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ABSTRACT

We consider a compact C∞-stratified 2D variety M in R3 and its ε–neighborhood Mε, which

we call a “fattened open book structure.” Assuming absence of zero-dimensional strata, i.e. “cor-

ners,” we show that the (discrete) spectrum of the Neumann Laplacian in Mε converges when

ε→ 0 to the spectrum of a differential operator on M .

Similar results have been obtained before for the case of fattened graphs, i.e. M being one-

dimensional. In the case of a 2D smooth submanifold M , the problem has been studied well.

However, having singularities along strata of lower dimensions significantly complicates consid-

erations. As in the quantum graph case, such considerations are triggered by various applications

such as micro-electronics, photonic devices, and dynamical systems with two “slow” and one

“fast” degrees of freedom.

The results are obtained under two restrictions: 1) there are no zero dimensional strata (cor-

ners); 2) the pages are transverse at the bindings (no cusps).

We begin with the “uniformly fattened case:” width of the fattened domain shrinks with the

same speed around “pages” and “bindings.” Next we consider more general fattened open book

structures with a finite number of parameters which control the size of the fattened neighborhood

around each point. In particular we consider εβ-sized neighborhoods around the bindings and ε-

sized neighborhood around the pages. By properly tuning these parameters, we demonstrate three

classes of limit operators on M . We show that there is a relative length scale (controlled by β)

between the “fattened pages” and “fattened binding” which causes the system to undergo phase

transitions. Two such phases have novel boundary currents along the bindings.
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1. INTRODUCTION1

Consider a compact C∞-stratified2 2D variety M in R3 without zero-dimensional strata, i.e.

M locally (in a neighborhood of any point) looks like either a smooth submanifold or like an

“open book” with smooth two-dimensional “pages” meeting transversely along a common smooth

one-dimensional “binding,” see Fig. 1.1.

M4

M1

M2

M3

Figure 1.1: An open book structure with “pages” Mk meeting at a “binding.”

Clearly, any compact smooth submanifold of R3 (with or without a boundary) qualifies as an

open book structure with a single page. Another example of such structure is shown in Fig. 1.2.

The 2D-strata need be neither contractible nor orientable.

We then consider a “fattened” versionMε ofM , which is an (appropriately defined) ε–neighborhood

of M , which we call a “fattened open book structure.”

Consider now the Laplace operator−∆ on the domain Mε with Neumann boundary conditions

1Portions of this chapter have been adapted from: “Spectra of ‘fattened’ open book type structures,” by J. E. Corbin
and P. Kuchment, to appear in The Mathematical Legacy of Victor Lomonosov, De Gruyter.

2We do not provide here the general definition of what is called Whitney stratification, see e.g. [1, 19, 26, 43, 44],
resorting to a simple description through local models.
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M1 M2 M4

M3

E

Figure 1.2: A transverse intersection of two spheres yields an open book structure with four pages
and a circular binding. The requirement of absence of zero-dimensional strata prohibits adding a
third sphere with a generic triple intersection. Tangential contacts of spheres are also disallowed.

(the “Neumann Laplacian”). We denote this operator3 Aε. As a (non-negative) elliptic operator

on a compact manifold, it has discrete finite multiplicity spectrum λεn := λn(Aε) with the only

accumulation point at infinity. The primary result of this dissertation, Theorem 2.2.6, states that

when ε→ 0, each eigenvalue λεn converges to the corresponding eigenvalue λn of an operatorA on

M , which acts as −∆M (2D Laplace-Beltrami) on each 2D stratum (page) of M , with appropriate

junction conditions along 1D strata (bindings). This result is also announced in a forthcoming

publication: “Spectra of ‘fattened’ open book type structures,” by the author and P. Kuchment [4].

Similar results have been obtained previously for the case of fattened graphs (see [14,15,24,36],

as well as books [2, 16, 30] and references therein), i.e. M being one-dimensional. They have

been triggered by various applications [7, 12, 13, 22, 36–39]. In the case of a smooth submanifold

M ⊂ R3, the problem is not that hard and has been studied well under a variety of “hard” and

“soft” constraints set near M (see, e.g. [17, 20, 22]). However, having singularities along strata

of lower dimensions significantly complicates considerations, even in the quantum graph case

[5–7, 10, 20, 22–25, 36, 40].
3Throughout this work ε-dependent spaces, functions, operators, and coefficients will carry an ε subscript or su-

perscript.
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In Chapter 2 the results are obtained under two restrictions: that the width of the fattened do-

main shrinks “with the same speed” around all strata and the binding of the book does not have

a cusp. The more complex case of slower shrinkage of the neighborhoods of lower dimensional

strata, which leads to phase transition phenomena (see [25,30] for the quantum graph case), is han-

dled in Chapter 3. There we consider more general families of fattened domains {Mε} (ε ∈ (0, ε0],

ε0 > 0). For instance, the width of the fattened pages vary by some positive differentiable function

or the fattened binding shrinks at a different rate than the fattened page. Given some restrictions

on the family of fattened domains, we ask whether we can identify a corresponding operator A

on M such that Aε converges to A in spectrum where Aε is again the Neumann Laplacian. In

fattened graph literature [11,15,25,30] the analogous problem has already been considered, and it

was shown that the limit operator A falls into distinct classes according to a heuristic based on the

relative volume of the fattened strata (in that case “fattened edges” and “fattened vertices”). E.g.

if the region around a vertex were much larger than the regions around the adjacent edges in the

ε → 0 limit, the limit operator A is densely defined on a larger space of functions than the limit

operator in the uniformly fattened graph case.

Our results here corroborate that heuristic. The main results of Chapter 3, Theorem 3.2.4,

demonstrate spectral convergence of the Neumann Laplacian on a parameterized family of fattened

domains to three classes of limit operators (see Propositions 3.1.12, 3.1.17, and 3.1.19). As in

Chapter 2, the results are obtained under the restriction that the binding of the book does not have

a cusp or a corner.

The dissertation is structured as follows: the first section of each main chapter, Section 2.1 and

Section 3.1, contains the descriptions of the main objects: open book structures and their fattened

versions, the limit operator A, etc. Following those are the formulation of the main result in each

chapter in Sections 2.2 and 3.2 The proofs are provided in Sections 2.3 and 3.3 with proofs to the

more technical propositions appearing in Appendix B.1. In Chapter 3, we reserve a section for a

different construction of a fattened domain, called the thin-junction domain, to its own Section 3.4.

We conclude with final remarks concerning generalizations and future work in Chapter 4.
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2. SPECTRAL CONVERGENCE OF THE NEUMANN LAPLACIAN ON A UNIFORMLY

FATTENED DOMAIN1

2.1 The Main Notions

This chapter is dedicated to what we call the “uniformly fattened” case. Here we introduce the

main geometric objects to be studied. With the exception of our definition of the open book struc-

ture, the definitions as written here are specified strictly for the uniformly fattened case; however,

all other definition developed here are rephrased in the Chapter 3 with appropriate modifications.

2.1.1 Open Book Structures

We start introducing the notion we will be using throughout the text:

Definition 2.1.1. Let M denote a connected compact C∞ stratified two-dimensional variety in R3

with the following properties:

• Zero dimensional strata are absent.

• M is composed of finitely many smooth 2D strata {Mk} (k ≤ nM ) (open smooth surfaces)

called pages and smooth 1D strata {Em} (m ≤ nE) (closed smooth curves (edges)) called

bindings.

• The pages are transverse at the bindings.

For the purpose of this dissertation, we call M an open book structure.2

Simply put, to say M is a stratified surface means that it consists of finitely many connected,

compact smooth submanifolds (with or without boundary) of R3, called strata, of dimensions two,

one, and zero (i.e., points in the latter case), such that they may only intersect along their boundaries

1Portions of this chapter have been adapted from: “Spectra of ‘fattened’ open book type structures,” by J. E. Corbin
and P. Kuchment, to appear in The Mathematical Legacy of Victor Lomonosov, De Gruyter.

2One can find open book structures in a somewhat more general setting being discussed in algebraic topology
literature, e.g. in [31, 45].
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and each stratum’s boundary is the union of some lower dimensional strata [19]. We assume

additionally that the strata intersect at their boundaries transversely and that there are no zero-

dimensional strata. In other words, locally M looks either as a smooth surface, or an “open book”

with pages meeting at a non-zero angle at a “binding.” Up to a diffeomorphism, a neighborhood

of the binding looks like the picture in Fig. 2.1.

Figure 2.1: A local model of a binding neighborhood.

2.1.2 The Fattened Open Book Structure

If M were a smooth surface in R3, we could “fatten” it by considering its ε-neighborhood Mε.

The fattened domain Mε for some ε > 0 consists of all points at the distance of order ε from M ,

plus possibly “fatter” neighborhoods Em,ε of the bindings Em. Let us make this more precise.

The following statement is rather obvious:

Lemma 2.1.2. There exists ε > 0 so small that for any two points x1, x2 ∈ M outside of an ε0-

neighborhood of the bindings, the closed intervals of radius ε0 normal to M at these points do not

intersect.

This ensures that for ε < ε0, the ε-fattened neighborhoods do not form a connecting bridge

between two points that are otherwise far away from each other along M .
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We can now define the uniformly fattened open book structure Mε for M , our subject for

this chapter. We denote the ball of radius r about x in R3 as B(x, r) and similarly denote the ball

of radius r about x in R2 as D(x, r). In this dissertation we typically refer to a 2D ball as a disk.

Definition 2.1.3. Let M denote an open book structure in R3, as defined above and ε0 > 0 from

Lemma 2.1.2. We define for any ε < ε0 the corresponding uniformly fattened domain Mε as

follows:

Mε :=
⋃
x∈M

B(x, ε). (2.1)

The similar notation Rε will be used for the fattened version of any subset R ∈ R3.

Remark 2.1.4. Later on we will assume that ε tends to zero. This will explain the meaning of the

notations like O(ε) or o(1). In particular, the assumption ε < ε0 will be satisfied automatically

and thus not mentioned.

In this text “c” denotes a positive constant uniform with respect to ε, particularly as a bound in

an inequality. E.g. if an expression f(ε) is O(ε), this means |f(ε)| ≤ cε as ε → 0 for some c > 0.

Furthermore, if c appears as a bound in an inequality on some space of functions, c is understood

to be a uniform bound on that space. E.g. an implication of the Sobolev embedding theorem ( [27],

see Theorem A.1.1 in Appendix A) is if u ∈ H1((0, 1)) there is a c > 0 such that the following

holds true for all u,

||u||L∞((0,1)) ≤ c||u||H1((0,1)). (2.2)

We often use subscripts (e.g. cM ) either for labeling or to denote implicit dependence on some

parameter.

2.1.3 The Local Structure of the Uniformly Fattened Open Book

For any binding Em, the parts of the adjacent pages Mk that are O(ε)–close to Em are called

sleeves and denoted Sk,m,ε. More precisely,

Definition 2.1.5. Let M be an open book structure. Let {am}m≤nE denote a finite set of positive
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numbers independent of ε. The sleeve Sk,m,ε on page Mk at Em is defined as

Sk,m,ε := {x ∈Mk : distMk
(x,Em) < amε}, (2.3)

where distMk
(x,Em) denotes the geodesic distance from Em to x on Mk (see Fig. 2.2).

We use the following shorthand notation for the page without its sleeves:

Mk,S := Mk\
⋃
m

Sk,m,ε. (2.4)

The next statement is easy to establish due to the non-tangential nature of pages’ intersections:

Lemma 2.1.6. Under appropriate choice (which we will fix) of {am}, the ε-neighborhoods ofMk,S

do not intersect each other for different values of k and any binding Em.

Definition 2.1.7. Assuming a choice of orientation of Mk, we denote the positive unit normal

vector to Mk at a point x ∈ Mk as Nk(x). If Mk is non-orientable, a local choice of normal

orientation will be sufficient for our purposes.

We denote by INk(x),ε the interval of the normal to Mk at x consisting of points at distance less

than ε from x. The fattened page Mk,S,ε is thus foliated into normal fibers INk(x),ε.

Mk,S,ε :=
⋃

x∈Mk,S

INk(x),ε. (2.5)

The latter foliation will be used to define the local averaging operator on Mk,S,ε in Subsection

2.3.7.

Definition 2.1.8. Let M be an open book structure as in Definition 2.1.1. The fattened binding

Em,ε about Em is the union of the ε-neighborhood of Em and the 2ε width normal fibers over the

sleeves Sk,m,ε:

Em,ε :=
⋃
x∈Em

B(x, ε)
⋃( ⋃

k;x∈Sk,m,ε

INk(x),ε

)
. (2.6)
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Definition 2.1.9. We can also define a cross-section ωm,ε(x). For a point x inEm,Nx is the normal

plane of Em at x, an affine subspace of R3. The cross-section ωm,ε(x) is the connected component

of the intersection of Nx with Mε\
⋃
kMk,S,ε containing x.

The fattened binding can also be defined as the union of these cross-sections.

Em,ε :=
⋃
x∈Em

ωm,ε(x). (2.7)

Definition 2.1.10. The interface Γk,m,ε between Mk,S,ε and Em,ε is the strip-like domain shared

between ∂Mk,S,ε and ∂Em,ε (see Fig. 2.2).

Em

Sk′,m,εSk,m,εMk,S

Mk′,S

Em,εMk,S,ε

Mk′,S,ε

Γk,m,ε

Figure 2.2: A neighborhood of a binding and the corresponding uniformly fattened neighborhood.

2.1.4 Quadratic Forms and Operators

We adopt the standard notation for Sobolev spaces (see, e.g. [27]). Thus, H1(Ω) denotes the

space of square integrable with respect to the Lebesgue measure functions on a domain Ω ⊂ Rn
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with square integrable first order weak derivatives, and Lkp(Ω) denotes the space of functions whose

k-th order derivatives are in Lp(Ω).

Definition 2.1.11. Let Qε denote the closed non-negative quadratic form with domain H1(Mε),

given by

Qε(u) =

∫
Mε

|∇u|2 dMε. (2.8)

We also refer to Qε(u) as the energy of u.

This form is associated with a unique self-adjoint operator Aε in L2(Mε). The following state-

ment is standard (see, e.g. [9, 27]):

Proposition 2.1.12. The formQε generates the Neumann Laplacian onMε. I.e. Aε = −∆ with its

domain consisting of functions in H2(Mε) whose normal derivatives at the boundary ∂Mε vanish.

Its spectrum σ(Aε) is discrete and non-negative.

We equipM with the surface measure dM (or dMk when referring to a particular page) induced

from R3.

Definition 2.1.13. Let Q be the closed, non-negative quadratic form (energy) on L2(M) given by

Q(u) =
∑
k

∫
Mk

|∇Mk
u|2 dM (2.9)

with domain G1 consisting of functions u for which Q(u) is finite and that are continuous across

the bindings between pages Mk and Mk′:

u|∂Mk∩Em = u|∂Mk′∩Em . (2.10)

Here ∇Mk
is the gradient along Mk and restrictions in (2.10) to the binding Em coincide as

elements of H1/2(Em).

Unlike the fattened graph case, by the Sobolev embedding theorem ( [9], Theorem A.1.1) the

restriction to the binding is not continuous as an operator from G1 to C(Em); it only maps to
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H1/2(Em). This distinction significantly complicates the analysis of fattened stratified surfaces in

comparison with fattened graphs.

Proposition 2.1.14. The operator A associated with the quadratic form Q acts on each Mk as

Au := −∆Mk
u, (2.11)

with the domain G2 consisting of functions on M such that the following conditions are satisfied:

||u||2L2(M) + ||Au||2L2(M) <∞, (2.12)

continuity across common bindings Em of pairs of pages Mk,Mk′:

u|∂Mk∩Em = u|∂Mk′∩Em , (2.13)

and Kirchhoff condition at the bindings:

∑
k:∂Mk⊃Em

Dνku(Em) = 0. (2.14)

Here −∆Mk
is the Laplace-Beltrami operator on Mk and Dνk denotes the normal derivative to

∂Mk along Mk.

The spectrum of A is discrete and non-negative.

The proof is simple, standard, and similar to the graph case. We thus omit it.

Definition 2.1.15. For a real number Λ not in the spectrum of Aε, we denote by PεΛ the spectral

projector of Aε in L2(Mε) onto the spectral subspace corresponding to the half-line {λ ∈ R |λ <

Λ}.

Similarly, PΛ denotes the analogous spectral projector for A. We then denote the correspond-

ing (finite dimensional) spectral subspaces as PεΛL2(Mε) and PΛL2(M) for Mε and M respec-

tively.
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Proposition 2.1.16. Functions from these (finite-dimensional) spectral subspaces satisfy the “re-

verse" embedding inequality. Namely, if u ∈ PεΛL2(Mε) and Λ /∈ σ(Aε) then u ∈ H1(Mε) with

||u||2H1(Mε)
≤ (1 + Λ)||u||2L2(Mε) (2.15)

and similarly u ∈ PΛL2(M) and Λ /∈ σ(A)

||u||2G1 ≤ (1 + Λ)||u||2L2(M). (2.16)

It also follows for u ∈ PεΛL2(Mε)

||u||2H2(Mε)
≤ (1 + Λ2)||u||2L2(Mε). (2.17)

Proof: Since Λ /∈ σ(A), the projector PΛ is continuous. As established, the spectrum ofA is of

finite multiplicity with only one accumulation point at infinity, so PΛL2(M) is finite dimensional.

Therefore APΛ is a finite rank operator that is diagonalized in a spectral basis, and the diagonal

entries are non-negative and bounded above by Λ. This gives the following:

||APΛu||2L2(M) ≤ Λ2||u||2L2(M). (2.18)

We then express the form Q on the PΛL2(M) as Q(u) = (u,Au) (and consequentially the norm

of G1 by Q(u) + (u, u)) giving us the desired inequality. The statement for the other projector PεΛ

follows from identical arguments. �

2.2 Formulation of Spectral Convergence of the Neumann Laplacian on a Uniformly Fat-

tened Domain

We denote the non-decreasingly ordered eigenvalues of A as {λn}n∈N, and those of Aε as

{λεn}n∈N.
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Definition 2.2.1. We say the operators Aε converge in spectra to A as ε tends to zero if for each n

|λn − λεn| = o(1),

where o(1) is not necessarily uniform with respect to n.

We now introduce two families of operators needed for the formulation and proof of the main

result.

Definition 2.2.2. A family of linear operators Jε from H1(Mε) to G1 is called averaging operators

if for any Λ /∈ σ(Aε) there is an ε0 such that for all ε ∈ (0, ε0] the following conditions are satisfied:

• For u ∈ PεΛL2(Mε), Jε is “nearly an isometry” from L2(Mε) to L2(M) with an o(1) error,

i.e. ∣∣∣∣ ∣∣∣∣u∣∣∣∣2L2(Mε)
−
∣∣∣∣Jεu∣∣∣∣2L2(M)

∣∣∣∣ ≤ o(1)
∣∣∣∣u∣∣∣∣2

H1(Mε)
(2.19)

where o(1) is uniform with respect to u.

• For u ∈ PεΛL2(Mε), Jε asymptotically “does not increase the energy,” i.e.

Q(Jεu)−Qε(u) ≤ o(1)Qε(u) (2.20)

where o(1) is uniform with respect to u.

Definition 2.2.3. A family of linear operatorsKε from G1 toH1(Mε) is called extension operators

if for any Λ /∈ σ(A) there is an ε0 such that for all ε ∈ (0, ε0] the following conditions are satisfied:

• For u ∈ PΛL2(M), Kε is “nearly an isometry” from L2(M) to L2(Mε) with o(1) error, i.e.

∣∣∣∣ ∣∣∣∣u∣∣∣∣2L2(M)
−
∣∣∣∣Kεu

∣∣∣∣2
L2(Mε)

∣∣∣∣ ≤ o(1)
∣∣∣∣u∣∣∣∣2G1 (2.21)

where o(1) is uniform with respect to u.
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• For u ∈ PΛL2(M), Kε asymptotically “does not increase” the energy, i.e.

Qε(Kεu)−Q(u) ≤ o(1)Q(u) (2.22)

where o(1) is uniform with respect to u.

Existence of such averaging and extension operators is known to be sufficient for spectral

convergence of Aε to A (see [30]). For the sake of completeness, we formulate and prove this in

our situation.

Theorem 2.2.4. Let M be an open book structure as in Definition 2.1.1 and {Mε}ε∈(0,ε0] be its

fattened partner as in Definition 2.1.3. Let Aε and A be operators onM andMε as in Propositions

2.1.12 and 2.1.14.

Suppose there exist averaging operators {Jε}ε∈(0,ε0] and extension operators {Kε}ε∈(0,ε0] as

stated in Definitions 2.2.2 and 2.2.3. Then, for any n

λn(Aε) →
ε→0

λn(A). (2.23)

We start with the following standard (see, e.g. [32]) min-max characterization of the spectrum.

Proposition 2.2.5. Let B be a self-adjoint non-negative operator with discrete spectrum of finite

multiplicity and λn(B) be its eigenvalues listed in non-decreasing order. Let also q be its quadratic

form with the domain D. Then

λn(B) = min
W⊂D

max
x∈W\{0}

q(x, x)

(x, x)
, (2.24)

where the minimum is taken over all n-dimensional subspaces W in the quadratic form domain D.

Proof of Theorem 2.2.4 Let us now employ Proposition 2.2.5 and the averaging and extension

operators J, K to “transplant” the test spaces W in (2.28) between the domains of the quadratic

forms Q and Qε.
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Let us first notice that due to the definition of these operators (the near-isometry property), for

any fixed finite-dimensional space W in the corresponding quadratic form domain, for sufficiently

small ε the operators are injective on W and thus preserve its dimension. Since we are only

interested in the limit ε → 0, we will assume below that ε is sufficiently small for these operators

to preserve the dimension of W . Thus, taking also into account the inequalities (2.19)-(2.22), one

concludes that on any fixed finite dimensional subspace W one has the following estimates of

Rayleigh ratios:
Q(Jεu)

||Jεu||2L2(M)

≤
(
1 + o(1)

) Qε(u)

||u||2L2(Mε)

, (2.25)

Qε(Kεu)

||Kεu||2L2(Mε)

≤
(
1 + o(1)

) Q(u)

||u||2L2(M)

. (2.26)

Let now Wn ⊂ G1 and W ε
n ⊂ H1(Mε) be n, such that

λn = max
u∈Wn\{0}

Q(u, u)

(u, u)
, (2.27)

and

λεn = max
u∈W ε

n\{0}

Qε(u, u)

(u, u)
. (2.28)

Due to the min-max description and inequalities (2.25) and (2.26), one gets

λn ≤ sup
u∈Jε(W ε

n)

Q(Jεu)

||Jεu||2L2(M)

≤
(
1 + o(1)

)
λεn, (2.29)

and

λεn ≤ sup
u∈Kε(Wn)

Qε(Kεu)

||Kεu||2L2(Mε)

≤
(
1 + o(1)

)
λn. (2.30)

Thus, λn − λεn = o(1), which proves the theorem. �

We will construct the required averaging and extension operators, which then will lead to the

main result of this chapter:
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Theorem 2.2.6. 3 Let M be an open book structure as in Definition 2.1.1 and {Mε}ε∈(0,ε0] be its

fattened partner as in Definition 2.1.3. Let Aε and A be operators onM andMε as in Propositions

2.1.12 and 2.1.14. There exist averaging operators {Jε}ε∈(0,ε0] and extension operators {Kε}ε∈(0,ε0]

as stated in Definitions 2.2.2 and 2.2.3. Thus, for any n

λn(Aε) →
ε→0

λn(A). (2.31)

2.3 The Proof of the Main Result (Theorem 2.2.6)

In order to define these averaging and extension operators, we must first consider the different

local geometries of M . We define a local averaging operator on each of the fattened strata and a

local extension operator from each of the pages intoMε. Then we find a way to reconcile these local

operators defined on different geometries. This is somewhat similar to the analysis on the fattened

graph; however, different embedding theorems in dimensions higher than 1 require a more careful

analysis than in the graph case.

2.3.1 Fattened Binding Geometry

In this subsection we describe the geometry of the fattened binding and, in particular, specify

the lengths am. We describe carefully the geometry in order for the domain to admit a suitable

partition of unity. This partition of unity is chosen as to allow good estimates with regards to ε

dependence on the norms of trace and extension operators.

Definition 2.3.1. Let M be an open book structure. Let θm,k,k′(x) be the (smaller) angle between

two tangent vectors normal to two intersecting page boundaries ∂Mk and ∂Mk′ at x ∈ Em. The

sleeve width am (m ≤ nE) (see Fig. 2.3) is

am =


maxx∈Em(1 + cot(mink,k′ θm,k,k′(x)/2)) minx,k,k′ θm,k,k′(x) < π/2

2 minx,k,k′ θm,k,k′(x) ≥ π/2

. (2.32)

3This result is to appear in [4].
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Figure 2.3: A cross-section of a uniformly fattened binding neighborhood. Dashed lines denote
the boundary of a fattened stratum. Thickest dashed lines denote the cross-section of the boundary
Γk,m,ε between the fattened binding and fattened page.

Consequentially, the closure of the normal fibers INk(x),ε and INk′ (x′),ε do not touch for two

distinct fattened pages Mk,S,ε and Mk′,S,ε.

Definition 2.3.2. Let lEm denote the length of the Em. We define γm(y) : U = [0, lEm ]/{0, lEm} 7→

Em to be a smooth parameterization of Em. We suppose around each point x on Em (with x =

γm(y)) there is a neighborhood V ⊂ U of y such that there exists two smooth orthogonal unit

length vectors vm,1 and vm,2 on γm(V ) that span Nγm(y).

We equip the normal plane Nx (x ∈ Em) with the following coordinate chart φx : Nx 7→ R2

where φx(x) = 0, φx is an isometry, and φx(vm,i(x)) is the standard basis vector eyi . The image

of ωm,ε(x) through this chart φx is denoted $m,ε(x), an open region in R2. We call $m,ε(x) a

cross-section as well.

Remark 2.3.3. The cross-section ωm,ε(x) is a slice of Em,ε cut by a plane in R3. It is clear that

Em,ε is the union of all these slices. This cross-section can be identified with a region in the plane

which we denote $m,ε(x). Next subsection we define a fibration over Em given by the collection

of cross-sections $m,ε(x). We then define an averaging operator on these cross-sectional fibers in

Subsection 2.3.7 that satisfies a Poincaré-type inequality with a Poincaré constant of order ε.
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Definition 2.3.4. A domain Ω ⊂ Rn is called a special Lipschitz domain if there is an orthogonal

transformation T of Cartesian coordinates such that

TΩ = {x = (x′, xn) ∈ Rn : x′ ∈ Rn−1, xn > ϕ(x′)} (2.33)

where ϕ is a uniformly Lipschitz function on Rn−1. We call ϕ the boundary graph function to Ω.

This following proposition follows from our definition of the fattened binding. The statements

in the proposition establish the requirements needed for some embedding and extension theorems.

Proposition 2.3.5. Let {Em,ε} (0 < ε ≤ ε0) be a family of fattened bindings as previously de-

scribed. The following properties hold uniformly for each cross-section $m,ε(x) (x ∈ Em):

1. The inner and outer diameters over each cross-section are bounded of order ε:

D(0, c1ε) ⊂ $m,ε(x) ⊂ D(0, c2ε) (2.34)

where c1 and c2 are constants.

2. There is a positive number cr such that each cross-section $m,ε(x) is star-shaped with re-

spect to the disk D(0, crε) (see Fig. 2.4).

