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ABSTRACT 
 

The increased consumption and abundance of fossil fuels has led to significant greenhouse gases 

(GHGs) emissions, mainly CO2, which has led to health problems and climate changes. Therefore, 

it is essential to reduce the emissions of carbon dioxide to the atmosphere which contributes to 

protect our plant and the public health. Several technologies have been used in this regard such as 

carbon capture and utilizing it. The GTL (Gas-to-liquid) technology uses reforming units such as 

DRM (Dry Reforming of Methane) that utilizes CO2 to produce syngas for generating various 

products. Therefore, to mitigate carbon dioxide the reforming unit requires a catalyst to perform 

in the production of syngas by using two of the main GHGs, methane and carbon dioxide. This 

work is based on the synthesis of synthesizing Ni-based catalysts for DRM to produce syngas and 

specifically focuses on the preparation and characterization of hydrotalcite derived Mg-Al and 

doped Zn on Mg-Al with molar ratio of 2:1 for Mg: Al. The bimetallic supports were prepared via 

the co-precipitation method while metallic supports by precipitation method. The Ni-based 

catalysts were synthesized through the impregnation method. Furthermore, to avoid carbon 

deposition and sintering of the catalyst, the conducted temperature for DRM reaction was at 6500C. 

The characterization technologies of the catalysts were performed using XRD, BET, FTIR, H2-

TPR, and DRM reaction techniques to confirm the hydrotalcite structure and the metal-support 

interactions.  
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1. INTRODUCTION 
 

1.1 Natural gas  

Natural gas is a fossil fuel that is extracted by underground drilling and is mostly used for 

heating of residential homes, industry usage, and generation of electricity by combustion of natural 

gas. Although natural gas impacts positively the economy for the producer countries, and although 

it is the cleanest fossil fuel, it contributes to significant amount of GHG emission. During the 

combustion of methane, carbon dioxide (CO2) is produced and emitted to the atmosphere which 

causes global warming and climate change. Since 1970, carbon dioxide emission has been 

increasing due to anthropogenic factors and 90% of carbon dioxide emissions to the atmosphere 

was a result from fossil fuel combustion. According to EPA as of 2014, 65% of carbon dioxide 

was emitted to the atmosphere followed by methane (16%). Methane in the atmosphere is caused 

due to leakage, whether from transporting the gas in pipelines or from the drilling and extraction 

of natural gas [1]. 

Therefore, emerged utilizations of CO2 were performed as a feedstock to mitigate carbon 

dioxide emissions by producing synthesizing syngas (carbon monoxide and hydrogen gas) via 

various reforming technologies. These produced gases can be converted to long-chain 

hydrocarbons through the Fischer-Tropsch process and then cracking the hydrocarbon for a desired 

clean fuels production. 

1.2 Climate change 

Global energy demand and simultaneous thrive for fuel consumption has led to a disastrous 

environmental impact on earth due to extensive emissions of carbon dioxide (CO2) to the 

atmosphere from anthropogenic factors. Since 1950, climate change has been noticed which 
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affected the human and natural systems due to anthropogenic greenhouse emissions caused by the 

human industrial era. A result is temperature increase of the atmosphere as well as sea level caused 

by global warming phenomenon.  Furthermore, oceanic uptake of anthropogenic CO2 resulted in 

ocean acidification means that the pH of water has decreased, and the acidity increased affecting 

the marine ecosystem to change because of the increase in CO2 concentration in the ocean [2].  

Furthermore, there were incidents occurred recently in the Antarctic and Greenland where 

ice sheets were losing in huge amounts while in June 2019, 2 billion tons (2 Gigatons) of ice were 

lost in Greenland. According to Mote Miller, a research scientist at the University of Georgia, the 

reasoning for ice melt in Greenland is due to a blocking ridge in East Greenland across a large 

amount of the spring that resulted in ice melting behavior in April 2019. The ridge’s high pressure 

pulls up warm from the Central Atlantic into parts of Greenland, which is also caused by albedo’s 

changed surface. The early melt season of 2019 occurred three weeks earlier than average and is 

considered to be higher than in the year 2012 which was the highest record-melt-season setting in 

history, as shown below in Figure 1 [4]. 

