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ABSTRACT

Drivers and other road users often encounter situations where priority is unclear or ambiguous,

but must be resolved, for example, after arriving at an intersection nearly simultaneously. The par-

ticipants in such scenarios reach agreement by communicating; while instinctive to humans, this is

a significant challenge for autonomous vehicles. Currently, the nature of interaction for resolving

ambiguous road situations between pedestrians and autonomous vehicles remains mostly in the

realm of speculation, for which no direct means for expressing intent and acknowledgment has

yet been established. This thesis approaches the challenge by contributing a model and approach

for planning that can produce actions that are expressive and encode certain aspects of intent; the

result is communicative in that vehicle-pedestrian coordination arises via a negotiation of intent in

a prototypical unsignalized intersection crossing scenario. We deliberately construct a prototypical

crossing setting with a vehicle and one pedestrian at an unsignalized intersection such that there

is substantial ambiguity in crossing order. A decision-theoretic model is then used for capturing

this scenario along with its ambiguity as uncertainty arising from non-determinism and partial ob-

servability. We solve the problem by first proposing a Markov decision process to express the

interaction at the intersection. Next, we focus on the partial-observability and include it in the

model to generate a sequence of vehicle actions by solving via a state-of-the-art online solver. We

implement the approach on a self-driving Ford Lincoln MKZ platform and examine an experimen-

tal setting involving real-time interaction. The experiment shows that the method achieves safe

and efficient navigation. We analyze the resulting policy in detail in simulation and examine the

coupled behavior of the vehicle and pedestrian, interpreting evidence for implicit communication

that emerges as the two resolve ambiguity to achieve safe and efficient navigation.
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1. INTRODUCTION

With human drivers having been behind the wheel from the beginning of the early 20th cen-

tury, the foundations of the social protocol that road users employ to mitigate contention is long-

established. As applied control and systems engineering brings autonomous vehicles closer to

day-to-day reality, the places where drivers once sat are starting to be seen empty. This replace-

ment of human drivers may cost a price if we do not prudently supplant drivers who resolve social

conundrums on the road.

Examples of current-generation autonomous vehicles lacking social competence are noticed

from recent field studies [2, 3]. On the road, humans resolve ambiguities in traffic via social inter-

action, including in expressing intent. Common examples involve acknowledging or asserting the

right of way, or communicating the intention to yield. In some cases, this protocol can even be so

effective as to be almost entirely transparent. Pedestrians use minor signals and gaze to interact

with car drivers [4]. Drivers demonstrate implicit communication actions, such as traveling at high

speed as a signal to communicate their intention of not giving way to pedestrians at crossings [5].

The development of autonomous vehicles forces a careful reexamination of informal social proto-

col and communicative interactions. Several aspects that might previously have been understood

merely as tacit parts of natural navigation need to be formulated precisely.

One place where informal protocols are particularly important, and in which autonomous ve-

hicles must be competent participants, is when pedestrians wish to cross the road on which the

vehicle is traveling. It is known that communicative interaction strengthens a pedestrian’s confi-

dence regarding when it is safe to cross a road [6]. As autonomous vehicles are starting to appear

on the road, survey studies were carried out to gather pedestrian’s experiences of encountering

autonomous vehicles at crossings—some people expressed a great deal of concern when no hu-

man driver is seen [7]. In this work, we examine pedestrian and vehicle interaction by focusing

on a scenario with an unsignalized intersection, as this is a representative circumstance in which

communication is crucial. We will, later on, specifically explore some of the means to treat factors

1



that cannot be sensed directly, such as crossing intention, but which is vital in reasoning about

pedestrians’ crossing.

We present a decision-theoretic model that expresses the interaction between a pedestrian and

a vehicle. We aim to explore the possibility of mimicking human-controlled driving based on

rewards that describe utilities of particular circumstances. Built on the results of our exploration,

we then treat the ambiguity in crossing scenarios by considering aspects of pedestrian behaviour

that are not directly observable as a form of uncertainty to be modelled. A plan that reasons over

and manipulates this uncertainty is constructed. As we discuss in some detail, when the vehicle

executes this plan, the result possesses some hallmarks of social competence, at least as applies

to the small-scale scenario studied. Constructing plans that manage uncertainty, via information-

gathering actions, or hedging outcomes to manage risk, does incur substantial computational costs,

but recent improvements in both algorithms and hardware suggest this to be a promising direction.

We focus on approaches that are directly practicable. Our emphasis is on understanding min-

imal modifications to standard operating assumptions; thus, we use elements already common-

place, such as speeding up, slowing down and flashing headlights. This is appropriate in cases

where pedestrians cannot determine whether the approaching vehicle is autonomous or not. More

importantly, it gives us the opportunity to preserve social aspects so that existing understanding

of pedestrians, including the role of implicit coordination and indirect signals, remains applicable

without further presumptions.

1.1 Thesis Outline

In Chapter 2, we examine early studies on pedestrian crossing, which serve as background

knowledge for designing our approach in this paper. In Chapter 3, we discuss work on commu-

nicative autonomous vehicles, including more recent studies of cooperative pedestrian interaction

with autonomous vehicles. The chapter thereafter describes our problem in detail, which is then

treated by models proposed in Chapter 5 and 7. Implementation and experiment design are also

documented in both chapters, and we analyze the vehicle’s behaviour individually in Chapter 6

and 8. Finally, Chapter 9 concludes the work with a highlight of our contributions.
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2. BACKGROUND

We review the basic definitions and known influential factors of a pedestrian’s crossing be-

haviour, followed by reviewing prior pedestrian and driver interaction studies as our foundation

for later; ideally, precise formulating the crossing interaction model.

2.1 Pedestrian Behaviour at Crossings

Early studies of pedestrians crossing roads observed that pedestrians are primarily concerned

with time-gaps [8]. According to the Highway Capacity Manual [9], a critical gap is defined to

be below which a pedestrian will not attempt to begin crossing the street. Studies [8, 10] have

identified that each person has their own critical gap, but which changes according to an oncoming

vehicle’s speed, and they will not cross if the vehicle is nearer than this threshold. Approximately

92% of pedestrians cross a 7.0m wide road when a vehicle is 7 s away, while 0% cross when the

time difference is less than 1.5 s.

These primary studies were followed by research thoroughly evaluating factors that may influ-

ence peoples’ critical gap. Brewer et al. [11] categorized pedestrian crossing maneuvers based on

different traffic flow conditions and road geometry: 1) single stage crossing is when pedestrians

cross the road in one crossing maneuver; 2) two-stage is when pedestrians cross up to the median

first and then cross the far side subsequently; 3) rolling is when pedestrians search for gaps between

a continuous flow of vehicles by adjusting the speed and direction of their movement. Harrell [12]

analyzed crossing with variables for multiple parameters, including traffic volume, temperature,

the width of the roadway, etc. He concluded that traffic volumes were found to obtain an inverse

relationship with cautiousness. The model presented below includes a factor to represent a notion

of caution.

Besides road conditions, it has been observed that personal characteristics pertaining to the spe-

cific pedestrian influence their critical gap. Studies have shown that gender affects the pedestrian’s

behaviour, most results indicating that males tend to take risky actions, whereas females often
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cross with greater caution [13,14]. Age is another influence on pedestrian behaviour that has been

studied. Oxley et al. [15] suggest that age-related perceptual and cognitive deficits affect one’s

crossing behaviour. Moreover, the complexity of the traffic has a larger effect on the behaviour of

older pedestrians. For example, on two-way undivided roads, elderly people are frequently found

crossing even when the traffic is already closing up [16].