Figure 2.4: A view of $m,ε(x) and the disk it is star-shaped with respect to.
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3. There exists numbers cM , cN , cU , and c3 such for each ε ∈ (0, ε0] there is a finite collection

of open sets {Ũi,ε} (i ≤ cU ) in R2 where

(a) if y ∈ ∂$m,ε(x) then D(y, c3ε) ⊂ Ũi,ε for some i,

(b) each y ∈ ∂$m,ε(x) is contained in at most cN sets Ũi,ε,

(c) and for any i there is a special Lipschitz domain Ω̃i,ε with boundary graph function φ̃i,ε

such that Ũi,ε ∩$m,ε(x) = Ũi,ε ∩ Ω̃i,ε and

|φ̃i,ε(z)− φ̃i,ε(z′)| ≤ cM |z − z′|, z, z′ ∈ R. (2.35)

We extend (3) to a statement about the existence of a partition of unity on Em,ε that has the

properties that we will need later.

Corollary 2.3.6. Let {Em,ε} be a family of fattened binding neighborhoods as previously de-

scribed. For each ε ∈ (0, ε0] there exists a partition of unity {ϕi,ε} (i is a counting number up

to NU,ε which depends on ε) subordinate to the finite open cover {Ui,ε} of Em,ε with the following

properties:

1.
⋃
i Ui,ε is contained in

⋃
x∈Em B(x, c0ε).

2. Each point contained in the covering is in at most cN sets. In this sense we say the finite

intersection property of these coverings holds in the ε→ 0 limit.

3. Each open set Ui,ε contains a ball of radius c1ε and is contained in a ball of radius c2ε.

4. If x ∈ ∂Em,ε, then B(x, c3ε) ⊂ Ui,ε for some i and Ui,ε ∩ ∂Em,ε is a connected subset of

some special Lipschitz domain Ωi,ε whose boundary graph function φi,ε has a (Lipschitz)

norm bounded above by a constant cM .

5. There is a positive constant cϕ such that for each ε the gradient of each ϕi,ε has a uniform

bound cϕε−1:

|∇ϕi,ε| ≤ cϕε
−1. (2.36)

18



We will return to this partition of unity later in this chapter. The purpose of this partition of

unity is to set up a generalization of the following well-known theorem attributed to Calderón and

later improved on by Stein [3, 42] regarding boundedness of extension operators.

Theorem 2.3.7. Let Ω be an open set in Rn and let there be positive numbers r, m, N (an integer)

and a sequence {Ui}i≥1 of open sets satisfying the conditions:

1. if x ∈ ∂Ω, then B(x, r) ⊂ Ui for some i,

2. every point x ∈ Rn is contained in at most N sets Ui,

3. for any i ≥ 1 there is a special Lipschitz domain Ωi with boundary graph function ϕi such

that Ui ∩ Ω = Ui ∩ Ωi and

|ϕi(x′)− ϕi(y′)| ≤ m|x′ − y′|, x′, y′ ∈ Rn−1. (2.37)

Then there exists a linear operator E mapping functions defined on Ω into functions defined on Rn

and having the following properties:

1. Eu
∣∣
Ω

= u.

2. E is a continuous operator:
⋂

0≤k≤l L
k
p(Ω) →

⋂
0≤k≤l L

k
p(Rn) for all 1 ≤ p ≤ ∞ and a

positive integer l .

3. The norm ||E||V lp(Ω)→V lp(Rn) (V l
p (Ω) :=

⋂
0≤k≤l L

k
p(Ω)) is bounded by a constant depending

only on n, p, l, r, m, N .

This theorem has been extended to more general domains [21, 33]. We are dealing with a

family of domains {Em,ε} (ε ∈ (0, ε0]) that have zero volume in the ε → 0 limit, and in particular

this family does not admit an constant r such that the conditions in Theorem 2.3.7 hold. We

approach constructing a family of extension or trace operators by carefully rescaling each subset

of the covering in Corollary 2.3.6.
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2.3.2 The Fattened Binding Foliation

Given our foliations of the fattened pages Mk,S,ε and Mk′,S,ε (in terms of the normal lines

INk(x),ε), we wish to extend these foliations into Em,ε. We accomplish this by introducing regions

of the fattened binding called sectors. Breaking up the fattened binding into sectors, we can de-

scribe a vector field whose image “connects” the foliation of one fattened page to another foliation

(see Fig. 2.6).

Definition 2.3.8. Let Em be a binding and {Mk} (k ≤ nm) is the collection of at least two pages

that meet at Em all of which are orientable. We call the connected components of

Em,ε\(Em
⋃

(
⋃
k Sk,m,ε)) sectors, and we denote them as {Σm,i,ε} for i ≤ nm. A sector’s boundary

contains two sleeves of which we say that pair is associated with that sector (see Fig. 2.5).

Σm,1,ε

Σm,2,εΣm,3,ε

Figure 2.5: Sectors.

If Em is a binding connected to non-orientable pages, then taking a partition into local neigh-

borhoods is sufficient for our discussion. The case of only one page meeting at a binding is handled

separately.

Definition 2.3.9. Let Em be a binding and {Mk} (k ≤ nm) is the collection pages that meet at Em

all of which are orientable and there are at least two such pages. We say that the image of family

of vector fields {tvm,i,ε} (t ∈ (0, 1))

vm,i,ε(x) : Em ∪ Sk,m,ε ∪ Sk′,m,ε 7→ R3 Sk,m,ε, Sk′,m,ε ⊂ ∂Σm,i,ε (2.38)
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Figure 2.6: Cross sectional view of a pair of vector fields on each of the sleeves yielding a foliation
of uniformly fattened binding.

is a foliation of the sector matching the foliation of fattened pages (see Fig. 2.6) if:

1. vm,i,ε is Lipschitz.

2. x 7→ x+vm,i,ε(x) is a homeomorphism between the domain of vm,i,ε and the outward bound-

ary of the sector: ∂Σm,i,ε ∩ ∂ (Em,ε\
⋃
k ∂Mk,S,ε)

3. The limit of vm,i,ε(x) as x→ x′ ∈ ∂Sk,m,ε ∩Mk is ±εNk(x′).

If Em is attached to only one page Mk, we say a family of vector fields {vm,i,ε} (i = 1, 2)

vm,i,ε : Sk,m,ε 7→ R3 (2.39)

extends the foliation of the fattened page (see Figure 2.7) if:

1. vm,i,ε is Lipschitz.

2. x 7→ x+ vm,i,ε(x) is a homeomorphism between the domain of vm,i,ε and a subset boundary

of the the fattened binding: ∂Em,ε\∂Mk,S,ε.

3. The limit of vm,i,ε(x) as x→ x′ ∈ ∂Sk,m,ε ∩Mk is ±εNk(x′).

4. The limits of vm,1,ε(x) and vm,2,ε(x) match at Em.
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Figure 2.7: Cross sectional view of a pair of vector-valued functions on the sleeves that yield a
foliation of fattened binding (non-uniformly fattened as pictured).

We expand on (2) and describe the construction of functions {vm,i,ε} for all small, positive ε

that have uniformly bounded gradients (where they exists).

Proposition 2.3.10. There is a family of vector-valued functions {vm,i,ε} (ε ∈ (0, ε0]) that extends

the foliation of the fattened pages that has length of O(ε) and uniformly bounded gradient (where

it exists). I.e. there exists a c1 and c2 such that

max
x∈D(vm,i,ε)

|vm,i,ε(x)| ≤ c1ε, (2.40)

and

max
x∈D(vm,i,ε)

|∇vm,i,ε(x)| ≤ c2. (2.41)

Proof: In Appendix B.1.1.

Corollary 2.3.11. Each sector Σm,i,ε can be parameterized using vm,i,ε. Namely, a point x ∈ Σm,i,ε

can be written as x = y + zvm,i,ε(y) (y ∈ Em
⋃

(
⋃
k Sk,m,ε) , z ∈ (0, 1)).

2.3.3 Approximating the Geometry of Fattened Strata

Here we approximate each fattened page by the product of the corresponding page with an

interval. Although this is not crucial for the proof, we assume that the pageMk is simply connected,

otherwise one can partition it further. BecauseMk is partitioned into simply connected patches, the

normal Nk(x) is well-defined locally. A similar analysis is applied to Em and its fattened partner
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Em,ε.

Definition 2.3.12. Suppose U is an open region of R2 with coordinates y = (y1, y2). We define

Xk,S to be a smooth parameterization of Mk,S on U :

Xk,S : (y1, y2) ∈ U ⊂ R2 7→Mk,S ⊂ R3. (2.42)

In this subsection, we denote the coefficient functions of the first fundamental form of an immersed

surface, in this case Mk,S , (see [41]) as E, F , and G which are functions on U . The derivatives of

the parameterization Xk,S with respect to y1 and y2 are functions to R3, and so we have

E = Dy1Xk,S ·Dy1Xk,S,

F = Dy1Xk,S ·Dy2Xk,S,

G = Dy2Xk,S ·Dy2Xk,S.

(2.43)

where the symbol “·” denotes the inner product on R3.

Proposition 2.3.13. Let ey1 and ey2 denote standard basis vectors of the tangent space TyU = R2.

The parameterizationXk,S induces a metric gMk,S
on U . I.e. gMk,S

is the following positive definite

bilinear form on TyU :

gMk,S
(a, b) :=

[
a1 a2

]E F

F G


b1

b2

 (2.44)

where ai, bj are the respective coefficients of the vectors a and b in the (ey1 , ey2) basis of TyU . We

also use gMk,S
to denote the matrix in (2.44).

Proof: This is standard (see [41]).

Definition 2.3.14. For sufficiently small ε, Mk,S,ε admits a parameterization Xk,S,ε on U × (−ε, ε)

(y ∈ U , z ∈ (−ε, ε)) where

Xk,S,ε(y, z) := Xk,S(y) + zNk(Xk,S(y)). (2.45)
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We denote the coefficient functions of the second fundamental form of an orientable immersed

surface, in this case Mk,S , (see [41]) as e, f , and g:

e = −Dy1Xk,S ·Dy1Nk(Xk,S(y)),

f = −Dy1Xk,S ·Dy2Nk(Xk,S(y)),

g = −Dy2Xk,S ·Dy2Nk(Xk,S(y)).

(2.46)

Proposition 2.3.15. The parameterization Xk,S,ε induces a metric gMk,S,ε
on U × (−ε, ε).

gMk,S,ε
:=


E − ze F − zf 0

F − zf G− zg 0

0 0 1

 . (2.47)

Definition 2.3.16. We define M̃k,S,ε to be the product space of Mk,S and (−ε, ε).

M̃k,S,ε := Mk,S × (−ε, ε). (2.48)

Proof: This follows from an explicit calculation of DiXk,S,ε ·DjXk,S,ε from (2.45) and simpli-

fying using (2.43) and (2.46). �

Definition 2.3.17. The product space M̃k,S,ε admits a parameterization X̃k,S,ε on an open region

U × (−ε, ε) in R3 of the form

X̃k,S,ε = (Xk,S, z). (2.49)

Proposition 2.3.18. The parameterization X̃k,S,ε (2.49) induces a metric on U × (−ε, ε):

gM̃k,S,ε
:=


E F 0

F G 0

0 0 1

 . (2.50)
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Definition 2.3.19. For sufficiently small ε, there exists a diffeomorphism φMk,S,ε
from Mk,S,ε to

M̃k,S,ε of the form

φMk,S,ε
(x) = X̃Mk,S,ε

(X−1
Mk,S,ε

(x)). (2.51)

Proposition 2.3.20. The linear operator ΦMk,S,ε
from H1(Mk,S,ε) to H1(M̃k,S,ε) induced by the

diffeomorphism φMk,S,ε
(i.e. ΦMk,S,ε

u = u(φMk,S,ε
)) preserves H1-norm of a function up to an

O(ε1/2) error. ∣∣ ||u||2H1(Mk,S,ε)
− ||ΦMk,S,ε

u||2
H1(M̃k,S,ε)

∣∣ ≤ cε||u||2H1(Mk,S,ε)
. (2.52)

This inequality (2.52) also holds true for other Sobolev spaces Hn and in particular L2.

Proof: First, we show that the metrics gM̃k,S,ε
and gMk,S,ε

are close.

Lemma 2.3.21. On the domain U × (−ε, ε), the two metrics gMk,S,ε
and gM̃k,S,ε

are close:

gMk,S,ε
− gM̃k,S,ε

= BgMk,S,ε
(2.53)

where matrix B is O(ε) in the Frobenius norm.

Proof: This can be explicitly calculated:

gMk,S,ε
− gM̃k,S,ε

=
z

EG− F 2


e f 0

f g 0

0 0 0



G −F 0

−F E 0

0 0 0

 gM̃k,S,ε
. (2.54)

Because |z| ≤ ε, it is clear the right hand side is small. �

Having demonstrated the metrics are close, we then calculate the perturbation of two matrix

valued functions about gM̃k,S,ε
:

Corollary 2.3.22. The square root of the determinant and inverses of the two metrics gMk,S,ε
and

gM̃k,S,ε
are also close:

√
detgMk,S,ε

=
√

detgM̃k,S,ε

(
1 +

1

2
det(B) +O(ε2)

)
, (2.55)
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g−1
Mk,S,ε

= g−1

M̃k,S,ε
(1−B +O(ε2)). (2.56)

Fixing the target space U × (−ε, ε) of our coordinate charts on Mk,S,ε and M̃k,S,ε, we can now

compare functions on Mk,S,ε and M̃k,S,ε.

Corollary 2.3.23. Let u ∈ L2(U × (−ε, ε)), then

∣∣∣∣ ∫
U×(−ε,ε)

|u(y, z)|2
√
detgMk,S,ε

dydz −
∫
U×(−ε,ε)

|u(y, z)|2
√
detgM̃k,S,ε

dydz

∣∣∣∣
≤ cε

∫
U×(−ε,ε)

|u(y, z)|2
√
detgMk,S,ε

dydz.

(2.57)

Corollary 2.3.24. Let u be a function in H1(U × (−ε, ε)), then

∣∣∣∣ ∫
U×(−ε,ε)

(∇u)∗g−1
Mk,S,ε

∇u
√

detgMk,S,ε
dydz

−
∫
U×(−ε,ε)

(∇u)∗g−1

M̃k,S,ε
∇u
√

detgM̃k,S,ε
dydz

∣∣∣∣
≤ cε

∫
U×(−ε,ε)

(∇u)∗g−1
Mk,S,ε

∇u
√
detgMk,S,ε

dydz

(2.58)

where∇u = (Dy1u,Dy2u,Dzu).

These last two statements prove Proposition 2.3.20. �

The cross-sections ωm,ε(x) vary with x ∈ Em due to the curvature of the pages. Consequen-

tially, more work is needed in defining the parameterization of Em,ε.

Definition 2.3.25. Let γm(y) be a smooth parameterization Em on U = (0, lEm). We invoke the

notation from Definition 2.3.2: vm,1 and vm,2 are the pair of orthonormal functions that span the

normal planes of Em and ez1 and ez2 denote standard basis vectors in the normal planes of Em

((z1, z2) = z ∈ $m,ε(x)).

We define a fibration Ũ over U as follows:

Ũ :=
∐
y∈U

$m,ε(γm(y)). (2.59)
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Let Ωm,ε(y, z) := z1vm,1(y) + z2vm,2(y). We can parameterize the Em,ε with γm and Ωm,ε:

Ym,ε(y, z) = γm(y) + Ωm,ε(y, z). (2.60)

Proposition 2.3.26. Parameterization Ym,ε in Definition 2.3.25 has the following conditions:

1. The image of γm(y) + Ωm,ε(y, ·) is ωm,ε(γm(y)).

2. Dz1Ωm,ε(y, ·) and Dz2Ωm,ε(y, ·) lie in the normal plane of Em at γm(y).

3. c1 ≤ |DziΩm,ε| ≤ c2 .

4. |DyΩm,ε| ≤ c3ε .

The parameterization Ym,ε induces a metric gEm,ε on Ũ :

gEm,ε =


1 +Dyγm ·DyΩm,ε 0 0

0 1 0

0 0 1

 . (2.61)

Proof: Since vm,1 and vm,2 are orthogonal to Dyγm, Dyγm ·DzΩm,ε = 0. Because of vectors

vm,1 and vm,2 are orthogonal, we have: DziΩm,ε · DziΩm,ε = 1, and DziΩm,ε · DzjΩm,ε = 0 for

i 6= j. �

Definition 2.3.27. We denote by Ẽm,ε the fibration of Em with fibers $m,ε(x):

Ẽm,ε :=
∐
x∈Em

$m,ε(x). (2.62)

Proposition 2.3.28. The fibration Ẽm,ε space admits a parameterization Ỹm,ε on Ũ :

Ỹm,ε = (y, z1, z2) (2.63)
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with an induced metric

gẼm,ε = IdR3 (2.64)

where IdR3 is the identity matrix.

Proposition 2.3.29. For sufficiently small ε, there exists a diffeomorphism φEm,ε from Em,ε to Ẽm,ε

such that the induced linear operator ΦEm,ε on H1(Em,ε) (i.e. ΦEm,εu = u(φEm,ε)) preserves

H1-norm up to an O(ε1/2) error:

∣∣ ||u||2H1(Em,ε)
− ||ΦEm,εu||2H1(Ẽm,ε)

∣∣ ≤ cε||u||2H1(Em,ε)
. (2.65)

This inequality also holds true for other Sobolev spaces Hn and in particular L2.

2.3.4 Bounds on the Sleeves

This subsection introduces two needed inequalities. The proof of the first inequality uses the

calculations on induced metrics to show that stretching Mk,S back to Mk induces only a small

change of a function’s norm. The second inequality involves bounding the L2-norm of a function

on a sleeve its H1-norm on the page.

Proposition 2.3.30. There exists a diffeomorphism ψMk
from Mk to Mk,S such that

• each column vector of the Jacobian of ψMk
has length 1 +O(ε),

• for any unit speed differentiable curve γ on M̄k,S that is normal to ∂Mk,S , its image ψMk
(γ)

has unit speed and is normal to the boundary ∂Mk,

• the induced operator ΨMk
(i.e. ΨMk

u = u(ψMk
)) preservesH1-norm up to anO(ε1/2) error:

∣∣ ||u||2H1(Mk) − ||ΨMk
u||2H1(Mk,S)

∣∣ ≤ cε||u||2H1(Mk). (2.66)

This inequality also holds true for other Sobolev spaces Hn and in particular L2.
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Proof: A sufficiently small neighborhood V of ∂Mk admits a normal coordinate system, i.e.

there is a parameterization Xk on U ⊂ R2 of V :

Xk : (y1, y2) ∈ U = (0, lEm)× (0, a) 7→Mk,

such that distMk
(Em, Xk(y1, y2)) = y2.

(2.67)

For sufficiently small ε, the set ∂Mk,S is contained in V . By Definition 2.1.5, ∂Mk,S ∩ Em is the

image of Xk(·, amε). We define a smooth “shortening” function

ϕε : (0, a) 7→ (amε, a) such that Dϕε ≥ 0,

Dϕε(0) = Dϕε(a) = 1, |Dϕε − 1| ≤ cε

(2.68)

for some c > 0. We can now construct ψMk
:

ψMk
(x) := Xk((y1, ϕε(y1))), where (y1, y2) = X−1

k (x). (2.69)

The remainder of the proof follows from the calculating the induced metric from ψMk
as done in

Corollaries 2.3.23 and 2.3.24. �

Proposition 2.3.31. Let Mk be a smooth page with boundary
⋃
mEm. The L2-norm of a function

on Sk,m,ε is O(ε1/2)-bounded by the function’s H1-norm on Mk:

∫
Sk,m,ε

|u|2 dMk ≤ cε

∫
Mk

|u|2 + |∇Mk
u|2 dMk. (2.70)

Proof: Appears in Appendix B.1.2.

2.3.5 Local Extensions of Functions on a Stratum to the Fattened Domain

We can extend a function form Mk,S into Mk,S,ε by first extending along the fibers and then

applying the diffeomorphism operator in Proposition 2.3.20. The extension from the binding and

the sleeves is handled by extending along the foliation derived in Definition 2.3.9 by means of its
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associated coordinate system (Corollary 2.3.11).

Definition 2.3.32. Let u ∈ L2(Mk,S). We denote a point in the fibration M̃k,S,ε as (y, z) for

y ∈ Mk,S and z ∈ (−ε, ε). We define Ẽk,z,ε to be the extension operator from Mk,S to M̃k,S,ε, a

bounded linear operator from L2(Mk,S) to L2(M̃k,S,ε) given by:

Ek,z,εu(y, z) = u(y). (2.71)

Definition 2.3.33. Let u ∈ L2(Mk,S). We define Ek,z,ε to be the extension operator from Mk,S to

Mk,S,ε given by

Ek,z,ε := Φ−1
Mk,S,ε

Ẽk,z,ε. (2.72)

Proposition 2.3.34. For u ∈ H1(Mk,S), one has:

||u||2L2(Mk,S) = ||(2ε)−1/2Ẽk,z,εu||2L2(M̃k,S,ε)
(2.73)

and

||∇Mk
u||2L2(Mk,S) = ||∇(2ε)−1/2Ẽk,z,εu||2L2(M̃k,S,ε)

. (2.74)

Proof: Because ∫ ε

−ε

1

2ε
|Ẽk,z,εu(y, z)|2 dz = |u(y)|2, (2.75)

it follows that

∣∣ ||u||2L2(Mk,S) − ||(2ε)−1/2Ẽk,z,εu||2L2(M̃k,S,ε)

∣∣
=

∣∣∣∣ ∫
Mk,S

|u|2 dMk −
∫
Mk,S

∫ ε

−ε

1

2ε
|Ẽk,z,εu(y, z, ε)|2 dz dMk

∣∣∣∣
= 0.

(2.76)
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Turning to the norm of the gradient, we have

∣∣ ||∇Mk
u||2L2(Mk,S) − ||∇(2ε)−1/2Ẽk,z,εu||2L2(M̃k,S,ε)

∣∣
=

∣∣∣∣ ∫
Mk,S

|∇Mk
u|2 dMk −

∫
Mk,S

∫ ε

−ε

1

2ε
|∇Ẽk,z,εu|2 dz dM̃k

∣∣∣∣. (2.77)

Clearly DzẼk,z,εu = 0, so we can rewrite (2.77) to get:

∣∣∣∣ ∫
Mk,S

|∇Mk
u|2 dMk −

1

2ε

∫
Mk,S

∫ ε

−ε
|∇Mk

Ẽk,z,εu|2 + |DzẼk,z,εu|2 dz dM̃k

∣∣∣∣ = 0. � (2.78)

Proposition 2.3.35. For u ∈ H1(Mk,S), one has:

∣∣ ||u||2L2(Mk,S) − ||(2ε)−1/2Ek,z,εu||2L2(Mk,S,ε)

∣∣ ≤ cε||u||2L2(Mk,S) (2.79)

and ∣∣ ||∇Mk
u||2L2(Mk,S) − ||∇(2ε)−1/2Ek,z,εu||2L2(Mk,S,ε)

∣∣ ≤ cε||u||2H1(Mk,S). (2.80)

Proof: An application of Proposition 2.3.20 to the results in Proposition 2.3.34.

Definition 2.3.36. For the fattened binding Em,ε, we suppose its sectors Σm,i,ε are equipped with

coordinate system described in Corollary 2.3.11 generated by vm,i,ε, the vector-valued function as

described in Definition 2.3.9 and Proposition 2.3.10. We define Em,S,z,ε to be the extension operator

on L2(Em
⋃

(
⋃
k Sk,m,ε)) to L2(Em,ε) given by sector as

Em,S,z,εu(y, z) = u(y) y ∈ Em
⋃

Sk,m,ε
⋃

Sk′,m,ε 7→ Σm,i,ε 3 (y, z). (2.81)

Proposition 2.3.37. The extension operators (2ε)−1/2Em,S,z,ε from H1(Em
⋃

(
⋃
k Sk,m,ε)) to

H1(Em,ε) satisfy the following bound:

||(2ε)−1/2Em,S,z,εu||2H1(Em,ε)
≤ c||u||2H1(Em

⋃
(
⋃
k Sk,m,ε))

. (2.82)
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Proof: Corollary 2.3.11 prescribes a coordinate system x = y + zvm,i,ε(y) (y ∈ Em
⋃

(
⋃
k Sk,m,ε), z ∈ (0, 1)) on each sector Σm,i,ε. It is a straightforward matter to calculate the norm of

a function on a sector. We break a sector into three pieces for this calculation. The first of which,

the set {y + zvm,i,ε : y ∈ Em, z ∈ (0, 1)}, is a zero measure set with respect to the Lebesgue

measure on R3. The two other sets are of the form {y + zvm,i,ε(y) : y ∈ Sk,m,ε, z ∈ (0, 1)} for

some page index k. We calculate the induced metric on this region to demonstrate the determinant

of the metric is the correct order of ε such that the L2 part of (2.82) holds. To accomplish that, we

use the parameterization of Sk,m,ε in (2.67) renaming the parameterized variable as t (Xk(t) = y),

and we denote the induced metric on the domain of t for Sk,m,ε as gMk
. The induced metric gΣm,i,ε,k

on (t, z) is

gΣm,i,ε,k =

gMk
+DtXk · zDtvm,i,ε(Xk) DtXk · vm,i,ε

DtXk · vm,i,ε |vm,i,ε|2

 . (2.83)

It follows,

det(gΣm,i,ε,k) ≤ cεdet(gMk
). (2.84)

Thus it follows:

||(2ε)−1/2Em,S,z,εu||2L2(Em,ε) ≤ c||u||2L2(Em
⋃

(
⋃
k Sk,m,ε))

. (2.85)

To calculate the gradient at the point, we calculate the divided difference between the Em,S,z,εu(x)

and Em,S,z,εu(x+ δ). Writing x+ δ = y + δy + (z + δz)vm,i,ε(y + δy), we have

|∇δ̂Em,S,z,ε| =
∣∣ lim sup

δ→0

Em,S,z,εu(y + δy, z + δz)− Em,S,z,εu(y, z)

|δ|
∣∣

=
∣∣ lim sup

δ→0

u(y + δy)− u(y)

|δy|
|δy|
|δ|
∣∣ ≤ c∇vm,i,ε |∇Mk

u|.
(2.86)

This lets us conclude:

|∇Em,S,z,εu(y, z)| ≤ c∇vm,i,ε |∇Mk
u(y)|. (2.87)
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Hence we arrive at a bound on the derivative giving us (2.82) with (2.85):

||∇(2ε)−1/2Em,S,z,εu||2L2(Em,ε) ≤
∑
k

c||∇Mk
u||2L2(Sk,m,ε)

. � (2.88)

2.3.6 Extension Operator Kε

Now we can define the extension operators in the sense of Definition 2.2.3.

Proposition 2.3.38. Let M be an open book structure. Let Λ ≤ cε−1+δ where δ > 0 and Λ /∈

σ(A). For some ε0 > 0, the family of linear operators {Kε}ε∈(0,ε0] that satisfies the conditions in

Definition 2.2.3 is (u ∈ PΛL2(M))

Kεu :=


(2ε)−1/2Ek,z,εu Mk,S

(2ε)−1/2Em,S,z,εu Em
⋃

(
⋃
k Sk,m,ε) .

