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ABSTRACT

We study the spectral stability of the solitary wave solutions to the nonlinear Dirac equations.

We focus on two types of nonlinearity: the Soler type and the Coulomb type. For the Soler model,

we apply the Evans function technique to explore the point spectrum of the linearized operator at

a solitary wave solution to the 2D and 3D cases. For the toy Coulomb model, the solitary wave

solutions are no longer SU(1, 1) symmetric. We show numerically that there are no eigenvalues

near 2ωi in the nonrelativistic limit (ω . m) and the spectral stability persists in spite of the

absence of SU(1, 1) symmetry.
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NOMENCLATURE

NLD Nonlinear Dirac equation

NLS Nonlinear Schrödinger equation

Lp Space of functions with Lebesgue-integrable pth power of the
absolute value

nD n spatial dimensions

MTM massive Thirring model

Rn n-dimensional real vector space

R+ Set of positive real numbers

Cn n-dimensional complex vector space

ā Complex conjugate of the complex number a

Re(a) Real part of a complex number a

Im(a) Imaginary part of a complex number a

AT Transpose of a matrix A

A∗ the Hamiltonian conjugate of the operator A; if A is a matrix,
A∗ = (Ā)T

Cn Space of functions with continuous nth derivatives

N Set of all the positive integers

ODE Ordinary differential equation

PDE Partial differential equation

L(H) Space of linear operators on the spaceH

Hk(Ω) Sobolev space {f ∈ L2(Ω) : ‖〈ξ〉kf̂(ξ)‖L2(Ω) < +∞} where
〈ξ〉 :=

√
1 + |ξ|2, f̂(ξ) is the Fourier transform of f(x) and

Ω = Rn
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1. INTRODUCTION

In this chapter, we introduce the nonlinear Dirac equations, solitary waves, and the spectral

stability briefly. A short review for the related results is given as well.

1.1 Dirac Operator

The famous Dirac equation [2] describes the relativistic motion of a spin-1
2

particle in R3,

correctly taking into account their interaction with the external electromagnetic fields, as opposed

to the Klein-Gordon equation which describes particles of zero spin. The Klein-Gordon equation

(which for simplicity we write without the external electromagnetic fields),

− ∂2

∂t2
ψ(x, t) = (−∆ +m2)ψ(x, t), t ≥ 0, x ∈ R3, (1.1)

where m is the mass, is obtained from the classical relativistic energy-momentum relation for the

energy E and the momentum p:

E2 = p2 +m2. (1.2)

We employ the units such that the speed of light c and the Plank’s constant ~ are both equal to one

throughout the thesis. According to Schrödinger, the transition from the classical to the quantum

mechanics is achieved by the substitution

E −→ i
∂

∂t
, p −→ −i∇. (1.3)

Dirac looked for a relativistically invariant equation which would allow one to exclude negative en-

ergies from the consideration, keeping the "positive" root of the E2 = p2 +m2 energy-momentum

relation. He ended up with the first order equation which still contained negative energies, but at

the same time presented the consistent description to the internal structure of the electron (which

was proposed back in 1924 by Wolfgang Pauli and in 1925 by George Uhlenbeck and Samuel

1



Goudsmit) [3] . In 1927, Dirac [2] tried to express E as

E =
3∑
i=1

αipi + βm (1.4)

so that the new E would still satisfy the relation (1.2). Thus, the matrices αi, i = 1, 2, 3 and β

should satisfy the following relations

αiαk + αkαi = 2δik1, i, k = 1, 2, 3, (1.5)

αiβ + βαi = 0, i = 1, 2, 3, (1.6)

β2 = 1, (1.7)

where δik denotes the Kronecker delta, 1 and 0 are the n-dimensional identity and zero matrices.

By Equations (1.5) and (1.6) αi, i = 1, 2, 3 and β anti-coummute with each other. Dirac noticed

that ( 3∑
i=1

σipi
)2

=
3∑
i=1

p2
i , ∀(p1, p2, p3) ∈ R3, (1.8)

with Pauli matrices

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (1.9)

The Pauli matrices look like candidates for matrices in Equation (1.4). However, there are only

three linearly independent such matrices for αi, i = 1, 2, 3 and is no more such anti-commuting

matrix for β. Dirac decided to enlarge the size of those square matrices. According to (1.5)-(1.7)

the matrices αi and β have eigenvalues±1 with 0 matrix trace. Thus, the dimension of such square

matrices should be an even number. He enlarged the size from 2× 2 to 4× 4 and defined

β =

I2 0

0 −I2

 , αi =

0 σi

σi 0

 , i = 1, 2, 3. (1.10)

2



Combining with (1.3) and (1.4) one can get the Dirac equation

i
∂

∂t
ψ = (−iα · ∇+ βm)ψ ≡ Dmψ (1.11)

where ψ(x, t) : R3 × R → C4 is the wave function and Dm is called the Dirac operator. The

matrices α1, α2, α3 and β are called Dirac matrices. They are Hermitian and thus the operators

introduced by (1.4) is self-adjoint. Although the Dirac operator is originally defined in R3, we can

generalize the definition in any Rn where n ≥ 1 and the size of the corresponding Dirac matrices

and the wave function ψ depends on n (see [4]). For example, in R the Dirac operator can be

written as

Dmψ = −i(−σ2∂x)ψ + σ3mψ, ψ : R× R+ → C2, (1.12)

and in R2 the Dirac operator can be written as

Dmψ = −i(σ1∂1 + σ2∂2)ψ + σ3mψ, ψ : R2 × R+ → C2, (1.13)

where σi, i = 1, 2, 3, are Pauli matrices defined as above. The Dirac operator can also be defined

by Clifford multiplication (see [4]).

Remark 1.1.1. The operator Dm contains the value m which is interpreted as the mass. Through-

out the paper, we take m = 1. In some contexts, the mass of a particle may be ignored and the

corresponding operator is defined as

D0 = −iα · ∇. (1.14)

It is called massless Dirac operator and has the property

D2
0 = −∆I4, (1.15)

3



where I4 is the identity matrix. For Dm we have a similar relation

D2
m = (−∆ +m2)I4. (1.16)

1.2 Nonlinear Dirac Equation

In this section, we introduce two types of nonlinear Dirac equations. One model is the NLD

with the scalar self-interaction and the other model is the NLD with the Coulomb type nonlinearity.

In 1938, Ivaneko [5] first studied the NLD with scalar self-interaction. The nonlinear self-

interaction of the spinor fields may arise due to the geometrical structure of the spacetime [6].

Ivanenko demonstrated a relativistic theory with a forth order self-interaction. In [7, 8], the authors

attempted to formulate a unified theory of elementary particles by using the NLD model. In 1958,

Thirring [9] introduced a completely integrable one-dimensional model, known as the Massive

Thirring Model, which is based on spinor field with the vector self-interaction. It is notable that

fundamental solutions of the MTM can be transformed into solitary wave solutions of the sine-

Gordon equation by means of a bosonization process [10]. In 1970, Soler [11] studied Ivaneko’s

model in the context of extended nucleons and provided the numerical analysis of particle-like-

solutions (solitary wave solutions). Nowadays the NLD with scalar self-interaction is called Soler

model canonically. The one-dimensional Soler model, also known as the the Gross-Neveu model,

was introduced in [12] as a toy model of quark confinement. The explicit solutions were given in

[13].

The Soler model is written as

i∂tψ = Dmψ − f(ψ∗βψ)βψ, ψ(x, t) ∈ CN , x ∈ Rn, t ≥ 0, n ≥ 1 (1.17)

with the real-valued f(s) = sk, k ∈ N. We note that the equation (1.17) is U(1)-invariant and

Hamiltonian, with the corresponding Hamiltonian represented by the density

H(ψ) = ψ∗Dmψ − F (ψ∗βψ), F (s) =

∫ s

0

f(r) dt. (1.18)

4



Moreover, the system is also SU(1, 1)-invariant and Lorentz-invariant. Due to the term ψ∗Dmψ,

the functional H is unbounded from below and sign-indefinite. The fact leads to barriers for the

stability analysis, especially comparing to its non-relativistic analogue, the NLS.

Another type of nonlinear Dirac equation is defined with the Coulomb type nonlinearity

i∂tψ = Dmψ + qΦψ, ∆Φ = −ψ∗ψ (1.19)

where q is the charge ( q < 0 for electron). The Dirac-Coulomb equation is no longer SU(1, 1)-

invariant and Lorentz-invariant. The system is particularly complicated for the stability analysis,

even for the 1D model, since the Coulomb potential will create infinitely many eigenvalues for the

linearized system, just like in the Hydrogen atom. Instead, we will consider a toy model

i∂tψ = Dmψ − V ψ, ψ : R× R+ → C2. (1.20)

where the nonlinearity term V is defined as V = |ψ|2. It is notable that Equation (1.20) is not

SU(1, 1)- invariant as well (the detail will be presented in Section 4.3) and thus it could be consid-

ered as a simplified analogue of the 1D Dirac-Coulomb equation.

1.3 Solitary Waves

Solitary waves are localized traveling waves and are well-known in many nonlinear dispersive

equations, such as the NLS, the nonlinear sine-Gordon equation and the Korteweg-de Vries equa-

tion [14, 15]. The phenomenon of solitary waves was first investigated by J. Scott Russell in 1834.

Nowadays the phenomena have been simulated and observed in many physical fields, for instance,

the non-linear optics, plasma physics and lattice dynamics.

We will consider solitary wave solutions to the NLD system (1.17):

ψ(x, t) = ϕω(x)e−iωt. (1.21)

The profile function ϕω(x) merely depends on spatial variable, so the “shape” of the solution will
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not change as it evolves.

By using polar coordinates (the details will be presented later), we can assume that the solitary

wave solution is of the form

ψ(x, t) = ϕω(r, θ, φ)e−iωt =


v(r)

1

0


iu(r)

 cos θ

eiφ sin θ




e−iωt, (1.22)

where u and v are both real-valued functions and ω ∈ (0,m). After the substitution, Equation

(1.17) can be reduced to an ODE system


v′(r) = −(m− f(v2 − u2) + ω)u(r)

u′(r) + 2
r
u(r) = −(m− f(v2 − u2)− ω)v(r)

. (1.23)

We note the absence of the term e−iωt, which is canceled out due to the U(1)-symmetry, and the

angular coordinates, so the system is real-valued and merely depends on the radial coordinate r.

Usage of the solitary wave Ansatz (1.22) substantially simplifies the original equation (1.17) and

leads to tremendous simplification for the analyses and numerics.

To eliminate the singularity resulted from the term 2
r
u(r), we assume that u(0) = 0. Since the

solitary wave solutions correspond to extended Fermions [11, 6], u, v, u′ and v′ have to vanish at

infinity. The existence of such u and v has been proved in different approaches. In [16], the authors

use a shooting method to show the existence of u and v, which are in C1 and decay exponentially

at infinity, under the following hypotheses on f :

1. f : [0,+∞]→ [0,+∞] in C1;

2. f(0) = 0, f ′(r) > 0 for r > 0;

3. limr→+∞ f(r) = +∞.

6



Obviously, f(s) = sk, k ∈ N satisfies all the conditions above. In [17], the author also uses a

shooting method to show the existence without the assumption that f is increasing on (0,+∞). In

[18], the authors use a variational approach to show the existence. The hypotheses on f are similar

to the ones in [16] and the only difference is that authors assume that rf(r) > εF (r) for ε > 1,

r > 0, where F is the anti-derivative of f with F (0) = 0, instead of f being increasing. The

setting f(s) = sk, k ∈ Z+, also satisfies the assumption.

In the case of x ∈ R2, we have the similar format for the solitary waves

ψ(x, t) = ϕω(r, θ)e−iωt =

 v(r)

iu(r)eiθ

 e−iωt, (1.24)

and the corresponding ODE system is


v′(r) = −(m− f(v2 − u2) + ω)u(r)

u′(r) + 1
r
u(r) = −(m− f(v2 − u2)− ω)v(r)

. (1.25)

The only difference is the coefficient at the singular term u(r)/r. The existence can be shown by

the same approaches as in the 3D case.

