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ABSTRACT

This study is motivated by the fact that uncertainties from deepening penetration of renew-

able energy resources have posed critical challenges to the secure and reliable operations of future

electrical grids. Among various tools for decision making in uncertain environments, this study

focuses on chance-constrained optimization, which provides explicit probabilistic guarantees on

the feasibility of optimal solutions. Although quite a few methods have been proposed to solve

chance-constrained optimization problems, there is a lack of comprehensive review and compar-

ative analysis of the proposed methods. In this work, we provide a detailed tutorial on existing

algorithms and a survey of major theoretical results of chance-constrained optimization theory.

Data-driven methods, which are not constrained by any specific distributions of the underlying

uncertainties, are of particular interest.

Built upon chance-constrained optimization, we propose a three-stage power system opera-

tion framework with probabilistic guarantees: (1) the optimal unit commitment in the operational

planning stage; (2) the optimal reactive power dispatch to address the voltage security issue in

the hours-ahead adjustment period; and (3) the secure and reliable power system operation under

uncertainties in real time.

In the day-ahead operational planning stage, we propose a chance-constrained SCUC (c-SCUC)

framework, which ensures that the risk of violating constraints is within an acceptable thresh-

old. Using the scenario approach, c-SCUC is reformulated to the scenario-based SCUC (s-SCUC)

problem. By choosing an appropriate number of scenarios, we provide theoretical guarantees on

the posterior risk level of the solution to s-SCUC. Inspired by the latest progress of the scenario

approach on non-convex problems, we demonstrate the structural properties of general scenario

problems and analyze the specific characteristics of s-SCUC. Those characteristics were exploited

to benefit the scalability and computational performance of s-SCUC.

In the adjustment period, this work first investigates the benefits of look-ahead coordination

of both continuous-state and discrete-state reactive power support devices across multiple control
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areas. The conventional static optimal reactive power dispatch is extended to a “moving-horizon”

type formulation for the consideration of spatial and temporal variations. The optimal reactive

power dispatch problem is further enhanced with chance constraints by considering the uncertain-

ties from both renewables and contingencies. This chance-constrained optimal reactive power dis-

patch (c-ORPD) formulation offers system operators an effective tool to schedule voltage support

devices such that the system voltage security can be ensured with quantifiable level of risk.

Security-constrained Economic Dispatch (SCED) lies at the center of real-time operation of

power systems and modern electricity markets. It determines the most cost-efficient output levels

of generators while keeping the real-time balance between supply and demand. In this study, we

formulate and solve chance-constrained SCED (c-SCED), which ensures system security under

uncertainties from renewables. The c-SCED problem also serves as a benchmark problem for a

critical comparison of existing algorithms to solve chance-constrained optimization problems.
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1. INTRODUCTION1

Real-time decision making in the presence of uncertainties is a classical problem that arises

in many contexts. In the context of electric energy systems, a pivotal challenge is how to operate

a power grid with an increasing amount of supply and demand uncertainties. The unique char-

acteristics of such operational problem include (1) the underlying distribution of uncertainties is

largely unknown (e.g. the forecast error of demand response); (2) decisions have to be made in a

timely manner (e.g. a dispatch order needs to be given by 5 minutes prior to the real-time); and

(3) there is a strong desire to know the risk that the system is exposed to after a decision is made

(e.g. the risk of violating transmission constraints after the real-time market clears). In response to

these challenges, a class of optimization problems named “chance-constrained optimization” has

received increasing attention in both operations research and practical engineering communities.

Although quite a few methods have been proposed to solve chance-constrained optimization

problems, there is a lack of comprehensive review and comparative analysis of the proposed

methods. This dissertation first provides a comprehensive review of existing methods to chance-

constrained optimization in Chapter 2: (1) scenario approach; (2) sample average approximation;

and (3) robust optimization based methods. Data-driven methods, which are not constrained by any

particular distributions of the underlying uncertainties, are of particular interest. Many methods

reviewed in Chapter 2 are implemented in the Matlab Toolbox ConvertChanceConstraint (ccc).

Built upon chance-constrained optimization, this dissertation proposes a three-stage power sys-

tem operation framework with probabilistic guarantees. The three-stage framework also outlines

the remainder of this dissertation: (1) Chapter 3 examines the optimal commitment in the oper-

ational planning stage; (2) Chapter 4 studies the voltage security issue in the adjustment period;

and (3) Chapter 5 investigates the secure and reliable power system real-time operation under un-

certainties.

Keeping the balance between supply and demand is a fundamental task in power system op-

1Adapted with permission from [1–4].
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erational planning practices. This task becomes particularly challenging due to the deepening

penetration of renewable energy resources, which induces a significant amount of uncertainties.

In Chapter 3, we propose a chance-constrained Security-constrained Unit Commitment (c-SCUC)

framework to tackle challenges from uncertainties of renewables. The proposed c-SCUC frame-

work seeks cost-efficient scheduling of generators while ensuring operation constraints with guar-

anteed probability. Inspired by the latest progress of the scenario approach on non-convex prob-

lems, we demonstrate the structural properties of general scenario problems and reveal the salient

structural properties of c-SCUC, which could significantly reduce the sample complexity required

by the scenario approach and speed up computation.

The uncertainties from deepening penetration of renewable energy resources have already

shown to impact not only the market operations, but also the physical operations in large power sys-

tems. It is demonstrated that deterministic modeling of wind would lead to voltage insecurity in the

reality where wind fluctuates. This could render deterministic control of reactive power ineffective.

As an alternative, Chapter 4 proposes a chance-constrained formulation of optimal reactive power

dispatch which considers the uncertainties from both renewables and contingencies. This formu-

lation of a chance constrained optimal reactive power dispatch (cc-ORPD) offers system operators

an effective tool to schedule voltage support devices such that the system voltage security can be

ensured with quantifiable level of risk. The cc-ORPD problem is a Mixed-Integer Non-Linear Pro-

gramming (MINLP) problem with a joint chance constraint and is extremely challenging to solve.

Using sample average approximation and linearized power flow equations, the original cc-ORPD

problem is approximated as a Mixed-Integer Linear Programming (MILP) problem.

Security-constrained Economic Dispatch (SCED) lies at the center of modern electricity mar-

kets and short-term power system operations. It determines the most cost-efficient output levels

of generators while keeping the real-time balance between supply and demand. Chapter 5 extends

SCED using chance constraints (cc-SCED), which ensures system security under uncertainties

from renewables. The proposed cc-SCED problem is solved via different algorithms reviewed in

Chapter 2. Chapter 5 also presents a critical comparison of existing methods to solve chance-

2



constrained optimization problems based on numerical simulations.

The notations in this dissertation are standard. All vectors are in the real field R. We use 1 to

represent an all-one vector of appropriate size. The transpose of a vector a is aᵀ. The element-wise

multiplication of the same-size vectors a and b is denoted by a ◦ b. For instance, [a1; a2] ◦ [b1; b2] =

[a1b1; a2b2]. Sets are in calligraphy fonts, e.g. S. The cardinality of a set S is |S|. Removal of

element i from set N is represented by N − i. The essential supremum is ess sup.
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2. A SCHEMATIC OVERVIEW OF CHANCE-CONSTRAINED OPTIMIZATION 1

Chance-constrained optimization (CCO) is an important tool for decision making in uncertain

environments. Since its birth in 1950s, CCO has found many successful applications in various

fields, e.g. economics [5], control theory [6], chemical process [7, 8], water management [9]

and recently in machine learning [10–15]. Chance-constrained optimization plays a particularly

important role in the context of electric power systems [16,17], applications of CCO can be found

in various time-scales of power system operations and at different levels of the system.

The first chance-constrained program was formulated in [18], then was extensively studied in

the following 50 years, e.g. [11, 19–26]. Previously, most methods to solve CCO problems deal

with specific families of distributions, such as log-concave distributions [26, 27]. Many novel

methods appeared in the past ten years, e.g. scenario approach [6], sample average approximation

[28, 29] and convex approximation [30]. Most of them are generic methods that are not limited to

specific distribution families and require very limited knowledge about the uncertainties. In spite

of many successful applications of these methods in various fields, there is a lack of comprehensive

review and a critical comparison.

The objective of this chapter is to provide a comprehensive and up-to-date review of mathemat-

ical formulations, computational algorithms, and engineering implications of chance-constrained

optimization in the context of electric power systems. In particular, this chapter focuses on the

data-driven approaches to solving chance-constrained optimization without knowing the under-

lying distribution of uncertainties. This chapter also briefly mentions some critical results of an

alternative approach, i.e. deriving equivalent forms of chance-constrained optimization problems

for specific distributions. A more general class of problems, i.e. distributionally robust optimiza-

tion or ambiguous chance constraint, is beyond the scope of this dissertation.

The main contributions of this chapter are twofold:

1. We provide a detailed tutorial on existing algorithms to solve chance-constrained programs
1Parts of this chapter are reprinted with permission from [1].
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and a survey of major theoretical results. To the best of our knowledge, there is no such

review available in the literature;

2. We implement most of the reviewed methods and develop an open-source Matlab toolbox

(ConvertChanceConstraint), which is available on Github 2.

2.1 Chance-constrained Optimization

2.1.1 Introduction to Chance-constrained Optimization

We study the following chance-constrained optimization problem throughout this chapter:

(CCO): min
x

cᵀx (2.1a)

s.t. Pξ
(
f(x, ξ) ≤ 0

)
≥ 1− ε (2.1b)

x ∈ X (2.1c)

where x ∈ Rn is the decision variable and random vector ξ ∈ Rd is the source of uncertainties.

Without loss of generality 3, we assume the objective function is linear in x and does not depend

on ξ. Constraint (2.1b) is the chance constraint (or probabilistic constraint), it requires the inner

constraint f(x, ξ) ≤ 0 to be satisfied with high probability 1−ε. The inner constraint f(x, ξ) : Rn×

Rd → Rm consists of m individual constraints, i.e. f(x, ξ) =
(
f1(x, ξ), f2(x, ξ), · · · , fm(x, ξ)

)
.

The set X stands for the deterministic constraints. Parameter ε is called the violation probability

of (CCO). Notice that f(x, ξ) is random due to ξ, the probability P is taken with respect to ξ.

Sometimes the probability is denoted by Pξ to avoid confusion.

It is worth mentioning that CCO is closely related with the theory of risk management. For

example, an individual chance constraint P(fi(x, ξ) ≤ 0) ≥ 1− εi can be equivalently interpreted

as a constraint on the value at risk VaR(fi(x, ξ); 1− εi) ≤ 0. This connection can be directly seen

from the definition.
2github.com/xb00dx/ConvertChanceConstraint-ccc
3Using the epigraph formulation as mentioned in [31, 32].
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Definition 1 (Value at Risk). Value at risk (VaR) of random variable ζ at level 1− ε is defined as

VaR(ζ; 1− ε) := inf
{
γ : P(ζ ≤ γ) ≥ 1− ε

}
(2.2)

More details about this can be found in Section 2.6.3.1, [33, 34] and references therein.

CCO is closely related with two other major tools for decision making with uncertainties:

stochastic programming and robust optimization. The idea of sample average approximation,

which originated from stochastic programming, can be applied on chance-constrained programs

(Section 2.5). Section 2.6 demonstrates the connection between robust optimization and CCO.

2.1.2 Joint and Individual Chance Constraints

Constraint (2.1b) is called a joint chance constraint because of its multiple inner constraints

[27], i.e.

P
(
f1(x, ξ) ≤ 0, f2(x, ξ) ≤ 0, · · · , fm(x, ξ) ≤ 0

)
≥ 1− ε (2.3)

Alternatively, each one of the following m constraints is called an individual chance constraint:

P
(
fi(x, ξ) ≤ 0

)
≤ 1− εi, i = 1, 2, · · · ,m (2.4)

Joint chance constraints typically have more modeling power since an individual chance constraint

is a special case (m = 1) of a joint chance constraint. But individual chance constraints are

relatively easier to deal with (see Section 2.2.2 and 2.6.3). There are several ways to convert

individual and joint chance constraints between each other.

First, a joint chance constraint can be written as a set of individual chance constraints using

Bonferroni inequality or Boole’s inequality. Notice (2.3) can be represented as

Pξ
(
∪mi=1

{
fi(x, ξ) ≥ 0

})
≤ ε. (2.5)

Since Pξ(∪mi=1{fi(x, ξ) ≥ 0}) ≤
∑m

i=1 Pξ({fi(x, ξ) ≥ 0}), if
∑m

i=1 εi ≤ ε, then any feasible solu-
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tion to (2.4) is also feasible to (2.3). In other words, (2.4) is a safe approximation (see Definition

11) to (2.3) when
∑m

i=1 εi ≤ ε. With appropriate {εi}mi=1, (2.4) could be a good approximation of

(2.3). However, it is usually difficult to find such {εi}mi=1. Some other issues of this approach are

discussed in Section 2.6.4.1.

Alternatively, a joint chance constraint (2.3) is equivalent to the following individual chance

constraint:

Pξ
(
f(x, ξ) ≤ 0

)
≥ 1− ε (2.6)

where f(x, ξ) : Rn×Rd → R is the pointwise maximum of functions {fi(x, ξ)}mi=1 over x and ξ,

i.e.

f(x, ξ) := max
{
f1(x, ξ), f2(x, ξ), · · · , fm(x, ξ)

}
. (2.7)

However, converting {fi(x, ξ)}mi=1 to f(x, ξ) could lose nice structures of the original constraint

f(x, ξ) ≤ 0 and cause more difficulties.

In this dissertation, we focus on the chance-constrained optimization problems with a joint

chance constraint.

2.1.3 Critical Definitions and Assumptions

Theoretical results in the following sections are based on the critical definitions and assump-

tions below.

Definition 2 (Violation Probability). Let x� denote a candidate solution to (CCO), its violation

probability is defined as

V(x�) := Pξ
(
f(x�, ξ) ≥ 0

)
(2.8)

Definition 3. x� is a feasible solution for (CCO) if x� ∈ X and V(x�) ≤ ε. Let Fε denote the set

of feasible solutions to the chance constraint (2.1b),

Fε := {x ∈ Rn : V(x) ≤ ε} = {x ∈ Rn : Pξ
(
f(x, ξ) ≤ 0

)
≥ 1− ε}

then x� is feasible to (CCO) if x� ∈ X ∩ Fε.
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Although (CCO) seeks optimal solutions under uncertainties, it is a deterministic optimization

problem. To better see this, (CCO) can be equivalently written as minx∈X cᵀx, s.t. V(x) ≤ ε or

minx∈X∩F c
ᵀx.

Definition 4. Let o? denote the optimal objective value of (CCO). For simplicity, we define o? =

+∞ when (CCO) is infeasible and o? = −∞ when (CCO) is unbounded. Let x? denote the

optimal solution to (CCO) if exists, and o? = cᵀx?.

Definition 5. We say a candidate solution x� is conservative if V(x�)� ε or cᵀx� � o?.

Most existing theoretical results on (CCO) are built upon the following two assumptions.

Assumption 1. Let Ξ denote the support of random variable ξ, the distribution ξ ∼ Ξ exists and

is fixed.

Assumption 1 only assumes the existence of an underlying distribution, but we do not nec-

essarily need to know it to solve (CCO). Removing assumption 1 leads to a more general class

of problem named distributionally robust optimization or ambiguous chance constraints. Section

2.2.4 discusses cases with Assumption 1 removed.

Assumption 2. (1) Function f(x, ξ) is convex in x for every instance of ξ, and (2) the deterministic

constraints define a convex set X .

The convexity assumption above makes it possible to develop theories on (CCO). However,

the feasible region Fε of (CCO) is often non-convex even under Assumption 2. More details are

presented in Section 2.2.1 and 2.2.2.

2.2 Fundamental Properties

2.2.1 Hardness

Although CCO is an important and useful tool for decision making under uncertainties, it is

very difficult to solve in general. Major difficulties come from two aspects:
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(D1) It is difficult to check the feasibility of a candidate solution x�. Namely, it is intractable to

evaluate the probability Pξ
(
f(x�, ξ) ≤ 0

)
with high accuracy. More specifically, calculat-

ing probability involves multivariate integration, which is NP-Hard [35]. The only general

method might be Monte-Carlo simulation, but it can be computationally intractable due to

the curse of dimensionality.

(D2) It is difficult to find the optimal solution x? and o? to (CCO). Even with the convexity as-

sumption (Assumption 2), the feasible region Fε of (CCO) is often non-convex except a few

special cases. For example, Section 2.2.3 shows the feasible region of (CCO) with separable

chance constraints is a union of cones, which is non-convex in general. Although researchers

have proved various sufficient conditions on the convexity of (CCO), it remains challenging

to solve (CCO) because of difficulty (D1). Most of times, however, we are agnostic about

the properties of the feasible region Fε.

Despite that fact that Assumptions 1 and 2 greatly simplify the problem and make theoretical

analysis on (CCO) possible, (D1) and (D2) still exist and pose great challenges to solve (CCO).

Theorem 1 ( [36, 37]). (CCO) is strongly NP-Hard.

Theorem 2 ( [38]). Unless P = NP, it is impossible to obtain a polynomial time algorithm for

(CCO) with a constant approximation ratio.

Theorem 1 formalizes the hardness results of solving (CCO), Theorem 2 further demonstrates

it is also difficult to obtain approximate solutions to (CCO): any polynomial algorithm is not able

to find a solution x∗ (with o∗ = cᵀx∗) such that |o∗/o?| is bounded by a constant C. In other words,

any polynomial-time algorithm could be arbitrarily worse.

2.2.2 Special Cases

Although (CCO) is NP-Hard to solve in general, there are several special cases in which solving

(CCO) is relatively easy. The most well-known special case is (2.9), which was first proved in [21].
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min
x∈X

cᵀx (2.9a)

s.t. P(aᵀx+ bᵀξ + ξᵀDx ≤ e) ≥ 1− ε (2.9b)

Parameters a ∈ Rn,b ∈ Rd, D ∈ Rd×n and e ∈ R are fixed coefficients. ξ ∼ N (µ,Σ) is

a multivariate Gaussian random vector with mean µ and covariance Σ. Notice that (2.9b) is an

individual chance constraint with multivariate Gaussian coefficients. Let Φ(·)−1 denote the inverse

cumulative distribution function (CDF) function of a standard normal distribution. It is easy to

show that if ε ≤ 1/2, (2.9) is equivalent to (2.10), which is a second order cone program (SOCP)

and can be solved efficiently.

min
x∈X

cᵀx (2.10a)

s.t. e− bᵀµ− (a+Dᵀµ)ᵀx ≥

Φ−1(1− ε)
√

(b+Dx)ᵀΣ(b+Dx) (2.10b)

(2.10) also shows the possibility of deriving equivalent reformulations of chance-constrained op-

timization, many analytical methods to solve chance-constrained optimization are built on this

observation.

The case of log-concave distribution [26, 39, 40] is another famous special case where chance

constraint is convex. There are many other sufficient conditions on the convexity of chance con-

straints, e.g. [41–45].

2.2.3 Feasible Region

A chance-constrained program with only right hand side uncertainties (2.11) is considered in

this section. With this example, we provide deeper understandings on the non-convexity of (CCO).
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min
x∈X

cᵀx (2.11a)

s.t. P(f(x) ≤ ζ) ≥ p (2.11b)

In (2.11b), the inner function f(x) : Rn → Rm is deterministic. The only uncertainty is the

right-hand side value, represented by a random vector ζ ∈ Rm. Chance constraints like (2.11b)

are also named separable chance constraints (or probabilistic constraints) since the deterministic

and random parts are separated. We replace 1− ε with p in (2.11b) to follow the convention in the

existing literature.

Definition 6 (p-efficient points [46]). Let p ∈ (0, 1), a point v ∈ Rm is called a p-efficient point of

the probability function Pζ(ζ ≤ z), if Pζ(ζ ≤ v) ≥ p and there is no z ≤ v, and z 6= v such that

Pζ(ζ ≤ z) ≥ p.

Theorem 3 ( [46] [26]). Let E be the index set of p-efficient points vi, i ∈ E . Let Fp := {x ∈ Rn :

Pζ(f(x) ≤ ζ) ≥ p} denote the feasible region of (2.11b), then it holds that

Fp = ∪i∈EKi (2.12)

where each cone Ki is defined as Ki := vi + Rm
+ , i ∈ E .

Theorem 3 shows the geometric properties of (CCO). The finite union of convex sets need not

to be convex, therefore the feasible region of (CCO) is generally non-convex.

Remark 1. Many methods to solve (CCO) (e.g. [24, 47, 48] ) start with a partial or complete enu-

meration of p-efficient points. However, the number of p-efficient points could be astronomic or

even infinite. See [26, 46] and references therein for the finiteness results of p-efficient points and

complete theories and algorithms on p-efficient points.
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2.2.4 Ambiguous Chance Constraints

Ambiguous chance constraint is a generalization of chance constraints,

Pξ∼P
(
f(x, ξ) ≤ 0

)
≥ 1− ε, ∀P ∈ P . (2.13)

It requires the inner chance constraint f(x, ξ) ≤ 0 holds with probability 1− ε for any distribution

P belonging to a set of pre-defined distributions P .

Ambiguous chance constraints are particularly useful in the cases where only partial knowledge

on the distribution P is available, e.g. we know only that P belongs a given family of P . However,

it is generally more difficult to solve ambiguous chance constraints, and the theoretical results rely

on different assumptions of uncertainties. This chapter only reviews solutions to CCO, studies on

ambiguous chance constraints are beyond the scope of this dissertation.

2.3 An Overview of Solutions to CCO

This chapter concentrates on solutions to (CCO) with the following properties: (i) dealing

with both difficulties (D1) and (D2) mentioned in Section 2.2.1; (ii) utilizing information from

data (only) without making suspicious assumptions on the distribution of uncertainties; and (iii)

possessing rigorous guarantees on the feasibility and optimality of returned solutions. Section

2.3.1-2.3.3 explain these three properties in detail. Section 2.3.4 provides an overview of methods

with the properties above.

2.3.1 Classification of Solutions

Existing methods on (CCO) can be roughly classified into four categories [49]:

(C1) When both difficulties (D1) and (D2) in Section 2.2.1 are absent, (CCO) is convex and the

probability P(f(x, ξ) ≤ 0) is easy to calculate. The only known case in this category is

the individual chance constraint (2.9) with Gaussian distributions, which might be the only

special case of (CCO) that can be easily solved;

(C2) When (D1) is absent but (D2) is present, it is relatively easy to calculate P(f(x, ξ) ≤ 0) (e.g.
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finite distributions with not too many realizations). As shown in Theorem 3, the feasible

region of (CCO) could be non-convex and solutions typically rely on integer programming

and global optimization [49];

(C3) When (D1) is present but (D2) is absent, (CCO) is proved to be convex but remains difficult

to solve because of the difficulty (D1) in calculating probabilities. This case often requires

approximating the probability via simulations or specific assumptions. All examples men-

tioned in Section 2.2.2 except (2.9) belong to this category.

(C4) When both difficulties (D1) and (D2) are present, it is almost impossible to find the optimal

solution x? and o?. All existing methods attempt to obtain approximate solutions or sub-

optimal solutions and construct upper and lower bounds on the true objective value o? of

(CCO).

Methods associated with (C1)-(C3) are briefly mentioned in Section 2.2, the remaining part of this

chapter presents more general and powerful methods in category (C4).

2.3.2 Prior Knowledge

In order to solve (CCO), a reasonable amount of prior knowledge on the underlying distribution

ξ ∼ Ξ is necessary. Figure 2.1 illustrates three categories of prior knowledge:

(K1) We know the exact distribution ξ ∼ Ξ thus have complete knowledge on the underlying

distribution;

(K2) We know partially on the distribution (e.g. multivariate Gaussian distribution with bounded

mean and variance) and thus have partial knowledge;

(K3) We have a finite dataset {ξi}Ni=1, this is another case of partial knowledge.

It can be seen that prior information in (K2) is a strict subset of (K1), also by sampling we can

construct a dataset in (K3) from the exact distribution in (K1). It seems (K1) is the best starting

point to solve (CCO). However, probability distributions are not known in practice, they are just
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Figure 2.1: Different Knowledge Levels to Solve (CCO), reprinted with permission from [1].

models of reality and exist only in our imagination. What exists in reality is data. Therefore (K3)

is the most practical case and becomes the focus of this dissertation. Almost all the data-driven

methods to solve (CCO) are based on the following assumption.

Assumption 3. The samples (scenarios) ξi (i = 1, 2, · · · , N ) in the dataset {ξi}Ni=1 are indepen-

dent and identically distributed (i.i.d.).

2.3.3 Theoretical Guarantees

In this chapter, we concentrate on the theoretical aspects of the reviewed methods. In particular,

we pay special attention to feasibility guarantees and optimality guarantees.

Given a candidate solution x� to (CCO), the first and possibly most important thing is to check

its feasibility, i.e. if V(x�) ≤ ε. Although (D1) demonstrates the difficulty in calculating V(x�)

with high accuracy, there are various feasibility guarantees that either estimate V(x�) or provide

upper bound on V(x�). The feasibility results can be classified into two categories: a-priori and

a-posteriori guarantees. The a-priori ones typically provide prior conditions on (CCO) and the

dataset {ξi}Ni=1, the feasibility of the corresponding solution x� is guaranteed before obtaining x�.

Examples of this type include Corollary 1, Theorem 6,13 and 11. As the name suggests, the a-

posteriori guarantees make effects after obtaining x�. The a-posteriori guarantees are constructed
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based on the observations of the structural features associated with x�. Examples include Theorem

7 and Proposition 1.

Given a candidate solution x� and the associated objective value o� = cᵀx�, another important

question to be answered is about the optimality gap |o� − o?|. Although finding o? is often an

impossible mission because of difficulty (D2), bounding from below on o? is relatively easier.