 

 

Figure 1: Greenland ice-melt surface range based on National Snow and Ice Data Center, 
University of Colorado Boulder [4] 
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All these changes are corresponded to climate change systems and could lead to notable 

ramifications to sea level, which is anticipated to increase if natural resources are monetized 

without controlling greenhouse gas emissions. Ever since, the Paris agreement was on place in 

2016, in which countries agreed to reduce greenhouse gas emissions for reducing the global 

temperature. To enhance this goal innovative technologies, and financial framework are 

considered vital for the success of this strategy [3]. 

Natural resources include NG, oil, and coal are three types that are vital in energy due to their 

efficient performance. The combustion of coal and oil produces high content CO2 along with 

nitrogen oxide and sulfur dioxide emissions in contrast to natural gas combustion (specifically for 

the case of the sweet or treated natural gas). Furthermore, natural gas emits 30% less CO2 than 

crude oil and around 50% more than coal. Also, coal and oil produce harmful by-products such as 

ash. 

Natural gas is converted to long-chain hydrocarbons for human use via the gas-to-liquid (GTL) 

technology. Although, it is the cleanest fossil fuel energy source, its processing and burning still 

contribute to significant amount of GHG emission.  

Different technologies are implemented for natural gas monetization such as LNG 

(liquefied natural gas) that is needed for transportation of large quantities of natural gas, GTL (gas 

to liquid) for the conversion of natural gas to ultra-clean fuels and value-added chemicals besides 

other conversion technologies (methanol synthesis, urea production, etc.). All of the before- 

mentioned monetization techniques provide clean energy sources with efficient performance as 

well as economically sound. Methane is the primary component in natural gas and minor 

components are ethane, propane, C3
+, carbon dioxide, nitrogen, and sulfur. Methane is a 

greenhouse gas [5], which is released to the atmosphere through transportation or production of 
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natural resources or agricultural practices [6]. It is 84 times more potent than carbon dioxide when 

released in the atmosphere causing climate change. Therefore, in 2016 the EPA (Environmental 

Protection Agency) completed a major national rule that limits methane emissions from industries 

that operate oil and gas [7]. 

1.3 GTL technology 

GTL process is generally described as a substitute for petroleum-derived fuels (Fleisch et 

al., 2002; Wood et al., 2012) and its innovative monetization production of chemicals and clean 

energy fuels in recent years. Production of liquid from gas is an easy potential to transport liquids. 

Methane to be transported to long distances, it must be liquefied by cooling to around -1650C in a 

cryogenic unit and this process is called LNG (liquefied natural gas) [8]. Three sectors are involved 

in the natural gas field: upstream, midstream, and downstream. Upstream is the first stage where 

natural gas and oil are explored, extracted and produced through drilling underground using 

specialized wells and then transferred to the surface. While midstream is a stage that includes 

infrastructure and pipeline to transporting natural gas to the main plant to be converted to various 

products. The final sector is downstream, where natural gas is in the main plant and is processed 

to produce useful products such as gasoline and diesel for human consumption [9]. The reformer, 

Fischer-Tropsch and hydrocracking units are GTL technology units. 

1.4 Reforming unit methods for syngas production 

The DRM method is based on the utilization of CO2 as a soft oxidant to react with methane 

and produce synthesis gas; a mixture of hydrogen (H2) and carbon monoxide (CO). DRM reaction 

is an endothermic reaction and considered to CO2 sink reformer; however, it tends to produce coke 

since it does not include steam to remove the carbon deposited on the surface of the catalyst. 
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Therefore, to reduce coke formation, which leads to catalyst deactivation, several studies have 

shown that adding alkali and alkaline metal dopants such as MgO, Na, and CaO or lanthanide 

dopants such as UO2, U3O8, and La2O3, benefits the catalyst to resist deactivation and coke 

formation [10]. The partial oxidation of methane (POX) is another commercial natural gas 

reforming technology and it is an exothermic reaction that requires pure oxygen obtained from the 