In the case of x ∈ R, the solitary wave is of the form

ψ(x, t) = ϕω(r, θ)e−iωt =

v(r)

u(r)

 e−iωt, (1.26)

and the corresponding system ODE system is


v′(r) = −(m− f(v2 − u2) + ω)u(r)

u′(r) = −(m− f(v2 − u2)− ω)v(r)

. (1.27)

The term u(r)/r disappears and the existence of u and v is proved by constructing a Hamiltonian
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system corresponding to (1.27) in [19].

For Equation (1.20), we take the solitary waves as

ψ = ϕω(x)e−iωt, ϕω(x) =

v(x)

u(x)

 , (1.28)

where u and v are also real-valued functions and the ODE system is written as


ωv = u′ +mv − (u2 + v2)v,

ωu = −v′ −mu− (u2 + v2)u.

(1.29)

The existence of solutions to Equation (1.29) will be shown in our work.

1.4 Stability Analysis

The stability of a particular solution to a PDE system is a crucial property. Roughly, a solu-

tion to some system is called stable if another solution with initial data near the initial value of

that solution will keep close to that solution for all times. For different systems, different types of

norms may be applied, say L2-norm or H2-norm, to describe how close those two solutions are.

The stability is important because an unstable solution cannot be implemented in the physical and

industrial contexts. For most PDEs, especially nonlinear systems, analytical solutions cannot be

obtained explicitly and thus the numerical solutions play important roles. However, the numer-

ical solution would be meaningless if the solution were unstable, since numerical errors cannot

be avoided during numerical computations. According to the complexity and accessibility of a

system, we will investigate distinct types of stability.

Let us first recall some basic definitions in the spectral theory. Suppose that H is a Hilbert

space and A ∈ L(H) is a linear operator inH with domain D(A).

Definition 1.4.1. A is called closed if for any sequence xn ⊂ D(A) such that xn → x andAxn → y

as n→∞, it follows that x ∈ D(A) and Ax = y. A is called densely defined operator if D(A) is

dense inH.
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We assume that all the linear operators are closed and densely defined throughout the paper.

Remark 1.4.1. Since A is closed, if A− λIH is a bijection, then (A− λIH)is a bounded operator

by the closed graph theorem.

Definition 1.4.2 (Resolvent set). The resolvent set ρ(A) is the set of all λ ∈ C such that the map

(A − λIH) : D(A) → H is bijective. If λ ∈ ρ(A), then the corresponding resolvent operator is

defined as (A− λIH)−1.

Definition 1.4.3 (Spectrum). The set σ(A) = C\ρ(A) is called the spectrum ofA. In other words,

if λ ∈ σ(A), then (A− λIH) does not have the inverse.

Definition 1.4.4 (Eigenvalue). A complex number λ is called an eigenvalue of A, if there exist a

nonzero f ∈ D(A) such that λf = Af . In other words, (A − λIH) has a nontrivial null space in

H. And f is called the eigenvector or eigenfunction associated with the eigenvalue λ. The null

space of (A− λIH) is called the eigenspace associated with λ and the dimension of the null space

is called the geometric multiplicity of λ.

In the physical contexts, H is usually a space equipped with the energy norm, for instance, L2

or H1 and thus the desired eigenfunctions have to decay sufficiently fast at infinity.

There are several specific spectra.

Definition 1.4.5 (Point Spectrum). The point spectrum σp(A) is the set of all the eigenvalues.

Definition 1.4.6 (Discrete Spectrum). The discrete spectrum σd(A) is set of all the isolated eigen-

values such that the corresponding Riesz projector has a finite rank.

Definition 1.4.7 (Essential Spectrum). The essential spectrum σess(A) is defined as the set σ(A) \

σd(A).

Remark 1.4.2. There are various definitions of the essential spectrum, which are not equivalent

(see [20]). The definition above agrees with σess,5(A) in [20].
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Since eigenvalues may be embedded in the essential spectrum and there could be an isolated

eigenvalues of infinite algebraic multiplicity, σp(A) and σd(A) are not equivalent.

Now we will introduce several types of stability for the solutions to NLDs. We are interested

in the solitary wave solution (1.21), namely ψ(x, t) = ϕ(x)e−iωt, to systems (1.17) and (1.20).

Consider a perturbation of the solitary wave of the form

ψ(x, t) = (ϕω(x) +R(x, t))e−iωt. (1.30)

We substitute (1.21) by perturbation (1.30) in the Systems (1.17) and (1.20) and linearize the

systems with respect to the term R(x, t). The linearized form is given by

∂tR = LR + o(R) (1.31)

where L is the linearization operator corresponding to the original systems.

Definition 1.4.8 (Spectral Stability). If σp(A) lies entirely on the left-half plane (including the

imaginary axis), then the solitary wave (1.21) is called spectrally stable. Otherwise, the solitary

wave (1.21) is called linearly unstable.

Definition 1.4.9 (Orbital Stability). The solitary wave (1.21) is called orbitally stable if for any ε >

0 there is δ > 0 such that if ‖φ(x, 0)− ψ(x, 0)‖ < δ in a certain energy norm (usually L2 or H1),

then there is a solution φ(x, t) which exists for all t ≥ 0 and satisfies supt≥0 infs∈R ‖φ−eisψ‖ < ε.

Otherwise, the solitary wave is called orbitally unstable.

The orbital stability is introduced in [21] to study the abstract Hamiltonian system. A solitary

wave is called orbitally stable if any solution which is sufficiently close to it initially (at t = 0) will

always keep close to the orbit spanned by the solitary wave.

Definition 1.4.10. The solitary wave (1.21) is called asymptotically stable if any solution initially

close to it will converge (in a certain norm) to this or to a nearby solitary wave solution.
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In last decades, many results for different types of stability have been obtained for NLS,

Korteweg-de Vries, Klein-Gordon and sine-Gordon equations, see e.g. [22, 23, 24, 25, 26, 21,

27, 28, 29, 30, 31, 32, 33], but the research on the NLD progresses slowly. One important rea-

son is that the Hamiltonian functions corresponding to those models are of finite Morse indices.

Hence the solitary waves can be deduced as the minimizer of the energy under some constraints

[21]. However, for the NLD, the Hamiltonian is sign indefinite and is of infinite Morse index at the

points of the functional space corresponding to solitary waves. As a result, the conservation laws

are not sufficient to control all the directions of the perturbation and the methods used to study

NLS may not work anymore. We need to find a new approach to show the orbital and asymptotic

stability.

In [34, 27], the spectral stability of solitary waves was first studied for a scalar NLS. A priori,

the spectral stability leads to neither the orbital stability nor the asymptotic stability. However,

according to the results on NLS and Klein-Gordon equations in [27, 35], the linear instability leads

to the orbital instability. Meanwhile, the results on asymptotic stability of solitary waves for some

NLDs are presented in [36, 37, 38] with some specific restrictions on the spectrum of the linearized

operator and sometimes on the structure of allowed perturbations. Thus, we expect that spectral

stability is a necessary condition for orbital and asymptotic stability for the system with sign-

indefinite Hamiltonian such as NLD. There is an exceptional case, a 1D NLD called the massive

Thirring model, which is written as a system of two semi-linear equations in the normalized form:


i(ut + ux) + v = 2|v|2u,

i(vt − vx) + u = 2|u|2v,
(1.32)

where u(x, t), v(x, t) : R × R+ → C2. This system is completely integrable and some additional

conserved quantities arise from the integrability. Due to those conserved quantities, the solitary

wave solutions to the 1D MTM system are shown to be orbitally stable in the norm of L2 and H1

in [39, 40], respectively.
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2. 2D SOLER MODEL∗

2.1 The Model

In this chapter, we consider the 2D Soler model, which is written as

i∂tψ = Dmψ − f(ψ∗βψ)βψ, ψ(x, t) ∈ C2, x ∈ R2, t ≥ 0, n ≥ 1 (2.1)

whereDm = −iα1∂1−iα2∂2+βm, f(s) = sk, k ∈ N, and we use the Pauli matrices σj , 1 ≤ j ≤ 3,

as the Dirac matrices:

α1 = σ1 =

0 1

1 0

 , α2 = σ2 =

0 −i

i 0

 , β = σ3 =

1 0

0 −1

 . (2.2)

The corresponding Lagrangian density is written as

L = ψ∗β(i∂t −Dm)ψ + F (ψ∗βψ)ψ, (2.3)

with F (s) = sk+1/(k + 1), the anti-derivative of f(s). The nonlinearity term is called scalar self-

interaction, which means that the Lagrangian is based on the term ψ∗βψ and transforms as the

scalar under the Lorentz transformations.

For computational convenience, we use the polar coordinates (r, θ) defined as

x1 = r cos θ, x2 = r sin θ, (2.4)
∗Part of this chapter is reprinted with permission from “Stability of Solitary Waves and Vortices in a 2D Nonlinear

Dirac Model," J. Cuevas-Maraver, P. G. Kevrekidis, A. Saxena, A. Comech, and R. Lan, 2016. Physical Review
Letters, 116, 214101, Copyright [2016] American Physical Society.
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and then Dm takes the form

Dm = −iα · ∇+ βm =

 m −ie−iθ(∂r − i
r
∂θ)

−ieiθ(∂r + i
r
∂θ) −m

 . (2.5)

As mentioned before, we consider the solitary waves ψ(x, t) = ϕω(x)e−iωt with the profile ϕω of

the form

ϕω(x) =

 v(r)

iu(r)eiθ

 (2.6)

where u and v are both real-valued functions. After substituting, we obtain an ODE system with

respect to u and v:

 v′(r) = −(m− f(v2 − u2) + ω)u(r)

u′(r) + 1
r
u(r) = −(m− f(v2 − u2)− ω)v(r)

. (2.7)

Remark 2.1.1. We always assume that the function ϕω depends on ω, although sometimes we will

drop the subscript. Here and throughout the paper we consider the solitary waves for ω ∈ (0,m)

and ϕ stands for ϕω for short unless stated otherwise.

The system only depends on the radial coordinate r and the existence of solutions has been

shown in [16, 17, 18]. The solutions u and v are in C1 and decay exponentially at infinity. Also

u(0) = 0 is required because of the term 1
r
u(r) in the second equation. Even though the existence

of such solutions have been shown in many different ways, no explicit solutions have been found

by now. Therefore, we have to solve the system numerically. We list the properties for numerical

solutions u and v:

1. u(0) = 0 and v(0) > 0;

2. u(r) and v(r) are nonnegative for r > 0;

3. u and v decay quite rapidly at infinity;

13



4. u′ and v′ are negative when r � 1.

Usually we need to know the initial value to solve an ODE system. But for this case, the value of

v(0) is unknown, so shooting method is perfectly suitable for this problem. We can set the initial

value of v first, and then adjust that value according to Properties 2-4. From Figure 2.1, we can

observe that the numerical solutions satisfy all properties above. If we extend r to the domain

(−∞,+∞), then both v and u extend to C1-functions on R which are even and odd, respectively.

Figure 2.1: Numerical solutions u and v for different values of ω in the 2D Soler model. Here we
set m = 1 and f(s) = s.

The solitary wave (2.6) has been shown to be a stationary solution to Equation (2.1) in many
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papers [16, 17, 41, 18], but there are few results concerning the stability of this solitary wave. We

will focus on spectral stability of the solitary wave solutions to the 2D Soler model.