(2.89)

Proof: Beginning with Em
⋃

(
⋃
k Sk,m,ε), we apply Proposition 2.3.37 to get

||(2ε)−1/2Em,S,z,εu||2H1(Em,ε)
≤ c||u||2H1(Em

⋃
(
⋃
k Sk,m,ε))

. (2.90)

Applying the spectral embedding Proposition 2.1.16, the previously expression is bounded by

c(1 + Λ)||u||2L2(Em
⋃

(
⋃
k Sk,m,ε))

(2.91)

which in turn is bounded by the energy on M (Proposition 2.3.31). This yields an upper bound of

c(1 + Λ)ε||u||2G1 = o(1)||u||2G1 . (2.92)

Therefore (2.90) is negligible both in L2 and H1. For the Mk,S pieces, we show that they are not

only close to their extension (2ε)−1/2Ek,z,εu in L2 but also in H1. Starting with the following norm
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difference ∣∣∑
k

||(2ε)−1/2Ek,z,εu||H1(Mk,S,ε) − ||u||G1
∣∣, (2.93)

we break ||u||G1 into page terms and sleeve terms and use the triangle inequality. We get an upper

bound of (2.93) of

∑
k

∣∣||(2ε)−1/2Ek,z,εu||H1(Mk,S,ε) − ||u||H1(Mk,S)

∣∣+ ||u||H1(Em
⋃

(
⋃
k Sk,m,ε))

. (2.94)

The first term of (2.94) is bounded by Proposition 2.3.35. After a norm bound on the sleeve

(Propositions 2.3.31 and 2.1.16), we conclude (2.93) is bounded by (1 + Λ)1/2O(ε1/2)||u||G1 . We

conclude Kε is a near isometry in both L2 and H1, provided the function u is restricted to the

spectral subspace Pcε−1+δL2(M). �

2.3.7 Local Averaging Operators

This subsection concerns an averaging operator on the fattened page and an averaging opera-

tion on the fattened binding constructed by means of an integral representation. These averaging

operators satisfy some Poincaré-type inequalities. I.e. the norm of the difference between a func-

tion and a constant (in the simplest formulation this constant is the average) is bounded by the

norm of the function’s derivative. We first define these operators in the fibrations M̃k,S,ε and Ẽm,ε

(Definitions 2.3.17 and 2.3.27) then apply the operators ΦMk,S,ε
and ΦEm,ε .

Definition 2.3.39. Let Ñk,ε denote the following bounded linear operator on L2(M̃k,S,ε):

Ñk,εu(y, z) :=
1

2ε

∫ ε

−ε
u(y, ζ) dζ y ∈Mk,S, z ∈ (−ε, ε). (2.95)

We also let Ñk,ε denote the bounded linear operator from L2(M̃k,S,ε) to L2(Mk,S) by restricting

Ñk,εu to Mk,S (Ñk,εu(y, z = 0)).

Proposition 2.3.40. The family of averaging operators {Ñk,ε} on L2(M̃k,S,ε) has a uniform bound

c.
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Proof: Boundedness is clear from the Cauchy-Schwartz Inequality.

Definition 2.3.41. The averaging operator Nk,ε on Mk,S,ε is given by composition with the corre-

sponding diffeomorphism:

Nk,ε := Φ−1
Mk,S,ε

Ñk,εΦMk,S,ε
. (2.96)

We also let Nk,ε denote a bounded linear operator from L2(Mk,S,ε) to L2(Mk,S) by restricting

Nk,εu to Mk,S (Nk,εu|Mk,S
= Ñk,εΦMk,S,ε

u(y, z = 0)).

Proposition 2.3.42. For u ∈ H1(M̃k,S,ε), Ñk,ε satisfies a Poincaré-type inequality:

∫
M̃k,S,ε

|u− Ñk,εu|2 dM̃k,S,ε ≤ cε2
∫
M̃k,S,ε

|∇u|2 dM̃k,S,ε. (2.97)

Proof: Because the lowest non-constant Neumann eigenfunction for the interval (−1, 1) is

sin(πx/2), the Poincaré inequality for an ε-interval yields

∫ ε

−ε
|u− Ñk,εu|2 dz ≤

4ε2

π2

∫ ε

−ε
|Dzu(y, z)|2 dz. (2.98)

We then integrate (2.98) over Mk,S . Because M̃k,S,ε is a product of Mk,S and (−ε, ε), the result

follows from Fubini’s theorem. �

Corollary 2.3.43. For u ∈ H1(Mk,S,ε), the averaging operator Nk,ε admits a Poincaré-type in-

equality:

||u−Nk,εu||2L2(Mk,S,ε)
≤ cε2||∇u||2L2(Mk,S,ε)

. (2.99)

Proof: The inequality (2.99) is straightforward application of Proposition 2.3.20:

||u− Φ−1
Mk,S,ε

Ñk,εΦMk,S,ε
u||2L2(Mk,S,ε)

≤ (1 +O(ε))||ΦMk,S,ε
u− Ñk,εΦMk,S,ε

u||2
L2(M̃k,S,ε)

≤ (1 +O(ε))cε2||∇ΦMk,S,ε
u||2

L2(M̃k,S,ε)
≤ (1 +O(ε))cε2||∇u||2L2(Mk,S,ε)

. �
(2.100)
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Proposition 2.3.44. For u ∈ H1(M̃k,S,ε), one has:

∣∣∣∣ ||u||2L2(M̃k,S,ε)
− ||(2ε)1/2Ñk,εu||2L2(Mk,S)

∣∣∣∣ ≤ cε||u||2
H1(M̃k,S,ε)

. (2.101)

Proof: Bounding the difference squared, we get:

∫
M̃k,S,ε

|u|2 dM̃k,S,ε −
∫
Mk,S

|Ñk,εu|2 2ε dMk

≤
∫
M̃k,S,ε

|u|2 dM̃k,S,ε −
∫
Mk,S

(∫ ε

−ε
|Ñk,εu|2 dz

)
dMk

≤ (1 +O(ε))||u− Ñk,εu||L2(M̃k,S,ε)
||u+ Ñk,εu||L2(M̃k,S,ε)

≤ 2ε(1 +O(ε))||u||2
H1(M̃k,S,ε)

. �

(2.102)

Corollary 2.3.45. For u ∈ H1(Mk,S,ε), one has:

∣∣∣∣ ||u||2L2(Mk,S,ε)
− ||(2ε)1/2Nk,εu||2L2(Mk,S)

∣∣∣∣ ≤ cε||u||2H1(Mk,S,ε)
. (2.103)

Proof: This corollary is an application of Proposition 2.3.20 on (2.101).

Proposition 2.3.46. The linear operator Ñk,ε is bounded on H1(M̃k,S,ε),

∫
Mk,S

|∇Mk
(2ε)1/2Ñk,εu|2 dMk ≤

∫
M̃k,S,ε

|∇Mk
u|2 dM̃k,S,ε. (2.104)

Proof: We begin with rewriting the integral over Mk,S in (2.104):

∫
Mk,S

|∇Mk
(2ε)1/2Ñk,εu|2 dMk =

∫
Mk,S

(∫ ε

−ε
|∇Mk

Ñk,εu|2dz
)
dMk. (2.105)

Using the reverse Fatou Lemma (see Lemma A.1.2 in Appendix A), we demonstrate the derivative
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of an average is bounded above by absolute value of the average of the derivative:

∫
M̃k,S,ε

∣∣∣Dyi

1

2ε

∫ ε

−ε
u dζ

∣∣∣2 dM̃k,S,ε

≤
∫
M̃k,S,ε

∣∣∣ lim sup
δ→0

1

2ε

∫ ε

−ε

u(yi + δ, yj, ζ)− u(yi, yj, ζ)

δ
dζ
∣∣∣2 dM̃k,S,ε

≤
∫
M̃k,S,ε

∣∣∣ 1

2ε

∫ ε

−ε
Dyiu dζ

∣∣∣2 dM̃k,S,ε.

(2.106)

We then use the embedding of L1 in L2 on a compact interval and the Cauchy-Schwartz Inequality:

∫
M̃k,S,ε

∣∣∣ 1

2ε

∫ ε

−ε
∇Mk

u dζ
∣∣∣2 dM̃k,S,ε

≤
∫
M̃k,S,ε

( 1

2ε

∫ ε

−ε
|∇Mk

u|2 dζ
)
dM̃k,S,ε

≤
∫
M̃k,S,ε

|∇Mk
u|2 dM̃k,S,ε. �

(2.107)

Corollary 2.3.47. The linear operator Nk,ε is bounded on H1(Mk,S,ε),

∫
Mk,S

|∇Mk
(2ε)1/2Nk,εu|2 dMk ≤ (1 +O(ε))

∫
Mk,S,ε

|∇Mk
u|2 dMε. (2.108)

Proof: This is an application of Proposition 2.3.20 on (2.104).

Lemma 2.3.48. Let Ω be a bounded domain in Rn with diameter D. Suppose l > 0 and

Ru(z) :=

∫
Ω

u(ζ)

|z − ζ|n−l
dζ. (2.109)

Then R is a continuous linear operator on Lp(Ω), 1 ≤ p ≤ ∞, and

||R|| ≤ n |B(0, 1)|Dl/l. (2.110)

Proof 2.3.48: Let χ be the characteristic function of B(0, D). Letting our test function be zero

outside of Ω andK = |z|l−nχ(z), we observeRu(z) = (K ∗u)|Ω. Therefore the inequality (2.110)
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follows from the Young inequality. �

The kernel in (2.109) appears in the remainder term in the following integral representation

(see [28]):

Theorem 2.3.49. Let Ω be a bounded domain star-shaped with respect to a ball B(0, δ) ⊂ Ω in

Rn and let u ∈ Llp(Ω). Then for almost all x ∈ Ω

u(z) = δ−n
∑
|α|<l

(z
δ

)α ∫
B(0,δ)

φα

(
ζ

δ

)
u(ζ)dζ +

∑
|α|=l

∫
Ω

fα(z, r, θ)

rn−l
Dαu(ζ)dζ, (2.111)

where r = |z− ζ|, θ = (ζ − z)/r, φα ∈ C∞0 (B(0, 1)), and fα are infinitely differentiable functions

such that

|fα| ≤ c(D/δ)n−1. (2.112)

c is a constant independent of Ω and D is the diameter of Ω.

Remark 2.3.50. Let ϕ ∈ C∞0 (B(0, 1)) such that
∫
B(0,1)

ϕ = 1. The function fα in the integral

representation (2.111) has an explicit expression in terms of ϕ; in particular (2.111) can be written

as:

u(z) = δ−n
∑
|α|<l

1

α!

∫
B(0,δ)

ϕ

(
ζ

δ

)
(z − ζ)αDαu(ζ)dζ

+
∑
|α|=l

(−1)ll

α!

∫
Ω

(∫ ∞
r

ϕ

(
z + ρθ

δ

)
ρn−1 dρ

) θα

rn−l
Dαu(ζ)dζ.

(2.113)

Proof: These are standard results in the theory of differentiable functions [27, 28]. We present

the full proof in Appendix B.1.3.

We note this representation (2.111) in particular holds on almost every slice of a fibration like

Ẽm,ε.

Definition 2.3.51. We define P̃m,ε to denote the following bounded linear operator on L2(Ẽm,ε).

P̃m,εu(y, z) :=
1

|D(0, crε)|

∫
D(0,crε)

ϕ

(
ζ

crε

)
u(y, ζ) d$m,ε(y) , (2.114)
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where ϕ ∈ C∞0 (D(0, 1)) such that
∫
D(0,1)

ϕ = 1.

Let P̃m,ε also denote a bounded linear operator from L2(Ẽm,ε) to L2(Em) by restricting P̃m,εu

to Em (P̃m,εu(y, z = 0)).

Proposition 2.3.52. The norms of the family of averaging operators {P̃m,ε} on L2(Ẽm,ε) has a

uniform upper bound c.

As with the operator Ñk,ε, boundedness of P̃m,ε is clear from the Cauchy-Schwartz Inequality.

Definition 2.3.53. The averaging operator Pm,ε on Em,ε is given by composition with the corre-

sponding diffeomorphism:

Pm,ε := Φ−1
Em,ε

P̃m,εΦEm,ε . (2.115)

We also let Pm,ε denote a bounded linear operator from L2(Em,ε) to L2(Em) by restricting Pm,εu

to Em (Pm,εu|Em = P̃m,εΦEm,εu(y, z = 0)).

Proposition 2.3.54. The linear operator P̃m,ε is bounded on H1(Ẽm,ε):

∫
Ẽm,ε

|∇P̃m,εu|2 dẼm,ε ≤
∫
D(0,1)

|ϕ|2
∫
Ẽm,ε

|∇u|2 dẼm,ε. (2.116)

Proof: Using the reverse Fatou Lemma (Lemma A.1.2), we get:

∫
Ẽm,ε

∣∣∣∇ 1

|D(0, crε)|

∫
D(0,crε)

ϕ

(
ζ

crε

)
u d$m,ε(y)

∣∣∣2 dẼm,ε
≤
∫
Ẽm,ε

∣∣∣ lim sup
δ→0

1

|D(0, crε)|

∫
D(0,crε)

u(y + δ, ζ)− u(y, ζ)

δ
ϕ

(
ζ

crε

)
d$m,ε(y)

∣∣∣2 dẼm,ε
≤
∫
Ẽm,ε

∣∣∣ 1

|D(0, crε)|

∫
D(0,crε)

ϕ

(
ζ

crε

)
Dyu d$m,ε(y)

∣∣∣2 dẼm,ε.
(2.117)
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We use the embedding of L1 in L2 on a compact interval and Cauchy-Schwartz Inequality:

∫
Ẽm,ε

∣∣∣ 1

|D(0, crε)|

∫
D(0,crε)

ϕ

(
ζ

crε

)
Dyu d$m,ε(y)

∣∣∣2 dẼm,ε
≤
∫
Ẽm,ε

( 1

|D(0, crε)|

∫
D(0,crε)

|ϕ
(
ζ

crε

)
Dyu|2 d$m,ε(y)

)
dẼm,ε

≤
||ϕ(ζ/crε)||2L2(D(0,crε))

|D(0, crε)|

∫
Ẽm,ε

|Dyu|2 dẼm,ε. �

(2.118)

Proposition 2.3.55. For u ∈ H1(Ẽm,ε), the averaging operator P̃m,ε satisfies a Poincaré-type

inequality: ∫
Ẽm,ε

|u− P̃m,εu|2 dẼm,ε ≤ cε2
∫
Ẽm,ε

|∇u|2 dẼm,ε. (2.119)

Proof: Calculating the difference squared on each cross-section:

|u− P̃m,εu|2 =

∣∣∣∣ ∫
$m,ε(y)

fy,ζ(z, r, θ)

r
Dζu(y, ζ) d$m,ε(y)

∣∣∣∣2
≤ c

∣∣∣∣ ∫
$m,ε(y)

Dζu(y, ζ)

r
d$m,ε(y)

∣∣∣∣2 ≤ c′RyDζu(y, ζ)

(2.120)

where Ry is the operator of the form of Lemma 2.3.48 on L2($m,ε(y)) (in this case, it is the

convolution with 1/r). From (2.110) the norm of Ry is bounded by cε. �

Corollary 2.3.56. For u ∈ H1(Em,ε), the averaging operator Pm,ε satisfies a Poincaré-type in-

equality:

||u− Pm,εu||2L2(Em,ε) ≤ cε2||∇u||2L2(Em,ε). (2.121)

Proof: This is a simple of applying Proposition 2.3.29 on (2.119):

||u− Φ−1
Em,ε

P̃m,εΦEm,εu||2L2(Em,ε) ≤ (1 +O(ε))||ΦEm,εu− P̃m,εΦEm,εu||2L2(Ẽm,ε)

≤ (1 +O(ε))c′ε2||∇ΦEm,εu||2L2(Ẽm,ε)
≤ (1 +O(ε))c′ε2||∇u||2L2(Em,ε). �

(2.122)

2.3.8 The Case of Fattened Smooth Manifold (No Binding)

We state here the spectral convergence result for a fattened closed surface in R3.
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Theorem 2.3.57. Let M be a smooth closed surface in R3 and let Mε (Mε =
⋃
x∈M B(x, ε)) be

the corresponding ε-fattened domain to M .

Let Aε denote the Neumann Laplacian on Mε and A denote the Laplace-Beltrami operator

−∆M on M . The (non-decreasingly ordered) eigenvalues λεn(Aε) converge to λn(A) as ε tends to

zero.

Proof: We define the product space M̃ε := M× (−ε, ε), and adapt Proposition 2.3.20 to a page

without a boundary. I.e. there is a bounded linear operator Φε : Hn(Mε) 7→ Hn(M̃ε) that is nearly

an isometry. We define local extension and averaging operators in the vein of Definitions 2.3.33

and 2.3.39:

Ẽεu(y, z) = u(y) y ∈M (2.123)

and

Ñεu(y) =

∫ ε

−ε
u(y, z) dz (y, ζ) ∈ M̃ε. (2.124)

The inequalities in Propositions 2.3.34, 2.3.44, and 2.3.46 are applicable to a single page. Our

global averaging and extension operators are

Jε : H1(Mε) 7→ H1(M), Jε :=
√

2εÑεΦε (2.125)

and

Kε : H1(M) 7→ H1(Mε), Kε :=
1√
2ε

Φ−1
ε Ẽε. (2.126)

These operators satisfy Definitions 2.2.2 and 2.2.3 leading to the same conclusion as in Theorem

2.2.4 applied to a single page with no binding. �

2.3.9 Bounding the Norm on the Uniformly Fattened Binding

Having established the required estimations for an averaging operator on each stratum, we now

need to combine these different averaging operators into a global one. To do so, here we establish
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several propositions regarding the trace on the interface Γk,m,ε between Mk,S,ε and Em,ε.

Definition 2.3.58. The trace or restriction operator from Mk,S,ε to Γk,m,ε is denoted Tk,m,ε.

The trace operator from Em,ε to Γk,m,ε is denoted Tm,k,ε.

The standard embedding theorem claims that the trace space Tk,m,εH1(Mk,S,ε) is isomorphic

to H1/2(Γk,m,ε)
4. However, it these ε-dependent spaces are in general not uniformly equivalent as

metric spaces as was shown in [28]. Let us expand on this, consider a family of homothetically

scaled bounded domains {Ωε} (Ωε := {εx : x ∈ Ω ⊂ Rn} for some Lipschitz domain Ω) where

ε ∈ (0, ε0]. We say TH1(Ωε) andH1/2(Ωε) are isomorphic but not ε-uniformly equivalent as metric

spaces if u ∈ TH1(Ωε) if and only if u ∈ H1/2(Ωε) and for any positive functions f and g such

that

f(ε)||u||2H1/2(Γk,m,ε)
≤ ||u||2Tk,m,εH1(Mk,S,ε)

≤ g(ε)||u||2H1/2(Γk,m,ε)
(2.128)

for all u then either f(ε) tends to zero or g(ε) tends to infinity as ε tends to zero. As shown in [28],

the correct asymptotic metric of the trace space of a thin cylinder is nontrivial.

Definition 2.3.59. Let Γ be an n-dimensional domain. Then [f ]Γ denotes the following seminorm

[f ]2Γ =

∫
Γ×Γ

|f(x)− f(y)|2

|x− y|1+n
dx dy. (2.129)

The H1/2 norm is given by ||u||2
H1/2(Γ)

= ||u||2L2(Γ) + [u]2Γ.

Let us estimate the trace on the fattened bindings. First, we state a result that connects Corollary

2.3.6 to a trace estimation.

Lemma 2.3.60. Let Ω be a special Lipschitz domain and let ϕ be the associated graph function

with bounded Lipschitz norm cΩ. Let Tϕ denote the operator from L2(Ω) to L2(Rn
+) (the half-

4The trace space of Ω restricted to Γ is given by the norm:

||v||TH1(Ω) := inf
u∈H1(Ω):u|Γ=v

||u||H1(Ω) (2.127)
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space) given by

Tϕu = u(x′, xn + ϕ(x′)) x = (x′, xn) ∈ Rn
+. (2.130)

Then Tϕ is also a bounded linear operator from H1(Ω) to H1(Rn
+) whose norm depends only on

the ϕ and in particular cΩ.

Proof: We begin with calculating the derivative (for i < n):

DxiTϕu = uxi(x
′, xn + ϕ(x′)) + uxn(x′, xn + ϕ(x′))Dxiϕ(x′) (2.131)

and (for i = n)

DxnTϕu = uxn(x′, xn + ϕ(x′)). (2.132)

The Jacobian of the transformation (x′, xn) 7→ (x′, xn + ϕ(x′)) also only depends on ϕ and its

derivatives. Consequentially, the norm Tϕ : H1(Ω) 7→ H1(Rn
+) has an upperbound that depends

only on the maximum of |ϕ| and cΩ. �

Definition 2.3.61. Following notation in Corollary 2.3.6, we have a partition of unity {ϕi,ε} sub-

ordinate to the finite open cover {Ui,ε} on Em,ε. Since each Ui,ε ∩ ∂Em,ε (for a set Ui,ε near the

boundary) is a connected subset of some special Lipschitz domain Ωi,ε with boundary graph func-

tion φi,ε, we define Tφi,ε : L2(Ui,ε) 7→ L2(R3) to be an operator in the sense of Lemma 2.3.60 for

the subset Ui,ε.

We denote the coordinate transformation from Ui,ε to R3
+ as χi,ε.

Lemma 2.3.62. Let {Em,ε} be a family of fattened bindings (ε ∈ (0, ε0]). Let u ∈ H1(Em,ε), then

one has

ε−1||Tm,k,ε(u− Pm,εu)||2L2(Γk,m,ε)
+ [Tm,k,ε(u− Pm,εu)]2Γk,m,ε ≤ cm||u||2H1(Em,ε)

. (2.133)

Proof: This is laid out in full in Appendix B.1.4.
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With a norm estimate on the trace space of Em,ε, we can now construct an extension operator

from Γk,m,ε to Mk,S,ε.

Proposition 2.3.63. For u ∈ H1(Em,ε), the complement of the cross-sectional average u− Pm,εu

has an extension into Mε denoted Em,ε(u− Pm,εu) such that

||Em,ε(u− Pm,εu)||2H1(Mε)
≤ cm||u||2H1(Em,ε)

. (2.134)

Furthermore, Em,ε(u− Pm,εu) is supported within an O(ε) neighborhood of Em.

Proof: This proof follows the ideas laid out in the Calderón-Stein Theorem (Theorem 2.3.7)

along with using a homothetic scaling. This proof appears in Appendix B.1.5.

Corollary 2.3.64. For u ∈ H1(Em,ε), one has:

||Pm,εu− Tk,m,εNk,εu||2L2(Em,ε) ≤ cε2||u||2H1(Em,ε)
. (2.135)

Proof: While Tk,m,εNk,εu is a function on the interface Γk,m,ε, we can express it as a function

onEm by noting it is constant valued on ∂ωm,ε(x). With an abuse of notation, we can setNk,εu(x ∈

Em) := Nk,εu|∂ωm,ε(x). Beginning with an application of Proposition 2.3.29, we have

||Φ−1
Em,ε

P̃m,εΦEm,εu− Tk,m,εNk,εu||2L2(Em,ε)

≤ (1 +O(ε))||P̃m,εΦEm,εu− ΦEm,εTk,m,εNk,εu||2L2(Ẽm,ε)

= (1 +O(ε))

∫
Em

∫
$m,ε(y)

|P̃m,εΦEm,εu− ΦEm,εTk,m,εNk,εu|2 d$m,ε(y)dEm.

(2.136)

Noting P̃m,εΦEm,εu can be extended to the boundary, (2.136) is bounded by

maxy∈Em |$m,ε(y)|
2ε

∫
Γ̃k,m,ε

|Ñk,ε[P̃m,εΦEm,εu− ΦEm,εTk,m,εu]|2 dΓ̃k,m,ε. (2.137)
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Because the norm of Ñk,ε is bounded independently of ε, the above (2.137) is bounded by

cε

∫
Γ̃k,m,ε

|P̃m,εΦEm,εu− ΦEm,εTk,m,εu|2 dΓ̃k,m,ε. (2.138)

After applying the operator Φ−1
Em,ε

, we have (2.138) is equal to

(1 +O(ε))||Pm,εΦEm,εu− Tk,m,εu||2L2(Γk,m,ε)
(2.139)

This is the L2 term in (2.133), so we use Lemma 2.3.62. Consequentially, the desired bound for

(2.135) is achieved. �

Lemma 2.3.65. For u ∈ H1(Mk,S,ε), one has:

||Tk,m,εu||2L2(Γk,m,ε)
≤ ck||u||2H1(Mk,S,ε)

. (2.140)

Proof: Placed in Appendix B.1.6.

Corollary 2.3.66. For u ∈ H1(Mε), one has:

||Tk,m,εNk,εu||2L2(Em,ε) ≤ cε||u||2H1(Mk,S,ε)
. (2.141)

Proof: It is analogous to the proof of Corollary 2.3.64 using Lemma 2.3.65.

Theorem 2.3.67. For u ∈ H1(Mε), the L2 norm of u on Em,ε is small:

||u||2L2(Em,ε) ≤ cε||u||2H1(Mε)
. (2.142)

Proof: We use the triangle inequality:

||u||L2(Em,ε) ≤ ||u− Pm,εu||L2(Em,ε)

+ ||Pm,εu− Tk,m,εNk,εu||L2(Em,ε) + ||Tk,m,εNk,εu||L2(Em,ε).

(2.143)
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With Corollaries 2.3.56, 2.3.64, and 2.3.66, the theorem is proven. �

Corollary 2.3.68. Assuming u ∈ PεΛL2(Mε) for Λ ≤ cε−1+δ, δ > 0, and Λ /∈ σ(Aε), then the

H1-norm of u on Em,ε is o(1) with respect to H1-norm on Mε.

Proof: Due to the embedding of PεΛL2(Mε) into L2(Mε), we can write

||∇u||2L2(Em,ε) ≤ Λ||u||2L2(Em,ε) ≤ cΛε||u||2H1(Mε)
= cεδ||u||2H1(Mε)

� (2.144)

2.3.10 Averaging Operator Jε

At last we can then define the averaging and extension operators in the sense of Definition

2.2.2.

Lemma 2.3.69. For any complex numbers a and b and for d ∈ (0, 1), one has:

(1− d)|a|2 + (1− d−1)|b|2 ≤ |a+ b|2 ≤ (1 + d)|a|2 + (1 + d−1)|b|2. (2.145)

Proof: Let us first assume both a and b are real. Because (d1/2a± d−1/2b)2 is non-negative,

−da2 − d−1b2 ≤ 2ab ≤ da2 + d−1b2. (2.146)

This completes the argument for the real case. For two complex numbers a and b, we first observe

we can without loss of generality suppose the argument of a is zero. For the sum a+bwe may factor

exp(ıArg(a)), which has a modulus of one, out of |a+ b|. We have |a+ b|2−|a|2−|b|2 = a(b+ b̄).

The term a(b+ b̄) is real and bounded between±2|a||b|. So, we can apply the results from the real

case and arrive at (2.145). �

Proposition 2.3.70. Let M be an open book domain (Definition 2.1.1) and Mε be the correspond-

ing uniformly fattened domain (Definition 2.1.3). Assume Λ ≤ cε−1+δ where δ > 0 and Λ /∈ σ(Aε).

For some ε0 > 0, the family of linear operators {Jε}ε∈(0,ε0] that satisfies the conditions in Definition
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2.2.2 for the open book structure M is (u ∈ PεΛL2(Mε))

Jεu :=


√

2εΨ−1
Mk
Nk,ε

[
u+

∑
m Em,ε(Pm,εu− u)

]
Mk,S,ε 7→Mk

√
2εPm,εu Em,ε 7→ Em

(2.147)

Proof: First, we check whether Jεu satisfies the boundary conditions on G1.

lim
x′→x∈∂Mk,S,ε∩∂Em,ε

Nk,ε

[
u(x′) +

∑
m

Em,ε(Pm,εu− u)(x′)
]

= Nk,εPm,εu(x) = Pm,εu(x).