costly air separation unit. The old and well-known reforming technology is the steam reforming 

of methane (SRM), which is an endothermic reaction. Another sophisticated commercial reformer 

technology is the auto-thermal reformer (ATR), which is a combination of SMR and POX and is 

the lowest energy-intensive than other reformer methods. The ATR is known to have better 

temperature control that avoids catalyst deactivation caused by carbon deposition and coke 

formation due to the low energy requirement from the combination of endothermic and exothermic 

reactions. The ratio of CO:H2 is improved depending on the required application by feeding 

oxygen or changing the operating conditions and feed composition to the reaction. Since the POX 

is an exothermic reaction, the O2 conversion is unaffected by the addition of CO2 and H2O [11].  

1.4.1 DRM, POX, SRM, and ATR Stoichiometric Reactions  

 

I. DRM [10] 

CO2 + CH4   2H2 + 2CO      ∆H0= +247 KJ.mol-1   (1)     

II. POX  

O2 + CH4    2H2 + CO       ∆H0= -36 KJ.mol-1              (2)                     

III. SRM  

H2O + CH4     3H2 + CO      ∆H0= +206 KJ.mol-1   (3)                      

 ATR [11] 
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    CO2 + CH4   2 H2+CO        ∆H0= -36 KJ.mol-1    (4) 

1.5 Layered Double Hydroxides (LDH) 

Homogeneous catalyst is derived either from organic bases and acids or from minerals, which 

are considered to have difficult recovery causing waste problems and corrosion to the pipes from 

salt formations. In this regard, heterogeneous catalysts are preferred than homogeneous catalysts 

by providing greener results for the proposed problems on homogeneous catalysts while using a 

solid of basic or acid catalysts [12].  

The Layered Double Hydroxides (LDH) known as Hydrotalcites is a lamellar clay (anionic 

clays) with a formula of [M2+ 1-xM3+ x(OH)2]x+1 [An-]x/n. yH2O. As M2+ is bivalent cations and M3+ 

is the trivalent cations, An- is the interlayer anion. The Hydrotalcites are bructile-like-layers consist 

of positive charge layers and an anionic layer is between them compensating the positive charges 

while water is trapped in these layers. Synthesizing the catalyst from metal salts by co-precipitation 

is the common method used for preparing the LDH from the anionic and cationic composition. 

The LDH is an ideal material used for catalyst precursor, solid catalyst and support catalyst. LDH 

can be formed between the range of 0.2 < x < 0.33, x is M3+/(M3+ +M2+) and M2+/ M3+ is between 

2-4 [13]. The layered structure gives high surface area, a maximum concentration of active sites, 

thermal stability and the tendency to compensate the bivalent and trivalent cations on the catalyst 

surface area. One of the most common layered-double hydroxides is Mg6Al2(OH)16CO3.4H2O 

occurs in the form of bivalent and trivalent cationic layers. Also, replacing Mg and Al with other 

cations M2+ and M3+ in the octahedral sheets throughout synthesis can give high active catalyst 

performance [14]. 

1.6 Catalyst deactivation 
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The constraints that non-noble metals involve are catalyst deactivation and carbon 

deposition/coking which affect the catalyst development mechanism. According to Gadalla and 

Sommer, sintering, carbon deposition or inactive formation of products might cause the catalyst 

deactivation during the DRM reaction. While Takanabe mentioned that metal oxidation is another 

factor in the catalyst deactivation. Plots by White can be followed to avoid carbon deposition. The 

temperature below the formation of carbon deposition can be determined using the ternary diagram 

that corresponds to total pressure and plotting the feed composition. These diagrams are used for 

any feed composition, carbon, hydrogen, and oxygen [15]. In 1988, Gadallah and Bower studied 

thermodynamics in CO for carbon formation, reforming system and their results were represented 

as a function of feed composition on binary diagrams. They also included temperature curves 

showing the temperature at which NiC can be formed. And these diagrams illustrate the operating 

temperature for different feed ratios and pressures [16]. 