2.2 Linearization

To explore the spectral stability, we need to linearize Equation (2.1). We consider a solitary

wave with a perturbation in the form of (ϕ(x) + R(x, t))e−iωt, where ϕ(x)e−iωt is a solitary wave

solution and ϕ(x) is defined by Equation (2.6). To linearize equation with respect to the per-

turbation R, we plug the solitary wave with perturbation into Equation (2.1). After eliminating

some terms according to Equation (2.1) and ignoring nonlinear terms containing R, we obtain the

linearized equation

i∂tR = DmR− ωR− fβR− 2Re(ϕ∗βR)f ′βϕ, (2.8)

where f = f(ϕ∗βϕ) and f ′ = f ′(ϕ∗βϕ), namely, f = f(v2− u2) and f ′ = f ′(v2− u2). Since we

explore the spectral stability and deal with eigenfunctions, the perturbation should be sufficiently

smooth. We have the following lemma.

Lemma 2.2.1. Assume that the solitary wave profile ϕ belongs to H1(R2,C2) and f(s) = sk,

k ∈ N. If R ∈ L2(R2,C2) is an eigenfunction of the linear operator L defined by

L2R = DmR− ωR− fβR− 2Re(ϕ∗βR)f ′βϕ (2.9)

corresponding to the eigenvalue λ ∈ C, then R ∈ H2(R2,C2).

Proof. Since R is an eigenfunction associated with the eigenvalue λ, we have

λR = D0R + βmR− ωR− fβR− 2Re(ϕ∗βR)f ′βϕ.

It implies that

D0R = λR− βmR + ωR + fβR + 2Re(ϕ∗βR)f ′βϕ. (2.10)

Since ϕ ∈ H1(R2,C4) with u and v decaying exponentially at infinity, both f and f ′ are in
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H1(R2,C4) as well. We know that all the terms on the right hand side in Equation (2.10) are in

L2(R2,C2). It follows that D0R ∈ L2(R2,C2) and thus R ∈ H1(R2,C4). Now applying the

operator D0 on both side of Equation (2.10) and due to Equation (1.15) we have

−∆R = λD0R− βmD0R + ωD0R +D0

(
fβR + 2Re(ϕ∗βR)f ′βϕ

)
. (2.11)

Obviously, all the terms on the right hand side are inL2(R2,C2) since u and v are differentiable and

decay exponentially at infinity. It follows that ∆R ∈ L2(R2,C2) and thus R ∈ H2(R2,C2).

We should investigate the point spectrum of the linear operator L2 defined in Equation (2.9)

to examine the spectral stability. However, L2R contains the term 2Re(ϕ∗βR)f ′βϕ, which makes

the operator only R-linear, but not C-linear. To conquer this barrier, we complexify the operator

by separating the real parts and imaginary parts for each components in R. For computational

convenience, we choose R in the form similar to the profile function (2.6) and it is written as

R =

 R1 + iS1

eiθ(R2 + iS2)

 (2.12)

where Ri(r, θ, t), Si(r, θ, t), i = 1, 2, are real-valued functions. By taking R in the form (2.12),

Equation (2.8) turn into

i∂t

 R1 + iS1

eiθ(R2 + iS2)

 = (Dm − ω − fβ)

 R1 + iS1

eiθ(R2 + iS2)

− 2(vR1 − uS2)f ′βφ.
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Using the polar coordinates and writing Dm explicitly, we have

i∂t

 R1 + iS1

eiθ(R2 + iS2)

 =

 m− ω − f −e−iθ(i∂r + 1
r
∂θ)

−eiθ(i∂r − 1
r
∂θ) −m− ω + f


 R1 + iS1

eiθ(R2 + iS2)


− 2(vR1 − uS2)f ′

 v

−iueiθ

 .
By observation, we note that only the second row contain the multiplier eiθ, so we can cancel that

term and we obtain the system

i∂t

R1 + iS1

R2 + iS2

 =

 m− ω − f −(i∂r + i
r

+ 1
r
∂θ)

−(i∂r − 1
r
∂θ) −m− ω + f


 R1 + iS1

(R2 + iS2)


− 2(vR1 − uS2)f ′

 v

−iu

 .
Now we collect real parts and imaginary parts in separate systems. In this way, the constant i can

be eliminated and equations can be simplified. For S1 and S2 we have

−∂t

S1

S2

 =

(m− ω − f)R1 − (−∂rS2 − 1
r
S2 + 1

r
∂θR2)

−(−∂rS1 − 1
r
∂θR1) + (−m− ω + f)R2

− 2(vR1 − uS2)f ′

v
0

 ,
and for R1 and R2 we have

∂t

R1

R2

 =

(m− ω − f)S1 − (∂r + 1
r
)R2 − 1

r
∂θS2)

−(∂rR1 − 1
r
∂θS1) + (−m− ω + f)S2

− 2(vR1 − uS2)f ′

 0

−u

 .
After re-arrangement we obtain

∂t

S1

S2

 =

(−m+ ω + 2v2f ′ + f)R1 + 1
r
∂θR2 + (−2uvf ′ − ∂r − 1

r
)S2

(−1
r
∂θR1) + (m+ ω − f)R2 − ∂rS1

 ,
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and

∂t

R1

R2

 =

 (m− ω − f)S1 − (∂r + 1
r
)R2 − 1

r
∂θS2)

(2uvf ′ − ∂r)R1 + 1
r
∂θS1 + (−m− ω + f − 2u2f ′))S2

 .
We combine them together and obtain the following system:

∂t



R1

S1

R2

S2


= A



R1

S1

R2

S2


, (2.13)

where A is a matrix operator from H1(R2,C4) to L2(R2,C4) and is written as

A =



0 m− ω − f −∂r − 1
r

−∂θ
r

ω −m+ 2v2f ′ + f 0 ∂θ
r

−2uvf ′ − ∂r − 1
r

2uvf ′ − ∂r ∂θ
r

0 −m− ω + f − 2u2f ′

−∂θ
r

−∂r m+ ω − f 0


.

Remark 2.2.1. The operator A depends on the frequency parameter ω.

It suffices to compute the point spectrum of the operator A:

σp(A) = {λ ∈ C; λΨ = AΨ, Ψ ∈ L2(R2,C4), Ψ 6= 0}

to determine the spectral stability.

2.3 Evans Function and Jost Solution

In order to compute the σp(A) we can apply the Evans function which provides an efficient

tool to locate the eigenvalue values for a linear differential operator.
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2.3.1 Introduction

The Evans function was first introduced by J.W. Evans [42, 43, 44, 45] in his study of the sta-

bility of nerve impulses. Evans defined D(λ) to represent the determinant for eigenvalue problems

associated with traveling waves of a class of nerve impulse models. D(λ) was constructed to detect

the intersections of the subspaces of solutions decaying exponentially to the positive infinity and

the negative infinity, respectively. Since the class of equations in his study has some special prop-

erty, the construction for D(λ) is straightforward. In [46], Jones implemented Evans’ idea to study

the stability of a singularly perturbed FitzHugh-Nagumo system and called the determinant-like

function the Evans function. In his paper, E(λ) is used to denote the Evans function, which has

become the canonical notation. The first general definition of the Evans function was given in [47]

and the authors study the stability for traveling waves of a semi-linear parabolic system. Pego and

Weinstein [48] expanded on Jones’ construction of the Evans function to study the linear instability

of solitary waves in the Korteweg-de Vries equation, the Benjamin-Bona-Mahoney equation and

the Boussinesq equation. Generally, the Evans function for a differential operator D is an analytic

function such that E(λ) = 0 if and only if λ is an eigenvalue of D, and the order of zero is equal

to the algebraic multiplicity of the eigenvalue. Usually the Evans function is defined via the Jost

solutions, which are solutions to eigenvalue problems associated with a differential operator and

certain boundary conditions at±∞. In this way, the corresponding eigenfunctions can be arranged

in the space equipped with some specific norm.

2.3.2 A Simple Example

We present a simple example to illustrates how to construct the Evans function. Consider a

stationary Schrödinger equation

− κ2u(x) = Hu(x) u(x) ∈ C, x ∈ R, (2.14)
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where H = −∂2
x + V with a potential V ∈ C(R), suppV ⊂ [−1, 1]. For κ ∈ C \ {0}, Reκ > 0,

it has solutions J+(κ, x) and J−(κ, x) in H2(C), defined by their behavior at ±∞:

J+(κ, x) = e−κx, x ≥ 1; J−(κ, x) = e+κx, x ≤ −1.

We note that J+ and J− decay exponentially as x→ ±∞, respectively, since Reλ > 0. J+ and J−

are called Jost solutions to (2.14) and the Evans function is constructed by the Wronskian of J+

and J−:

E(κ) = W (J+, J−)(x, κ), (2.15)

where

W (J+, J−)(x, κ) = det

 J+ J−

∂xJ+ ∂xJ−

 = J+(x, κ)∂xJ−(x, κ)− J−(x, κ)∂xJ+(x, κ). (2.16)

To make E(κ) well-defined, we need to show that the Wronskian only depends on κ.

Lemma 2.3.1. The Wronskian W (J+, J−)(x, κ) defined by Equation (2.16) does not depend on x.

Proof. Differentiate Equation (2.16) with respect to x

∂xW (J+, J−)(x, κ) = J+(x, κ)∂2
xJ−(x, κ)− J−(x, κ)∂2

xJ+(x, κ).

Since both J+ and J− are both solutions to Equation (2.14), we have

∂2
xJ+(x, κ) = κ2J+(x, κ) + V (x)J+(x, κ), ∂2

xJ−(x, κ) = κ2J−(x, κ) + V (x)J−(x, κ).

It follows that ∂xW (J+, J−)(x, κ) = 0 and thus W (J+, J−)(x, κ) does not depend on x.

If E(κ) vanishes at some particular λ ∈ C with Reλ > 0, the Jost solutions J+ and J− are

linearly dependent; in other words, there exists c ∈ C \ {0} such that J+(x, κ) = cJ−(x, κ) for
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x ∈ R. We can define an eigenfunction as

ϕ(x) =


J+(x, κ), x ≥ 0

cJ−(x, κ), x < 0

which is in H2(C) and thus it is an eigenfunction corresponding to an eigenvalue λ = −κ2 of the

Schrödinger operator H .

2.3.3 1D Soler Model

In [19] the solitary waves for 1D Soler model are shown to be spectrally stable with the aid of

the Evans function technique. This was the first definitive spectral stability result in the context of

NLD. Since we will apply the same idea to construct Evans functions for 2D and 3D Soler models,

we summarize the procedures to construct the Evans function used in that paper.

The authors consider a solitary wave (1.28) for 1D Soler model with cubic nonlinearity

i∂tψ = Dmψ − (ψ∗βψ)βψ, ψ : R× R+ → C2, (2.17)

where Dm is defined as (1.12). Then the equation is linearized on the perturbation ψ(x, t) =

(ϕ(x) + ρ(x, t))e−iωt with ρ ∈ C2 and the linearized equation is of the form

∂tR = AR, (2.18)

with R = [Reρ, Imρ]T ∈ R4 and

A =

 0 L0(ω)

−L1(ω) 0

 , (2.19)

where the operators L0(ω) and L1(ω) : L2(R2,C2) → L2(R2,C2) with the domain D(L0) =
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D(L1) = H1(R2,C2) are self-adjoint and defined by

L0(ω) =

 m− f − ω ∂x

−∂x −m+ f − ω

 ,

L1(ω) = L0(ω)− 2f ′

 v2 −vu

−vu u2

 ,

with f and f ′ evaluated at v2 − u2.

The construction is done by decomposing L2(R,C4) into two subspaces: the “even” subspace

X� with even first and third components and with odd second and fourth components, and the

“odd" subspace X• with odd first and third components and with even second and fourth com-

ponents. direct sum of X� and X• coincides with L2(R,C4) and the operator A introduced in

Equation (2.18) acts invariantly on them, all the eigenvalue of A have corresponding eigenfunc-

tions either in X� or in X•, namely,

σp(A) = σp(A|X�) ∪ σp(A|X•). (2.20)

Thus, the Evans function can be constructed in X� and X• separately.