Sections 2.4.5 and 2.5.4 dedicate to algorithms of constructing lower bounds o ≤ o?.

2.3.4 A Schematic Overview

A schematic overview of solutions to (CCO) and their relationships are presented in Figure 2.2.

Akin methods are plotted in similar colors, and links among two circles indicate the connection of

the two methods. The tree-like structure of Figure 2.2 illustrates the hierarchical relationship of

the reviewed methods. Key references of each method are also provided. The root node of Figure

2.2 is the “ambiguous chance constraint” or distributionally robust optimization (DRO), which is

the parent node of “chance-constrained optimization”. This indicates that DRO contains CCO as

a special case. Similarly, for example, node “scenario approach” has three child nodes “prior”,

“posterior” and “sampling and discarding”, this indicates the scenario approach has three major

variations.

As shown in Figure 2.2, CCO is a special case of ambiguous chance constraints where the set

of distributions P is a singleton (Section 2.2.4). Therefore methods to solve ambiguous chance

constraints can be applied on chance constraints as well. The methods and algorithms to solve

CCO are the main focus of this chapter, we will briefly mention the connection if some methods

are related with ambiguous chance constraints.

Figure 2.2 also outlines this chapter, which dedicates to a review and tutorial on chance-

constrained optimization. We summarize key results on the basic properties (Section 2.2), three

main approaches to solving chance-constrained optimization problems, scenario approach (Section

2.4), sample average approximation (Section 2.5) and robust optimization (RO) based methods

(Section 2.6).
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Figure 2.2: A Schematic Overview of Existing Methods and Algorithms to Solve Chance-
constrained Optimization Problems, reprinted with permission from [1].

2.4 Scenario Approach

2.4.1 Introduction to Scenario Approach

Scenario approach utilizes a dataset with N scenarios {ξi}Ni=1 to approximate the chance-

constrained program (2.1) and obtains the following scenario problem (SP)N :

(SP)N : min
x∈X

cᵀx (2.14a)

s.t. f(x, ξ1) ≤ 0, · · · , f(x, ξN) ≤ 0 (2.14b)
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SPN seeks the optimal solution x∗N which is feasible for all N scenarios. The scenario approach

is a very simple yet powerful method. The most attractive feature of the scenario approach is

its generality. It requires nothing except the convexity of constraints f(x, ξ) and X . It is purely

data-driven and makes no assumption on the underlying distribution.

Remark 2. SPN is a random program. Both its optimal objective value o∗N and optimal solution

x∗N depend on the random samples {ξi}Ni=1, therefore they are random variables. In consequence,

V(x∗N) is also a random variable. Let N := {1, 2, · · · , N} denote the index set of scenarios. The

optimal objective value of SPN is denoted by o∗(N ) to emphasize its dependence on the random

samples.

Theoretical results of the scenario approach are built upon the following assumption in addition

to Assumptions 1, 2 and 3.

Assumption 4 (Feasibility and Uniqueness [62]). Every scenario problem (SP)N is feasible, and

its feasibility region has a non-empty interior. Moreover, the optimal solution x∗N of (SP)N exists

and is unique.

If there exist multiple optimal solutions, the tie-break rules in [60] can be applied to obtain a

unique solution.

Remark 3 (Sample Complexity N ). We first provide some intuition on the scenario approach.

When solving (SP)N with a very large number of scenarios, the solution x∗N will be robust to

almost every realization of ξ, thus the violation probability goes to zero. Although x∗N is a feasible

solution to (CCO) as N → +∞, it is overly conservative because V(x∗) ≈ 0 � ε. On the other

hand, using too few scenarios for SPN might result in infeasible solutions x∗N to (CCO). Notice

that N is the only tuning parameter in the scenario approach, the most important question in the

scenario approach theory is: what is the right sample complexity N? Namely, what is the smallest

N such that V(x∗N) ≤ ε (with high probability)? Rigorous answers to the sample complexity

question are built upon the structural properties of SPN .

17



2.4.2 Structural Properties of the Scenario Problem

Among N scenarios in the dataset {ξi}Ni=1, there are some important scenarios having direct

impacts on the optimal solution x∗N .

Definition 7 (Support Scenario [60]). Scenario ξi is a support scenario for (SP)N if its removal

changes the solution of (SP)N . The set of support scenarios of (SPN) is denoted by S.

Theorem 4 ( [60,63]). Under Assumption 2, the number of support scenarios in SPN is at most n,

i.e. |S| ≤ n.

Theorem 4 is built upon Helly’s theorem and Radon’s theorem [77] in convex analysis. For non-

convex problems, the number of support scenarios could be greater than the number of decision

variables n. An example for non-convex problems is provided in [69].

Definition 8 (Fully-supported Problem [62]). A scenario problem SPN with N ≥ n is fully-

supported if the number of support scenarios is exactly n. Scenario problems with |S| < n are

referred as non-fully-supported problems.

Definition 9 (Non-degenerate Problem [62, 63]). Problem SPN is said to be non-degenerate, if

o∗(N ) = o∗(S). In other words, SPN is non-degenerate if the solution of (SP)N with all scenarios

in place coincides with the solution to the program with only the support scenarios are kept.

2.4.3 A-priori Feasibility Guarantees

Obtaining a-priori feasibility guarantees on the solution x∗N to SPN typically involves the fol-

lowing three steps:

1. Exploring the problem structure of SPN and obtain an upper bound h on the number of

support scenarios;

2. Choosing a good sample complexity N(ε, β, h) using Corollary 1, Theorem 6 or Remark 4;

3. Solving the scenario problem SPN and obtain x∗N and o∗N .
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Theorem 5 ( [62]). Under Assumption 1, 2 and 3, for a non-degenerate problem SPN , it holds that

PN
(
V(x∗N) > ε

)
≤

n−1∑
i=1

(
N

i

)
εi(1− ε)N−i. (2.15)

The probability PN is taken with respect to N random samples {ξi}Ni=1, and the inequality is tight

for fully-supported problems.

As mentioned in Remark 2, V(x∗N) is a random variable, its randomness comes from drawing sce-

narios {ξi}Ni=1. For fully-supported problems, Theorem 5 shows the exact probability distribution

of the violation probability V(x∗N), i.e.

PN
(
V(x∗N) > ε

)
=

n−1∑
i=1

(
N

i

)
εi(1− ε)N−i, (2.16)

the tail of a binomial distribution. We could use Theorem 5 to answer the sample complexity

question in Remark 3.

Corollary 1 ( [62]). Given a violation probability ε ∈ (0, 1) and a confidence parameter β ∈

(0, 1), if we choose the number of scenarios N (the smallest such N is denoted by N2008) such that

n−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β (2.17)

Let x∗N denote the optimal solution to SPN , it holds that

PN
(
V(x∗N) ≤ ε

)
≥ 1− β (2.18)

In other words, the optimal solution x∗N is a feasible solution to (CCO) with probability at least

1− β.

Remark 2 states that the scenario approach is a randomized algorithm. Thus it is possible

that the scenarios {ξi}Ni=1 are drawn from a “bad” set and lead to infeasible solutions x∗N , i.e.
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V(x∗N) ≥ ε. The confidence parameter β denotes the risk of failure associated to the randomized

solution algorithm [6], and it bounds the probability that x∗N is infeasible.

For fully-supported problems, N2008 is the tightest upper bound on sample complexity, which

cannot be improved. For non-fully supported problems, it turns out N2008 can be further tightened.

An improved sample complexity bound is provided in Theorem 6 based on the definition of Helly’s

dimension.

Definition 10 (Helly’s Dimension [63]). Helly’s dimension of SPN is the smallest integer h such

that

ess sup
ξ∈ΞN

|S(ξ)| ≤ h

holds for any finite N ≥ 1. The essential supremum is denoted by ess sup. We emphasize the

dependence of support scenarios S on ξ by S(ξ).

Theorem 6 ( [63]). Let h denote the Helly’s dimension for SPN , under Assumption 1, 2 and 3, for

a non-degenerate problem SPN , it holds that

PN
(
V(x∗N) > ε

)
≤

h−1∑
i=0

(
N

i

)
εi(1− ε)N−i (2.19)

Equivalently, for a fixed confidence parameter β ∈ (0, 1), if the sample complexity N satisfies

h−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β (2.20)

then the following probabilistic guarantee holds

PN
(
V(x∗N) > ε

)
≤ β (2.21)

The only difference between Theorem 6 and Theorem 5 (and Corollary 1) is replacing n with

Helly’s dimension h in (2.19) and (2.20). Unfortunately, Helly’s dimension is often difficult to cal-

culate, while finding upper bounds h on Helly’s dimension is usually a much easier task. Similarly
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we can replace h by h in (2.19) and (2.20), the same theoretical guarantees still hold because of

the monotonicity of (2.19) and (2.20) in N and h. The support-rank defined in [66] is an upper

bound on Helly’s dimension, some other upper bounds can be obtained by exploiting the structural

properties of the problem, e.g. [65].

Remark 4 (Sample Complexity Revisited). A binary search type algorithm could be used to find

N2008. And a looser but handy upper bound is provided in [31]:

N2009 :=
2

ε

(
ln(

1

β
) + n

)
(2.22)

Notice n in (2.22) can be replaced by h or h.

2.4.4 A-posteriori Feasibility Guarantees

When the desired violation probability ε is very small, the sample complexity of the a-priori

guarantees grows with 1/ε (Remark 4) and could be prohibitive. In other words, the a-priori

approach is only suitable for the case where a sufficient amount of scenarios is always available.

In many real-world applications (e.g. medical experiments, tests conducted by NASA), however,

the amount of data is quite limited, and it could take months or cost a fortune to obtain a data

point (experiment). Because of the limitation on the data availability, one of the most fundamental

problem in data-driven decision making (e.g. system identification, quantitative finance) is to come

up with good decisions or estimates with a moderate or even small amount of data. To overcome

this, the scenario approach is extended towards a-posteriori feasibility guarantees.

Similar with the a-priori guarantees, obtaining a-posteriori guarantees typically requires taking

the following three steps:

1. given dataset {ξi}Ni=1, solve the corresponding scenario problem SPN and obtain x∗N ;

2. find support scenarios in {ξi}Ni=1, whose number is denoted as s∗N ;

3. calculate the posterior violation probability ε(β, s∗N , N) using Theorem 7.
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If the resulting violation probability ε(β, s∗N , N) is greater than the acceptable level ε, we could

repeat this process with more scenarios until reaching ε(β, s∗N , N) ≤ ε. If the number of available

scenarios is limited, then it might be impossible to obtain a solution x∗N such that V(x∗N) ≤ ε.

Theorem 7 (Wait-and-Judge [68]). Given β ∈ (0, 1), for any k = 0, 1, · · · , n, the polynomial

equation in variable t
β

N + 1

N∑
i=k

(
i

k

)
ti−k −

(
N

k

)
tN−k = 0 (2.23)

has exactly one solution ε(k) in the interval (0, 1). Under Assumption 1, 2 and 3, for a non-

degenerate problem, it holds that

PN(V(x∗N) ≥ ε(s∗N)) ≤ β (2.24)

Theorem 7 is particularly useful in the following cases: (i) the problem is not fully-support

thus difficult to calculate a-priori bounds on number of support scenarios; or (ii) only a moderate

or small amount of data points is available, it is difficult to meet the sample complexity from the

a-priori guarantees.

Given a candidate solution x�, the most straightforward method is to approximate V(x�) is by

the empirical estimation ε̂ through Monte-Carlo simulation with N̂ samples, i.e.

ε̂ =
1

N̂

N̂∑
i=1

1f(x�,ξi)>0 =
V̂

N̂
(2.25)

where V̂ :=
∑N̂

i=1 1f(x�,ξi)>0 is the total number of scenarios in which x∗N is infeasible. Although

(2.25) only involves f(x�, ξi) > 0 which is easy to calculate, it might require an astronomical

number N̂ to have accurate estimation ε̂ because of (D1). [30] shows a method to bound V(x�)

from above using a dataset of a moderate size N̂ .

Proposition 1 ( [30]). Given a candidate solution x� and N̂ samples, let V̂ :=
∑N̂

i=1 1f(x�,ξi)>0
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and 1− ρ be the confidence parameter.

ε := max
γ∈[0,1]

{γ :
V̂∑
i=0

(
N̂

i

)
γi(1− γ)N̂−i ≥ ρ} (2.26)

After finding an upper bound ε, so that if ε ≤ ε, we may be sure that P(V(x�) ≤ ε) ≥ 1− ρ.

Remark 5. Proposition 1 is closely related with scenario approach but with one fundamental differ-

ence. Theorem 7 holds only for solution from scenario approach, while Proposition 1 can evaluate

solutions from other methods.

2.4.5 Optimality Guarantees of Scenario Approach

Scenario approach together with order statistics can be used to construct lower bounds o on o?

of (CCO).

Proposition 2 ( [30]). Let {ξi,j}Ni=1 (j = 1, 2, · · · , K) be K independent datasets of size N . For

the j th dataset, we solve the associated scenario problem SPN and calculate the optimal value o∗j

(j = 1, 2, · · · , K). Without loss of generality, we assume that o∗1 ≤ o∗2 ≤ · · · ≤ o∗K .

Given δ ∈ (0, 1), let us choose positive integers L,N ,L in such a way that

L−1∑
i=0

(
K

i

)
(1− ε)Ni[1− (1− ε)N ]K−i ≤ δ (2.27)

then with probability of at least 1 − δ, the random quantity o∗L gives a lower bound for the true

optimal value x?.

[71] shows that appropriate N should be the order of O(1/ε) as [1 − (1 − ε)N ]K ≈ (1 −

exp(−εN))K . Typically we choose proper values for N and K first, then find out the largest

positive integer L that (2.27) holds true.

Proposition 2 turns out to be a general framework to construct lower bounds on (CCO). [71]

extends the framework towards generating bounds using sample average approximation, which is

introduced in Section 2.5.4.
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2.5 Sample Average Approximation

2.5.1 Introduction to Sample Average Approximation

The idea of using sample average approximation to handle chance constraints first appeared

in [23] and was subsequently improved with rigorous theoretical results in [29].

Let f(x, ξ) := max
{
f1(x, ξ), · · · , fm(x, ξ)

}
, then (CCO) is equivalent to

min
x∈X

cᵀx, s.t. P(f(x, ξ) ≤ 0) ≥ 1− ε.

Sample Average Approximation (SAA) approximates the true distribution of the random variable

f(x, ξ) using the empirical distribution from N samples {ξi}Ni=1, i.e. P(f(x, ξ) ≤ 0) is approxi-

mated by 1
N

∑N
i=1 1f(x,ξi)≤0.

(SAA): min
x∈X

cᵀx (2.28a)

s.t.
1

N

N∑
i=1

1f(x,ξi)>0 ≤ ε (2.28b)

(SAA) is also a chance constrained optimization problem, but with two major differences from

(CCO): (i) (SAA) is based on the empirical (discrete) distribution from the true distribution of ξ as

in (CCO); (ii) (SAA) has the violation probability ε instead of ε in (CCO).

There are two critical questions to be addressed about (SAA). What is the connection of solu-

tions of (SSA) with that of (CCO)? How to solve (SAA)? We first answer the second question in

Section 2.5.2, then present the theoretical results of connecting (SAA) with (CCO).

2.5.2 Solving Sample Average Approximation

(SAA) can be reformulated as a mixed integer program (MIP) by introducing variables z ∈

{0, 1}N [28, 29]. Binary variable zi is an indicator if f(x, ξ) ≤ 0 is being violated in sample i, i.e.

zi = 1f(x,ξi)>0 (2.29)

24



(2.29) can be equivalently written as f(x, ξi) ≤ Mzi with a sufficiently large coefficient M ∈

R+. Since f(x, ξi) is the maximum over m functions {fj(x, ξi)}mj=1, f(x, ξi) ≤ Mzi implies

fj(x, ξ
i) ≤ Mzi, j = 1, 2, · · · ,m. Then (SAA) is equivalent to (2.30), in which 1m is an all one

vector with size m.

min
x,z

cᵀx (2.30a)

s.t. f(x, ξ1)−Mz11m ≤ 0 (2.30b)

...

f(x, ξN)−MzN1m ≤ 0 (2.30c)

1

N

N∑
i=1

zi ≤ ε (2.30d)

x ∈ X , zi ∈ {0, 1}, i = 1, 2, · · · , N (2.30e)

(2.30) is equivalent to (SAA) for general function f(x, ξ), but formulations with big-M are typ-

ically weak formulations. Introducing big coefficients M might cause numerical issues as well.

Stronger formulations of (SAA) are possible by exploiting the structural features of f(x, ξ). A

good example is chance-constrained linear program with separable probabilistic constraints:

min
x∈X

cᵀx s.t.P(Tx ≥ ξ) ≥ 1− ε,

with a constant matrix T ∈ Rd×n. By introducing auxiliary variables v, an equivalent but stronger

formulation without big M is (2.31) [36].

min
x∈X

cᵀx (2.31a)

s.t. Tx = v (2.31b)

v + ξizi ≥ ξi, i = 1, 2, · · · , N (2.31c)
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1

N

N∑
i=1

zi ≤ ε (2.31d)

zi ∈ {0, 1}, i = 1, 2, · · · , N (2.31e)

Various strong formulations for (SAA) can be found in [36] and references therein. (2.30) and

(2.31) are mixed integer programs, some well-known techniques from integer programming theory

can speed up the process of solving (SAA), e.g. adding cuts [36, 72, 73] and decompositions

[74, 75].

2.5.3 Feasibility Guarantees of SAA

Various feasibility guarantees of (SAA) are proved in [29, 71], e.g. the asymptotic behavior

of (SAA) and when f(x, ξ) is Lipschitz continuous. In this section, we only present the Lipschitz

case, which could be used for simulations in Section 5.2.

Assumption 5. There exists L > 0 such that

|f(x, ξ)− f(x′, ξ)| ≤ L‖x− x′‖∞, ∀x, x′ ∈ X and ∀ξ ∈ Ξ. (2.32)

Theorem 8 ( [29]). Suppose X is bounded with diameter D and f(x, ξ) is L-Lipschitz for any

ξ ∈ Ξ (Assumption 5). Let ε ∈ [0, ε), θ ∈ (0, ε− ε) and γ > 0. Then

P(FNε,γ ⊆ Fε) ≥ 1−
⌈

1

θ

⌉⌈
2LD

γ

⌉n
exp(−2N(ε− ε− θ)2) (2.33)

where the feasible region of (SAA) is defined as

FNε,γ := {x ∈ X :
1

N

N∑
i=1

1f(x,ξ)+γ≤0 ≥ 1− ε}. (2.34)

For fixed ε and ε, if we choose θ = (ε − ε)/2 and a small number γ > 0, then Theorem 8
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suggests that using

N ≥ 2

(ε− ε)2

[
ln(

1

β
) + n ln(

⌈
2LD

γ

⌉
) + ln(

⌈
2

ε− ε

⌉
)
]

(2.35)

number of samples, solutions of (SAA) is feasible to (CCO) with high probability 1 − β, i.e.

P(FNε,γ ⊆ Fε) ≥ 1− β.

The results in Theorem 8 look quite similar to those of scenario approach (e.g. Remark 4).

Indeed, (SAA) with ε = 0 is the same as the scenario problem SPN . However, one major difference

of Theorem 8 from the scenario approach theory is that: Theorem 8 holds for the feasible region of

(SAA), i.e. FNε,γ ⊆ Fε with high probability. While the theory of the scenario approach only proves

the property of the optimal solution x∗N , i.e. x∗N is feasible with high probability. Other feasible

solutions to SPN do not necessarily process the properties guaranteed by the scenario approach

(e.g. Theorem 5).

Although Theorem 8 provides explicit sample complexity bounds for (SAA) to obtain feasible

solution, it requires some efforts to be applied, e.g. tuning parameters (ε, θ) and calculation of L

and D. [70] provides a similar but more straightforward theoretical result.

Theorem 9 (Sampling & Discarding [70]). If we draw N samples and discard any k of them, then

use the scenario approach with the remaining N − k samples. If N and k satisfy

(
k + n− 1

k

)
·
k+n−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β (2.36)

then PN
(
Pξ(f(x∗N,k, ξ) ≤ 0) ≥ 1− ε

)
≥ 1− β.

Given parametersN , ε and β, we find the largest k that (2.36) holds, then the solution to (SAA)

with ε = k/N is feasible to (CCO) with probability at least 1− β.

2.5.4 Optimality Guarantees of Sample Average Approximation

It is intuitive that if ε > ε, then the objective values of SAA yield lower bounds to (CCO).

Theorem 10 formalizes this intuition.
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Theorem 10 ( [29]). Let ε > ε and assume that (CCO) has an optimal solution. Then

P
(
ôNε ≤ o?ε

)
≥ 1− exp(−2N(ε− ε)2). (2.37)

Theorem 10 directly suggests a method to construct lower bounds on (CCO).

Proposition 3. If we choose ε > ε and N ≥ 1
2(ε−ε)2 log(1

δ
), let oSAA

ε denote the objective value of

(SAA), then oε is a lower bound with probability at least 1− δ, i.e. P(o∗N,ε ≤ o?ε) ≥ 1− δ.

There is an alternative method using SAA to generate lower bounds of (CCO). [29] extends the

framework in Proposition 2 towards SAA.

Proposition 4 ( [29]). Take K sets of N independent samples {ξi,j}Ni=1, (j = 1, 2, · · · , K). For the

jth dataset {ξi,j}Ni=1, we solve the associated (SAA) problem and calculate the associated objective

value o∗N,ε,j (for simplicity o∗j and j = 1, 2, · · · , K). Without loss of generality, we assume that

o∗1 ≤ o∗2 ≤ · · · ≤ o∗K .

Given δ ∈ (0, 1), ε ∈ [0, 1), let us choose positive integers N ,L, K (L ≤ K) such that

L−1∑
i=0

(
K

i

)[
b(ε, ε,N)

]i[
1− b(ε, ε,N)

]K−i ≥ δ (2.38)

where b(ε, ε,N) :=
∑bεNc

i=0

(
N
i

)
εi(1− ε)N−i.

Then o∗L serves as a lower bound to (CCO) with probability at least 1− δ.

2.6 Robust Optimization Related Methods

2.6.1 Introduction to Robust Optimization

The last category of solutions to (CCO) is closely related with robust optimization (RO), its

typical form is shown in (2.39).

(RC): min
x∈X

cᵀx (2.39a)

s.t. f(x, ξ) ≤ 0, ∀ξ ∈ Uε (2.39b)
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(2.39) finds the optimal solution which is feasible to all realizations of uncertainties in a prede-

fined uncertainty set Uε. (2.39) is called the Robust Counterpart (RC) of the original problem

(CCO). By constructing an uncertainty set Uε with proper shape and size, solutions to (RC) could

be suboptimal or approximate solutions to (CCO).

Designing uncertainty sets lies at the heart of robust optimization. A good uncertainty set

should meet the following two standards:

(S1) The resulting (RC) problem is computationally tractable.

(S2) The optimal solution to (RC) is not too conservative or overly optimistic.

Unfortunately, (RC) of general robust convex problems (under Assumption 2) is not always com-

putationally tractable. For example, (RC) of a second order cone program (SOCP) with polyhedral

uncertainty set is NP-Hard [54, 78, 79]. Fortunately, robust linear programs are well-studied, and

(RC) of linear programs is tractable for common choices of uncertainty sets. Most tractability re-

sults of robust linear optimization are summarized in [54]. For tractable formulations of general

convex RO problems, various solutions can be found in [11, 80].

For simplicity, we present solutions to the following chance-constrained linear program (CCLP)

4.

min
x∈X

cᵀx (2.40a)

s.t. Pξ
(
xi0 + ξᵀxi ≤ 0, i = 1, 2, · · · ,m

)
≥ 1− ε (2.40b)

and its robust counterpart

min
x∈X

cᵀx (2.41a)

s.t. xi0 + ξᵀxi ≤ 0, ∀ξ ∈ Uε, i = 1, 2, · · · ,m (2.41b)

4A (seemingly) more general form of the linear chance constraint is P
(
A(ξ)x ≤ b(ξ))

)
≥ 1− ε, where A(ξ) and

b(ξ) denote affine functions of ξ. This could be equivalently represented in the form of (2.40b) by enforcing additional
affine constraints [34]
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In (2.40) and (2.41), decision variables are {xi0, xi}mi=1, where xi0 ∈ R and xi ∈ Rn. Uncertainties

are represented by ξ ∈ Rd 5 With a little abuse of notation, we use x = [x1
0, x

1, · · · , xm0 , xm]ᵀ to

represent all the decision variables.

Standard (S2) is directly connected with chance constraints, we present the connection between

RO and CCO in Section 2.6.2-2.6.4.

2.6.2 Safe Approximation

Almost every RO-related solution to (CCO) is based on the idea of safe approximation.

Definition 11 (Safe Approximation). Let x ∈ F and x ∈ F denote two sets of constraints. We say

F is a safe approximation (or inner approximation) of F if F ⊆ F .

An optimization problem (SA) is called a safe approximation of (CCO) if F ⊆ Fε, where Fε

represents the feasible region of (CCO) as in Definition 3.

(SA): min
x∈X

cᵀx (2.42a)

s.t. x ∈ F (2.42b)

F ⊆ Fε indicates that every solution to (SA) is feasible to (CCO). Therefore every optimal solution

to (SA) is suboptimal to (CCO) and serves as an upper bound on (CCO).

There are two major approaches to constructing safe approximations of the chance constraint

Pξ
(
f(x, ξ) ≤ 0

)
≥ 1 − ε: (i) constructing a function π(x) ≥ Pξ

(
f(x, ξ) > 0

)
, then π(x) ≤ ε

is a safe approximation of the chance constraint; (ii) constructing a proper uncertainty set Uε such

that Fε ⊇ FUε := {x ∈ Rn : f(x, ξ) ≤ 0, ∀ξ ∈ Uε}. Although these two approaches look quite

different, Section 2.6.3.2 shows that they are closely related with each other.