(2.148)

Thus Jε is in G1. Because each Em,ε(u−Pm,εu) is supported in a small O(ε) neighborhood around

Em, these extensions have disjoint supports. Using Lemma 2.3.69, we break up the terms on

Mk,S,ε,

(1− d)
∣∣√2εΨ−1

Mk
Nk,εu

∣∣2 + (1− d−1)
∑
m

∣∣√2εΨ−1
Mk
Nk,εEm,ε(Pm,εu− u)

∣∣2
≤
∣∣√2εΨ−1

Mk
Nk,ε

[
u+

∑
m

Em,ε(Pm,εu− u)
]∣∣2

≤ (1 + d)
∣∣√2εΨ−1

Mk
Nk,εu

∣∣2
+ (1 + d−1)

∑
m

∣∣√2εΨ−1
Mk
Nk,εEm,ε(Pm,εu− u)

∣∣2.
(2.149)

To demonstrate the L2 near isometry property, we first assume that ||Jεu||2L2(Mk) ≥ ||u||2L2(Mk,S,ε)
.

The other case ||Jεu||2L2(Mk) ≤ ||u||2L2(Mk,S,ε)
can be handled by appropriately modifying the sub-

sequent inequality (2.150) (i.e. flipping signs and switching upper and lower bounds). This results

in a largely redundant calculation, so it is omitted. We calculate the upper and lower bound on the
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norm difference:

∑
k

(1− d)||
√

2εΨ−1
Mk
Nk,εu||2L2(Mk) + (1− d−1)

∑
k,m

||
√

2εΨ−1
Mk
Nk,εEm,ε(Pm,εu− u)||2L2(Mk)

−
∑
k

||u||2L2(Mk,S,ε)
− ||u||2L2(Em,ε)

≤ ||Jεu||2L2(M) − ||u||2L2(Mε)

≤
∑
k

(1 + d)||
√

2εΨ−1
Mk
Nk,εu||2L2(Mk,S,ε)

+ (1 + d−1)
∑
k,m

||
√

2εΨ−1
Mk
Nk,εEm,ε(Pm,εu− u)||2L2(Mk,S,ε)

−
∑
k

||u||2L2(Mk,S,ε)
− ||u||2L2(Em,ε).

(2.150)

Since we only require demonstrating that ||Jεu||H1(M) is bounded above (2.20), we begin with

assuming ||Jεu||H1(M) ≥ ||u||H1(Mε) and write:

||Jεu||2H1(M) − ||u||2H1(Mε)

≤
∑
k

(1 + d)||
√

2εΨ−1
Mk
Nk,εu||2H1(Mk,S,ε)

+ (1 + d−1)
∑
k,m

||
√

2εΨ−1
Mk
Nk,εEm,ε(Pm,εu− u)||2H1(Mk,S,ε)

−
∑
k

||u||2H1(Mk,S,ε)
− ||u||2H1(Em,ε)

.

(2.151)

Having established these two inequalities (2.150) and (2.151), we collect terms in these in-

equalities and apply various propositions established in this chapter to demonstrate which terms

are negligible (are o(1) in an appropriate norm) and which terms are nearly an isometry (are 1+o(1)

in an appropriate norm).
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By Proposition 2.3.30, we have

∣∣ ∫
Mk

|
√

2εΨ−1
Mk
Nk,εu|2 dMk −

∫
Mk,S,ε

|u|2 dMε

∣∣
≤
∣∣(1 +O(ε))

∫
Mk,S

|
√

2εNk,εu|2 dMk −
∫
Mk,S,ε

|u|2 dMε

∣∣
≤ cε||u||2H1(Mε)

(2.152)

where the last inequality results from Corollary 2.3.45. We note the energy bound only needs to

be demonstrated from above, so we see

∫
Mk

|∇Mk

√
2εΨ−1

Mk
Nk,εu|2 dMk −

∫
Mk,S,ε

|∇u|2 dMε ≤ cε||u||2H1(Mε)
(2.153)

which follows from Proposition 2.3.30 and Corollary 2.3.47.

This leaves the extensions from the fattened bindings into the page (Em,ε(u − Pm,εu)) and the

norm of the binding unaccounted for in (2.150) and (2.151). We estimate the H1-norm of the

extensions. Using Proposition 2.3.30, Corollaries 2.3.45 and 2.3.47, and the disjoint supports of

Em,ε(u− Pm,εu):

∑
m

||
√

2εΨ−1
Mk
Nk,εEm,ε(Pm,εu− u)

∣∣|2H1(Mk,S) +
∑
m

||u||2H1(Em,ε)

≤ (1 +O(ε))
∑
m

||Em,ε(Pm,εu− u)
∣∣|2H1(Mk,S,ε)

+
∑
m

||u||2H1(Em,ε)
.

(2.154)

By Proposition 2.3.63, this is bounded by

(1 +O(ε))c
∑
m

||u||2H1(Em,ε)
. (2.155)

Because u ∈ PεΛL2(Mε) and Corollary 2.3.68, we arrive to the following upper bound on the norm

of (3.157):

cεδ||u||2H1(Mε)
. (2.156)
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Hence by setting d = εδ/2, we conclude that Jεu|Mk
is close in L2 to u and Jεu|Mk

does not

exceed the energy on Mε by more than an o(1) factor.

Thus Jε is an averaging operator as required in Theorem 2.2.6 completing the proof of Propo-

sition 2.3.70 and consequentially Theorem 2.2.6. �
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3. FATTENED DOMAINS OF VARIABLE WIDTH

3.1 The Main Notions

Here we reintroduce the main geometric objects and differential operators to be studied. Most

of these terms will be familiar from Chapter 2. Some are modified more than others; if a proposition

requires only small modification, its proof will be omitted.

The definition of the open book structure Definition 2.1.1 needs no change in this second main

chapter, so all references to an open book structure M refer to that definition.

3.1.1 The Non-Uniformly Fattened Structure

The fattened domain Mε for some ε > 0 consists of all points at the distance of order o(1)

from M .

Definition 3.1.1. Let M denote an open book in R3 as in Definition 2.1.1. Let ε0 > 0 and let

β ∈ (0, 1]. Suppose {rm} (m ≤ nE) is a collection of positive functions in C2(Em) (with no

dependence on ε) and {rk} (k ≤ nM ) is a collection of positive functions in C2(Mk) ∩ C(M̄k)

(also independent of ε) where εrk|Em ≤ εβrm for ε ∈ (0, ε0].

We say {Mε} (0 < ε ≤ ε0) is a model family of fattened domains (of type I, II, or III) if

Mε :=
( ⋃
m;x∈Em

B(x, rmε
β)
)⋃( ⋃

k;x∈Mk

B(x, rkε)
)
. (3.1)

In particular, if

• β > 1/2, {Mε} is a type I family,

• β < 1/2, {Mε} is a type II family,

• β = 1/2, {Mε} is a type III family.

Our results hold for more relaxed conditions. For instance, we may consider some ε dependent

family {rm,ε} in place of {rm} where rm,ε → rm as ε → 0. However this does not add more
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substance to the results, and so we work with the simplified paradigm. It is important to consider

even thinner (β > 1) neighborhoods around the binding, but this requires more setup. These thin

junctions are reserved for Section 3.4.

Remark 3.1.2. An observation about each type of fattened domain can be made:

• If β > 1/2, the ratio |
⋃
x∈Em B(x, rmε

β)|/|
⋃
x∈Mk

B(x, rkε)| tends to zero as ε tends to

zero.

• If β < 1/2, the ratio |
⋃
x∈Em B(x, rmε

β)|/|
⋃
x∈Mk

B(x, rkε)| tends to infinity as ε tends to

zero.

• If β = 1/2, the ratio |
⋃
x∈Em B(x, rmε

β)|/|
⋃
x∈Mk

B(x, rkε)| has a finite, positive limit as ε

tends to zero.

Hence we say type I domains correspond to the small binding case, type II domains correspond to

the large binding case, and type III domains correspond to the critical case.

3.1.2 The Local Structure of Non-Uniformly Fattened Domains

We need the notion of a small neighborhood of the binding Em in a page Mk which we call a

sleeve and denoted it by Sk,m,ε. In this chapter these sleeves are the parts of the page Mk that are

O(εβ)-close to Em.

Definition 3.1.3. Let M have the open book structure as pictured in Fig. 2.1. Let {am}m≤nE

denote a finite set of positive functions in C2(Em) (independent of ε). The sleeve Sk,m,ε on page

Mk at Em is defined as

Sk,m,ε := {x ∈Mk : distMk
(x, y ∈ Em) < am,ε(y)εβ} (3.2)

where am,ε = am(1 + o(1)) and distMk
denotes the geodesic distance along Mk (see Fig. 2.2). We

use the following shorthand notation for the page without its sleeves:

Mk,S := Mk\
⋃
m

Sk,m,ε. (3.3)
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The next statement is easy to establish due to the non-tangential nature of pages’ intersections:

Lemma 3.1.4. Under appropriate choice (which we will fix) of {am}, the ε-neighborhoods ofMk,S

and Mk′,S do not intersect each other for distinct indices k and k′.

Definition 3.1.5. Assuming a choice of orientation of Mk, we denote the unit normal vector to Mk

at a point x ∈ Mk as Nk(x). If Mk is non-orientable, a local choice of normal orientation will be

sufficient for our purposes.

We denote by INk(x),ε the largest open interval of the normal to Mk containing x contained in

Mε. Upon picking some local orientation of Mk, we let Ik,ε(x) ⊂ R denote the image of the fiber

INk(x),ε:

Ik,ε(x) := (−rk(x)ε, rk(x)ε). (3.4)

The fattened page Mk,S,ε is thus foliated into normal fibers INk(x),ε:

Mk,S,ε :=
⋃

x∈Mk,S

INk(x),ε. (3.5)

Remark 3.1.6. The latter foliation in terms of normal intervals is used to define the local averaging

operator on Mk,S,ε in Subsection 3.3.6.

Definition 3.1.7. LetM be an open book structure as in Definition 2.1.1. We define a cross-section

ωm,ε(x) of the fattened binding. For a point x in Em, Nx is the normal plane of Em at x, an affine

subspace of R3. The cross-section ωm,ε(x) is the connected component of the intersection of Nx

with Mε\
⋃
kMk,S,ε containing x.

The fattened binding is defined to be the union of these cross-sections.

Em,ε :=
⋃
x∈Em

ωm,ε(x). (3.6)

Definition 3.1.8. The interface Γk,m,ε between Mk,S,ε and Em,ε is the strip-like domain shared

between ∂Mk,S,ε and ∂Em,ε (see Fig. 2.2).
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Remark 3.1.9. The foliation of Em,ε in terms of the cross-sections is used to construct a local

averaging operator on the fattened binding.

We leave the explicit description of the fattened binding in Subsection 3.3.1.

3.1.3 Quadratic Forms and Operators of Types I, II, and III

The quadratic form Qε (Definition 2.1.11) and operator Aε (Proposition 2.1.12) are again the

energy and Neumann Laplacian on Mε, respectively.

We equipM with the surface measure dM (for a particular page we use dMk) induced from R3.

Similarly dEm denotes the induced measure on the 1D-submanifold Em from R3. For a domain

Ω ⊂ R3, we denote the square-integrable space weighted by function w as L2(Ω, w dΩ).

Definition 3.1.10. Let G1 denote Hilbert space on M where each page’s surface measure is

weighted by 2rk. I.e.

G1 := {u : u|Mk
∈ L2(Mk, 2rkdMk)}. (3.7)

Definition 3.1.11. Let Q1 be the closed, non-negative quadratic form on G1 given by

Q1(u) =
∑
k

∫
Mk

|∇Mk
u|2 2rk dM (3.8)

with domain G1
1 consisting of functions u for which Q1(u) is finite and that are continuous across

the bindings between pages Mk and Mk′:

u|∂Mk∩Em = u|∂Mk′∩Em . (3.9)

Here ∇Mk
is the gradient on Mk and restrictions to the binding Em coincide as elements of

H1/2(Em).

The previous chapter covered uniformly fattened domains, and that class of problem corre-

sponds directly to β = 1 and rm = rk = 1. The induced operator from Q1 is the weighted

Laplace-Beltrami operator which is consistent with previous results (i.e. the weight is a constant if
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Mε is uniformly fattened).

Proposition 3.1.12. The operator A1 associated with the quadratic form Q1 is

A1u := − 1

2rk
∇Mk

· 2rk∇Mk
u onMk (3.10)

with domain G2
1 consisting of G1 functions such that

∑
k

∫
Mk

|A1u|2 2rkdMk <∞ (3.11)

with continuity at the binding:

u|∂Mk∩Em = u|∂Mk′∩Em , (3.12)

and Kirchhoff conditions at the binding

∑
k:∂Mk⊃Em

rkDνku(Em) = 0 (3.13)

where Dνk denotes the normal derivative at ∂Mk.

The spectrum of A1 is discrete and non-negative.

Remark 3.1.13. By the trace theorem [27, 29], a function in G2
1 is bounded and continuous.

Type II and type III scenarios involve both surface and line measures.

Definition 3.1.14. For an open book structured M , we say M̃ is the decomposition of M if M̃ is

the topological space given by the disjoint union of each stratum (each embedded in its own copy

of R3). I.e.,

M̃ = (⊕kMk)⊕ (⊕mEm). (3.14)

In this topology, ∂Mk does not intersect Em for any m.

Definition 3.1.15. Let G2 denote the Hilbert space on the decomposed domain M̃ where each page

has the surface measure dMk in R3 weighted by 2rk and each binding has the line measure dEm
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weighted by πr2
m.

G2 := {(u, v) : u|Mk
∈ L2(Mk, 2rkdMk)

v = (v1, ..., vNE) vm ∈ L2(Em, πr
2
mdEm)}.

(3.15)

We abbreviate the pair (u, v) as w.

The next quadratic form is for type II fattened domains (β < 1/2) wherein the fattened bindings

are so large as to have a non-negligible contribution to the total energy in the ε→ 0 limit.

Definition 3.1.16. Let Q2 be the closed, non-negative quadratic form on G2 given by

Q2(w) =
∑
k

∫
Mk

|∇Mk
u|2 2rkdMk +

∑
m

∫
Em

|∇v|2 πr2
mdEm (3.16)

with domain G1
2 consisting of functions w = (u, v) for which Q2(w) is finite and u vanishes on the

boundary of Mk:

u(∂Mk) = 0. (3.17)

Equation 3.17 is exactly the reason for providing an alternative topology of M . The class of

smooth test functions on which we define the weak differentiability of a function in G2 is C∞c (M̃)

not C∞(M).

Because u and v are independent of one another, deriving the induced operator is trivial. Thus,

we have a weighted Dirichlet Laplace-Beltrami operator on each page and a weighted Laplacian

with periodic boundary conditions on the binding.

Proposition 3.1.17. The operator A2 associated with the quadratic form Q2 is

A2w :=


− 1

2rk
∇Mk

· 2rk∇Mk
u Mk

− 1

πr2
m

∇ · πr2
m∇v Em.

(3.18)
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The domain G2
2 consists of G2 functions such that

∑
k

∫
Mk

|A2u|2 2rkdMk +
∑
m

∫
Em

|A2v|2 πr2
mdEm <∞ (3.19)

with Dirichlet conditions on the boundary of Mk:

u|∂Mk∩Em = 0. (3.20)

The spectrum of A2 is discrete and non-negative.

Type III domains also possess the energy term due to the binding; however, the limit operator

demands continuity between pages and bindings.

Definition 3.1.18. Let Q3 be the closed, non-negative quadratic form on G2 given by

Q3(w) =
∑
k

∫
Mk

|∇Mk
u|2 2rkdMk +

∑
m

∫
Em

|∇v|2 πr2
mdEm (3.21)

with domain G1
3 consisting of functions w = (u, v) for which Q3(w) is finite and u and vm agree

on Em:

u|∂Mk∩Em = vm. (3.22)

Proposition 3.1.19. The operator A3 associated with the quadratic form Q3 is

A3w :=


− 1

2rk
∇Mk

· 2rk∇Mk
u Mk

− 1

πr2
m

∇ · πr2
m∇v Em.

(3.23)

The domain G2
3 consists of pairs (u, v) in G2 such that

∑
k

∫
Mk

|A3u|2 2rkdMk +
∑
m

∫
Em

|A3v|2 πr2
mdEm <∞, (3.24)
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u and v agree on the boundary of ∂Mk

u|∂Mk∩Em = vm, (3.25)

and u also satisfies Kirchhoff conditions:

∑
k:∂Mk⊃Em

rkDνku(Em) = 0. (3.26)

The spectrum of A3 is discrete and non-negative.

Throughout the remainder of this text G, G1, andA stand for one of the type I, II, or III spaces or

operators. The spectral projector PΛ (see Definition 2.1.15) is understood to project to the spectral

subspace of the respective operator A1, A2, or A3.

3.2 Formulation of Spectral Convergence for Types I, II, and III

We denote the non-decreasingly ordered eigenvalues of A as {λn}n∈N, and those of Aε as

{λεn}n∈N. As in the preceding chapter the proof is reduced to finding operators satisfying some

norm conditions. The definition of the averaging and extension operators are not different from

those in Chapter 2, but are replicated here for completeness.

Definition 3.2.1. A family of linear operators Jε from H1(Mε) to G1 is called averaging operators

if for any Λ /∈ σ(Aε) there is an ε0 such that for all ε ∈ (0, ε0] the following conditions are satisfied:

• For u ∈ PεΛL2(Mε), Jε is “nearly an isometry” from L2(Mε) to G with an o(1) error, i.e.

∣∣∣∣ ∣∣∣∣u∣∣∣∣2L2(Mε)
−
∣∣∣∣Jεu∣∣∣∣2G ∣∣∣∣ ≤ o(1)

∣∣∣∣u∣∣∣∣2
H1(Mε)

(3.27)

where o(1) is uniform with respect to u.

• For u ∈ PεΛL2(Mε), Jε asymptotically “does not increase the energy,” i.e.

Q(Jεu)−Qε(u) ≤ o(1)Qε(u) (3.28)
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where o(1) is uniform with respect to u.

Definition 3.2.2. A family of linear operatorsKε from G1 toH1(Mε) is called extension operators

if for any Λ /∈ σ(A) there is an ε0 such that for all ε ∈ (0, ε0] the following conditions are satisfied:

• For u ∈ PΛG, Kε is “nearly an isometry” from G to L2(Mε) with o(1) error, i.e.

∣∣∣∣ ∣∣∣∣u∣∣∣∣2G − ∣∣∣∣Kεu
∣∣∣∣2
L2(Mε)

∣∣∣∣ ≤ o(1)
∣∣∣∣u∣∣∣∣2G1 (3.29)

where o(1) is uniform with respect to u.

• For u ∈ PΛG, Kε asymptotically “does not increase” the energy, i.e.

Qε(Kεu)−Q(u) ≤ o(1)Q(u) (3.30)

where o(1) is uniform with respect to u.

Theorem 3.2.3. Let M be an open book structure as in Definition 2.1.1 and {Mε}ε∈(0,ε0] be its

fattened partner as in Definition 3.1.1 for either type I, II, or III. Let Aε be the operator as in

Proposition 2.1.12. Let A and be the corresponding operator according to the type Mε as in

Propositions 3.1.12, 3.1.17, or 3.1.19 for type I, II, or III respectively.

Suppose there exist averaging operators {Jε}ε∈(0,ε0] and extension operators {Kε}ε∈(0,ε0] as

stated in Definitions 3.2.1 and 3.2.2. Then, for any n

λn(Aε) →
ε→0

λn(A). (3.31)

We will construct the required averaging and extension operators, which will lead to the main

result of this chapter:

Theorem 3.2.4. Let M be an open book structure as in Definition 2.1.1 and {Mε}ε∈(0,ε0] be its

fattened partner as in Definition 3.1.1. Let Aε be the operator on Mε as given in Proposition

2.1.12. LetA be an operator onM accordingly defined in Propositions 3.1.12, 3.1.17, or 3.1.19 for
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type I, II, or III respectively. There exist averaging operators {Jε}ε∈(0,ε0] and extension operators

{Kε}ε∈(0,ε0] as stated in Definitions 3.2.1 and 3.2.2. Thus, for any n

λn(Aε) →
ε→0

λn(A). (3.32)

3.3 Proof of Spectral Convergence for Non-Uniformly Fattened Domains (Theorem 3.2.4)

As in the uniformly fattened case, we need to define a local averaging operator on each of

the fattened strata and a local extension operator from each of the strata on M into Mε. The

presence of more parameters introduces several new technicalities. As well as requiring some new

propositions, some proofs and definitions have to be considerably modified. Because of that we

specify for what β the proposition is applicable to if there are restrictions.

3.3.1 Fattened Binding Geometry

In this subsection we describe the geometry of the fattened binding and, in particular, specify

the length am. We also define a partition of unity for Em,ε that is used in the estimation of a trace

operator.

Definition 3.3.1. Let M be an open book structure. Let θm,k,k′(x) be the (smaller) angle between

two tangent vectors normal to two intersecting page boundaries ∂Mk and ∂Mk′ at x ∈ Em. In the

β = 1 case, am,ε is am. The sleeve width am (m ≤ nE) for β = 1 domains is (see Fig. 3.1):

am =


maxx∈Em(rm(x) + rk(x) cot(mink,k′ θm,k,k′(x)/2)) minx,k,k′ θm,k,k′(x)/2 < π/2

maxx∈Em(rm(x) + rk(x)) minx,k,k′ θm,k,k′(x)/2 ≥ π/2.

(3.33)

For β < 1 the limit ( ε→ 0) sleeve width am (m ≤ nE) is

am = rm, (3.34)

and the sleeve width am,ε is the distance from the binding at which the fattened page first emerges
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Figure 3.1: A cross-section of a β = 1 fattened binding neighborhood with distinct values of rm
and rk. Dashed lines denote the boundary of a fattened stratum. The thickest dashed lines each
denote a cross-section of Γk,m,ε.

Figure 3.2: When β < 1, the fattened binding is a cylindrical-like domain cut by an O(ε)-width
strip.

out of the fattening of the binding (see Fig. 3.2):

am,ε(y ∈ Em) = min
x∈U

distMk
(y, x) (3.35)

where

U := {x ∈Mk : x+ εrk(x)Nk(x) ∈ ∂
( ⋃
y∈Em

B(y, rm(y)εβ)
)
}. (3.36)

Thus the closure of the normal fibers INk(x),ε and INk′ (x′),ε do not touch for two distinct fattened
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pages Mk,S,ε and Mk′,S,ε.

Lemma 3.3.2. Let β < 1 then the area of ωm,ε(x) is πr2
mε

2β(1 +O(ε2−2β)).

Proof: Given a disk with radius rmεβ , we cut it with a chord of length 2rkε(1 + o(1)). After

removing the smaller region given by the cut, the residual area is πr2
mε

2β −O(ε2). �

Definition 3.3.3. Let lEm denote the length of the Em. We define γm(y) : U = [0, lEm ]/{0, lEm} 7→

Em to be a smooth parameterization of Em. We suppose around each point x on Em (with x =

γm(y)) there is a neighborhood V ⊂ U of y such that there exists two smooth orthogonal unit

length vectors vm,1 and vm,2 on γm(V ) that span Nγm(y).

We equip the normal plane Nx (x ∈ Em) with the following coordinate chart φx : Nx 7→ R2

where φx(x) = 0, φx is an isometry, and φx(vm,i(x)) is the standard basis vector eyi . The image

of ωm,ε(x) through this chart φx is denoted $m,ε(x), an open region in R2. We call $m,ε(x) a

cross-section as well.

This following lemma follows from our definition of the fattened binding. The reader should

note that cutting the fattened binding when β < 1 to have no protruding region (see Fig. 3.2 and

Definition 3.3.1) is necessary for the following to hold:

Proposition 3.3.4. Let {Em,ε} (0 < ε ≤ ε0) denote a family of fattened binding as previously

described. The following properties hold uniformly for each cross-section $m,ε(x) (x ∈ Em):

1. The inner and outer diameters over each cross-section are bounded of order εβ:

D(0, c1ε
β) ⊂ $m,ε(x) ⊂ D(0, c2ε

β). (3.37)

2. There is a positive number cr such that each cross-section $m,ε(x) is star-shaped with re-

spect to the disk D(0, crε
β) (see Fig. 3.3).

3. There exists numbers cM , cN , cU , and c3 such for each ε ∈ (0, ε0] there is a finite collection

of open sets {Ũi,ε} (i ≤ cU ) in R2 where
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Figure 3.3: Left: a view of $m,ε(x) when β = 1. Given rm ≥ rk, there is an cr such that this
cross-section is star-shaped with respect to D(0, crε). Right: a view of $m,ε(x) when β < 1.

(a) if y ∈ ∂$m,ε(x) then D(y, c3ε
β) ⊂ Ũi,ε for some i,

(b) each y ∈ ∂$m,ε(x) is contained in at most cN sets Ũi,ε,

(c) and for any i there is a special Lipschitz domain Ω̃i,ε with boundary graph function φ̃i,ε

such that Ũi,ε ∩$m,ε(x) = Ũi,ε ∩ Ω̃i,ε and

|φ̃i,ε(z)− φ̃i,ε(z′)| ≤ cM |z − z′|, z, z′ ∈ R. (3.38)

We extend (3) to a statement about the existence of a partition of unity on Em,ε that we will

need later.

Corollary 3.3.5. Let {Em,ε} denote a family of fattened binding neighborhoods as previously

described. For each ε ∈ (0, ε0] there exists a partition of unity {ϕi,ε} (i is a counting number up

to NU,ε which depends on ε) subordinate to the finite open cover {Ui,ε} of Em,ε with the following

properties:

1.
⋃
i Ui,ε is contained in

⋃
x∈Em B(x, c0ε

β).

2. Each point contained in the covering is in at most cN sets.

3. Each open set Ui,ε contains a ball of radius c1ε
β and is contained in a ball of radius c2ε

β .

4. If x ∈ ∂Em,ε, then B(x, c3ε
β) ⊂ Ui,ε for some i and Ui,ε ∩ ∂Em,ε is a connected subset

of some special Lipschitz domain Ωi,ε whose boundary graph function φi,ε has a (Lipschitz)

norm bounded above by a constant cM .
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5. There is a positive constant cϕ such that for each ε the gradient of each ϕi,ε has a uniform

bound cϕε−β:

|∇ϕi,ε| ≤ cϕε
−β. (3.39)

3.3.2 Fattened Binding Foliation

Given our foliations of the fattened pages Mk,S,ε and Mk′,S,ε (in terms of the normal lines

INk(x),ε), we wish to extend those foliations into Em,ε. As in the uniformly fattened case, we

accomplish this by introducing regions of the fattened binding called sectors. Breaking up the

fattened binding into sectors, we can describe a vector field whose image “connects” the foliation

of one fattened page to another foliation (see Fig. 3.4). These results are used for type I domains

only. Type II and III domains are handled differently.

Definition 3.3.6. Let Em be a binding and {Mk} (k ≤ nm) is the collection of at least two pages

that meet at Em all of which are orientable. We call the connected components of

Em,ε\(Em
⋃

(
⋃
k Sk,m,ε)) sectors denoted {Σm,i,ε} for i ≤ nm. A sector’s boundary contains

two sleeves of which we say that pair is associated with that sector (see Fig. 2.5).