The Evans functions corresponding to X� and X•are defined by

EX�(λ) = det (R1, R3, J1, J2) , (2.21)

EX•(λ) = det (R2, R4, J1, J2) , (2.22)

respectively, where Rj(x), 1 ≤ j ≤ 4, are the solutions to the equation λR = AR with the
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following initial data at x = 0:

R1|x=0 =



1

0

0

0


, R2|x=0 =



0

1

0

0


, R3|x=0 =



0

0

1

0


, R4|x=0 =



0

0

0

1


,

and J1 and J2 are the Jost solution corresponding to A, more precisely, they are solutions to

λΨ = AΨ with the same asymptotics at +∞ as the solutions in L2(R,C4) to λΨ = (Dm − ω)Ψ

with

Dm =

Dm 0

0 Dm

 .
The key step in the process is decomposing L2(R,C4) into two subspaces which A acts invari-

antly on. Then Evans functions can be constructed on each subspace separately. We will implement

this method for the 2D Soler model to factorize the linearized operator on invariant subspaces.

2.4 Evans function Factorization

Recall the linearized operator introduced in Equation (2.13):

A =



0 m− ω − f −∂r − 1
r

−∂θ
r

ω −m+ 2v2f ′ + f 0 ∂θ
r

−2uvf ′ − ∂r − 1
r

2uvf ′ − ∂r ∂θ
r

0 −m− ω + f − 2u2f ′

−∂θ
r

−∂r m+ ω − f 0


.

By observation A depends explicitly on polar coordinate variable r and the corresponding dif-

ferential operator ∂r and ∂θ, but not on θ. Therefore, we decompose L2(R2,C4) by the Fourier
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decomposition with respect to θ, namely,

Xl =





F1(r)

G1(r)

F2(r)

G2(r)


eilθ; Fj, Gj ∈ L2(R+,C), j = 1, 2


, l ∈ Z. (2.23)

Remark 2.4.1. If Φ ∈Xl is a eigenfunction corresponding to Al and is of the form

Φ(r, θ) =



F1(r)

G1(r)

F2(r)

G2(r)


eilθ, (2.24)

then the functions Fj, Gj, j = 1, 2 are in H2 by Lemma 2.2.1.

Lemma 2.4.1. The operator A acts invariantly in the subspace Xl . In other words, for any

Ψ ∈Xl ∩D(A), one has AΨ ∈Xl.

Proof. Suppose that Φ ∈Xl and is written as Equation (2.24). Then we have

AΦ =



0 m− ω − f −∂r − 1
r

− il
r

ω −m+ f + 2v2f ′ 0 il
r

−2uvf ′ − ∂r − 1
r

2uvf ′ − ∂r il
r

0 −m− ω + f − 2u2f ′

− il
r

−∂r m+ ω − f 0


Φ,

and thus

A|Xl
=



0 m− ω − f −∂r − 1
r

− il
r

ω −m+ f + 2v2f ′ 0 il
r

−2uvf ′ − ∂r − 1
r

2uvf ′ − ∂r il
r

0 −m− ω + f − 2u2f ′

− il
r

−∂r m+ ω − f 0


, (2.25)
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which does not depend on θ and ∂θ. It follows that Xl is an invariant subspace of A.

Meanwhile, L2(R2,C4) = ⊕l∈ZXl. By Lemma 2.2.1 and 2.4.1, we obtain the following

lemma.

Lemma 2.4.2. For the operator A we have σp(A) = ∪l∈Zσp(A|Xl
).

The subspaces Xl play the roles as the “even” and “odd” spaces for the 1D Soler model. We

can factorize A and construct the Evans function for each Xl. We denote the restriction operator

A|Xl
by Al.

2.5 Spectral Stability Analysis

2.5.1 Some Explicit Eigenvalues

Before computing the point spectrum by using Evans functions, we are able to obtain some

eigenvalues and corresponding eigenfunctions explicitly.

Lemma 2.5.1. The operator A has the following eigenvalues:

1. λ1 = 0 on the invariant subspace X0 with the eigenfunction

Ψ1 =



0

v

−u

0


; (2.26)

2. λ2 = 2ωi on the invariant subspace X−1 with the eigenfunction

Ψ2 =



−iu

−u

v

−iv


e−iθ. (2.27)
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Proof. We can plug in those eigenfunctions to verify that they correspond to the indicated eigen-

values. Recall the ODE system (2.7)

 v′(r) = −(m− f(v2 − u2) + ω)u(r)

u′(r) + 1
r
u(r) = −(m− f(v2 − u2)− ω)v(r)

.

Since the restriction on A onto X0 is given by

A0 =



0 m− ω − f −∂r − 1
r

0

ω −m+ f + 2v2f ′ 0 0 −2uvf ′ − ∂r − 1
r

2uvf ′ − ∂r 0 0 −m− ω + f − 2u2f ′

0 −∂r m+ ω − f 0


, (2.28)

we have

A0Ψ1 =



(m− ω − f)v + (∂r + 1
r
)u

0

0

−∂rv − (m− f + ω)u


=



0

0

0

0


,

and it implies that Ψ1 is an eigenfunction associated with λ1 = 0. Similarly, on the subspace X−1

the restriction operator is written as

A−1 =



0 m− ω − f −∂r − 1
r

i
r

ω −m+ f + 2v2f ′ 0 − i
r

−2uvf ′ − ∂r − 1
r

2uvf ′ − ∂r − i
r

0 −m− ω + f − 2u2f ′

i
r

−∂r m+ ω − f 0


, (2.29)
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and it follows that

(A1 − 2ωi)Ψ2 =



−2ωu− (m− ω − f)u− (∂r + 1
r
)v + 1

r
v

−i(ω −m+ f + 2v2f ′)u+ 2ωiu− i
r
v − i(−2uvf ′ − ∂r − 1

r
)v

−i(2uvf ′ − ∂r)u+ i
r
u− 2ωiv − i(−m− ω + f − 2u2f ′)v

i
r
u+ ∂ru+ (m+ ω − f)v − 2ωv


e−iθ

=



−(m+ ω − f)u− v′

i(m+ ω − f)u+ iv′

i(u+ 1
r
u) + i(m− ω − f)v

(u+ 1
r
u) + (m− ω − f)v


e−iθ.

According to the system (2.7), we know that (A1 − 2ωi)Ψ2 = 0 and 2ωi is an eigenvalue with the

eigenfunction Ψ2.

2.5.2 Symmetry Properties for σp(A)

The point spectrum of A has some symmetry properties, which lead to computation conve-

nience for the Evans function technique.

Lemma 2.5.2. If λ ∈ σp(A), then λ̄, −λ and −λ̄ are all in σp(A).

Proof. Suppose that λ ∈ σp(Al), and consider the corresponding eigenfunction:

Ψ =



F1(r)

G1(r)

F2(r)

G2(r)


eilθ, (2.30)
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then we have (Al − λ)Ψ = 0, namely,



−λ m− ω − f −∂r − 1
r

i
r

ω −m+ f + 2v2f ′ −λ − i
r

−2uvf ′ − ∂r − 1
r

2uvf ′ − ∂r − i
r

−λ −m− ω + f − 2u2f ′

i
r

−∂r m+ ω − f −λ





F1(r)

G1(r)

F2(r)

G2(r)


= 0.

Since the only complex terms in the matrix above are λ and il
r
, the following relation:



−λ̄ m− ω − f −∂r − 1
r

− i
r

ω −m+ f + 2v2f ′ −λ̄ i
r

−2uvf ′ − ∂r − 1
r

2uvf ′ − ∂r i
r

−λ̄ −m− ω + f − 2u2f ′

− i
r

−∂r m+ ω − f −λ̄





F̄1(r)

Ḡ1(r)

F̄2(r)

Ḡ2(r)


= 0

still holds. The matrix above is just the operator (A−l − λ̄). It implies that λ̄ ∈ σp(A−l) with the

eigenfunction Ψ̄. We also have the following relation



λ m− ω − f −∂r − 1
r

− i
r

ω −m+ f + 2v2f ′ λ i
r

−2uvf ′ − ∂r − 1
r

2uvf ′ − ∂r i
r

λ −m− ω + f − 2u2f ′

− i
r

−∂r m+ ω − f λ





F1(r)

−G1(r)

−F2(r)

G2(r)


= 0,

and the matrix is the operator (A−l + λ). Thus, −λ ∈ σp(A−l) with the eigenfunction

Φ =



F1(r)

−G1(r)

−F2(r)

G2(r)


e−il.

It follows that −λ̄ is in σp(A).
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Remark 2.5.1. We know that 2ωi is also an eigenvalue for A with the eigenfunction Ψ̄2 according

to Lemma 2.5.1 and 2.5.2.

Remark 2.5.2. Lemma 2.5.2 implies that σp(A) is symmetric with respect the real and imaginary

axes. It follows that if λ ∈ σp(A) and Reλ 6= 0, then there must exist an eigenvalue with positive

real part and the corresponding solitary wave is linearly unstable. The presence of symmetry can

reduce the workload of numerical computation. As we apply the Evans function technique to locate

eigenvalues, we can concentrate on the first quadrant of the complex plane, together with the upper

half imaginary and the right half real axes, instead of considering the whole complex plane.

2.5.3 Essential Spectrum of A

It is crucial to study the essential spectrum of A since the eigenvalues with non-zero real parts

may arise from the threshold of σess(A) or eigenvalues embedded into σess(A).

Lemma 2.5.3. For the operator A, the essential spectrum is given by

σess(A) = iR \
(
− i(m− ω), i(m− ω)

)
. (2.31)

Proof. Since u, v, f(u2 − v2) and f ′(u2 − v2) all decay rapidly as r → +∞, we can consider the

essential spectrum of the limit of A as r → +∞

Ã =



0 m− ω −∂r 0

ω −m 0 0 −∂r

−∂r 0 0 −m− ω

0 −∂r m+ ω 0


, (2.32)

instead of A, by Weyl’s theorem (see [20]). We note that Ã only contains the term ∂r besides m

and ω, and thus use the Ansatz Ψ(r) = Y eiξr with Y ∈ C4. If (Ã − λ)Ψ = 0, then we have

(Ã − λ)Ψ =

B D

D C

Y eiξr = 0 (2.33)
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where

B =

 −λ m− ω

−m+ ω −λ

 , C =

 −λ −m− ω

m+ ω −λ

 , D =

−iξ 0

0 −iξ

 . (2.34)

The essential spectrum is the collection of values of λ which correspond to ξ ∈ R and the deter-

minant of the block matrix introduced in Equation (2.33) equals zero. Since matrices C and D

commute, we have

det

B D

D C

 = det(BC −D2)

= det

(λ2 +m2 − ω2 2ωλ

−2ωλ m2 − ω2 + λ2

−
−ξ2 0

0 −ξ2

)

= (m2 − ω2 + ξ2 + λ2) + 4ω2λ2 = 0.

It follows that

ξ = ±
√

(ω ± iλ)2 −m2. (2.35)

Therefore, we have λ ∈ iR \
(
− i(m− ω), i(m− ω)

)
to make ξ ∈ R.

Definition 2.5.1 (Threshold points). The values of λ such that ξ in Equation (2.35) vanishes are

called threshold points.

Obviously, there are four threshold points, ±i(m ± ω). We note that there is a gap (−i(m −

ω), i(m−ω)
)

between the essential spectrum ofA . The eigenvalues with non-zero real parts may

arise from the collision of purely imaginary eigenvalues in this gap.

Remark 2.5.3. By Lemma 2.5.1 and 2.5.3, we know that ±2ωi are eigenvalues embedded into the

essential spectrum of A for ω > m/3.
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2.5.4 Construction of the Evans Function

We construct the Evans function for each subspace Xl. Similarly to the 1D Soler model, the

Evans functions contain the solutions to (Al − λ)Φ = 0 with suitable initial values at r = 0 and

the Jost solutions to the same equation, which decay as r → +∞.

