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ABSTRACT

The development and subsequent studies regarding statistical convergence for a data-driven

calibration approach to physics-based models are presented with the ultimate goal of using the

resulting method to analytically quantify anomalous behavior seen in experimental data of Hall

effect thrusters. This calibration approach uses a single output signal to calibrate unknown input

parameters of a computational model to a reference solution, either trusted analytical results or

experimental data. The dimension of the output signal is increased by taking a time-delay em-

bedding, based on the Takens Embedding Theorem, and the resulting time-lag phase portrait is

binned as a probability distribution function. The first Wasserstein metric is used to quantify the

difference between two solutions as a single variable. This process is automated using an evolu-

tionary algorithm function from Sandia National Laboratory’s DAKOTA algorithm. The canonical

chaotic Lorenz attractor, a zero-dimensional bulk plasma model, and a two-dimensional Hall effect

thruster model are used to characterize and minimize the numerical uncertainties incurred by this

model calibration method and give conditions for the definition of an optimal solution. Results

indicate verification of the method’s ability to uncover unknown input parameter values. In partic-

ular, the model calibration method is shown to obtain results within 1% of the reference solution

for various signals that were not used during the calibration process. Additionally, a more active,

online, calibration technique is developed in conjunction with this thesis to detail the first step in

the development of a more robust method in future work.
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NOMENCLATURE

A, B, C constants of the ionization rate coefficient equaiton

B magnetic field

E electric field

Fij a fluid-like flow of numerical mass

Lch thruster channel length

Mi mass of a Xenon ioni

Ni, Nn number density of ions and neutrals

Nint initial number density of neutrals

Ns number of time steps

R4 thruster channel width

Te electron temperature

Ui, Un ion and neutral speeds

Ui,w ion acoustic speed

Vd voltage

an amplitude of the sinusoidal temperature function

dij distance between bins of the same width on two separate
distributions

e elementary particle charge

fij transportation cost

m, me mass of an electron

t time

ue,⊥ electron bulk velocity
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~xref reference solution data

~xtrial trial solution data

x nondimensional rate of convection

y nondimensional horizontal temperature variations

z nondimensional vertical temperatrue ratio

ΣX , ΣY total weight of distribution X and Y

α electron mobility parameter

β nondimensional ratio of critical and current Rayleigh numbers

~β set of unknown input parameters

ε difference between two distributions

ε0 convergence criterion

εion ionization rate coefficient

µeff effective cross-field mobility

ρ nondimensional geometric constant

σ nondimensional Prandtl number

ωc,e electron cyclotron frequency

ωq frequency of a sinusoidal temperature function
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1. INTRODUCTION

The dynamics of spaceflight allow for electric power to be used to accelerate propellant for

thrust in a manner more efficient than chemical-based propulsion. One method of generating thrust

is to use the interaction of a current in an ionized gas and a magnetic field supplied by permanent

magnets or electromagnetic coils to accelerate the ionized gas out of the thruster. Hall effect

thrusters represent one branch of this electromagnetic propulsion. Developed since the 1960s,

this particular type of propulsion is predominantly used for station-keeping or orbit adjustments

on unmanned satellites, though some missions such as NASA’s Dawn mission have used Hall

effect thrusters as the primary source of propulsion [1]. These thrusters operate on the principle of

accelerating ionized plasmas to high speeds and ejecting them out the open end of a thruster [2].

Figure 1.1 provides a visual guide of the basic Hall thruster operation. The back of the thruster

houses the anode and the propellant gas injectors. The electrical counterpart of the anode, the

cathode, is located either just outside the thruster channel [2], as seen in Fig. 1.1, or is centrally

located within the channel ring [3] to provide a steady stream of electrons to the thruster. The

electrons interact with an imposed radial magnetic field provided by coiled magnets within the

thruster. The interaction of the radial magnetic field and axial electric field generates a Hall current

where the electrons are trapped in a circling (azimuthal) ring in the downstream portion of the

thruster channel. As the injected gas gets ionized, the Lorentz force, the cross product of the

magnetic and electric fields, accelerates it through the thruster channel. Though the generated

thrust is low as only ionized particles are ejected at high speeds, this type of thruster offers high

specific impulse, throttleability, and high levels of efficiency [2].

The modeling of Hall effect thrusters has been studied for nearly as long as they have been

developed. Models can follow individual particles [4], fluid continua [5], or a combination of the

two [6] to develop the resulting plasma physics. The limitations of physical testing, from actual

costs to the intrusion of probes or other data collecting methods in the thruster plume, have pushed

computational models to advanced levels [7]. Despite the slew of complex models employed by
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Figure 1.1: The basic operation principles of a Hall Effect Thruster.

the research community, the development of a truly predictive model is still in progress as most

models have reached the same analytical limit where no further progress can be made without a

better understanding of certain physical processes. One of these processes is the termed anomalous

electron transport, where electrons are known to cross magnetic field lines and significantly alter

the efficiency and lifespan of a thruster by bombarding and eroding plasma-facing surfaces [8].

Significant levels of electron mobility have been seen in experimental results that do not appear in

any computational model to date, prompting strong focus on this research topic.

Part of the difficulty in developing a model for anomalous electron transport is the chaotic na-

ture from which it is borne. The reliability of a computational model to capture physical behavior

is dependent upon the model’s ability to reproduce validated physics. The inherent complexity

of physical phenomena proves difficult to reproduce in any field of research due to the close cou-

pling of equations, existence of chaotic behavior (turbulence), and multiple temporal and spatial

scales existent in the model. Specifically, modeling chaotic behavior is nearly impossible using

only strict analytical expressions, as evident by the difficulty had by any research community in

reliably reproducing chaotic occurrences in nature. To combat the complexity of natural phenom-

ena, approximations are often made in computational models to simplify the analytical expressions

being solved and reduce simulation time. These approximations introduce numerical uncertainties

and can dampen significant physical processes. One method to counter these effects is to develop a
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data-driven model that uses validated experimental or analytical results to inform relations between

inputs and outputs of a computational model. In data-driven modeling, an arbitrarily complex map

that is not necessarily derived from strict analytical expressions of physical behavior is developed

to more accurately predict physical phenomena. These relations often operate as black boxes that

are considered insufficient to understand fundamental physics due to the lack of strict analytics.

By using data-driven modeling with physics-based analytical expressions that contain unknown

parameters, also termed theory-guided machine learning, the accuracy of the model can be im-

proved by restricting the learning process to only closure terms of the physics-based conservation

laws. This technique has yet to be employed by the Hall thruster community but it can likely offer

new insights into the physics if properly employed.

This thesis details the development, uncertainty quantification, and initial application of a static

data-driven model calibration method before presenting a more active calibration method at the

end of this work. The development of this calibration method, a steady-state or static method, is

a critical first step towards a more robust and complex dynamic method that accounts for time-

varying parameters. Developing a simpler system can help the community to understand the best

optimization practices for the given system, whether the system can be optimized, the effects of

noise on the system, and the difficulties in corroborating experimental and analytical data. After

a literature review of Hall effect thruster models and data-driven modeling of dynamic systems,

Chapter II will detail the actual calibration method used in this work. Chapter III discusses initial

application to a canonical chaotic model, the Lorenz problem, to discuss some sources of numerical

uncertainty. Chapter IV uses a zero-dimensional predator-prey model of a bulk plasma to perform

various convergence studies on the proposed calibration method. Chapter V will see the method

applied to one of the common Hall effect thruster models used today. Lastly, Chapter VI will

present an active optimization process from the controls field that uses an extended Kalman filter

to preform real-time estimation of simulation parameters.
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1.1 Literature Review

The literature review will be split into two categories: (1.1.1) Hall effect thruster modeling and

the specific behavior of anomalous electron transport and (1.1.2) data-driven modeling as applied

to dynamic, time-dependent systems.

1.1.1 Hall Effect Thruster Models

Many Hall effect thruster models have been developed over the years to simulate different

aspects of thruster behavior depending on the desired physics to be captured, the computational

cost of the modeling technique, and the acceptable limit of numerical inaccuracies accrued by the

chosen modeling technique. Kinetic particle-in-cell (PIC) models track macroparticles to study

particle-level interactions [4, 9]. These models have been used by Campanell to study sheath insta-

bility [10], Katz for ion acoustic waves and anomalous electron transport [4], a three-dimensional

model by Taccogna and Minelli [11] as well as one by Hirakawa that showed azimuthal oscilla-

tions’ effect on electron motion [12], and a model by Fife that was used to compare PIC results

with experimental data [13]. Fluid models treat each particle specie as a fluid continuum [5] and

are used as a balance between simplicity and reliability in the model to show that the fluid-like re-

sponse of plasma can be used to explain many phenomena seen in experiments [14]. Kaganovich

et. al. use nonlinear fluid models to describe instabilities in Hall thrusters [15], Barral et. al.

study electron-wall interactions and backscattering [16], Barral and Ahedo study the interaction of

standing waves and the transport of neutral species [17], and Mikellides and Katz study the effects

of the resistance to classical electron transport in the parallel direction [18]. Many fluid models

are used as part of hybrid-PIC models that treat electrons as fluids and the other heavy species

as particles [6]. Hofer et. al. use this type of model to develop a three-region electron mobility

model [19]. Jorns proposes a transport model based on plasma wave theory [20], and Hara’s fluid

model has been used to study plasma perturbations [21]. Fife’s hybrid model has been successfully

used to identify breathing mode oscillations in plasma behavior [13].

Electron transport has specifically been studied by Hagelaar as a two-dimensional hybrid model [22],
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Boeuf and Garrigues consider electron-neutral collisions dominant [23], Morozov et. al. and La-

tocha et al proffer that electron-wall interactions play a significant role [24, 25], Adam et. al.

link plasma turbulence to anomalous electron transport [26]. Koo proposes a two-region spatial

model of anomalous electron transport [27], and Hofer uses a three-region spatial model [19].

Fife’s HPHall model has been edited to include an anomalous electron transport model based on

Jorns [6, 20]. Note that this is not an exhaustive list of models used by the community, but a list of

those pertinent to this work.

1.1.2 Data-Driven Modeling

Data-driven modeling is employed across a range of disciplines to further computational mod-

els by using trusted reference solutions to "train" a model [28, 29, 30, 31, 32]. Often a set of input

parameter values are desired to be found such that they yield specific output characteristics. Various

techniques that have been developed towards this end include symbolic techniques [33, 34], sparse

regression [35, 36], compressive sensing [37], neural networks [38], system identification [39],

and dynamic mode decomposition [40]. Disciplines including water reservoir research use data-

driven modeling to provide insight to indicators or precursors of flow regime transitions and wave

instabilities [31, 32]. Though machine learning and data-driven modeling are becoming common

in various research communities, it is not very common in plasma physics. Most notably, Jorns

has used symbolic regression techniques to create a steady-state data-driven model for anomalous

electron transport [20]. More useful to this work is the plethora of research performed on nonlin-

ear, chaotic systems and identifying underlying equations [41] or create symbolic equations from

time series data [42]. Prediction of future chaotic attractor states by kernel regression is performed

by Nadarya [43]. He, Wang, and Liu used particle swarm optimization to estimate parameters for

chaotic systems [44]. Guerra et. al. performed nonlinear identification of a chaotic system using a

radial basis neural network [45].

More widely studied is the use of data-driven modeling on dynamic, nonlinear, chaotic mathe-

matical models. The history of phase space reconstruction, a method of viewing nonlinear dynamic

data discussed later in this work, can be traced back to Poincare and a desire to model nonlinear
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dynamics [46]. Kutz, Brunton, et. al. have used a variety of approaches for nonlinear systems in-

cluding the Koopman operator [47], sparse identification [48], sparse regression [49], and dynamic

mode decomposition [50] for nonlinear dynamical systems to reduce the amount of training data

needed for calibration.