If Em is a binding connected to non-orientable pages, then taking a partition into trivializable

neighborhoods is sufficient for our discussion. The case of only one page meeting at a binding is

handled separately.

Definition 3.3.7. Let Em be a binding and {Mk} (k ≤ nm) is the collection pages that meet at Em

all of which are orientable and there are at least two such pages. We say that the image of family

of vector fields {tvm,i,ε} (t ∈ (0, 1))

vm,i,ε(x) : Em ∪ Sk,m,ε ∪ Sk′,m,ε 7→ R3 Sk,m,ε, Sk′,m,ε ⊂ ∂Σm,i,ε (3.40)

is a foliation of the sector matching the foliation of fattened pages (see Fig. 3.4) if

1. vm,i,ε is Lipschitz.
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Figure 3.4: Cross sectional view of a pair of vector fields on each of the sleeves yielding a foliation
of the two sectors.

2. x 7→ x+vm,i,ε(x) is a homeomorphism between the domain of vm,i,ε and the outward bound-

ary of the sector: ∂Σm,i,ε ∩ (∂Em,ε\ ∪k ∂Mk,S,ε).

3. The limit of vm,i,ε(x) as x→ x′ ∈ ∂Sk,m,ε ∩Mk is ±εrk(x′)Nk(x′).

If Em meets only one sleeve Mk, we say a family of vector fields {vm,i,ε} (i = 1, 2)

vm,i,ε : Sk,m,ε 7→ R3 (3.41)

extends the foliation of the fattened page (see Fig. 2.7) if:

1. vm,i,ε is Lipschitz.

2. x 7→ x+ vm,i,ε(x) is a homeomorphism between the domain of vm,i,ε and a subset boundary

of the the fattened binding: ∂Em,ε\∂Mk,S,ε.

3. The limit of vm,i,ε(x) as x→ x′ ∈ ∂Sk,m,ε ∩Mk is ±εrk(x′)Nk(x′).

4. The limits of vm,1,ε(x) and vm,2,ε(x) match at Em.

We expand on (2) and describe the construction of {vm,i,ε} for all small, positive ε that has a

uniformly bounded gradient (where it exists).
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Proposition 3.3.8. There is a family of vector-valued functions {vm,i,ε} (ε ∈ (0, ε0]) that extends

the foliation of the fattened pages that have length ofO(εβ) and uniformly bounded gradient (where

it exists). I.e. there exists a c1 and c2 such that

max
x∈D(vm,i,ε)

||vm,i,ε(x)|| ≤ c1ε
β, (3.42)

max
x∈D(vm,i,ε)

||∇vm,i,ε(x)|| ≤ c2. (3.43)

Proof: For β < 1, this proof is simpler than the β = 1 case because of the convexity of the

cross-sections. When β = 1 and rm 6= 1 6= rk, the proof requires small modification. The proof

is contained along side the analogous proposition for the uniformly fattened case. See Appendix

B.1.1.

Corollary 3.3.9. Each sector Σm,i,ε can be parameterized using vm,i,ε. Namely, a point x ∈ Σm,i,ε

can be written as x = y + zvm,i,ε(y) (y ∈ Em
⋃

(
⋃
k Sk,m,ε) , z ∈ (0, 1)).

3.3.3 Approximating the Geometry of Non-Uniformly Fattened Strata

The propositions and their proofs in this subsection are not qualitatively different than the

uniformly fattened case in Chapter 2 except M̃k,S,ε is not a fiber bundle (locally trivializable as a

product) but a fibration (locally trivializable as a disjoint union of fibers).

Definition 3.3.10. We define the fibration of Mk,S with fibers Ik,ε(x) as M̃k,S,ε:

M̃k,S,ε :=
∐

x∈Mk,S

Ik,ε(x). (3.44)

Proposition 3.3.11. For sufficiently small ε, there exists a diffeomorphism φMk,S,ε
from Mk,S,ε to

M̃k,S,ε such that the induced linear operator ΦMk,S,ε
on H1(Mk,S,ε) (i.e. ΦMk,S,ε

u = u(φMk,S,ε
))

preserves H1-norm of a function up to an O(ε1/2) error.

∣∣ ||u||2H1(Mk,S,ε)
− ||ΦMk,S,ε

u||2
H1(M̃k,S,ε)

∣∣ ≤ cε||u||2H1(Mk,S,ε)
. (3.45)
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The inequality (3.45) also holds true for other Sobolev spaces Hn and in particular L2.

Definition 3.3.12. We define the fibration over Em with fibers $m,ε(x) as Ẽm,ε:

Ẽm,ε :=
∐
x∈Em

$m,ε(x). (3.46)

Proposition 3.3.13. For sufficiently small ε, there exists a diffeomorphism φEm,ε from Em,ε to Ẽm,ε

such that the induced linear operator ΦEm,ε on H1(Em,ε) (i.e. ΦEm,εu = u(φEm,ε)) preserves

H1-norm up to an o(1) error:

∣∣ ||u||2H1(Em,ε)
− ||ΦEm,εu||2H1(Ẽm,ε)

∣∣ ≤ cεβ||u||2H1(Em,ε)
. (3.47)

This inequality (3.47) also holds true for other Sobolev spaces Hn and in particular L2.

3.3.4 Bounds on the Sleeves for Non-Uniform Case

In this subsection we demonstrate there is a diffeomorphism fromMk toMk,S satisfying certain

properties that lets us subsequently bound the L2-norm of a function on a sleeve with respect to

its H1-norm on the page. Unlike the uniformly fattened case (see Subsection 2.3.4), when β < 1

the sleeves have varying width am,εεβ . The analogous proof in Chapter 2 requires a change in the

smooth contracting function.

Proposition 3.3.14. There exists a diffeomorphism ψMk
from Mk to Mk,S where

• each column vector of the Jacobian of ψMk
has length 1 +O(εβ),

• for any unit speed differentiable curve γ on M̄k,S that is normal to ∂Mk,S , ψMk
(γ) is unit

speed and normal to the boundary ∂Mk,

• and the induced operator ΨMk
(i.e. ΨMk

u = u(ψMk
)) preserves H1-norm up to an O(εβ/2)

error: ∣∣ ||u||2H1(Mk) − ||ΨMk
u||2H1(Mk,S)

∣∣ ≤ cεβ||u||2H1(Mk). (3.48)
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This inequality also holds true for other Sobolev spaces Hn and in particular L2.

Proof: A sufficiently small neighborhood V of ∂Mk admits a normal coordinate system. Mean-

ing there is a parameterization Xk on U ⊂ R2 of V :

Xk : (y1, y2) ∈ U = (0, lEm)× (0, a) 7→Mk,

such that distMk
(Em, Xk(y1, y2)) = y2.

(3.49)

For sufficiently small ε, ∂Mk,S is contained in V . Clearly ∂Mk,S is the image of Xk(·, am,εεβ). We

define a smooth shortening function

ϕε : (0, lEm)× (0, a) 7→ (0, lEm)× (am,εε
β, a) (3.50)

whose Jacobian Jϕε satisfies

Jϕε =

1 +O(εβ) O(εβ)

O(εβ) 1 +O(εβ)

 (3.51)

and

Jϕε|(0,lEm )×{0} = Jϕε|(0,lEm )×{a} = IdR2 . (3.52)

This is sufficient to construct ψMk
:

ψMk
(x) = Xk(ϕε(y1, y2)) (y1, y2) = X−1

k (x). (3.53)

The remainder of the proof follows from the calculating the induced metric from ψMk
as done in

Corollaries 2.3.23 and 2.3.24. �

Proposition 3.3.15. Let Mk be a smooth page with boundary
⋃
mEm. The L2 norm of a function
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on Sk,m,ε is O(εβ/2)-bounded by the function’s H1 norm on Mk:

∫
Sk,m,ε

|u|2 dMk ≤ cεβ
∫
Mk

|u|2 + |∇Mk
u|2 dMk. (3.54)

The proof of this proposition only requires small modification from the corresponding propo-

sition covered in the uniformly fattened case, and so it is omitted.

3.3.5 Extensions from Each Stratum Non-Uniform Case

We define extensions from the strata on M into the “trivialized” spaces M̃k,S,ε and Ẽm,ε and

relate them to the original space by the diffeomorphism operators in Propositions 3.3.11 and 3.3.13.

There is a new extension operator introduced for type II and type III domains which does not have

a counterpart in the uniformly fattened case. This operator Em,z,ε fills the roll of Em,S,z,ε for the

cases where the energy on the binding is non-negligible (β ≤ 1/2).

Definition 3.3.16. Let u ∈ L2(Mk,S) and M̃k,S,ε be as defined in Definition 3.3.10. We denote

a point in the fibration M̃k,S,ε as (y, z) for y ∈ Mk,S and z ∈ Ik,ε(y). We define Ẽk,z,ε to be the

extension operator from Mk,S to M̃k,S,ε, a bounded linear operator from L2(Mk,S) to L2(M̃k,S,ε),

given by:

Ẽk,z,εu(y, z) := u(y). (3.55)

Definition 3.3.17. Let u ∈ L2(Mk,S). We define Ek,z,ε to be the extension operator from Mk,S to

Mk,S,ε given by

Ek,z,ε := Φ−1
Mk,S,ε

Ẽk,z,ε. (3.56)

Lemma 3.3.18. For u ∈ H1(Mk,S, 2rkdMk), one has:

||u||2L2(Mk,S ,2rkdMk) = ||ε−1/2Ẽk,z,εu||2L2(M̃k,S,ε)
. (3.57)

Proof: Because
1

ε

∫
Ik,ε(y)

Ẽk,z,εu(y, z) dIk,ε(y) = 2rk(y) |u|2, (3.58)
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we have

∣∣ ||u||2L2(Mk,S ,2rkdMk) − ||ε−1/2Ẽk,z,εu||2L2(M̃k,S,ε)

∣∣
=

∣∣∣∣ ∫
Mk,S

|u|2 2rkdMk −
∫
Mk,S

∫
Ik,ε(y)

ε−1|Ẽk,z,εu(y, z)|2 dIk,ε(y) dMk

∣∣∣∣ (3.59)

which is zero. �

Lemma 3.3.19. For u ∈ H1(Mk,S, 2rkdMk), one has:

∣∣ ||u||2H1(Mk,S ,2rkdMk) = ||ε−1/2Ẽk,z,εu||2H1(M̃k,S,ε)
. (3.60)

Proof: Beginning with the difference of the norms of the derivative,

∣∣ ||∇Mk
u||2L2(Mk,S ,2rkdMk) − ||∇ε−1/2Ẽk,z,εu||2L2(M̃k,S,ε)

∣∣, (3.61)

we note DzẼk,z,εu = 0. We can then write:

∣∣∣∣ ∫
Mk,S

|∇Mk
u|2 2rkdMk −

∫
Mk,S

∫
Ik,ε(y)

ε−1|∇Ẽk,z,εu|2 dIk,ε(y) dM̃k

∣∣∣∣
=

∣∣∣∣ ∫
Mk,S

|∇Mk
u|2 2rkdMk

− ε−1

∫
Mk,S

∫
Ik,ε(y)

|∇Mk
Ẽk,z,εu|2 + |DzẼk,z,εu|2 dIk,ε(y) dM̃k,S,ε

∣∣∣∣
= 0. �

(3.62)

Corollary 3.3.20. For u ∈ H1(Mk,S, 2rkdMk), one has:

∣∣ ||u||2H1(Mk,S ,2rkdMk) − ||ε−1/2Ek,z,εu||2H1(Mk,S,ε)

∣∣ ≤ cε||u||2H1(Mk,S ,2rkdMk). (3.63)

Proof: This is a straightforward application of Proposition 3.3.11 to (3.60).

Definition 3.3.21. For the fattened binding Em,ε, we suppose its sectors Σm,i,ε are equipped with

coordinate system described in Corollary 3.3.9 generated by vm,i,ε, the vector-valued function as
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described in Definition 3.3.7 and Proposition 3.3.8. We define Em,S,z,ε to be the extension operator

on L2(Em
⋃

(
⋃
k Sk,m,ε)) to L2(Em,ε) given by sector as

Em,S,z,εu(y, z) = u(y) y ∈ Sk,m,ε
⋃

Sk′,m,ε 7→ Σm,i,ε 3 (y, z). (3.64)

Proposition 3.3.22. The extension operators ε−1/2Em,S,z,ε fromH1(Em
⋃

(
⋃
k Sk,m,ε) , 2rkdMk) to

H1(Em,ε) satisfy the following bound:

||ε−1/2Em,S,z,εu||2H1(Em,ε,2rkdMk) ≤ cεβ−1||u||2H1(Em
⋃

(
⋃
k Sk,m,ε),2rkdMk). (3.65)

Proof: Corollary 3.3.9 prescribes a coordinate system x = y+zvm,i,ε(y) ( y ∈ Em
⋃

(
⋃
k Sk,m,ε),

z ∈ (0, 1)) on each sector Σm,i,ε. With only small modification we conclude that the induced metric

on Σm,i,ε in to the proof of Proposition 2.3.37 is εβ bounded:

det(gΣm,i,ε,k) ≤ cεβdet(gMk
). (3.66)

The remainder of the proof is not qualitatively different than the uniformly fattened case leading

to (3.65). �

Definition 3.3.23. Let u ∈ L2(Em). We denote a point in the fibration Ẽm,ε as (y, z) for y ∈ Em

and z ∈ $m,ε(y). We define an extension operator Ẽm,z,ε from Em to Ẽm,ε given by:

Ẽm,z,εu(y, z) = u(y). (3.67)

Definition 3.3.24. Let u ∈ L2(Em). We define Em,z,ε to be the bounded linear operator from Em

to Em,ε given by:

Em,z,ε := Φ−1
Em,ε
Ẽm,z,ε. (3.68)
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Lemma 3.3.25. For u ∈ H1(Em, πr
2
mdEm), one has:

∣∣ ||u||2L2(Em,πr2mdEm) − ||ε−βẼm,z,εu||2L2(Ẽm,ε)

∣∣ ≤ cε2−2β||u||2H1(Em,πr2mdEm). (3.69)

Proof: We begin with the left hand side of (3.69):

∣∣ ||u||2L2(Em,πr2mdEm) − ||ε−βẼm,z,εu||2L2(Ẽm,ε)

∣∣
=

∣∣∣∣ ∫
Em

|u|2 πr2
mdEm −

∫
Em

∫
$m,ε(y)

ε−2β|Ẽm,z,εu|2 d$m,ε(y) dEm

∣∣∣∣
≤ max

y∈Em

|πrm(y)2 − |$m,ε(y)|ε−2β|
πr2

m

||u||2L2(Em,πrm(y)2dEm).

(3.70)

By Lemma 3.3.2, we get the O(ε2−2β) bound. �

Lemma 3.3.26. For u ∈ H1(Em, πr
2
mdEm), one has:

∣∣ ||u||2H1(Em,πr2mdEm) − ||ε−βẼm,z,εu||2H1(Ẽm,ε)

∣∣ ≤ cε2−2β||u||2H1(Em,πrm(y)2dEm). (3.71)

Proof: The transverse derivatives Dzi (i = 1, 2) of Ẽm,z,εu vanish, so

∣∣ ||Dyu||2L2(Em,πr2mdEm) − ||∇ε−βẼm,z,εu||2L2(Ẽm,ε)

∣∣
=

∣∣∣∣ ∫
Em

|Dyu|2 πr2
mdEm −

∫
Em

∫
$m,ε(y)

ε−2β|∇Ẽm,z,εu|2 dẼm,ε
∣∣∣∣

≤ max
y∈Em

|πrm(y)2 − |$m,ε(y)|ε−2β|
πrm(y)2

||Dyu||2L2(Em,πr2mdEm)

(3.72)

which is again O(ε2−2β) bounded by Lemma 3.3.2. �

Corollary 3.3.27. For u ∈ H1(Em, πr
2
mdEm), one has:

∣∣ ||u||2H1(Em,πr2mdEm) − ||ε−βEm,z,εu||2H1(Em,ε)

∣∣ ≤ cεmin(2−2β,β)||u||2H1(Em,πrm(y)2dEm). (3.73)

Proof: This is a straightforward application of Proposition 3.3.13 to (3.71).
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3.3.6 Local Averaging Operators

This subsection concerns an averaging operator on the fattened binding and an averaging op-

eration on the fattened binding by means of an integral representation. These averaging operators

satisfy some Poincaré-type inequalities. We begin with defining averaging operators in fibrations

M̃k,S,ε and Ẽm,ε (see Definitions 3.3.10 and 3.3.12) and apply the transformation operators ΦMk,S,ε

and ΦEm,ε to get our desired local averaging operator. For type II and III domains, we need a

mollification operator for the fattened binding which regularizes the averaged function enough so

we can apply a Poincaré-type inequality on the higher order derivatives.

In the case of the fattened pages, each fiber contains (and is obviously star-shaped with respect

to) an interval of some fixed length. This time we use the integral representation (Theorem 2.3.49)

for the local averaging operator on non-uniformly fattened domains

Definition 3.3.28. Let cl = infk;y∈Mk
rk(y).

Let ϕ ∈ C∞0 ((−1, 1)) such that
∫

(−1,1)
ϕ = 1. Ñk,ε denotes the following bounded linear

operator on L2(M̃k,S,ε):

Ñk,εu(y, z) =
1

|2clε|

∫
Ik,ε(y)

ϕ

(
ζ

clε

)
u(y, ζ) dIk,ε(y). (3.74)

We also let Ñk,ε denote the bounded linear operator from L2(M̃k,S,ε) to L2(Mk,S, 2rkdMk) by

means of restricting Ñk,εu to Mk,S (Ñk,εu(y, z = 0)).

Proposition 3.3.29. The family of averaging operators {Nk,ε} on L2(M̃k,S,ε) has a uniformly

bound c on their norms.

Boundedness is clear from the Cauchy-Schwartz Inequality.

Definition 3.3.30. The averaging operator Nk,ε on Mk,S,ε is given by composition with the corre-

sponding diffeomorphism:

Nk,ε := Φ−1
Mk,S,ε

Ñk,εΦMk,S,ε
. (3.75)

73



We also let Nk,ε to denote a bounded linear operator from L2(Mk,S,ε) to L2(Mk,S) by restricting

Nk,εu to Mk,S (Nk,εu|Mk,S
= Ñk,εΦMk,S,ε

u(y, z = 0)).

Proposition 3.3.31. For u ∈ H1(M̃k,S,ε), Ñk,ε satisfies a Poincaré-type inequality:

∫
M̃k,S,ε

|u− Ñk,εu|2 dM̃k,S,ε ≤ ckε
2

∫
M̃k,S,ε

|∇u|2 dM̃k,S,ε. (3.76)

Proof: We begin with our integral representation:

∫
M̃k,S,ε

|u(y, z)− Ñk,εu(y, z)|2 dM̃k,S,ε =

∫
M̃k,S,ε

∣∣ ∫
Ik,ε(y)

fy,ζ(z, r, θ)Dζu(y, ζ) dζ
∣∣2 dM̃k,S,ε.

(3.77)

After applying the bounds of fy,ζ according to Theorem 2.3.49, we then use the embedding of L1

into L2 over a compact space:

c

∫
M̃k,S,ε

∣∣ ∫
Ik,ε(y)

Dζu(y, ζ) dζ
∣∣2 dM̃k,S,ε

≤ c′
∫
M̃k,S,ε

|Ik,ε(y)|
∫
Ik,ε(y)

|Dζu(y, ζ)|2 dζdM̃k,S,ε

≤ c max
y∈Mk,S

|Ik,ε(y)|2 ||∇u||2
L2(M̃k,S,ε)

.

(3.78)

Corollary 3.3.32. For u ∈ H1(Mk,S,ε), the averaging operator Nk,ε satisfies a Poincaré-type

inequality:

||u−Nk,εu||2L2(Mk,S,ε)
≤ cε2||∇u||2L2(Mk,S,ε)

. (3.79)

Proof: This is a straightforward application of Proposition 3.3.11 to (3.76).

Proposition 3.3.33. For u ∈ H1(M̃k,S,ε), one has:

∣∣∣∣ ||u||2L2(M̃k,S,ε)
− ||ε1/2Ñk,εu||2L2(Mk,S ,2rkdMk)

∣∣∣∣ ≤ cε||u||2
H1(M̃k,S,ε)

. (3.80)
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Proof: Bounding the difference squared,

∣∣∣∣ ∫
M̃k,S,ε

|u|2 dM̃k,S,ε −
∫
Mk,S

|Ñk,εu|2 2rkε dMk

∣∣∣∣, (3.81)

we have∣∣∣∣ ∫
M̃k,S,ε

|u|2 dM̃k,S,ε −
∫
Mk,S

(∫
Ik,ε(y)

|Ñk,εu|2 dIk,ε(y)
)
dMk

∣∣∣∣
≤ (1 +O(ε))||u− Ñk,εu||L2(M̃k,S,ε)

||u+ Ñk,εu||L2(M̃k,S,ε)

≤ 2ε(1 +O(ε))||u||2
H1(M̃k,S,ε)

. �

(3.82)

Proposition 3.3.34. The linear operator Ñk,ε is bounded on H1(M̃k,S,ε) :

∫
Mk,S

|∇Mk
ε1/2Ñk,εu|2 2rkdMk ≤

∫
(−1,1)

|ϕ|2
∫
M̃k,S,ε

|∇Mk
u|2 dM̃k,S,ε. (3.83)

Furthermore, ε1/2Ñk,εu satisfies the following energy bound for u ∈ H2(M̃k,S,ε):

∫
Mk,S

|∇Mk
ε1/2Ñk,εu|2 2rkdMk −

∫
M̃k,S,ε

|∇Mk
u|2 dM̃k,S,ε ≤ cε||u||2

H2(M̃k,S,ε)
. (3.84)

Proof: We relate the integral on the weighted page with the fattened domain:

∫
Mk,S

|∇Mk
ε1/2Ñk,εu|2 2rkdMk =

∫
Mk,S

(∫
Ik,ε(y)

|∇Mk
Ñk,εu|2dIk,ε(y)

)
dMk. (3.85)

Using the reverse Fatou Lemma (Lemma A.1.2), we have:

∫
M̃k,S,ε

∣∣∣∇Mk

1

2clε

∫
I(y)

ϕ

(
ζ

clε

)
u dIk,ε(y)

∣∣∣2 dM̃k,S,ε

≤
∫
M̃k,S,ε

∣∣∣ lim sup
δ→0

1

2clε

∫
Ik,ε(y)

u(y + δ, ζ)− u(y, ζ)

δ
ϕ

(
ζ

clε

)
dIk,ε(y)

∣∣∣2 dM̃k,S,ε

≤
∫
M̃k,S,ε

∣∣∣ 1

2clε

∫
Ik,ε(y)

ϕ

(
ζ

clε

)
∇Mk

u dIk,ε(y)
∣∣∣2 dM̃k,S,ε.

(3.86)
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We then use the embedding of L1 in L2 on a compact interval and the Cauchy-Schwartz Inequality:

∫
M̃k,S,ε

∣∣∣ 1

2clε

∫
Ik,ε(y)

ϕ

(
ζ

clε

)
∇Mk

u dIk,ε(y)
∣∣∣2 dM̃k,S,ε

≤
∫
M̃k,S,ε

( 1

2clε

∫
Ik,ε(y)

|ϕ
(
ζ

clε

)
∇Mk

u|2 dIk,ε(y)
)
dM̃k,S,ε

≤
||ϕ(ζ/clε)||2L2(Ik,ε)

2clε

∫
M̃k,S,ε

|∇Mk
u|2 dM̃k,S,ε.

(3.87)

To demonstrate the other energy bound, we note

∫
M̃k,S,ε

∣∣∣ 1

2clε

∫
Ik,ε(y)

ϕ

(
ζ

clε

)
∇Mk

u dIk,ε(y)
∣∣∣2 dM̃k,S,ε = ||Ñk,ε∇Mk

u||2
L2(M̃k,S,ε)

. (3.88)

Taking the difference of the energy of the averaged function with the function’s energy, we have

∫
Mk,S

|∇Mk
ε1/2Ñk,εu|2 2rkdMk −

∫
M̃k,S,ε

|∇Mk
u|2 dM̃k,S,ε

≤
∫
M̃k,S,ε

|Ñk,ε∇Mk
u|2 dM̃k,S,ε −

∫
M̃k,S,ε

|∇Mk
u|2 dM̃k,S,ε

≤ ||Ñk,ε∇Mk
u−∇Mk

u||L2(M̃k,S,ε)
||Ñk,ε∇Mk

u+∇Mk
u||L2(M̃k,S,ε)

.

(3.89)

Here we apply Theorem 2.3.49. Assuming u ∈ H2(M̃k,S,ε), it follows Dy1u, Dy2u ∈ H1(M̃k,S,ε).

We suppose∇Mk
u = (w, v) with w, v ∈ H1(M̃k,S,ε). Letting Rα

y denote the remainder operator in

the integral representation (2.111), we have

∇Mk
u = (w +Ry1

y Dy1w +Ry2
y Dy2w, v +Ry1

y Dy1v +Ry2
y Dy2v). (3.90)

Hence Ñk,ε∇Mk
u−∇Mk

u is (Rα
yD

αw,Rα
yD

αv). Therefore by the Cauchy inequality, this expres-

sion is proportional to Rα
y∆u and bounded by cε||u||2

H2(M̃k,S,ε)
. �

Proposition 3.3.35. For u ∈ H1(Mk,S,ε), one has:

∣∣∣∣ ||u||2L2(Mk,S,ε)
− ||ε1/2Nk,εu||2L2(Mk,S ,2rkdMk)

∣∣∣∣ ≤ cε||u||2H1(Mk,S,ε)
. (3.91)
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Proposition 3.3.36. The linear operator Nk,ε is bounded on H1(Mk,S,ε),

∫
Mk,S

|∇Mk
ε1/2Nk,εu|2 2rkdMk ≤

∫
(−1,1)

|ϕ|2
∫
Mk,S,ε

|∇Mk
u|2 dMε. (3.92)

Furthermore, ε1/2Nk,εu satisfies the following energy bound for u ∈ H2(Mk,S,ε):

∫
Mk,S

|∇Mk
ε1/2Nk,εu|2 2rkdMk −

∫
Mk,S,ε

|∇Mk
u|2 dMε ≤ cε||u||2H2(Mk,S,ε)

. (3.93)

Proof: This an application of Proposition 3.3.11 on Proposition 3.3.34.

Definition 3.3.37. We denote P̃m,ε to be the following bounded linear operator on L2(Ẽm,ε):

P̃m,εu(y, z) =
1

|D(0, crεβ)|

∫
D(0,crεβ)

ϕ

(
ζ

crεβ

)
u(y, ζ) d$m,ε(y) , (3.94)

where ϕ ∈ C∞0 (D(0, 1)) such that
∫
D(0,1)

ϕ = 1.

Let P̃m,ε also denote a bounded linear operator from L2(Ẽm,ε) to L2(Em, πr
2
mdEm) by means

of restricting P̃m,ε to Em (P̃m,εu(y, z = 0)).

Proposition 3.3.38. The family of averaging operators {P̃m,ε} on L2(Ẽm,ε) has a uniform bound

c.

As with the operator Ñk,ε, boundedness of P̃m,ε is clear from the Cauchy-Schwartz Inequality.