2.2 Driver Behaviour at Crossings

Reciprocally, driver behaviour at crossings is also influenced by multiple aspects. These as-

pects include the group size of the crossing pedestrians, the distance of the pedestrian(s) to the

crosswalk, and the size of the city [17]. Additionally, the current velocity of the vehicle affects the

driver’s decisions when approaching a crosswalk. If the vehicle is moving at high speed, drivers

break significantly earlier [1]. An explanation is offered by the fact that drivers decelerate at a rate

not exceeding 3.048m/s2 for reasons of comfort [18]. The layout of the environment is another

aspect that affects driver behaviour. At mid-road crosswalks with a curb extension, the vehicle

has an average deceleration of −1.92m/s2. This is greater than an average deceleration rate of

−2.39m/s2 occurring at mid-road crosswalks with advanced yield marks, but without curb exten-

sions [19].

2.3 Markov Decision Processes

Formally, a Markov Decision Process (MDP) model [20] is defined by a tuple (S,A, T,R, γ),

where S andA denote the model’s state space and action space respectively. The transition function

T is a conditional probability function T (s, a, s′) = p(s′|s, a) yielding the probability of transi-

tioning from current state s ∈ S to the next state s′ ∈ S when taking action a ∈ A. The process is

decision-theoretic, being based on the rewards R, which describe the utility of particular circum-

stances, and which direct a maximizing agent to choose desirable actions. Immediate rewards are

specified for each action taken in each state. The solution for an MDP, called a policy, π : S → A

prescribes an action a ∈ A for each state s ∈ S. More specifically, at each time step, an agent in

state s performing action a will receive reward R(s, a). The goal is to choose a policy that will
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maximize the agent’s accumulated reward. We calculate the maximum accumulated reward with

a discounted sum over a potentially infinite horizon
∑∞

t=0 γ
tRat(st, st+1), where γ ∈ (0, 1) is a

discount factor that models a preference for immediate rewards over future ones.

2.4 Partially Observable Markov Decision Process

Different from a Markov decision process, the state cannot be directly observed by the agent.

The agent operates in a partially observable stochastic environment. Partially observable Markov

decision process (POMDP) is formally expressed as a tuple (S,A, Z, T,O,R), where S is a set of

states, A is a set of agent actions, and Z is a set of observations. When the agent takes an action

a ∈ A, it moves to a new state s′ ∈ S with probability T (s, a, s′) = p(s′|s, a) and receives an

observation z ∈ Z with probability O(s′, a, z) = p(z|s′, a). Therefore, without knowing the true

state, the agent can maintain a belief, represented as a probability distribution, over the state based

on the received observations. We solve a POMDP to obtain a policy π that maps from the belief

space to the action space. In this work, we are interested in using an online POMDP planner, which

uses forward search, from the current history or belief state, to form a local approximation to the

optimal value function.
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3. LITERATURE REVIEW

There is a rich literature in collision avoidance systems designed for autonomous robots oper-

ating in socially compliant settings [21], which robots are challenged to navigate around and avoid

dynamic obstacles, human in particular, at shopping malls, airports and offices, where crowds of

human exits. Among these studies, autonomous vehicles that operate on the road with pedestri-

ans as interaction participants are less commonly found and are recently started to be appreciated.

Therefore, we like to acknowledge the studies conducted on socially compliant robots collision

avoidance systems in a different setting and then examine autonomous vehicles that are working

towards being socially aware.

3.1 Autonomous Robots Navigating in Social Settings

Collision avoidance systems designed for autonomous vehicles operating in socially compli-

ant settings can be categorized roughly into model-based and learning-based approaches. Our

approach in this thesis falls into the scope of model-based methods, which typically introduce ad-

ditional parameters to collision avoidance algorithms to account for social interactions [22,23]. In

existing works, people focus on modeling and replicating the detailed mechanism of social com-

pliant, which remains hard to quantify as human behaviours are mainly stochastic. Thus, instead

of focusing on modeling precise social information and feature-matching techniques, researchers

have started to approach the problem from different angles.

With a different perspective on modeling, some studies have shown these approaches to be

capable of handling socially competent environments while computing solutions efficiently. Chen

et al. [24] believe the difficulty in quantifying sophisticated human social behaviour is in con-

trast with the intuitive evaluation of human behaviour is acceptable/reasonable. Thus, instead of

modeling details of what to do, they model common social norms. Applying deep reinforcement

learning, they developed a time-efficient navigation policy through pedestrian-rich environments.

Another method for approaching social behaviour modeling is the work of Bandyopadhyay et
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al. [25], which combines the knowledge of the surrounding environment to predict pedestrian’s

heading destination and generate a conservative avoidance policy while maintaining uncertainty

over pedestrians’ heading directions. Data requirements are relaxed in learning methods through

generalizing data format. Schneemann et al. [26] classified pedestrian’s intention using a com-

bination of an SVM along with a context-based feature descriptor. Okai et al. [27] use inverse

reinforcement learning with a flexible graph-based representation to extend the degrees of social

normativeness of the robot.

3.2 Cooperative Pedestrian Interaction with Autonomous Vehicles

There are many successful systems for autonomous driving [28, 29], but research study of

close interactions between autonomous vehicles and pedestrians is more recent, which actual au-

tonomous vehicle implementations that consider interaction are even less common. Most stud-

ies [1, 30] focus on reexamining driver-pedestrian interaction to provide reference data for future

implementations of autonomous vehicles. The information gathered from these studies repeatedly

point out that pedestrians use cues, such as eye-contact and facing direction, to indicate their next

action, communicating intent.

A critical difficulty for autonomous vehicles driving amid pedestrians is to incorporate pedes-

trian intentions and behaviours into their decision making. People have modelled pedestrian in-

tention using hidden Markov models and Gaussian processes. With a given pedestrian behaviour

model, the simplest approach is to create a reactive system [31]. However, this ignores uncer-

tainty inherent in making predictions, resulting in fast computation but sub-optimal solutions over

time. Thus, different methods to reason about the prediction uncertainty during decision making

have been proposed [32, 33]. The POMDP approach is general, assuming neither linear dynamics

nor Gaussian noise [34]. Though POMDPs are widely known to be demanding computationally,

steady improvements in efficiency have seen them being implemented in reasonably-scaled exper-

iments [25]. This work leverages POMDPs to balance the uncertainties the pedestrian intention

while having the vehicle operating safely and efficiently.

Among studies with autonomous vehicles that communicate their intentions (with regard to
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future actions) to nearby pedestrians, a variety of different methods have been explored, but no

single solution outshines all others. Some studies state that showing physical information such as

gap distance dominates the communication [35]. Others suggest that designing external interaction

devices [36] can help boosts confidence in pedestrian decision-making. Several companies [37–

39] have also proposed their own external hardware to interact with pedestrians. In contrast, we

deliberately opt to use standard features only.
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4. AUTONOMOUS VEHICLE AND PEDESTRIAN INTERACTION PROBLEM

4.1 Statement of Problem

We study a scenario where a pedestrian and an autonomous vehicle are both approaching the

same segment of an unsignalized intersection, and there exists an ambiguity of who will cross the

intersection first. In the case where human drives the vehicle, the vehicle and pedestrian inter-

act via their respective choices of actions to efficiently and smoothly resolve this question as the

situation unfolds. We pose the question of how to create an autonomous vehicle that can mimic

the interactive behaviour of a human driver. A graphic representation of this scenario appears in

Figure 4.1.