Let us first solve the equation near r = 0. For X0 we know that

A0 =



0 m− ω − f −∂r − 1
r

0

ω −m+ f + 2v2f ′ 0 0 −2uvf ′ − ∂r − 1
r

2uvf ′ − ∂r 0 0 −m− ω + f − 2u2f ′

0 −∂r m+ ω − f 0


,

which contains the term 1/r on the third and fourth columns. To avoid the singularity at r = 0, the

third and fourth elements in the initial values have to be zero and thus we have to choose the initial

values are

b1 =



1

0

0

0


and b2 =



0

1

0

0


,

Then we can obtain two solutions Φ1 and Φ2 with initial values Φ1|r=0 = b1 and Φ2|r=0 = b2.

Obviously, Φ1 and Φ2 are linearly independent as well.

For l 6= 0, recall that Al − λ is of the form



−λ m− ω − f −∂r − 1
r

il
r

ω −m+ f + 2v2f ′ −λ − il
r

−2uvf ′ − ∂r − 1
r

2uvf ′ − ∂r − il
r

−λ −m− ω + f − 2u2f ′

il
r

−∂r m+ ω − f −λ


.

In this case, it is more complicated to choose suitable initial values since each column contains the
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term il/r or 1/r. However, if p(r) = ra where a ∈ N, then p′(r) = ap(r)/r. Therefore, if the

solution behaves near the origin like a polynomial with suitable coefficients, the terms containing

singular factor 1/r can be eliminated. Suppose that the solution to (Al − λ)Φ = 0 is written as

Equation (2.24). We know that Fj , Gj , j = 1, 2 are all in C1 and the space of polynomials is

embedded densely into C1[0, 1]. Without loss of generality, for r < 1 we assume that

F1(r) = c1r
a + o(ra), G1(r) = k1r

a + o(ra),

F2(r) = c2r
b + o(rb), G2(r) = k2r

b + o(rb),

where a, b ∈ Z+ and cj , kj , j = 1, 2 are in C satisfying

|c1|+ |k1| > 0, |c2|+ |k2| > 0.

To find possible values of ci and ki, we consider the following cases.

Case 1: a = b. Consider the leading order of r (the leading order of r is the smallest exponential

since r ∈ (0, 1)) in the third and fourth rows inAl, which is going to be ra−1. Collecting the terms

at ra−1, we obtain  −ac1 + ilk1 = 0,

−ilc1 − ak1 = 0.
(2.36)

Since c1 and k1 cannot be equal to 0 simultaneously, the system above has a nontrivial solution and

thus a2 − l2 = 0. It follows that a = |l| and one solution is c1 = |l| and k1 = −il. For the first and

second rows, collecting the terms in the leading order of r (which is again ra−1 since a = b), we

have the system  −(b+ 1)c2 + ilk2 = 0,

−ilc2 − (b+ 1)k2 = 0.

Similarly, the relation (b+1)2− l2 = 0 is necessary for the existence of nontrivial solutions. Hence

we have b = |l| − 1. It follows that a 6= b, which contradicts the assumption a = b.
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Case 2: a < b. Consider the leading order of r in the third and forth rows in Al. Since the leading

order term is also ra−1, we have the same system as Equation (2.36) for c1 and k1. Thus, a = |l|

and one solution is c1 = |l| and k1 = −il. We consider the leading order of r in the first and second

rows in two different cases.

Case 2A: b = a + 1. In this case, the leading order term is ra (or rb−1), and we obtain the

system  −λc1 + (m− ω − f0)k1 − (b+ 1)c2 − ilk2 = 0,

(ω −m+ f0 + 2v2
0f
′
0)c1 − λk1 + ilc2 − (b+ 1)k2 = 0,

where

v0 = v(0), f0 = f(v2 − u2)|x=0, f ′0 = f ′(v2 − u2)|x=0.

Substituting c1 and k1 by |l| and il, the system has a unique solution for c2 and k2, which is a

combination of the two solutions in Case 3B.

Case 2B: b > a+ 1. The leading order term in the first and second rows is ra and we have the

following system  −λc1 + (m− ω − f0)k1 = 0,

(ω −m+ f0 + 2v(0)2f ′0)c1 − λk1 = 0.

There exists a nontrivial solution only if

λ2 − (m− ω − f0)(ω −m+ f0 + 2v(0)2f ′0) = 0.

However, c1 and k1 also satisfy the system (2.36) and it follows that 2v2
0f
′
0 = 0. We know that

v(0) > 0 and thus neither v0 nor f ′0 = f ′(v2(0)) is zero. The contradiction implies that there is no

nonzero solution ci and ki.

Case 3: a > b. The leading order term in the first and second rows is rb−1 and we obtain

 −(b+ 1)c2 − ilk2 = 0,

ilc2 − (b+ 1)k2 = 0.
(2.37)
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If the system has nontrivial solution, then (b + 1)2 − l2 = 0. It follows that b = |l| − 1 and one

solution is c2 = |l| and k2 = il. Similarly to Case 2, we solve for c1 and k1 in two distinct cases.

Case 3A: a = b + 1. For the third and fourth rows, with respect to the leading order term rb

we have  −|l|c1 + ilk1 − λc2 − (m+ ω − f0)k2 = 0,

−ilc1 − |l|k1 + (m+ ω − f0)c2 − λk2 = 0.

Substituting c2 and k2 by |l| and il), respectively,

 −|l|c1 + ilk1 − λ|l| − (m+ ω − f0)il = 0,

−ilc1 − |l|k1 + (m+ ω − f0)|l| − λil = 0.

The two equations in the system above are linearly dependent, and we can choose two linearly

independent solutions as:

d1 =



−λ− (m+ ω − f0) il
|l|

0

|l|

il


and d2 =



0

−iλ l
|l| +m+ ω − f0

|l|

il


. (2.38)

Case 3B: a > b+ 1. Collect the leading order rb of the third and forth rows in Xl and we get

 −λc2 − (m+ ω − f0)k2 = 0,

(m+ ω − f0)c2 − λk2 = 0.

The system has nontrivial solutions only if λ2 = −(m+ ω − f0)2. But c2 and k2 have to coincide

with the system (2.37). It follows that (m + ω − f0) is restricted to equal 1 and λ is ±i. Thus, we

ignore this case.
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According to all the cases above, for l 6= 0, we set

F1(r) = C1(r)ra, G1(r) = K1(r)ra, F2(r) = C2(r)rb, G2(r) = K2(r)rb,

where Cj , Kj , j = 1, 2 are in C1(R+,C) and a = b+ 1 = |l|. Since (Al − λ)Φ = 0, we have



−λC1r
a + (m− ω − f)K1r

a − C ′2rb − bC2r
b−1 − C2r

b−1 − ilK2r
b−1 = 0

(ω −m+ f + 2v2f ′)C1r
a − λK1r

a + ilC2r
b−1 − 2uvf ′K2r

b −K ′2rb − (b+ 1)K2r
b−1 = 0

2uvf ′C1r
a − C ′1ra − aC1r

a−1 + ilK1r
a−1 − λC2r

b + (−m− ω + f − 2u2f ′)K2r
b = 0

−ilC1r
a−1 −K ′1ra − aK1r

a−1 + (m+ ω − f)C2r
b − λK2r

b = 0

.

If we define V (r) = [C1(r), K1(r), C2(r), K2(r)]T , then we have the equation

∂rV = BV (2.39)

where B(r, ω, λ) is defined by



2uvf ′ − a
r

il
r

−λ
r

1
r
(−m− ω + f − 2u2f ′)

− il
r

−a
r

1
r
(m+ ω − f) −λ

r

−λr (m− ω − f)r −a
r

− il
r

(ω −m+ f + 2v2f ′)r −λr il
r

−2uvf ′ − a
r


.

There will be two solutions V1 and V2 to Equation (2.39) with the initial values V1(0) = d1 and

V2(0) = d2. Then we can two linearly independent solutions Φ1 = DV1e
il and Φ2 = DV2e

il where

D =



ra 0 0 0

0 ra 0 0

0 0 rb 0

0 0 0 rb


. (2.40)
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We define Jost solutions for each invariant subspace Xl as solutions to (Al − λ)Ψ(r, λ) = 0,

which have the same asymptotic behavior as solutions to (Ã − λ)J(r, λ) = 0 as r →∞, where Ã

is defined as Equation (2.32). If λ are not the threshold points, then the solutions are of the form

J(r, λ) = Y (λ)eiξ(λ)r and the corresponding characteristic equation is

det

B D

D C

 = (m2 − ω2 + ξ2 + λ2) + 4ω2λ2 = 0, (2.41)

where the block matrix is defined by Equation (2.33). We know that Equation (2.41) has four

solutions ξλ = ±
√

(ω ± iλ)2 −m2. By the symmetry of σp(A) (Lemma 2.5.2) we can only

consider the point spectrum in the closure of the first quadrant of the complex plane and thus we

take λ = a + bi with a ≥ 0 and b ≥ 0. We want to choose the solutions with positive imaginary

parts such that iξ(λ) has negative real part and eiξ(λ)r decays exponentially at r → +∞. Hence

define

ξ1 =
√

(ω + b− ia)2 −m, ξ2 =
√

(ω − b+ ia)2 −m (2.42)

and for the square root we choose the branch corresponding to positive imaginary part. For con-

venience, the complex plane is cut by (i(m− ω),+i∞) ∪ (−i(m + ω,−i∞)) for ξ1 and is cut by

(i(m+ ω),+i∞) ∪ (−i(m− ω,−i∞)) for ξ2. The corresponding solutions to(Ã − λ)J(r, λ) = 0

are written as

J1 =



−iξ1

ξ1

−λ+ i(m− ω)

−iλ−m+ ω


eiξ1r, J2 =



−iξ2

−ξ2

−λ− i(m− ω)

iλ−m+ ω


eiξ2r. (2.43)

We define the Evan functions for Xl by

El(λ) = det[Φl
1,Φ

l
2, J1, J2], (2.44)
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where Φl
1 and Φl

2 are the solutions to (Al − λ)Φ = 0 on Xl. The Wronskian-type function does

not depend on r and thus it can be evaluated at r � 1. Φl
1 and Φl

2 are linearly independent, and so

are J1 and J2. If there is a λ ∈ C such that El(λ) = 0, then at least one of Φl
1 and Φl

2 is linearly

dependent on either J1 or J2; in other words, there is at least one solution Φλ which is linearly

dependent with either Φl
1 or Φl

2 near r = 0 and has the same asymptotic behavior as J1 or J2 as

r → +∞, so Φλ ∈ L2. Then Φλ is an eigenfunction of Al and λ is the corresponding eigenvalue.

Remark 2.5.4. If λ is a threshold point, say λ = i(m − ω), then ξ1 = 0 and J1 = 0. Although

E(λ) = 0, we cannot conclude that λ is an eigenvalue. The Evans function can not be defined with

the aid of the factorization technique in this situation since there is a zero column in El(λ). It also

happens for λ = i(m+ ω).

2.5.5 Numerical Results

We need to find the zeros of El(λ). Since E(λ) is analytic with respect to λ on the complex

plane, we can use the argument principle to locate zeros.

Lemma 2.5.4 (Argument Principle). Let f(z) be an analytic function on an open set Ω ⊂ C and

D be a simple connected domain in Ω. If f never vanishes on ∂D (the boundary of D), then

1

2πi

∮
∂D

f ′(z)

f(z)
dz = number of zeros in D, (2.45)

where the zeros are counted with their multiplicities.

The proof can be found in standard references, for example, [49, Theorem 5.1.4].

By the definition, El(λ) can only have simple zeros or double zeros. Since the double zeros

may only be on the imaginary axis and the Evans function is analytic, we can plotEl(λ) along with

the upper half imaginary axis to locate the purely imaginary eigenvalue. To look for the eigenvalues

with nonzero real parts, we can place a small circle in the complex plane, which does not intersect

with the imaginary axis, and numerically compute the corresponding contour integral on the left

hand side of Equation (2.45). Since the value of the integral equals the number of zeros, it should
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be an integer. If the value is close to an integer greater than one, it implies that there is no root of

El in the circle; if the value is an integer greater than one, it implies that there are several zeros in

the circle. In this case, we need to shrink the circle until the value becomes close to one. Then we

know that there is only one zero in this circle. If the circle is very close to the imaginary axis, the

semicircle can be used instead. After we obtain a circle containing only one zero inside, we want

to know the exact location of the zero point. A generalized version of the argument principle can

be applied.