Though work continues to be performed towards a solution for anomalous electron transport,

a majority of current approaches rely on a steady-state assumption where the mobility is based

upon one or more constant-value parameters or weighting schemes. This may be an oversimplifi-

cation of the steady-state operation mode of Hall effect thrusters. Instead, a dynamic (in time or

space) solution must be determined to account for all modes of a Hall thruster that require differ-

ent operating conditions. Work to date, such as that by Koo or Garrigues, has only assumed static

models [19, 27]. The static model developed as part of this thesis serves as the building block

for the development of a dynamic calibration model. The simple lack of data-driven modeling

techniques applied specifically to plasma propulsion leave a broad field of potential new insights

to computational models.
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2. DEVELOPMENT OF A DATA-DRIVEN METHOD1

Figure 2.1: Overview of an online and offline data-driven model calibration method to depict the
difference between methods.[51]

Data-driven modeling can take one of two forms: offline or online, shown in Fig. 2.1. Offline

validation requires the full simulation to be run for all possible input parameters, iterating through

simulations until good agreement in the observed output signal is obtained with the reference sig-

nal. Alternatively, online validation actively updates a random set of input parameters by compar-

ing the output signal trace to the reference solution every few time steps within a single simulation

to obtain a final signal trace of the desired quantities and, by extension, the corresponding unknown

input parameters. Despite the difference in approach, both methods face similar challenges. One

is the identification of relevant optimization metrics. It must be determined whether an optimized

solution truly approaches a physically correct solution despite numerical inaccuracies incurred by

1Reproduced from C.M. Greve, K. Hara, R.S. Martin, D.Q. Eckhardt, and J.W. Koo. "A data-driven approach to
model calibration for nonlinear dynamical systems" Jour. of Appl. Phys. Vol. 125, No. 244901, 2019. with permission
of AIP Publishing.
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the calibration method. It is important to note that true convergence may be impossible in all but

an infinitesimal limit, especially for noisy and chaotic data, thus requiring a need to demonstrate

statistical convergence. This comes from the concept of the Lax equivalence theorem [52] that

determines whether results obtained from a numerical model converge to a unique exact solution

in the limit of some infinitesimal discretization, spatial or temporal. Another challenge to both

optimization forms is the selection of the output signal for calibration that best represents the sys-

tem. A balance must be found between uniqueness of the signal chosen, a gradient in the response

surface towards this solution, and the data analysis required. Additionally, a signal that affects the

desired phenomenon in a system should be chosen to better predict appropriate input parameters

or their time-dependent traces.

The resulting input parameters determined by a model calibration method are used to classify

the type of optimization performed, and fit into two classifications: static and dynamic. Static

optimization yields a stationary set of optimized parameters while dynamic optimization yields

parameters that vary spatially, temporally, or both [54]. Initial static optimizations can be used to

assess the validity of a given model or determine the best configuration of experimental data to

be used before applying the more complex dynamic optimization method [55, 56]. For the case

of electric propulsion, the concept of a steady-state operation mode has left some research relying

heavily on static methods to only marginal success [19, 27]. Because of the variability of this de-

vice even during steady-state operation modes, dynamic time- and space-dependent equations and

optimized solutions may be required to solve the anomalous behavior of Hall effect thrusters rather

than the time-averaged solutions currently being pursued. As a first step towards the development

of a dynamic optimization method, a static method is presented in this work.

In a general offline optimization scheme, the user’s quantities of interest from either a known

solution or observable datasets of the system are selected as the reference data, ~xref . While a data-

driven model works using an arbitrary number of observable signals, one of the advantages is the

possibility to construct a unique shadow manifold that directly corresponds to the underlying state-

space dynamics of an entire system using only a selected subset of output signals [53]. Determining
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Figure 2.2: Overview of a data-driven model calibration to obtain appropriate input values that
result in a near-reference solution. ε is the cost function, or the discrepancy, between the reference
data, ~xref , and the trial data, ~xtrial from a physical model of choice.

the necessary output signals directly translates to a basis for the reference data acquired from

experiments. This would be beneficial to experimental work that often observes all possible state

variables, a costly practice. Knowledge of the driving equations of a system can guide the selection

of a subset of observable quantities that can capture the complete state space dynamics [57, 58],

but determining the driving equations falls under the category of system identification which is

not the focus of this thesis. The governing equations for the systems presented in this work are

considered known and understood.

Figure 2.2 depicts the generalized data-driven optimization process used in this paper. The

physics-based model is run with a selected set of values for the unknown input parameters, ~β, to

produce a trial solution, ~xtrial. The trial solution is compared to the reference solution, ~xref , and

the discrepancy, ε, between ~xtrial and ~xref is calculated. If the discrepancy, called the cost function,

is large, a new set of input parameters is determined by the overarching optimization scheme and

the process repeats. This iterative cycle continues until a convergence criterion uniquely specified
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for the given problem is met, i.e., ε ≤ ε0. When the minimum cost function is found, it can be

considered that an (approximately) optimal set of input parameters which capture the dynamics

of the reference solution is obtained. Determining a converged solution requires an appropriate

distance measure between two solutions as well as a valuable convergence criterion. Additionally,

an optimization algorithm that may not be able to rely on the existence of a coherent gradient in the

response surface of the cost function is required to comprehensively search the domain of possible

input parameter values for an optimized solution. The remainder of this section will develop the

data-driven calibration method and address some concerns that arise from this general optimization

process.

2.1 Representation of a Dynamic System

Dynamic, time-dependent signals have been commonly represented using linear techniques

that employ a superposition of static basis functions to capture the dynamics of a system. The

most common of these are the various types of Fast Fourier Transforms (FFTs) that decompose an

N-point signal into N individual signals. These individual signals are transformed into individual

frequency spectra that are synthesized into a singular continuous spectrum. Various extensions

have been developed to address the shortcomings of the basic FFT. One limitation of the FFT is its

assumption of a finite dataset that contains one full period of a periodic signal whose endpoints are

interpreted as continuous. Any non-continuous end points result in discontinuities that generate

high-frequency components in the FFT that do not exist in the original system and can corrupt the

resulting FFT. Time-windowed FFTs only use data over a specific length of time, multiplying the

data by a smoothly-varying function that decreases towards zero at the edges [59]. This reduces

the amplitudes of the data at each end of the window, decreasing the size of the discontinuities.

This can also be applied as a sliding window to capture all of the data as a series of windowed

FFTs applied consecutively across a domain, though the length of the window limits the frequency

resolution. Wavelet transforms decompose a signal into both real and Fourier space as compared

to the FFT that only uses the Fourier space. This type of transform not only provides the spectrum

of frequencies present in a system, like an FFT, but also gives information as to when the changes
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Figure 2.3: (a) A time-dependent solution. Shown is an example signal X(t) = sin(0.3t) +
30 sin(1.4t) + 23 sin(10t). (b) The solution converted into trajectories, the time-lagged phase
portrait (TLPP), using the time lag, τ . (c) The probability distribution function (PDF) of the TLPP
is obtained by binning the trajectories, which is referred to as the PDF-TLPP in this paper. 50 bins
are used in each direction of the PDF-TLPP.

in frequencies occur.

Linear techniques can capture the spatio-temporal evolution of frequency components and

wave modes of systems. However, these methods are subject to challenges when noise is present

in the system, when the system needs to be represented succinctly, and when determining causality

and correlation in a system [60]. Though mathematically the FFT can produce an exact recon-

struction of the original signal, in practice, measurements are discrete and will contain noise. The

fidelity of the representation is linked to the number of degrees of freedom in the FFT. Experimen-

tal noise typically inhabits higher frequency regions, which can only be captured as the number

of degrees of freedom increase. Thus, FFTs either require very long signals or a truncation of

the total number of modes generated to handle noise in a a system. The transforms provide full

and often complex representations of dynamic systems that are difficult to simplify without losing

the physics of the system. Linear techniques also lose the correlation between near points or fre-

quency modes, preventing one’s ability to understand causality in nonlinear systems. Conversely,

nonlinear techniques can be used to represent a signal as a unitary symbol in n-dimensional space

without immensely long signals in such a way that the data remains correlated and physical.

Figure 2.3 depicts an example of using a time-lagged embedding to create a time-lagged
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phase portrait (TLPP). Figure 2.3 (a) is mapped against itself at an earlier time to create a two-

dimensional time-dependent evolution of the system, shown in Fig. 2.3(b). The embedding sepa-

rates unitary symbols from signal measurements by one or more fixed time delays to capture the

state of the entire system in a single signal trace, i.e., an embedded phase portrait can be con-

structed using a signal at time (t) and at a delayed time (t − τ) in a coupled dynamic system,

where τ is the specified delay. Each symbol in the phase space of the TLPP represents a complete

state of the coupled system at that instant in time [60]. Dynamical systems theory consists of casu-

ally linked time-dependent variables of the same system. The metric, dynamical, and topological

properties of the created strange attractor are characteristic of the underlying nonlinear dynamical

system [61]. In the case of deterministic nonlinear dynamical (chaotic) systems, the variables share

a common attractor manifold such that each variable can identify the state of the others because

of its deterministic nature [60]. This implies that we can model the underlying dynamics of a sys-

tem by modeling the dynamics of the corresponding points in the phase space, the foundation of

predictive modeling. Using this principle, a discussion of the necessary delay embedding must be

considered.

The conditions for which a single signal can be embedded to higher dimensions to obtain

a unique map of the original discrete-time dynamic system are provided in Takens Embedding

Theorem [62]. Takens proved that instead of the 2n+ 1 individual signals required by the Whitney

theorem for uniqueness in phase space, the time-delayed versions of a single signal could suffice

to embed a n-dimensional manifold. The theorem reads:

Theorem 1. Let M be a compact manifold of dimension m. For pairs (φ,y), where

φ:M → M is a smooth diffeomorphism (an invertible function that maps one differen-

tiable manifold to another such that both the function and its inverse are smooth) and

y:M → R a smooth function, it is a generic property that the (2m + 1) –delay obser-

vation map Φ(φ,y) :M → R2m+1 given by Φ(φ,y)(x) = (y(x), y ∗ φ(x), ...y ∗ φ(x)) is an

embedding; by ‘smooth’ we mean at least C2. [62].
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Put colloquially, a smooth diffeomorphism between two manifolds and a smooth function can use

2m + 1 delay embeddings to create a unique representation of system dynamics. Because the

number of attractor dimensions is unknown for real systems and can be large since the amount of

data required to densely populate the attractor grows with the power of its dimension, the desire

exists to use fewer than 2m+ 1 embeddings.

In this work, only one time embedding is considered to construct a two-dimensional time-

lagged phase portrait. It is understood that an optimal solution may not be uniquely defined in this

low-dimensional TLPP even in the limit of infinite data. This could result in more than one set of

input parameters yielding an optimal solution and require a multi-delay embedding to create a truly

unique solution. Nevertheless, even a low-dimensional mapping can provide useful information for

the optimization process and the underlying dynamics of a system.

In conjunction with determining the number of embedding dimensions to be used, a discus-

sion of the selection of an appropriate time lag is required. From theory, as the amount of data

approaches infinity for a finite dimensional attractor, the time lag used for the embedding becomes

irrelevant so long as the density of points on the finite dimensional attractor becomes high faster

than the lag approaches zero. However, in finite real-world data, the short time lags from measure-

ment are those most influenced by experimental noise, while arbitrarily long time lags can corrupt

the predictive power of the embedding because chaotic effects obfuscate casual relationships in

data. At long lags, the subsequent points appear only stochastically related rather than the result of

causal dynamics. A common approach to compute an optimal time lag τ is based on the amount of

mutual information between a pair of observed values. The optimal time lag τ returns the mutual

information between observations is lowest. For timescales shorter than the Lyapunov exponent,

high mutual information is expected because of the strong deterministic dependence of the signal

on its lag. However, at very long lags, chaotic systems become unpredictable and the mutual infor-

mation approaches zero. The heuristic chosen by Fraser, the first minimum of mutual information,

provides a generally good choice of lag for time delay embeddings because it distinguishes a point
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where correlations resulting from short sampling time redundance are overcome by the mutual

information contribution from relevant characteristic dynamic timescales of the system. However,

this tradeoff is a delicate balance and the existence of such a minima is not guaranteed. Further

discussions to this end can be found in Reference [64]. For this work, the time lag is chosen

dependent upon the uniqueness of the resulting TLPP representation.

2.2 Binning the TLPP

The time-lagged phase portrait is still a direct portrait of the original system where each point

is discrete and the number of data points is of the same order of magnitude as the original output

signal. Validation of chaotic systems is challenging due to the randomness of state variable patterns

in spatio-temporal evolutions. Yet, this randomness reduces the requirement to exactly retrace the

exact system trajectories to obtain an optimal solution. This can actually help to reduce effects of

noise in a system as the stochastic representation of the time a system spends in a discretized region

of space becomes more significant than a precise spatio-temporal evolution. Binning the TLPP as a

probability distribution function (PDF) provides a way to characterize nonlinear dynamic systems

without exactly tracing the chaotic variations of state variables, enabling robust optimization of the

system, Fig 2.3 (c). This binning greatly reduces the amount of data used in the calibration process

as the amount of data is only as large as the number of bins used to discretize the continuous TLPP.

Note that infinite data with an infinitesimally small bin size would yield a continuous PDF-TLPP

of the time-averaged properties of a dynamic system.

For any finite data series, a probability density estimate will contain both sampling and dis-

cretization errors that will allow for only statistical convergence between solutions. The conver-

gence of the low-dimensional PDF-TLPP is not sufficient to guarantee uniqueness of the solu-

tion but is a necessary prerequisite for convergence of higher-dimension systems. This makes the

low-dimension PDF-TLPP useful for model calibrations, verification, and validation of data-rich,

time-variant, nonlinear, chaotic systems.