Figure 4.1: Bird’s eye view of the unsignalized crossing.

4.2 Approaches

We aim to reproduce the dynamics of the social interaction mentioned above by designing

the scenario as a decision-theoretical model. This provides a better understanding of both par-

ticipants’ dynamic process and the underlying incentives that lead the driver to perform socially;

furthermore, we study the influential factors of pedestrian’s crossing behaviour in order to formal-

ize them such that we can create action selections for the vehicle which can maintain and even
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reduce the uncertainty in the scenario when necessary.

4.2.1 Markov decision process approach

From the perspective of implementing an autonomous vehicle, actions that are generated for

solving the problem can only be sent to the vehicle. In our scenario, even though some actions such

as honking a horn/hooter influences the pedestrian, there are limited to only creating an indirect

influence. Considering the various factors that are involved in determining a pedestrian’s crossing

behaviour, we can state that the pedestrian’s status becomes a stochastic outcome when given the

vehicle executed an action.

We formulate the interaction as an MDP since the outcome of the vehicle’s action creates a

partly random result in the pedestrian’s state. Our intention is for the vehicle to perform safely and

efficiently in the situation. Solving for the MDP will choose actions that maximize the cumulated

function of rewards designed based on our intentions. The uncertainty dynamics of the crossing

interaction are maintained through this action selection process, which aims to reduce the proba-

bility of ending up in an undesired state, in other words, resulting in obtaining a lower accumulated

reward.

4.2.2 Partially observable Markov decision process approach

Having understood the dynamic process, we now focus on the ambiguity of who will cross first.

Unfortunately, the crossing order that the pedestrian has in mind cannot be observed directly by the

vehicle. The vehicle is only able to gain this information regarding the pedestrian by integrating

observations and using its model of the pedestrian’s progress to learn more about the pedestrian’s

state. To model the pedestrian’s evolving understanding of this crossing order question, we propose

to use a concise representation, a single binary variable, which can be modelled as an unobservable

state in a POMDP model. The vehicle maintains a belief (i.e., a distribution) over this binary

variable while solving a policy for the model.

Based on the studies (in Section 2.1) of vehicle-pedestrian crossing interactions, the influence

of a vehicle’s action on a pedestrian’s crossing behaviour and the replicate influence forms a com-
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plex relationship that couples the participants. Thus, this intertwined relationship can be used for

resolving the crossing order ambiguity through observing and influencing each other’s evolving

understanding of the crossing order. From the vehicle’s point of view, an appropriate choice of

action helps ensure that it will make a sequence of observations that are informative. The vehicle

is also able to manage its belief by initiating actions that create an interaction.

The preceding complexities are included in our model, along with one further important nu-

ance: the vehicle is only disposed to gain information that is valuable for driving safely and ef-

ficiently through the intersection. We formulate an instance of a POMDP [40] that describes the

impact of actions for the vehicle.

We leverage the solutions to POMDPs as they balance actions that gain information with ones

that attain valuable rewards. The former actions are those that increase the vehicle’s confidence

in the pedestrian’s crossing order understanding, including actions that influence the pedestrian’s

crossing behaviour. The latter would be actions that increase the safety and efficiency of crossing

the intersection.
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5. MARKOV DECISION PROCESS DESIGN*

We create a simulated autonomous vehicle that is capable of mimicking the dynamic behaviour 

of a human-controlled vehicle, including moderating its speed in a manner reflective of the pres-

ence of pedestrians at an unsignalized intersections. The autonomous vehicle is modelled as an 

MDP agent that needs to avoid collision with an approaching pedestrian who may opt to cross the 

intersection.

5.1 Basic Dynamic Model

First, we examine how a vehicle and a pedestrian can be modelled in a decoupled manner. Then 

the section which follows describes the details of how they are coupled together.

We express the dynamics of a pedestrian with a Markov chain. States represent discretized 

distances from the intersection. The velocity of the pedestrian determines the transition probabili-

ties between the states. To calculate the transition probabilities, we first initialize some pedestrian 

with a given velocity and simulate the pedestrian moving forwards at this velocity. After several 

rounds of simulation, we average the times the pedestrian is located in each state and transform 

these numbers into probabilities. In this way, we create a unique Markov chain for every pedestrian 

velocity that would be used in our simulation (see Figure 5.1).

H1
pos H2

pos H3
pos Hn−1

pos Hn
pos

(1− P )

P

(1− P )

P

(1− P ) (1− P )

P

1

Figure 5.1: Pedestrian Dynamics Markov Chain. P is a number between 0 and 1 and represents
the probability of transferring from one node to another

*Reprinted with permission from "An MDP Model of Vehicle-Pedestrian Interaction at an Unsignalized Inter-
section" by Ya-Chuan Hsu, Swaminathan Gopalswamy, Srikanth Saripalli, Dylan A. Shell, 2018. 2018 IEEE 88th 
Vehicular Technology Conference (VTC-Fall), p. 1-6, copyright by c© 2011 IEEE.
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The vehicle’s dynamics are expressed with the same method. But the states are the discretized

distances from the vehicle to the intersection instead (see Figure 5.2).

C1
pos C2

pos C3
pos Cn−1

pos Cn
pos

(1− P )

P

(1− P )

P

(1− P ) (1− P )

P

1

Figure 5.2: Vehicle Dynamics Markov Chain.

5.2 Markov Decision Process Model

We set the state space S of our MDP model as the joint dynamic state spaces of the vehicle

and pedestrian. The set S is specified as a product: (Hpos, Hvel, Cpos) (mnemonic: H� for human

and C� for car). The pedestrian distance from the intersection is Hpos. When Hpos has a negative

value, it represents a pedestrian that has not reached the crosswalk. The element Hvel represents

the pedestrian speed in the direction of motion towards the intersection. Lastly, the state space

S contains the vehicle’s position Cpos, where Cpos is the vehicle’s distance from the intersection.

A negative value represents the fact that the vehicle has not yet traversed the crosswalk (see Fig-

ure 4.1). The states characterize variables that, though coarse, express details important for the

interaction between the vehicle and the pedestrian.

The action space A encodes the control parameters of the autonomous vehicle. It is a set of

different velocities Cvel that the vehicle can be commanded to drive at.

5.3 Reward Model

By adopting a decision-theoretic model, we are constructing an autonomous vehicle that acts

as a rational agent to minimize its risk of collision with the pedestrian. Furthermore, we assume

the autonomous vehicle wishes to cross the intersection as efficiently as possible. To model such

behaviour within the MDP, we use the additive reward function R(s, a) = Rcol(s)+Reff(a), where
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Rcol(s) is the penalty imposed if at state s ∈ S, the autonomous vehicle and the pedestrian is both

on the crosswalk and Reff(a) is the cost for the autonomous vehicle to perform action a ∈ A from

state s ∈ S.
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6. MARKOV DECISION PROCESS EXPERIMENTS AND RESULTS

6.1 Markov Decision Process Approach Simulator

Given the problem modelled in the previous chapter, the motion strategy for the autonomous

vehicle is generated by solving the associated MDP. Our software simulates the behaviour of an

autonomous vehicle and pedestrian which may interact at an unsignalized intersection.