Definition 3.3.39. The averaging operator Pm,ε on Em,ε is given by composition with the corre-

sponding diffeomorphism:

Pm,ε := Φ−1
Em,ε

P̃m,εΦEm,ε . (3.95)

We also let Pm,ε to denote a bounded linear operator from L2(Em,ε) to L2(Em) by restriction onto

Em (Pm,εu|Em = P̃m,εΦEm,εu(y, z = 0)).
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Proposition 3.3.40. The linear operator P̃m,ε is bounded on H1(Ẽm,ε),

∫
Ẽm,ε

|∇P̃m,εu|2 dẼm,ε ≤
∫
D(0,1)

|ϕ|2
∫
Ẽm,ε

|∇u|2 dẼm,ε. (3.96)

Proof: Using the reverse Fatou Lemma (Lemma A.1.2):

∫
Ẽm,ε

∣∣∣∇ 1

|D(0, crεβ)|

∫
D(0,crεβ)

ϕ

(
ζ

crεβ

)
u d$m,ε(y)

∣∣∣2 dẼm,ε
≤
∫
Ẽm,ε

∣∣∣ lim sup
δ→0

1

|D(0, crεβ)|∫
D(0,crεβ)

u(y + δ, ζ)− u(y, ζ)

δ
ϕ

(
ζ

crεβ

)
d$m,ε(y)

∣∣∣2 dẼm,ε
≤
∫
Ẽm,ε

∣∣∣ 1

|D(0, crεβ)|

∫
D(0,crεβ)

ϕ

(
ζ

crεβ

)
Dyu d$m,ε(y)

∣∣∣2 dẼm,ε.
(3.97)

We use the embedding of L1 in L2 on a compact interval and Cauchy-Schwartz:

∫
Ẽm,ε

∣∣∣ 1

|D(0, crεβ)|

∫
D(0,crεβ)

ϕ

(
ζ

crεβ

)
Dyu d$m,ε(y)

∣∣∣2 dẼm,ε
≤
∫
Ẽm,ε

( 1

|D(0, crεβ)|

∫
D(0,crεβ)

|ϕ
(

ζ

crεβ

)
Dyu|2 d$m,ε(y)

)
dẼm,ε

≤
||ϕ(ζ/crε

β)||2
L2(D(0,crεβ))

|D(0, crεβ)|

∫
Ẽm,ε

|Dyu|2 dẼm,ε. �

(3.98)

Proposition 3.3.41. For u ∈ H1(Ẽm,ε), the averaging operator P̃m,ε satisfies a Poincaré-type

inequality: ∫
Ẽm,ε

|u− P̃m,εu|2 dẼm,ε ≤ cε2β
∫
Ẽm,ε

|∇u|2 dẼm,ε. (3.99)

Proof: We apply our integral representation:

|u− P̃m,εu|2 =

∣∣∣∣ ∫
$m,ε(y)

fy,ζ(z, r, θ)

r
Dζu(y, ζ) d$m,ε(y)

∣∣∣∣2
≤ c

∣∣∣∣ ∫
$m,ε(y)

Dζu(y, ζ)

r
d$m,ε(y)

∣∣∣∣2 ≤ c′||RyDζu(y, ζ)||2L2($m,ε(y))

(3.100)
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where Ry is the operator from Lemma 2.3.48 on L2($m,ε(y)) (in this case it is the convolution

with 1/r). Using the upper bound on the norm of Ry (cεβ), we get the desired result. �

Corollary 3.3.42. For u ∈ H1(Em,ε), the averaging operator Pm,ε satisfies a Poincaré-type in-

equality:

||u− Pm,ε u||2L2(Em,ε) ≤ cε2β||∇u||2L2(Em,ε). (3.101)

Proof: This is another application of Proposition 3.3.13 to (3.100).

We cannot in general commute an averaging operator on the fibers with the derivative with

respect to the transverse variables. For the binding, we need a tighter approximation of a function,

and so we introduce a mollifier that lets us commute derivatives with the averages over the fibers.

The following lemma appears in “Differential Functions on Bad Domains” [28] where it is used to

develop a generalization of the Poincaré inequality for a function on an ε-radius cylinder.

Lemma 3.3.43. Let Ω be a bounded domain in Rn and let K ∈ C∞0 (Rm). For a function v defined

on the cylinder D = Rm × Ω ⊂ Rm+n,

T v(x) =

∫
Rm

K(t)v(y + |z|t, z) dt x = (y, z) ∈ D. (3.102)

Let l ∈ Z+. Suppose that ∫
Rm

K(t)tνdt = 0 (3.103)

for all multi-indices ν ∈ Zm+ , |ν| ≤ l − 1. Then if T : Llp(D) → Llp(D) for 1 ≤ p ≤ ∞ and the

following estimate holds:

||∇lT v||Lp(D) ≤ c||∇lv||Lp(D). (3.104)

Furthermore, if
∫
K(t)dt = 1, then the following estimate holds

||∇k(T v − v)||Lp(D) ≤ crl−k||∇lv||Lp(D) (3.105)

where 0 ≤ k ≤ l, r = sup{|z| : z ∈ Ω} and v an arbitrary function in Llp(D).
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Proof: The proof is included in Appendix B.1.7.

Remark 3.3.44. Clearly, one can rewrite t′ = y + |z|t to get explicit convolution of v with K.

Thus it follows the mollifier commutes with the longitudinal derivative: DyT v = T Dyv. We note

that the lemma holds if the longitudinal dimensions Rm are instead compact without a boundary

(i.e. holds for Tm, see proof of Lemma 3.3.43).

While T as it is written is defined for a cylindrical domain, we can define an action of an

operator of the form in Lemma 3.3.43 on Pm,εu since its values are uniquely determined on Em ×

D(0, crε
β). Let us expand:

Definition 3.3.45. Let Tm,ε be a bounded linear operator on H1(Em ×D(0, rεβ)) in the sense of

Lemma 3.3.43. I.e. for u ∈ H1(Em ×D(0, rεβ))

Tm,εu =

∫
Em

K(t)u(y + |z|t, z)dt y ∈ Em z ∈ D(0, rεβ) (3.106)

where K(t) ∈ C∞0 (Em) and K(t) satisfies

∫
Em

K(t) dEm =

∫
Em

K(t)t dEm = 0. (3.107)

The function Tm,εP̃m,εu is constant valued on each cross-section (y,D(0, rεβ)), and so this oper-

ator product can be extended to H1(Ẽm,ε) by means of extending the value on (y,D(0, rεβ)) to

$m,ε(y). Hence we define an bounded linear operator Tm,εP̃m,ε on H1(Ẽm,ε).

Corollary 3.3.46. For u ∈ H2(Ẽm,ε), one has the following:

||∆(Tm,εP̃m,εu− P̃m,εu)||L2(Ẽm,ε)
≤ c||∆u||L2(Ẽm,ε)

, (3.108)

||∇
(
Tm,εP̃m,εu− P̃m,εu

)
||L2(Ẽm,ε)

≤ cεβ||∆u||L2(Ẽm,ε)
, (3.109)
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and

||Tm,εP̃m,εu− P̃m,εu||L2(Ẽm,ε)
≤ cε2β||∆u||L2(Ẽm,ε)

. (3.110)

Furthermore, Tm,εP̃m,ε commutes with Dy on Ẽm,ε.

Introducing Tm,ε leads to the following close approximation of function in H1:

Proposition 3.3.47. Let u ∈ H2(Ẽm,ε). The function Tm,εP̃m,εu is close with respect to the H1-

norm to u:

||u− Tm,εP̃m,εu||2H1(Ẽm,ε)
≤ cε2β||u||2

H2(Ẽm,ε)
. (3.111)

Proof: Bounding the L2-norm, we have:

u− Tm,εP̃m,εu =
(
u− P̃m,εu

)
+
(
P̃m,εu− Tm,εP̃m,εu

)
(3.112)

which is bounded by Proposition 3.3.41 and (3.110). To bound the derivative we write

∇(u− Tm,εP̃m,εu) = ∇u− Tm,εP̃m,ε∇u

=
(
∇u− P̃m,ε∇u

)
+ (P̃m,ε∇u− Tm,εP̃m,ε∇u).

(3.113)

The first term can be reformulated in terms of the Poincaré inequality on ∇u (see Proposition

3.3.41 and proof of Proposition 3.3.34), and the second term is handled by (3.109). �

Proposition 3.3.48. Let Ẽm,ε be a fattened binding of type II or III (β ≤ 1/2). For u ∈ H1(Ẽm,ε),

one has: ∣∣ ||εβTm,εP̃m,εu||2L2(Em,πr2mdEm) − ||u||2L2(Ẽm,ε)

∣∣ ≤ cεβ||u||2
H1(Ẽm,ε)

. (3.114)
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Proof: Rewriting the first term as an integral over Ẽm,ε, we get:

∣∣∣∣ ∫
Em

ε2β|Tm,εP̃m,εu|2πr2
m dEm −

∫
Ẽm,ε

|u|2 dẼm,ε
∣∣∣∣

=

∣∣∣∣ ∫
Em

πrm(y)2ε2β

|$m,ε(y)|

(∫
$m,ε(y)

d$m,ε(y)
)
|Tm,εP̃m,εu|2 dy

−
∫
Em

∫
$m,ε(y)

|u|2 d$m,ε(y) dy

∣∣∣∣.
(3.115)

Since β < 1, we use the estimate in Lemma 3.3.2. This gives us an upper bound on (3.115) of:

max
y

πrm(y)2ε2β − |$m,ε(y)|
|$m,ε(y)|

||Tm,εP̃m,εu||2L2(Em,πr2mdEm)

+

∫
Ẽm,ε

|Tm,εP̃m,εu|2 − |u|2 dẼm,ε ≤ cεmin(β,2−2β)||u||2
H1(Ẽm,ε)

.

(3.116)

Since β ≤ 1/2, we get O(εβ) bounds on (3.114). �

Proposition 3.3.49. Let Ẽm,ε be a fattened binding of type I or II (β ≤ 1/2). If u ∈ H2(Ẽm,ε),

then εβTm,εP̃m,εu satisfies the following energy bound:

∫
Em

|Dyε
βTm,εP̃m,εu|2 πr2

mdEm −
∫
Ẽm,ε

|∇u|2 dẼm,ε ≤ cεβ||u||2
H2(Ẽm,ε)

. (3.117)

Proof: Starting with

∫
Em

|Dyε
βTm,εP̃m,εu|2 πr2

mdEm −
∫
Ẽm,ε

|∇u|2 dẼm,ε, (3.118)

we use Lemma 3.3.2 on the first term to get:

∫
Ẽm,ε

(1 +O(ε2−2β))|DyTm,εP̃m,εu|2 dẼm,ε −
∫
Ẽm,ε

|∇u|2 dẼm,ε

≤ (1 +O(ε2−2β))

∫
Ẽm,ε

|Tm,εP̃m,εDzu|2 − |Dzu|2 dẼm,ε

≤ (1 +O(ε2−2β))||Tm,εDzu−Dzu||L2(Ẽm,ε)
||Tm,εDzu+Dzu||L2(Ẽm,ε)

.

(3.119)
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Lastly using Corollary 3.3.46, (3.119) is bounded by

(1 +O(ε2−2β))εβ||u||2
H2(Ẽm,ε)

. � (3.120)

Definition 3.3.50. We define PT,m,ε to be an operator on H1(Em,ε):

PT,m,ε = Φ−1
Em,ε
Tm,εP̃m,εΦEm,ε . (3.121)

We also let PT,m,ε be an operator from H1(Em,ε) to H1(Em) by restricting PT,m,εu(x, y) to Em

(PT,m,εu(x, y = 0)).

Proposition 3.3.51. Let Em,ε be a fattened binding of type II or III (β ≤ 1/2). For u ∈ H1(Em,ε),

one has: ∣∣ ||εβPT,m,εu||2L2(Em,πr2mdEm) − ||u||2L2(Em,ε)

∣∣ ≤ cεβ||u||2H1(Em,ε)
. (3.122)

Proof: This is an application of Proposition 3.3.11 on Proposition 3.3.48.

Proposition 3.3.52. Let Em,ε be a fattened binding of type I or II (β ≤ 1/2). If u ∈ H2(Em,ε),

then εβPT,m,εu satisfies the following energy bound:

∫
Em

|Dyε
βPT,m,εu|2 πr2

mdEm −
∫
Em,ε

|∇u|2 dMε ≤ cεβ||u||2H2(Em,ε)
. (3.123)

Proof: This is an application of Proposition 3.3.11 on Proposition 3.3.49.

3.3.7 Bounding the Norm on the Type I Fattened Binding and Extending the Average on

the Type II Fattened Binding

Having established the required estimations for local averaging operators on each stratum, we

now need to combine these different local averaging operators. In this subsection, we establish

several lemmas regarding the trace on the interface Γk,m,ε between Mk,S,ε and Em,ε. We also

extend the averaged component Pm,εu from the fattened binding to the fattened pages. This leads

to an important observation concerning type II domains.
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Definition 3.3.53. The trace or restriction operator from Mk,S,ε to Γk,m,ε is denoted Tk,m,ε.

The trace operator from Em,ε to Γk,m,ε is denoted Tm,k,ε.

Lemma 3.3.54. Let {Em,ε} be a family of fattened bindings (ε ∈ (0, ε0]). Let u ∈ H1(Em,ε), then

one has:

ε−β||Tm,k,ε(u− Pm,εu)||2L2(Γk,m,ε)
+ [Tm,k,ε(u− Pm,εu)]2Γk,m,ε ≤ cm||u||2H1(Em,ε)

. (3.124)

The same inequality holds for PT,m,ε in place of Pm,ε.

Proof 3.3.54: This proof only requires small modification from the uniformly fattened case.

We refer to the proof of Lemma 2.3.62 and note the following differences: the homothetic scaling

map θ is changed to θ : x 7→ x/εβ and the partition of unity used in the previous proof has already

been adjusted for fattened bindings of β < 1 in Corollary 3.3.5. �

With a norm estimate on the trace space of Em,ε, we may now construct an extension operator

from Γk,m,ε to Mk,S,ε.

Proposition 3.3.55. For u ∈ H1(Em,ε), the complement of the cross-sectional average u− Pm,εu

has an extension into Mε denoted Em,ε(u− Pm,εu) such that

||Em,ε(u− Pm,εu)||2H1(Mε)
≤ cm||u||2H1(Em,ε)

. (3.125)

Furthermore, Em,ε(u − Pm,εu) is supported within an O(εβ) neighborhood of Em. The same in-

equality holds for PT,m,ε in place of Pm,ε.

Proof: This proof does not significantly differ from the proof of Proposition 2.3.63 (see Ap-

pendix B.1.5).

Corollary 3.3.56. For u ∈ H1(Em,ε), one has:

||Pm,εu− Tk,m,εNk,εu||2L2(Em,ε) ≤ cε3β−1||u||2H1(Em,ε)
. (3.126)
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Proof: While Tk,m,εNk,εu is a function on the interface Γk,m,ε, we can express it as a function

onEm by noting it is constant valued on ∂ωm,ε(x). With an abuse of notation, we can setNk,εu(x ∈

Em) := Nk,εu|∂ωm,ε(x). Beginning with an application of Proposition 3.3.13, we have

||Φ−1
Em,ε

P̃m,εΦEm,εu− Tk,m,εNk,εu||2L2(Em,ε)

≤ (1 +O(εβ))||P̃m,εΦEm,εu− ΦEm,εTk,m,εNk,εu||2L2(Ẽm,ε)

= (1 +O(εβ))

∫
Em

∫
$m,ε(y)

|P̃m,εΦEm,εu− ΦEm,εTk,m,εNk,εu|2 d$m,ε(y)dEm.

(3.127)

Noting P̃m,εΦEm,εu can be extended to the boundary, (3.127) is bounded by

maxy∈Em |$m,ε(y)|
miny∈Em |Ik,ε(y, am,ε(y))|

∫
Γ̃k,m,ε

|Ñk,ε[P̃m,εΦEm,εu− ΦEm,εTk,m,εu]|2 dΓ̃k,m,ε. (3.128)

Because the norm of Ñk,ε is bounded independently of ε, the above is bounded by

cε2β−1

∫
Γ̃k,m,ε

|P̃m,εΦEm,εu− ΦEm,εTk,m,εu|2 dΓ̃k,m,ε. (3.129)

Observe this is the same L2 term from Lemma 3.3.54 up Φ−1
Em,ε

and a scaling. Thus the desired

bound is achieved for (3.126). �

Lemma 3.3.57. For u ∈ H1(Mk,S,ε), one has:

||Tk,m,εu||2L2(Γk,m,ε)
≤ c||u||2H1(Mk,S,ε)

. (3.130)

Proof: This proof appears in Appendix B.1.6.

Corollary 3.3.58. For u ∈ H1(Mε), one has:

||Tk,m,εNk,εu||2L2(Em,ε) ≤ cε2β−1||u||2H1(Mk,S,ε)
. (3.131)

Proof: The proof is analogous to Corollary 3.3.56. While Tk,m,εNk,εu is a function on the
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interface Γk,m,ε, we can express it as a function on Em by noting it is constant valued on ∂ωm,ε(x).

With an abuse of notation, we can set Nk,εu(x ∈ Em) := Nk,εu|∂ωm,ε(x).

||Tk,m,εNk,εu||2L2(Em,ε) ≤ (1 +O(εβ))||ΦEm,εTk,m,εNk,εu||2L2(Ẽm,ε)

= (1 +O(εβ))

∫
Em

∫
$m,ε(y)

|ΦEm,εTk,m,εNk,εu|2 d$m,ε(y)dEm

= O(ε2β−1)

∫
Γ̃k,m,ε

|Ñk,εΦEm,εTk,m,εu|2 dΓ̃k,m,ε

≤ O(ε2β−1)

∫
Γ̃k,m,ε

|ΦEm,εTk,m,εu|2 dΓ̃k,m,ε.

(3.132)

Observe this is the same L2 term from Corollary 3.3.58 up Φ−1
Em,ε

. Consequentially the desired

bound is achieved. �

Theorem 3.3.59. Let Mε be a type I domain ( 1/2 < β ≤ 1). For u ∈ H1(Mε), the L2-norm of u

on Em,ε is small:

||u||2L2(Em,ε) ≤ cε2β−1||u||2H1(Mε)
. (3.133)

Proof: We use the triangle inequality:

||u||L2(Em,ε) ≤ ||u− Pm,εu||L2(Em,ε)

+ ||Pm,εu− Tk,m,εNk,εu||L2(Em,ε) + ||Tk,m,εNk,εu||L2(Em,ε).

(3.134)

With Corollaries 3.3.42, 3.3.56, and 3.3.58, the theorem is proven. �

Corollary 3.3.60. Let Mε be a type I domain (1/2 < β ≤ 1). Assume u ∈ PεΛL2(Mε) for

Λ ≤ cε−(2β−1)+δ where δ > 0 and Λ /∈ σ(Aε). The H1-norm of u on Em,ε is o(1) with respect to

the H1-norm of u on Mε.

Proof: By embedding PεΛL2(Mε) into L2(Mε), we can write:

||∇u||2L2(Em,ε) ≤ Λ||u||2L2(Em,ε) ≤ cΛε2β−1||u||2H1(Mε)
≤ cεδ||u||2H1(Mε)

. � (3.135)
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Proposition 3.3.61. Let Em,ε be type II (β < 1/2) and u ∈ H1(Em,ε). There is an extension

Em,εPT,m,εu of PT,m,εu to H1(Mε) such that

||Em,εPT,m,εu||2H1(Mε)
≤ (1 + cε1−2β)||PT,m,εu||2H1(Em,ε)

. (3.136)

Proof: The proof is placed in Appendix B.1.8.

Remark 3.3.62. The bound 1 + cε1−2β in the previous proposition can be reformulated in terms of

capacity. The capacity of a set F ⊂ Ω be define as

cap(F,H1(Ω)) := inf{||u||2H1(Ω) : u ∈ H1(Ω) u|F ≥ 1}. (3.137)

Then it follows for β < 1/2 that

∣∣∣∣cap(Em,ε,Mε)

|Em,ε|
− 1

∣∣∣∣ = O(ε1−2β). (3.138)

Corollary 3.3.63. Let Em,ε be type II or III (β ≤ 1/2). There is a family of operators Em,ε :

H1(Em,ε) → H1(Mε) whose norms have a uniform bound independent of ε. For u ∈ H1(Em,ε),

we have:

||Em,εu||2H1(Mε)
≤ c||u||2H1(Em,ε)

. (3.139)

Proof: While the ranges of PT,m,ε and (1 − PT,m,ε) are not orthogonal (PT,m,ε is not an or-

thogonal projector), a function u can still be uniquely written as u = PT,m,εu + (u − PT,m,εu).

The averaged component is extended by Proposition 3.3.61 and the zero-average component is

extended by Proposition 3.3.55 and each of these functions is norm bounded by some positive

constant c′, so their sum is norm bounded. �

Corollary 3.3.64. Let Em,ε be type II or III (β ≤ 1/2). For u ∈ H2(Em,ε) there is an extension

Em,ε(u− PT,m,εu) of u− PT,m,εu into Mε that is negligible:

||Em,ε(u− PT,m,εu)||2H1(Mε)
≤ cε2β||u||2H2(Em,ε)

. (3.140)
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Proof: Since Em,ε is norm bounded, we apply Proposition 3.3.47.

Corollary 3.3.65. Let Em,ε be type II (β < 1/2) and let Λ ≤ cε−2β+δ where δ > 0. For u ∈ PεΛG2

there is an extension operator Em,ε : H1(Em,ε) 7→ H1(Mε) such that

||Em,εu||2H1(Mε\Em,ε) ≤ cεmin(δ,1−2β)||u||2H1(Em,ε)
. (3.141)

Proof: We can embed H1 into H2 by Proposition 2.1.16. The result then follows from Corol-

lary 3.3.64 and Proposition 3.3.61. �

3.3.8 Extension Operator Kε

Now we can define the extension operators in the sense of Definition 3.2.2. The first exten-

sion operator is analogous to the operator constructed in the uniformly fattened case (Proposition

2.3.38).

Proposition 3.3.66. Let M be an open book structure and let Mε be a corresponding type I model

fattened domain with parameters {rm}, {rk}, and 1/2 < β ≤ 1. Let Λ ≤ cε−β+δ where δ > 0 and

Λ /∈ σ(A). For some ε0 > 0, the family of linear operators {Kε}ε∈(0,ε0] that satisfies the conditions

in Definition 3.2.2 is (u ∈ PΛG1):

Kεu :=


ε−1/2Ek,z,εu Mk,S

ε−1/2Em,S,z,εu Em
⋃

(
⋃
k Sk,m,ε) .

(3.142)

Proof: Beginning with Em
⋃

(
⋃
k Sk,m,ε), we apply Proposition 3.3.22 to get

||ε−1/2Em,S,z,εu||2H1(Em,ε)
≤ c||u||2H1(Em

⋃
(
⋃
k Sk,m,ε),2rkdMk). (3.143)

Applying the spectral embedding Proposition 2.1.16, the previously expression is bounded by

c(1 + Λ)||u||2L2(Em
⋃

(
⋃
k Sk,m,ε),2rkdMk) (3.144)

88



which in turn is bounded by the energy on M (Proposition 3.3.15). This yields an upper bound of

c(1 + Λ)εβ||u||2G11 = o(1)||u||2G11 . (3.145)

Therefore (3.143) is negligible both in L2 and H1. For the Mk,S pieces, we show that they are not

only close to their extension ε−1/2Ek,z,εu in L2 but also in H1. Starting with the following norm

difference ∣∣∑
k

||ε−1/2Ek,z,εu||H1(Mk,S,ε) − ||u||G11
∣∣, (3.146)

we break ||u||G11 into page terms and sleeve terms and use the triangle inequality. We get an upper

bound of (3.146) of

∑
k

∣∣||ε−1/2Ek,z,εu||H1(Mk,S,ε) − ||u||H1(Mk,S)

∣∣+ ||u||H1(Em
⋃

(
⋃
k Sk,m,ε),2rkdMk). (3.147)

The first term of (3.147) is o(1)-bounded by Corollary 3.3.20. After a norm bound on the sleeve

(Propositions 3.3.15 and 2.1.16), we conclude (2.93) is bounded by (1 + Λ)1/2O(ε1/2)||u||G11 . We

conclude Kε is a near isometry in both L2 and H1 for u in Pcε−β+δG1. �

The extension operator for type II scenario works as follows: the pages are shortened then

the function is extended along the normal fibers. The function along the binding is also extended

along the cross-sections. To ensure the function is in H1, we extend function on the binding into

the page.

Proposition 3.3.67. Let M be an open book structure and let Mε be a type II model fattened

domain with parameters {rm}, {rk}, and β < 1/2. Let Λ ≤ cε−β+δ where δ > 0 and Λ /∈

σ(A). For some ε0 > 0, the family of linear operators {Kε}ε∈(0,ε0] that satisfies the conditions in

Definition 3.2.2 for the open book structure M is (u ∈ PΛG2):

Kεw := ε−1/2Ek,z,εΨMk
u+ Em,εε−βEm,z,εv. (3.148)
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Proof: On Em,ε, we have using Corollary 3.3.27,

∣∣ ||ε−βEm,z,εv||H1(Em,πr2mdEm) − ||v||2H1(Em,πr2mdEm)

∣∣ ≤ cε2−2β||v||2H1(Em,πr2mdEm). (3.149)

On Mk,S,ε, we use Proposition 3.3.61 to dispense with the Em,εε−βEm,z,εv term. Next we see

ε−1/2 Ek,z,εΨMk
u is close in L2 and in energy by Proposition 3.3.14 and reasoning following

(3.146). �

For type III domains, we do not need an extension operator since the continuity condition

between the pages and the binding: limx→y∈Em u(x) = v(y).

Proposition 3.3.68. Let M be an open book structure and Mε be a corresponding type III model

fattened domain with parameters {rm}, {rk}, and β < 1/2. Let Λ ≤ cε−β+δ where δ > 0 and

Λ /∈ σ(A). For some ε0 > 0, the family of linear operators {Kε}ε∈(0,ε0] that satisfies the conditions

in Definition 3.2.2 for the open book structure M is (u ∈ PΛG2):

Kεw := ε−1/2Ek,z,εΨMk
u+ ε−1/2Em,z,εv. (3.150)

Proof: Only requires a small modification on proof of Proposition 3.3.67, so it is omitted.

3.3.9 Averaging Operator Jε

We define the averaging operators in the sense of Definition 3.2.1 thereby completing the main

spectral convergence theorems.

The type I case is analogous to the uniformly fattened case.

Proposition 3.3.69. Let M be an open book structure and Mε be a corresponding type I model

fattened domain with parameters {rm}, {rk}, and 1/2 < β ≤ 1. Let Λ ≤ cε−2β+1+δ where δ > 0

and Λ /∈ σ(Aε). For some ε0 > 0, the family of averaging operators {Jε}ε∈(0,ε0] that satisfies the
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conditions in Definition 3.2.1 for the open book structure M is (u ∈ PεΛL2(Mε)):

Jεu :=


ε1/2Ψ−1

Mk
Nk,ε

[
u+

∑
m Em,ε(Pm,εu− u)

]
Mk,S,ε 7→Mk

ε1/2Pm,εu Em,ε 7→ Em.

(3.151)

Proof: As seen in the uniformly fattened case (see Proposition 2.3.70), Jεu satisfies the bound-

ary conditions on G1
1 . Because each Em,ε(u − Pm,εu) is supported in a small O(ε) neighborhood

around Em, these extensions have disjoint supports. Using Lemma 2.3.69, we break up the terms

on Mk,S,ε,

(1− d)
∣∣√2εΨ−1

Mk
Nk,εu

∣∣2 + (1− d−1)
∑
m

∣∣√2εΨ−1
Mk
Nk,εEm,ε(Pm,εu− u)

∣∣2
≤
∣∣√2εΨ−1

Mk
Nk,ε

[
u+

∑
m

Em,ε(Pm,εu− u)
]∣∣2

≤ (1 + d)
∣∣√2εΨ−1

Mk
Nk,εu

∣∣2
+ (1 + d−1)

∑
m

∣∣√2εΨ−1
Mk
Nk,εEm,ε(Pm,εu− u)

∣∣2.
(3.152)

To demonstrate the L2 near isometry property, we first assume that ||Jεu||2L2(Mk) ≥ ||u||2L2(Mk,S,ε)
.