We first review how to apply these two approaches to obtaining safe approximation of individ-

ual chance constraints in Section 2.6.2. Safe approximations of joint chance constraints (Section

2.6.4) are built upon the results of individual chance constraints.

5Notice d = n in (2.40) and (2.41).
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2.6.3 Safe Approximation of Individual Chance Constraints

RO has been quite successful in constructing safe approximations of individual chance con-

straints. A general form of individual chance-constrained programs is (2.43).

min
x∈X

cᵀx (2.43a)

s.t. Pξ
(
f(x, ξ) ≤ 0

)
≥ 1− ε (2.43b)

In the individual chance constraint (2.43b), the inner function f(x, ξ) : Rn × Rd → R1 is a

scalar-valued function. In Section 2.6.3, all f(x, ξ) are scalar-valued functions if not specified.

Section 2.6.2 outlines two different but related approaches to constructing safe approximations.

The first approach is presented in Section 2.6.3.1-2.6.3.2. The second approach is summarized in

2.6.3.3.

2.6.3.1 Convex Approximation

Convex approximation is a general framework to build safe approximations of individual chance

constraints. The idea of convex approximation first appeared in [22], then was completed in [30].

The convex approximation framework is based on the concept of generating function.

Definition 12 (Generating Function). A function φ : R → R is called a (one-dimensional) gen-

erating function if it is nonnegative valued, nondecreasing, convex and satisfying the following

property:

φ(z) > φ(0) = 1, ∀z > 0 (2.44)

The idea of convex approximation starts from the following lemma.

Lemma 1. For a positive constant t ∈ R+ and a random variable z ∈ R, it holds that

E[φ(t−1z)] ≥ E[1t−1z≥0] = Pz(t−1z ≥ 0) = P(z ≥ 0) (2.45)

Replace z with f(x, ξ), then E[φ(t−1f(x, ξ))] ≥ Pξ
(
f(x, ξ) > 0

)
= Pξ

(
t−1f(x, ξ) > 0

)
. In

31



other words, E[φ(t−1f(x, ξ))] ≤ ε is a safe approximation to Pξ
(
f(x, ξ) ≤ 0

)
≥ 1− ε.

Theorem 11 (Convex Approximation [30]). Let φ(·) be a generating function, then (CA) is a safe

approximation to (CCO).

(CA): min
x∈X

cᵀx (2.46a)

s.t. inf
t>0

[
tEξ[φ(

f(x, ξ)

t
)]− tε

]
≤ 0 (2.46b)

Under Assumption 2, (CA) is convex in x.

Remark 6. We can get rid of the strict inequality t > 0 by approximating it using t ≥ δ, where δ is

very small positive number (e.g. δ = 10−4). Furthermore, we can show that (CA) is equivalent to

(2.47), which is convex in (x, t).

min
x∈X ,t≥δ

cᵀx (2.47a)

s.t. tEξ[φ(
f(x, ξ)

t
)]− tε ≤ 0 (2.47b)

Choosing a good generating functions plays a crucial role in the convex approximation frame-

work. Choices of generating functions include: Markov bound φ(z) = [1 + z]+, Chernoff

bound φ(z) = exp(z), Chebyshev bound φ(z) = [z + 1]2+ and Traditional Chebyshev bound

φ(z) = (z + 1)2. The least conservative generating function is the Markov bound φ(z) = [1 + z]+

[30, 81].

Definition 13 (Conditional Value at Risk). Conditional value at risk (CVaR) of a random variable

z at level 1− ε is defined as

CVaR(z; 1− ε) := inf
γ

(γ +
1

ε
E
[
[z − γ]+

]
) (2.48)

32



Proposition 5 ( [30, 34]). (CA) with Markov bound φ(z) = [z + 1]+ is equivalent to (2.49).

min
x∈X

cᵀx (2.49a)

s.t. CVaR
(
f(x, ξ); 1− ε

)
≤ 0 (2.49b)

Section 2.1 shows an individual chance constraint P
(
f(x, ξ) ≤ 0

)
≥ 1 − ε is equivalent

to VaR(f(x, ξ); 1 − ε) ≤ 0. It is well-known that CVaR(z; 1 − ε) ≥ VaR(z; 1 − ε). Therefore,

CVaR(f(x, ξ); 1−ε) ≤ 0 implies VaR(f(x, ξ); 1−ε) ≤ 0. In other words, CVaR(f(x, ξ); 1−ε) ≤

0 is a safe approximation to both VaR(f(x, ξ); 1− ε) ≤ 0 and the chance constraint (2.43b).

Remark 7 (Sample Approximation of CVaR). [33] utilizes a dataset {ξi}Ni=1 to estimate CVaR.

min
x∈X,t

cᵀx (2.50a)

s.t.
1

N

N∑
i=1

[f(x, ξi) + t]+ ≤ tε (2.50b)

By introducing N auxiliary variables, [33] shows that (2.50) can be reformulated as a convex

problem that is easy to solve. Detailed reformulation can be found in [33] and [82]. With a

sufficient number of data points (N is large enough), (2.50) is a safe approximation to (CCO).

However, it remains unknown about the exact requirement on the number of samples needed. The

sample approximation of CVaR may not necessarily yield a safe approximation [34].

The generating function based framework in [30] was further improved and completed in [11,

50]. But the methods proposed there are mainly analytical and aim at solving distributionally

robust problems, which is beyond the scope of this dissertation. More details can be found in

Figure 2.2 and references therein.

2.6.3.2 CVaR-based Convex Approximation of Individual Chance Constraints

As pointed out in [30], calculating CVaR is computationally intractable. In order to obtain

tractable forms of the CVaR-based convex approximation, one approach is the sample approxi-
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mation in Remark 7. An alternative approach is to bound the CVaR function from above, e.g.

finding a function π(x) ≥ CVaR(f(x, ξ); 1 − ε), then π(x) ≤ 0 is a safe approximation to both

CVaR(f(x, ξ); 1 − ε) ≤ 0 and the original chance constraint (2.43). In the latter approach, the

uncertainties ξ ∼ Ξ are partially characterized using directional deviations.

Definition 14 (Directional Deviations [83]). Given a random variable ξ ∈ R with zero mean, the

forward deviation is defined as

δ+(ξ) := sup
θ>0

{√
2 ln(E[exp(θξ)])

θ2

}
(2.51)

and the backward deviation is defined as

δ−(ξ) := sup
θ>0

{√
2 ln(E[exp(−θξ)])

θ2

}
. (2.52)

Assumption 6 ( [55]). Let W denote the smallest closed convex set containing the support Ξ of

ξ. We assume that the support set is a second-order conic representable set (e.g. polyhedral and

ellipsoidal sets).

Assumption 7 ( [55]). Assume the uncertainties {ξi}di=1 are zero mean random variables, with a

positive definite covariance matrix Σ. We define the following index set:

J+ := {i : δ+(ξi) <∞}, I+ := {i : δ+(ξi) =∞}, (2.53)

J− := {i : δ−(ξi) <∞}, I− := {i : δ−(ξi) =∞}. (2.54)

For notation simplicity, we define two matrices diagonal P and Q as:

P := diag(δ+(ξ1), · · · , δ+(ξd)), Q := diag(δ−(ξ1), · · · , δ−(ξd)).

Major results developed in [55, 83] are for the individual linear chance constraint (2.55) with
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decision variables x0 ∈ R, x ∈ Rn:

Pξ
(
x0 + ξᵀx ≤ 0

)
≥ 1− ε (2.55)

Its convex approximation using CVaR (or Markov bound) is

t+
1

ε
E
[
[x0 + ξᵀx− t]+

]
≤ 0 (2.56)

If we are able to find a function π(x0, x) as an upper bound on E
[
[x0 + ξᵀx]+

]
, then

t+
1

ε
π(x0 − t, x) ≤ 0 (2.57)

is a safe approximation to (2.56).

Theorem 12. [55] Suppose that the primitive uncertainty ξ satisfies Assumption 6 and 7. The

following functions πi(x0, x), i = 1, · · · , 5 are upper bounds of Eξ
[
[x0 + ξᵀx]+

]
:

π1(x0, x) :=
[
x0 + max

ξ∈W
ξᵀx
]

+
(2.58)

π2(x0, x) := x0 +
[
− x0 + max

ξ∈W
(−ξ)ᵀx

]
+

(2.59)

π3(x0, x) :=
1

2

(
x0 +

√
x2

0 + xᵀΣx
)

(2.60)

π4(x0, x) := inf
µ>0

{
µ

ε
exp

(
x0

µ
+
uᵀu

2µ2

)}
. (2.61)

where uj = max{xjδ+(ξj),−xjδ−(ξj)}, j = 1, · · · , n. This bound is finite if and only if xj ≤

0, ∀j ∈ I+ and xj ≥ 0, ∀j ∈ I−.

π5(x0, x) := x0 + inf
µ>0

{
µ

ε
exp

(
− x0

µ
+
vᵀv

2µ2

)}
. (2.62)
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where vj = max{−xjδ+(ξj), xjδ−(ξj)}, j = 1, · · · , n. This bound is finite if and only if xj ≥

0, ∀j ∈ I+ and xj ≤ 0, ∀j ∈ I−.

Remark 8. The epigraphs of πi(x0, x), i = 1, · · · , 5 can be represented as second-order cones.

Explicit representations depend on the form ofW . More details about the representation of (2.57)

with different choices of πi(x0, y) can be found in [55] and [82].

2.6.3.3 Constructing Uncertainty Sets

We consider the individual linear chance constraint (2.55) as in Section 2.6.3.2. The robust

counterpart of (2.55) is

x0 + ξᵀx ≤ 0, ∀ξ ∈ Uε (2.63)

Assumption 8. {ξi}di=1 are independent of each other with zero mean and take values on [−1, 1]d,

i.e. E[ξi] = 0 and ξi ∈ [−1, 1] for i = 1, 2, · · · , d.

Clearly, under Assumption 8, a natural choice of uncertainty set is the box Ubox := {ξ ∈ Rd :

−1 ≤ ξ ≤ 1}. Then Fbox
U := {x ∈ Rn : f(x, ξ) ≤ 0, ∀ξ ∈ Ubox} is a safe approximation

to Fε, i.e. Fbox
U ⊆ Fε. However, using Ubox leads to P(f(x, ξ) ≥ 0) = 0 � ε, which causes

conservativeness or even infeasibility in many cases. The following choices of uncertainty sets are

less conservative.

Theorem 13 ( [11, 58, 59]). (2.63) is a safe approximation to (2.55) if Uε is one of the following:

Uball
ε :=

{
ξ ∈ Rd : ‖ξ‖2 ≤

√
2 ln(1/ε)

}
(2.64a)

Uball-box
ε :=

{
ξ ∈ Rd : ‖ξ‖∞ ≤ 1, ‖ξ‖2 ≤

√
2 ln(1/ε)

}
(2.64b)

Ubudget
ε :=

{
ξ ∈ Rd : ‖ξ‖1 ≤

√
2d ln(1/ε)

}
(2.64c)

And the resulting robust counterparts (RC)s are second-order cone representable (see Chapter 2

of [11] and [82]).

It turns out that constructing uncertainty set Uε is closely related with the convex approximation

framework in Section 2.6.3.1-2.6.3.2.
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Theorem 14 ( [34]). Suppose that π(x0, x) is a convex, closed and positively homogeneous, and

is an upper bound to Eξ
[
[x0 + ξᵀx]+

]
with π(x0, 0) = x+

0 . Then under Assumptions 6 and 7 and

given ε ∈ (0, 1), it holds that for all (x0, x) such that π(x0, x) <∞, we have

inf
t

(
t+

1

ε
π(x0 − t, x)

)
= x0 + max

z∈Uε
xᵀz (2.65)

for some convex uncertainty set Uε.

Given an upper bound π(x0, x) on E
[
[x0 + ξᵀx]+

]
with required properties, the safe approxi-

mation (2.57) can be represented in the form of x0 + maxξ∈Uε ξ
ᵀx for some Uε. Theorem 14 only

proves the existence of a corresponding uncertainty set Uε. For the πi(x0, x) functions given in

Theorem 12, their corresponding uncertainty sets can be explicitly calculated.

Proposition 6 ( [34]). For the functions πi(x0, x), i = 1, 2, · · · , 5 in Theorem 12, their correspond-

ing uncertainty sets are U1
ε ∼ U5

ε below.

U1
ε := W , (2.66)

U2
ε :=

{
ξ ∈ Rd : ξ = (1− 1

ε
)ζ, for some ζ ∈ W

}
, (2.67)

U3
ε :=

{
ξ ∈ Rd : ‖Σ−

1
2 ξ‖2 ≤

√
1− ε
ε

}
(2.68)

U4
ε :=

{
ξ ∈ Rd : ∃s, t ∈ Rd, ξ = s− t, ‖P−1s+Q−1t‖2 ≤

√
−2 ln(ε)

}
, (2.69)

U5
ε :=

{
ξ ∈ Rd : ∃s, t ∈ Rd, ξ = s− t, ‖P−1s+Q−1t‖2 ≤

1− ε
ε

√
2 ln(

1

1− ε
)

}
.(2.70)

where matrices Σ,P and Q are defined in Assumptions 6 and 7.

Theorem 14 and Proposition 6 demonstrate that the two seemingly different approaches to

constructing safe approximations in Section 2.6.2 are equivalent in many circumstances.
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2.6.4 Safe Approximation of Joint Chance Constraints

Although RO has been successful in approximating individual chance constraints, it is rather

unsatisfactory in approximating joint chance constraints [34]. We restate the joint chance constraint

(2.1b) below

Pξ
(
f(x, ξ) ≤ 0

)
≥ 1− ε. (2.71)

Most RO-based approaches convert a joint chance constraint to several individual chance con-

straints, then apply the techniques in Section 2.6.3 on each individual chance constraint. Results

along this line are summarized in Section 2.6.4.1. Very few approaches directly deal with joint

chance constraints, these approaches are mentioned in Section 2.6.4.2.

2.6.4.1 Conversion Between Joint Chance Constraints and Individual Chance Constraints

Section 2.1.2 presents two common approaches to converting a joint chance constraint to indi-

vidual chance constraints.

First, according to the Boole’s inequality or Bonferroni inequality, if
∑m

i=1 εi ≤ ε, then the set

of m individual chance constraints

P
(
fi(x, ξ) ≤ 0

)
≤ 1− εi, i = 1, · · · ,m (2.72)

is a safe approximation to the joint chance constraint P(f(x, ξ) ≤ 0) ≤ 1 − ε. The main issue

of this approach is the choice of {εi}mi=1. The problem becomes intractable if taking {εi}mi=1 as

decision variables [30, 34]. It remains unclear about how to find the optimal choices of {εi}mi=1
6.

Obviously, this approach could be quite conservative in the following two cases: (i) the individual

constraints fi(x, ξ), i = 1, 2, · · · ,m are correlated; and (ii) the choices of {εi}mi=1 are subopti-

mal. [34] provides some deeper observations on the limitation of this approach: the Bonferroni’s

inequality could still lead to conservativeness even when (i) the individual chance constraints (2.72)

are independent; and (ii) the optimal choices of {εi}mi=1 are found. In other words, (2.72) is only a

6Most people simply choose εi = ε/m [30, 83], which could be quite conservative if m is a large number.
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safe approximation at best, it may not be equivalent to (2.1b) even with optimal {εi}mi=1.

The second approach is to define the pointwise maximum of functions {fi(x, ξ)}mi=1 over x and

ξ, i.e.

f(x, ξ) := max
{
f1(x, ξ), · · · , fm(x, ξ)

}
.

then the joint chance constraint P(f(x, ξ) ≤ 0) ≥ 1 − ε is equivalent to the individual chance

constraint Pξ
(
f(x, ξ) ≤ 0

)
≥ 1− ε. The advantage of this approach is that it does not require pa-

rameter tuning or induce additional conservativeness. In some cases, e.g. scenario approximation

of CVaR in Remark 7, this could lead to formulations that are easy to solve [82]. However, in most

cases, the structure of f(x, ξ) is too complicated to apply the techniques in Section 2.6.3.

2.6.4.2 Other Approaches

There might be only three RO-related approaches that directly deal with joint chance con-

straints. The first approach is robust conic optimization (see Chapter 5-11 of [11]). The inner

constraint f(x, ξ) ≤ 0 is written as a conic inequality, then tractable safe approximations of the

robust conic inequality are derived and solved. This approach can model a majority of optimization

problems under uncertainties. However, the main limitation is that the resulting robust counterparts

are not tractable in many circumstances.

The second approach [34] generalizes the CVaR-based convex approximation in Theorem 12

and Proposition 6. It proposes a safe approximation to the joint chance constraint (2.1b), and

the safe approximation is second-order cone representable. The performance of this approach

depends on the choice of a few tuning parameters. Although it is difficult to find the optimal

setting, [34] designed an algorithm that is guaranteed to improve the choice of parameters. [34]

also shows that it is possible to combine all the πi(x0, x) functions in Theorem 12 together to

reduce conservativeness.

The third approach directly dealing with joint chance constraints is the data-driven robust

optimization proposed in [57]. It shows that by running different hypothesis tests on datasets, it is

possible to construct different uncertainty sets that lead to safe approximations of the joint chance
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constraint (2.1b) with high probability. It is worth noting that the theoretical results in [57] holds

for non-convex functions f(x, ξ), albeit the resulting (RC) is very likely to be computationally

intractable.

2.7 ConvertChanceConstraint (CCC): A Matlab Toolbox

Most existing optimization solvers cannot directly solve (CCO). All reviewed methods in Sec-

tion 2.4-2.6 translate (CCO) to forms that can be recognized and solved by optimization solvers,

e.g. SAA converts (CCO) to a mixed integer program (MIP), which can be solved by Gurobi.

When solving a chance-constrained program, a typical approach is to write the converted formula-

tion (e.g. the MIP of SAA) in the compact format that a solver recognizes then rely on the solver

to get optimal solutions. This approach is unnecessarily repetitive as it needs to be repeated by

different researchers on different problems. In addition, different solvers often take various input

formats, thus this typical approach is limited to one specific solver. To overcome these issues, an

interface or toolbox that automatically converts (CCO) to suitable forms for a variety of solvers is

needed.

The remaining part of this subsection introduces the open-source Matlab toolbox ConvertChance-

Constraint (CCC), which is developed to automate the process of converting chance constraints.

CCC is written in Matlab, one of the most popular tools in engineering and many other fields. In

consideration of flexibility in modeling and compatibility with existing solvers, CCC is built on

YALMIP [84], a modeling language for optimization in Matlab. CCC is open-source on Github 7,

other researchers and engineers could freely use, modify and improve it.

Figure 2.3 illustrates the logic flow when using CCC to solve and analyze a chance-constrained

program. The problem is first formulated in the language of Matlab and YALMIP, then the chance

constraint is modeled using the prob() function defined in CCC. After receiving the problem formu-

lation and specified method to use (e.g. scenario approach), CCC translates the chance constraint to

the formulation that YALMIP could understand. Then YALMIP interfaces with various solvers and

further translates the problem for a specific solver. After optimization solver returns the optimal

7https://github.com/xb00dx/ConvertChanceConstraint-ccc

40



Figure 2.3: Solving and Analyzing a Chance-constrained Program via CCC, reprinted with per-
mission from [1].

solution, CCC provides a few functions for result analysis, e.g. checking out-of-sample violation

probability, calculating the posterior guarantees of the scenario approach.

Figure 2.4 presents the structure and main functions of CCC. Three major methods to solve

(CCO) are implemented: scenario approach, sample average approximation and robust optimiza-

tion related methods. The implementation of RO-related methods is based on the robust optimiza-

tion module [85] of YALMIP. As illustrated in Figure 2.3 and 2.4, CCC is interfaced via YALMIP

with most existing optimization solvers, e.g. Cplex [86], Gurobi [87], Mosek [88] and Sedumi [89].

2.8 Applications in Power Systems

A pivotal task in modern power system operation is to maintain the real-time balance of sup-

ply and demand while ensuring the system is low-cost and reliable. This pivotal task, however,

faces critical challenges in the presence of rapid growth of renewable energy resources. Chance-

constrained optimization, which explicitly models the risk that the system is exposed to, is a suit-

able conceptual framework to ensure the security and reliability of a power system under uncer-

tainties.

There is a large body of literature adopting CCO for power system applications. Figure 2.5
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Figure 2.4: Structure and Main Functions of ConvertChanceConstraint, reprinted with permission
from [1].

presents some existing applications of CCO in power systems. In the following chapters, we

introduce three important applications of CCO in power systems: security-constrained economic

dispatch (SCED) (Chapter 5), security-constrained unit commitment (SCUC) (5). and generation

and transmission expansion.

Figure 2.5 also presents a feed-forward decision making framework for power system oper-

ations. The feed-forward framework partitions the overall decision making process into several

time segments. The longer-term decisions (e.g. generation expansion) are fed into shorter-term

decision making processes (e.g. unit commitment). The shorter-term decisions (e.g. generation

commitment from SCUC) have direct impacts on real-time operations (e.g. dispatch results in

SCED). As time draws closer to the actual physical operation, information gets much sharper and

the prediction about future could be significantly improved [90].
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Figure 2.5: Representative Feed-forward Decisions Made in Power System Planning and Opera-
tion, reprinted with permission from [1].

2.9 Summary

This chapter presents a comprehensive review on the fundamental properties, key theoretical

results, and three classes of algorithms for chance-constrained optimization. An open-source MAT-

LAB toolbox ConvertChanceConstraint is developed to automate the process of translating chance

constraints to compatible forms for mainstream optimization solvers. This chapter also briefly

reviews three major applications of chance-constrained optimization in power systems. More ap-

plications of chance-constrained optimization in power systems are presented in Chapter 3, 4 and

5.
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Table 2.1: Power System Applications of Chance-constrained Optimization, reprinted with per-
mission from [1].

Methods Expansion SCUC SCED Other
Applica-
tions

D
et

-E
qu

iv

Gaussian [91] [92] [93]
[94]

[95–97] [98–112] [113,
114]

Sc
en

ar
io

A
pp

ro
ac

h

a-priori - [115, 116] [105, 117–124] [125]

a-
posteriori

-
[115,116,126] [123, 124] -

SAA
- [127] [17, 128–132] [124] -

R
O

-b
as

ed
A

pp
ro

ac
h RLO - [133] [124] -

Convex
Approxi-
mation

- - [124, 134–136] -

O
th

er
s

- [137, 138] [139, 140] [102,107,110,118,141,142] -
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3. SECURITY-CONSTRAINED UNIT COMMITMENT WITH PROBABILISTIC

GUARANTEES1

3.1 Motivation and Related Work

Security-constrained Unit commitment (SCUC) is one of the most important decisions made

in power system operational planning. The SCUC problem seeks the most cost-efficient on/off

decisions and dispatch schedules for generators, considering various security constraints such as

generation and transmission capacity limits under contingencies.

SCUC is a decision making problem in uncertain environments by its nature. Conventional

SCUC problems ensure the system is secured for a number of outages in generation, transmission,

or other elements within the system. As the generation portfolio is shifting towards renewable

resources, SCUC, a crucial part of power system day-ahead scheduling, needs to evolve to address

the flexibility concerns.

Stochastic optimization (SO) and robust optimization (RO) are two common approaches for

decision making under uncertainties. Both SO and RO have been successfully applied in various

areas. SO relies on probabilistic models to depict uncertainties and often optimizes the objective

function in the presence of randomness. SO has found many successful applications in power sys-

tem operations and planning problems. For instance, references [143–145] formulate and solve

the stochastic unit commitment problem, which minimizes the expected commitment and dispatch

costs. RO takes an alternative approach, in which the uncertainty model is set-based and typ-

ically deterministic [54]. Recently, researchers in [146] formulated and solved the robust unit

commitment problem, which minimizes the commitment and dispatch costs for the worst case in a

predefined uncertainty set.

This chapter provides a perspective of solving SCUC in uncertain environments through the

lens of chance-constrained optimization (CCO), which is akin to both SO and RO [1]. The main

distinction between CCO and SO/RO is the chance constraint (see (3.1b) and (3.2b) in Section
1Reprinted with permission from [2].
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3.2), which explicitly considers the feasibility of solutions under uncertainties. Various formula-

tions of chance-constrained SCUC (c-SCUC) have been proposed, e.g. [16, 17, 96, 97, 128–132].

As mentioned in [1], chance-constrained optimization problems can be solved using the scenario

approach, sample average approximation, or robust optimization based techniques. We take c-

SCUC as an example. It is solved via sample average approximation in [17, 97, 128–132] and via

robust optimization based techniques in [115, 126, 133]2.

The scenario approach is a well-known algorithm to solve CCO problems [60, 62, 63]. It was

mainly targeted at convex problems (see Assumption 11), whereas SCUC is non-convex by nature

due to on/off commitment decisions. Consequently, the scenario approach was considered not

applicable for c-SCUC. An extended version of the scenario approach was proposed recently in

[69], which makes it applicable for non-convex problems such as SCUC.

Our previous paper [148] might be the first attempt to apply the scenario approach on unit

commitment3. However, the formulation therein is greatly simplified by ignoring some critical

constraints such as transmission capacities. Enabled by this limiting assumption, [148] shows

that the original scenario approach remains applicable in spite of the non-convexities from binary

decision variables. Nonetheless, its main limitation is that the nice results in [148] only hold in

the absence of transmission capacity constraints. We significantly improve [148] by considering

additional security constraints such as line flow limits in the presence of uncertainties, and provides

theoretical analysis on the results of the scenario approach.