Lemma 2.5.5. Suppose that g and f are both analytic on a open set Ω ⊂ C, and D is a simple

connected domain in Ω. If f never vanishes on ∂D and only has simple zeros, then

1

2πi

∮
∂D

g(z)f ′(z)

f(z)
dz =

∑
z∈S

g(z), (2.46)

where S = {z ∈ D : f(z) = 0}.

Let g(z) = z. If the disc D contains only one zero, then

1

2πi

∮
∂D

zE ′l(z)

El(z)
dz = the eigenvalue of El in D. (2.47)

Since the unstable eigenvalue (with positive real part) can only be born from the collision of

discrete purely imaginary eigenvalues and the bifurcations from the origin or the threshold points

or from a purely imaginary eigenvalue between the thresholds i(m± ω) (see [50]), we can narrow

the domain for the numerical computation from the whole complex plane to a strip near the gap

(0, i(m + ω)). Thanks to the symmetry property of σp(A), we can shrink the strip further to the

shaded area in Figure 2.2.
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Figure 2.2: The strip between the blue lines interpret the domain to search for the eigenvalues. The
red lines stand for σess(A). The green stars stand for the threshold points.

According to Figure 2.3, all the eigenvalues of A0 are purely imaginary, which implies that if

the perturbation is in X0, then the solitary wave with ω ∈ (0, 1) is stable. We note the zero eigen-

values in Figure 2.3, whose existence has been verified in Lemma 2.5.1. This gives a justification

to the validity of our method.
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Figure 2.3: Dependence of the imaginary (red asterisks) and real (green circles) parts of the eigen-
values corresponding to A0 of ω for solitary waves in the 2D Soler model. Here we set m = 1 and
f(s) = s. The triangle above the blue line corresponds to the essential spectrum of A0.
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Figure 2.4: Dependence of the imaginary (red asterisks) and real (green circles) parts of the eigen-
values corresponding to A±1 of ω for solitary waves in the 2D Soler model. Here we set m = 1
and f(s) = s. The triangle above the blue line corresponds to the essential spectrum of A±1. The
eigenvalues embedded into the essential spectrum are ignored.

41



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Im
(

)

Imaginray Parts of Eigenvalues

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

R
e
(

)

Real Parts of Eigenvalues

Figure 2.5: Dependence of the imaginary (red asterisks) and real (green circles) parts of the eigen-
values corresponding to A±2 of ω for solitary waves in the 2D Soler model. Here we set m = 1
and f(s) = s. The triangle above the blue line corresponds to the essential spectrum of A±2.
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Figure 2.6: Dependence of the imaginary (red asterisks) and real (green circles) parts of the eigen-
values corresponding to A±3 with respect to ω of solitary waves in the 2D Soler model. Here we
set m = 1 and f(s) = s. The triangle above the blue line represents the essential spectrum of A±3.
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By the symmetry property (Lemma 2.5.2), the eigenvalues of A±l are plotted only in the first

quadrant in the complex plane. Figure 2.4 shows that both A1 and A−1 have no eigenvalue with

positive imaginary part and thus the solitary wave is stable if the perturbation is from X±1. We

can observe the straight line for the eigenvalues 2ωi which is shown in Lemma 2.5.1. This justify

the validity of the numerical method. In Figure 2.5 a bifurcation occurs around ω = 1.21. For

ω > 0.121 there are no eigenvalues with positive real parts for A−2 and A2, but for ω < 0.121

there are several eigenvalues with positive real parts. Hence the solitary wave with perturbation

from X±2 is no more spectrally stable when ω < 0.121. In Figure 2.6 a similar bifurcation occurs

around ω = 0.793. For ω > 0.793 there are no eigenvalues with positive real parts forA−3 andA3,

but for ω < 0.0793 there are several eigenvalues with positive real parts. It follows that the solitary

wave with perturbation from X±2 is not spectrally stable. For larger value |l|, the bifurcation

occurs at smaller values of ω.

2.6 Conclusion

We consider the spectral stability of the solitary wave φ(x)e−iωt in the 2D Soler model with

cubic nonlinearity. We decompose the perturbation space by the Fourier factorization and each

subspace is invariant for the linearized operator A. Then we apply the Evans function technique

to explore σp(A). The numerical simulation implies that the solitary waves with frequency ω >

0.121m are spectrally stable. However, the solitary waves with frequency ω < 0.121m are linearly

unstable. Although the “unstable" eigenvalues have positive real parts, the magnitudes are very

small and thus they are very close to the origin of the complex plane. We conclude that the unstable

eigenvalues are born from the collision of the discrete purely imaginary eigenvalues between the

thresholds ±i(m− ω) when ω < 0.121m.
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3. 3D SOLER MODEL∗

3.1 The Model

The 3D Soler model is written as

i∂tψ = Dmψ − f(ψ∗βψ)βψ, ψ(x, t) ∈ C4, x ∈ R3, t ≥ 0, (3.1)

where Dm = −iα1∂1− iα2∂2− iα3∂3 + βm, f(s) = sk, k ∈ N, and Dirac matrices are defined by

Equation (1.10). We can use the polar coordinates (r, θ, φ) defined by

x1 = r cosφ sin θ, x2 = r sinφ sin θ, x3 = r cos θ, (3.2)

and the corresponding Dirac operator is rewritten as

Dm = −i
∑
s=r,φ,θ

αs∂s + βm (3.3)

where

αs =

 0 σs

σs 0

 for s = r, φ, θ (3.4)

and

σr =

 cos θ e−iφ sin θ

eiφ sin θ − cos θ

 , σφ =
1

r sin θ

 0 −ie−iφ

ieiφ 0

 ,

σθ =
1

r

− sin θ e−iφ cos θ

eiφ cos θ sin θ

 .
∗Part of this chapter is reprinted with permission from “Stability of Solitary Waves and Vortices in a 2D Nonlinear

Dirac Model," J. Cuevas-Maraver, P. G. Kevrekidis, A. Saxena, A. Comech, and R. Lan, 2016. Physical Review
Letters, 116, 214101, Copyright [2016] American Physical Society.
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We consider the solitary wave defined by Equation (1.22). After substituting ψ(x, t) by the solitary

wave we obtain an ODE system (1.23), which only depends on the radial coordinate r. For ω ∈

(0,m) the existence of the profile functions u(r) and v(r) from C1 with exponential decay at

infinity have been proved. However, no explicit solutions have been presented. Similarly to 2D

Soler model, we can use the shooting method to obtain the numerical solutions. Since the system

is almost the same as Equation (2.7) except for the term 2
r
u(r), we can mimic the procedures as

in the 2D case for numerical computation. Figure 3.1 shows numerical solutions u(r) and v(r)

for different values of ω, which are smooth enough (say in C1) and decay to zero exponentially at

r → ∞. Also u(r) will be an odd function and v(r) will be an even differentiable function if r is

extended onto R.
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Figure 3.1: Numerical solutions u and v for different values of ω in the 3D Soler model. Here we
set m = 1 and f(s) = s.

3.2 Linearization

To study the spectral stability, we need to linearize Equation (3.1). For the solitary wave

ψ(x, t) = ϕ(r, θ, φ)e−iωt =


v(r)

1

0


iu(r)

 cos θ

eiφ sin θ




e−iωt,
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we consider a perturbed solution ψ(x, t) =
(
ϕ(r, θ, φ) +R(r, θ, φ, t)

)
e−iωt and linearize Equation

(3.1) at the perturbation R(r, θ, φ, t). We have

i∂tR = Dmρ− ωR− fβR− 2f ′Re(ϕ∗βR)βϕ, (3.5)

where f ′ and f are evaluated at ϕ∗βφ = v2(r)− u2(r). We define

L3R = Dmρ− ωR− fβR− 2f ′Re(ϕ∗βR)βϕ, (3.6)

L3 has the same property as the operator defined in Equation (2.9).

Lemma 3.2.1. Suppose that ϕ ∈ H2(R3,C4) and R is an eigenfunction of L3 associated with the

eigenvalue λ. Then R ∈ H2(R3,C4) as well.

The lemma can be proved in the same way of Lemma 2.2.1.

We want to employ the Evans function technique to investigate the point spectrum of L3. For

the 3D case, there are two angular variables and we cannot simply use the Fourier fraction with

respect to one angular variable to define the invariant space. Thus, we consider a simple case that

the perturbation R has the same structure as the solitary wave profile. In consideration of the term

Re(ϕ∗βR), we need to separate the real part and imaginary part of the perturbation. Therefore, we

consider the perturbation in the form

R(r, θ, φ, t) =



1

0

 (R1(r, t) + iS1(r, t))

i

 cos θ

eiφ sin θ

 (R2(r, t) + iS2(r, t))


, (3.7)

where R1,2 and S1,2 are real-valued functions. Compare with 2D case, R1,2 and S1,2 only depend
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on r and t, but not on angular variables. By substituting R by the form (3.7), we have

L3R =



1

0

F1

i

 cos θ

eiφ sin θ

F2


, (3.8)

where

F1 = R′2 + iS ′2 + (
2

r
+ 2f ′uv)R2 +

2

r
iS2 + (m− ω − f − 2f ′v2)R1 + (m− ω − f)iS1;

F2 = −R′1 − iS ′1 + 2f ′uvR1 − (m+ ω − f + 2f ′u2)R2 − (m+ ω − f)iS2.

Since i∂tR = L3R, by separating the real and imaginary parts we have

∂t



R1

S1

R2

S2


= A



R1

S1

R2

S2


, (3.9)

where

A =



0 m− ω − f 0 ∂r + 2
r

−(m− ω − f − 2f ′v2) 0 −∂r − 2
r
− 2f ′uv 0

0 −∂r 0 −m− ω + f

∂r − 2f ′uv 0 m+ ω − f + 2f ′u2 0


. (3.10)

Remark 3.2.1. The operator A introduced above is similar to A0 in the 2D case. This similarity

is due to the fact that we consider the perturbations which have the angular dependence similar to

that of the solitary wave; this allows one to reduce the linearized equation to the form where the

angular variables do not appear.
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3.3 Spectral Stability Analysis

3.3.1 Explicit Eigenvalue and Essential Spectrum of A

Since A is quite similar to A0 for the 2D Soler model, we can get some explicit eigenvalues

without using the Evans functions.

Lemma 3.3.1. The operator A has an eigenvalue λ = 0 with the eigenfunction

Φ =



0

v

0

u


, (3.11)

Proof. We know that

AΦ =



(m− ω − f)v + (u′ + 2
r
u)

0

v′ + (m+ ω − f)u

0


. (3.12)

Recall the relations in the system (1.23)


v′(r) = −(m− f + ω)u(r),

u′(r) + 2
r
u(r) = −(m− f − ω)v(r).

It implies that AΦ = 0 and thus λ = 0 is an eigenvalue with the eigenfunction Φ.

We are also interested in the essential spectrum of A.

Lemma 3.3.2. For the operator A for the 3D Soler model, the essential spectrum is given by

σess(A) = iR \
(
− i(m− ω), i(m− ω)

)
. (3.13)
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Proof. By Weyl’s theorem, we can consider the operator at r → +∞ instead. Due to the asymp-

totic behavior of u, v and f , we have

Ã = Ar→+∞ =



0 m− ω 0 ∂r

−m+ ω 0 −∂r 0

0 −∂r 0 −m− ω

∂r 0 m+ ω 0


, (3.14)

which is similar to Ã in 2D case and can be written as a block matrix. We just repeat the compu-

tation in the 2D case to obtain the essential spectrum.

Remark 3.3.1. The essential spectrum for 1D, 2D and 3D Soler model are the same. For the 3D

case, the threshold points are ±i(m± ω), which are the same as in 2D case.