The other case ||Jεu||2L2(Mk) ≤ ||u||2L2(Mk,S,ε)
can be handled by appropriately modifying the sub-

sequent inequality (3.153) (i.e. flipping signs and switching upper and lower bounds). This results

in a largely redundant calculation, so it is omitted. We calculate the upper and lower bound on the
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norm difference:

∑
k

(1− d)||
√

2εΨ−1
Mk
Nk,εu||2L2(Mk) + (1− d−1)

∑
k,m

||
√

2εΨ−1
Mk
Nk,εEm,ε(Pm,εu− u)||2L2(Mk)

−
∑
k

||u||2L2(Mk,S,ε)
− ||u||2L2(Em,ε)

≤ ||Jεu||2L2(M) − ||u||2L2(Mε)

≤
∑
k

(1 + d)||
√

2εΨ−1
Mk
Nk,εu||2L2(Mk,S,ε)

+ (1 + d−1)
∑
k,m

||
√

2εΨ−1
Mk
Nk,εEm,ε(Pm,εu− u)||2L2(Mk,S,ε)

−
∑
k

||u||2L2(Mk,S,ε)
− ||u||2L2(Em,ε).

(3.153)

Since we only require demonstrating that ||Jεu||H1(M) is bounded above (3.28), we begin with

assuming ||Jεu||H1(M) ≥ ||u||H1(Mε) and write:

||Jεu||2H1(M) − ||u||2H1(Mε)

≤
∑
k

(1 + d)||
√

2εΨ−1
Mk
Nk,εu||2H1(Mk,S,ε)

+ (1 + d−1)
∑
k,m

||
√

2εΨ−1
Mk
Nk,εEm,ε(Pm,εu− u)||2H1(Mk,S,ε)

−
∑
k

||u||2H1(Mk,S,ε)
− ||u||2H1(Em,ε)

.

(3.154)

Having established these two inequalities (3.153) and (3.154), we collect terms in these in-

equalities and apply various propositions established in this chapter to demonstrate which terms

are negligible (are o(1) in an appropriate norm) and which terms are nearly an isometry (are 1+o(1)

in an appropriate norm).
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By Proposition 3.3.14, we have

∣∣ ∫
Mk

|
√

2εΨ−1
Mk
Nk,εu|2 dMk −

∫
Mk,S,ε

|u|2 dMε

∣∣
≤
∣∣(1 +O(ε))

∫
Mk,S

|
√

2εNk,εu|2 dMk −
∫
Mk,S,ε

|u|2 dMε

∣∣
≤ cε||u||2H1(Mε)

(3.155)

where the last inequality results from Proposition 3.3.35. We note the energy bound only needs to

be demonstrated from above, so we see

∫
Mk

|∇Mk

√
2εΨ−1

Mk
Nk,εu|2 dMk −

∫
Mk,S,ε

|∇u|2 dMε ≤ cε||u||2H1(Mε)
(3.156)

which follows from Propositions 3.3.14 and 3.3.36.

This leaves the extensions from the fattened bindings into the page (Em,ε(u − Pm,εu)) and the

norm of the binding unaccounted for in (3.153) and (3.154). We estimate the H1-norm of the

extensions. Using Propositions 3.3.14, 3.3.35, and 3.3.36, and the disjoint supports of Em,ε(u −

Pm,εu):

∑
m

||
√

2εΨ−1
Mk
Nk,εEm,ε(Pm,εu− u)

∣∣|2H1(Mk,S) +
∑
m

||u||2H1(Em,ε)

≤ (1 +O(ε))
∑
m

||Em,ε(Pm,εu− u)
∣∣|2H1(Mk,S,ε)

+
∑
m

||u||2H1(Em,ε)
.

(3.157)

By Proposition 3.3.55, this is bounded by

(1 +O(ε))c
∑
m

||u||2H1(Em,ε)
. (3.158)

Because u ∈ PεΛL2(Mε) and Corollary 3.3.60, we arrive to the following upper bound on the norm

of (3.157):

cεδ||u||2H1(Mε)
. (3.159)
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Hence by setting d = εδ/2, we conclude that Jεu|Mk
is close in L2 to u and Jεu|Mk

does not

exceed the energy on Mε by more than an o(1) factor.

Thus Jε is an averaging operator in the sense of Definition 3.2.1 as required in Theorem 3.2.4.

This completes the proof of Proposition 3.3.69 and consequentially Theorem 3.2.4 for type I fat-

tened domains. �

Proposition 3.3.70. Let M be an open book structure and Mε be a corresponding type II model

fattened domain with parameters {rm}, {rk}, and β < 1/2. Let Λ ≤ cε−β+δ where δ > 0 and

Λ /∈ σ(Aε). For some ε0 > 0, the family of averaging operators {Jε}ε∈(0,ε0] that satisfies the

conditions in Definition 3.2.1 for the open book structure M is (u ∈ PεΛL2(Mε)):

Jεu :=


ε1/2Ψ−1

Mk
Nk,ε

[
u−

∑
m Em,εu

]
Mε 7→Mk

εβPT,m,εu Em,ε 7→ Em.

(3.160)

Proof: First we note Jεu is zero at the boundary of Mk. Beginning with the calculation on Mk,

we estimate the extension term:

|| ε1/2Ψ−1
Mk
Nk,ε

∑
m

Em,εu ||H1(Mk,2rkdMk)

≤
∑
m

(1 +O(εβ))|| ε1/2Nk,εEm,εu ||H1(Mk,S ,2rkdMk)

≤
∑
m

(1 +O(εβ))|| Em,εu ||H1(Mk,S,ε).

(3.161)

Here we use Corollary 3.3.65 to get an o(1)||u||H1(Mε) bound of (3.161). Next looking at the

averaging operator on the binding, we evaluate:

∣∣∣∣ ||εβ PT,m,εu||2H1(Em,πr2mdEm) − ||u||2H1(Em,ε)

∣∣∣∣ ≤ cεβ||u||2H2(Em,ε)
. (3.162)

The above (3.162) follows from Propositions 3.3.52 and 3.3.51. We then use the spectral subspace

bounds (Λ ≤ cε−β+δ) and Proposition 2.1.16 to bound (3.162). Consequentially (3.162) is bounded
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by cεδ||u||2H1(Em,ε)
. Since we have achieved a near isometry in L2 on both the pages and the binding

as well as the required energy bound (3.28) for the energy on both the pages and bindings (see

3.16), we conclude (3.160) is the averaging operator as required from Definition 3.2.1. �

Proposition 3.3.71. Let M be an open book structure and Mε be a corresponding type III model

fattened domain with parameters {rm}, {rk}, and β = 1/2. Let Λ ≤ cε−β+δ where δ > 0 and

Λ /∈ σ(Aε). For some ε0 > 0, the family of averaging operators {Jε}ε∈(0,ε0] that satisfies the

conditions in Definition 3.2.1 for the open book structure M is (u ∈ PεΛL2(Mε)):

Jεu :=


ε1/2Ψ−1

Mk
Nk,ε

[
u+

∑
m Em,ε (PT,m,εu− u)

]
Mε 7→Mk

ε1/2PT,m,εu Em,ε 7→ Em.

(3.163)

Proof: This proof is similar to Proposition 3.3.70.

With these averaging operators being constructed, the main theorem of this chapter, Theorem

3.2.4, is proven.

3.4 Thin Junctions

Thin junction domains (see Fig. 3.5) are domains where the fattened binding is thinner than

the fattened page. As before the size of the binding is controlled by a parameter β which is greater

than 1 for these domains. We present partial results on this problem: if β < 2, the resulting

operator is type I. We conjecture that the β > 2 case should yield a new type IV operator A4

with Neumman conditions at the binding, but these results are incomplete. We begin with the

description of domains with thin junctions.

3.4.1 Statement of Thin Junction Type Convergence

Definition 3.4.1. Let M be an open book structure as in Definition 2.1.1. Let β > 1 and {rk}

denote a set of positive functions where rk ∈ C2(Mk)∩C(M̄k) and rk > 0. We denote the sleeves
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ε

εβ

Figure 3.5: The cross-section of a thin junction.

as Sk,m,ε as in Definition 2.1.5 with sleeve width am (am,ε = am) is given by

am = am,ε =


maxx∈Em(1 + rk(x) cot(mink,k′ θm,k,k′(x)/2)) minx,k,k′ θm,k,k′(x)/2 < π/2

maxx∈Em(1 + rk(x)) minx,k,k′ θm,k,k′(x)/2 ≥ π/2

(3.164)

where θm,k,k′(x) is (smaller) angle between two touching pages Mk and Mk′ at x (see Fig. 3.1).

Definition 3.4.2. The normal fibers INk(x),ε are the same as in Definition 3.1.5; i.e. INk(x) is the

normal fiber of length 2rk(x)ε centered at x ∈Mk,S . The fattened page for a thin junction domain

is:

Mk,S,ε :=
⋃

x∈Mk,S

INk(x),ε. (3.165)

Definition 3.4.3. The fattened binding Em,ε of a thin junction domain is: a 2εβ tube about the

sleeves. I.e.

Em,ε :=
⋃

k;x∈Sk,m,ε

B(x, εβ)\
⋃
k

Mk,S,ε. (3.166)

Definition 3.4.4. We say the family of fattened domains {Mε} is a model thin junction domain

if Mε is the union of fattened pages Mk,S,ε as defined in Definition 3.4.2, which are fattened by

parameters ε and {rk}, and fattened bindings Em,ε as defined in Definition 3.4.3, which are tubes

of width 2εβ for β > 1.
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Any two fattened pages consequentially do not touch.

Theorem 3.4.5. LetM be an open book structure as in Definition 2.1.1 andMε be a corresponding

thin junction domain with 1 < β < 2 (Definition 3.4.4). LetA be the type I operator in Proposition

3.1.12 and Aε be the Neumann Laplacian (Proposition 2.1.12). There exist averaging operators

{Jε}ε∈(0,ε0] and extension operators {Kε}ε∈(0,ε0] be as stated in Definitions 3.2.1 and 3.2.2 for these

domains, and thus λn(Aε)→s λn(A) for all n as ε tends to zero.

3.4.2 Averaging and Extension Operators for Thin Junctions

To define the averaging and extension operators, Jε andKε, we adapt several ancillary operators

used earlier in this chapter to these thin junction domains. As before Pm,ε is a local averaging

operator on the binding (see Appendix B.1.9: Lemma B.1.3).

Proposition 3.4.6. Let Mε be a thin junction domain with β < 2. For u ∈ H1(Mε), one has:

||u||2L2(Em,ε) ≤ cε4−2β||u||2L2(Mε). (3.167)

Proof: This is technical and requires a few secondary lemmas which we reserve for Appendix

B.1.9.

We also have need of an analogue to Em,ε, an extension operator in the sense of Proposition

3.3.55. Following our previous calculations, we need an estimate of the trace of a zero mean

function. That estimate appears in the Appendix B.1.9 under Lemma B.1.4. This lets us conclude

the following:

Proposition 3.4.7. For u ∈ H1(Em,ε), the complement of the cross-sectional average u − Pm,εu

has an extension into Mε denoted Em,ε(u− Pm,εu) such that

||Em,ε(u− Pm,εu)||2H1(Mε)
≤ cm||u||2H1(Em,ε)

. (3.168)

Furthermore, Em,ε(u− Pm,εu) is supported within an O(εβ) distance neighborhood of Em.
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Proposition 3.4.8. The fattened binding Em,ε of a thin junction domain admits a decomposition

into sectors Σm,i,ε (Definition 2.3.8) and admits a vector field vm,i,ε in the sense of Definition 2.3.9

except point (3) reads “the limit of vm,i,ε(x) as x → x′ ∈ ∂Sk,m,ε ∩Mk is ±εβNk(x′).” We can

define an extensions operator Em,S,z,ε on L2(Em
⋃

(
⋃
m Sk,m,ε)) in the sense of Definition 2.3.36.

This operator satisfies the conclusion of Proposition 2.3.37 with ε replaced with εβ:

||(2εβ)−1/2Em,S,z,εu||2H1(Em,ε)
≤ c||u||2H1(Em

⋃
(
⋃
k Sk,m,ε))

. (3.169)

Besides the normal averaging operator Nk,ε which is the same for this domain as it appears in

Definition 3.3.30, these are all the operators needed to recover the results of type I domains for

thin junction domains of β < 2.

Proposition 3.4.9. Let M be an open book structure and Mε be a corresponding thin junction

domain (1 < β < 2) with parameters {rk} as in Definition 3.4.4. Let Λ ≤ cε2β−4+δ where δ > 0

and Λ /∈ σ(Aε). For some ε0 > 0, the family of linear operators {Jε}ε∈(0,ε0] that satisfies the

conditions in Definition 3.2.1 for the open book structure M is (u ∈ PεΛL2(Mε)):

Jεu :=


ε1/2Ψ−1

Mk
Nk,ε

[
u+

∑
m Em,ε(Pm,εu− u)

]
Mk,S,ε 7→Mk

ε1/2Pm,εu Em,ε 7→ Em.

(3.170)

Proof: The proof does not differ from the proof of Proposition 3.3.69 with the exception of the

specific order of ε in the bounding term Proposition 3.4.6 causing our choice of spectral bound to

be O(ε2β−4+δ).

Proposition 3.4.10. Let M be an open book structure and Mε be a corresponding thin junction

domain (1 < β < 2) with parameters {rk} as in Definition 3.4.4. Let Λ ≤ cεβ−2+δ where δ > 0

and Λ /∈ σ(A). For some ε0 > 0, the family of linear operators {Kε}ε∈(0,ε0] that satisfies the
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conditions in Definition 3.2.2 for the open book structure M is (u ∈ PεΛL2(Mε)):

Kεu :=


ε−1/2Ek,z,εu Mk,S

ε−1/2Em,S,z,εu Em
⋃

(
⋃
k Sk,m,ε) .

(3.171)

Proof: It follows Corollary 3.3.20 holds for thin junction domains since the construction of the

fattened pages has not been modified from the model fattened domains seen in Definition 3.1.1.

The remained of the proof follows from Proposition 3.4.8 and Proposition 3.3.15. �

Consequentially Theorem 3.4.5 is proven, so the operator β < 2 thin junction domains fall

under the type I operator class.

99



4. CONCLUSION AND REMARKS

In this dissertation we explored the problem of the spectral convergence of Neumann Lapla-

cians on a fattened open book structure. In Chapter 2 we demonstrated spectral convergence of the

Neumann Laplacian on a uniformly fattened open book structure to an operator on the open book

structure. These results were extended by considering a parameterized family of fattened open

book structures in Chapter 3.

The results here build off the results in the fattened graph literature toward answering a more

general problem: the resolvent convergence of elliptic operators on (m+ n)-dimensional domains

that retract to an m-dimensional stratified domain. Resolvent convergence of elliptic operators for

any arbitrary retraction to a geometry not in general position is seemingly not a tractable problem.

Let us illustrate the complexities of this family of problems by discussing the development of the

fattened graph problem.

The starting point for the problem was considering the Neumann Laplacian on uniformly fat-

tened domains whose underlying graph is compact and has no cusps [15,24,35]. We remark that the

formulation of the problem holds true for periodic graphs with only small modifications [25, 30].

There are four primary fronts of increased complexity to this problem: first, while adding bounded

potentials (in the Schödinger sense) does not present a serious problem, changing the boundary

conditions on the fattened domain to Dirichlet or Robin requires delicate analysis in order to

consistently project onto the lowest modes [8]. We claim that modifying our analysis of type I

fattened domains over an open book structure to allow Schrödinger operators with bounded poten-

tials with Neumann boundary conditions should be a straightforward exercise. In this instance the

Schrödinger operator result can be extrapolated from the results in this dissertation and the results

in fattened graph literature. Observe H1(R2) allows for singular potentials, so there is room for

interesting physics particularly for singular potentials define on type II and III fattened domains

over an open book structure. An interesting operator to research would be a Schrödinger operator

with a logarithmic potential in a large fattened binding which would describe a Coulomb potential
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due to the binding being a charged wire.

Second, along with considering the problem of resolvent convergence on compact graphs, there

is a similar problem of considering resonances on unbounded graphs [5–7, 30]. This is important

for the physical application of scattering dynamics [18]. Third, there is the problem we considered

in part in Chapter 3 – general retractions of fattened domains [11, 25, 30]. Fourth front is consid-

ering graphs where a pair of edges meet tangentially [5–7, 10, 20, 22–25, 36, 40]. The third and the

fourth front delve into issue of know what it means for a domain to be “good.” It is well-known

in the study PDEs that there are few known necessary and sufficient conditions for determining

whether a domain admits classical results of PDEs – e.g. solvability of the Dirichlet problem or

density (in some Sobolev space) of smooth functions defined on the closure of the domain [9, 27].

As seen with the difficulties in reconciling the local averaging operators, care must be taken to

ensure a family of fairly regular shrinking domains satisfy appropriate certain “classical" estimates

in the limit of the domains shrinking to zero measure.

When considering stratified spaces of dimension higher than 1D, it becomes clear that the

“problem of dimensionality” exacerbates the issues that are already present in 1D. Namely, as

seen here, the embedding of H1 into continuous functions falters for dimension 2 and higher. We

have resolved that issue in this dissertation, but further difficulties lie ahead in extending results to

more general stratified spaces.

We have not considered here the case of the presence of zero-dimensional stata (corners). Par-

tial results suggest that phase transitions should also be seen in a non-uniformly fattened polyhedra

where the phase boundaries are determined by capacity heuristics. The presences of corners in an

embedded 2D stratified space complicates local topologies and leads to several classes of singu-

larities such as those modeled by the tangential contact of two spheres, which may be of interest

in applications.

The remaining parameter space (β ≥ 2) for the “thin junction” domains have not been pre-

sented here. The analogue from the open graph case suggests that in this parameter range, there

should be a “disconnected” limit operator (i.e., each page has Neumann conditions imposed at its
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boundary).

The result of this dissertation opens up exploration of the scattering problem on thin micro-

electronic or photonic devices modeled by the fattened open book structures.
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APPENDIX A

ESTABLISHED THEOREMS AND PROPOSITIONS

A.1 Sobolev Embedding Theorem

Here we include the statements mentioned in passing in the main body.

As per [27], V l
p (Ω) is defined as the space

⋂
k≤l L

k
p(Ω) (i.e. all derivatives up to order l are in

Lp(Ω)).

Theorem A.1.1. [9, 27] Let Ω be a domain in Rn with compact closure and let it be the union

of a finite number of domains of the class EV l
p (i.e. extensionable domains in the sense of Stein

(Theorem 2.3.7); this assumption holds if Ω has the cone property).

Futhermore, let µ be a measure on Ω satisfying:

sup
x∈Rn,ρ>0

ρ−sµ(Ω ∩B(x, ρ)) <∞, (A.1)

where s > 0 (e.g. if s is an integer, then µ can be the s-dimensional Lebesgue measure on Ω∩Rs).

Then for any u ∈ C∞(Ω) ∩ V l
p (Ω),

k∑
j=0

||∇ju||Lp(Ω,µ) ≤ c||u||V lp(Ω), (A.2)

where c is a constant independent of u, and the parameters q, s, p, l, and k satisfy the inequalities:

1. p > 1, 0 < n− p(l − k) < s ≤ n, q ≤ sp(n− p(l − k))−1;

2. p = 1, 0 < n− l + k ≤ s ≤ n, q ≤ s(n− l + k)−1;

3. p > 1, n = p(l − k), s ≤ n, q is any positive number.

If either of the follow conditions hold:

4. p > 1, n < p(l − k);
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5. p = 1, n ≤ l − k;

then
k∑
j=0

sup
Ω
|∇ju| ≤ c||u||V lp(Ω). (A.3)

If Ω belongs to the class EV l
p (for example, Ω is in C0,1), then in the case of (4) the Theorem can

be refined as follows:

• If p ≥ 1, (l−k−1)p < n < (l−k)p and λ = l−k−n/p, then for all u ∈ V l
p (Ω)∩C∞(Ω)

sup
x,x+h∈Ω,h6=0

|∇ku(x+ h)−∇ku(x)|
|h|λ

≤ c||u||V lp(Ω). (A.4)

• If (l−k−1)p = n, then the inequality (A.4) holds for all 0 < λ < 1 and u ∈ V l
p (Ω)∩C∞(Ω).

Lemma A.1.2. [34] Let Ω ⊂ Rn be a Lebesgue measurable set. Let g be a non-negative integrable

function over Ω and suppose {fn} is a sequence of measurable functions on Ω such that for each

n, |fn| ≤ g almost everywhere on Ω. It then follows:

∫
Ω

lim inf fn ≤ lim inf

∫
Ω

fn ≤ lim sup

∫
Ω

fn ≤
∫

Ω

lim sup fn. (A.5)
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APPENDIX B

COLLECTED PROOFS

B.1 Proofs of Several Propositions Appearing in the Text

Here we place some of the longer proofs of the text. We often combine the uniform and non-

uniform versions of a proposition within the same proof.

B.1.1 Proof of Proposition 2.3.10 and 3.3.8

First, we direct the reader to the relevant Figures 2.6, 2.7, and 3.4. The goal of the proof will be

to demonstrate the construction of the desired vector functions for the cases of a uniformly fattened

domain (Fig. 2.6), β = 1 and rm 6= rk fattened domain domain, and β < 1 fattened domain (Fig.

3.4). The proof of the single page case (Fig. 2.7) can be adapted from the following arguments.

Consider the region of the sector contained in a cross-section σm,i,ε(x) := Σm,i,ε ∩ ωm,ε(x).

We further define to continuous curves: Γ1,m,i,ε(x) = σm,i,ε(x) ∩ D(vm,i,ε) (the domain of vm,i,ε)

and Γ2,m,i,ε(x) = σm,i,ε(x) ∩ (∂Em,ε\
⋃
k ∂Mk,S,ε). Summarily Γ1,m,i,ε(x) is the part of the pair of

sleeves in a cross-section, and Γ2,m,i,ε(x) is the outward boundary of that sector in a cross-section.

We construct a map φ between Γ1,m,i,ε(x) and Γ2,m,i,ε(x). Per Definition 2.3.9:(2) the dis-

placement vector between y and φ(y) gives us vm,i,ε. I.e. vm,i,ε(y) = φ(y) − y where y ∈

Em
⋃

(
⋃
k Sk,m,ε) ⊂ R3.

The boundary segments Γj,m,i,x(x) are of length O(ε). In particular there exists constants c3

and c4 such that

|Γ1,m,i,ε(x)| = 2amε c3ε ≤ l2 = |Γ2,m,i,ε(x)| ≤ c4ε (B.1)

for the uniform case, and

|Γ1,m,i,ε(x)| = 2am,εε
β c3ε

β ≤ l2 = |Γ2,m,i,ε(x)| ≤ c4ε
β (B.2)
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for the non-uniform case.

We parameterize Γ1,m,i,ε(x) and Γ2,m,i,ε(x) with unit speed parameterizations γj,x:

γ1,x : (0, 2amε) 7→ Γ1,m,i,ε(x) γ2,x : (0, l2) 7→ Γ2,m,i,ε(x) (B.3)

for the non-uniform case and similarly for the non-uniformly fattened case.

Clearly, there is only one such way to match the end points of Γ1,m,i,ε(x) and Γ2,m,i,ε(x) in

order that Definition 2.3.9:(3) holds, so we assume the parameterizations are oriented correctly.

Because $m,ω(x) is not convex in the uniformly fattened case (or β = 1), we must take to ensure

the segment connecting the two curves is in the sector.

The mapping for uniformly fattened domains (and β = 1):

φ(x) =



γ2,x(γ
−1
1,x(y)) γ−1

1,x(y) < (am − rm)ε

γ2,x

(
l2 − 2(am − rm)ε

2εrm
γ−1

1,x(y)

)
(am − rm)ε ≤ γ−1

1,x(y) ≤ (am + rm)ε

γ2,x(γ
−1
1,x(y)) γ−1

1,x(y) > (am + rm)ε

(B.4)

where rm = 1 in the uniformly fattened case.

For β < 1 the expression is simpler because the cross-section is convex:

φ(x) = γ2,x

(
l2

2am,εεβ
γ−1

1,x(y)

)
. (B.5)

Inequality 3.42 follows since the diameter of the cross-section is bounded by O(εβ). Because

the pages intersect transversely at Em, γ1,x is Lipschitz. γ2,x is also Lipschitz because Em,ε is a

Lipschitz graph domain (both Lipschitz norms are independent of ε). Consequentially, vm,i,ε is

Lipschitz (with Lipschitz norm independent of ε). We conclude that where the in-plane derivatives

of vi,m,ε exist in σm,i,ε(x), the derivative is bounded by a constant uniform with respect to ε.

For the derivatives of vi,m,ε with respect to the direction out-of-plane of ωm,ε(x), we note this

depends on the angle between the pages θm,k,k′ and the curvature of the pages. These functions do
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not depend on ε, so there is an ε-independent bound on the out-of-plane derivative of vm,i,ε. �

B.1.2 Proof of Proposition 2.3.31

Using the triangle inequality, we write

∫
Sk,m,ε

|u|2 dMk ≤
∣∣∣ ∫

Mk

|u|2 dMk −
∫
Mk,S

|ΨMk
u|2 dMk

∣∣∣
+

∣∣∣∣ ∫
Mk,S

|u|2 dMk −
∫
Mk,S

|ΨMk
u|2 dMk

∣∣∣∣
≤ O(ε)||u||2L2(Mk) +

∣∣∣∣ ∫
Mk,S

|u|2 − |ΨMk
u|2 dMk

∣∣∣∣
≤ O(ε)||u||2L2(Mk) +

∣∣∣∣u−ΨMk
u
∣∣∣∣
L2(Mk,S)

∣∣∣∣u+ ΨMk
u
∣∣∣∣
L2(Mk,S)

(B.6)

To bound ||u−ΨMk
u||L2(Mk,S), we use the coordinate system provided in the proof of Proposi-

tion 2.3.30. Let Xk be the coordinate patch on U = (0, lEm)× (0, a) (2.67), and ϕε be the smooth

shortening function from (2.68). We define a family of curves that go from y to ψMk
(y):

γϕε,y : t ∈ [0, 1] 7→ U γϕε,y(0) = (y1, y2) γϕε,y(1) = (y1, ϕε(y2)). (B.7)

In particular we can choose γϕε,y to be constant speed. Outside of Xk(U) ⊂ Mk, u = ΨMk
u,

and so we need to concern ourselves only with the function onXk(U). Let U ′ = (0, lEm)×(amε, a)

and let v(y1, y2) = u(Xk(y1, y2)). Then we have

∣∣∣∣u−ΨMk
u
∣∣∣∣2
L2(Mk,S)

=

∫
U ′

∣∣∣∣v(y)−
(
v(y) +

∫ 1

0

∇v
(
y + γϕε,y

)
· γ′ϕε,ydt

)∣∣∣∣2√detgMk
(y) dy

=

∫
U ′

∣∣∣∣ ∫ 1

0

Dy2v
(
y1, y2 + t(ϕε(y2)− y2)

)
|ϕε(y2)− y2| dt

∣∣∣∣2√detgMk
(y) dy.