According to Rudnitskii, the kinetics of carbon formation was studied by heating the reduced 

Ni in a mixture of CO2: CH4 while containing a value between 17%-25% of methane (CH4) at 7 

0K/minute. The results stated that carbon deposition started to form at a temperature between 

7200K and 7700K and kept increasing as temperature increases. However, above 9200K-9700K, 

carbon started to disappear, and these temperatures are complying with the calculations executed 

by Gadallah and Bower [17].  

1.7 Catalytic reaction mechanism in the DRM unit 

The fundamental reason for utilizing carbon and methane is referred to mitigate greenhouse 

gas emissions and for the favored ratio of H2/CO for the Fischer-Tropsch synthesis. Performing 

the DRM method for yielding clean fuels when methane and carbon dioxide are introduced to the 
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reformer unit and the used catalyst in this report is Ni-based catalyst. Whereby methane gas reacts 

with Nickel since both of them are acids, whilst carbon dioxide will react with the support since 

they are basic. CO2 is also adsorbed in the support vicinity and carbonate formation occurs. 

Reduction of carbonate via adsorbed hydrogen to form CO. As carbon dioxide is adsorbed into 

MgO (basic support) and is dissociated to CO and O. Methane is decomposed on Ni producing the 

deposition of carbon, and then the carbon reacts with O on MgO to form CO. 

 

 Steps for forming CO: 

1. CO2 (g) ↔ CO2 (support)        (5) 

2. CO2 (support) + O2− ↔ CO3
2− (support)      (6) 

3. CO3
2− (support) + 2H ↔ HCO2− (support) + OH−     (7) 

4. C*+O* → CO*         (8) 

Another approach for the DRM over Ni-based catalyst is methane adsorption on the metal sites 

and then dehydration by forming hydrogen (H) and hydrocarbons (CHx=0). Followed by, CO2 

dissociation to form CO and O. Hydrogen (H) that is adsorbed on the catalyst surface activates 

CO2 to produce COOH. Then CH* is oxidized to form either CHO* or COH* and then 

decomposed to produce CO* and H*. The adsorbed hydrogen that exists in large quantities is 

recombined to hydrogen molecules that are then desorbed to the gas phase. The symbol (*) is the 

active site surface on the catalyst [18]. 
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2. LITERATURE REVIEW 
 

Different reforming technologies can be used for producing a syngas which consists of 

carbon monoxide (CO) and hydrogen (H2). These technologies are Steam Reforming of Methane 

(SRM), Partial Oxidation (POX), Autothermal Reforming (ATR) and Dry Reforming of Methane 

(DRM).  All reforming technologies produce different molar ratios of H2/CO.  

Steam Reforming of Methane technology is the least expensive product for hydrogen 

production. The raw hydrocarbon material in SRM technology is mixed with steam and fed into a 

tubular catalytic reaction. Usually, the catalysts used in SRM reaction are either: non-noble group 

(typically nickel) or non-noble group (typically platinum (Pt) or rhodium). The common SRM 

reactor temperature used is 8500C. While Partial Oxidation technology requires oxygen from the 

oxygen separation unit. The POX reactor temperature is around 12000C-15000C. ATR technology 

is a combination of steam reforming and partial oxidation and the addition of these technologies 

provides low energy requirement, improvement in temperature control and carbon deactivation is 

avoided. The used ATR reactor temperature is between 9000C–11000C. DRM technology utilizes 

both CO2 and methane which are two major gases in the greenhouse gases, however due to the 

increase feedstock ratio of C/H, it produces coke, and at high temperatures it causes metal 

sintering. Both of coke formation and metal sintering cause catalyst deactivation [11]. Table 1 

illustrates a summary of the reforming technologies for syngas production [19,20]. 
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Table 1: Reforming technologies for syngas production 

 

 DRM POX SRM ATR 

Rxn 
Endothermic 

(6500C-8500C) 
Exothermic Endothermic 

Endothermic 

and 

exothermic 

H2:CO ratio 1:1 2:1 3:1 2:1 

Advantages 

- Utilizes two 

greenhouse gases. 