The main contributions of this chapter are threefold. (1) We contribute to the non-convex sce-

nario approach theory by proving salient structural properties of non-convex scenario problems,

which extends the classical results for convex scenario problems published in [63]. (2) We for-

mulate c-SCUC, which is later reformulated to scenario-based SCUC (s-SCUC) and solved via

the scenario approach. To the best of our knowledge, we are the first to solve c-SCUC using the

2The method used in [115, 126] is based on [64]. It utilizes the sample complexity bound by an earlier version
of the scenario approach [147], however, it is more closely related with robust optimization. Furthermore, the results
in in [115, 126] might be overly conservative, since the sample complexity bound by [147] could be significantly
tightened by in-depth analysis of the scenario approach, see Theorem 15 for more details.

3We call it unit commitment instead of SCUC because no security constraints are considered.
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scenario approach while considering critical constraints such as transmission limits. (3) We de-

sign efficient algorithms to explore the structural properties of s-SCUC, which enables rigorous

guarantees on the optimal solution returned by the scenario approach.

The remainder of this chapter is organized as follows. Section 3.2 summarizes the key results of

the scenario approach for both convex and non-convex problems. Section 3.3 proves the structural

properties of non-convex scenario problems. Section 3.4 formulates chance-constrained SCUC,

which is solved via the scenario approach. Numerical results and discussions are in Section 3.5

and 3.6, respectively. Section 3.7 presents the concluding remarks. All proofs are available in

Appendix A and on arXiv [2], the detailed settings of test systesm are in Appendix B.

3.2 Introduction to the Scenario Approach

This section first provides a brief introduction to chance-constrained optimization. Section

3.2.2 presents the main results of the scenario approach for convex problems. Recent progress in

the scenario approach for non-convex problems are summarized in Section 3.2.3.

3.2.1 Chance-constrained Optimization

Chance-constrained optimization is a major approach for decision making in an uncertain en-

vironment. Since its birth in 1950s [18], chance-constrained optimization has been widely studied

and successfully applied in various fields [1]. A typical formulation of chance-constrained opti-

mization is presented below.

min
x

cᵀx (3.1a)

s.t. Pξ
(
f(x, ξ) ≤ 0

)
≥ 1− ε (3.1b)

g(x) ≤ 0 (3.1c)
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We could write (3.1) in a more compact form by defining Xξ := {x ∈ Rn : f(x, ξ) ≤ 0} and

χ := {x ∈ Rn : g(x) ≤ 0}

min
x∈χ

cᵀx (3.2a)

s.t. Pξ
(
x ∈ Xξ

)
≥ 1− ε (3.2b)

Without loss of generality, we assume that the objective is a linear function of decision variables

x ∈ Rd [31]. Random vector ξ ∈ Ξ denotes the source of uncertainties and Ξ is the support of

ξ. Deterministic constraints (3.1c) are represented by set χ in (3.2). Constraint (3.1b) or (3.2b)

is the chance constraint. The chance constraint (3.2b) requires the the inner constraint x ∈ Xξ to

be satisfied with probability at least 1 − ε, where the violation probability ε is typically a small

number (e.g. 1%, 5%). In (3.2b), the set Xξ depends on the realization of ξ and the probability is

taken with respect to ξ.

Researchers have proposed many methods to solve chance-constrained optimization problems,

e.g. sample average approximation [71], convex approximation [30], and scenario approach [60,

62, 63]. A detailed review and tutorial on chance-constrained optimization is in [1]. Compared

with other methods, the scenario approach has many advantages such as computationally efficient

and are applicable for a broad range of optimization problems.

3.2.2 The Scenario Approach for Convex Problems

The scenario approach (sometimes referred as scenario approximation) is one of the well-

known solutions to chance-constrained optimization, but its strength is not well-understood until

recently [1]. The scenario approach utilizes N independent and identically distributed (i.i.d.) sce-

narios N := {ξ1, ξ2, · · · , ξN} to convert the chance-constrained program (3.1) to the scenario

problem below:

SP(N ) : min
x

cᵀx (3.3a)

s.t. f(x, ξ1) ≤ 0 : µ1 (3.3b)
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...

f(x, ξN) ≤ 0 : µN (3.3c)

g(x) ≤ 0 : λ (3.3d)

The scenario problem SP(N ) seeks the optimal solution x∗N that is feasible for all N scenarios.

The Lagrangian multiplier associated with the ith scenario constraint f(x, ξi) ≤ 0 is denoted by

µi ∈ Rm. We can write the scenario problem SP(N ) in a similar way with (3.2) by defining

Xi := {x ∈ Rn : f(x, ξi) ≤ 0}.

SP(N ) : min
x∈χ

cᵀx (3.4a)

s.t. x ∈ ∩Ni=1Xi (3.4b)

Definition 15 (Violation Probability). The violation probability of a candidate solution x� is de-

fined as the probability that x� is infeasible:

V(x�) := Pξ
(
x� /∈ Xξ

)
. (3.5)

The scenario approach theory aims at answering the following sample complexity question:

what is the smallest sample sizeN such that x∗N is feasible (i.e. V(x∗N ) ≤ ε) to the original chance-

constrained program (3.2)? Reference [62, 63] provide in-depth analysis based on the concept of

support scenarios.

Definition 16 (Support Scenario [62,63]). Scenario ξi is a support scenario for the scenario prob-

lem SP(N ) if its removal changes the solution of SP(N ).

Let x∗N and x∗N −i stand for the optimal solution to scenario problems SP(N ) and SP(N −i),

respectively. Then scenario ξi is a support scenario if cᵀx∗N −i < cᵀx∗N . We use S(N ) (S in short)

to represent the set of all support scenarios of SP(N ).
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Definition 17 (Non-degenerate Scenario Problem [62,63]). Let x∗N and x∗S be the optimal solutions

to the scenario problems SP(N ) and SP(S), respectively. The scenario problem SP(N ) is said to

be non-degenerate, if cᵀx∗N = cᵀx∗S .

Assumption 9 (Non-degeneracy [62, 63]). For every N , the scenario problem SP(N ) is non-

degenerate with probability 1 with respect to scenarios N = {ξ1, ξ2, · · · , ξN}.

Assumption 10 (Feasibility [62]). Every scenario problem SP(N ) is feasible, and its feasibility

region has a non-empty interior. The optimal solution x∗N of SP(N ) exists.

Definition 18 (Helly’s Dimension [63]). Helly’s dimension of the scenario problem SP(N ) is the

least integer h that h ≥ ess supN⊆ΞN | S(N )| holds for any finite N ≥ 1, where | S(N )| is the

number of support scenarios.

Theorem 15 presents one of the most important results in the scenario approach theory, which

is based on the non-degeneracy and feasibility assumptions.

Theorem 15 (Exact Feasibility [62, 63]). Under Assumptions 9 (non-degeneracy) and 10 (feasi-

bility), let x∗N be the optimal solution to the scenario problem SP(N ), it holds that

PN
(
V(x∗N ) > ε

)
≤

h−1∑
i=1

(
N

i

)
εi(1− ε)N−i. (3.6)

The probability PN is taken with respect to N random scenariosN = {ξi}Ni=1, and h is the Helly’s

dimension of SP(N ).

Stronger results without the feasibility assumption are in [62, 63]. Based on Theorem 15, the

scenario approach answers the sample complexity question in Corollary 2.

Corollary 2 (Sample Complexity [62,63]). Under Assumptions 9 (non-degeneracy) and 10 (feasi-

bility), given a violation probability ε ∈ (0, 1) and a confidence parameter β ∈ (0, 1), if we choose

the smallest number of scenarios N such that

h−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β, (3.7)
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then it holds that

PN
(
V(x∗N ) ≤ ε

)
≥ 1− β, (3.8)

where x∗N is the optimal solution to SP(N ), and h is the Helly’s dimension of SP(N ) (0 ≤ h ≤ N ).

The scenario approach is essentially a randomized algorithm to solve chance-constrained opti-

mization problems. The randomness of the scenario approach comes from drawing i.i.d. scenarios.

The confidence parameter β quantifies the risk of failure due to drawing scenarios from a “bad”

set. Corollary 2 shows that by choosing a proper number of scenarios, the corresponding optimal

solution x∗N is feasible (i.e. V(x∗N ) ≤ ε) with confidence at least 1− β.

Assumption 11 (Convexity). The deterministic constraint g(x) ≤ 0 is convex, and the random

constraint f(x, ξ) is convex in x for every instance of ξ. In other words, the sets χ and Xis in (3.4)

are convex.

Theorem 16 ( [60, 63]). Under Assumption 10 and 11, the number of support scenarios | S | for

SP(N ) is at most n. In other words, h ≤ n, where n is the number of decision variables x ∈ Rn

and h is Helly’s dimension.

For convex scenario problems SP(N ), we could replace h by n in Theorem 15 and Corollary

2. This leads to the classical results of the scenario approach in [60, 62, 63].

Remark 9 (Towards Non-convexity). Theorem 15 and Corollary 2 do not assume convexity of

f(x, ξ) and g(x). In theory, Theorem 15 and Corollary 2 are applicable for non-convex scenario

problems if a feasible non-convex SP(N ) is proved to be non-degenerate with probability 1 (e.g.

[148]). In practice, however, the scenario approach was considered not applicable for non-convex

problems. Comprehensive analysis are presented in Section 3.2.3.

3.2.3 The Scenario Approach for Non-convex Problems

The scenario approach was considered not applicable for non-convex problems for the follow-

ing three reasons: (1) non-convexity causes degeneracy; (2) non-trivial bounds on | S | may not

exist for non-convex SP(N ); and (3) it is computationally intractable to find optimal solutions.
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First, degeneracy is a common issue for non-convex problems, e.g. the scenario-based SCUC

problem in Section 3.4.3. Since the non-degeneracy assumption 9 lies at the heart of the scenario

approach theory, almost all results in the literature are for non-degenerate problems.

Second, it is almost impossible to prove non-trivial and practical bounds on the number of

support scenarios | S | for non-convex problems. Reference [69] presents one extreme case, in

which every scenario is a support scenario thus | S | = N 4. In addition, a loose bound typically

leads to an astronomical sample complexityN , which make the scenario approach unpractical. For

instance, loose bounds on | S | for scenario-based unit commitment will require 103 ∼ 104 times

more scenarios than necessary [148].

Furthermore, the most attractive feature of convex optimization is that any local minimum is

a global minimum. And there exist a broad family of efficient algorithms that compute global

optimal solutions for convex problems. Hence, x∗N in Section 3.2.2 refers to the global optimal

solution by default. It is worth noting that x∗N is solely determined by the scenario problem SP(N )

and it is not algorithm-dependent.

For non-convex problems, however, it is often computationally intractable to find global opti-

mal solutions. There are many algorithms that are capable of finding local optimal solutions in a

relatively short time. Therefore, it is more reasonable and practical to analyze the characteristics

of local solutions for non-convex scenario problems. Algorithm A : ΞN → Rn stands for the

process of finding solutions to SP(N ), e.g. primal-dual interior-point method. We use opxA(N )

to represent a (possibly suboptimal) solution to SP(N ) obtained via algorithm A. The correspond-

ing optimal objective value is denoted by optA(N ). The subscript A emphasizes the fact that the

solution is algorithm-dependent. And we use SPA(N ) to represent a scenario problem solved by

algorithm A.

Consequently, the scenario approach was considered not applicable for non-convex problems

until very recently. By removing the non-degeneracy assumption and analyzing any feasible solu-

tions of non-convex scenario problems, reference [69] develops a general theory for the scenario

4Using the trivial bound | S | ≤ N , Theorems 15 and 17 provide guarantees P(V(x∗N ) > ε) ≤ 1, which is useless.
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approach. This subsection summarizes its key results.

Identical to the convex case in Section 3.2.2, the scenario approach converts (3.2) to the sce-

nario problem (3.4) using N scenarios N = {ξ1, ξ2, · · · , ξN} for non-convex problems. The sets

χ and Xξ here could be non-convex.

Definition 19 (Invariant Set). Let optA(M) be the optimal value of SP(M) found by algorithm A

for a scenario problem SP(M). A set of scenarios I is an invariant (scenario) set for SPA(N ) if

optA(I) = optA(N ).

The concept of invariant set is an extension of support scenarios for (possibly degenerate) non-

convex scenario problems. A trivial invariant set is I = N . Algorithm B : ΞN → I represents the

process of finding non-trivial invariant sets. Examples of Algorithm B can be found in Section 3.3

and Appendix A.1.

Theorem 17 (Posterior Guarantees for Non-convex Scenario Problems [69]5). Suppose Assump-

tion 10 (feasibility) holds true and β ∈ (0, 1) is given. Algorithm A solves the scenario problem

SP(N ) and obtains an optimal solution opxA(N ). Algorithm B finds an invariant set I of cardi-

nality | I |. The following probabilistic guarantee holds

PN
(
V
(

opxA(N )
)
≤ ε(N, | I |, β)

)
≥ 1− β,

where the function ε(k,N, β) is defined as

ε(N, k, β) :=


1 if k = N,

1−
(

β

N(Nk)

) 1
N−k

otherwise.
(3.9)

Lemma 2. The ε(N, k, β) function defined in (3.9) has the following properties: (1) ε(N, k, β) is

monotonically decreasing in β; (2) ε(N, k, β) is monotonically increasing in k; (3) ε(N, k, β) is

monotonically decreasing in N .
5Theorem 17 is a simplified version of the main result in [69], the feasibility assumption 10 is a simplified version

of the admissible assumption in [69].
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In order to achieve an ε-level solution with confidence 1−β, Lemma 2 shows that the least con-

servative result (i.e. smallest sample complexity N ) is achieved with the invariant set of minimal

cardinality, which is defined as the essential set.

Definition 20 (Essential Set [63]). A set of scenarios E ⊆ N is an essential (scenario) set for

SPA(N ) if

E := arg min{| E | : optA(E) = optA(N ), E ⊆ N}. (3.10)

In other words, E is an invariant set of minimal cardinality.

One key step in the non-convex scenario approach is designing algorithms B to search for

essential sets. Section 3.3 reveals the structure of general non-convex scenario problems, which

lays the cornerstone for algorithms to obtain essential sets. Section 3.3 also gives one example of

designing more efficient algorithms by exploiting the structural properties of specific problems.

3.3 Structural Properties of General Scenario Problems

Searching for essential sets is an important step in the non-convex scenario approach. How-

ever, the only known general algorithm to obtain essential sets is enumerating all 2N possibilities

by solving 2N non-convex problems. This implies that searching for essential sets is in general

computationally prohibitive. Section 3.3.1 first demonstrates the structural properties for general

non-convex scenario problems, and proves a few special cases that finding essential sets is rela-

tively easier. Section 3.3.2 reveals the connection between non-convex and convex scenario prob-

lems. Motivated by the structure of security-constrained unit commitment, Section 3.3.3 illustrates

an efficient algorithm to track down essential sets for two-stage scenario problems.

3.3.1 Non-convex Scenario Problems

Instead of solving 2N non-convex problems to obtain essential sets, there are two ideas to track

down invariant sets with small cardinalities (not necessarily essential): (1) removing each scenario

and checking if the objective changes, this idea leads to the definition of support sets; (2) removing

scenarios one by one, until the scenario set cannot be further reduced, this leads to the definition
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of irreducible set.

Definition 21 (Support Scenario of SPA(N )). Scenario ξi ∈ N is a support scenario for the

scenario problem SPA(N ) if its removal changes the solution optA(N ) of SPA(N ). The set of

support scenarios (support set in short) is denoted by SA.

Definition 22 (Irreducible Set). A scenario set R ⊆ N for SPA(N ) is irreducible, if (1) it is

invariant, i.e. optA(R) = optA(N ); and (2) optA(R−s) < optA(R) = optA(N ) for any s ∈ R.

Assumption 12 (Monotonicity). Let A : ΞN → Rn be an algorithm to obtain the optimal solution

of a scenario problem SP(N ), whose optimal objective value is represented by optA(N ). We

assume that the algorithm A always satisfies optA(M) ≤ optA(N ) ifM⊆ N .

Assumption 12 is indeed a weak assumption. Considering two scenario problems SP(N ) and

SP(M) withM⊆ N . Because the optimal solution to SP(N ) will be always feasible to SP(M),

algorithm A could use opxA(N ) as a starting point and obtain solution opxA(M) that is not worse

than opxA(N ).

Lemma 3 (Modified Lemma 2.10 of [63]). Suppose algorithm A satisfies Assumption 12. Let I

be any invariant set for a (possibly non-convex) scenario problem SPA(N) and S stands for its

support set, then S ⊆ I. Since any essential set E or irreducible set R is also invariant, then

S ⊆ E and S ⊆ R.

Lemma 3 reveals the key relationship among the support set, essential and irreducible sets,

and it lays the foundation of more important observations in Corollary 3 and 4. Lemma 3 is

a generalized version of Lemma 2.10 in [63], which proved similar results for convex scenario

problems. The importance of Lemma 3 is to show that the key assumption for such structural

properties is the monotonicity of algorithm A, instead of convexity (Assumption 11 in [63]).

For general (non-convex) scenario problems, the support set, essential set and irreducible set

are different. Under certain circumstances, these three concepts are interchangeable. Such cir-

cumstances are depicted by an extended definition of non-degeneracy for non-convex scenario

problems.
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Definition 23 (Non-degeneracy of SPA(N )). For a general scenario problem SPA(N ), letN stand

for the set of all N scenarios and S denote the support (scenario) set. The scenario problem

SPA(N ) is said to be non-degenerate, if optA(N ) = optA(S).

Corollary 3. Consider a (possibly non-convex) scenario problem SPA(N ) and an algorithm A

satisfying Assumption 12. If SPA(N ) is non-degenerate, then (1) it has a unique essential set

E = S; and (2) it has a unique irreducible setR = S.

Corollary 4. Consider a (possibly non-convex) scenario problem SPA(N ) and an algorithm A

satisfying Assumption 12. The following three statements are equivalent with each other: (1)

SPA(N ) is non-degenerate; (2) SPA(N ) has a unique irreducible set R; and (3) SPA(N ) has a

unique essential set E .

Corollaries 3 and 4 provide key insights in designing an efficient algorithm B. For non-convex

problems, even if Assumption 9 does not always hold, SPA(N ) might be non-degenerate in many

instances (e.g. s-SCUC is non-degenerate in 192 out of 200 instances in Section 3.5.4). For those

non-degenerate scenario problems, Corollary 3 and 4 show that we are able to find the essential

set by solving only N instead of 2N non-convex problems. Section 3.3.3 shows that the computa-

tional burden to obtain essential sets can be further reduced by exploiting the structure of specific

problems.

Remark 10 (Finding Essential Sets for Non-degenerate Problems). When a scenario problem is

non-degenerate, we can obtain the (unique) essential set by searching for the support set or irre-

ducible set (Corollary 3). Algorithms of finding an irreducible set (Algorithm 3 in Appendix A.1)

or the support set (e.g. Algorithm 1) are based on definition. More discussions on finding the

support set are in Remark 11.

3.3.2 Convex Scenario Problems

For convex scenario problems SP(N ), any local minimum is a global minimum. And a broad

range of algorithms to look for global optimal solutions exist. In the convex setting, we assume

any algorithm A returns global optimal solutions to SP(N ) by default. In Section 3.2.2 and 3.3.2,
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we replace opxA(N ) and optA(N ) by x∗N and cᵀx∗N , respectively. We also remove subscripts A

since the definition of support set, invariant set and essential set for convex problems are no longer

algorithm-dependent.

Lemma 4 (Monotonicity). Let x∗N and x∗M stand for the global optimal solution to the (convex)

scenario problems SP(N ) and SP(M), respectively. Then cᵀx∗M ≤ cᵀx∗N ifM⊆ N .

Because x∗N is always feasible to SP(M) and x∗M is globally optimal, it is obvious that cᵀx∗M ≤

cᵀx∗N . Lemma 4 shows that any algorithm obtaining global optimal solutions will automatically

satisfy Assumption 12. Therefore, all results in Section 3.3.1 hold for convex scenario problems.

It is worth mentioning that similar results for convex problems were first proved in [63]. Section

3.3.1 can be regarded as an extension of classical results in [63] towards non-convex scenario

problems.

Remark 11 (Finding Support Scenarios For Convex Problems). The first algorithm of searching for

support scenarios (for both convex and non-convex scenario problems, Algorithm 2 in Appendix

A.1) is based on definition, i.e. checking if the removal of a scenario changes the optimal solution.

Algorithm 2 requires solving N scenario problems. In many cases (especially in power system

applications, e.g. [123]), it is observed that the support scenarios are only a small subset of all N

scenarios, i.e. | S | � |N |. This observation indicates the dual solution µ1, µ2, · · · , µN to SP(N )

is often sparse. Lemma 5 formalizes this observation and provides an approach to narrow down the

range of searching for support scenarios. Built upon Lemma 5, Algorithm 1 only requires solving

∼ |S | scenario problems, which is much more efficient than Algorithm 2 since | S | � |N |.

Lemma 5. Consider a non-degenerate and convex scenario problem SP(N ) which has at least

one strictly feasible solution. If ξi is a support scenario (i ∈ S), then ‖µi,∗‖ > 0, where µi,∗ ∈ Rm

is the optimal dual solution of SP(N ). In other words, let M := {i ∈ N : ‖µi,∗‖ > 0}, then

S ⊆M.
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Algorithm 1 Finding Support Scenarios Using Dual Variables, reprinted with permission from [2].
1: Compute the primal and dual solutions x∗N and µi,∗ (i = 1, 2, · · · , N ) by solving SP(N )

2: LetM = {i ∈ N : ‖µi,∗‖ > 0}. Set S ← ∅.

3: for i ∈M do

4: Solve SPM−i and compute x∗M−i

5: if cᵀx∗M−i < cᵀx∗N (= cᵀx∗M) then

6: S ← S + i

7: end if

8: end for

In many cases, Algorithm 1 only needs to solve the dual problem of SP(N ), it may not be

necessary to solve the primal solution x∗N . We use x∗N in Algorithm 1 mainly for the purpose of

notation simplicity.

3.3.3 Two-stage Scenario Problems

Section 3.3.1 shows that searching for essential sets can be relatively easier when a scenario

problem is non-degenerate. However, finding a support set or irreducible set still requires solving

N non-convex problems. Motivated by SCUC, we show that more efficient algorithms are pos-

sible by exploiting the structure of specific problems. We study the following two-stage scenario

problem in this subsection.

min
y∈Y

cᵀyy + min
x∈X

(x,y)∈H

cᵀxx (3.11a)

s.t. x ∈ ∩Ni=1Ui (3.11b)

Constraints on the first-stage variables y and the second-stage variables x are denoted by y ∈ Y

and x ∈ X , respectively. Constraint (x, y) ∈ H represents the constraints coupling variables x and

y in both stages. Set Ui stands for the constraints corresponding to the ith scenario ξi.
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Problem (3.11) is an abstract form of s-SCUC in Section 3.4. Two key features of the two-

stage scenario problem are: (1) the non-convexity only comes from constraints y ∈ Y (e.g. binary

variables in SCUC), all other constraints (X ,H,Ui) are convex; (2) uncertainties only exist in the

second stage.

Let (x∗, y∗) be a (possibly local) optimal solution that algorithm A returns. Given y = y∗, the

second stage problem is convex by setting:

min
x∈X

(x,y∗)∈H

cᵀxx (3.12a)

s.t. x ∈ ∩Ni=1Ui (3.12b)

Lemma 6. (1) Let Ŝ represent the set of support scenarios of (3.12) and S denote the support

set for the two-stage problem (3.11), then Ŝ ⊆ S; (2) If Ŝ is invariant for (3.11), i.e. optA(Ŝ) =

optA(N ), then the two-stage scenario problem SPA(N ) is non-degenerate.

Corollaries 3 and 4 demonstrate many nice properties of non-degenerate scenario problems.

Lemma 6 gives a criteria of checking if the two-stage problem (e.g. s-SCUC) is non-degenerate.

This lemma lays the foundation of Algorithm 4 to search for essential sets of (3.11). The main

idea of Algorithm 4 is to first find the support scenarios of the second-stage problem (3.12), then

verify if SP(N ) is degenerate using Lemma 6. In Section 3.5.4, it turns out that s-SCUC is non-

degenerate in 96% of cases, thus Algorithm 4 could obtain essential sets of s-SCUC (in Section

3.5.4) in a much shorter time.