The simulation deals predominantly with the scenario in Figure 4.1. For the simulator to carry

out an interaction, it requires two sources of input: a means by which the vehicle’s speed is de-

termined, and the same for the pedestrian. These sources, in general, can include prerecorded

sequences, keyboard input, or other means. For the results we present, the vehicle’s speed is al-

ways determined from a policy π∗ that results from solving the MDP; determining the next action

for the vehicle is then just a problem of evaluating π∗ [(Hpos(t), Hvel(t), Cpos(t))]. This requires

that the pedestrian position, pedestrian speed, and vehicle position be mapped to the equivalence

class of discrete states that describe that configuration:

StateSim(t) 7→ (Hpos(t), Hvel(t), Cpos(t)).

The pedestrian’s speed is determined in a different way. As we do not have control over the

pedestrian, we construct separate models based on the knowledge of common pedestrian crossing

behaviours. The model is varied with the experiments, so they will be described in detail next.

With the scope of our MDP approach, it is important to note that we are interested in behaviour

where the vehicle has an imperfect or inaccurate model. Thus, though evaluation uses a model of

a pedestrian to generate that simulated pedestrian’s action, the model provided as part of the MDP

may differ markedly.
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6.2 Experimental Setup

We consider two different choices of pedestrian characteristics, which each of these results in

different dynamics for the pedestrian. Because the MDP expresses a coupling of the pedestrian

and vehicle dynamics, each of these choices leads to a particular MDP.

Having solved each MDP, we then use different pedestrian behaviours to analyze the vehicle’s

reaction generated by the optimal policy. In all cases, of course, the vehicle is expected to perform

a series of actions to cross safely and efficiently.

6.2.1 Setting parameters

The average velocity of a walking pedestrian is 1.4m/s [41] and the fastest a pedestrian walks

is 2.5m/s [42]. We constructed Markov chains for pedestrians traveling at speed 0.0m/s and the

speeds between 1.4m/s and 2.5m/s. For the vehicle, we set up three action choices, which are the

vehicle traveling at a high speed of 10.0m/s, a slow speed of 5.0m/s, and a stop with the vehicle’s

velocity at 0.0m/s.

The design of the MDP, via a state space expressing the joint state of the vehicle and pedes-

trian, can capture important elements of the interaction between the two. We consider a state

(Hpos, Hvel, Cpos), where Hpos is a set from −6.0 to 6.0 with intervals of 0.5, Cpos is a set from

−15.0 to 11.0 with intervals of 1.5, and Hvel is defined differently according to the pedestrian

characteristic.

The two different choices of pedestrian characteristics are reckless and cautious. Our definition

of the two different crossing dynamic behaviours are presented in detail as follow:

6.2.1.1 Reckless pedestrian crossing behaviour

Reckless pedestrian crossing behaviour is defined as a pedestrian that always aims to start

crossing the intersection before the vehicle arrives at the crossing. When the pedestrian reaches

2m from the intersection, it predicts the vehicle’s arrival time according to the current vehicle’s

position and velocity (which we assume the pedestrian can approximately quantify). With the

MDP model expressing the vehicle, we can obtain the vehicle’s position information from the
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current state space and the vehicle’s velocity is given by the action state the vehicle chooses to

perform. If the vehicle appears to be arriving at the intersection before the pedestrian finishes

crossing, the pedestrian will speed up in order to cross first. The action of speeding up may cause

a collision, but the pedestrian does this nevertheless. This class of crossing behaviour can be seen

on university campuses, especially periods between classes.

This description is shown quantitatively as

Hvel(x) =

1.4 if x > 2

2.5× e−0.289x if x ≤ 2

, (6.1)

where x is the time difference between the remaining time for the vehicle to arrive at the intersec-

tion and the remaining time for the pedestrian to finish crossing the intersection.

6.2.1.2 Cautious pedestrian crossing behaviour

Cautious pedestrians stop at the curb and wait for the vehicle to cross first when they determine

that, continuing at their current speed, they cannot reach the other side of the road before the

vehicle arrives.

Their velocity is given as

Hvel(d) =


1.4 if d < −1 and d > 1

0 if− 1 ≤ d ≤ 1 and can’t cross at 1.4m/s

1.4 if− 1 ≤ d ≤ 1 and can cross at 1.4m/s

, (6.2)

where d is the distance between the pedestrian and crosswalk.

Using the reward model, R(s, a) = Rcol(s) + Reff(a), described in Section 5.3, we define

the collision zone to be the entire crosswalk area, assigning the Rcol(s) value in the states that

cover these areas a reward of −1000. Reff(a) is set to encourage the autonomous vehicle to finish

crossing the intersection as soon as possible; Reff(a) is set to 10 when the vehicle action a is travel

in high speed, 5 when traveling in slow speed, and −10 when stopping/stopped.
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6.3 Experimental Results and Analysis

The object of these experiments is to analyze the behaviour of the autonomous vehicle. We

present quantitative data followed by an interpretation of the results.

We analyze the behaviour by observing the vehicle’s speed profile, collision occurrence, and the

accumulated rewards for each simulation. To generate the autonomous vehicle’s behaviour, we first

define the input pedestrian behaviour. In this experiment we simulate pedestrians moving at con-

stant speed 1.0m/s, 1.4m/s, 2.0m/s and 2.5m/s and also simulate the reckless (Section 6.2.1.1)

and cautious pedestrians (Section 6.2.1.2) as separate experimental conditions.

Figure 6.1: Reckless pedestrian-based MDP model: We construct a reckless pedestrian-based
MDP model and examine the autonomous vehicle’s behaviour by simulating the model with pedes-
trians moving at constant speed 1.0m/s, 1.4m/s, 2.0m/s and 2.5m/s, a cautious pedestrian and
a reckless pedestrian as separate experimental conditions.
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Figure 6.2: Cautious pedestrian-based MDP model: We construct a cautious pedestrian-based
MDP model and examine the autonomous vehicle’s behaviour by simulating the model with the
same set of experimental conditions as in Figure 6.1.

The trajectories of both pedestrian (red) and autonomous vehicle (blue) is shown in Figs. 6.1

and 6.2. The horizontal axis is the time step (in units of 0.2 s), and the vertical axis is the distance

from the crosswalk (in meters). The slope of the lines represents the velocity. The boxes are a

representation of the crosswalk position. As the crosswalk is 4m wide and 5m long, the blue and

red boxes have different heights.

6.3.1 Vehicle’s speed profile

The vehicle’s characteristics are portrayed directly in its speed profile. The vehicle employing

a model of a reckless pedestrian is more conservative, which is what one would expect: an op-
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timal agent with a pessimistic model must be more risk-averse. This is reflected in the vehicle’s

trajectory— Figure 6.1 has shallow slopes, meaning that it slows down over a long period of time,

initiating breaking sooner. On the other hand, the vehicle trajectory for the MDP solved under the

assumption of a cautious pedestrian has steeper slopes and must perform a hard stop in some cases.

For example, the second graph in Figure 6.2 shows a rapid stop being executed since the vehicle

comes to a complete stop in a short time (around time steps 10–20). The vehicle’s model assumes

that the pedestrian will be cautious and can thus be counted on to stop before crossing, but the

third graph is a pedestrian traveling at constant speed 1.4m/s and not stopping, so the vehicle was

forced to brake hard to avoid a collision.