Despite these sources of error, the PDF-TLPP yields three key benefits compared to more

traditional linear methods. (i) Because the system does not rely on the signal being periodic or
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continuous, there are no restrictions on using a non-smooth signal. Near-discontinuities are easily

represented, which is vast improvement over gradient-based or spectral methods. (ii) Based on

Takens Theorem, the proposed representation remains mathematically connected to the dynam-

ics of the entire system for any number of output signals used. This is imperative to reduce the

amount of data required for model calibration without compromising the uniqueness of the so-

lution. (iii) Having reduced the data to a probability distribution function, a variety of classical

distance-measuring techniques can be employed to quantify the difference between two solutions.

The selected measurement for this work is discussed below.

2.2.1 Distance Measurement

Traditional optimization techniques work to minimize a specific value, typically a scalar math-

ematical norm for the case of model calibration. This norm must meet two basic criteria to ensure

that the value, the objective or cost function, is properly minimized. The first condition is that two

identical solutions should return a zero value. The second is that the greater the difference between

two solutions, the larger the value of the norm should be. Distance measures are commonly used

in the image-processing community to compare two images, and have been well researched and

documented [65]. The most common mathematical norm used across a variety of disciplines is the

L2 norm, also known as the Euclidean norm. The L2 norm is calculated as the square root of the

sum of the squared vector magnitudes of distance, specifically, the shortest distance to move from

one position to another:

||x||2 =
√
|x1|2 + ...+ |xn|2, (2.1)

Because this method involves squaring the error values, outlier points hold larger weight and can be

the downfall of this method as it tries to reconcile an outlier at the expense of other well-matched

data. This becomes problematic when two solutions occupy entirely different regions of space and

the resulting L2 norm is deceptively low compared to two solutions that are far similar [66, 67].

This work uses the first Wasserstein metric, often employed by the image processing com-
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munity as the Earth Mover’s Distance [68] and the mathematics community as the Kantorovich-

Rubinstein distance [69]. A similar process has been performed by Robim, Yiou, and Naveau [70]

using the Wasserstein metric, W1 metric. Simply stated, in the limit of a single delta function de-

scribing each of two distributions, theW1 metric is the difference between the distributions defined

by a cost metric derived from the Euclidean distance between two points in phase space [68].

Consider F to be a feasible fluid-like “flow” that represents the total weight of a distribution,

e.g., the entire PDF-TLPP, and the distance said weight moves from one distribution location (X)

to the other (Y ). The total work performed by a flow can be written as,

w(F,X, Y ) =
m∑
i=1

n∑
j=1

fijdij, (2.2)

where fij is the transportation cost, i.e. the weight that is moved between the discrete points xi

and yj in distributions X and Y , respectively, dij = |xi − yj| is the distance between xi and yj ,

and m and n are the number of data points in each distribution. For this work, the cost fij can

be considered the weight of a single discrete bin in one PDF-TLPP, e.g., the trial solution, that is

moved some distance, measured as a Euclidean distance, to match a bin of similar weight in the

other PDF-TLPP, e.g., the reference solution [71].

The Wasserstein metric is the minimum net work of Eq. 2.2, normalized by the weight of the

lighter distribution,

W1(X, Y ) =
minF=(fij)w(F,X, Y )

min(ΣX ,ΣY )
, (2.3)

where ΣX is the total weight in distribution X and ΣY is the total weight in distribution Y . In

order to remove the effect of the number of sampling points (e.g., time steps), the weights are

normalized. The Wasserstein metric allows for complex situations such as partial mappings and

comparing bins of different weights, as described in the work of Bonneel, et. al. [72].

Having reduced the difference between two solutions to a single value, the Wasserstein metric,

an optimization algorithm can be employed to minimize this cost function. The existence of an
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apparent gradient in theW1 metric can assist in locating an optimal solution more rapidly. It can be

seen from Eqs. 2.2 and 2.3 that a zero-valued W1 will be returned if the two images are identical

since dij = 0. It will be shown later that in the near-reference solution region, any gradient towards

a true solution that exists breaks down and becomes too chaotic for the optimizer reliably use to

determine where W1 = 0. The convergence criterion, ε0, should be low enough to allow for

optimization but not so low that the system runs for thousands of iterations. The focus of this work

is to minimize the cost function rather than meet a convergence criteria, thus ε0 does not play a

significant role in the remaining sections and is left for future work.

2.2.2 Optimization Algorithm

Having detailed a method to succinctly compare the output of a system to those of a reference

solution and the difference reduced to a single value to be used with a classical optimization algo-

rithm. The desire to automate the optimization process and run it on a supercomputer lead to the

decision to use the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA)

optimization algorithm library developed by Sandia National Laboratories [73]. DAKOTA pro-

vides robust software for optimization algorithms and uncertainty quantification. This limited the

possible methods to be used to those available in DAKOTA.

There are a variety of optimization techniques that can be used to obtain an optimal solution.

Function-based methods such as interpolation or pattern searches rely on the specific algorithm to

select points to be tested as part of a pattern, regardless of the objective functions. Gradient-based

methods such as gradient descent or coordinate descent rely on the existence of a gradient in the

response surface of the objective function towards a minimal solution. Hession methods such as

Newton’s method or interior points use the second-order derivative of the function to minimize

the objective function. Nonlinear systems can exhibit mode transitions, yielding non-smooth and

non-convex response surfaces during optimization. This precludes the use of gradient-based meth-

ods for more robust, though expensive, global optimization techniques. The development of a

derivative-free global optimization method exceeds the scope of this work and complexity of the

problems studied, thus a pattern search provided by DAKOTA is used: the evolutionary algorithm.
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Figure 2.4: The flowchart for an evolutionary algorithm optimization scheme [74].

Figure 2.4 shows an example of the evolutionary algorithm that is selected for optimization,

named colinyEA from the SCOLIB library in DAKOTA[73]. The initial population refers to the

first generation of points that exist randomly throughout the domain space. Each point (member)

of the initial population is ranked according to the value of each objective function, the W1 metric

values. The members with the lowest objective function values are cloned while the entire popu-

lation is simultaneously split into pairs of points (parents). These pairs generate “children" points

according to user-defined percentages specifying how likely points are to be similar (crossover) or

to differ (mutation) from the parents. The new points represent a new generation (population) and

the process continues until the user-defined convergence criterion is met by one of the trial points.

Plotting the parameter sets tested as a function of time and as a function of their resulting W1 met-

ric values are instrumental to determine the fittest ranges for each input parameter for subsequent

optimization attempts if desired. The evolutionary algorithm offers high concurrency, randomly

searches across the entire domain initially, and results in a narrowed range of possible solution

values.

A few details about the simulation process are included for completion. Initial work was per-

formed using the Galaxy Simulation Builder, a graphic user interface for using DAKOTA devel-
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oped by Stellar Science LLC and the Air Force Research Laboratory [74]. The interface allows

the development of an automated optimization program for any arbitrary model without altering

the source code as well as acting as the coordinating server for remote computing. It will be noted

when simulations using the GSB are performed for certain optimization attempts. Whether the

GSB is used or not, the DAKOTA algorithm is selected and customized with parameters including

the maximum number of function evaluations, convergence criteria, input parameter search ranges,

and how many evaluations can run concurrently. The code sections that run the model, generate

the PDF-TLPP, and calculate the W1 metric are written to accept the previous step’s output as a

necessary input file. The initial model can be of any coding language, this work uses C and Python

depending on the system, while the modules corresponding to the creation of the PDF-LTPP are

written in Python. Calculations of the W1 metric require the PDF-TLPP to be normalized and the

code to use linear programming techniques as this is inherently an optimal transport problem. The

Python Optimal Transport (pot) library is implemented with the pre-developed emd function based

on the work of Bonneel, et al. [72, 75].
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3. INITIAL APPLICATIONS USING THE LORENZ PROBLEM1

Initial tests of the proposed calibration model are performed using the canonical nonlinear,

chaotic Lorenz system. This dimensionless chaotic attractor, named for the stationary nodes around

which the system orbits, was developed by Edward Lorenz to model atmospheric convection [76].

Lorenz developed these equations to emulate rolling fluid convection as an extremely simple model

to visualize patterns noticed in weather that represented some strange order despite being chaotic.

For certain constants, the system is bounded and non-periodic. The system will not diverge to

infinity but will also not repeat any individual trajectories. Thus, while this is a purely deterministic

system, it is susceptible to infinitesimal differences in initial conditions such that its location at a

sufficiently long time is unpredictable. The non-dimensional three-equation system is given by

dx

dt
= σ(y − x), (3.1a)

dy

dt
= x(ρ− z)− y, (3.1b)

dz

dt
= xy − βz, (3.1c)

where x is proportional to the rate of convection, y to the horizontal temperature variation, and

z to the vertical temperature ratio. The constant σ is the Prandtl number, the ratio of kinematic

viscosity and thermal diffusivity, β is the ratio of the current and critical Rayleigh numbers, and ρ

is a geometric scaling factor. Lorenz discovered that specific periodic solutions grew for Rayleigh

numbers larger than a certain critical value and produced chaos. The instability of initial conditions

is one of the earliest discoveries of the well-known butterfly effect in chaos.

The starting conditions chosen by Lorenz are still widely used in the literature today as they

lead to the recognizable butterfly attractor shape. Constants of σ = 10, β = 2.667, and ρ = 28

1Reproduced from C.M. Greve, K. Hara, R.S. Martin, D.Q. Eckhardt, and J.W. Koo. "A data-driven approach to
model calibration for nonlinear dynamical systems" Jour. of Appl. Phys. Vol. 125, No. 244901, 2019. with permission
of AIP Publishing.
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Figure 3.1: The Lorenz attractor for (σ, β, ρ) = (10, 2.667, 28) and an initial condition of
(x0, y0, z0) = (10, 10, 10) for different timesteps. (a) Ns = 104 and (b) Ns = 105 time steps
while a constant ∆t = 5× 10−3 is used to integrate in time.

Figure 3.2: The Lorenz attractor PDF-TLPP as viewed from the z-direction.

and an initial starting point of (10, 10, 10) are used as the reference solution for the following

studies unless otherwise noted. Figure 3.1 shows the resulting attractor for (a) 104 and (b) 105 time

steps based on a forward Euler integration method using a dimensionless time step of 5 × 10−3.
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Figure 3.3: A depiction of how the choice of a frame viewing the same continuous true solution
image can yield differently discretized PDF-TLPPs, resulting in a non-zero W1 metric between
images. (a) A depiction of the continuous true solution and the location of the two discretized
frames. (b) The resulting discretized PDF for Frame A. (c) The resulting discretized PDF for
Frame B.

The results show that the TLPP is essentially bounded and the trajectories are non-periodic, i.e.

new trajectories appear in the longer simulation but the bounds stay relatively constant. Note that

the attractor point locations remain identical, but the eye regions shrinks as the simulation is run

longer. The resulting butterfly attractor can be transformed into a PDF-TLPP using the x, y, or z

coordinates. For the sake of optimization, it is unwise to use the z-direction data. The attractor

viewed from this perspective appears as a single lobe, seen in Fig. 3.2, which creates a non-unique

image for optimization. Thus, the x-direction is chosen for all future studies.

3.1 Frame Dependence

The quality of the PDF-TLPP plays a critical role for the calculation of the W1 metric due to

numerical uncertainties brought about by changing a continuous solution to a discretized one. In
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the limit of infinite data, both the bin size and variance per bin can theoretically be reduced to

zero. However, finite data poses additional challenges in using the PDF-TLPP. To illustrate the

numerical errors associated with the finite bin size of PDF-TLPP(s), consider a continuous true

solution plot, e.g., a star, as shown in Fig. 3.3. A discretized PDF is constructed by binning the

continuous solution based on a given area, referred to as a frame in this work, surrounding the

continuous solution [77]. Two discretized frames, A and B, are considered in Fig. 3.3(a). The

smallest and largest frame values, i.e., the bounds, are notated as xmin and xmax for each frame.

The two frames are scaled to the same size and possess the same number of bins, but are offset in

location. In other words, xmax and xmin differ but xmax − xmin remains constant. The discretized

(unnormalized) PDF is constructed in a binary fashion in this example so that a continuous solution

in the discrete bins yields a value of 1 to be assigned to the bin; otherwise the value remains zero.

Figures 3.3(b) and 3.3(c) show the discretized PDF of the continuous solution for Frame A and

Frame B, respectively. Since the bins have a finite width, the discrete locations used to contain the

continuous solution vary between frames. Although the reconstruction of the discretized PDF is

based on an identical continuous solution, it can be seen that the discretized PDFs are different,

which yields a non-zero W1 metric. If the width of the bins were reduced to zero and the number

of data points was infinite, a continuous image would be created and the PDF-TLPPs would result

in identical images despite their difference in frame location, yielding a zero W1 metric. Hence,

the quality of the frame properties introduce numerical bias errors to the optimization process. In a

similar manner, changing the difference in frame such that xmax−xmin differs will similarly affect

the W1 metric and introduce other numerical errors to the process.