3.4 Security-Constrained Unit Commitment with Probabilistic Guarantees

3.4.1 Nomenclature

The number of loads, generators, wind farms, transmission lines, contingencies, and snapshots

are denoted by nd, ng, nw, nl, nk and nt, respectively.

k ∈ {0, 1, · · · , nk} contingency index

t ∈ {0, 1, · · · , nt} time (snapshot) index

59



ι ∈ {t+ 1, · · · , nt} additional time (snapshot) index in constraints (3.13j) and (3.13k)

Binary decision variables (at time t):

zt ∈ {0, 1}ng generator on/off states (commitment)

ut ∈ {0, 1}ng generator i is on if uti = 1

vt ∈ {0, 1}ng generator i is off if vti = 1

Continuous decision variables (at time t, contingency k):

gt,k ∈ Rng generation output

rt ∈ Rng reserve

Parameters and constants:

ak ∈ {0, 1}ng generator availability in contingency k

αk ∈ R+ weight of contingency k

cg ∈ Rng generation costs

cz ∈ Rng no load cost

cr ∈ Rng reserve costs

cu ∈ Rng startup cost

cv ∈ Rng shutdown cost

d̂t ∈ Rnd load forecast (time t)

d̃t ∈ Rnd load forecast error (time t)

ŵt ∈ Rnw wind forecast (time t)

w̃t ∈ Rnw wind forecast error (time t)
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g ∈ Rng generation upper bounds

g ∈ Rng generation lower bounds

γ ∈ Rng ramping upper bounds

γ ∈ Rng ramping lower bounds

ui ∈ R+ minimum on time for generator i

vi ∈ R+ minimum off time for generator i

3.4.2 Deterministic Security-constrained Unit Commitment

Deterministic security-constrained unit commitment (d-SCUC) (3.13) seeks optimal commit-

ment and startup/shutdown decisions (zt, ut, vt), generation and reserve schedules (gt,k, rt) for a

horizon of time steps, typically 24 ∼ 36 hours. The d-SCUC problem is being solved as a crucial

part of the day-ahead market operation. Security constraints ensures the reliability of the power

system after an unexpected event occurs.

min
z,u,v,g,r

nt∑
t=1

(
cᵀzz

t + cᵀuu
t + cᵀvv

t + cᵀrr
t +

nk∑
k=0

αkc
ᵀ
gg
t,k
)

(3.13a)

s.t. 1ᵀgt,k + 1ᵀŵt ≥ 1ᵀd̂t (3.13b)

f ≤ H t,k
g gt,k +H t,k

w ŵt,k −H t,k
d d̂t,k ≤ f (3.13c)

ak ◦ γ ≤ gt,k − gt−1,k ≤ ak ◦ γ (3.13d)

ak ◦ (gt,0 − rt) ≤ gt,k ≤ ak ◦ (gt,0 + rt) (3.13e)

k ∈ [0, nk], t ∈ [1, nt]

g ◦ zt ≤ gt,0 ≤ g ◦ zt (3.13f)

g ◦ zt ≤ gt,0 − rt ≤ gt,0 + rt ≤ g ◦ zt (3.13g)

zt−1 − zt + ut ≥ 0 (3.13h)

zt − zt−1 + vt ≥ 0 (3.13i)
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t ∈ [1, nt]

zti − zt−1
i ≤ zιi , i ∈ [1, ng] (3.13j)

ι ∈ [t+ 1,min{t+ ui − 1, nt}], t ∈ [2, nt]

zt−1
i − zti ≤ 1− zιi , i ∈ [1, ng] (3.13k)

ι ∈ [t+ 1,min{t+ vi − 1, nt}], t ∈ [2, nt]

The objective of (3.13) is to minimize total operation costs, including no-load costs cᵀzz
t, startup

costs cᵀuu
t, shutdown costs cᵀvv

t, generation costs cᵀgg
t,k and reserve costs cᵀrs

t. Security constraints

ensure: enough supply to meet demand (3.13b), transmission line flow within limits (3.13c), gen-

eration levels within ramping limits (3.13d) and capacity limits (3.13f) in any contingency k.

Constraints (3.13e) and (3.13g) are about the relationship between generation and reserve in any

contingency k. Constraints (3.13h)-(3.13i) are the logistic constraints about commitment status,

startup and shutdown decisions. Minimum on/off time constraints for all generators are in (3.13j)-

(3.13k). Constraints (3.13d)-(3.13g) also guarantee the consistency of generation levels gt,k with

commitment decisions zt and generator availability ak in contingency k [148].

The d-SCUC formulation utilizes the expected wind generation and load forecast, it does not

take the uncertainties from wind and load into consideration. We propose an improved formulation

of d-SCUC using chance constraints, which explicitly guarantee the system security with a tunable

level of risk ε with respect to uncertainties.

Pw̃×d̃
(
1ᵀgt,k + 1ᵀ(ŵt + w̃t) ≥ 1ᵀ(d̂t + d̃t), (3.14a)

f ≤ H t,k
g gt,k +H t,k

w (ŵt + w̃t)−H t,k
d (d̂t + d̃t) ≤ f, (3.14b)

k ∈ [0, nk], t ∈ [1, nt]
)
≥ 1− ε

The formulation of chance-constrained Security-constrained Unit Commitment (c-SCUC) is pre-

sented below. Instead of using expected load d̂t as in (3.13), we consider loads dt as forecast d̂t
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plus a random forecast error d̃t (i.e. dt = d̂t + d̃t).

min (3.13a)

s.t. (3.13b)(3.13c)(3.13d)(3.13e)(3.13f)(3.13g)(3.13h)(3.13i)(3.13j)(3.13k)

(3.14a)(3.14b)

Comparing with d-SCUC, the only difference of c-SCUC is the addition of the chance constraint

(3.14a). The chance constraint guarantees there will be enough supply to meet the net demand

with probability no less than 1− ε.

To reveal the structure of c-SCUC, we define the sets below:

B :=
{

(z, u, v) : (3.13h), (3.13i), (3.13j), (3.13k)
}

(3.15a)

C :=
{

(g, r) : (3.13b), (3.13c), (3.13d), (3.13e)
}

(3.15b)

H :=
{

(z, g, r) : (3.13f), (3.13g)
}

(3.15c)

U :=
{

(g) : (3.14a)(3.14b)
}

(3.15d)

Then c-SCUC can be succinctly represented as:

min
z,u,v,g,r

(3.13a)

s.t. (z, u, v) ∈ B

(g, r) ∈ C, (z, g, r) ∈ H

P
(
g ∈ U

)
≥ 1− ε

Sets B and C stand for the deterministic constraints for binary and continuous variables, respec-

tively. Set H represents the hybrid constraints related with both continuous and binary variables.

Set U denotes all constraints related with uncertainties. Using the scenario approach, c-SCUC is
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converted to the scenario-based SCUC (s-SCUC) problem below:

min
(z,u,v)∈B

nt∑
t=1

(
cᵀzz

t + cᵀuu
t + cᵀvv

t
)

+

min
(z,g,r)∈H

nt∑
t=1

(
cᵀrr

t +

nk∑
k=0

αkc
ᵀ
gg
t,k
)

s.t. (g, r) ∈ C

g ∈ ∩Ni=1Ui

Remark 12 (Structural Properties of SCUC). SCUC is a two-stage optimization problem by nature,

it has the following nice properties. Firstly, the non-convexity only exists in the first stage, i.e.

y ∈ Y . Given a first-stage solution y, the second stage is a simple linear program. Secondly,

uncertainties come from renewables in the operation stage (only in the second stage). Based on the

nice structural properties above, Section 3.3.3 shows that we are able to track down essential sets

by solving two MILPs and ∼ |S | linear programs.

3.4.3 Degeneracy of s-SCUC

This section presents an example to show that s-SCUC could be degenerate in many cases,

which violates Assumption 9. Therefore almost all results of the classical scenario approach are not

applicable. For s-SCUC, theoretical guarantees are only possible through the non-convex scenario

approach in Section 3.2.3.

We use a 3-bus system to illustrate the degeneracy of s-SCUC. Configurations of the 3-bus

system are in [2]. In order to visualize the feasible region of s-SCUC, we simplify the problem by

(1) only considering one snapshot (nt = 1) and ignoring initial status (thus no u, v variables); (2)

removing reserve constraints (no r variables). By doing this, there are only four decision variables

left: z1, z2, g1, g2. The on/off states z1, z2 can be inferred from values of g1 and g2, therefore the

feasible region of the simplified s-SCUC can be visualized on the (g1, g2)-plane.

Using Definition 17, showing the degeneracy of s-SCUC includes three steps: (1) obtaining

the optimal solution to SP(N ); (2) finding all support scenarios S of SP(N ); and (3) checking if
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Figure 3.1: An illustrative example that s-SCUC is degenerate (3-bus system), illustration of the
feasible region with constraints of all scenarios (U1,U2,U3), reprinted with permission from [2].

the optimal solution of SP(N ) is the same as SP(S). Fig. 3.1 first visualizes constraints B0 ∼ B3,

which represents the region of 4 possible generator on/off status (e.g. B1 : z1 = 1, z2 = 0,

B3 : z1 = 1, z2 = 1). The black solid lines denote constraints (3.13b), (3.13c) and (3.13f) using

forecast values (d-SCUC). The red, yellow and purple dotted lines are three sets (U1,U2,U3) of

constraints corresponding to three scenarios. Given the setting that generator 1 is much cheaper

than generator 2, we can easily eyeball the optimal solution with all constraints presented, marked

by the red ∗. Next, we observe that removing scenario 1 (U1, red lines) changes the optimal

solution, while removing scenario scenario 2 (U2, yellow lines) or scenario 3 (U3, purple lines)

makes no difference. Thus scenario 1 is the only support scenario. Finally, we examine the scenario

problem with only support scenarios presented. Fig. 3.2 shows that the optimal solution becomes

the red � with only scenario 1, which is clearly different than the optimal solution in Fig. 3.1.

Hence, this instance of s-SCUC is degenerate.
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Figure 3.2: An illustrative example that s-SCUC is degenerate (3-bus system), illustration of the
feasible region with only support scenarios (U1), reprinted with permission from [2].

3.5 Case Study

3.5.1 Settings of the 118-bus System

Numerical simulations were conducted on a modified 118-bus, 184-line, 54-generator, 24-

hour system [149]. Most settings are identical as [149], except 5 wind farms are added to the

system as in [150]. The s-SCUC problems were solved using 64 GB memory on the Hera server

(hera.ece.tamu.edu), provided by Texas A&M University. The mathematical models for s-SCUC

was formulated using YALMIP [84] on Matlab R2019a and solved using Gurobi v8.1 [87].

After obtaining a solution opxA(N ) to s-SCUC, Theorem 17 provides an upper bound ε(N, | I |, β)

on the actual violation probability V(opxA(N )). The theoretical guarantee ε(N, | I |, β) is referred

as posterior ε in the numerical results. The actual violation probability V(opxA(N )) is estimated

by the out-of-sample violation probability ε̂, using an independent set of 106 scenarios.
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To quantify the randomness of the scenario approach, for each sample complexityN = 100, 200, · · · , 1000,

we solve the corresponding s-SCUC problems on 10 independent sets of scenarios (i.e. 10 Monte-

Carlo simulations). Results in both Fig. 3.3 and 3.4 show the average, maximum and minimum

values in 10 Monte-Carlo simulations.

3.5.2 Cost vs Security: a trade-off

Fig. 3.3 shows the out-of-sample violation probability ε̂ and objective value (total cost). The

shadowed area shows the max-min values in 10 Monte-Carlo simulations, and the solid line is

the average value of 10 independent simulations. It is shown that the system risk level (violation

probability) is reduced by 83% (from ∼ 30% to ∼ 5%) by ∼ 1.1% increase in total system costs.

Similar observations were found in [1, 123, 148].

Figure 3.3: Cost vs Security: a Trade-off, reprinted with permission from [2].
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3.5.3 Violation Probability

Fig. 3.4 presents the out-of-sample violation probability ε̂ and theoretical guarantees (posterior

ε provided by Theorem 17). Since the cardinality of essential sets differ for each scenario problem

(Fig. 3.5), the posterior guarantee ε is a band instead of a line. As illustrated in Fig. 3.4, the actual

violation probability (approximated by ε̂) is bounded by the theoretical guarantees. This verifies

the correctness of Theorem 17. The conservative ratio is 2 ∼ 4 (e.g. when out-of-sample ε̂ is

∼ 5%, Theorem 17 gives an upper bound 10% ∼ 20%).

Figure 3.4: Out-of-sample Violation Probabilities and Theoretical Guarantees, reprinted with per-
mission from [2].

3.5.4 Searching for Essential Sets for s-SCUC

s-SCUC was observed to be non-degenerate in 192 out of 200 simulations6. In other words,

in 96% cases, we are able to find an essential set by solving 5 ∼ 35 linear programs and 2 mixed

6We conducted 10 simulation for 10 different sample complexities (100, 200, · · · , 1000) under two different set-
tings: with/without N − 1 contingencies, both include transmission constraints.
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integer linear programs. It takes from 4934 seconds (N = 100) to 6847 seconds (N = 1000) to

solve one MILP (s-SCUC). When searching for support scenarios for the second-stage problem (a

linear program), it takes 281 ∼ 388 seconds to solve one LP. For those 8 out of 200 simulations, it

takes an extra 20 hours to find an irreducible set using Algorithm 3. This computation time can be

greatly reduced by tricks such as choosing appropriate starting points7.

3.6 Discussions

3.6.1 Cardinality of Essential Sets

Fig. 3.5 compares the cardinalities of essential sets for three cases: (a) c-SCUC with N − 1

contingencies but without transmission constraints, results of case (a) are obtained from [148]);

(b) c-SCUC with transmission constraints but without N − 1 contingencies; and (c) c-SCUC with

both transmission constraints and N − 1 contingencies.
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Figure 3.5: Cardinality of Essential Sets, reprinted with permission from [2].

7For example, when removing scenarios s and t consecutively in Algorithm 3, the solution optA(N −s) is feasible
to SP(N −s− t) thus can serve as a good starting point.
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Case (a) is the simplest, in [148] we show that the scenario problem for unit commitment sat-

isfies the non-degeneracy assumption 9, and the cardinality of essential sets is bounded by the

number of snapshots nt, i.e. | S | ≤ nt = 24 in Fig. 3.5. Case (b) and (c) include transmission

capacity constraints. As demonstrated in Section 3.4.3, s-SCUC could be degenerate with trans-

mission constraints. Theoretically speaking, the cardinality of essential sets might be unbounded

for non-convex problems. As observed in Fig. 3.5, the cardinality of essential sets (30 ∼ 40 in

case 2, 0 ∼ 10 in case 3) is greatly smaller than the number of decision variables (e.g. about 4000

binary variables and around 75000 continuous decision variables). This observation implies that

the number of scenarios N required could be much smaller than expected.

Another interesting observation is that including N − 1 contingency constraints reduces | E |.

This observation has two implications. First, N − 1 contingency constraints not only protect

the system from unexpected device failures, they also help reduce the impacts of uncertainties

from renewables. Second, including N − 1 contingency constraints could help reduce sample

complexity. Similar with the observations in [123], this observation indicates that the scenario

approach might be of practical use.

3.6.2 From Posterior to Prior Guarantees

Theorem 17 gives posterior guarantees on the quality of solutions, namely, we calculate ε(N, k, β)

after obtaining the solution opx(N ). Lemma 2 proves that the ε(N, k, β) function in (3.9) is mono-

tone inN and k. This implies that we can obtain prior guarantees. In other words, if the cardinality

of essential sets is proved to be at most h (| E | ≤ h), then we can find the smallest N̂ such that

ε ≥ 1−
( β

N̂
(
N̂
h

)) 1
N̂−h (3.16)

holds for given ε and β. Then the solution opxA(N ) to the scenario problem using N̂ scenarios

has the guarantee P(V(opxA(N )) ≤ ε) ≥ 1 − β. This prior guarantee holds before solving the

scenario problem with N̂ scenarios. If a rigorous bound h on | E | can be proved, then there is no

need to numerically search for essential sets. This is particularly attractive compared with posterior
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guarantees.

3.7 Summary

This chapter solves chance-constrained SCUC via the scenario approach and obtains rigor-

ous theoretical guarantees on the solution. We demonstrate the structural properties of (possibly

non-convex) general scenario problems. To obtain the tightest theoretical guarantees for chance-

constrained SCUC, we design efficient algorithms to search for essential sets by exploiting the

salient structures of SCUC. Numerical results on an IEEE benchmark system show that the essen-

tial scenario set is only a small subset of all scenarios. This implies that we can obtain relatively

robust solutions (i.e. small ε) using only a moderate number of scenarios. Furthermore, we ob-

serve that some power engineering practices (e.g. N − 1 criteria) can help us reduce the number

of scenarios needed while maintaining the same level of risk.

Future work includes reducing conservativeness by improving the complexity bound in Theo-

rem 17 and investigating the performance of the (non-convex) scenario approach on larger-scale

realistic systems.
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4. LOOK-AHEAD OPTIMAL REACTIVE POWER DISPATCH WITH PROBABILISTIC

GUARANTEES1

4.1 Look-ahead Optimal Reactive Power Dispatch

Renewable energy, which is becoming a major component of power resources, is highly vari-

able with limited predictability. In many regions such as Texas, renewables (primarily wind) are

located far from the load centers. The long distance between renewable generation and loads,

compounded with the fact that such renewables are highly variable, lead to increasing concerns of

maintaining voltage security for operations.

This chapter is motivated by the need to coordinate these reactive power support devices

(RPSDs) in order to ensure voltage security with deep renewable penetration. The particular set of

RPSDs discussed in this chapter include both continuous-state devices (e.g. SVCs) and discrete-

state devices (e.g. capacitor banks). In practice, many of these devices are operated by multiple

transmission owners. The decision of each control area is often not coordinated. This, in turn, leads

to unnecessary frequent operations of RPSDs in large power systems. With advances in sensing,

communication, and computing, the forecast of renewables in the near-term operation is improv-

ing. Such improvement could be leveraged by the system operator for more economic scheduling

of RPSDs to ensure security. In this chapter, we examine the potential of look-ahead operation of

the RPSDs across large geographical areas with high renewables.

There has been a substantial body of literature examining the impact of renewable penetration

on system voltage profiles. Reference [151] presents four case studies of European countries and

discuss system stability issues due to fluctuating renewables. Many papers formulate an optimal

reactive power dispatch (ORPD) problem to solve the voltage problem induced by high penetration

of wind power [152–154]. The ORPD problem often aims at finding optimal settings of current

installed RPSDs to ensure system voltage constraints [155].

There are in general two families of voltage constraints: (1) voltage stability constraints; and

1Reprinted with permission from [3, 4].
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(2) voltage security constraints. Stability of a power system refers to the continuance of intact

operation following a disturbance. It depends on the operating condition and the nature of the

physical disturbance [156]. Voltage stability constraints often require a particular form of voltage

stability index larger or smaller than a threshold. Some typical voltage stability index include the

distance to the nose point of the PV curve [157] and smallest singular value of the power flow

Jacobian matrix [158]. Security of a power system refers to the degree of risk in its ability to

survive imminent disturbances (contingencies) without interruption of customer service. It relates

to robustness of the system to imminent disturbances and, hence, depends on the system operating

condition as well as the contingent probability of disturbances [156]. Voltage security constraints

typically require the voltage magnitudes within desired ranges under a set of plausible contingency

scenarios [159].

As an effort to mitigate the impacts of renewables on voltage stability and security, many

papers suggest the use of RPSDs [152]. However, [155] points out two major shortcomings of

current ORPD literatures:

1. Because of the low computational burden, some ORPD problems only determine the sched-

ules of continuous RPSDs or the discrete decision variables are relaxed to be continuous.

This lack of coordination might cause troubles and it is necessary to formulate a comprehen-

sive coordination framework including all the devices of the system;

2. Most of the proposed approaches focus on a single snapshot coordination of RPSDs. The

past or future states of the system are not taken into account. Given the increasing inter-

temporal variability from renewables, it becomes more and more important to establish a

look-ahead framework to schedule all the RPSDs. Detailed models of the operation costs of

RPSDs are necessary in a look-ahead framework.

There has also been efforts developing multi-period coordination of voltage support devices.

Reference [155] formulates a multi-objective mixed integer nonlinear programming (MINLP)

problem and utilizes generalized Bender’s decomposition to find out the optimal switching pattern
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of discrete voltage controllers and ensuring the voltage security of the system. Reference [160]

proposes a three-stage coordination framework to minimize total lines loss and number of control

actions. The problems solved in both [155] and [160] are MINLP problems.

In this section, we formulate the problem of look-ahead coordination of RPSDs in line with

[155]. The proposed framework considers the operation cost of discrete control devices and trans-

mission losses and guarantees the system voltage security with respect to N − 1 contingencies.

Instead of solving a MINLP problem as in [155] and [160], we solve the linearized problem,

which provides insights into the operations of RPSDs and is much more computationally efficient

and provides insights into the operations.

The rest of this sec is organized as follows: Section 4.1.1 formulates the look-ahead coordina-

tion of RPSDs as a MINLP problem. The main difficulties and linearized problem are presented

in Section 4.1.2. Case studies and further discussions are provided in Section 4.1.3. Section 4.1.5

examines the impacts of wind uncertainties.

4.1.1 Look-ahead ORPD

Independent System Operators (ISOs) have the overall responsibility of monitoring and main-

taining voltage security over its footprint, which often is comprised of multiple control areas. As

an example, the Electric Reliability Council of Texas (ERCOT) manages its voltage issues with

multiple entities.

ISOs typically perform voltage security screening studies focusing on the next few hours or

days by looking at the estimates of voltage obtained from the supervisory control and data acquisi-

tion (SCADA) system. If any bus voltage goes beyond the predetermined limits, ISOs will assess

the real-time voltage stability and determine necessary corrective operations.

In practice, the control of reactive power support devices such as capacitor banks are often

decided at multiple transmission service providers (i.e. control areas). Given their limited infor-

mation about the entire system, it often leads to unnecessarily volatile switches of these capacitor

banks.

In Section 4.1.1.1, we propose a coordination framework for the operation of reactive devices.
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The ISO coordinates all the reactive power devices and figure out the most efficient solution to

guarantee the security of the system.

4.1.1.1 Problem Formulation

min
T∑
t=1

(
hB(QB[t]) + λ[t]

T∑
t=0

ωcP c
L[t]
)

(4.1a)

s.t. P c[t] = AcG(PG[t] + ηcP c
δ [t]) + AWPW [t]− ADPD[t] (4.1b)

Qc[t] = AcGQ
c
G[t] + ACQC [t] + ABQB[t]− ADQD[t] (4.1c)

P c
δ [t] = 1ᵀ(ADPD[t]− AcGPG[t]− AWPW [t]) (4.1d)

P c
i [t] =

nb∑
j=1

|V c
i [t]||V c

j [t]||Yij| cos(θci [t]− θcj [t]− φij) (4.1e)

Qc
i [t] =

nb∑
j=1

|V c
i [t]||V c

j [t]||Yij| sin(θci [t]− θcj [t]− φij) (4.1f)

P c
L[t] =

nl∑
l=1
l:i∼j

gl
(
|Vi[t]|2 + |Vj[t]|2 − 2|Vi[t]||Vj[t]| cos(θi − θj)

)
(4.1g)

|V c|− ≤ |V c[t]| ≤ |V c|+ (4.1h)

Q−C ≤ QC [t] ≤ Q+
C (4.1i)

QB[t] ∈ {0, Q+
B} (4.1j)

(S−G)2 ≤ (PG[t] + ηcP c
δ [t])2 + (Qc

G[t])2 ≤ (S+
G)2 (4.1k)

i, j = 1, 2, · · · , nb, c = 0, 1, 2, · · · , nc, t = 1, 2, · · · , T

Problem (4.1) aims at finding the most smoothed and economic operation schedule of the reac-

tive power support devices (RPSDs) in the upcoming T snapshots while ensuring voltage security

in nc contingency scenarios. Variables with [t] are in snapshot t, and those with superscript c be-

long to contingency scenario c. Decision variables include the operating states of discrete RPSDs

(e.g. shunt capacitors) QB[t] , operating states of continuous RPSDs (e.g. SVCs) QC [t] and the
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voltage set-points of generators (i.e voltage magnitudes |V c[t]| of PV buses). The reactive genera-

tion Qc
G[t] is controlled by the automatic voltage regulators (AVRs) to maintain their bus voltages

at desired levels.

Eqn. (4.1b)-(4.1c) are the real and reactive power balance equations at each bus. P c[t] and

Qc[t] denote the real and reactive nodal injection. AB ∈ Rnb×nB , AC ∈ Rnb×nC , AD ∈ Rnb×nD ,

AcG ∈ Rnb×ng and AW ∈ Rnb×nW are adjacency matrices. If component k is connected with bus i,

then A·(i, k) = 1; otherwise A·(i, k) = 0. Eqn. (4.1e)-(4.1f) are the power flow equations. |V c
i [t]|

and θci [t] are the voltage magnitudes and angles of bus i (i = 1, 2, · · · , nb). Yij∠φij represents the

component related with line (i, j) (bus i to bus j) in the admittance matrix Y .

There are nc contingency scenarios2 being considered in Problem (4.1). More specifically, we

focus on the N − 1 contingency of losing generators3. The contingency of losing one generator is

modeled through the adjacency matrix of generators AcG. Let A0
G denote the adjacency matrix in

the normal condition. The impacts of losing generator g (in scenario c) is equivalent with setting

the gth column of A0
G to be zeros, and the new matrix is denoted by AcG (c = 1, 2, · · · , nc).

The real power imbalance P c
δ [t] due to contingency c is proportionally allocated to each gen-

erator (i.e. PG[t] + ηcP c
δ [t]). The participating factor ηc is a pre-defined vector and determined

by the characteristics of generators. It is worth mentioning that 1ᵀηc = 1 and 1ᵀAcGη
c = 1, this

guarantees the post-contingency balance of real power:

1ᵀ
(
AcG(PG[t] + ηcP c

δ [t]) + AWPW [t]
)

= 1ᵀAcGPG[t] + 1ᵀAWPW [t] + 1ᵀAcGη
c1ᵀ(ADPD[t]− AcGPG[t]− AWPW [t])

= 1ᵀADPD (4.2)

Eqn. (4.1h) depicts the voltage security constraints. Voltage magnitudes will be maintained

within predetermined ranges [|V c|−, |V c|+] for each contingency scenario c. In this section, we

2c is the index of contingency scenarios. For simplicity, we use c = 0 represents the normal operating condition.
3It could be extended towards the cases of possible line failures. In that case, we need to modify the Y matrix to

model the scenarios of losing transmission lines. For simplicity, we only focus on losing generators.
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use [0.95, 1.05] for normal operation analysis (c = 0) and [0.9, 1.1] for contingency analysis

(c = 1, 2, · · · , nc) [161].