6.3.2 Collision occurrences

The MDP is expected to provide a safe (collision-free) action choice in every state for the

autonomous vehicle. We gave a large negative reward Rcol in order to prevent the pedestrian and

vehicle both being on the crosswalk simultaneously. Thus, as the boxes represent the crosswalk

area for both pedestrian and vehicle, they should never overlap. By observing the distance between

the boxes, we can see how conservative the vehicle is. When we lower the collision penalty, the

distance reduces as the vehicle is more willing to risk colliding versus waiting for longer to lower

the risk.

6.3.3 Unresolved turn taking

The magnitude of the penalty for collisions also affects the possibility of the vehicle and pedes-

trian approaching the crossing with their respective turn-taking still unresolved. In both Figure 6.1

and 6.2, the fifth plot shows an unresolved turn-taking situation. The definition of a cautious pedes-

trian is to wait for the vehicle to cross when it cannot reach the other side whilst simply maintaining

the same speed. For instance, the pedestrian in both simulations had stopped to wait for the vehicle

to cross first. Whereas our penalty for collision is large (at −1000) so the vehicle would wait for

the pedestrian to cross first to prevent a collision. When the collision penalty is reduced to −160,

this deadlock is resolved. The first plots in both Figure 6.3 and 6.4 safely control the vehicle (no
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Figure 6.3: Reckless pedestrian-based MDP model with collision penalty as −160: the upper plot
shows that lowering the collision penalty solves the unresolved turn taking issue. However, once
the penalty lowers, the modelled vehicle collides with a reckless pedestrian, as shown in the lower
plot.

boxes overlap) when there is a cautious pedestrian. Unfortunately, lowering the collision penalty

now causes the vehicle to be on the crosswalk at the same time (boxes now overlap) as a reckless

pedestrian.

6.3.4 Accumulated rewards

Accumulated rewards can be used to compare the performance between different MDP models.

Given the same pedestrian behaviour as the simulation input, the model with the highest accumu-

lated rewards is most suitable for purposes where the design matches real circumstances. For

example, Table 6.1 shows that the reckless pedestrian-based model has a higher reward for simu-

lations that have an interaction between the vehicle and pedestrian. This result fits with our goal

of decreasing the amount of time the vehicle moves slowly. According to our reward definition,

every time the vehicle stops, it gets a −10 penalty. Therefore, the simulations that have a shorter

vehicle stopping period would have a higher accumulated reward.

6.4 Discussion

We have examined a decision-theoretic model for the interaction between a pedestrian and

a vehicle. With the understanding of prior work conducted by psychologists examining similar

experimental conditions, we were able to construct an MDP model that generates a sequence of
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Figure 6.4: Cautious pedestrian-based MDP model with collision penalty as −160: The lowered
collision penalty solves the unresolved turn taking problem, as shown in the upper plot. But low-
ering the collision penalty also causes the modelled vehicle to collide with a reckless pedestrian as
shown in the lower plot.

Table 6.1: Accumulated rewards for each simulation

Accumulated Rewards

Const. Speed
1.0m/s

Const. Speed
1.4m/s

Const. Speed
2.0m/s

Const. Speed
2.5m/s

Cautious
Pedestrian

Reckless
Pedestrian

Reckless Pedestrian
Based MDP
(Rcol = −1000)

165 485 765 865 -695 545

Cautious Pedestrian
Based MDP
(Rcol = −1000)

900 455 690 795 -725 455
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actions for the vehicle to execute such that it mimics a driver-pedestrian interaction at an unsignal-

ized intersection. Furthermore, we were able to establish empirically that the crossing behaviour

of the autonomous vehicle is safe and efficient. However, in our MDP approach, we assume the

vehicle anticipates encountering a particular type of pedestrian crossing behaviour by encoding the

behaviour inside the model. This raises two major issues for physical implementation when using

our MDP approach: 1) the type of pedestrian crossing behaviour cannot be observed beforehand;

therefore, it is difficult to encode the behaviour while modeling the MDP; 2) we can only divide

types of pedestrian crossing behaviour so much that the uncertainty caused by neglecting the var-

ious influential factors is challenging to maintain. In the following chapter, we will build on the

current understanding of the crossing interaction dynamics and propose an approach that aims to

provide a solution to the above issues.

23



7. PARTIALLY OBSERVABLE MARKOV DECISION PROCESS DESIGN

There are various factors involved in pedestrian decision-making process at the time of cross-

ing. Though current technologies encourage the installation of ever-richer sensors on robots, fac-

tors such as age, gender, culture, faith, and past experiences [43] are unlikely to be precisely

sensed any time soon. Thus, it is crucial to have autonomous vehicles capable of balancing these

unobservable factors as a type of uncertainty while crossing through an intersection safely and

efficiently; and, if necessary, resolve the uncertainty through performing informative actions.

We solve the problem as a POMDP via a state-of-the-art online solver. Our POMDP model

considers a state space S comprising states S = {SH , SC}, where SH represents information about

the pedestrian, including their position (Hpos), velocity (Hvel), characteristic (Hchr) and crossing in-

tention (ξ); SC represents information of the vehicle, including vehicle position (Cpos) and velocity

(Cvel).

Next, we present the details of how we approach the abstract concept of human intention and

capture the notion of beliefs and agreement over the crossing order and how we connect the pedes-

trian and vehicle’s physical transitions, discussed in the previous MDP section, with the remaining

pieces to construct the final POMDP model.

7.1 Mental States: Crossing Order

Let us denote the binary variable encoding crossing order at time t as ξt. We define ξt ∈

{0, 1}, where ξt = 0 means the pedestrian crosses first and ξt = 1 means the vehicle crosses first.

The dynamics of ξt are based on domain knowledge (i.e., a time-gap–based decision), detailed in

Section 7.2.1.

7.2 Pedestrian Dynamics

We restrict ourselves to a consideration of very basic motion: the pedestrian can either move

along the crosswalk or pause. We will assume that the pedestrian can move at any reasonable speed,

but, as clarified shortly, we treat speed in a particular way. As defined in the basic dynamic model
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section 5.1, we once again construct a Markov chain such that each node is a representation of

the distance (discretized) from the crosswalk, and the transition probability between each physical

state is calculated based on the speed the pedestrian is traveling. However, the speed is defined

through a more complex model that takes crossing intentions (ξt) into consideration.

7.2.1 Determination of crossing intention (ξt)

Summing up the studies in Section 2.1, the influences on pedestrian crossing decision-making

comprise two main factors: (i) Contextual factors include the position/velocity of the vehicle and

the location of the crosswalk; (ii) Habitual factors include the pedestrian’s traits and personal

characteristics, like age and gender.

For contextual factors, we condense them into a notion of the ‘level of peril’ of the current

world state. The level of peril is computed based on the time difference between the remaining

time of the vehicle’s arrival at the crossing point and the pedestrian’s arrival at the crossing. The

closer the vehicle appeals to be before the crossing while the pedestrian is about to cross, the higher

level of peril (in other words: more dangerous) the pedestrian will feel to step off the curb and vice

versa. The habitual factors determine how the pedestrian will act according to its sense of the

level of peril. For example, a pedestrian who is more careful during crossings will tend to wait

at the curb while the vehicle is seen to be beyond the ‘average safe-crossing distance’ from the

intersection. Due to modeling purposes, we consider the extremes: a reckless (H rkl
chr) and a cautious

(Hcts
chr) pedestrian.