(B.8)

Let ξ = y2 + t(ϕε(y2)− y2), and so dξ = dy2(1− t + tDϕε(y2)). Because Dϕε(y2) = 1 + O(ε),

we can then write dξ = dy2(1 − tO(ε)). Thus, the Jacobian J from (y1, y2) 7→ (y1, ξ) is of the
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form 1 +O(ε). Applying |ϕε(y2)− y2| = O(ε), we have

∣∣∣∣u−ΨMk
u
∣∣∣∣2
L2(Mk,S)

≤
∫
U ′

∫ 1

0

∣∣∣Dξv(y1, ξ)
∣∣∣2 O(ε2)

1− tO(ε)
dt
√
detgMk

(y1, ξ) dy1dξ

≤
∣∣∣∣Dξv

∣∣∣∣2
L2(U ′,detg

1/2
Mk

)

∫ 1

0

O(ε2)

1− tO(ε)
dt

≤ O(ε2)||∇Mk
u||2L2(Mk).

(B.9)

Applying that to (B.6) we get the O(ε) bounds. �

B.1.3 Proof of Theorem 2.3.49

It is sufficient to only consider δ = 1 and later recover the full results by homothetically scaling

the coordinates. We also note another result of Sobolev theory [27, 28]: that if Ω is a bounded

Lipschitz graph class domain in Rn, C∞(Ω̄) is dense in Llp(Ω) for p <∞

Let ϕ ∈ C∞0 (B(0, 1)) and we begin with assuming u ∈ C∞(Ω). Let x ∈ Ω and z ∈ B(0, 1).

By star-shapedness the segment z + (x − z)t (t ∈ [0, 1]) is contained in Ω. Thus, using Taylor’s

theorem we have

u(x) =
∑
|α|<l

Dαu(z)

α!
(x− z)α + l

∫ 1

0

(1− t)l−1
∑
|α|=l

1

α!
Dαu(z + t(x− z))(x− z)α dt. (B.10)

Multiplying this equality by ϕ(z) and integrating, we get

u(x) =
∑
|α|<l

∫
B(0,1)

Dαu(z)

α!
(x− z)βϕ(z) dz

+ l
∑
|α|=l

∫ 1

0

∫
B(0,1)

(1− t)l−1 1

α!
Dαu(z + t(x− z))(x− z)αϕ(z) dt.

(B.11)

A simple integration by parts gives (|α| < l)

∫
B(0,1)

Dαu(z)(x− z)αϕ(z) dz = (−1)|α|
∫
B(0,1)

u(z)Dα
z ((x− z)αϕ(z)) dz. (B.12)
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Returning the to the remainder term in the Taylor expansion, we use the following change of

variables:

x− z = (1− t)−1(x− y), dz = (1− t)−ndy. (B.13)

This results in

l
∑
|α|=l

∫ 1

0

∫
B(0,1)

(1− t)l−1 1

α!
Dαu(z + t(x− z))(x− z)αϕ(z) dt

=
1

α!

∫
Rn

∫ 1

0

Dαu(y)(x− y)αϕ

(
y − tx
1− t

)
1

(1− t)n+1
dt dy.

(B.14)

To get the last result in Remark 2.3.50, we identify the kernel in the last expression and perform

one last variable transformation:

∫ 1

0

ϕ

(
y − tx
1− t

)
1

(1− t)n+1
= r−n

∫ ∞
r

ϕ(x+ ρθ)ρn−1 dρ. (B.15)

The coordinates can be scaled to recover δ. Because C∞(Ω̄) is dense in Llp(Ω) and each of these

integral operators is continuous in Llp(Ω), we can pass a converging sequence ui → u in C∞(Ω̄)

to have an integral representation of u. �

B.1.4 Proof of Lemma 2.3.62

We apply the partition of unity {ϕi,ε} as laid out in Corollary 2.3.6 and use Lemma 2.3.60 in

the scaled domain. We denote the homothetic scaling on R3: θ : x → x/ε and Θ the induced

operator on functions (Θu = u(θ)). Beginning with the left hand side of (2.133), we have:

ε−1||Tm,k,ε(u− Pm,εu)||2L2(Γk,m,ε)
+ [Tm,k,ε(u− Pm,εu)]2Γk,m,ε

= ε||ΘTm,k,ε(u− Pm,εu)||2L2(θ(Γk,m,ε))
+ ε[ΘTm,k,ε(u− Pm,εu)]2θ(Γk,m,ε)

≤ ε
∑
i

||ϕi,ε(θ)ΘTm,k,ε(u− Pm,εu)||2L2(θ(Γk,m,ε))
+ [ϕi,ε(θ)ΘTm,k,ε(u− Pm,εu)]2θ(Γk,m,ε).

(B.16)

Recalling Corollary 2.3.6, we first note that the gradient of all the partition functions ϕi,ε(θ) is

uniformly bounded above by a constant c∇ϕ uniform with respect to ε. We also note the bounding
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balls about ϕi,ε(θ) have an upper bound on their diameter also independent of ε. Local finiteness

of the partition holds as well (number of intersections is bounded about by cU ). The support of ϕi,ε

(Ui,ε) can be identified with a local neighborhood of a special Lipschitz domain Ωi,ε. All of which

have Lipschitz graph norms bounded about by an ε-independent constant cM .

Using Lemma 2.3.60, each support set of ϕi,ε can be mapped to an half-space R3
+ by χi,ε

(Definition 2.3.61) with norm bounded independently of ε. On each copy of R3
+ we invoke the

Sobolev embedding theorem:

||ΘTm,k,ε(u− Pm,εu)||2L2(supp(ϕi,ε(θ))∩θ(Γk,m,ε)) + [ΘTm,k,ε(u− Pm,εu)]2supp(ϕi,ε(θ)∩θ(Γk,m,ε)

≤ c
(
||ΘTφi,εTm,k,ε(u− Pm,εu)||2L2(supp(ϕi,ε(θ(χi,ε))∩θ(χi,ε(Γk,m,ε))

+ [ΘTφi,εTm,k,ε(u− Pm,εu)]2supp(ϕi,ε(θ(χi,ε)))∩θ(χi,ε(Γk,m,ε))
)
.

(B.17)

Denoting the upper bound of the norm of the embedding as cem (depending only on cM , the upper

bound on the Lipschitz norms of the boundary graphs), the (B.17) is bounded by:

cem||ΘTφi,ε(u− Pm,εu)||2H1(supp(ϕi,ε(θ(χi,ε))
. (B.18)

Thus (B.16) is bounded by

εc′
∑
i

||ϕi,ε(θ)Θ(u− Pm,εu)||2H1(supp(ϕi,ε(θ)))
. (B.19)

After imputing all the constants associated with our partition of unity, the (B.19) is bounded by

εc′cU(1 + c∇ϕ)||Θ(u− Pm,εu)||2H1(θ(Em,ε))
. (B.20)

Lastly, we scale the domain back to ε size to get the bound c||u||2H1(Em,ε)
. �

114



B.1.5 Proof of Proposition 2.3.63

LetR0 denote the continuous (lowest order) reflection operator on Rn
+. Namely, for u(x′, xn) ∈

C(Rn
+) where xn ≥ 0 we define

R0u(x′, xn) = u(x′, |xn|) (x′, xn) ∈ Rn. (B.21)

Because continuous functions are dense in H1(Rn
+), R0 can be extended to a linear operator from

H1(Rn
+) to H1(Rn) of norm 2.

Using the machinery laid out in Corollary 2.3.6 and Lemma 2.3.62, we begin with the covering

{Ui,ε} and homothetic scaling map θ. By application of Tφi,ε of Lemma 2.3.60, we can rectify each

θ(Ui,ε) along the interface θ(Γk,m,ε) into being a subset of the half space R3
+.

In particular the transformation laid out in Lemma 2.3.60 takes θ(Γk,m,ε ∩Ui,ε) into a subset of

the hyperplane ∂Rn
+. We then use R0 to reflect a function across θ(Γk,m,ε) into θ(Mk,S,ε):

R0 : ΘTφi,εH
1(Ui,ε) = H1(V ⊂ R3

+) 7→ H1(R3). (B.22)

Subsequently, we may take a smooth cutoff function ψ with respect to the normal distance from

the planar set θ(χi,ε(Γk,m,ε ∩ Ui,ε)):

ψ ∈ C∞(R) ψ(x ≥ 0) = 1 ψ(x ≤ −c) = 0 (B.23)

where c > 0. We then define

Em,i,1 :H1(θ(χi,ε((Ui,ε))) 7→ H1(θ(Mk,S,ε))

Em,i,1 = T−1
φi,ε
ψR0.

(B.24)

This operator has norm bounded uniformly bounded above by a constant cm independent of i and

ε. The last matter is to observe that the collection the supports of these extensions have a finite

intersection property in the limit of ε tends to zero. This property follows because of the limit finite
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intersection property of Ui,ε and the finite support length parameter c. We then define

Em,ε =
∑
i

Θ−1Em,i,1ΘTφi,εϕi,ε. (B.25)

Because

||Θ(u− Pm,εu)||2H1(θ(Em,ε))
≤ cε−1||u− Pm,εu||2H1(Em,ε)

(B.26)

and

||Θ−1v||2H1(Em,ε)
≤ cε||v||2H1(θ(Em,ε))

, (B.27)

the extension operator Em,ε satisfies the inequality in (2.134). �

B.1.6 Proof of Lemmas 2.3.65 and 3.3.57

In the uniformly fattened case the domain Mk,S,ε is a “slab” of width 2ε, and in the non-

uniformly fattened case the domain Mk,S,ε is a “slab” of variable width of 2εrk.

We cover a neighborhood in Mk,S,ε of the interface Γk,m,ε with a partition of unity satisfying

similar requirements to Corollary 2.3.6 with some differences. Let {Ui,ε} be a locally finite open

cover of Γk,m,ε such that the maximum number of intersections is bounded above by nU for all

ε > 0. We also suppose the intersection Ui,ε ∩ Ui′,ε contains a set of diameter larger than c1ε. The

inner and outer diameters of each Ui,ε have lower and upper bounds of c2ε and c3ε respectively.

We consider cylindrical domains over each Ui,ε called Vi,ε in Mk,S,ε. For some point y ∈ Ui,ε,

we denote the normal vector to Γk,m,ε at y pointing into Mk,S,ε as νk,m,ε(y). For some constant c4

(depending only on the geometry of Mk,S), the collection of sets {Vi,ε} where

Vi,ε := {x ∈Mk,S,ε : x = y + zνk,m,ε(y) y ∈ Ui,ε, z ∈ (0, c4)} (B.28)

has the finite intersection property as ε → 0. I.e. there is an nV such that at most nV sets Vi,ε (for

a collection of i) have non-trivial intersection.

The requires some more clarification. The constant c4 must be appropriately chosen to avoid

116



caustics, so c4 must be less than half of the inner diameter (as defined geodesically) of Mk,S . As

an elementary example, we consider the disk and a covering of the boundary of the disk with O(ε)

intervals {Ui,ε} with some finite intersection property and associated constant nU . Taking strips of

length of 1/4 each with their base one of these O(ε) intervals along the boundary, these strips still

have a finite intersection property. Furthermore, the maximum number of intersections of these

strips will be
4πnU

3π
. The maximum number of intersections of Vi,ε is a function of nU , c4, and the

curvature of Γk,m,ε.

We equip Mk,S,ε with a local normal coordinate system (y1, y2, z), where y2 denotes the dis-

tance from the boundary Γk,m,ε. Considering the scaling θ : (y1, y2, z) → (y1/ε, y2, z/ε) (and

induced operator Θ). Let {ϕi,ε} be a smooth partition of unity subordinate to {Vi,ε}. Applying the

scaling θ and the partition of unity, we have

||Tk,m,εu||2L2(Γk,m,ε)
≤
∑
i

ε2||Tk,m,εΘϕi,ε(θ)u||2L2(θ(Γk,m,ε))
. (B.29)

Under the scaling θ, the support sets supp(ϕi,ε(θ)) are contained in a ball of radius c1 uniform with

respect to i and ε and contain a ball of radius c2 also uniform with respect to i and ε. As before, the

each of these domains is equivalent to a subset of a special Lipschitz domain whose graph function

has Lipschitz norm bounded above by M (also a uniform constant). The right hand side of (B.29)

is bounded by:

cemε
2||Θϕi,ε(θ)u||2H1(θ(Mk,S,ε))

≤ c||u||2H1(Mk,S,ε)
. � (B.30)

B.1.7 Proof of Lemma 3.3.43

This proof will be broken up further into several lemmas:

Lemma B.1.1. Let l ≥ 1 and suppose

∫
Rm

K(t)tν dt = 0 (B.31)
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for all multi-indices ν ∈ Zm+ and |ν| ≤ l − 1. If u ∈ C∞(D), then the following estimate

||Dγ
y (T u)(·, z)||Lp(Rm) ≤ c|z|l−|γ|||∇lu(·, z)||L2(Rm) (B.32)

holds for z ∈ Ω\{0}, |γ| ≤ l, p ≥ 1.

Proof B.1.1: Applying the Taylor expansion to u(·, z), we have:

T u(y, z) = l|z|l
∫
Rm

∫ 1

0

∑
|α|=l

tα

α!
(Dα

y u)(y + τ |z|t, z)(t− τ)l−1 dτ. (B.33)

The case γ = 0 follows immediately from the Minkowski inequality. The following is a proof by

induction on l. Setting l = 1, we get

DziT u =
zi
|z|

m∑
j=1

∫
Rm

tjK(t)Dyju(y + |z|t, z) dt

+

∫
Rm

Dziu(y + |z|t, z) dt = T Dziu+
zi
|z|

m∑
j=1

TjDyju

(B.34)

where Tj is an operator of the form of T with a kernel Kj = tjK. Using the Minkowski inequality

again, we arrive at:

||DziT u||Lp(Rn) ≤ c||∇u||Lp(Rm). (B.35)

For the induction step, let l ≥ 2 and assume the Lemma holds for all orders up to l − 1. Let

|α| = |γ| − 1 ≤ l − 1 and Dγ
z = Dα

zDzi for some i. From before we have

Dγ
z = Dα

z T Dziu+
m∑
j=1

Dα
z (zi|z|−1TjDyju). (B.36)

We say for multi-index δ that δ ≤ α if δi ≤ αi index-wise. The last term in (B.36) is bounded by

||Dα
z (zi|z|−1(TjDyju)||Lp(Rm) ≤ c

∑
δ≤α

|z||δ|−|α|||Dδ
zTjDyju||Lp(Rm). (B.37)
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The kernel Kj of Tj also satisfies the integrability condition (B.31). Thus, it follows

||Dδ
zTjDyju||Lp(Rm) ≤ c|z|l−1−|δ|||∇l−1Dyju||Lp(Rm). (B.38)

Lastly, combining these inequalities we have

||Dα
z T Dziu||Lp(Rm) ≤ c|z|l−1−|α|||∇l−1Dziu||Lp(Rm). � (B.39)

Lemma B.1.2. Let (B.31) be satisfied for all ν with 1 ≤ |ν| ≤ l−1. Then T is a bounded operator

and the following estimates hold

||∇lT u||Lp(D) ≤ c||∇lu||Lp(D). (B.40)

Proof B.1.2: This is proven by an induction on l. We suppose u ∈ C∞(D) ∩ Llp(D) and

bootstrap our results to Llp(D) by the density argument. The case l = 0 is trivial, and l = 1 follows

since T Dyj = DyjT . Let l ≥ 2 and assume

||∇kT u||Lp(D) ≤ c||∇ku||Lp(D) (B.41)

holds for all k ≤ l − 1 and smooth functions u ∈ Lkp(D). Let γ and β be multi-indices. Because

T commutes with the longitudinal derivative, we have

Dγ
zD

β
yT u = Dγ

z (T Dβ
yu). (B.42)

Let |β| + |γ| = l. If γ = 0 then simply commuting the derivative with T gives us the required

result. If 0 < |γ| < l, by the induction hypothesis we have

||Dγ
zD

β
yT u||Lp(D) ≤ c||∇|γ|Dβu||Lp(D) ≤ c||∇lu||Lp(D). (B.43)
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Let |β| = 0, |γ| = l and Dγ
z = Dα

zDzi . As established in the previous lemma, we have

||Dγ
zT u||Lp(Rm) ≤ ||Dα

z T Dziu||Lp(Rm) + c

m∑
j=1

∑
δ≤α

|z||δ|−|α|||Dδ
zTjDyju||Lp(Rm). (B.44)

Note again that the kernel Kj of Tj satisfies (B.31). By integrating with respect to z ∈ Ω, we

conclude that this is bounded by the right hand side of (B.32). �

Returning back to the original statement Lemma 3.3.43, the proof is again an induction on l

using a density argument. Letting u ∈ Llp(D) ∩ C∞(D), we have

|T u− u| =
∣∣ ∫

Rm
K(t)(u(y + |z|t, z)− u(y, z) dt

∣∣
≤ c|z|l

∫
Rm

∫ 1

0

|K(t)|
∑
|α|=l

|Dα
y (y + |z|tτ, z)| dτdt.

(B.45)

For l = 1, k = 0 the inequality has already been verified and k = 1 follows from the Lemma

B.1.2. Let l ≥ 2 and suppose the lemma holds true for all orders up to l− 1. β and γ again denote

multi-indices such that |β|+ |γ| = k and |β| > 0. By the commutation property of T , we get:

Dγ
zD

β
y (T u− u) = Dγ

z (T Dβ
yu−Dβ

yu). (B.46)

The induction hypothesis gives

||DβDγ(T u− u)||Lp(D) ≤ crl−|β|−|γ|||∇l−|β|D
βu||Lp(D). (B.47)

Suppose first |β| = 0. Dγ
z = Dα

zDzi for some i. From before we have

||Dγ
z ||Lp(D) ≤ ||Dα

z T Dziu||Lp(D) +
m∑
j=1

||Dα
z (zi|z|−1TjDyju)||Lp(D). (B.48)
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The last term is dominated by

crl−1−|α|||∇l−1Dyju||Lp(D), (B.49)

while the other term is bounded by the induction hypothesis

||Dα(T Dziu−Dziu)||Lp(D) ≤ crl−1−|α|||∇l−1Dziu||Lp(D). (B.50)

Consequentially, the result (B.40) is proven. �

B.1.8 Proof of Proposition 3.3.61

From Proposition 3.3.55, we constructed an extension operator on u−Pm,ε. We now extend the

averaged component of u. Observe that Pm,εu (and PT,m,εu) is constant along each cross-section.

Thus, extending PT,m,εu as a constant with a smooth cutoff function along the cross-sections into

a larger, bounded cylindrical domain is a bounded operator. Let us formulate this.

Let {Ui} be a finite covering of U = [0, lEm ]/{0, lEm}, and so {γm(Ui)} is a finite covering of

Em. For a sufficiently small distance bi > 0, there is a neighborhood of γm(Ui) admits a coordinate

system (t, z) ∈ Ui×D(0, bi) such that distR3(γm(Ui), (t, z)) = |z|. Let b = min bi. We suppose ε0

is sufficiently small such that Em,ε is contained in this neighborhood of distance b. Let φ denote a

compactly supported function on R and φ is 1 in (−1, 1) and 0 outside (−2, 2). In this coordinate

system, we can define the extension of PT,m,εu locally. We first extend to R3 and take the restriction

to Mε:

Em,εPT,m,ε(t, z) := φ

(
|z|
2b

)
PT,m,εu(γm(t)). (B.51)

Clearly, when ε is sufficiently small, this extension is supported in Ui × D(0, b). Secondly, this

extension is well-defined in the overlap Ui ∩ Uj . We then calculate the H1-norm of this extension.
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Note that the derivative of φ is only non-zero outside the fattened binding. We get

||Em,εPT,m,εu||2H1(Mε)
− ||PT,m,εu||2H1(Em,ε)

=

∫
Mε\Em,ε

(|φ(|z|/2b)|2 + |Dzφ(|z|/2b)|2)|PT,m,εu|2

+ 2Dzφ(|z|/2b) ·DzPT,m,εu+ |φ(|z|/2b)|2|∇PT,m,εu|2 dMε.

(B.52)

Now make a volume comparison: Mk,S,ε is a slab of volume O(ε) while Em,ε is a tube of volume

O(ε2β). Using the volume analysis, we conclude (B.52) is bounded by

2 maxy |Ik,ε(y)|
miny |ωm,ε(y)|

(
(2b)−2 max

z
|φ′(|z|/2b)|2 + 1

)
||u||2H1(Em,ε)

. (B.53)

I.e., for any φ, the difference in H1-norms is bounded by the ratio of the volume of the fattened

pages to the volume of the fattened binding in the ε→ 0 limit. �

B.1.9 Proof of Proposition 3.4.6

This proof is broken up into several statements.

In the thin junction cases several things can be observed: Em,ε is still given by cross-sections.

These cross-sections have diameter O(ε) and are star-shaped with respect to a ball of radius O(εβ).

Corollary B.1.3. Let Pm,ε (see Definitions 3.3.37 and 3.3.39) be analogous averaging operator for

the thin junction domain . For u ∈ H1(Em,ε), the averaging operator Pm,ε satisfies a Poincaré-type

inequality:

||u− Pm,εu||2L2(Em,ε) ≤ cε4−2β||∇u||2L2(Em,ε). (B.54)

From Lemma 2.3.48 and Theorem 2.3.49, the Poincaré constant on a cross-section is propor-

tional to D2/δ where D is the diameter of the cross-section and δ is the diameter of the ball which

it is star-shaped with respect to. In this case D = O(ε) and δ = O(εβ). �

Lemma B.1.4. Let Mε be a thin junction type domain with 1 < β < 2. For u ∈ H1(Em,ε), one
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has:

ε−β||Tm,k,ε(u− Pm,εu)||2L2(Γk,m,ε)
+ [Tm,k,ε(u− Pm,εu)]2Γk,m,ε ≤ cε3−3β||u||2H1(Em,ε)

. (B.55)

Proof: Begin with a partition of unity {ϕi,ε} subordinate to an open cover {Ui,ε} as described in

Corollary 3.3.5. Observe that the thin junction fattened binding can be covered with balls of radius

O(εβ) and the fattened binding has the properties described in Corollary 3.3.5. Let θ : x → x/εβ

be a homothetic transformation and Θ be the induced operator on functions. This proof begins

with following the set up to the proof of Lemma 2.3.65. Let {Ui,ε} be a locally finite open cover of

Γk,m,ε consisting of sets of diameterO(εβ). We also suppose if Ui,ε∩Uj,ε overlap in such a way that

there exists a smooth partition of unity subordinate to {Ui,ε} such that each function has derivative

uniformly bounded by cϕε−β . Noting the geometry of a cross-section looks like a rectangle of

with 2εβ with height O(ε), we consider cylindrical sets Vi,ε with base Ui,ε of height O(ε) in Em,ε

(similar to the construction in the proof of Lemma 2.3.65). We suppose {Vi,ε} maintains a finite

intersection property in the ε → 0 limit, i.e. at most cU sets ever intersect. Let {ϕi,ε} be a

partition of unity subordinate to {Vi,ε}. Suppose each Vi,ε admits a geodesic coordinate system x =

(y, z1, z2) where the z2 the distance from Γk,m,ε. Let θ denote a non-uniform scale transformation

θ : (y, z1, z2) 7→ (y/εβ, z1/ε
β, z2/ε) and Θ denotes the induced operator on functions. Following

previous calculations, we scale the trace norm and this time estimate the change in the derivative
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in each direction:

ε−β||Tm,k,ε(u− Pm,εu)||2L2(Γk,m,ε)
+ [Tm,k,ε(u− Pm,εu)]2Γk,m,ε

= εβ||ΘTm,k,ε(u− Pm,εu)||2L2(θ(Γk,m,ε))
+ εβ[ΘTm,k,ε(u− Pm,εu)]2θ(Γk,m,ε)

≤ εβ
∑
i

(
||ϕi,ε(θ)ΘTm,k,ε(u− Pm,εu)||2L2(θ(Γk,m,ε))

+ [ϕi,ε(θ)ΘTm,k,ε(u− Pm,εu)]2θ(Γk,m,ε)

)
≤ εβcem

∑
i

(
||ϕi,ε(θ)Θ(u− Pm,εu)||2L2(supp(ϕi,ε(θ)))

+ ||∇ϕi,ε(θ)Θ(u− Pm,εu)||2L2(supp(ϕi,ε(θ)))

)
≤ cem

∑
i

(
ε−β−1||ϕi,ε(u− Pm,εu)||2L2(supp(ϕi,ε))

+ εβ−1||∇(y,z1)ϕi,ε(u− Pm,εu)||2L2(supp(ϕi,ε))

+ ε1−β||Dz2ϕi,ε(u− Pm,εu)||2L2(supp(ϕi,ε))

)
≤ cem

∑
i

ε3−3β||ϕi,ε(u− Pm,εu)||2H1(supp(ϕi,ε))

≤ ε3−3βcemcU(1 + c∇ϕ)||(u− Pm,εu)||2H1(Em,ε)
. �

(B.56)

Definition B.1.5. Let 1 < β < 2. We define NΓ,ε to be the averaging operator averaging over

INk,ε(y) intersecting Γk,m,ε. I.e.

NΓ,εu(y) =
1

|INk(y),ε ∩ Γk,m,ε|

∫
INk(y),ε∩Γk,m,ε

u(y, ζ)dζ. (B.57)

Lemma B.1.6. For u ∈ H1(Em,ε), one has:

||Pm,εu− Tk,m,εNΓ,εu||2L2(Em,ε) ≤ cε4−2β||u||2H1(Em,ε)
. (B.58)

Proof: Following similar calculations, we identify a normal fiber of Γk,m,ε (normal with respect
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to Mk) with a point on Em by the boundary of the cross-section of Em. We then get

||Pm,εu−NΓ,εTm,k,εu||2L2(Ẽm,ε)

=

∫
$m,ε

dωm,ε

∫
Em

|P̃m,εΦEm,εu−NΓ,εTm,k,εu|2 dEm

≤ maxy∈Em |$m,ε(y)|
min |INk(y),ε ∩ Γk,m,ε|

∫
Em

|NΓ,εTm,k,ε

(
P̃m,εΦEm,εu− u

)
|2 dEm

≤ ε1+β
(
ε−β||Tm,k,ε(u− Pm,εu)||2L2(Γk,m,ε)

)
≤ cε4−2β||u||2H1(Em,ε)

. �

(B.59)

Lemma B.1.7. For u ∈ H1(Mε), one has:

||NΓ,εTm,k,εu||2L2(Em,ε) ≤ cε||u||2H1(Mk,S,ε)
. (B.60)

Proof: This requires only small modification of the proof of Lemma 2.3.65. Because

ε−1||u||2L2(Γk,m,ε)
≤ c||u||2H1(Mk,S,ε)

, we only need to show

||NΓ,εTm,k,εu||2L2(Γk,m,ε)
≤ ||u||2L2(∂Mk,S,ε)

. (B.61)

This is a simple application of the Cauchy-Schwartz Inequality. �

Returning to proving Proposition 3.4.6, we use the triangle inequality:

||u||L2(Em,ε) ≤ ||Pm,εu− u||L2(Em,ε)

+ ||Pm,εu−NΓ,εTk,m,εu||2L2(Em,ε) + ||NΓ,εTm,k,εu||2L2(Em,ε).

(B.62)

The upper bound estimate follows from Corollary B.1.3 and Lemmas B.1.6 and B.1.7. �
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