- The formed fuel 

is clean and 

environmentally 

friendly. 

- High conversion 

of reactants. 

-  High selectivity 

of syngas. 

- Short residence 

time. 

- High 

efficiency. 

- Lowest 

operating 

Temperature. 

- Best H2/CO 

ratio. 

- Oxygen is not 

required. 

- No external 

heat is 

required. 

 

-Lower cost 

than SRM. 

Disadvantages 

- Carbon 

deposition. 

- Sintering. 

Costly (cryogenic 

unit to separate 

O2) 

Requires high 

energy (costly) 

Air or oxygen 

requirement. 
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Moreover, DRM method for syngas production from Fischer-Tropsch technology 

generates long-chain hydrocarbons for alkanes and oxygenates synthesis. DRM is unavoidable by 

catalyst deactivation due to carbon deposition formation and as a reaction, DRM is an endothermic 

reaction meaning it requires high temperature (8000C-10000C) for the operation to reach high 

equilibrium conversion of methane and carbon dioxide to syngas. 

Recently, catalyst development has been a major focus for research scientists to reduce 

coking/carbon deposing, promote higher performance activity for the catalysts and to obtain high 

stability regarding sintering and for high activity. Ni-based catalysts are widely used in the DRM 

and some researchers include noble metals like Pt, Pd, Rh, and Ru to have good activity metals for 

the catalyst and used to avoid carbon deposition since Ni catalysts can undergo deactivation. Noble 

metals; Rh and Ru have the highest activity and carbon deposition resistance than others. On the 

other hand, economical aspects regarding Rh and Ru are the high cost and limited availability of 

Rh and Ru in the market. Also, it has been studied that cobalt catalyst non-metal support has good 

stability over silica or alumina supports. However, cobalt is not as active as nickel or noble metals 

and possibly the carbon deposition mechanism on cobalt metal is different than on nickel metal 

with a small quantity of coke/carbon deposition [21]. 

Other factors that cause catalyst deactivation is the sintering of metal particles, which is 

caused due to high temperature of the reaction. The second factor is the poisoning of catalysts from 

the support that contains sulfur. Support transition metals, such as Fe and Co and active metals 

supports like SiO4, ZrO2, TiO2, La2O3, CeO2, Al2O3 and MgO, for the transition metals have been 

studied extensively. It has been agreed in the scientific literature that the DRM process is bi-

functional indicating that methane is activated on metals while carbon dioxide activated on a basic 
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or acidic support. Inert materials SiO2 (inert material) are considered to have weak interaction 

between metal and support because they follow the mono-functional approach in which the 

reactants are activated by metals compared to acidic/basic supports such as Al2O3 (acidic) in which 

it is activated by formation of formate and hydroxyls, La2O3 (basic) and CeO2 (basic) which are 

activated by forming oxy-carbonates. The role of adding promoter to the catalyst is to increase the 

activity of the catalyst in the DRM reaction and the dispersion of the active metal in which it leads 

to increase the activation of methane more than unpromoted catalysts. Examples of promoters are 

V2O5, Zn and Sn [21]. 

At high temperature Ni catalyst is aggregated causing to losing their initial activity and 

their resistance to coke formation. Figure 2 illustrates the equilibrium conversion of a) CH4 and b) 

CO2 at different operating temperatures in Kelvin (0K). Developments in the last decade have been 

achieved to improve catalyst activity and stability of DRM Ni-based catalyst from noble-metals 

with bimetallic states and other transition metals [22]. It has been found that Ni-based catalysts are 

related to basicity of metal-oxide supports. Moreover, scientists indicated the coke formation on 

Ni catalyst is less favored when their sizes are in nanometer scale. Recently, more efforts have 

been focusing on the fabrication of small nanoparticles with thermal stability to retain initial 

reactivity and coke formation resistance during long operation of the DRM reaction. Small Ni 

nanoparticles (~<10 nm) have been studied extensively and showed that underlying supports play 

a significant role in dispersion and thermal stability of Ni nanoparticles due to their chemical and 

geometrical structures. Four reactions occur to be possible for coke formation on the surface of 

catalysts during DRM reaction as in Equations (9)-(12) [22]. 