The final result is the making of a decision; we consider as having ξt take a value. Based on
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the factors described above, the dynamics of ξt can be expressed as

P (ξt+1 = 0| ξt = 0, SH
t , S

C
t ) = 0.9 if vehicle slows down near the crosswalk

and pedestrian is reckless

0.7 if vehicle slows down dramatically

0.5 if pedestrian is reckless

0.3 if vehicle slows down from far

1.0 otherwise,

(7.1)

and
P (ξt+1 = 1| ξt = 1, SH

t , S
C
t ) = 0.9 if vehicle speeds up near the crosswalk

and pedestrian is cautious

0.5 if vehicle speeds up from far

1.0 otherwise,

(7.2)

which here a reckless (or cautious) pedestrian is just one that has Hchr = H rkl
chr (or Hcts

chr, respec-

tively).

(The numbers above constitute examples, reflecting the general idea, if not the exact quantities

used in our experiments. Precise values would be determined via psychological experiments and

collection of data.)

7.2.2 Pedestrian locomotion

The pedestrian’s motion depends on whether they currently intend to cross first or second. This

is, of course, precisely the information in ξt. Hence the motion can be clearly defined into two cases

expressed with functions fξt : S −→ R yielding velocities. The following definition is similar to

Equation (6.1) and (6.2), but this time we define the intention as what determines pedestrian motion

and pedestrian characteristics as part of an element that influences the intention (as mentioned in

the previous section, Section 7.2.1).
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7.2.2.1 Pedestrian crosses first (ξt = 0)

When the pedestrian decides to cross the intersection before the vehicle does, the pedestrian

will attempt to travel at some speed to ensure it will cross first. We enforce some basic constraints:

should the pedestrian reach the fastest walking speed, 2.5m/s, it remains moving at the highest

speed it is capable of maintaining. If the speed needed to arrive in time is below average walking

speed 1.4m/s, the pedestrian continues at a normal pace. Quantitatively, this is

f0(·) =


1.4 if o∆t > 2

2.5× e−0.289o∆t if o∆t ≤ 2

, (7.3)

where o∆t, computed from St ∈ S, is the time difference between the remaining time for the

vehicle to arrive at the intersection and the remaining time for the pedestrian to finish crossing the

intersection.

7.2.2.2 Vehicle crosses first (ξt = 1)

In this case, pedestrians will stop at the curb and wait for the vehicle to pass when they deter-

mine that, continuing at their current speed, they cannot reach the other side of the road before the

vehicle arrives. Their velocity is given as

f1(·) =


1.4 if o∆d < −1 and o∆d > 1

0 if− 1 ≤ o∆d ≤ 1 and can not cross at 1.4m/s

1.4 if− 1 ≤ o∆d ≤ 1 and can cross at 1.4m/s

, (7.4)

where o∆d, computed from St ∈ S, represents the distance between the pedestrian and crosswalk.

Once the pedestrian starts crossing the crosswalk, o∆d becomes a negative distance in our repre-

sentation.
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7.3 Vehicle Dynamics

The vehicle, unlike the pedestrian, has actions that we wish to determine. Hence, we model the

vehicle’s controls as actions of a decision process. The vehicle needs to avoid collision with the

pedestrian, whose crossing behaviour is not perfectly known. The vehicle must deal with two forms

of uncertainty: partial observability and stochasticity. By choosing actions, the vehicle seeks an

optimal strategy through reasoning about the pedestrian’s behaviour as expressed in the stochastic

model.

7.3.1 Vehicle’s motion model

Let Cpos be the state that represents the vehicle’s distance from the crosswalk and state Cvel

represent the vehicle’s velocity. The evolving physical state of the vehicle is specified as (Cpos,t,

Cvel,t) at time t. The vehicle is constrained to move in a fixed direction towards the crosswalk and

its control is based on acceleration at ∈ {adec, 0.0, ainc}, where adec < 0.0 and ainc > 0.0. Given

at, the new state of the vehicle is calculated as

Cpos,(t+1) = Cpos,t + Cvel,t,

Cvel,(t+1) = Cvel,t + at.

(7.5)

7.3.2 Vehicle-pedestrian interaction

The interactions between vehicle and pedestrian near the crossing point are embedded into

transition functions. When the vehicle and the pedestrian are far from the crossing, they transition

to their next state based on their individual dynamics. However, as modelled in Section 7.2.1, the

pedestrian’s crossing behaviour considers the vehicle position and velocity. Once the pedestrian is

near the crosswalk, the behaviour of both the vehicle and the pedestrian are now tightly coupled:

both their state transition probabilities are influenced by not only the vehicle’s state but its action

as well.
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7.3.3 Sensors and observations

We assume that the vehicle is equipped with sensors capable of detecting the pedestrian and

reporting his/her distance relative to the start of the pedestrian’s crosswalk and velocity. These

sensors produce data that has an error range which decreases as the vehicle gets closer to the

pedestrian. Additionally, the vehicle is assumed to have sensors that return a (near) accurate value

of the vehicle’s velocity and distance to the start of the intersection. Taken together, this sensing

equipment generates observations that we represent as a 4-tuple: (Hpos, Hvel, Cpos, Cvel).

7.3.4 Rewards

The reward model is simple: the primary objective of the vehicle is to minimize the risk of

colliding with the pedestrian. Consequently, we assign a large penalty when both the vehicle and

the pedestrian are on the crosswalk simultaneously. Additionally, to incentivize efficiency, the

vehicle receives rewards for those states with a higher velocity. This reward model is similar to

the one used in the Markov decision process modeling section. We emphasize that the vehicle

is not specifically rewarded for knowing things about the pedestrian; any information of value is

potentially a cause for the vehicle’s action choices as it has implications for safe or/and efficient

motion indirectly.

7.3.5 The vehicle’s perspective on the crossing order

Unlike the pedestrian, who has a state ξt to represent whom he/she considers to be crossing first,

the vehicle has no such explicit state. Instead, the POMDP maintains a distribution over the entire

state space, i.e., a belief state. When all dimensions of the state other than ξt are marginalized out,

what remains is a probability that represents the vehicle’s estimate of the pedestrian’s conception.
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8. PARTIALLY OBSERVABLE MARKOV DECISION PROCESS EXPERIMENTS AND

RESULTS

In this chapter, we show results from our implementation of the solver running on an au-

tonomous vehicle and also summarize an extensive and carefully controlled evaluation conducted

in a separately constructed simulation. The performance of the simulated autonomous vehicle is

used to discuss and analyze the resulting behaviour in terms of the overall safety and further, for

non-observable states, the dynamics of the vehicle’s belief. Finally, we briefly discuss experiments

where the vehicle may also generate actions that are explicitly communicative.

8.1 Experimental Setup and Details

We construct a continuous world describing a crossing scenario and employ an online POMDP

solver that uses a belief-tree–based approach in which sampled scenarios produce nodes that are

connected via edges to produce approximate policies, DESPOT [44, 45], to create a safe and ef-

ficient crossing policy for the vehicle. Both the simulator and solver are connected through the

Robot Operating System (ROS) [46]. We implemented them as ROS nodes with inter-process

communication handled by having them subscribed to one another.