3.3.2 Construction of the Evans Function

To reduce the workload of numerical computation, we investigate the symmetry properties of

the point spectrum of A.

Lemma 3.3.3. If λ is an eigenvalue of A, then both λ̄ and −λ are eigenvalues of A.

Proof. Suppose Φ is an eigenfunction corresponding to λ, namely, (A − λ)Φ = 0. Since A is

real, A− λ = A− λ̄ where Ā is the matrix by taking the complex conjugate for each element. It

follows that (A− λ̄)Φ̄ = 0 and thus λ̄ is also an eigenvalue with the eigenfunction Φ̄. Suppose that

Φ = [F1, F2, F3, F4]T . Then we have:

(A− λ)Φ = (A+ λ)



F1

−F2

F3

−F4


, (3.15)

which implies that−λ is also an eigenvalue ofA associated with the eigenfunction [F1,−F2, F3,−F4]T .
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This lemma shows that σp(A) is symmetric with respect to the real and imaginary axes, respec-

tively. Therefore it suffices to consider the closure of the first quadrant of the complex plane.

We know that

A− λ =



−λ m− ω − f 0 ∂r + 2
r

−(m− ω − f − 2f ′v2) −λ −∂r − 2
r
− 2f ′uv 0

0 −∂r −λ −m− ω + f

∂r − 2f ′uv 0 m+ ω − f + 2f ′u2 −λ


, (3.16)

and the term 2
r

appears in the third and fourth columns. Hence we can choose the vectors



1

0

0

0


and



0

1

0

0


as the initial values for the equation (A−λ)Φ = 0 and the corresponding solutions are denoted by

Φ1 and Φ2, respectively.

To construct the Jost solutions, we consider the solutions to (A− λ)Φ(r, λ) = 0 with the same

asymptotic behavior as the solutions to (Ã − λ)J(r, λ) = 0 at r → +∞. Similarly, if λ is not a

threshold point, we assume that the solution is of the form J(r, λ) = Y (λ)eiξ(λ)r. Then we obtain

the characteristic equation which is the same as Equation (2.41). Let λ = a + bi with a ≥ 0 and

b ≥ 0 due to the symmetry property of σp(A). We define ξ as in Equation (2.42) and choose the

branch with positive imaginary parts (the complex plane is cut in the same way as in 2D case).

Recall that

ξ1 =
√

(ω + b− ia)2 −m, ξ2 =
√

(ω − b+ ia)2 −m.
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Then the solutions to (Ã − λ)J(r, λ) are written as

J1 =



−iξ1

ξ1

−iλ−m+ ω

λ− i(m− ω)


eiξ1r and J2 =



−iξ2

−ξ2

iλ−m+ ω

λ+ i(m− ω)


eiξ2r. (3.17)

Now we can define the Evans function for A by

E(λ) = det[Φ1,Φ2, J1, J2], (3.18)

which will only depend on λ. The value of λ will be an eigenvalue of A if E(λ) equals zero.

3.3.3 Numerical Results

We apply the same numerical scheme as the 2D Soler model to plot the eigenvalues of A in

the 3D model. Since we only consider the perturbation in the same structure as the solitary wave

profile, it is analogous to the plot for A0 in 2D Soler model.
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Figure 3.2: Dependence of the imaginary (red asterisks) and real (green circles) parts of the eigen-
values corresponding to A with respect to ω of solitary waves in the 3D Soler model. Here we set
m = 1 and f(s) = s. The triangle above the blue line represents the essential spectrum of A.
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Contrary to 1D case and the invariant subspace X0 in 2D case (Figure 2.3), there are eigenval-

ues with positive real parts for ω > 0.936. Hence the solitary waves corresponding to these values

of ω are linearly unstable.

3.4 Conclusion

We study the spectral stability for the 3D Soler model with cubic nonlinearity at a solitary wave

φ(x)e−iωt. We choose the perturbations which have the angular dependence similar to that of the

solitary wave, and employ the Evans function technique to locate the eigenvalues of the linearized

operator A. The numerical simulation demonstrates that there is an eigenvalue with positive real

part for ω > 0.936m and thus the corresponding solitary waves are linearly unstable. This result is

in agreement with the linear instability of weakly relativistic solitary waves with ω . m in the 3D

Soler model with cubic nonlinearity proved in [51]. We note that for ω ∈ (0.936m,m) the unstable

eigenvalue (with positive real part) is purely real and when ω = 0.936m this unstable eigenvalue

collides with its opposite at λ = 0. For ω < 0.936m (after the collision), this pair of eigenvalues

move to the imaginary axis.

The collision of eigenvalues at ω = 0.936 follows from the Vakhitov–Kolokolov condition

dQ(ω)/dω = 0 from [22, 52] which also plays the role for the nonlinear Dirac equation [53]:

indeed, by [11], the charge of the solitary waves in 3D cubic Soler model has a minimum at

ω ≈ 0.936m. What has not been known, it is whether the positive eigenvalue disappears for

ω . 0.936m or whether the second positive eigenvalue is born; see [53]. Our numerical work

completely resolved this question, showing that when ω ≈ 0.936m, the positive eigenvalue collides

with its opposite, and for ω . 0.936m two purely imaginary eigenvalues are born, hence the

spectral stability is expected.

3.4.1 Future work

Since we only consider a special case of the perturbation, we have no definite results for the

frequency ω < 0.936m. For the restriction operator Al with l > 2, there are eigenvalues with

positive real parts when ω is small. We expect the similar results on the 3D Soler model. In the
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future, the invariant spaces for general perturbations should be addressed. The spherical harmonic

may play an important role for defining the invariant subspaces.
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4. COULOMB-TYPE MODEL

4.1 The Model

We consider the nonlinear Dirac equation

i∂tψ = Dmψ − V ψ, ψ(x, t) ∈ C2, x ∈ R, t ≥ 0 (4.1)

where Dm = −iα∂x + βm is same as Equation (1.12), namely,

α = −σ2 =

 0 i

−i 0

 , β = σ3 =

1 0

0 −1

 , (4.2)

and V is defined by V = |ψ|2. We assume that Equation (4.1) has a solitary wave solution ψ =

ϕω(x)e−iωt, ω ∈ (0,m), with the profile function

ϕω(x) =

v(x)

u(x)

 . (4.3)

Here u and v are both real-valued and from H1(R). Moreover, u will be an odd function and v will

be an even function. After substituting ψ by the solitary wave, we can obtain an ODE system


ωv = u′ +mv − (u2 + v2)v,

ωu = −v′ −mu− (u2 + v2)u,

(4.4)

which only depends on the spatial variable x, not the time variable t. We intend to explore the

spectral stability of the solitary waves at the nonrelativistic limit ω . m. We need to show the

existence of the solitary wave solutions first.
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4.2 The Existence of the Solitary Wave Solutions

Lemma 4.2.1. For 0 < ω < m, the system (4.4) has solutions u(x), v(x) ∈ H1(R). Moreover,

u(x) and v(x) are odd and even, respectively, and both have exponential decay at infinity.

We will use Theorem 5 in [24] to prove the lemma. The following is the statement of the

theorem.

Theorem 4.2.1 (Theorem 5 in [24]). Let f ∈ C(R,R) be a locally Lipschitz continuous function

with f(0) = 0. Let F (z) =
∫ z

0
f(s) dx. The necessary and sufficient condition for the existence of

a solution u of the problem

− u′′ = f(u), u ∈ C2(R), lim
x→±∞

u = 0, (4.5)

and u(x0) > 0 for some x0 ∈ R is that ζ0 = inf{ζ > 0;F (ζ) = 0} exists and f(ζ0) > 0.

Furthermore, there is a unique solution up to translations of the origin, and this solution satisfies

(after a suitable translation of the origin):

i. u(x) = u(−x), x ∈ R (“u is radial"),

ii. u(x) > 0, x ∈ R,

iii. u(0) = ζ0,

iv. u′(x) < 0, x > 0.

v. If there exists δ > 0 such that lims→0
f(s)
s
≤ −δ then u, u′ and u′′ have exponential decay at

infinity.

Before a rigorous poof, let us show the lemma instinctively and roughly. We assume that

|v| � |u| and neglect the term (u2 + v2)u in the second equation of the system (4.4). We obtain

that v′ = −(ω +m)u and thus

− v′′ = −(m2 − ω2)v + (m+ ω)v3. (4.6)

58



By Theorem 4.2.1, we can show that Equation (4.6) has a unique solution with the initial value

v(0) =
√

2(m− ω).

By applying the shooting method, we obtain the numerical solutions for the profile functions u

and v, which are plotted in Figure 4.1. Now we present the proof of Lemma 4.2.1.

Proof. We show the existence by analyzing the Hamiltonian system corresponding to (4.4), with

x playing the role of time,


u′ = ωv −mv + (u2 + v2)v = ∂vh(v, u),

−v′ = ωu+mu+ (u2 + v2)u = ∂uh(v, u),

(4.7)

where

h(v, u) =
1

2
ω(v2 + u2) +

1

4
(v2 + u2)2 − 1

2
m(v2 − u2). (4.8)

The pair (v, u) in the solitary wave corresponds the trajectory of the Hamiltonian system such that

lim
x→±∞

v(x) = lim
x→±∞

u(x) = 0.

and hence limx→±∞ h(v, u) = 0. Since h(v, u) is implicitly x-dependent, h(v, u) is a constant and

thus h(v, u) ≡ 0. It implies that

v2 − u2 =
ω

m
(v2 + u2) +

1

2m
(v2 + u2)2. (4.9)

We introduce auxiliary functions

X(x) = u2(x) + v2(x), Y (x) = u(x)v(x). (4.10)
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Figure 4.1: Numerical solutions u and v to the system (4.4) for the frequency ω close to m = 1.

By Equations (4.7), (4.9) and (4.10) we have that
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X ′(x) = 2uu′ + 2vv′

= 2u(ωv −mv + (u2 + v2)v)− 2v(ωu+mu+ (u2 + v2)u)

= −4muv,

and

Y ′(x) = u′v + uv′

= v(ωv −mv + (u2 + v2)v)− u(ωu+mu+ (u2 + v2)u)

= ω(v2 − u2)−m(v2 + u2) + (u2 + v2)(v2 − u2)

=
ω2

m
(v2 + u2) +

ω

2m
(v2 + u2)2 −m(v2 + u2) +

ω

m
(v2 + u2)2 +

1

2m
(v2 + u2)3

= (
ω2

m
−m)(u2 + v2) +

3ω

2m
(u2 + v2)2 +

1

2m
(u2 + v2)3.

Consequently, we obtain the system


X ′ = −4mY,

Y ′ = (
ω2

m
−m)X +

3ω

2m
X2 +

1

2m
X3,

(4.11)

and it can be rewritten as a second order equation with respect to X:

−X ′′ = 4(ω2 −m2)X + 6ωX2 + 2X3. (4.12)

Let f(X) = 4(ω2 −m2)X + 6ωX2 + 2X3. Then we have f(0) = 0 and

F (z) =

∫ z

0

f(X)dX =
1

2
z4 + 2ωz3 + 2(ω2 −m2)z2. (4.13)
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It follows that ζ0 = inf{ζ > 0;F (ζ) = 0} = 2(m− ω) and

f(ζ0) = 4(ω2 −m2)ζ0 + 6ωζ2
0 + 2ζ3

0 = 8m(ω −m)(ω − 2m+ 1).

If we take m = 1, then f(ζ0) > 0 for all ω ∈ (0,m). By Theorem 4.2.1, we know that there

is a unique solution X ∈ C2 which is positive and even, and X ′(r) is negative for r > 0. Since

X ′ = 4mY , we know that Y ∈ C1 is odd and Y (r) > 0 for r > 0. Moreover, we have the initial

values X(0) = 2(m− ω) and Y (0) = 0. Since

lim
s→0

f(s)

s
= 4(ω2 −m2) < 0, (4.14)

X and Y both have exponential decay at infinity. By relations in Equation (4.10) and the restriction

that u is odd and v is even, we can obtained u, v ∈ C1 uniquely with the initial values u(0) = 0 and

v(0) =
√

2(m− ω). Since u and v also exponentially decay at infinity, u and v are in H1.