For optimization schemes with large ranges of possible parameter values, the envelope or lo-

cation of the signal can drastically change. If a static, non-changing, frame is used, the user runs

the risk of obtaining misleading W1 values due to part of the original signal falling outside of the

set frame size. Using a dynamic, changing, frame allows the optimizer to view the full plot of the

signal every iteration to ensure a true understanding of the response surface far from the reference

solution. A possible practice could be that once the range of allowable values for each input pa-
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rameter has been sufficiently reduced using a dynamic frame, the user can then implement a static

frame to better compare overall structure of the different solutions. If a given trial produces an ex-

act replica of the reference data except for a single outlying trajectory in the phase space such that

the frame is affected, a dynamic frame PDF-TLPP would result in a poor W1 value. The outlying

trajectory alters the size (and bounds) of the frame and shift the location of the bins which affects

the level of detail captured by the discretized image. Since the static frame employs identical bins

(location, size, and bounds) for different images, the same level of detail can be retained for the

main portion of the plot and the effect of the outlying trajectory can be significantly reduced.

3.2 Effects of Sampling Time and Selection of Frames for the PDF-TLPP

If the system is run infinitely long, the solutions would theoretically converge to the same im-

age regardless of initial condition, meaning there would be no numerical errors associated with the

finite data. Since an infinitely long calculation and data processing is not feasible, the effects of

a discrete and finite length sampling time on the W1 metric calculations must be understood. To

quantify how the sampling time affects the resulting W1 metric, a comparison study is performed

where different finite numbers of time steps, Ns, ranging from 106 to 107 are compared to a refer-

ence solution, the result from 107 time steps. The test cases are exactly identical in their parameters

(σ, β, ρ) and initial conditions (x0, y0, z0), only differing in the number of time steps for each sim-

ulation. The time lag τ is set at 20 time steps while the discretized PDF-TLPP is binned using a

50×50 grid. The x-signal serves as the embedded signal for every run.

Figure 3.4 shows how the discretized PDF-TLPP changes as the sampling length increases

using dynamic TLPP frames, in which the maximum and minimum bounds of the frame vary for

each run while the number of bins is kept constant. A few noticeable differences can be seen

in Figs. 3.4(a) and 3.4(b). (i) The maximum and minimum bounds are increased from ±21.7

to ±21.8 (see the axis values), while the number of discrete bins is kept constant. Hence, the

numerical error caused by different frame sizes is introduced, as discussed in Sec. 3.1. (ii) A gap

near the corresponding attractor point in the lower half region disappears with a longer sampling

time since there are more trajectories in that area, as is shown in Fig. 3.1(b). Figure 3.4(c) shows
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Figure 3.4: The effects of sampling time using the original dynamic frame for the baseline case. (a)
the normalized PDF-TLPP for 106 time step run, (b) the normalized PDF-TLPP for 107 time step
run, (c) W1 metric values for a reference solution of 107 time steps using a dynamic frame. Note
that the bounds of the PDF-TLPP in (a) and (b) are different, which results in a large W1 metric,
i.e., numerical error. The red circles in (c) denote the cases demonstrated in (a) and (b).

that the W1 metric is large for a smaller sampling time, but approaches zero as the sampling time

is increased. Note that the figure depicts a large discontinuous drop in the W1 metric value from

0.3 to approximately 0.05 at Ns = 7× 106. This sudden decrease in W1 metric corresponds to the

“locking” of the bounds of the frame to the same size as the reference solution. When the frame

size is unchanged, the only difference between PDF-TLPPs is the normalized value in each of the

bins due to the number of trajectories. As the simulation is run longer, the normalization becomes
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Figure 3.5: The effects of sampling time using the static frame for the baseline case, similar to the
dynamic cases shown in Fig. 3.4. Note that the frame is fixed at a X(t) ∈ [−25, 25] range for the
static frame. (a) the normalized PDF-TLPP for Ns = 106 time step run, (b) the normalized PDF-
TLPP for Ns = 107 time step run, and (c) W1 metric values for a reference solution of Ns = 107

time steps using a static frame.

closer to the reference solution until the optimal solution is reached. This study gives evidence for

the potential failure of the dynamic frame for an otherwise identical system (see Sec. 3.1: Frame

Dependence).

Figure 3.5 shows the convergence study of Ns using static PDF-TLPP frames, where the max-

imum and minimum bounds are kept identical for all runs. While a larger frame may smear some

of the finer structures in the TLPP when the same number of discrete frame bins is used for each
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plot, it has been confirmed that the W1 metric values are not significantly altered even when dou-

bling the frame sizes, i.e. the maximum and minimum bounds. Figures 3.5(a) and 3.5(b) show

the PDF-TLPP obtained for Ns = 106 and Ns = 107, respectively, when using a static frame of

X(t) ∈ [−25, 25]. The original time-dependent data, x(t), are identical between Fig. 3.4 and

3.5. The disappearance of the gap surrounding the attractor points seen in Fig. 3.4(a) but not in

Fig. 3.5(a) is potentially the most noticeable smearing effect due to the use of different frames. As

shown in Fig. 3.5(c), the W1 metric values are lower than those of the dynamic frame, since there

is no numerical error due to the frame misalignment. The set frame size also prevents a sudden

drop inW1 metric value observed in the dynamic frame results for the same reason. Instead, a rela-

tively continuous decrease in the W1 metric value can be observed as the sampling time increases,

demonstrating the smooth convergence of the Lorenz’s solution. Although the overall trend is de-

creasing, the decrease is not monotonic in nature, which is likely due to a low-frequency physical

oscillation between attractors of the Lorenz system.

The static frame has distinct advantages over the dynamic frame. The static frame prevents

the shifting discretization of bins from altering the discretization of the image. Also, the image is

always viewed with the same resolution. The disadvantage of the static frame during optimization

is that a wider frame must be selected to allow for any shifts in the actual trajectories. The Python

model used in this work fails if any point in the generated plot falls outside of the set static frame,

causing the DAKOTA optimization algorithm to terminate. For this reason, the static frame is

only used once the allowable ranges of parameter values is significantly reduced to near-reference

solution input parameters so the selected frame is not far from the true solution, avoiding the loss

of detail in the system. Subsequent studies regarding the sensitivity of the W1 metric to the range

of axis chosen were performed with minimal difference in W1 metric values for different frame

bound ranges.

It is important to note here that theoretically, the W1 metric should converge to zero as t→∞

because the weighting of the outliers becomes 1/∞ → 0, resulting in a transportation cost of 0

in the W1 metric. However, for finite data, the trajectories alter the weighting of the discrete bins
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and yield a non-zero W1 metric between identical time-varying signals when different sampling

times are chosen. Additionally, numerical models inherently face numerical inaccuracies such

as discretization and round-off errors. In Lorenz systems, which are low-dimensional (in terms

of degrees of freedom), other methods exist to perform model calibration with far less data than

presented in this work [78]. Representing the entire system with minimal, finite data may reduce

noise discrepancies when comparing two solution datasets due to the higher signal-to-noise ratio

of a lower-dimension PDF-TLPP. Because of the desire to use this optimization method with a

higher-dimension system, methods using less data are not studied at this time.

3.3 Effects of the Initial Condition

To view the trend of the W1 metric with a physically different solution than the reference case,

the initial condition is changed to (x0, y0, z0) = (10.01, 10.01, 10.01) for both the dynamic and

static frames. This is called the non-ideal case as opposed to the (x0, y0, z0) = (10, 10, 10) ideal

case. The reference solution is the data obtained for Ns = 107 time steps. Both the dynamic and

static frame methods from Figs. 3.4 and 3.5 are used to show the difference in trend for a non-ideal

solution.

Figure 3.6 shows the trend in the W1 metric as the signal length is increased for the non-ideal

case. In comparison to Fig. 3.4 and Fig. 3.5, the minimum W1 metric is approximately 0.05

and 0.1 for the static and dynamic cases, respectively, indicating that the non-ideal case exhibits

different behavior compared to the ideal case. Most notably, it can be seen that additional numerical

errors exist in the dynamic frame cases compared to the static frame cases. For the dynamic frame

results, theNs = 7.5×106 sampling time becomes a threshold that solidifies the frame size, similar

to the observation in Fig. 3.4. However, interestingly, the poorer W1 metric values beginning at

Ns ≥ 7.5 × 106 indicate that the dynamic frame bounds of the non-ideal case differ from the

reference solution. Specifically, the data of the largest sampling time (Ns = 107) exist within

a range of X ∈ [−20.31, 19.63] for the non-ideal case, while the reference data of the ideal case

exists in the rangeX ∈ [−20.29, 19.79]. Thus, the frames of the two runs are different and increase

the nonzero W1 metric value due to frame misalignment. In comparison, the non-changing (static)
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Figure 3.6: A comparison of W1 metric values with various sampling times. The initial condition
is set to (x0, y0, z0) = (10.01, 10.01, 10.01) and compared to the reference solutions obtained from
(x0, y0, z0) = (10, 10, 10), which are the ones used in Fig. 3.4 for the dynamic frame and in Fig.
3.5 for the static frame, respectively.

frame is offset enough from the minimum and maximum bounds of the frame and the smoothed

envelope better captures the reference solution, i.e., no numerical errors are introduced due to the

change of the frame size and location. The results suggest the converged solution for the difference

between the cases of (x0, y0, z0) = (10, 10, 10) and (x0, y0, z0) = (10.01, 10.01, 10.01) yields an

W1 metric of 0.05, shown from the static frame case. Additionally, comparing the results of the

dynamic and static cases, the numerical errors due to the frame misalignment can be considered to

yield a difference in W1 metric ranging 0.05− 0.1.

Quantification of the choice of time lag and number of bins used in this thesis are also studied,

although not shown at this time. The time lag can affect the W1 metric of the system, but for

the Lorenz attractors the difference is on the order of 10−2 between values for a time lag of 1

step or a time lag of 50 steps. For other systems, the choice of time lag may be more important

in reducing the amount of data to be used while maintaining sufficient detail of the dynamics

of the system. This will be studied further using a zero-dimension bulk plasma model in later

sections. Conversely, the choice of number of bins used to generate the discretized PDF-TLPP
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Figure 3.7: The response surface of the σ parameter for the near-solution region with σexact = 10.0
and σ ∈ [8, 12]. (a) The response surface that is monotonically decreasing until approximately
9.5 ≤ σ ≤ 10.5. (b) The near-reference solution region showing the noisy W1 metric values even
with infinitesimal differences for a double-precision calculation. Note that the σ axis is displayed
using a logarithmic scale to emphasize the small digit number calculations around σexact.

is fairly straightforward in that the more bins used, the more continuous the system is, but the

longer computational time and the more data a single run will take to calculate the Wasserstein

distance. Such user-defined parameters must be determined based on the problem of interest, but

an approach based on maximizing the information content of the PDF-TLPP is currently being

explored further elsewhere [64]. This will also be demonstrated using the zero-dimension bulk

plasma model.

3.4 Sensitivity of the Constants (σ, β, ρ)

To best quantify the abilities of the optimizer, the sensitivity of the σ parameter is investigated.

The range σ ∈ [8, 12] is tested to determine the shape of the response surface of the Lorenz system

that should guide the optimizer to the true solution. The input parameter values for β and ρ as well

as the initial position (x0, y0, z0) are held constant. The solution is embedded with a time lag τ of

20 steps to generate the TLPP and discretized by 50 bins in each direction to create the PDF-TLPP.

Figure 3.7 shows the W1 metric results for σ ∈ [8, 12] to illustrate the response surface of the

Lorenz system prior to optimization. The overall smooth gradient of the W1 metric shows that

there are no local minima except for the near-reference solution region. Ideally, the optimizer will

find the exact solution if the W1 metric monotonically decreases toward the reference solution.
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It can be seen in Fig. 3.7(a) for |σ − σexact| > 0.5, the W1 metric is monotonically decreasing

as σ approaches σexact. However, a highly stochastic structure can be observed in Fig. 3.7(b)

for |σ − σexact| ≤ 0.5. The Lorenz system is highly sensitive to infinitesimal changes in initial

conditions. The results illustrate that small physical changes, even to the 15th decimal point (the

minimum difference in a double-precision calculation), yield a large fluctuation inW1 metric. This

realization is indicative of three sources of errors, including (i) the discretization errors due to the

numerical scheme chosen, (ii) the numerical errors due to frame misalignment when constructing

the PDF-TLPPs, and (iii) the calculation of W1 metric based on discretized PDF-TLPPs. This

sudden highly stochastic region is likely caused by how costs add when distributions are close or

overlapping versus far away. Especially when considering individual outlying trajectories as noise

for these ideal, noiseless cases, fewer samples are required to “control” noise levels for calculations

involving large distances compared to near-overlapping cases. While it is also important from

the perspective of data sampling that a longer sampling time must be used to achieve statistical

convergence, such numerical errors may grow or persist over time, particularly for a chaotic and

non-periodic system. However, it must be noted that despite the numerical error in the vicinity of

σ → σexact, the minimum W1 metric obtained by sweeping through parameters as shown in Fig.