8.1.1 Experimental flow

We treat the crossing scenario depicted in Figure 4.1. Each experimental trial begins with both

the vehicle and the pedestrian in the simulator moving steadily towards the crossing. A trial con-

cludes when the vehicle finishes crossing from one side to the other. The POMDP solver starts

once the vehicle is 14m or less away from the crosswalk. For every execution step, the solver con-

siders the current state of the world, including both the vehicle and the pedestrian information, and

outputs an acceleration value. The vehicle enacts the new acceleration and the aspects pertaining

to the pedestrian evolve as per the transition model detailed earlier. The solver continues to output

new acceleration values based on new inputs until the trial finishes.
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8.1.2 Experiment parameters

To deliberately constructed the scenario which there is substantial ambiguity in crossing order,

we position the pedestrian to start walking at a normal 1.4m/s speed from 4.2m before the cross-

walk, and the vehicle starts 14m away from the intersection moving at 3m/s speed. The crosswalk

is 4m wide and 5m long.

For the DESPOT solver, we used 500 sampled scenarios with the maximum depth of the belief

tree as 100, and the discount factor set to 0.98. The solver was given 1 s to construct the search

tree and choose an action. The experiments were executed on an Intel Core i7-6670HQ 2.6GHz

processor with 32GB of RAM running Ubuntu 16.04.

8.2 Autonomous Vehicle Implementation

8.2.1 Autonomous vehicle experiment setup

We carried out experiments at our university autonomous vehicle testing ground. A virtual

crossing was set up in the system that is 5.0m×4.0m overseen by the camera mounted on a lamp

post on the side of a roadway. (See Figure 8.1.)

Figure 8.1: Cartoon depicting the experimental infrastructure.

Our test vehicle is a Ford Lincoln MKZ with auto-driving enabled. The auto-driving system

is capable of following a pre-recorded path with GPS and vehicle orientation included by send-
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ing commands through the Robot Operating System (ROS) to the low-level vehicle controller to

control the throttle, brake, and steering.

Our pedestrian is a manikin mounted on a pole installed on a remote control car. It is operated

by people intending to either cross before the vehicle or after the vehicle has passed the crosswalk.

The sensors we use include a camera mounted on a lamp pole overseeing the crossing area

and an RTK GNSS receiver, Piksi. With infrastructure enabled autonomy [47], we were able to

have both sensors coordinated to provide the position of the vehicle and pedestrian relative from

the base station. The velocity of the pedestrian is then calculated with a first-order filter. With the

information gathered from the sensors, the planner uses them as observations to locate its current

state in the belief state space and then outputs an acceleration value as the action for the vehicle to

execute. (See Figure 8.2.)

Figure 8.2: System architecture employed for the Lincoln MKZ.

Both pedestrian and vehicle’s motion and sensor readings are imperfect owing to factors such

as friction, bumps on the road, wind, sunlight, etc., in the world affecting both agents. Seeking

to balance between decision quality and computational expediency, observations of the pedestrian

information are discretized (with resolution of 1.0m for position and 1.0m/s for speed) and the

vehicle information is discretized (with resolution of 1.5m for position and 1.0m/s for speed).
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The actions are sparse: 0.5m/s2, −1.0m/s2, and −2.0m/s2. The planning horizon is 100 steps.

The maximum planning time per step is 0.2 s.

8.2.2 Results from the autonomous vehicle experiment

We present illustrative instances of the autonomous vehicle experiment results in Figure 8.3

and 8.4.

The vehicle is positioned at least 100.0m away from the start of the crossing and approaches

the crossing at a speed of 7.0m/s. Once the vehicle is as close as 70.0m, it receives input from

the camera sensors for pedestrian detection. If the pedestrian is detected and determined to be

approaching the crossing, the vehicle slows down to 3.0m/s; otherwise, it continues at the same

speed, proceeding to approach and cross the crossing. Once the vehicle slows down and is within

14.0m before the crossing, it activates the behaviour planner to interact with the pedestrian and

begins to maintain a belief distribution over the pedestrian’s crossing intention.

In the case of interacting with a reckless pedestrian, the vehicle slows down in advance (Fig-

ure 8.3a) with an initial belief that the pedestrian will cross first. While slowing down (Figure 8.3b),

the vehicle’s belief in the pedestrian being reckless increases which leads to it later picking up

speed (Figure 8.3c) and crosses (Figure 8.3d).

As for the cautious pedestrian case, the vehicle slows down due to the initial belief the pedes-

trian intends to cross first (Figure 8.4a). Before it comes to a stop, the vehicle changes its belief

distribution over the pedestrian’s characteristic and intention as it now observes the pedestrian to

be slowing down before the crossing (Figure 8.4b). The vehicle’s acceleration changes from decel-

erating to maintaining speed as the majority of the weighting of belief shifts toward the pedestrian

being cautious and who, thus, intends to let the vehicle cross first (Figure 8.4c). Then, passing by

the cautious pedestrian slowly, the vehicle gradually gains speed (Figure 8.4d). Finally, the vehicle

accelerates once past the pedestrian (Figure 8.4e).

These examples from our autonomous vehicle trials indicate that the planner produces effective

crossing behaviour and that it performs well at managing uncertainty for states of the pedestrian

that are not directly observable. The dynamic setting means it is impossible to repeat trials with
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(a) (b)

(c) (d)

Figure 8.3: The vehicle encounters a reckless pedestrian who speeds up to start crossing before
vehicle arrives. Histogram indicates beliefs over pedestrian crossing intentions and characteristic:
blue for pedestrian crosses first, green for vehicle crosses first, yellow for a pedestrian who is char-
acteristically reckless, red for a cautious one. The length of the arrow above the vehicle expresses
vehicle’s velocity, in which, a circle indicates that the velocity is approximately zero. The color of
the arrow describes the acceleration value: green for accelerate, yellow for maintain, and red for
decelerate.

identical inputs, making it challenging to quantify performance or to interrogate particular aspects

of the resulting behaviour. Consequently, we conducted a simulation study to probe the planner’s

behaviour in detail.

8.3 Simulated Experiments

We developed a custom simulator to model the crossing setting of Figure 4.1. It simulates

pedestrian motions using the pedestrian crossing behaviour model described in Section 7.2. The

vehicle is simulated to drive towards the crossing point its speed changing according to acceleration

values produced as actions by DESPOT.
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(a) (b)

(c) (d)

(e)

Figure 8.4: The vehicle encounters a cautious pedestrian who stops to wait for vehicle to cross.
The histogram and arrow representations are the same design as used in Figure 8.3.

8.3.1 Simulation setup

The vehicle and pedestrian’s position state space is generated by discretizing continuous space

into intervals of 1.75 and 0.75. The velocity state for the vehicle contains values from 0.0 to 3.0

with an interval of 1.0. The pedestrian has three velocity states: {0.0, 1.4, 2.5}. We define the

action space for of the POMDP model as {−1.0, 0.0, 0.5}, where each is an acceleration value that

can be executed by the vehicle.

Each simulation trial begins with both the vehicle and the pedestrian in the simulator moving

steadily towards the crossing. When the vehicle is 14.0m or less away from the crosswalk, the

simulator node sends a message to start the POMDP solver. For every execution step, the solver
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reads the current state of the simulator, including both the vehicle and the pedestrian information,

and outputs an acceleration value. The simulator will transition to the next world state as the

vehicle transitions based on the generated acceleration value as input and the pedestrian transitions

based on its crossing behaviour model. The simulator continues to subscribe for new acceleration

values until the trial finishes.