CH4 + CO2 ↔ C + 2H2  ∆ = +74.9 kJ mol-1 (methane decomposition)            (9) 

2CO ↔ C + CO2   ∆ = -172.4 kJ mol-1 (Boudouard reaction)  (10) 
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CO2 + 2H2 ↔ C + 2H2O ∆ = -90 kJ mol-1       (11) 

H2 + CO ↔ C + H2O   ∆ = -131.3 kJ mol-1      (12) 

Among the above equations only equation (9) is endothermic which favors high temperature and 

rest disfavor high temperature. An undesired process during the DRM reaction is carbon formation 

that leads to catalyst deactivation either by deactivating the active sites or by blockage of the 

reactor. The deactivation due to carbon formation from Ni catalysts is crucial and considering the 

thermodynamic natures and the high temperature for operating the DRM over Ni catalysts is 

beneficial for yielding high syngas and for minimizing coke formation. The optimal temperature 

range for minimizing carbon formation is 8700C–10400C. A conducted thermodynamic 

equilibrium study showed carbon formation on catalysts during DRM reaction at high temperature 

above 7000C (Figure 3) [22,23]. 

 
  a) 
 
 

  
b) 
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Figure 2: Equilibrium conversion of a) CH4 and b) CO2 as a function of temperate (0K), 
and CO2/CH4 ratio is 1 for n(CO+ CO2+ O2)= 2 mol at 1 atm [23] 

 

 
Figure 3: Carbon produced in mole as a function of temperature, CO2/CH4 at 1 atm for 

n(CO2+CH4)=2 mol [23] 

 

 

DRM mechanism reaction over Ni catalysts includes methane decomposition and CO2 

dissociation. The rate determining step of dry reforming of methane (DRM) is the dissociation of 
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methane on Nickel surface. CH3 species dissociation are adsorbed on top of Ni, while CH2 are 

adsorbed between the two adjacent Nickel atoms. At step sites the dissociation adsorption of CH4 

on Ni atoms is favored more than on terrace Ni atoms and this contributes to the high catalytic 

activity of Ni nanoparticles in contrast to larger counterparts that takes less amount of step of Ni 

atoms per unit mass of Ni. Carbon atoms (carbon atom or CHx species) from methane 

decomposition leaves carbon on Ni surface and carbon monoxide is produced from carbon atom 

oxidation that will be desorbed from Ni surface [22]. Carbon atom oxidation is yielded from 

interaction with an oxygen either on support or Ni surface. Generating oxygen atoms from CO2 

dissociation is another route for oxygen atoms to be produced on Ni surface during the DRM 

reaction and is a fast process. Supported Ni particles on inert metal-oxides such as SiO2, the 

dissociation of CO2 occurs on Ni surface. However, some active supported metal-oxides such as 

MgO, La2O3 and Ga2O3, the CO2 dissociation takes place either on Ni supports or supports surface 

interfaces. High metal-oxides supports basicity can facilitate the dissociation of CO2 on the surface 

of the supports. And some metal-oxides supports such as ZrO2 and CeO2 lattice oxygen structure 

can oxidize carbon atoms to carbon monoxide on the Ni surface. At low temperature (below 

8000C), the oxidation of carbon species can be through hydroxyl groups interaction on the Ni 

surface [22]. 

The evolution of double-layered hydroxides structure development with various LDH 

material synthesis has increased. Originally LDH discovery was related to mineral hydrotalcite of 

[Mg6Al2(OH)16] (CO3) ·4(H2O) (Gaines et al., 1997). Hydrotalcite name source was from hydro 

(water content) and talcite (talc). The LDH structure is similar to the mineral hydrotalcite structure 