Other constraints include the capacity of devices (Eqn. (4.1i), (4.1j)4). Eqn. (4.1k) represents

the generation capacity limits [162, 163]. Since PG[t], ηc and P c
δ [t] are all parameters, Eqn. (4.1k)

is equivalent with the following linear inequality:

Qc−
G ≤ Qc

G[t] ≤ Qc+
G (4.3)

4.1.1.2 On Objective Function

The objective function Eqn. (4.1a) is time-coupled and includes cost of line losses and the

operation costs of the RPSDs. The cost of line losses is evaluated at the market energy price λ[t].

The operation cost of discrete RPSDs hB(QB[t]) is proportional to the number of switchings5:

hB(QB[t]) =

nB∑
i=1

T∑
t=1

πiQ
+
Bi
· |xBi [t]− xBi [t− 1]| (4.4)

=

nB∑
i=1

T∑
t=1

πiQ
+
Bi
· (xBi [t]− xBi [t− 1])2 (4.5)

πi is the unit operation cost of device i for switching one time. According to [164], πi is evaluated

by the total unit installation cost divided by the total number of switchings in its lifetime. Typical

values of πi is 0.41$/(MVar·times). For a 50MVar capacitor bank, its operation cost is πQ+
Bi

=

0.41× 50 = 20.5 $/times [164].

More discussions on choosing proper objective functions are provided in Section 4.1.4.1.

4For simplicity, we assume the discrete-state devices only have two/binary states: on or off, and use subscript B .
5Eqn. (4.4) to (4.5) is due to the fact that xB [t] is binary. We prefer Eqn. (4.5) because of its quadratic form and

positive definiteness.

77



4.1.2 Linearized Look-ahead ORPD

4.1.2.1 Computational Complexity

Formulation (4.1) is a Mixed Integer Non-Linear Programming (MINLP) problem. It is chal-

lenging to solve and there is no guarantee on the global optimal solution. The intractability issue is

mainly due to the non-linearity of power flow equations (Eqn. (4.1e)-(4.1f)). A common approach

to tackle this issue is to linearize power flow equations [165–167]. The non-linear relationship

between P,Q and |V |, θ is approximated by a linear sensitivity matrix A:

∆P

∆Q

 = A

 ∆θ

∆|V |

 (4.6)

Many different approaches based on different forms of matrixA have been proposed, e.g. [164,165,

168–170]. Among all the proposed approaches, power flow Jacobian matrix is the most popular

choice and has relative good linearization accuracy [165].

4.1.2.2 Linearization

We follow the idea in [168–170], the original problem (Problem (4.1)) is linearized to be Prob-

lem (4.10) using power flow Jacobian matrix.

Let t = 0 denote current snapshot, and ·[0] (e.g. PG[0], QG[0], QB[0], QC [0]) denote the current

operating states of the devices. Based on the power flow solutions of current snapshot t = 0, we

can calculate the power flow Jacobian matrix, and the power flow equations Eqn. (4.1e)-(4.1f) can

be approximated as:

P [t]− P [0]

Q[t]−Q[0]

 ≈
∂P∂θ ∂P

∂|V |

∂Q
∂θ

∂Q
∂|V |


t=0

 θ[t]− θ[0]

|V [t]| − |V [0]|

 (4.7)

Similarly, the line losses P c
L[t] can be approximated by:

PL[t] ≈ PL[0] + ∆PL[t] (4.8)
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∆PL[t] =

[
∂PL
∂θ

∂PL
∂|V |

]
t=0

 θ[t]− θ[0]

|V [t]| − |V [0]|

 (4.9)

Problem (4.10) is obtained by replacing Eqn. (4.1e)-(4.1f) with Eqn. (4.7).

min
T∑
t=1

(
hB(QB[t]) + λ[t]

nc∑
c=0

wc(PL[0] + ∆P c
L[t])

)
(4.10a)

s.t. Eqn. (4.1b), (4.1c), (4.1d) (4.10b)∆P c[t]

∆Qc[t]

 =

∂P∂θ ∂P
∂|V |

∂Q
∂θ

∂Q
∂|V |


 ∆θc[t]

∆|V c[t]|

 (4.10c)

∆P c
L[t] =

[
∂PL
∂θ

∂PL
∂|V |

] ∆θc[t]

∆|V c[t]|

 (4.10d)

∆P c[t] = P c[t]− P [0] (4.10e)

∆Qc[t] = Qc[t]−Q[0] (4.10f)

∆|V c[t]| = |V c[t]| − |V [0]| (4.10g)

∆P c
L[t] = PL[t]− PL[0] (4.10h)

P [0] = AGPG[0] + AWPW [0]− ADPD[0] (4.10i)

Q[0] = AGQG[0] + ACQC [0] + ABQB[0]− ADQD[0] (4.10j)

Eqn. (4.1h), (4.1i), (4.1j), (4.3). (4.10k)

∆θ− ≤ ∆θc[t] ≤ ∆θ+ (4.10l)

∆|V |− ≤ ∆|V c[t]| ≤ ∆|V |+ (4.10m)

c = 1, 2, · · · , nc, t = 1, 2, · · · , T

Since this linear approximation is only accurate within the neighborhood of current operating

point, Eqn. (4.10l) and (4.10m) are necessary. After solving Problem (4.10), its solution will be
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verified by solving the power flow equations of each contingency scenario and each snapshot.

4.1.3 Case Studies

In this section we provide case studies on the IEEE RTS 24-bus system [171].

4.1.3.1 Settings

We make the following changes to the IEEE RTS 24-bus system:

• one wind farm with capacity 250MW is added to bus 4;

• there is a synchronous condenser at bus 14 in the original system; three capacitor banks are

added to bus 1, 10 and 15 with capacities 50MVar, 50MVar and 100MVar. As discussed in

Section 4.1.1.2, the operation costs of the three capacitor banks are: 20.5$/times, 20.5$/times

and 41$/times.

• the load profiles and generation of wind farms are shown in Fig. 4.1. Different colors

represent different bus numbers.

• each one of the two 400MW generators at bus 18 and 21 is replaced with four 100MW

generators, other settings of the generators remain the same as the original 24-bus system.

• the market energy price λ[t], t = 1, 2, · · · , T is assumed to be 60$/MWh and the operation

interval is 15 minutes.

• all contingency scenarios have equal weights ωc.

Given the wind and load profiles in Fig. (4.1), T security-constrained economic dispatch prob-

lems are solved to get the real generation schedule PG[t], which is shown in Fig. (4.2).

Matpower 6.0 [172] is used to calculate the power flow Jacobian matrix, line loss sensitivity

matrix and power flow solutions. The test system is simulated using Matlab R2016b on a PC with

Intel i7-2600 8-core CPU@3.40GHz and 16GB RAM memory.
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Figure 4.1: Wind And Load Profiles, reprinted with permission from [3].

Figure 4.2: Generation Schedule, reprinted with permission from [3].
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4.1.3.2 Simulation Results

Problem (4.10) is solved using Gurobi 7.0 [87]. The barrier method found the optimal solution

(with 0.0% gap) in 3.79 seconds. The optimal total cost is $6411.3, and the optimal schedules of

RPSDs and voltage set-points of generators are presented in Fig. (4.3).

Figure 4.3: Optimal Schedules of RPSDs and Voltage Set-points of Generators, reprinted with
permission from [3].

4.1.3.3 Validity of the Solution

Instead of solving the original MINLP problem (4.1) (as in [155]), we seek solutions to the

approximated problem (4.10). To examine the validity of the solution to problem (4.10), we input

the optimal schedules of RPSDs (Fig. (4.3)) to T × nc power flow equations and solve them. This

section compares the solution to problem (4.10) and the AC power flow solutions.
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4.1.3.4 Feasibility

Since Problem (4.10) is not an accurate representation of the power system model, there is no

guarantee that the solution to Problem (4.10) is always feasible to Problem (4.1). For this case

study, we examine the voltage magnitudes in all the nc scenarios and T snapshots. All the voltage

magnitudes are within desired ranges ([0.95, 1.05] and [0.9, 1.1]).

For large wind variations or critical contingencies, it is possible that the solution to Problem

(4.10) is not feasible to Problem (4.1). One solution to this issue is to apply more conservative

bounds on voltages and device capacities when solving Problem (4.10).

Figure 4.4: Comparison of Voltage Profiles (Normal Conditions), reprinted with permission from
[3].
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4.1.3.5 Accuracy

Since voltage magnitudes are critical for system security assessment, we measure the largest

distance between the voltage profiles from the optimal solution and those of the power flow solu-

tions. Fig. (4.4) provides a qualitative comparison of the voltage profiles. Quantitative analysis is

presented in Table. 4.1. Let |V c[t]| ∈ Rnb denote the voltage magnitudes of scenario c at time t

from AC power flow solution, and |V̂ c[t]| denotes the voltage magnitudes from solving Problem

(4.10). The distance between |V c[t]| and |V̂ c[t]| is defined as:

d(|V c|, |V̂ c|) = max
c,t
‖|V c[t]| − |V̂ c[t]|‖1 (4.11)

Figure 4.5: Comparison of Voltage Profiles (Contingency), reprinted with permission from [3].

Table 4.1 presents the largest errors d(|V c|, |V̂ c|) in normal condition (c = 0) and contingency
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scenarios (c = 1, 2, · · · , 38). All the errors are less than 0.5% in normal condition and less than

1% in all contingency scenarios. It is worth mentioning that the 38th contingency scenario often

leads to the largest approximation error. The reason is that the 38th contingency scenario repre-

sents losing the largest generator in the system, which causes a substantial deviation from normal

operating point.

Table 4.1: Comparison of Voltage Magnitudes (d(|V c|, |V̂ c|)), reprinted with permission from [3]

Time Normal Condition Contingency Scenario Worst Scenario
t = 1 0.0010 0.0017 c = 38
t = 2 0.0015 0.0085 c = 38
t = 3 0.0040 0.0072 c = 38
t = 4 0.0011 0.0084 c = 38
t = 5 0.0023 0.0075 c = 10
t = 6 0.0041 0.0079 c = 5
t = 7 0.0024 0.0077 c = 9
t = 8 0.0042 0.0083 c = 38

From simulation results (Table. 4.1 and Fig. 4.4), the approximation seems satisfying. We want

to emphasize that there is no guarantee on the approximation accuracy until rigorous theoretical

analysis is conducted.

4.1.4 Discussions

4.1.4.1 On Objective Functions

Different from most of the literatures, where minimizing losses is the only objective, we include

the operation costs of the control devices. There have been some studies on modeling the cost

related with reactive power. For example, [164] provides a method to calculate the operation

cost of reactive generations and continuous RPSDs (e.g. compensators). [173] provides more

comprehensive modeling of the cost of discrete control devices.
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4.1.4.2 On the Impacts of Operation Costs of RPSDs

By setting πi = 0 for i = 1, 2, · · · , nB, the objective of Problem (4.1) becomes the same as

most of the literatures: only minimizing the total line losses. The optimal solution to Problem

(4.10) with π = 0 is shown in Fig. (4.6). Comparing Fig. (4.3) with Fig. (4.6), we found that some

unnecessary operations of RPSDs may happen when their operation costs are not being considered.

The cost of line losses for the IEEE 24-bus system is about 60$/MWh×55MW×0.25h = 825$.

And the cost of switching a 100MVar capacitor bank once is around 40 dollars, which is about 5%

of the line loss costs. With lower energy price, the operation cost will possess a higher portion of

the overall cost. Only minimizing line losses might lead to frequent switchings of RPSDs, which

could increase the overall costs and lead to suboptimal solutions.

Figure 4.6: Optimal Solution (No Operation Costs), reprinted with permission from [3].
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4.1.5 Estimate the Impacts of Wind Uncertainties

We focus on the influences of temporal variations of wind generations in the look-ahead coor-

dination of RPSDs. The uncertainty of wind is another critical issue to be discussed. Because of

the non-linearity of power flow equations, the relationship between voltage magnitudes and wind

fluctuations is also non-linear. In this section, we approximate this non-linear relationship using

the modified Jacobian matrix, and simulation results show that this approximation is quite accurate.

4.1.6 A Linear Approximation

To estimate voltage magnitude changes, we need to reformulate the power flow Jacobian matrix

Eqn. (4.25). Let y1 denote the control variables related with real/reactive power (i.e. ∆P of PV

buses, ∆P and ∆Q of PQ buses), and y2 denote the state variables (i.e. ∆Q of PV buses, ∆P and

∆Q of slack buses):

y1 :=


∆PPV

∆PPQ

∆QPQ

 , y2 :=


∆PREF

∆QREF

∆QPV

 (4.12)

Let x1 represent the control variables related with voltages (i.e. ∆|V | of PV buses, ∆|V | and ∆θ

of slack buses), and x2 denote the state variables (i.e. ∆θ of PV buses, ∆|V | and ∆θ of PQ buses):

x1 :=


∆|V |PV

∆|V |REF

∆θREF

 , x2 :=


∆|V |PQ

∆θPV

∆θPQ

 . (4.13)

x1 and y1 represent the variables we can directly control in the power flow equations, the state

variables x2 and y2 are implicitly determined by x1 and y1. If the power flow equation could be

approximated as Eqn. (4.14), where all the control variables are on the right-hand side and the

state variables are on the left-hand side, then we can easily estimate the changes of state variables
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from the changes of control variables.

y2

x2

 =

A B

C D


y1

x1

 (4.14)

Unfortunately, the original Jacobian matrix in Eqn. (4.7) has the form6:

y1

y2

 =

J11 J12

J21 J22


x1

x2

 (4.15)

which mixes the control and state variables on both sides of the equation.

By substituting y2 and x2 in Eqn. (4.15) using Eqn. (4.14), we get:

(J12C − I)y1 + (J11 + J12D)x1 = 0 (4.16)

(A− J22C)y1 + (B − J21 − J22D)x1 = 0 (4.17)

Therefore:

A = J22J
−1
12 , B = J21 + J22J

−1
12 J11, C = J−1

12 , D = J−1
12 J11 (4.18)

4.1.6.1 Simulation Results

Two approaches are compared: (1) calculate voltage magnitude changes by solving power flow

equations; and (2) estimate the changes using the method in Section 4.1.6.

We modify the settings of wind generations in Section 4.1.3 and focus on only one snapshot

(t = 4). The wind uncertainties here is mainly due to its unpredictability. Reference [174] analyzes

the wind data from ERCOT and concludes that the Cauchy distribution is a better choice than the

Gaussian distribution, Beta distribution or Weibull distribution to fit the persistence forecast errors

of wind generation. In this study, the wind forecast error (%) is modeled as a Cauchy distribution

6Please notice that J12 and J21 are square matrices, and J11 and J22 are rectangular matrices.
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with location parameter x0 = 0 and scale parameter γ = 5%. With the optimal solutions (states

of RPSDs and voltage set-points of generators) solved in Section 4.1.3, 1000 wind scenarios are

generated and 1000 corresponding power flow problems are solved. Fig. 4.7 presents the scatter

plot and estimated probability density functions of wind generation and voltage magnitudes of

bus 4 (the location of wind farm). The blue dots in Fig. 4.7 are obtained by solving power flow

equations, and the red dots are our linear approximations using the modified Jacobian matrix in

Eqn. (4.14). This linear approximation is quite accurate, it has error less than 0.1% with moderate

wind fluctuations (±30%).

Figure 4.7: Impacts of Wind Uncertainties, reprinted with permission from [3].

As shown in Fig. 4.7, wind uncertainties result in uncertainties of voltage magnitudes. With

deeper penetration of renewables or a heavy-loaded system, voltage security issue due to wind

fluctuations could be quite severe. Since Problem (4.1) and (4.10) are deterministic optimization

problems, they are not able to handle the voltage security issue with wind uncertainties. We need to
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formulate the ORPD problem using stochastic optimization frameworks such as robust optimiza-

tion and stochastic programming.

4.2 Chance-constrained Optimal Reactive Power Dispatch

The high variability and limited predictability of renewables impose new challenges on the

secure and reliable operation of power systems. There has been a substantial amount of literatures

showing that deep penetration of renewables could jeopardize the security and reliability of power

systems [152–154]. For example, the rapid increase and stochastic nature of renewables might lead

to voltage issues, which could be severe when a stressed system is lack of reactive support. An

Optimal Reactive Power Dispatch (ORPD) problem is often formulated for better voltage profiles

[152–154]. The ORPD problem aims at finding optimal settings of current installed Reactive

Power Support Devices (RPSDs) such as SVCs and Capacitor Banks to ensure system voltage

constraints [155]. Although numerous papers have studied the ORPD problem, most of them

adopt a deterministic formulation and uncertainties from wind are ignored.

In this chapter, we propose a framework for optimal reactive power dispatch considering

joint uncertainties from wind and contingencies. The proposed framework is built upon chance-

constrained programming, which is a natural and efficient tool for decision making in an uncertain

environment.

4.2.1 Chance Constrained Programming

Problem (4.19) is the typical form of a single-stage chance-constrained program (CCP):

min
x

cᵀx (4.19a)

s.t. Ax ≥ b (4.19b)

Pω
(
G(ω)x ≤ h(ω)

)
≥ 1− ε (4.19c)

x ∈ Rn
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Problem (4.19) aims at finding a cost-minimizing strategy while satisfying a set of deterministic

and probabilistic constraints. Without loss of generality [6], we assume the objective takes linear

form cᵀx. Decision variables are denoted by x, and Eqn. (4.19b) is the deterministic constraint on

x. Uncertainties appear as variable ω ∈ Rm, and the chance constraint Eqn. (4.19c) requires the

inner constraint G(ω)x ≤ h(ω) to be satisfied with probability at least 1− ε.

CCPs are often challenging to solve for the following two reasons: (1) the feasible region of

a CCP is usually non-convex [11]; and (2) it is NP-hard to accurately calculate the probability in

the chance-constraint [35]. There are four typical methods to get approximately optimal solutions

to CCPs: (1) deriving a deterministic equivalent optimization problem [20, 175]; (2) convex ap-

proximation [11]; (3) scenario approach [6]; and (4) sample average approximation [72, 74, 176].

Because the cc-ORPD problem is a MINLP problem, sample average approximation, which is a

favorable choice to handle integer variables in CCPs, is selected to solve cc-ORPD in this chapter.

More details on sample average approximation is provided in Section 4.2.3.3.

4.2.2 Chance-constrained Programs in Power Systems

There are many applications of CCPs on power system problems: chance-constrained DCOPF

(cc-DCOPF) [102, 122, 123, 177, 178], chance-constrained Unit Commitment (cc-UC) [135, 179],

using chance-constrained programming to handle contingencies in power systems [118, 132]. In

this chapter, we formulate a chance-constrained Optimal Reactive Power Dispatch (cc-ORPD)

problem to address the voltage security issue induced by the deep penetration of renewables and po-

tential contingencies. The cc-ORPD problem is unique in the following three aspects: (1) It is built

upon a more accurate model of power system (i.e. AC power flow) rather than the simplified DC

power flow model, which appears in most of literatures [102,132,135,177,179]. (2) The cc-ORPD

problem considers the optimal operation of both continuous and discrete state voltage support de-

vices. While in [180], only continuous-state devices (e.g. SVCs) are being considered. (3) The

cc-ORPD problem ensures voltage security with respect to the joint distribution of contingencies

and wind uncertainties. Whereas most literatures handling contingencies via CCPs [118,132,179]

are based on DC power flow model. As a result, they are fundamentally incapable of addressing
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voltage-related issues.

The remainder of this section is organized as follows: Section 4.2.3 discusses the impacts of

wind uncertainties on voltage security. Section 4.2.3.3 introduces the sample average approxi-

mation approach to solve CCPs. Motivated by the discussion in Section 4.2.3, we formulate a

cc-ORPD problem in Section 4.2. Section 4.2 also elaborates how to derive a computationally

tractable form of the cc-ORPD problem via sample average approximation. Case studies are pre-

sented in Section 4.2.5.

4.2.3 Impacts of Wind Uncertainties on Voltage Security

4.2.3.1 Wind Farm Modeling

The wind farm is often modeled as a negative real load or pure real power generator in most

literatures. While at most Independent System Operators (ISOs) in the US, wind farms are required

to provide some reactive support to reduce voltage issues. In this section, the wind farm is modeled

as a negative load with constant power factor 0.95. Let PW ∈ R|W| and QW ∈ R|W| denote the

forecast value of a set of wind farms W . And ξ ∈ R|W| represents the forecast errors of wind

farms, ξ ∈ Ξ is a random variable with underlying distribution Ξ. The actual output of wind farm

w is (PW,w+jQW,w)(1+ξw),∀w ∈ W and also random. In this chapter, we assume the underlying

distribution Ξ is unknown but fixed. We also assume that the power factor is maintained at 0.95 for

any wind fluctuations.

4.2.3.2 A Linear Approximation

Reference [3] shows that the voltage magnitudes of PQ buses become uncertain with wind fluc-

tuations ξ. Fig. 4.8 presents the voltage magnitudes with respect to wind uncertainties in a modified

IEEE 24-bus system [3]. The blue curve in Fig. 4.8 is obtained by solving a series of power flow

equations, which is computationally expensive. Reference [3] proposes an approximation method

using power flow Jacobian matrix to estimate the voltage magnitude changes to wind fluctuations.

The red curve in Fig. 4.8 is calculated using the approximation method in [3]. Although the re-

lationship between voltage magnitudes and wind fluctuation is fundamentally non-linear, Fig. 4.8
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Figure 4.8: Impacts of Wind Uncertainties on Voltage Magnitudes, reprinted with permission from
[4].

shows that we can get satisfying approximation using linearized power flow equations.

4.2.3.3 Sample average approximation

Given a two-stage chance-constrained program:

min
x,y(ω)

cᵀx+ F [y(ω)] (4.20a)

s.t. Ax ≥ b (4.20b)

Pω
(
G(ω)x+ L(ω)y(ω) ≤ h(ω)

)
≥ 1− ε (4.20c)

x ∈ Rn1
+ × Zn2

+ , y(ω) ∈ Rn3
+

The first stage variable x could take both continuous and integer values. Notice that the second

stage variable y depends on the realization of variable ω, thus it is denoted by y(ω).
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With the well-known “sample average approximation” approach [72, 74, 176], Problem (4.20)

could be reformulated as a deterministic Mixed 0− 1 Integer Program:

min
x,yk,zk

cᵀx+ F [yk] (4.21a)

s.t. Ax ≥ b (4.21b)

G(ωk)x+ L(ωk)yk −Mzk ≤ hk (4.21c)
N∑
k=1

πkzk ≤ ε (4.21d)

x ∈ Rn1
+ × Zn2

+ , y(ωk) ∈ Rn3
+ , z

k ∈ {0, 1}

M is a sufficiently large coefficient and N scenarios are drawn from Ω: ω1, ω2, · · · , ωN ∈ Ω. The

key idea of sample average approximation is quite simple: for scenario ωk, if zk = 0, then Eqn.

(4.21c) becomes G(ωk)x + L(ωk)yk ≤ hk; if zk = 1, then Eqn. (4.21c) becomes −M ≤ hk,

which is always true if M is large enough. In essence, zk = 0 indicates the constraint is retained

and zk = 1 indicates violations are allowed for scenario ωk. The chance constraint Pω(. . . ) ≥ 1−ε

is approximated by Eqn. (4.21d).

4.2.4 Chance-constrained Optimal Reactive Power Dispatch

4.2.4.1 Deterministic Optimal Reactive Power Dispatch

Our previous work [3] solved a look-ahead (deterministic) optimal reactive power dispatch

(LA-det-ORPD) problem with voltage security constraints. Problem (4.22) is a simplified version

(only one snapshot) of the LA-det-ORPD problem in [3].

min hB(QB) + hC(QC) + λ
nc∑
c=0

γcP c
L (4.22a)

s.t. P c = AcG(PG + ηcP c
δ ) + AWPW − ADPD,∀c (4.22b)

Qc = AcGQ
c
G + ACQC + ABQB − ADQD,∀c (4.22c)
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P c
δ = 1ᵀ(ADPD − AcGPG − AWPW ),∀c (4.22d)

P c
i =

nb∑
j=1

|V c
i ||V c

j ||Yij| cos(θci − θcj − φij),∀c, i (4.22e)

Qc
i =

nb∑
j=1

|V c
i ||V c

j ||Yij| sin(θci − θcj − φij),∀c, i (4.22f)

P c
L =

nl∑
l=1,l:i∼j

gl
(
|Vi|2 + |Vj|2 − 2|Vi||Vj| cos(θi − θj)

)
,∀c (4.22g)

|V c|− ≤ |V c| ≤ |V c|+ (4.22h)

QB ∈ {0, Q+
B}, Q−C ≤ QC ≤ Q+

C (4.22i)

Q−G ≤ Qc
G ≤ Q+

G (4.22j)

i, j = 1, 2, · · · , nb, c = 0, 1, 2, · · · , nc

The objective of Problem (4.22) is to minimize the operation costs of RPSDs and transmission

losses while ensuring voltage security in nc contingency scenarios. All variables with superscript

c belong to contingency scenario c7. In this chapter, we focus on the N − 1 contingency of losing

generators8, which are modeled by the adjacency matrix of generatorsAcG. LetA0
G be the adjacency

matrix in the normal operating condition (i.e. no contingency), AcG is obtained by setting the cth

column of A0
G to zeros.

The decision variables in Problem (4.22) include the operating states of discrete RPSDs QB

(e.g. shunt capacitors), those of continuous RPSDs QC (e.g. SVCs) and the voltage set-points of

generators (i.e voltage magnitudes |V c| of PV buses). Eqn. (4.22e) and Eqn. (4.22f) are the nodal

power balance constraints, P c (Qc) is the nodal real (reactive) power injection into the network.