3.7 is as low as σ = σexact ± 0.01. The minimum W1 metric achieved by the optimization process

is discussed in the next section.

3.5 Automated Optimization

Having determined the behavior of the Lorenz system, this section presents the results from the

automated optimization to evaluate the final optimized input parameters. The algorithm searches

either for a specific convergence tolerance, the difference in minimal objective function values

between generations, of ε0 = 10−7 or until the maximum number of function evaluations (user-

defined) is reached. The convergence tolerance means that when the difference in optimal objective

function values from generation to generation stagnates, the program terminates as the minimal

objective function is considered located. The final results of any run can be used to inform new runs

with narrower parameter ranges. This series of testing was performed using the Galaxy Simulation
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Figure 3.8: An example of how the evolutionary algorithm narrows the search range for a given
parameter over the optimization process. For this figure, the β term is being optimized.

Builder program.

Having used narrow search ranges thus far, an initial range of 1-100 is set for the constant σ,

and eventually all three constants, to gain an understanding of how the optimizer handles such a

large range. Because of how the evolutionary algorithm employs a user-specified mutation rate as it

generates new test values for the unknown input parameter, the range of possible values is reduced

by some fractional amount but often does not reach a single optimal value for such large ranges.

If one plots the value of the tested parameter as a function of iteration number, the reduction in

search range becomes evident as seen in Fig. 3.8. The size of the points in Fig. 3.8 and any figures

generated from the GSB program directly corresponds to theW1 metric values (objective function)

on the y-axis while the color of the points reflects the iteration number of each point (blue to red,

chronologically) in the data-driven model. This new range can be used in a new optimization
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Figure 3.9: The initial overall response surface of the W1 metric for the σ constant.

process to more thoroughly search the narrowed range. Note that the initial optimization runs

are performed using a dynamic frame method due to the vast fluctuations in TLPP bounds. Once

the range is reduced by at least 60%, the optimization scheme is reconfigured to use the static

frame method to ensure better minimal W1 values. Using this method, the initial range of 1-100

is searched for an average of five generations (sets of 32 points) before meeting the convergence

tolerance. After narrowing the search range, the algorithm runs until the user-defined maximum

number of iterations is reached since the tolerance level is rarely, if ever, met.

The reference solution uses an initial condition of (x0, y0, z0) = (10, 10, 10) with the exact

input parameter values of σ = 10.0, β = 2.667, and ρ = 28.0 for a sampling time of Ns = 107

steps. The PDF-TLPP is created using a time lag τ of 20 steps and 50 discrete bins in each

dimension. Every run uses an evolutionary algorithm with a population size of 32 points and a

concurrency of the same, with 16 replacements per generation. The first result studies the results

for only searching for one of the constants of the Lorenz problem, while the second search for all

three constants simultaneously.

Figure 3.9 shows the chaotic and poorly defined response surface of the W1 metric, the y-
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Figure 3.10: The trial output data during the optimization process obtained from the Galaxy Simu-
lation Builder (GSB). Every tested σ value and its corresponding W1 metric are shown. The point
size represents the W1 metric value, while the color represents the iteration number from blue to
red, chronologically.

axis, for the full range of possible values given to the optimizer. This image gives evidence as to

how the optimizer is unable to find a reasonably optimal solution for such a large range. If one

uses the banded search range that becomes evident in the data, such as that in Fig. 3.8 to restart

the optimization process, something like Fig. 3.10 is obtained. Figure 3.10 shows the response

surface output from the GSB that directly corresponds to Fig. 3.7(a). This visual output shows the

optimization run in a range of σ ∈ [8.0, 12.0], which is the third optimization run, having reduced

the data range twice. The results of the trial outputs during optimization agree with those shown

in Fig. 3.7(a) but run for a CPU time of under 3 hours to generate approximately 500 results.

At |σ − σexact| > 0.5, the response surface depicts a smooth gradient towards the exact solution,

suggesting that optimization occurs towards the region of 9.5 < σ < 10.5. Within this region,

the trial outputs are noisier as σ approaches 10, which is consistent with the stochastic regime in

the near-reference solution region in Fig. 3.7(b). Similar studies are performed on the two other

parameters and initial condition, as well as 2D parameter sweeps, with similar results.

Table 3.1 depicts the numerical results of the optimization studies performed searching for the
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Table 3.1: Optimization of σ while keeping β = βexact and ρ = ρexact. The reference solution
is when σexact = 10.0, βexact = 2.667, and ρexact = 28.0. Note that the relative errors εσ =
(σ − σexact)/σexact are shown in parentheses.

Dynamic Static
Run 1 Run 2 Run 3

σ range
1.0 -
20.0

1.0 -
20.0

8.0 -
12.0

9.6 -
10.7

Optimal σ 9.711 9.843 10.104 9.973
(εσ) (−2.8%) (−1.6%) (+1.0%) (−0.3%)

W1 metric 0.0995 0.0269 0.0110 0.0124

optimal σ value while keeping β, ρ, and the initial conditions constant. The best result using the

dynamic frame method is compared to three static frame tests with different σ search ranges. The

relative error of σ is given by (σ − σexact)/σexact. The dynamic case produces an W1 metric that

is close to 0.1, with a corresponding σ value approximately 3% different than the reference value.

The reference solution for the dynamic optimization run lies within a frame ofX ∈ [−20.29, 19.79]

while the best dynamic solution fit within a frame of X ∈ [−20.21, 20.2], which means that this

result includes a numerical error due to the difference in frame location and bin size between trial

and reference solution. Significantly smaller W1 metric values are obtained for the static frame

runs, particularly when narrowing the search range for σ so that the GSB can try more data points

in the vicinity of the exact solution. Two of the three tests, Run 2 and Run 3, result in a remarkable

W1 metric of approximately 0.01, with σ values less than or equal to a difference of 1% from the

reference solution, i.e., 9.9 < σ < 10.1.

Table 3.2 shows the results of the optimization for all three input parameters, e.g., σ, β, and

ρ. The optimal parameters obtained, the relative error with the exact values, and the W1 metric

values are shown. Here, the total relative error accounting for all three variables is also calculated

as
√

Σε2 = (ε2
ρ + ε2

σ + ε2
β)1/2. Two main results that can be observed are that the W1 metric

values and relative errors are much smaller for the static frame cases than for the dynamic frame

case and that the static frame results are converging to a solution near the exact input parameters,
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Table 3.2: Optimization of the constants σ, β, ρ for σexact = 10.0, βexact = 2.667, and ρexact =
28.0. Note that the total relative error is given by

√
Σε2 = (ε2

ρ + ε2
σ + ε2

β)1/2.

Dynamic Static
Run 1 Run 2

σ Range 9.33 - 10.67 9.5 - 11.0 9.6 - 10.7
Optimal σ 10.331 10.107 10.051

(εσ) (+3.3%) (+1.1%) (+0.5%)
β Range 2.49 - 2.84 2.55 - 2.75 2.6 - 2.67

Optimal β 2.639 2.66 2.665
(εβ) (−1.0%) (−0.3%) (−0.1%)

ρ Range
25.13 -
29.87

27.0 - 28.2 27.5 - 28.2

Optimal ρ 28.180 27.983 28.056
(ερ) (+0.06%) (−0.06%) (+0.2%)

(
√

Σε2) (3.4%) (1.1%) (0.55%)
W1 metric 0.0963 0.0200 0.0182

σ → σexact, ρ → ρexact, and β → βexact. The ability of the optimizer to find an W1 metric

value on the order of 0.02 by optimizing three parameters simultaneously continues to provide

evidence of verification of the data-driven method. The dynamic solution exists within a frame of

X ∈ [−20.29, 19.95] while the static solution is again set at X ∈ [−25, 25].
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4. ZERO-DIMENSION PREDATOR-PREY MODEL

To initiate work with plasma-physics based models, a zero-dimension predator-prey model is

investigated. The predator-prey model, also known as the Lotka-Volterra equations, include a pair

of first-order nonlinear differential equations that describe the interaction between two entities in

a biological fashion, i.e., that of a predator and prey in nature [79, 80]. The Hall effect thruster

community has employed the predator-prey model to obtain an appropriate scaling of the ioniza-

tion length to better understand ionization oscillations [81]. The model is assumed valid inside a

simplified discharge channel section of a Hall effect thruster. The neutral inflow is considered a

constant value, the neutral outflow is allowed to fluctuate, and the channel length is defined using

the channel geometry. Assuming a finite-volume method where properties neglect spatial variation

and the fluxes at the interfaces are modeled, the ion and neutral continuity equations can be written

as

δNi

δt
+
NiUi
Lch

+
2NiUi,w
R4

= NiNnξion, (4.1a)

δNn

δt
+

(Nn −Nint)Un
Lch

= −NiNnξion, (4.1b)

where N and U are the number density and mean velocity, the subscripts i and n denote ion and

neutral atoms, respectively, Nint is the number density of neutral anodes at the anode, Ui,w =

(eTe/Mi)
1/2 is the ion acoustic speed, Lch is the channel length, and R4 is the channel width.

Using ground-state xenon atoms for the calculation, the ionization rate coefficient ξion can be

written as

ξion ≈ [AT 2
e +B exp(−C/Te)]

(
8eTe
πm

)1/2

, (4.2)

where A = −1× 10−24, B = 6.386× 10−20, C = 12.13, Te is the electron temperature, and m is

the mass of a xenon atom.
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The electron temperature is an implicit function of time and serves as the excitation input to the

predator-prey system, creating a dynamic environment. This model is used to capture the ion oscil-

lations generated by the ionization source before being accelerated out of the domain. This type of

simplistic model is useful for understanding the temporal evolution of electron dynamics as a first

step towards capturing the dynamic phenomena related to anomalous electron transport. The elec-

tron dynamics strongly influence the ion and neutral number density and ultimately affect thruster

performance. For this system, the ionization rate coefficient is the key variable of interest as it

is the connection between electron temperature and number densities as well as being a function

of the thruster design and performance parameters. These parameters include the wall geometry,

finishing materials, surface roughness, heating element employed, ambient chamber pressure, and

nozzle characteristics. While 1D, 2D, and even 3D models of plasma discharge dynamics capture

these details with higher fidelity, the bulk behavior of the system can be understood from the 0D

discharge model of Eqs. 4.1a and 4.1b.

This work is intended to study the abilities of the calibration method with various testing con-

ditions for a system of varying complexity. The work that forms the basis of this study discusses

the relation of ionization oscillation damping to perturbations in the electron temperature. A sim-

ple non-constant model for electron temperature is a summation of sinusoidal waves of varying

frequency and amplitude about some set average value. For this work, the electron temperature

equation is written as

Te = a0 +
n∑
q=1

aq cos(ωqt), (4.3)

where n is an arbitrary number of sinusoidal functions and t is the current time in the simulation.

This study will use a one-, two-, five-, and ten-mode electron temperature equation for optimization

to test varying qualities of the method. The one- and two-mode equations are considered the

discrete modes while the five- and ten-mode are the continuous modes. The equations are solved

using a simple forward Euler method with a time step of 1µs for 105 steps, an initial ion density

of 1017, an initial neutral density of 1019, and the configuration of a Stationary Plasma Thruster
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(SPT)-100 ML thruster [82] as in work by Hara et. al. [81]. An average electron temperature of 20

eV is set and if not stated otherwise, the time lag is set to 150 steps while 100× 100 bins are used

to generate the PDF.TLPP. The plots of ion versus neutral number density are not time-lagged.

This work will attempt to optimize the electron temperature equation by using either the time-

embedded ion number density time evolution or both the ion and neutral number density output

signals mapped against each other. These tests are intended to better emulate some differences

that may occur between computational and experimental data. Testing the convergence properties

of the optimization method for different time lags and noise, different sampling rates, simplified

models being optimized to a continuous solution, having gaps in the data, and how dense the

PDF-TLPP must be are all subjects of tests in this section.

4.1 Time Lag Dependence and the Effect of Noise

As previously mentioned, the choice of time lag is significant to the optimization process as it

may hide correlations or noise, or show dependencies that do not truly exist. The resulting image

can also either help or hinder the optimization process depending on the generated image. The

more unique the image, the better the resulting optimization run will be. Figure 4.1 shows the

same single mode system embedded with time lags varying from 50 to 600 time steps in size.