(HT) which is Mg6Al2(OH)16CO3·4H2O (magnesium–aluminum hydroxylcarbonate). LDH 

properties and structure were demonstrated firstly via powder X-ray diffraction by Allmann in 
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1968 and Taylor in 1969. LDH general formula is [MII 1−xMIIIx (OH)2]x+[ ·yH2O]x−, M(II) is 

divalent and M(III) is trivalent metal cations, and An- is n-valent anion. Depending on the molar 

ratio of M(II)/M(III) these cations give different layered crystal structures. The ratio of size/charge 

is important for example large size of anions with low charge is unable to balance between the 

positively charged layers. Therefore, there should a relationship between the inorganic layer and 

the species in the interlayer. For the non-spherical anions when the anions contain long-chain such 

as sulfonates with long alkyl chains, different possible arrangements in the interlayer may occur 

like tilted monolayer, monolayer parallel, parallel bilayer or bilayer. The multiplicity of the 

composition of the layer and the interlayer anions and this function allows the LDH to be applied 

in various applications [24]. The progress innovation of synthesizing the layered double 

hydroxides (LDH) has improved several applications with their new morphologies and 

compositions. Synthesis routes of layered double hydroxides (LDH) can be an expensive 

procedure to conduct depending on the intended application.  

 Thermal decomposition of the LDH (layered double hydroxide) is between 3500C and 

7000C forming mixed oxides. The “Memory effect” is an important used application for the 

intercalation of anions with different sizes and natures in the interlayer spaces. In previous 

literature articles, carbonate-based on both Mg-Al and Ni-Al, LDH showed layered structure 

recovery for Mg-Al LDH in which it depends on Mg2+ content and that when substituting Mg2+ 

with Ni2+ it leads to “Memory effect” loss. The Ni-Al oxide continues to remain after water contact 

and bayerite or boehmite addition depending on hydration condition. At hydrothermal conditions 

and pressure increase, partial Ni-Al LDH reconstruction is probable. Also, calcination temperature 

influences the reconstruction besides the quantity of cations. For hydrotalcite reconstruction, the 

temperature range is usually in the range of 4500C-6000C [24]. 
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Synthesis of Mg-Al and Ni-Al, LDH with a different molar of M2+ were performed via the 

co-precipitation method using nitrate solutions of Mg2+, Al3+, and Ni2+. The metal concentration 

was 3 mol/L and the solution was added dropwise to 1 mol/L of Na2CO3 solution at vigorous 

stirring. The pH was maintained constant throughout the synthesis at Temperature of 600C in 

which Mg-Al LDH with a pH of 10 and Ni-Al, LDH a pH of 9 while adding 1 mol/L NaOH and 

after adding nitrate solutions, the suspension was stirred for 1 hour at a temperature of 600C. The 

resulted precipitates were washed using distilled water until reaching neutral pH value, followed 

by filtering, drying at a temperature of 800C for 1 hour. The LDH contains carbonate interlayer 

anions. Figure 4 illustrates the Mg-Al-LDH with the migration of Al3+ ions into interlayers during 

the decomposition. The octahedral- tetrahedral spinel layer and the octahedral are representations 

of Mg-Al oxides. Ni-Al oxides consist of a sandwich-like structure with nickel oxides (NiO)- like 

core and the Al3+ ions migration that resulted in surface spinel layers. Both models describe the 

Mg-Al and Ni-Al oxides “memory effect” presence and absence [24]. 

 

Figure 4: Mg-Al-CO3-HT and Ni-Al- CO3-HT structure [24] 
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3. METHODOLOGY 
 

3.1 Experimental 

 

3.1.1 Materials 

 

Magnesium Nitrate Hexahydrate (Mg(NO3)2.6H2O),  Aluminum  Nitrate 

Nonahydrate  (Al(NO3)3.9H2O),  Nickel  Nitrate  (Ni(NO3)2.6H2O),  Zinc Nitrate Hexahydrate 

(N2O6Zn.6H2O), Zinc Acetate, Sodium Hydroxide (NaOH) and  Sodium Carbonate (Na2CO3) and 

Ammonium Hydroxide were obtained from Sigma Aldrich® Ltd., and deionized water was used 

in all experiments. 

3.1.2 Support and catalyst types, as shown in the table below 

The support and catalysts used for preparing the Ni-based catalysts is shown in Table 2. 