AB ∈ Rnb×nB , AC ∈ Rnb×nC , AD ∈ Rnb×nD , AcG ∈ Rnb×ng and AW ∈ Rnb×nW are adjacency

matrices of related components. If component k is connected with bus i, then A·(i, k) = 1, oth-

erwise A·(i, k) = 0. Alternating Current (AC) power flow equations are depicted in Eqn. (4.22e)

7For simplicity, the normal operating condition is denoted by c = 0.
8Since transmission line failures change the system topology thus the Y matrix in Eqn. (4.22e) and Eqn. (4.22f),

we could simply modify the Y matrix to be Y c to model the cases of losing transmission lines. For simplicity, we only
focus on generator contingencies in this chapter.
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and Eqn. (4.22f). Yij∠φij ∈ C is associated with line (i, j) (from bus i to bus j) in the admittance

matrix Y .

Losing generators causes significant real power imbalance P c
δ , we adopt the affine control [102]

scheme to proportionally allocate P c
δ to each generator (i.e. PG + ηcP c

δ ). This guarantees the

balance of real power after contingency [3, 102].

Eqn. (4.22g) calculates the real power losses and Eqn. (4.22h) is the voltage security con-

straints, which typically require the voltage magnitudes within desired ranges under a set of plau-

sible contingency scenarios [159]. In this section, we use [0.95, 1.05] for normal operation analysis

(c = 0) and [0.9, 1.1] for contingency analysis (c = 1, 2, · · · , nc). Eqn. (4.22i) and Eqn. (4.22j)

are the capacity constraints for RPSDs and generators.

4.2.4.2 Chance-constrained ORPD

Motivated by the discussion in Section 4.2.3, we formulate a chance-constrained Optimal Reac-

tive Power Dispatch (cc-ORPD) problem to ensure the voltage security of the system with respect

to wind uncertainties ξ ∈ Ξ and contingencies c ∈ C. The cc-ORPD problem (Problem (4.23))

enhances the det-ORPD problem by adding a joint chance constraint Eqn. (4.23e). The violation

probability ε in Eqn. (4.23e) explicitly quantifies the potential risk of voltage insecurity given the

joint distribution of wind and contingencies C × Ξ.

min hB(QB) + hC(QC) + λEC×Ξ

[
PL(c, ξ)

]
(4.23a)

s.t. P = AG(c)PG − AG(c)η(c)P c
δ − ADPD + AWdiag(PW )(1 + ξ) (4.23b)

Q = AG(c)QG + ACQC + ABQB − ADQD

+ AWdiag(QW )(1 + ξ) (4.23c)

Power Flow Equations: Eqn.(4.22e), (4.22f), (4.22g) (4.23d)

PC×Ξ

(
|V (c)|− ≤ |V (c, ξ)| ≤ |V (c)|+ for PQ buses

and Q−G ≤ QG(c, ξ) ≤ Q+
G

)
≥ 1− ε (4.23e)
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|V (c)|− ≤ |V | ≤ |V (c)|+ for PV buses (4.23f)

QB ∈ {0, Q+
B}, Q−C ≤ QC ≤ Q+

C (4.23g)

i, j = 1, 2, · · · , nb, c = 0, 1, 2, · · · , nc

The cc-ORPD problem is a two-stage chance-constrained programming problem. The first-

stage variables are the operating states of RPSDs (QB and QC) and the voltage set points of gener-

ators (i.e. voltage magnitudes of PV buses). The second-stage variables include the nodal injection

(P and Q), power imbalance Pδ, total line losses PL, reactive generation QG, as well as the volt-

age magnitudes and angles of PQ buses (|V | and θ). Since the parameters AcG and ηc depend on

the contingency c, we change the notation to AG(c) and η(c) for better understanding. Please no-

tice that Eqn. (4.23b)-(4.23d) are equality constraints associated with random variable c and ξ,

therefore the second-stage variables (e.g. P and PL) also become random variables9.

The cc-ORPD problem is very challenging to solve for the following three reasons: (1) some

decision variables are binary, thus the feasible region of cc-ORPD is naturally non-convex; (2)

the power flow equations are non-linear equations, which further increase the difficulty of solving

cc-ORPD; and (3) the chance constraint Eqn. (4.23e) induces computationally intractable issues

as discussed in Section 4.2.1.

The third difficulty could be handled via the sample average approximation approach intro-

duced in Section 4.2.3.3. Given a set of scenarios s1, s2, · · · , s|S|, where S = C × Ξ and each

scenario si = (c, ξ)i ∈ S. We introduce binary variables zi ∈ {0, 1} for each scenario si = (c, ξ)i.

The chance-constraint in cc-ORPD could be re-written as a set of deterministic inequality con-

straints with binary variables zi. Because we want to ensure the voltage security for all contin-

gency scenarios C, instead of drawing scenarios (c, ξ)i from C × Ξ, we draw samples ξ1, ξ2, · · ·

only from Ξ, and combine them with nc contingency scenarios utilizing the fact that the generator

contingency c and wind uncertainties ξ are independent. More specifically, let πc denote the proba-

9More rigorous notations should denote the second-state variables are functions of c and ξ (e.g. P (c, ξ) and
PL(c, ξ)). To avoid verbose notations, we only emphasize this in the chance constraint Eqn. (4.23e).
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bility that contingency c happens, and ξk (k = 1, 2, · · · , N ) are the wind scenarios. The cc-ORPD

problem is reformulated as Problem (4.24), where variables with superscripts c,k are associated

with contingency c and wind scenario ξk.

min hB(QB) + hC(QC) + λ
nc∑
c=0

γc,k
1

N

N∑
s=1

P c,k
L (P s

W ) (4.24a)

s.t. P c,k = AcGPG − AcGηcP
c,k
δ − ADPD + AWdiag(PW )(1 + ξk),∀c, k (4.24b)

Qc,k = AcGQ
c,k
G + ACQC + ABQB − ADQD + AWdiag(QW )(1 + ξk),∀c, k (4.24c)

P c,k
δ = 1ᵀAcGPG − 1ᵀPG + P ᵀ

W ξ
k,∀c, k (4.24d)

P c,k
i =

nb∑
j=1

|V c,k
i ||V

c,k
j ||Yij| cos(θc,ki − θ

c,k
j − φij),∀c, s, i (4.24e)

Qc,k
i =

nb∑
j=1

|V c,k
i ||V

c,k
j ||Yij| sin(θc,ki − θ

c,k
j − φij),∀c, s, i (4.24f)

P c,k
L =

nl∑
l=1

gl
(
|V c,k
i |2 + |V c,k

j |2 − 2|V c,k
i ||V

c,k
j | cos(θc,ki − θ

c,k
j )
)
,∀c, k (4.24g)

|V c,k| −Mzc,k ≤ |V c,k|+, ∀c, k (4.24h)

|V c,k|+Mzc,k ≥ |V c,k|−,∀c, k (4.24i)

Qc,k
G −Mzc,k ≤ Q+

G,∀c, k (4.24j)

Qc,k
G +Mzc,k ≥ Q−G, ∀c, k (4.24k)

QB ∈ {0, Q+
B}, Q−C ≤ QC ≤ Q+

C (4.24l)
N∑
k=1

1

N

nc∑
c=0

πczc,k ≤ ε (4.24m)

i, j = 1, 2, · · · , nb, c = 0, 1, 2, · · · , nc, k = 1, 2, · · · , N

4.2.4.3 Linearized cc-ORPD

Problem (4.24) is a Mixed Integer Non-Linear Programming (MINLP) problem, which is still

computationally intractable. But the major difficulty here comes from the non-linear power flow
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equations. As shown in Section 4.2.3.2, we could obtain satisfying approximations via linearized

power flow equations. Thus Eqn. (4.24e) and (4.24f) are linearized with respect to a known

operating point (e.g. power flow solutions of a previous snapshot). Our future works include

exploring other possible approaches to handle non-linearity of power flow equations (e.g. convex

relaxation). Problem (4.27) is obtained by replacing Eqn. (4.24e)-(4.24f) with Eqn. (4.25). It is a

Mixed Integer Linear Programming problem and is reliably solvable with commercial solvers.

P − P̄
Q− Q̄

 ≈

∂P∂θ ∂P
∂|V |

∂Q
∂θ

∂Q
∂|V |


P̄ ,Q̄, ¯|V |,θ̄

×

 θ − θ̄

|V | − ¯|V |

 (4.25)

PL − P̄L ≈
[
∂PL
∂θ

∂PL
∂|V |

]
P̄ ,Q̄, ¯|V |,θ̄

×

 θ − θ̄

|V | − ¯|V |

 (4.26)

min hB(QB) + hC(QC) + λ
nc∑
c=0

γc,k
N∑
s=1

P c,k
L (P s

W ) (4.27a)

s.t. Eqn. (4.24b), (4.24c), (4.24d) (4.27b)

Eqn. (4.25), (4.26) (4.27c)

Eqn. (4.24h), (4.24i), (4.24j), (4.24k), (4.24l), (4.24m)

∆|V |− ≤ |V c,k| − |V | ≤ ∆|V |+ (4.27d)

∆|θ|− ≤ |θc,k| − |θ| ≤ ∆|θ|+ (4.27e)

i, j = 1, 2, · · · , nb, c = 0, 1, 2, · · · , nc
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4.2.5 Case Study

4.2.5.1 Settings

Case studies are conducted on a modified IEEE 24-bus system [3]. There are 38 contingencies

considered in the case study, each one represents the scenario of losing one generator at a PV bus10.

We assume the probability of the normal operating condition is π0 = 90%, and each contingency

happens with equal probability, i.e. πc = 10%/38 = 0.26%. By tuning the probabilities πcs and ε,

we could achieve a balance between a more economic system and a more secure system. The wind

uncertainty ξ is assumed to be Gaussian ξ ∼ N (0, 5%), from which 100 scenarios ξk are drawn

and plugged in Problem (4.27). It is worth mentioning that solving Problem (4.27) solely relies on

the scenarios ξk, it does not require any prior knowledge on the underlying distribution.

4.2.5.2 Simulation Results

Problem (4.27) was solved via Matlab2016b and Gurobi 7.5 on a Desktop with Intel i7-2600

8-core CPU@3.40GHz and 16GB RAM memory. Gurobi found the optimal solution with 0.0%

gap in 330 seconds. The optimal objective value is $1668.13. Fig. 4.9 demonstrates the optimal

voltage set points of generators and the voltage magnitudes of PQ buses in the normal operating

condition. The voltage magnitudes of bus 4 and bus 14 are fluctuating due to wind uncertainties,

while some buses (e.g. bus 17, 19 and 20) remain almost the same voltage magnitudes.

Besides the optimal solution to the cc-ORPD problem, we are also interested in the actual

violation probability ε̂. Let ε̄ denote the expected violation probability: ε̄ :=
∑N

k=1
1
N

∑nc
c=0 πcz

∗
c,k,

where z∗c,k is from the optimal solution to Problem (4.27). It is obvious that ε̄ ≤ ε. Let ε̂ denote the

actual “out-of-sample” violation probability:

ε̂ :=
N̂∑
k=1

1

N̂

nc∑
c=0

πc1Qc,kG /∈[Q−
G,Q

+
G] or |V c,k|/∈[|V c|−,|V c|+] (4.28)

where 1conditions is the indicator function. We generate an independent set of N̂ scenarios and cal-

10If there is only one generator at the PV bus, losing the generator will make it to a PQ bus. For simplicity, we
replace it with two generators with half capacities.
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Figure 4.9: Voltage Magnitudes in the Normal Operating Condition, reprinted with permission
from [4].

culate the voltage magnitudes and reactive power generations using linearized power flow equa-

tions [3] or solving the power flow equations.

Figure 4.10: Violation Probabilities, reprinted with permission from [4].

The blue curve in Fig. 4.10 is the expected violation probability ε̄ from the optimal solution z∗.

And the red line ε̂ is calculated on N̂ = 100 scenarios using linearized power flow equations [3].
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The out-of-sample violation probability ε̂ is very close to ε̄. With a larger number of scenarios

embedded in Problem (4.27), the expected ε̄ and actual ε̂ will be closed to the violation probability

ε in the chance constraint.

We also compare the results of cc-ORPD (Problem (4.27)) with det-ORPD (Problem (4.22)).

With a little sacrifice on the total cost, the cc-ORPD could ensures voltage security with probability

98.8%. While the results of det-ORPD lead to voltage magnitudes lower than the desired lower

bound |V c|−. In the results of det-ORPD, we even observe undesirable low voltage magnitudes in

the normal operating condition, which results in the large violation probability in Table 4.2.

Table 4.2: Comparison: det-ORPD vs cc-ORPD, reprinted with permission from [4].

det-ORPD cc-ORPD (ε = 0.01)
Objective 1610.2 1668.1
ε̂ 52.1% 1.2%

4.3 Summary

In this chapter, we first present a look-ahead coordination framework for reactive power support

devices across multiple control areas to ensure voltage security. The proposed framework considers

the global needs on reactive support and determines efficient cooperation schedules of the reactive

devices. Given the fact that the original problem is non-convex, we reformulate the problem using

power flow Jacobian matrix. Case studies demonstrate that the approximation is satisfying and the

solution ensues the voltage security given all the contingency scenarios.

Based on the look-ahead coordination framework for reactive power devices, this chapter fur-

ther proposes a chance-constrained formulation of optimal power reactive dispatch to schedule

RPSDs considering uncertainties from wind and contingencies. The cc-ORPD problem is reformu-

lated as a computationally solvable form using sample average approximation and linearized power

flow equations. Case studies demonstrate the effectiveness of the proposed cc-ORPD framework.

Future works include analyzing the performance gap between linearized solution and the global
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optimal solution, investigating convex relaxations of power flow equations and utilizing improved

versions of the sample average approximation [72, 74].
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5. SECURITY-CONSTRAINED ECONOMIC DISPATCH WITH PROBABILISTIC

GUARANTEES1

5.1 Security-Constrained Economic Dispatch (SCED)

5.1.1 Deterministic SCED

Security-constrained Economic Dispatch (SCED) lies at the center of modern electricity mar-

kets and short-term power system operations. It determines the most cost-efficient output levels of

generators while keeping the real-time balance between supply and demand. Different variations

of the SCED problem are all based on the direct current optimal power flow (DCOPF) problem.

We present a typical form of DCOPF with wind generation.

(det-DCOPF): min
g

c(g) (5.1a)

s.t 1ᵀg = 1ᵀd− 1ᵀŵ (5.1b)

f = Hgg +Hwŵ −Hdd (5.1c)

f ≤ f ≤ f (5.1d)

g ≤ g ≤ g (5.1e)

The decision variables are generation output levels g ∈ Rng . The objective of (det-DCOPF) is

to minimize total generation cost c(g), while ensuring total generation equates total net demand 2

(5.1b). Constraints include transmission line flow limits (5.1c)-(5.1d) and generation capacity lim-

its (5.1e). Transmission line flows f ∈ Rnl are calculated using (5.1c), in which H is the power

transfer distribution factor (PTDF) matrix, and Hg ∈ Rnl×ng (Hd ∈ Rnl×nd ,Hw ∈ Rnl×nw) de-

notes the submatrix formed by the columns of H corresponding to generators (loads, wind farms).

(5.1) utilizes the expected wind generation or wind forecast ŵ, we refer to (5.1) as deterministic

DCOPF (det-DCOPF) since no uncertainties are being considered.

1Parts of this chapter are reprinted with permission from [1].
2Wind generation is treated as negative loads.
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5.1.2 Chance-constrained SCED

Many researchers advance (det-DCOPF) towards a chance-constrained formulation with wind

uncertainties. A representative formulation is (5.2), which appears in a majority of the existing

literatures, e.g. [102, 118].

(cc-DCOPF):

min
g,η

c(g) (5.2a)

s.t 1ᵀg = 1ᵀd− 1ᵀŵ (5.2b)

f(ŵ, w̃) = Hg(g − 1ᵀw̃η)−Hdd+Hw(ŵ + w̃) (5.2c)

Pw̃
(
f ≤ f(ŵ, w̃) ≤ f and g ≤ g − 1ᵀw̃η ≤ g

)
≥ 1− ε (5.2d)

1ᵀη = 1 (5.2e)

g ≤ g ≤ g (5.2f)

− 1 ≤ η ≤ 1 (5.2g)

Unlike (det-DCOPF) using wind forecast ŵ, chance-constrained SCED (cc-DCOPF) explicitly

models wind generation as a random vector w ∈ Rnw . The wind generation w = ŵ + w̃ is de-

composed into two components: the deterministic wind forecast value ŵ ∈ Rnw and the uncertain

forecast error w̃ ∈ Rnw . To guarantee the real-time balance of supply and demand, (cc-DCOPF)

introduces an affine control policy η ∈ [−1, 1]ng to proportionally allocate total wind fluctuations

1ᵀw̃ to each generator. It is easy to verify that constraints (5.2b) and (5.2e) imply the supply-

demand balance in the presence of wind uncertainties, i.e.

1ᵀ(g − 1ᵀw̃η) = 1ᵀd− 1ᵀ(ŵ + w̃), (5.3)

The affine policy vector η ∈ Rng is sometimes referred as participation factor or distribution

vector [118]. The (joint) chance constraint (5.2d) constrains the transmission flow and generation
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within their capacities with high probability 1− ε in the presence of wind uncertainties.

For simplicity, we only account for the major source of uncertainties (i.e. wind) in the real-

time. Many references provides more complicated formulation of (cc-DCOPF), e.g. considering

joint uncertainties from load and wind [107, 142], and contingencies of potential generator or

transmission line outages [104].

There exist a few different but similar formulations of (cc-DCOPF). In general, policies of

any form could help balance supply with demand under uncertainties. The affine policy in (cc-

DCOPF) is the simplest choice and lead to optimization problems that are easy to solve. There

are other papers applying different forms of policies, e.g. [100] introduces a matrix form of the

affine policy Υ ∈ Rng×nw , which specifies the corrective control of each generator on each wind

farm. (cc-DCOPF) is a single snapshot dispatch problem, it is straightforward to extend it to a

multi-period or look-ahead dispatch problem [118,123]. Many papers evaluate the impacts of new

elements in modern power systems, such as demand response [122, 181], ambient temperatures

and meteorological quantities [117], and frequency control [103, 181].

Although DC power flow equations have been widely accepted in modern power system opera-

tions and planning, it is only a linear approximation of the alternating current (AC) version, which

is a more accurate model of the underlying physical laws. Many efforts have been made to solve

the chance-constrained AC optimal power flow (cc-ACOPF) problem, e.g. [182–185]. Major dif-

ficulties to solve cc-ACOPF come from the non-convexity of AC power flow equations. It remains

as an open question that how to ensure the feasibility of the non-convex AC power flow equations

under uncertainties.

5.1.3 Solving cc-DCOPF

Table 2.1 summarizes various methods to solve (cc-DCOPF). The most popular one consists

of two steps: (i) decomposing the joint chance constraint (5.2d) into individual ones Pξ(fi(x, ξ) ≤

0) ≥ 1 − εi, i = 1, 2, · · · ,m; (ii) deriving the deterministic equivalent form of each individual

chance constraint by making the Gaussian assumption. More technical details of this method are

in Section 2.2.2. This method is taken by many researchers for its simplicity and computationally

106



tractable reformulation. Although the Gaussian assumption enjoys the law of large numbers, it

is often an approximation or even doubtful assumption. For example, [174] shows that the wind

forecast error is better represented by Cauchy distributions instead of Gaussian ones. The first step

of this method is to decompose a joint chance constraint Pξ(f(x, ξ) ≤ 0) ≥ 1 − ε into individual

ones. As discussed in Section 2.1.2 and 2.6.4.1, this step often introduces conservativeness because

of the limitation of Bonferroni inequality. The level of conservativeness could be significant when

the number of constraints m is large, which is typically the case in power systems.

The scenario approach is another commonly-accepted method. It provides rigorous guarantees

on the quality of the solution and does not assume the distribution is Gaussian or any particular

type. Most papers adopting the scenario approach apply the a-priori guarantees (e.g. Theorem

5 and 6) on (cc-DCOPF) and verify the a-posteriori feasibility of solutions through Monte-Carlo

simulations (2.25). One common observation is that the solution x∗N is often quite conservative,

i.e. V(x∗N) � ε. One major source of conservativeness is the loose sample complexity bounds N

3. Since (cc-DCOPF) is convex, Theorem 4 states that the number of decision variables n is an

upper bound of the number of support scenarios |S| or Helly’s dimension h. This upper bound, as

pointed out in [123], is indeed very loose. [123] reported only ∼ 5 support scenarios for a chance-

constrained look-ahead SCED problem with thousands of decision variables. By exploiting the

structural features of (cc-DCOPF), the sample complexity bound N can be significantly improved.

Unfortunately, only [123] and [122] followed this path to reduce conservativeness.

There are also many papers utilizing the robust optimization related methods to solve (cc-

DCOPF). [133] constructs uncertainty sets with the help of probabilistic guarantees in [58]. Refer-

ences [135, 136] incorporate the convex approximation framework and compare different choices

of generating functions φ(z) on (cc-DCOPF). Although there are no explicit forms of chance con-

straints in [134], the CVaR-oriented approach therein can be interpreted as solving cc-DCOPF

using convex approximation with the choice of Markov bound.

Most papers in Table 2.1 aim at finding suboptimal solutions to (cc-DCOPF). However, it

3Many papers still utilize the first sample complexity bound proved in [60], which was significantly tightened
in [62] and following works [63].
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is somewhat surprising to note that none of them estimates how suboptimal the solution is via

approaches like Proposition 2 or 4. Almost all the papers evaluate the a-posteriori feasibility by

Monte-Carlo simulations with a huge sample size. Methods like Proposition 1 would be more

attractive when data is limited, which is closer to the reality.

5.2 Numerical Simulations

5.2.1 Simulation Settings

Chance-constrained DCOPF (5.2) serves as a benchmark problem for a critical comparison of

solutions to (CCO). We provide numerical solutions of cc-DCOPF on two test systems: a 3-bus

system and the IEEE 24-bus RTS test system.

The 3-bus system is a modified version of the 3-bus system in [186]. The major difference is

the removal of the load at bus 2 and the synchronous condensor at bus 3 in order to visualize the

feasible region and the space of uncertainties. The original 3-bus system “case3sc.m” is available

in the Matpower toolbox [172]. The modified system in this section can be found in the examples

of CCC 4. For simplicity, we only consider uncertainties of loads, which is modeled as Gaussian

variables with 5% standard variation.

The 24-bus system in this section is a modified version of the IEEE 24-bus RTS benchmark

system [171]. The transmission line capacities are set to be 60% of the original capacities. We

conduct two sets of simulations on the 24-bus system with different distributions of uncertainties.

The first one is similar with the 3-bus case, nodal loads are modeled as independent Gaussian

variables with 5% standard deviation. The second one models the errors of nodal load forecasts as

independent beta-distributed random variables, with parameters α = 25.2414 and β = 25.2692 5.

Ten Monte-Carlo simulations are conducted on every method to examine the randomness of

solutions. For the 3-bus case, each Monte-Carlo simulation uses 100 i.i.d samples to solve cc-

DCOPF. 2048 points are used in each run to solve (cc-DCOPF) of the 24-bus system. The returned

solutions are evaluated on an independent set of 104 points.

4github.com/xb00dx/ConvertChanceConstraint-ccc/tree/master/examples
5This setting of beta distribution is from [174], and scaled from [0, 1] to [−18%, 18%].
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We use Gurobi 7.10 [87] to get results of scenario approach and sample average approximation.

Cplex 12.8 is used to solve (CCO) with robust counterpart and convex approximation.

5.2.2 Simulation Results

We solve cc-DCOPF on the 3-bus system with eight different methods: (1) scenario approach

with prior guarantees, (SA:prior, Corollary 1); (2) scenario approach with posterior guarantees

(SA:posterior, Theorem 7); (3) sample average approximation, whereN and ε are chosen based on

the sampling and discarding Theorem (SAA:s&d, Theorem 9); (4-7) Robust counterpart with dif-

ferent uncertainty sets specified in Theorem 13: box (RC:box), ball (RC:ball), ball-box (RC:ball-

box) and budget (RC:budget) uncertainty sets; (8) convex approximation with Markov bound

(CA:markov, Theorem 11 and Proposition 5).

We first examine the feasibility of the returned solutions from eight algorithms. Figure 5.2

and 5.3 show the out-of-sample violation probabilities ε̂ versus desired ε in the setting. The green

dashed lines in Figure 5.2 and 5.3 denote the ideal case where ε̂ = ε. Any points above the

green dashed line indicate infeasible solutions that V(x) > ε. Clearly all methods return feasible

solutions (with high probability) to (CCO). From Figure 5.2, sample average approximation and

convex approximation are less conservative than other methods. However, it is worth noting that

when ε is small (e.g. 10−2), the data-driven approximation of CVaR (Proposition 5) does not

necessarily give a safe approximation to (CCO) [34]. The robust counterpart methods are typically

10 ∼ 100 times more conservative than other methods, as illustrated in the comparison of Figure

5.3a with Figure 5.3b. The conservativeness could be significantly reduced by better construction

of uncertainty sets, e.g. [34,57]. Among four different choices of uncertainty sets, the ball-box set

is the least conservative one, which combines the advantages of the ball and box uncertainty sets.

Figure 5.3-5.4 present the results of the 24-bus system with Gaussian distributions. Simula-

tion results of the beta distribution are in Figure 5.5-5.7. Observations from Figure 5.5-5.7 are

similar with the case of Gaussian distributions. Every method behaves more conservative in the

case of beta distributions than the case of Gaussian distributions. It is worth noting that the RO-

based methods (RC:box, RC:ball, RC:ball-box in Figure 5.6) are so conservative that lead to zero
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Figure 5.1: Objective Values (cc-DCOPF of the 3-bus System), reprinted with permission from [1].

empirical violation probability ε̂.
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Figure 5.2: Violation Probabilities (cc-DCOPF of the 3-bus System), reprinted with permission
from [1].
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Figure 5.3: Violation Probabilities (cc-DCOPF of the 24-bus System, Gaussian Distributions),
reprinted with permission from [1].
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Figure 5.4: Objective Values (cc-DCOPF of the 24-bus System, Gaussian Distributions), reprinted
with permission from [1].
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Figure 5.5: Violation Probabilities in Logarithmic Scale (cc-DCOPF of the 24-bus System, Beta
Distributions), reprinted with permission from [1].
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Figure 5.7: Objective Values (cc-DCOPF of the 24-bus System, Beta Distributions), reprinted with
permission from [1].