These specific values were chosen because the period of the single-mode sinusoidal function lasts

for 628 time steps before repeating. Not pictured is the straight-lined diagonal plot that results

from using either 0 or 628 time steps for the time embedding. The variety in PDF-TLPPs show

how the time lag affects the optimization process. One of the characteristics of an unique image is

a lack of overlapping signal lines such as those in the 300 and 350 time step cases. Also any images

that seem to have very small regions of high intensity weights are undesired as those regions of

high weight will skew the optimization process. Thus time lags such as 100, 150, or 200 are the

most desirable embeddings for this specific system.

The inclusion of high level noise to the system, implemented as an additional higher frequency

sinusoidal function, creates an entirely different image, seen in Fig. 4.2. Noise is undesired in the

system and creates many more instances of overlap in signal traces, thus making the selection of an
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Figure 4.2: The effect of the noise on the appearance of the system in the phase space portrait. A
40,000Hz signal is applied to the original one-mode signal. The values under each figure corre-
spond to the amplitude of noise applied to the system.

appropriate time lag more difficult. The inclusion of noise may be one of the stronger requirements

for more than one delay embedding to be used to generate a unique mapping. Even the amplitude

of the noise can significantly affect how much overlapping exists within the data as shown in Fig.

4.3. Though noise is not specifically studied in this work, the ability of the optimizer to overlook

“noise” is examined by using a lower-mode solution to estimate a higher-mode solution.
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Figure 4.4: The effect of the density of the PDF-TLPP, or the number of bins per direction of the
PDF-TLPP, on the W1 metric.

4.2 PDF-TLPP Density

Different grid sizes affect the W1 metric because of how distances and weights become differ-

ently distributed. If the data were discretized as one singular bin, the W1 metric would always be

zero so long as the TLPP frames remain the same. Note that this occurs because the geometric

center of each bin is used to track the location of the bin. If instead the center of mass within each

bin is used to track the location, one would obtain a more unique mapping of the system. This more

robust method is left for future work as it induces a bias error to the W1 calculation in addition to

the variance error already in existence. Using geometric bin centers and the static frame methods

set a noise floor on the W1 metric expected for finite data and a given mesh resolution. Thus, a

study of the optimal discretization of the TLPP is performed in terms of the density of points per

bin (alternatively the number of bins per direction) in the PDF.

The first convergence study examines the significance of the average number of data points per
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PDF bin and its effect on the W1 metric value. Fig. 4.4 shows this exact correlation for different

sized datasets and reference solutions using three different sizes of grids. The positive slope in this

figure is caused by a larger number of points per bin corresponding to a smaller number of bins in

the PDF-TLPP. Thus, as the number of points per bin decreases and the PDF-TLPP becomes more

similar to the reference solution, the lower the W1 value becomes. The asymptotes of each shade

of color indicate where the reference solution exists and how close to zero the optimal solution is

expected to be if a non-ideal solution is generated. The similarity between graphs indicates that

the size of the reference dataset is irrelevant, only the discretization of the TLPP seems to affect

the W1 metric. Here the slope is unitary because of the difference in bias versus variance errors.

Using a static frame makes the bias errors identical so that they do not contribute to the W1 metric

even though they would be non-zero. Increasing the number of points per bin to infinity drives

the variance errors to zero, but finite bin size still generates a non-zero bias error. For example,

though the number of bins used in the trial and reference solutions differ, theW1 metrics are similar

because the bias error dominates the variance error caused by the differently sized bins. This occurs

regardless of how many bins constitute the reference solution, seen in Fig. 4.4, providing evidence

of this source of error. If it were computationally possible to drive the PDF-TLPP to having only

zero or one points per bin, almost every weighted bin would likely have to be moved some finite

distance, causing variance errors to finally overtake the bias errors.

4.3 Subset Convergence

The next test performed is used to study the convergence of data while emulating a case where

not all of the data is available for optimization. This is accomplished by taking the reference

solution TLPP and using a MATLAB function to take a random subset of user-defined size. The

same size subset can be created more than once, and the resulting vector will be different due to

the randomizing function. Thus, multiple tests of the same subset size are performed to obtain an

average and standard deviation value for each size. This is performed before the solution is binned

as a probability distribution function. Depending on the size of the subset taken, the weight of each

data point is artificially altered such that the full-sized reference solution and subset retain the same
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weight. As an example, if half of the data points are used to form the subset, the weight of each

data point becomes two instead of one. This is done to prevent additional numerical errors from

being introduced during this study. Note that the subset is taken after the time embedding so that

the time lag is not affected by the subset and does not induce unrealistic errors into the process.

This subset study was performed for three different sizes of reference solutions, using 100,000,

500,000, and 1,000,000 data points. To obtain some range of standard deviation, each subset size

was randomly generated five times to obtain some range of possible values. As can be seen in Fig.

4.5(a), the data appears to exist within an almost constant banded height regardless of the subset

size. The average values are shown in Fig. 4.5(b) for all three sizes of reference solution. The

standard deviation for each subset size was calculated to be below a value of 0.0001, which is of

small consequence for the W1 metric values obtained and so do not appear in Fig. 4.5(b). What

is significant to note, though, is that all three reference solution sizes share a common linear slope

of -0.5 in the logarithmic plot. As the reference solution increases in number of data points, the

converged W1 metric is able to be lowered compared to the 100,000 point reference solution. This

gives evidence to the need to use more data points as opposed to fewer to help lower the minimum

W1 metric and in turn improve any gradient in the response surface that may exist. It is noted that

the converged W1 metric still experiences difficulty in reaching a value lower that 0.001, which

may be a limitation on the system for all but exact solution W1 values.

4.4 Number of Sinusoidal Periods

A study is performed to understand how long of a simulation is needed for the difference in

signal length to be rendered minimally significant. For this study, an extra half period of the

simulation is added to the trial solution compared to the reference solution. For instance, while the

reference solution may consist of 16 full periods, the trial solution will contain 16.5 periods. The

number of full periods per run is increased to examine the convergence in W1 metric in Fig. 4.6.

Few test cases were run for this study as the trend is clear. As the number of full periods

increases, the effect of the extra half-period diminishes to very low W1 metric values. A half

period is only 0.05% of the largest dataset of approximately 1000 full periods and is one of the few

45



Figure 4.5: (a) The change in W1 metric for various sized, randomly selected subsets of data for
a non-exact solution. Three different sized reference solutions are used in this figure to determine
what affect the size of the reference solution has on the minimum W1 value. Each size subset was
tested five times to determine the size of the range for all subset sizes. (b) The change inW1 metric
for various sized, randomly selected subsets of data for a non-exact solution shown as the average
of each of the five tests.
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Figure 4.6: The change in W1 metric for different length simulations when an extra half period is
added to the trial solution.

cases in this work to yield a W1 value less than 0.001. The slope of -1 is likely due to a uniform

bin bias error that arises from the 0th order uniform bin quadrature. Maintaining the same bin size

keeps this bias error a constant, but nonzero, value. The greater number of data points in each bin

relative to the number of data points caused by the extra half-period of the trial solution is a large

enough ratio to lessen the effects of the extra data. Thus, even if a simulation and experimental

results are not exactly identical in run time, their data can be compared if the difference is a small

enough fraction of the total signal length.

4.5 Discrete vs. Continuous Testing

The PDF-TLPP of this predator-prey model varies greatly depending on the number of si-

nusoidal functions used in the system. Figure 4.7 shows a one-mode, two-mode, and ten-mode

electron temperature signal. The reference equations are as follows:

Te = 20 + 3 cos(10000t), (4.4a)
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Figure 4.7: Continuous and discrete electron temperature equation signals using (a) one mode. (b)
two mode and (c) ten mode temperature equations.

Te = 20 + 2 cos(10000t) + 3 cos(35500t), (4.4b)

Te = 20 + 2 cos(10000t) + 1.5576 cos(12125t) + 1.2131 cos(15000t) + 0.9447 cos(21000t)

+ 0.7358 cos(25000t) + 0.5730 cos(36000t) + 0.4463 cos(40000t)

+ 0.3475 cos(45678t) + 0.2702 cos(62750t) + 0.2108 cos(75000).

(4.4c)

As more modes are added, with decreasing amplitudes to emulate exponential decay, the so-

lution changes. Each of these solutions will be used in this section to study the ability of the

calibration method to handle discrete and continuous test functions simultaneously. Studies were

performed to attempt using different discrete and continuous solutions together. This emulates

attempting to resolve highly complex, multi-mode experimental data using far fewer modes in a

computational model. Though additional effort should be made to determine an optimal number

of discrete modes needed to capture the dynamics of a continuous function, this work shows that

the optimizer is capable of recognizing trends and significant modes in the system.

The discrete versus continuous testing is performed in a matrix-type style. The four genres of
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Figure 4.8: (a) The ten mode system with a phase portrait built by taking a time lag of the ion
number density. (b) The ten mode system with a phase portrait built by comparing ion and neutral
number density.

test cases are: (i) discrete-to-discrete, (ii) discrete-to-continuous, (iii) continuous-to-discrete, and

(iv) continuous-to-continuous. For each test case, a variety of options are used for the studies.

One studied effect is the use of either the ion number density embedded to a higher dimension by

taking a time lag or simply plotting the ion number density versus the neutral number density. An

example of how using the ion number density or both the ion and neutral number density affect

the appearance of the system in phase space are seen in Fig. 4.8. Each of the four cases are shown

in the figures below, with different test cases represented by different colors to show a collective

understanding of how well the optimizer functions for these different cases.

Figure 4.9(a) shows the result of discrete-to-discrete testing. Specifically, a two-mode refer-

ence solution is attempted to be found by a two-mode trial solution. The different test cases include

using both the time-lagged ion number density embedding and the ion versus neutral number den-

sity plot. Searches were performed when (i) the frequencies are set and the optimizer only searches

for the amplitudes, (ii) the amplitudes are set and the optimizer searches for the frequencies, (iii)

both frequencies and amplitudes are searched, and (iv) all values including the initial average tem-

perature value are searched. The reference solution is plotted in black. Immediately noticeable is

the optimizer’s ability to find relatively well-matched solutions for the larger-amplitude frequency

49



Fi
gu

re
4.

9:
T

he
re

su
lts

of
th

e
di

sc
re

te
ve

rs
us

co
nt

in
uo

us
te

st
in

g.
(a

)
A

di
sc

re
te

,t
w

o-
m

od
e

so
lu

tio
n

as
op

tim
iz

ed
by

on
e-

,t
w

o-
,a

nd
th

re
e-

m
od

e
ca

lib
ra

tio
n

eq
ua

tio
ns

us
in

g
tw

o
di

ff
er

en
tp

ha
se

po
rt

ra
its

.
(b

)
A

co
nt

in
uo

us
,t

en
-m

od
e

so
lu

tio
n

as
op

tim
iz

ed
by

on
e-

,t
w

o-
,

an
d

th
re

e-
m

od
e

ca
lib

ra
tio

n
eq

ua
tio

ns
us

in
g

tw
o

di
ff

er
en

tp
ha

se
po

rt
ra

its
.

(c
)

A
di

sc
re

te
on

e-
m

od
e

so
lu

tio
n

as
op

tim
iz

ed
by

fiv
e-

an
d

te
n-

m
od

e
ca

lib
ra

tio
n

eq
ua

tio
ns

us
in

g
tw

o
di

ff
er

en
tp

ha
se

po
rt

ra
its

.(
d)

A
di

sc
re

te
tw

o-
m

od
e

so
lu

tio
n

as
op

tim
iz

ed
by

fiv
e-

an
d

te
n-

m
od

e
ca

lib
ra

tio
n

eq
ua

tio
ns

us
in

g
tw

o
di

ff
er

en
tp

ha
se

po
rt

ra
its

.
(e

)
A

co
nt

in
uo

us
te

n-
m

od
e

so
lu

tio
n

as
op

tim
iz

ed
by

a
te

n-
m

od
e

ca
lib

ra
tio

n
eq

ua
tio

n
us

in
g

tw
o

di
ff

er
en

tp
ha

se
po

rt
ra

its
.

50



Table 4.1: Comparison of the W1 metric values for the discrete-discrete mode testing for the time-
embedded ion number density PDF-TLPP and the ion versus neutral number density PDF-TLPP.

Ni(t) vs.
Ni(t−τ)

Ni vs.
Nn

Set Am-
plitudes

0.0894 0.3894

Set Fre-
quencies

0.0337 0.3783

Set
Average

Value
0.0700 0.6598

Set
Nothing

0.0958 1.4564

for almost every test case. Similarly, though the frequencies are not as matched, the amplitudes for

the lower-frequency function are well-matched in many cases. Any missing colors or lines indicate

that the optimizer gave that frequency a low or zero value such that they are not visible on the plot.

The optimizer’s ability to find the dominant frequency of the system proves a promising result

for this low-frequency study. In comparing the time-embedded ion number density plot to the ion

versus neutral number density plot, the time-embedded PDF-TLPP consistently yields better W1

metric values. The following table depicts the differences minimal values obtained by each type of

plot.