Pedestrian transitions at each step consider the vehicle’s state as well as the pedestrian’s char-

acteristic. The vehicle’s state represents contextual factors that influence the pedestrian’s crossing

behaviour, and the characteristic, which is set manually at the start of the simulation, represents

the habitual factors. Both are needed to simulate the dynamics, which is achieved by sampling in

proportion to the associated probabilities.

8.3.2 Analysis simulation results

We present the simulation results via detailed plots of a variety of variables as they evolve in

time. Figure 8.5 and 8.6 depict runs of a cautious and a reckless pedestrian, respectively. The

position of both pedestrian and vehicle are shown in the graph with the title ‘continuous position.’

The vertical axis of the graph is the distance from the crossing, where negative values represent

positions that are before the crossing point.

8.3.2.1 Crossing safely

We can see that whether interacting with a reckless or a cautious pedestrian, the lines for the

vehicle and the pedestrian positions are never seen to be between the crossing region, 0.0 to 4.0,

simultaneously. This indicates that no collision occurs.

8.3.2.2 Beliefs over non-observable states

In our scenario, the key to communication is the inference of behaviour, which resolves to a

question about the pedestrian’s crossing decision (ξt). ξt is calculated based on the perilousness

of the crossing for the pedestrian and also their habitual characteristics (Hchr). Since neither this

characteristic nor ξt are observable, the vehicle’s knowledge of these two elements is understood

in terms of the belief state (or distribution) over both variables. The third plot in the results figures
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Figure 8.5: Simulation results showing a vehicle executing a policy, interacting with a cautious
pedestrian.
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shows how the belief of the characteristic converges to the correct trait. As for the belief distribu-

tion of ξt, it appears along with the actual pedestrian’s ξt value for comparison in the fourth plot

of the result figures. Notice that ξt changes, but the vehicle’s belief distribution shows to track the

changes in the pedestrian’s ξt.

Figure 8.6: Simulation results showing a vehicle executing a policy, interacting with a reckless
pedestrian.

8.3.2.3 Implicit communication — an interpretation

To help comprehend the results, we chose to compare the behaviour of simulated autonomous

vehicle with human drivers under circumstances where they are uncertain of the pedestrian’s sense

of who should cross. Figure 8.7 is a summary of the behaviour of our simulated vehicle. We have
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redrawn this figure from [1], using their style of summarization, along with some modifications

to improve clarity, but with numbers reporting results from our experiments. The percentages

and speed values are based on data from simulations interacting with a reckless pedestrian. (One

example of the strategy is shown in Figure 8.6.)

Schneemann and Gohl [1] report that human drivers resolve ambiguous situations by initially

reducing their speed, and then decide to whether to speed up or come to a stop depending on

the pedestrian’s response to their speed reduction. We see that the vehicle’s strategy is less con-

servative compared to human drivers. Figure 8.7 can be interpreted as the vehicle trying to gain

efficiency rewards but also balancing uncertainty. Instead of slowing down to passively learn the

pedestrian’s crossing order decision, the vehicle remains at moderately high speeds, seemingly

expressing its desire to cross first. This communicates with the pedestrian and the pedestrian’s fol-

lowing movement can be explained as a reply to the crossing arrangement. In Figure 8.5, the cau-

tious pedestrian is shown to slow down, giving the vehicle permission to cross first. In Figure 8.6,

the reckless pedestrian accelerated to express disagreement on the vehicle crossing arrangement.

Both the vehicle and the pedestrian continue to adapt their maneuvers thereafter in order to reach

agreement on crossing order.

Figure 8.7: Strategies of the vehicle in ambiguous situations with a reckless pedestrian simulated
for crossing (redrawn with modifications from [1]).
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8.3.3 Explicit communication

We also conducted a simple experiment to analyze the value of communicating crossing order

by creating an action that communicates ξt explicitly. In Figure 8.8, an action is added where the

vehicle may flash its headlights. We model the pedestrian as understanding this action as indicating

that the vehicle intends to let the pedestrian cross first. Additionally, to have the vehicle’s policy

be deliberate in choosing to communicate intent in establishing ξt, we penalize using the lights

through modifying the reward model.

We conducted the experiment with a reckless pedestrian. The result, in Figure 8.8, shows that

the vehicle opts to flash its lights (quite frequently) despite the negative reward incurred. Moreover,

as we compare the third graph in Figure 8.6 and 8.8, it is clear that knowledge of the pedestrian’s

characteristic is recognized faster with explicit communication. The fourth graph in both figures

shows that ξt also stabilizes sooner. And, as the ambiguity is resolved, the result is that both the

vehicle and pedestrian cross the crosswalk more efficiently.
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Figure 8.8: A reckless pedestrian interacts with a vehicle equipped to flash its headlights, commu-
nicating explicitly.
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9. CONCLUSION

Social interaction is valuable in resolving ambiguity in traffic; it is necessary for autonomous

vehicles if they are to operate harmoniously within the existing system, infrastructure, and norms.

In this work, we proposed an MDP model to explore how velocity-based signaling affects vehicle-

pedestrian interaction in a simple setting under a decision-theoretic model. The model shows to

result in safe interact when pedestrians behave similarly to the model assumed within the MDP.

Moreover, we planned under uncertainty arising from non-determinism and partial observability

and examined how an uncertainty-aware planner can help an autonomous vehicle interact compe-

tently.

We consider the work’s main contributions to be:

• Reproduce crossing interaction via solving a Markov decision process: We modelled the

vehicle to perform socially at an unsignalized intersection based on reward functions de-

scribing the importance of safe and efficient crossing. Our results show that the vehicle is

capable of selecting the sequence of actions that performs an efficient collision-free cross-

ing. We can even observe how conservative the vehicle is by analyzing how long the vehicle

waited to start crossing before or after the pedestrian crosses.

• A minimal model of social ambiguity: Though the sophisticated human social behaviour

is challenging to quantify, in our scenario, we boiled several fairly complex and abstract

concepts down to a single source of uncertainty, in a sort of concise, ‘lumped parameter’

model via the binary variable we term the pedestrian’s crossing intention. Despite there

being a collection of factors, our approach gives a single expression that can be interpreted

in terms of probability.

• Framing a practically solvable partially observable decision problem: Exploiting the con-

ciseness of the representation means the vehicle needs to maintain a low-dimensional distri-

bution, making it practical to solve for a sequence of actions. Moreover, these actions in-
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clude ones that elicit information and manage uncertainty. Initially, it was far from clear how

causally cyclic nature of communication would be accommodated. The model we present

expresses this satisfactorily, albeit indirectly via transition dynamics.

• Implementation on autonomous vehicle: We illustrate the feasibility of the approach by con-

ducting a demonstration on a real vehicle. Our experiment results show a vehicle capable

of resolving uncertainty in order to achieve efficiency. An examination of the vehicle’s be-

haviour suggests that the strategy is less conservative than some driving behaviour, including

some humans while trying to resolve ambiguous situations.

Our broader philosophy is that several aspects of social interaction are means for coping with

uncertainty so that representing uncertainty explicitly and dealing with it efficiently, yields robots

that are socially effective. Much further research remains to be conducted to better understand and

realize social behaviour in vehicles.
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