115



6. CONCLUSIONS AND FUTURE WORK

We conclude this dissertation and propose several directions for future research in this chapter.

6.1 Summary

This dissertation first presents a comprehensive review on the fundamental properties, key the-

oretical results, and three categories of algorithms for chance-constrained optimization. An open-

source MATLAB toolbox ConvertChanceConstraint is developed to automate the process of trans-

lating chance constraints to compatible forms for mainstream optimization solvers. Accordingly,

we propose a three-stage framework for power system operations with probabilistic guarantees.

In the day-ahead operational planning stage, we formulate the chance-constrained unit com-

mitment problem and solve it via the scenario approach. We show that the structural property of

unit commitment makes the scenario approach applicable in the presence of non-convexity. It sub-

stantially reduces the necessary number of scenarios and could be further exploited to reduce the

computational requirement to solve the problem.

In the intra-day adjustment period, we formulate the chance-constrained optimal power reac-

tive dispatch problem to schedule reactive power support devices considering uncertainties from

renewables and contingencies. The cc-ORPD problem is reformulated using sample average ap-

proximation and linearized power flow equations. Case studies demonstrate the effectiveness of

the proposed cc-ORPD framework.

In the real-time operation stage, we formulate and solve the chance-constrained security-constrained

economic dispatch problem. The cc-SCED problem also serves as a benchmark problem for a crit-

ical comparison of existing algorithms to solve chance-constrained programs on IEEE benchmark

systems.

6.2 Future Work

Many interesting directions are open for future research.

In terms of theoretical investigation, an analytical comparison of existing solutions to chance-
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constrained optimization is necessary to substantiate the fundamental insights obtained from nu-

merical simulations. As discussed in Chapter 2, chance-constrained optimization could be gener-

alized towards ambiguous chance constraints or distributionally robust optimization (DRO) prob-

lems. Generalizations of the results in Chapter 2 towards DRO would be an important part of

future work. When working on [82] and Chapter 2, we realized that many methods reviewed in

Chapter 2 originated from statistical learning (e.g. the scenario approach). Some famous algo-

rithms (e.g. [10, 187–190]) in machine learning can be interpreted from the viewpoint of chance-

constrained optimization. And chance-constrained optimization can be combined with many ma-

chine learning algorithms (e.g. [13,191]) The connection between chance-constrained optimization

and statistical learning (and machine learning) would be a very attractive direction to be explored.

In terms of applications, chance-constrained optimization in electric energy systems could go

beyond operational planning practices. For example, it would be worth investigating into the eco-

nomic interpretation of market power issues through the lens of chance-constrained optimization.

Many other power system decision making processes under uncertainties (especially in the distri-

bution networks) could be enhanced using chance-constrained optimization. Another interesting

direction is dealing with non-convexity in chance-constrained optimization. Alternating current

(AC) power flow equations, which lay the foundation for many power system applications, are

a set of non-linear equations and often brings non-convexities into power system optimization

problems. Chapter 4 demonstrates one solution to deal with non-convexities brought about by

the power flow equations. More in-depth and rigorous analysis on AC power flow equations (e.g.

convex restriction [192–194] or relaxation [195–197]) are necessary.
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APPENDIX A

ALGORITHMS AND PROOFS

A.1 Algorithms

Algorithm 2 Find the Support Set S of SP(N ).
1: Compute x∗N by solving SP(N ).

2: Set S ← ∅.

3: for i ∈ N do

4: Solve the scenario problem SPN−i and compute x∗N−i.

5: if cᵀx∗N−i < cᵀx∗N then

6: S ← S + i.

7: end if

8: end for

Algorithm 3 Find an Irreducible Set I of SPA(N ).
1: Compute opxA(N ) by solving SPA(N ). Set I ← N .

2: for i ∈ N do

3: Compute opxA(I − i) by solving SP(I − i).

4: if optA(I − i) = optA(N ) then

5: I ← I − i.

6: end if

7: end for
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Algorithm 4 For the two-stage scenario problem (3.11).
1: Solve SPA(N ) and compute the solution (x∗, y∗).

2: Fix y = y∗, find support scenarios S of the second-stage problem (3.12), e.g. using Algorithm

1.

3: if optA(S) = optA(N ) then

4: SPA(N ) is non-degenerate and S is the essential set.

5: else

6: SPA(N ) is degenerate, the best we can find is an irreducible set, e.g. using Algorithm 3.

7: end if

A.2 Proofs

Proof of Lemma 2. Monotonicity in β is obvious. To prove 2), we show that ln( 1−ε(N,k,β)
1−ε(N,k+1,β)

) ≥ 0

for fixed values of (N, β). For simplicity, we use ε(k) to represent ε(N, k, β).

(N − k − 1) ln(
1− ε(k)

1− ε(k + 1)
) =

1

N − k
ln(

N
(
N
k

)
β

) + ln(
N − k
k

)

Clearly, ln( 1−ε(k)
1−ε(k+1)

) ≥ 0 if N ≥ 2k. We now show that it also holds for the case of N ≤ 2k.

(N − k − 1) ln(
1− ε(k)

1− ε(k + 1)
) =

1

N − k
ln(

N
(
N
k

)
β( k

N−k )N−k
) =

1

N − k
ln(

N

β

(
N

N−k

)
( N
N−k − 1)N−k

)

≥ 1

N − k
ln(

( N
N−k )N−k

( N
N−k − 1)N−k

) = ln(
N

k
) ≥ 0

The last line uses the well-known lower bound on binomial coefficients
(
N
k

)
≥ (N

k
)k and the fact

that β ∈ (0, 1) and 1 ≤ k ≤ N .

Similarly, we prove 3) by showing ln(1−ε(N+1,k,β)
1−ε(N,k,β)

) ≥ 0 for fixed values of (k, β). It is easy to

verify this is true for the casesN = k andN = k+1. The remainder of the proof shows that this is

also true for the caseN > k+1. For simplicity, we show that (N−k+1)(N−k) ln(1−ε(N+1,k,β)
1−ε(N,k,β)

) ≥
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0.

(N − k + 1)(N − k) ln(
1− ε(N + 1, k, β)

1− ε(N, k, β)
)

= (N − k) ln(
β

(N + 1)
(
N+1
k

))− (N − k + 1) ln(
β

N
(
N
k

))

= ln(
1

β
) + ln(N) + (N − k) ln(

N(N − k + 1)

(N + 1)2
) + ln(

(
N

k

)
)

We notice that ln(N), ln(
(
N
k

)
) and ln(N(N−k+1)

(N+1)2
) = ln((1 − 1

N+1
)(1 − k

N+1
)) are monotonically

increasing withN , therefore (N−k+1)(N−k) ln(1−ε(N+1,k,β)
1−ε(N,k,β)

) ≥ ln( k
β
) > 0, i.e. ε(N+1, k, β) ≤

ε(N, k, β).

Proof of Lemma 3 [63]. For the purpose of contradiction, we assume that there is a scenario s ∈ S

but s /∈ I. According to the definition of support scenarios, optA(N −s) < optA(N ). However,

Assumption 12 claims that removing scenarios will not increase the optimal objective value and

I ⊆ N −s, we have optA(N −s) ≥ optA(I) = optA(N ), which causes a contradiction.

Proof of Lemma 5. We first write out the Lagrange dual function D(µ, λ) of SP(N ):

D(µ, λ) = inf
x

(
cᵀx+

N∑
ι=1

(µι)ᵀf(x, ξι) + λᵀg(x)
)

(A.1)

The Lagrange dual problem is maxµ,λD(µ, λ), s.t. µ ≥ 0, λ ≥ 0. By assumption, we know that

SP(N ) has a strictly feasible solution, thus Slater’s condition holds and D(µ∗N , λ
∗
N ) = cᵀx∗N by

strong duality. We then consider the Lagrange dual problem of SP(N −i). The dual solution to

SP(N −i) is denoted by λ∗N −i and µ∗N−i = {µ1,∗
N−i · · · , µ

i−1,∗
N−i , µ

i+1,∗
N−i , · · · , µ

N,∗
N−i}.

If ξi is not a support scenario, then cᵀx∗N = cᵀx∗N−i, thus D(µ∗N , λ
∗
N ) = cᵀx∗N = cᵀx∗N−i =

D(µ∗N−i, λ
∗
N−i) by Slater’s condition and strong duality.

We could assign µι,∗N = µι,∗N −i for ι 6= i and let µi,∗N = 0. Clearly this is one optimal solution

to the dual problem of SP(N ). The uniqueness of this solution is due to the non-degeneracy of

SP(N ) by assumption. Thus ‖µ∗N ,i‖ = 0.
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Proof of Lemma 6. We first prove (1). The case that Ŝ = ∅ is obvious. For the case that Ŝ contains

at least one scenario s ∈ Ŝ. Solving the 2nd stage problem with s removed gives a different

optimal solution x̂ with cᵀxx̂ < cᵀxx
∗. Clearly (x̂, y∗) is a feasible solution to SP(N −s), with

cᵀyy
∗ + cᵀxx̂ < cᵀyy

∗ + cᵀxx
∗ (A.2)

therefore s is a support scenario for SP(N ) and Ŝ ⊆ S.

We then prove (2). By Assumption 12, we know that optA(Ŝ) ≤ optA(S) ≤ optA(N ) since

Ŝ ⊆ S ⊆ N . If Ŝ is invariant, i.e. optA(Ŝ) = optA(N ), then optA(N ) ≤ optA(Ŝ) ≤ optA(S) ≤

optA(N ) gives optA(S) = optA(N ), therefore SP(N ) is non-degenerate.

Proof of Corollary 3. We first prove (1), that is SP(N ) has a unique essential set if it is non-

degenerate (similar with the proof of Lemma 2.11 in [63])). From Lemma 3, an essential set can

be written as E = S ∪Y where Y ⊆ (N −S). The support set S is invariant because of the non-

degeneracy of SP(N ) by assumption. Since E is the invariant set of minimal cardinality, we can

let Y = ∅ and S is the essential set. The support set S is unique by definition, this implies the

uniqueness of the essential set E for non-degenerate SP(N ).

We then prove (2). Lemma 3 shows that S ⊆ R, we only need to show R ⊆ S when SPA(N )

is non-degenerate. For the purpose of contradiction, we assume there exists s ∈ R but s /∈ S.

By hypothesis (s /∈ S), we have S ⊆ R−s (Lemma 3). The monotonicity assumption 12 gives

optA(S) ≤ optA(R−s). Since R is irreducible, we have optA(R−s) < optA(R). SPA(N ) is

non-degenerate and R is invariant gives optA(R) = optA(N ) = optA(S). Combining the results

above, we have

optA(S) ≤ optA(R−s) < optA(R) = optA(N ) = optA(S), (A.3)

which is clearly a contradiction. Therefore S = R.

Lemma 7. Consider a (possibly non-convex) scenario problem SPA(N ) and an algorithm A sat-
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isfying Assumption 12. Suppose k is not a support scenario for SPA(N ), then

S(N ) ⊆ S(N −k) (A.4)

Note: SP(N −k) could have more support scenarios than SP(N ).

Proof of Lemma 7. k /∈ S and s ∈ S give opt(N −k) = opt(N ) and opt(N −s) < opt(N ),

respectively. Assumption 12 shows opt(N −k − s) ≤ opt(N −s). Hence, it holds that

opt(N −k − s) ≤ opt(N −s) < opt(N ) = opt(N −k),

∀s ∈ S(N ), (A.5)

then s is a support scenario for SP(N −k). Therefore S(N ) ⊆ S(N −k).

Proof of Corollary 4. (1) ⇒ (2) is proved in Corollary 3. And (2) ⇒ (3) is obvious, since the

essential set E is irreducible. If there is only one irreducible set, then it is the essential set.

Lastly, we prove (3)⇒ (1). We prove SP(N ) being degenerate implies the essential set is not

unique (equivalent with the statement that SP(N ) is non-degenerate if it has a unique essential

set). Suppose SP(N ) is degenerate, i.e. opt(S) < opt(N ). Consider an essential set E = S ∪T

(Lemma 3), where T is non-empty and k ∈ T . Consider the scenario problem SP(N −k), and

opt(N −k) = opt(N ) because k /∈ S . We also know that S is contained in any essential set of

SP(N −k) by Lemma 7, i.e. E(N −k) = S ∪T̂ . And T̂ has to be non-empty 1. Then opt(S ∪T̂ ) =

opt(N −k) = opt(N ), therefore S ∪T̂ must contain at least one essential set that is different from

S ∪T (because k ∈ T and k /∈ T̂ ). Therefore SP(N ) has more than one essential set when it is

degenerate.

1Otherwise opt(S) = opt(E(N −k)) = opt(N −k) = opt(N ), which contradicts with the hypothesis that SP(N )
is degenerate.
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APPENDIX B

CHANCE-CONSTRAINED UNIT COMMITMENT1

The deterministic Unit Commitment formulation utilizes the expected wind generation and

load forecast, it does not take the uncertainties from wind and load into consideration. We propose

an improved formulation of d-UC using chance constraints, which guarantee the system security

with a tunable level of risk ε with respect to uncertainties.

min
z,u,v,g,r

(3.13a)

s.t. (3.13b)(3.13d)(3.13e)(3.13f)(3.13g)(3.13h)(3.13i)(3.13j)(3.13k)

Pw̃×d̃
(
1ᵀgt,k + 1ᵀ(ŵt + w̃t) ≥ 1ᵀ(d̂t + d̃t),

k ∈ [0, nk], t ∈ [1, nt]
)
≥ 1− ε (B.1a)

Problem (B.1) is the formulation of chance-constrained Unit Commitment (c-UC). Instead of using

expected load d̂t as in (3.13), we consider loads dt as forecast d̂t plus a random forecast error d̃t

(i.e. dt = d̂t + d̃t).

Comparing with d-UC, the only difference of c-UC is the addition of the chance constraint

(B.1a). The chance constraint guarantees there will be enough supply to meet the net demand in

any contingency case at any time

1ᵀgt,k + 1ᵀ(ŵt + w̃t) ≥ 1ᵀ(d̂t + d̃t), k ∈ [0, nk], t ∈ [1, nt] (B.2)

with probability no less than 1− ε.

To reveal the structures of c-UC, we define the sets below:

B :=
{

(z, u, v) : (3.13h), (3.13i), (3.13j), (3.13k)
}

(B.3a)

1Reprinted with permission from [148]
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C :=
{

(g, r) : (3.13b), (3.13d), (3.13e)
}

(B.3b)

H :=
{

(z, g, r) : (3.13f), (3.13g)
}

(B.3c)

U :=
{

(g) : (B.2)
}

(B.3d)

Then c-UC can be succinctly represented as:

min
z,u,v,g,r

(3.13a)

s.t. (z, u, v) ∈ B (B.4a)

(g, r) ∈ C (B.4b)

(z, g, r) ∈ H (B.4c)

P
(
g ∈ U

)
≥ 1− ε (B.4d)

Sets B and C stand for the deterministic constraints for binary and continuous variables, respec-

tively. Set H represents the hybrid constraints related with both continuous and binary variables.

Set U represents all constraints related with uncertainties.

Remark 13. The non-convexity of unit commitment comes from binary variables (z, u, v). Clearly

as shown in (B.4), non-convexity (i.e. set B and H) only exists in deterministic constraints, and

uncertain constraints U are only related with continuous variables. This observation plays a critical

role in analyzing the structural properties of s-UC in Lemma 8 and Corollary 5.

B.1 Solving c-UC via the Scenario Approach

B.1.1 Scenario-based Unit Commitment

As explained in Chapter 3, the scenario approach reformulates (3.2) to a scenario problem

(3.4) using N scenarios. For the unit commitment problem, we denote the set of N scenarios as

N = {(d̃1, w̃1), (d̃2, w̃2), · · · , (d̃N , w̃N)}. Each load and wind scenario is a time series of length

nt: d̃i = (d̃1,i, · · · , d̃nt,i), w̃i = (w̃1,i, · · · , w̃nt,i). Then we define the set Ui corresponding to
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scenario i:

Ui :=
{
g : 1ᵀgt,k + 1ᵀ(ŵt + w̃t,i)

≥ 1ᵀ(d̂t + d̃t,i), t ∈ [1, nt], k ∈ [0, nk]
}

(B.5)

The scenario problem for c-UC can be written as

min
z,u,v,g,r

(3.13a)

s.t. (B.4a), (B.4b), (B.4c)

g ∈ ∩Ni=1Ui (B.6a)

Problem (B.6) is referred as s-UC in the remainder of this paper.

B.1.2 Structural Properties of s-UC

For notation simplicity, we define ιt as the index of the scenario with the largest net demand

forecast error at time t:

ιt := argi max
{
1ᵀd̃t,1 − 1ᵀw̃t,1, · · · ,1ᵀd̃t,N − 1ᵀw̃t,N

}
, (B.7)

and define S := {ι1, ι2, · · · , ιnt}. Clearly there might be repetitive scenario indices in ι1, ι2, · · · , ιnt ,

i.e. |S| ≤ nt.

Lemma 8. When nt = 1, s-UC has at most one support scenario. The support scenario is the one

with the largest net demand forecast error, i.e. (d̃1,ι1 , w̃1,ι1) if the number of support scenarios is

not zero.

Proof. Let ι1 be the scenario index defined in (B.7), clearly Uι1 = ∩Ni=1Ui, which implies that the

removal of any scenario other than ι1 will not change the feasible region. According to Definition

16, all other scenarios except ι1 cannot be a support scenario. Therefore s-UC with nt = 1 has at

most one support scenario.
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Corollary 5. For s-UC (B.6), let S denote the set of its support scenarios, then S ⊆ S, which

indicates |S| ≤ |S| ≤ nt.

Proof. Let U ti =
{
gt : 1ᵀgt,k + 1ᵀ(ŵt + w̃t,i) ≥ 1ᵀ(d̂t + d̃t,i), k ∈ [0, nk]

}
, then Ui = U1

i ×

U2
i · · · × Unti . According to Lemma 8, ∩Ni=1U ti has at most one support scenario, which is indexed

by ιt. Applying Lemma 8 for all nt snapshots, we can see that the set S contains all candidates to

support scenarios, thus S ⊆ S and |S| ≤ |S| ≤ nt.

The intuition behind Lemma 8 and Corollary 5 is illustrated in Fig. B.1. Fig. B.1 visualizes

the constraints and feasible region (g1, g2) of the 2-generator, 3-bus and 3-line system in [2]. Four

blue regions (B0,B1,B2,B3) stand for four possible on/off states of 2 generators. For example,

B2 shows the case in which generator 1 is off (z1 = 0) and generator 2 is on (z2 = 1). The

black solid lines represent the determine constraints C. Three dashed/dotted lines denote three

constraints (U1,U2,U3) of three scenarios. Since the scenario constraint (B.5) is only about supply

and demand (transmission limits are not included), the feasible region of s-UC is clearly defined

by the scenario with the largest net demand (U1 in Fig. B.1), which is the support scenario of s-

UC. The scenario with the largest net demand at each snapshot is a candidate for support scenarios

(Lemma 8), therefore there are at most nt candidates for support scenarios (Corollary 5).

B.1.3 Sample Complexity for s-UC

Corollary 5 shows that |S| ≤ nt for s-UC, then we can use the results in Corollary 1 to calculate

the number of scenarios to achieve the desired security level 1−ε with confidence 1−β. Table B.1

presents the sample complexity (number of scenarios) needed with various ε levels for the 118-bus

system in Section B.2.1.

Although unit commitment is non-convex because of the binary variables (z, u, v). It is in

general difficult to estimate the number of support scenarios |S| a-priori. Without exploiting the

structural properties of s-UC as in Corollary 5, the best bound 2 might be the number of decision

variables |S| ≤ n, which is 4ngnt + ngntnk = 75168 for the 118-bus system . Table B.1 also

2Before revealing the structure of s-UC in Corollary 5, n is not an upper bound on |S| because s-UC is non-convex.
But n is the best bound we could hope for using the results in Theorem 5 and Corollary 1.
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(a) Constraints B0,B1,B2,B3 representing 4 possible
states of 2 generators.

(b) Deterministic constraints.

(c) Scenario constraints U , with all scenarios (U1,U2,U3). (d) Scenario constraints U , with only support scenario (U1).

Figure B.1: Illustration of Lemma 8 and Corollary 5 using the 2-generator, 3-bus system in [2].
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presents the sample complexity using |S| ≤ 75168. As shown in Table B.1, Corollary 5 greatly

reduces the number of scenarios from some astronomical numbers in the case of |S| ≤ 75168.

Another attractive observation is that the results in Corollary 5 holds regardless of the system size.
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B.2 Case Study

B.2.1 Settings of the 118-bus System

We solve the unit commitment problem of an 118-bus system with 54 generators (ng = 54) in

24 hours (nt = 24) under 54 possible generator failure contingencies (nk = 54). The test system is

a modified version of the 118-bus system in [150]. The modified 118-bus system includes 5 wind

farms at different locations.

The numerical simulation was conducted on a desktop with Intel Core i7-2600 CPU@3.40GHz

and 16GB of memory. Matpower and YALMIP were used to formulate the c-UC problem in

MatlabR2018a. The c-UC problem was converted to s-UC via ConvertChanceConstraint in [1],

then solved using Gurobi 8.10 till the MIP gap is smaller than 0.01%.

B.2.2 Numerical Results

We solve the s-UC problem with different number of scenarios N . Given N , we conduct

10 independent Monte-Carlo simulations to examine the randomness of the scenario approach.

Another independent test dataset of 104 points was used to evaluate the out-of-sample violation

probability ε of the solution to s-UC.

Figure B.2 demonstrates the optimal objective values and out-of-sample ε with different num-

ber of scenarios. As the scenario approach theory suggests, with an increasing number of scenarios,

the system risk level ε decreases. Figure B.2 also shows that with 0.96% of cost increase (from

1.356× 106 to 1.369× 106), the system risk ε is reduced from 19% to 2%.

Figure B.3 plots two violation probabilities. The blue solid curve illustrates the average empir-

ical ε (evaluated on the test dataset of 104 points), the shaded area shows the largest and smallest

violation probabilities in 10 Monte-Carlo runs. The dotted green lines plots the guaranteed ε by

combining Theorem 5 with Corollary 5. Figure B.3 shows that the scenario approach is applicable

on the unit commitment problem, despite its non-convexity. Furthermore, Figure B.3 also demon-

strates the value of Corollary 5. Without showing that |S| ≤ nt as in Corollary 5, Theorem 5 is

only able to provide useless guarantees (e.g. ε ≤ 0.999999 when using 1000 scenarios).
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Figure B.2: Key Results of s-UC with Different Sample Complexity, reprinted with permission
from [148].

Figure B.3: Theoretical and Empirical Violation Probabilities ε, reprinted with permission from
[148].
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Table B.3: Number of Support Scenarios, reprinted with permission from [148].

N 100 200 300 400 500 600 700 800 900 1000
|S| (min) 19 21 22 22 22 22 23 23 23 24
|S| (max) 24 24 24 24 24 24 24 24 24 24

Due to the non-convexity from the binary decision variables, the scenario approach was con-

sidered not applicable on the unit commitment problem previously. One main contribution of this

paper is to show the potential of the scenario approach on non-convex problems like unit commit-

ment. By exploring the structural properties of s-UC, Section B.1 shows that the scenario approach

could still provide rigorous guarantees on the quality of solutions, as in the convex case. This is

all based on Lemma 8 and Corollary 5. Table B.3 shows the maximum and minimum number of

support scenarios in 10 Monte Carlo runs of each given sample complexity N . This verifies the

correctness of Corollary 5.

B.2.3 Scenario Reduction

When the desired risk level ε is very small, the scenario approach might require a large number

of scenarios. This will directly cause memory and computation issues in numerical simulations.

Corollary 5 turns out to be quite helpful in improving the computational performance. Corollary 5

shows that a majority of the scenarios have no impacts on the final solution and thus can be reduced.

Then s-UC only needs to be solved with at most nt = 24 scenarios, which can be easily identified

as mentioned in Section B.1.2. We compare the results of using 1000 scenarios with those of using

identified 24 (out of 1000) scenarios. Although the optimal solution is slightly different due to a

few identical generators, the difference in the objective value is less than 10−6.

B.2.4 Adding Security Constraints

The main limitation of this paper is not considering possible security constraints such as trans-

mission line limits. The nice results in Corollary 5 holds only in the absence of a transmission

network. We also applied the scenario approach on chance-constrained SCUC. Numerical results

show that the number of support scenarios could be more than nt = 24, but this number does not
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increase too much (e.g. 30 ∼ 50 for the 118-bus system with 186 lines). However, we are yet

not able to prove nice results as in Corollary 5. This is one critical part of our ongoing works and

beyond the scope of this paper.

B.3 Summary

This paper is a first step towards a practical and rigorous day-ahead decision making frame-

work in uncertain environments. We formulate the chance-constrained unit commitment problem

and solve it via the scenario approach. We show that the number of support scenarios in the unit

commitment problem is at most nt. This structural property makes the scenario approach applica-

ble in the presence of non-convexity. It substantially reduces the necessary number of scenarios

and could be further exploited to reduce the computational requirement to solve the problem. Fu-

ture work will extend the results towards security-constrained unit commitment.
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