It is immediately evident from Table 4.1 that the time-embedded PDF-TLPP performs better

than plotting two signals versus each other. This result is seen in all four of the test cases shown

in this section, and so only this case is used for demonstrational purposes. Most likely, the neutral

density reacts too slowly in the system compared to the ion density, meaning it does not provide

a good representation of the dynamics. Conversely, the time-embedding uses the dynamics of the

ion density against itself and avoids this issue.

Figure 4.9(b) shows the discrete-to-continuous testing. A ten-mode reference solution is used,
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but only one-, two-, and three-mode trial solutions are allowed to be optimized. Here both the

frequency and amplitude of the discrete-mode simulations are searched. Despite the difference in

number of available modes, the solutions once again show that the optimizer is capable of under-

standing the general trend in data. For nearly all cases, the biggest peak of data occurs near the

original solution’s peak with lower values following. Because fewer modes are used to construct

the optimal solution, their amplitudes are larger as they look at the summation of the amplitudes of

all the other modes. Equivalent results are seen for both methods of TLPP creation. Using fewer

modes to replicate a multi-dimensional mode emulates attempting to determine dominant modes

in a noise-filled data set. The ability for the optimizer to recognize that the largest amplitudes

existed in the lower-value frequencies shows that the optimizer is capable of appropriately weight-

ing modes of differing importance. While not perfect, these results are indicative of ways to cope

with noise, such as finding a way to reduce the amplitude, and therefore significance, of the noise

frequencies so that the optimizer focuses on the larger-amplitude modes of the system.

Figure 4.9(c) and (d) show the continuous-to-discrete testing. This test uses both a five- and ten-

mode trial solution to match a one- and two-mode reference solution with each reference solution

plotted separately. While most test cases are able to determine a handful of zero-valued amplitudes,

meaning that the optimizer recognizes not all of the modes are needed to replicate the reference

solution, the results leave room for further improvement. For these cases specifically, the optimizer

experienced great difficulty in (i) finding sets of input parameters that did not cause the simulation

to fail and (ii) finding solutions withW1 values below 5. The optimized solutions for the two-mode

reference case sawW1 metric values as high as 11. In the best cases, theW1 metric values for these

results are on the order of 0.2 which is far higher than would be expected based on previous work.

Additionally, for this specific series of test cases, the W1 metric value for the ion versus neutral

number density plot tests are noticeably worse than those of the ion number density embedded

dimension.

Figure 4.9(e) shows the result of continuous-to-continuous testing. This is performed both for

a five-mode trial solution and ten-mode trial solution with a ten-mode reference solution in both
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cases. Due to the complexity of the system, as well as the complexity of the PDF-TLPPs seen at

the beginning of this chapter, these results are not as optimal as the discrete case. Nonetheless,

what is significant about these results are that the optimizer is able to recognize that the dominant

frequencies inhabit the lower range of values . This is especially noticeable for the five-mode

test case where all results lie below 40,000Hz. Moreover, the optimizer is able to recognize a

general downward trend after some peak value as the frequencies increase. The ten-mode solution

is similar, though it often contained many zero-valued amplitudes as part of its results.
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5. HPHALL TESTING1

For the Lorenz problem, as an example of a system consisting of few degrees of freedom,

the 2D TLPP is shown to find near-optimal input parameters of the dynamic system. However, a

nonlinear system with many degrees of freedom may exhibit more complex emergent dynamics.

To demonstrate the abilities of the 2D TLPP, the data-driven model calibration approach is used to

investigate its applicability for a HET discharge plasma.

5.1 A Hall Effect Thruster Model

The selected plasma discharge model, HPHall, is a 2D axisymmetric, hybrid particle-fluid

Hall thruster model initially developed by Fife and Martinez-Sanchez [6] and further extended to

several different versions[83, 19]. This numerical model simulates plasma behavior and plasma

interactions during the operation of the thruster. A particle-in-cell (PIC) simulation is used for

the heavy species while a fluid model is used for electrons. The electron fluid model utilizes a

quasi-1D approach where the dynamics along and across the magnetic field lines are decoupled.

Hence, a 1D cross-field transport equation for electrons based on the drift-diffusion flux is solved

in the axial direction, represented by the thermalized potential. The Boltzmann potential relation

is used to evaluate the potential profile in the direction along the magnetic field lines [21]. Due

to the numerical fluctuations that occur from using computational macroparticles, various time-

averaging techniques are used in HPHall. For instance, the electron momentum equation is solved

assuming a quasineutral plasma at the ion time step, while the electron energy equation is solved

using a sub-timestepping technique.

The particular internal phenomenon of interest in this paper is to investigate the effects of the

anomalous electron transport across magnetic field lines [20]. Recent studies suggest that the cause

of such anomalous transport may be due to plasma-wall interactions [10, 84] and electron cyclotron

1Reproduced from C.M. Greve, K. Hara, R.S. Martin, D.Q. Eckhardt, and J.W. Koo. "A data-driven approach to
model calibration for nonlinear dynamical systems" Jour. of Appl. Phys. Vol. 125, No. 244901, 2019. with permission
of AIP Publishing.
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drift instabilities [26, 85, 8, 86, 87]. In reality, all such nonlinear dynamics may be closely coupled,

causing difficulty for a physics-based model to achieve predictability [5]. Available experimental

data such as discharge current oscillations [82] to ion velocity distribution functions [88, 89] and

probe measurements [90], could be used as reference solutions for data-driven models.

For this work, HPHall simulates a generic model of sub-kW class HET run in an unoptimized

configuration. While this model could be calibrated using experimental data as the reference solu-

tion, an arbitrary configuration of the computational model is selected as the reference solution to

perform a code-to-code self-verification. Validation of the data-driven model against experimental

data is reserved for future work, since verification is a necessary prerequisite to any validation

study.

The crossed-field electron transport is described assuming a drift-diffusion flux for electrons,

which can be written as

ue,⊥ = −µeff

[
E⊥ +

1

ene
∇⊥(nekBTe)

]
, (5.1)

where ue,⊥ is the electron bulk velocity in the cross-field (⊥) direction, µeff is the effective cross-

field mobility, E⊥ is the electric field, ne is the electron density, kB is the Boltzmann constant, Te

is the electron temperature, and e is the elementary charge. The electron flux is used in conjunction

with the ion flux, considering a current balance: ∇⊥(niui,⊥) = ∇⊥(neue,⊥), where the ion density

ni = ne is assumed due to the quasineutral assumption and ui,⊥ is the ion velocity. Here, the

effective mobility is given by

µeff =
µ0

1 + Ω2
, (5.2)

where µ0 = e/meνm is the non-magnetized electron mobility, me is the electron mass, νm is the

electron momentum transfer collision frequency, Ω = ωce/νm is the Hall parameter, ωce = eB/me

is the electron cyclotron frequency, andB is the magnetic field amplitude. The anomalous electron

transport is typically accounted for in the νm term, which can be considered as νm = νm,clas +

νm,ano, where νm,clas is the collisional (classical) contribution from intermolecular collisions and

νm,ano is the contribution from the anomalous electron transport [5]. In HPHall, the anomalous
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Figure 5.1: The W1 metric response surface of the coefficient for the Bohm mobility model, α,
when the reference solution is chosen to be αexact = 0.0909.

electron transport is calculated using the summation of four mobility models. These models, based

on the work of Jorns [20], are calculated individually and summed using coefficients that describe

the strength of each mobility model. For the sake of simplicity in this paper, only the Bohm

mobility model is taken into account. Thus, the mobility model of HPHall can be expressed as

νm,ano = νBohm =
α

16
ωce, (5.3)

where α is the optimized coefficient describing the strength of the anomalous electron transport. It

is often assumed that the anomalous transport contribution varies in different regions of the thruster

channel, such as the near-anode, ionization, and acceleration regions [19], however, a uniform α

is considered in this paper for simplicity. The other details of the HPHall is referred to in other

literature [6, 83].

For further simplicity in this study, the wall conductivity model is deactivated. The effects of

the chamber pressure are also turned off in this model. Only singly charged ions and associated

ionization are taken into account. A nominal condition for the magnetic field strength, mass flow
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rate, and discharge voltage is chosen. The number of macroparticles for ions and neutral atoms are

approximately 60,000 and 100,000, respectively. The time step is 0.5 ns, and the electron sub-time

step is 50 ps. The simulation is run to 2.5 ms for a converged solution.

5.2 W1 Metric, PDF-TLPP, and Power Spectral Density

A code-to-code self-verification will be performed by constructing a reference solution from

the data obtained from HPHall. Here, a reference dataset is constructed from the discharge current

signal dynamics when α = 0.0909, hence αexact = 0.0909. The TLPP of the discharge current is

obtained for the reference solution and the GSB optimizer is configured to determine the value of

α (the input parameter of interest) based on the reference case. All other variables of HPHall such

as the discharge voltage, magnetic field strength, and collision model parameters are considered

fixed inputs for all data-driven simulations to focus solely on obtaining the optimized mobility

coefficient. The time lag τ is set to 150 time steps which corresponds to a physical time of 6 µs,

based on work performed by Martin et. al. [64] which also explains in detail the application of

Takens’ Theorem to Hall effect thrusters. The PDF-TLPP is constructed using 50×50 bins. Similar

to the Lorenz problem, the effects of dynamic and static frames are investigated. While the Lorenz

system optimization takes approximately 5 CPU hours for 1000 iterations, the HPHall simulation

takes 2000 CPU hours for 500 iterations.

Figure 5.1 shows the response surface of the Bohm mobility model coefficient, α, as a gradient

towards the reference solution, αexact = 0.0909. The limited search range is caused by the Bohm

mobility model being the only model “turned on” in this configuration, resulting in only α ≤ 0.4

yielding successful HPHall runs for the given numerical inputs, e.g., number of particles, time step,

and grid size. Even in this small range, the response surface has a gradient that can be determined

by the optimizer. Though the same problems related to the W1 metric and numerical inaccuracies

exist, the general function of the optimizer can still be established similar to the Lorenz system.

Because the Hall thruster simulation presents a more defined set of resonant frequencies in its

discharge current compared to the Lorenz system, a comparison of the power spectral density and

the PDF-TLPP is shown at this point. Figure 5.2 shows the discharge current, PDF-TLPP, and
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FFT of the reference (αexact = 0.0909) and off-reference (α = 0.3) solutions. Immediately visible

is the difference in time-averaged discharge current values between (a1) and (b1). The difference

in the average discharge current is represented as a “distance" in the PDF-TLPPs, demonstrating

that a longer distance between two images results in a larger W1 metric while other norms (e.g.

L2) may not. In comparison, the power spectral density shows the time-averaged quantities as the

lowest frequency mode. While the PDF-TLPP captures the overall structure of the time dependent

signal, e.g. maximum, minimum, and spread of the signals, the power spectral density obtained

by FFT directly shows the differences in the frequency. Although not shown in this paper, the W1

values obtained from the Fourier-based approach exhibit a similar convergence property compared

to PDF-TLPPs. One potential advantage of using PDF-TLPPs is for a real-time calibration of

dynamic phenomena. Time-dependent reference data, say, acquired from real time measurements,

can be updated seamlessly using PDF-TLPPs while the power spectral density must be recalculated

for all discrete frequencies when adding data online.

5.3 Finding the Anomalous Transport Coefficient in HPHall from the Reference Data

Optimization of the anomalous transport coefficient is performed on the Hall thruster simula-

tion using the data-driven calibration model. The optimization results are shown in Table 5.1. The

optimization run by GSB uses the same evolutionary algorithm as used for the Lorenz system. The

convergence criterion is set to ε0 = 10−7 and the maximum number of iterations is 200. The results

of Table 5.1 are consistent with the results from the Lorenz system. While the W1 metric value

is again non-zero, the difference in trial and reference solution is well below 1% with a match in

actual value to four decimal points. As shown later, the discharge current trace is highly noisy due

to the use of discrete particles in the hybrid algorithm, which may cause the non-zero W1 metric

values. Note that for this physical model, the W1 metric can be considered to have a unit of Amps.

Because HPHall is more complex that the Lorenz system, the other outputs of the system

such as the thrust and efficiency can be compared to obtain a more holistic understanding of the

differences between solutions. For the dynamic frame method, the best parameter yields 1.25%

less thrust, 1.3% less specific impulse, and 0.77% less efficiency than the reference solution. The
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Figure 5.2: A comparison between reference solution results and off-reference solution results.
(a1) The discharge current signal from the reference solution. (b1) The discharge current signal
from an off-reference solution. (a2) The PDF-TLPP of the reference solution. (b2) The PDF-TLPP
of the off-reference solution. Note that unlike the other figures in this work, the color gradient has
been reversed so that the lighter yellow signifies the more densely populated regions while the red
signifies the less populated regions. (c1) A comparison of the power density spectra for both the
reference and off-reference solution with (c2) an enlarged image of the latter half of the plot shown
with a log-log scale.
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Table 5.1: Optimization of α for a HET discharge plasma using HPHall.