Remark 4.2.1. The initial value v(0) =
√

2(m− ω) coincides with the “rough proof”.

4.3 Linearization

We consider the solitary wave solutions with a perturbation ρ in the form of ψ = (ϕ(x) +

ρ(x, t))e−iωt and linearize Equation (4.1) on ρ. The linearized equation is written as

i∂tρ = Dmρ− ωρ− |ϕ|2ρ− 2Re (ϕ∗ρ)ϕ (4.15)

and we define the operator by

L = Dm − ω − |ϕ|2 − 2Re (ϕ∗·)ϕ. (4.16)
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Due to the last term in (4.15), L is R-linear, but not C-linear. To obtain a C-linear operator, we

separate the real and imaginary parts of ϕ and ρ, and write them as

ϕ =

Re ϕ

Im ϕ

 ∈ R4, ρ =

Re ρ

Im ρ

 ∈ R4.

We also rewrite the related matrices as the following:

α =

Re α −Im α

Im α Re α

 , β =

Re β −Im β

Im β Re β

 , J =

 0 I2

−I2 0

 , (4.17)

where α and β are defined in Equation (4.2), and Ik is the k × k identity matrix. We note that

J2 = −I4, Jα = αJ , Jβ = βJ . (4.18)

Remark 4.3.1. In the matrix form, J plays the role as −i in the original equation.

The term containing ϕ in Equation (4.16) can be rewritten as

V ρ = −ϕ∗ϕρ− 2(ϕ∗ρ)ϕ,

and V is Hermitian in the explicit form:

V =



−u2 − 3v2 −2uv 0 0

−2uv −3u2 − v2 0 0

0 0 −u2 − v2 0

0 0 0 −u2 − v2


. (4.19)

Then the C-linear operator corresponding to (4.16) is

L = Jα∂x +mβ − ω + V (4.20)
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and (4.15) is written as

− J∂tρ = Lρ or ∂tρ = JLρ. (4.21)

4.4 Spectral Stability Analysis

4.4.1 Essential Spectrum and Symmetry Properties

By Weyl’s theorem, JL has the same essential spectrum as the linearized operator in 1D Soler

model and thus σess(JL) = iR \
(
− i(m − ω), i(m − ω)

)
. The threshold points for JL are

±i(m± ω). The operator JL has the following symmetry properties.

Lemma 4.4.1. The point spectrum σp(JL) is symmetric with respect to the real and imaginary

axes.

Proof. We note that JL are real-valued. Suppose that λ ∈ σp(JL) with the eigenfunction ψ.

Then JLψ = λψ = λ̄ψ̄. However, JLψ = JLψ̄. It follows that λ̄ is also an eigenvalue of JL

and σp(JL) is symmetric with respect to the real axis. Define

K =

I2 0

0 −I2

 .

It is simple to check that LK = KL and JK = −KJ . We have

JLKψ = JKLψ = −KJLψ = Kλψ = −λKψ

and thus −λ is an eigenvalue of JL. So σp(JL) is symmetric with respect to the origin in C. It

follows that σp(JL) is also symmetric with respect to the imaginary axis.

4.4.2 Eigenvalues near 2ωi in the Nonrelativistic Limit

Since the toy Coulomb model is not SU(1, 1) symmetric, it may no longer have the eigenvalue

2ωi. We want to investigate if there exists an eigenvalue corresponding to 2ωi of the Soler model,

especially in the nonrelativistic limit, namely, ω . m.
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We compare the linearized operator of the toy Coulomb model to that of the Soler model. To

avoid ambiguity, the linearized operators for the Soler and the toy Coulomb models are denoted by

Ls = Jα∂x +mβ − ω + Vs, (4.22)

Lc = Jα∂x +mβ − ω + Vc, (4.23)

respectively, with the Hermitian matrices

Vs =



−u2
s − 3v2

s 2usvs 0 0

2usvs v2
s − 3u2

s 0 0

0 0 −v2
s + u2

s 0

0 0 0 v2
s − u2

s


(4.24)

and

Vc =



−u2
c − 3v2

c −2ucvC 0 0

−2ucvc −3u2
c − v2

c 0 0

0 0 −u2
c − v2

c 0

0 0 0 −u2
c − v2

c


, (4.25)

where vs and us stand for the profile functions of the solitary wave solutions of the Soler model,

and vc and uc correspond to toy Coulomb model. Both vs and vc have the same initial values, more

precisely, vs(0) = vc(0) =
√

2(m− ω). Numerically, it turns out that vc(x) ≥ vs(x) for any

x ∈ R (see Figure 4.2). According to matrices (4.24) and (4.25), the difference between Ls and

Lc is



3(v2
c − v2

s) + (u2
s + u2

c) 2(ucvc + usvs) 0 0

2(vcuc + vsus) (v2
s + v2

c ) + 3(u2
c − u2

s) 0 0

0 0 (v2
c − v2

s) + (u2
s + u2

c) 0

0 0 0 (v2
x + v2

c ) + (u2
c − u2

s)


.

65



-25 -20 -15 -10 -5 0 5 10 15 20 25

x

-2

0

2

4

6

8

10

12

14

16
10

-4 =0.98

v
c
-v

s

u
c
-u

s

-25 -20 -15 -10 -5 0 5 10 15 20 25

x

-1

0

1

2

3

4

5

6
10

-4 =0.99

v
c
-v

s

u
c
-u

s

Figure 4.2: Differences of the profile functions between the Soler model and Coulomb model for
the frequency ω close to m = 1.

Since the even profile functions (vs and vc) are much greater than the odd profile functions (us
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and uc), the dominant term in the matrix above is v2
s + v2

c . We know that v2
s , v

2
c ≤ 2(m − ω).

Obviously, the difference will go to zero as ω → m. If we consider Lc as a perturbed operator of

Ls, then we expect to find the perturbed eigenvalues (if they survive) in a small neighborhood of

2ωi taking into account the size of the perturbation Vs − Vc.

We mimic the process of the 1D Soler model [19] to construct the Evans functions for the toy

Coulomb model. Suppose that λ is an eigenvalue of JLc and the corresponding eigenfunction is

R ∈ R4 such that λR = JLcR. The “even" and “odd" subspaces defined in Section 2.3.3 are

also invariant under the action of JLc. We use these two subspaces X� and X• to decompose

L2(R,C4). By Weyl’s theorem, we know that Ls and Lc have the same Jost solutions, namely the

solutions to λJ = (−α+mJβ − ωJ)J . They can be written explicitly as

J1 =



−ξ1

iλ−m+ ω

ξ1

λ− i(m− ω)


e−iωξ1 , J2 =



ξ2

iλ−m+ ω

−ξ2

λ+ i(m− ω)


e−iωξ2 ,

where

ξ1 =
√

(ω − iλ)2 −m, ξ2 =
√

(ω + iλ)2 −m, (4.26)

with negative imaginary parts. We define the Evans functions by

EX�(λ) = det (R1, R3, J1, J2) , (4.27)

EX•(λ) = det (R2, R4, J1, J2) , (4.28)

onX� andX•, respectively, whereRj(x), 1 ≤ j ≤ 4, are the solutions to the equation λR = JLcR
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with the following initial data at x = 0:

R1|x=0 =



1

0

0

0


, R2|x=0 =



0

1

0

0


, R3|x=0 =



0

0

1

0


, R4|x=0 =



0

0

0

1


.
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Figure 4.3: The eigenvalues are searched in the region bounded by the blue dash lines for the
frequency ω ∈ (0, 975m, 0.99m). The red interval represents the values 2ωi corresponding to
ω ∈ (0, 975m, 0.99m).

By the numerical computation, there are no eigenvalues for ω ∈ (0, 975m, 0.99m) in the re-
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gion bounded by the blue dash lines in the Figure 4.3. In this case, the roots of the Evans functions

no longer correspond to the eigenvalues. We will show that the root of the Evans function corre-

sponding to the eigenvalue 2ωi in the Soler model is now located on the non-physical Riemann

sheet corresponding to the Jost solutions with the exponential growth at infinity, so that the toy

Coulomb model remains spectrally stable. We define the Evans function on this Riemann sheet by

ẼX�(λ) = det
(
R1, R3, J̃1, J̃2

)
, (4.29)

ẼX•(λ) = det
(
R2, R4, J̃1, J̃2

)
, (4.30)

where

J̃1 =



−ξ1

iλ−m+ ω

ξ1

λ− i(m− ω)


eiωξ1 , J̃2 =



ξ2

iλ−m+ ω

−ξ2

λ+ i(m− ω)


eiωξ2 ,

and ξ1,2 and Ri, i = 1, 2, 3, 4 are same defined as before. Then the roots of Ẽ are resonances,

which are corresponding to the Jost solutions with the exponential growth at infinity.

According to Figure 4.4, there are two resonances in the first quadrant (containing the upper

half imaginary axis) for ω ∈ (0.978m, 0.99m). One is in the interval (i(m + ω), i∞), in fact

just above (m + ω)i, which must be corresponding to the resonance near the threshold i(m + ω)

in the 1D Soler model (see [19]). The other one has nonzero real and imaginary parts, which is

not present on the Riemann sheet corresponding to the Jost solutions with the exponential growth

at infinity for the 1D Soler model. Thus, the resonance corresponds to the deformation of the

eigenvalue 2ωi from the 1D Soler model.
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in the toy Coulomb model. The pink dash line and blue dash line stand for the threshold (m+ ω)i
and the value 2ωi, respectively.
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4.5 Conclusion

We consider a 1D toy model which is analogous to NLD with Coulomb-type self-interaction.

We show that there exist solitary wave solutions for the frequency ω ∈ (0,m). Due to the absence

of the SU(1, 1) symmetry, the linearized operator JLc does not have the eigenvalue 2ωi. We

compare this linearized operator to the one from the 1D Soler model. Since the difference is quite

small in the nonrelativistic limit, we anticipate that eigenvalues (if exist) will be close to 2ωi. The

numerics demonstrate that there are no eigenvalues in the region of 2ωi. We know that 1D Soler

model is spectrally stable. The nonexistence of eigenvalues near 2ωi in the nonrelativistic limit

implies that the spectral stability persists in the toy Coulomb model in spite of the absence of the

SU(1, 1) symmetry.

The reason for the absence of an eigenvalue near 2ωi is that the corresponding root of the Evans

function no longer corresponds to an eigenvalue. According to the numerics, it is now located on

the non-physical Riemann sheet corresponding to the Jost solutions with the exponential growth at

infinity; in other words, this root of the Evans function now corresponds to a resonance.
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5. SUMMARY

In Chapter 2, we study the 2D Soler model by using the Evans function technique. We show that

the solitary wave solutions to the model are spectrally stable when the frequency ω ∈ (0.121m,m),

and are linearly unstable when the frequency ω ∈ (0, 0.121m).

In Chapter 3, we study the 3D Soler model via the similar approach to that for the 2D Soler

model. However, only the perturbation with the same angular dependence as that of the solitary

waves is considered due to the complexity of the 3D model. We show that the solitary waves are

linearly unstable when ω ∈ (0.936m,m), and that the positive eigenvalue λ, the one responsible for

the linear instability, collides at the origin with −λ when ω = 0.936m and for ω < 0.936m these

eigenvalues move onto the imaginary axis, no longer causing the instability. For ω ∈ (0, 0.936m),

we expect to obtain a definite result in the future.

In Chapter 4, we consider a toy Coulomb type model. We show that in the nonrelativistic limit

it does not have the eigenvalue 2ωi and has no eigenvalue near 2ωi, either. Therefore, the spectral

stability persists in spite of the absence of the SU(1, 1) symmetry. The reason for the absence of

eigenvalues near 2ωi is that the corresponding root of the Evans function becomes a resonance.
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