which is a very good heat isolated material, so the applied power keeps 

accumulating on the Cu lines until they break down. For the lines with capping layer, the Cu atoms 

not only diffuse into an additional layer (TiW capping layer), but also diffuse at a higher rate 

because more heat is accumulated during the EM test, shown as Fig 3.5. 

 

 

Fig 3.4 Resistance and cross area difference between Cu lines with and without TiW capping layer. 
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Fig 3.5 Cu atoms diffusion direction and rate for both two kinds of structure. 

 

3.3 Conclusion 

The TiW capped Cu line has a shorter ‘broken line’ time than the uncapped Cu line. This 

can be explained by the loss of Cu atoms to the TiW layer during the EM stress. This phenomenon 

causes the enhancement of the vacancy formation and the acceleration of the line disruption. The 

raise of temperature during the current stress also enhances the mass flux at the junction point that 

results in the early failure of the line.  The resistance vs. stress time result shows that the TiW 

capping layer causes an increase of the line resistance leading to void formation in the bulk Cu 

line. Thus, the selection of the capping layer material is critical to the electromigration failure of 

the Cu line. 

This research shows that sometimes the capping layer could reduce the Cu lines lifetime 

instead of increasing it. During the electromigration, surface of the Cu lines without capping layer 

have the oxidation problem. Oxidation reduces Cu lines lifetime seriously. In common situation, 

capping layer is usually designed to protect the surface from oxidation. However, diffusion effect 

has been observed in this research. The capping layer does reduce the oxidation on the Cu lines 

surface during the electromigration test, but the diffusion effect from Cu layer to TiW barrier layer 

makes the capped Cu lines have shorter lifetime than the uncapped Cu lines.   
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4. SUMMARY AND CONCLUSIONS 

When the same current density is applied, the wider Cu line has a longer EM lifetime than 

the narrower line, which can be explained by the grain boundary effect. According to the resistance 

and time relationship profile, the narrow line’s curve is more abrupt right before break down 

because of the uneven distribution of electromigration in the narrow line. At the electromigration 

break down point, the resistance increases drastically. However, a large portion of the line still 

remains low resistance. The electromigration happens more evenly in the wide line. Most part of 

the line resistance has increased before the break down happens. Picture of the broken wide line 

(30 µm) shows the color changes evenly along the line. For the 10 µm line, the color change 

distribution is not as even as the 30 µm ones, but most portion of the line still changes the color. 

When the line width is further reduced to 1.5 µ, the color change only happens at the area nearby 

break down point. The EM lifetime of the Cu line is related to the distribution of the grain boundary 

intersection points and the grain size. Therefore, the grain structure of the Cu line is important to 

the EM lifetime. 

In order to extend the lifetime of Cu lines without capping layer, annealing is a good option. 

Cu annealing could increase the Cu grain size and reduce the Cu grain boundaries intersection 

points, where the voids prefer to form during electromigration. In specific application, when 

constant current density is required in circuit, narrower Cu lines have longer lifetime. When 

constant current is required in circuit, using multiple narrower Cu lines to replace one wider Cu 

line might increase the overall lifetime. However, according to the previous studies, sometimes 

when the line is too narrow, the lifetime will also be reduced under the same current density. This 

research shows that reducing the line width will increase the life time, as long as the line width 

scale is larger than the grain size.  
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Cu line without TiW capping layer has a longer lifetime than the TiW capped Cu line, 

which can be explained by the loss of Cu atoms to the adjacent capping TiW layer during the EM 

stress. This phenomenon causes the enhancement of the vacancy formation and the acceleration of 

the line disruption. The raise of temperature during the current stress also enhances the mass flux 

at the junction point that resultes in the early failure of the line. Under the same current density, 

higher power consumption for the TiW capped line also increases the Cu diffusion rate. The 

resistance vs. stress time result shows that the TiW capping layer causes an increase of the line 

resistance leading to void formation in the bulk Cu line. Thus, the capping layer material selection 

is significant to the electromigration failure of the Cu line.  

The objective of the TiW capping layer study is to find out whether TiW is a good capping 

layer for Cu lines. Also, in industry, multiply layer is very common. In order to connect Cu layer 

with Si dielectric material on top, the TiW capping layer on Cu is very essential.   

Normally, dielectric capping layer will reduce the surface oxidation and extend the Cu lines 

lifetime. However, according to this study, metal may not be a good choice for the Cu lines capping 

layer. Even if the TiW capping layer could prevent oxidation, it causes the diffusion problem, 

which reduces more lifetime than oxidation. Reducing the temperature during the electromigration 

test is always an effective option, which could mitigate Cu diffusing into the TiW capping layer. 

This research also indicates another probability that Cu lines with salient structures have 

longer lifetime than those with mosaic structures. Nowadays, industries use this mosaic structure 

Cu lines a lot. According to the TiW capping layer effect on resistance, it’s reasonable to deduct 

that Cu lines with mosaic structures have higher resistance and consume more power when the 

applied current is the same, because the Ti-Cu and W-Cu bonds still provide higher resistivity at 

the interface. Also, according to the diffusion theory, Cu atoms could also diffuse into the side 
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TiW and reduce the lifetime. The Cu reactive ion etching method used in this research can 

constantly etch this salient structure, which is a clear advantage of this dry etching method. 
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APPENDIX A 

DEPOSITION AND ETCHING CONDITION  

 

Deposition:  

Table A.1 Deposition condition 

Material TiW Cu 

Power 75 W 80 W 

Gas Ar Ar 

Flow rate 50 sccm 30 sccm 

Pressure 5 mTorr 10 mTorr 

Time 15 min 80 min 

 

RIE:  

Table A.2 RIE condition 

Material TiW Cu 

Power 600 W 600 W 

Gas CF4 HCl/CF4 

Flow rate 10 sccm 20/5 sccm 

Pressure 60 mTorr 70 mTorr 

Time 2 min 2 min 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

58 

 

 

 

APPENDIX B 

LABVIEW TESTING PROGRAM 

 The input module program is built by labview, shown in Figure B.1. Figure B.1 (a) shows  

how the input current is calculated according to the essential input parameters. Figure B.1 (b) 

shows the initial setup parameters inside the program, such as initial starting voltage and voltage 

limit. 

 

 

  (a)                                                          (b) 

Figure B.1 Input Labview program. (a) essential input parameters, (b) initial program parameter 

setup. 
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 Figure B.2 shows the main algorithm of the program and the program stop trigger 

conditions, such as high resistance, current loss or over limit voltage.  

 
 

Figure B.2 Main algorithm and end program trigger module. 
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 Figure B.3 shows how the temperature of the Cu lines is calculated during the EM test.  

 

Figure B.3 Cu lines temperature calculation module. 
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 The notification module is shown in Figure B.4. If the program ends, the system will send 

an email to notify the user that the system is ready for a new test. 

 
 

Figure B.4 System notification module. 
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 After the program ends, system will generate a data file. The essential parameter results, 

shown in Figure B.5, will be included in this data file.  

 
 

Figure B.5 Output data file module. 