Dynamic Static
Run 1 Run 2

α range 0.05− 0.2 0.08− 0.1
0.085−
0.095

Optimal α 0.089 0.0907 0.0909
(εα) (−2.1%) (−0.22%) (< 0.01%)

W1 metric
(A)

0.029 0.0203 0.0201

Current,
Id

0.777 A 0.792 A 0.791 A

(εI) (−1.74%) (+0.15%) (+0.05%)
Thrust, T 12.4 mN 12.6 mN 12.6 mN

(εT ) (−1.25%) (+0.21%) (+0.15%)
Isp 1476.71 s 1498.61 s 1497.74 s

(εIsp) (−1.3%) (+0.21%) (+0.15%)
η 46.39% 46.88% 46.87%

(εη) (−0.77%) (+0.26%) (+0.25%)

Figure 5.3: The PDF-TLPP for each run case of HPHall. (a) The reference solution. (b) The best
dynamic frame method. (c) The best static frame method. Note that the same frame size is chosen
for illustration, but the dynamic case (b) shows the actual bounds of the dynamic frame used during
the optimization.
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first static method test yields a 0.21% greater specific impulse, 0.21% greater thrust, and 0.26%

greater efficiency than the reference solution while the second yield even smaller discrepancies.

The agreement of the thrust performance other than the discharge current (the only quantity used

for calibration), provides strong indication that the overall system state-space behavior, captured

by the binned PDF-TLPP, is becoming identical to the reference solution, even if the direct (non-

embedded) output signal trajectories remain distinct. While the second static frame case (Run

2) shows a fractional improvement to the first static case (Run 1) when comparing observable

quantities, the discrepancy between the α trial and reference values is less than 0.01%, which shows

that the data-driven model is successful in finding the optimal input condition, the Bohm mobility

coefficient. In spite of the optimizer reaching W1 metric distances smaller than the average current

for this plasma discharge model, the W1 metric values for the optimized solutions is non-zero (∼

0.02 A). As shown in Fig. 3.7, it is difficult to achieve a solution below a 10−2 convergence [91].

This could necessitate a different optimization algorithm being employed once the optimizer has

nearly converged to the reference solution to further refine the optimal solution.

Figure 5.3 details the reference solution, dynamic frame, and static frame discharge current

plots and resulting PDF-TLPPs, respectively. It must be noted that all of the plots are generated

without the first 10% of the discharge current data as there exists an initial spike in the current that

eventually settles to a quasi-steady state. Each of the three discharge current plots can be seen to

oscillate around approximately the same average value with fluctuating amplitudes below ranging

from approximately 0.25 A to 2 A. The densest contour exists near the bottom left corner of the

plot (Id ∼ 0.8 A) with a lighter distribution emanating away from the corner. Although differences

can be seen in the tail of the distributions, such small PDFs only result in a smaller contribution to

the overall W1 metric.

The same numerical errors that are present in the Lorenz system, namely, the numerical errors

(e.g., discretization, truncation, round-off) due to the selected numerical scheme, the numerical

inaccuracies of the PDF-TLPPs (frame misalignment), and the errors associated when calculat-

ing the W1 metric based on discrete PDF-TLPPs, are still present in the Hall thruster discharge
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model. The added difficulty of the plasma discharge model stems from the particle noise in the

model, prominent in any particle-based simulation, and the large number of degrees of freedom,

i.e., number of macroparticles, in the system interacting with and affecting the numerical uncer-

tainties previously discussed. Despite these uncertainties, the PDF-TLPP and W1 metric proved a

beneficial optimization method for model calibration, showing promising step-forward in utilizing

such data-driven model to investigate nonlinear dynamics of physical phenomena. One of the first

steps for this future work will be to perform a study of the time lag, τ , sensitivity and how many

delay embeddings are required for this Hall thruster model and other physical systems [64].
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6. AN ONLINE VALIDATION METHOD

The work in this thesis was performed in conjunction with an online validation method for

Hall effect thruster research. For this work, the same zero-dimensional bulk plasma model from

the previous section is used as a proof of concept. The main premise of this online validation

method is that if given access to the time history of some trusted output signal, one should be able

to find the best estimate for the time history of the desired input condition. This is often called the

unknown input estimation problem in dynamical systems theory [92, 93]. The simplified premise

of this technique is to estimate the unknown input using the observations of all or part of the state

vector of the system [51]. This is borne from the notion that if parameters of the process vary in

time, the most effective way to identify the parameter is to track the parameter in real-time, also

known as real-time identification [94]. This model will use an extended Kalman filter method for

the online modeling.

For this model, assume that the state vector z(t) consists of both the ion and neutral number

densities. Then, the dynamical system of interest can be written as

ż = g(z) + h(z)ξ(t), (6.1)

where g is the first term of the equation and h contains the terms multiplied with ξ on the right hand

side of equations 4.1a and 4.1b. If we consider ξ(t) as the unknown input to this system, written

as ξ̂(t), we can use part of all of the observations of z(t) to estimate it. This can be performed in

real-time during the simulation, which is why it often gets employed in control systems processes.

Note that for a physical problem only a function of the state or the partial state may be available for

real-time estimation and the available state may also be corrupted by noise. Noise can be included

as

ȳk = h(z(tk)) + νk, (6.2)
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where the noise, ν, is used to form the measurement ȳ for a discrete time k. This general system

representation is employed in an extended Kalman filter (EKF) to reconstruct the temperature

profile of the zero-dimensional plasma model. The extended Kalman filter has been a known and

proven technique for the last number of decades [94]. Its application to system identification was

first proposed by Kopp and Orford [95] and has been applied across several areas of research and

industry including nuclear reactors [96] and heat box dynamics [97]. The EKF equations of interest

are as follows:

x(t) =
[
zTξ(t)

]T
, (6.3)

where the unknown input ξ(t) is augmented to the original state, z. The extended Kalman filter

predicates on a few assumptions regarding the nature of the signal. Notably, these assumptions

pertain to the smoothness of the signal in question. If the system is assumed piecewise-constant

between two measurement instances, the unknown input can be defined as w, a Brownian motion

process defined by the power spectral density w(t) N(0, q). The model is propagated as

ẋ = f(x, t) + Gw, (6.4)

where G = [0 0 1]T .

Artificial noise with a zero-mean variation is used to generate the ’experimental’ measure-

ments in the data using Eq. 6.2, and shown in Fig. 6.1. Note that for visualization purposes, the

model used in Fig. 6.1 is a normalized, non-dimensional model. This figure is provided to show

how the user-defined estimation is applied in the model, in such a way that emulates comparing

computational models and noisy experimental data.

The Kalman filter solution is intentionally initialized with a different, non-ideal x̂(t0) than the

reference solution. The optimal filter gain is computed as

Kk = P−k H
T
k (x̂k)

[
Hk(x̂k)P

−
k H

T
k (x̂k) +Rk

]−1
, (6.5)
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Figure 6.1: An example of the true ion number density plot and the resulting estimated ion number
density plot using a 10% zero-mean measurement error.

where Rk is the measurement error and Hk(x̂k) = [1 0 0]. The state propagation is performed by

x̂ = f(x̂, t), (6.6)

Ṗ (t) = F (x̂, t)P (t) + P (t)F T (x̂, t) +GGT q, (6.7)

where F (x̂, t) =
[
δf
δx

]
x̂

is the Jacobian matrix. Further detail regarding the development of this

method is given in Ref. [51].

Using a piecewise constant assumption in the EKF for the smoothness of the data is a rather

general assumption to make, meaning that any further restrictions to the smoothness of the ioniza-

tion rate coefficient will only improve the results shown in this section. The effort presented here is

to show that even worst-case, the EKF performs admirably to reconstruct the unknown input signal

trace. The model provided as an example in this work is a dimensional oscillatory plasma model

that will in the future become a breathing-mode oscillation seen in Hall effect thrusters [23]. These

oscillations have been seen in both computational models and experimental results. Using the same
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Figure 6.2: The original, reference, signal for the (a) ion number density, (b) neutral number
density, and (c) ionization rate coefficient. Note that the temperature input causes the ionization
rate coefficient through Eq. 4.2.

SPT-100 thruster geometry and constants from Chap. IV, but applying a different frequency to the

electron temperature oscillations, the following reference solution is generated.

The EKF model is allowed to use the state of the ion number density to reconstruct the electron

temperature signal seen in Fig. 6.2. The estimated solution and associated error plots are given

below.

The extended Kalman filter is shown to reach the original oscillation frequency and amplitude

of the electron temperature equation by the completion of the real-time simulation, seen in Fig.

6.3. The length of time required to reach the exact solution is dependent on the initial covariance

values chosen for each parameter as well as the process noise term, which dictates how flexible
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Figure 6.3: The time-dependent estimated values for the (a) ion number density, (b) neutral number
density, and (c) temperature input.
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Figure 6.4: The time-dependent error values for the (a) ion number density and neutral number
density, and (b) temperature input. The blue dashed lines represent the error bounds while the
black solid line is the error itself.

the covariance parameters are to being changed. An example of the errors corresponding to the

estimation process incurred by the estimator is output as part of this model’s functionality. The

true errors are subtracted from the estimates and plotted for the states and unknown inputs as

demonstrated in Fig. 6.4. The error covariance is plotted around the error signal to demonstrate

68



that the EKF captures the errors in the physics without breaking the measurement errors incurred

in the model. For this oscillatory mode of plasma behavior, the covariance process can actually be

seen to ’breathe’ with the errors incurred in the estimate. Though not visible in this non-normalized

case, see Ref. [51] for a normalized model that clearly shows such behavior.

These highly preliminary results demonstrate how the extended Kalman filter can be used to

estimate the time-dependent signal of plasma properties in Hall effect thrusters. A more in-depth

study regarding this work, its abilities and limitations, and its application to Hall thruster models

is in progress to become a journal article in the near future.
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7. SUMMARY AND CONCLUSIONS

The data-driven model calibration method presented in this thesis is shown to recover the ref-

erence solution parameters to high levels of accuracy for a variety of nonlinear, dynamic, chaotic

computational models. The initial testing performed with the Lorenz system demonstrates that the

frame dependence for a binned solution can reduce the lowest achievable Wasserstein distance by

50%. This study revealed an effective strategy whereby a dynamic frame is used to reduce the

initial size of the parameter phase space and a static frame is then used to further optimize a small

range of parameter values. The uniqueness of the Lorenz system solution is shown through the

comparisons of various sampling lengths and a sensitivity analysis. The sensitivity of the input

parameters to infinitesimal changes up to double-precision perturbations was investigated.

The zero-dimensional plasma model was used to study the convergence properties of a plasma

physics model using the proposed calibration method. The convergence of the discretization of

the probability distribution function binning, subsets of data being used, and how long of a simu-

lation is necessary to negate differences in run time were all quantified to better understand how

differences between computational and experimental data may occur.

The zero-dimensional plasma model was also used with a variety of discrete and continuous

solution forms to understand how the calibration method handles a difference in solution forms.

While the results yield noticeably higher W1 metric values than other solutions presented in this

thesis, the calibration method is at least able to understand a lack of need for all of the equation

modes when using a continuous solution to describe a discrete solution, and the location of the

more significant frequencies by a discrete equation form when attempting to replicate a continuous

system. This demonstrates the solution’s ability to identify the significant dynamics is a system.

The model calibration method was then used with a Hall effect thruster model to calibrate the

electron mobility parameter used in the model. The calibration method found a solution within

10−4 of the reference value. Output signals not used as part of the calibration method, such as

the thrust and specific impulse of the Hall-effect thruster model, were accurate to within 1% of

70



the reference solution values. This implies that the calibration method is capable of determining

a form of causality between input parameters and output signals such that an optimal solution can

be discovered.

Lastly, a more active model that performs calibration real-time during the simulation was pre-

sented. This method is shown as capable of finding the true solution time-dependent trace of the

zero-dimension plasma model, though more work to this end is to be performed in the future.

7.1 Further Study

As mentioned in the introduction, this calibration method is only the basest of models that

could be developed for data-driven modeling of Hall effect thruster studies. The static, or steady-

state, solution generated by this method is useful, but limited in its abilities. The assumption of

a steady-state solution is likely an oversimplification of the steady-state operation mode of a Hall

effect thruster, which still experiences dynamic oscillations in that operating mode. Instead, the

development of a dynamic (in time and space) solution must be determined to account for all

modes of a Hall thruster that require different operating conditions. The discoveries made through

this work will assist in guiding the development of a dynamic calibration method, but certainly do

not constitute as a complete solution. The simple lack of data-driven modeling techniques applied

specifically to plasma propulsion leave a broad field of potential new insights to computational

modeling.
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