 

 

Table 2: Support and catalysts used for preparing the Ni-based catalysts 

Support Catalyst Preparation Method 

Mg-Al Ni/Mg-Al Co-precipitation +impregnation 

MgO Ni/MgO Precipitation +impregnation 

 



19 
 

Table 2: (continued) 

 

3.2 Synthesis of support and catalyst 

 

3.2.1 Procedure for synthesizing Mg-Al support 

MgO and Al2O3 samples were prepared using the co-precipitation method with an Mg: Al 

molar ratio of 2:1 to get a pure hydrotalcite synthesis. Several advantages associated with choosing 

the co-precipitating method among other methods such as sol-gel method, and impregnation 

method because of purity and uniformity products, large surface area, small particles, and the 

diffusion limitations are less for both reactants and products while the catalytic reaction is 

Support Catalyst Preparation Method 

Al2O3 Ni/Al2O3 Precipitation +impregnation 

Mg (1 wt% Zn)Al Ni/Mg (1 wt% Zn)Al 
Co-precipitation 

+impregnation 

Mg (3 wt% Zn)Al Ni/Mg (3 wt% Zn)Al 
Co-precipitation 

+impregnation 

Mg (5 wt% Zn)Al Ni/Mg (5 wt% Zn)Al 
Co-precipitation 

+impregnation 

Mg (10 wt% Zn)Al Ni/Mg (10 wt% Zn)Al 
Co-precipitation 

+impregnation 
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operated. Usually, two processes of the co-precipitation comprise of, condensation and coagulation 

processes.  

Mg(NO3)2. 6H2O and Al(NO3)2. 9H2O were prepared as precursors while the basic solution 

is a stabilizing agent of a combination of sodium carbonate and sodium hydroxide, mixed all 

together. Firstly, 38.97 g of magnesium nitrate hexahydrate with 28.5053 g of aluminum nitrate 

nonahydrate was added to 200 mL DIW and dissolved completely under stirring using a stirring 

rod and then sent to a dropping funnel. 

The basic solution was transferred to a dropping funnel and slowly dropwise added into 

the precursor solution under constant vigorous stirring at 700 rpm. When the precursor solution 

reaches a pH of 9, a slurry solution is formed. Afterward, washing of the slurry solution with DIW 

while continuously stirring at 700 rpm and heated at 900C for 1 hour, to form a crystalline shape.  

The slurry solution is further washed for another 6 times with deionized water until 

reaching 7 pH, resulting in precipitation settling on the Buckner flask. Then the precipitation is 

filtered under a pump centrifuge using Buckner funnel to remove the supernatant liquid and a fine 

white precipitate is formed. The resulting fine precipitate is cooled for 10 minutes at room 

temperature and then transferred to a small beaker to the oven for drying at 1200C for 24 hours to 

evaporate the physically adsorbed water molecules.  

The final step is the calcination process, at 7000C for 5 hours, which results in oxidizing 

the metals (Mg and Al) to MgO, and Al2O3 and white solid particles were formed and grounded 

to a fine powder for characterization. Figures (5)-(9) show the preparation setup for Mg-Al support 

synthesis. 
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Figure 5: Dropping funnels 

 

 

 

 

 

 

 

 

Figure 6: Washing process (slurry solution) 
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Figure 7: Filtering the slurry solution 

 

 

 

Figure 8: Drying method (solid particles) 

 

 



23 
 

  

 

 

 

 

 

 

 

 

Figure 9: Mg-Al after calcination at 7000C for 5 hours 

 

3.2.2 Sample preparation of MgO(ZnO)Al2O3 support 

The preparation of Mg(Zn)Al is by co-precipitation method that was employed to prepare 

the Mg(NO3)2.6H2O and Al(NO3)2.9H2O were prepared as precursors with adding 3 wt% ZnO, 

while the basic solution is a combination of sodium carbonate and sodium hydroxide were mixed 

together. Firstly, 38.97g of magnesium nitrate hexahydrate with 28.5053 g of aluminum nitrate 

nonahydrate were added to 200 mL DIW and dissolved completely under stirring using stirring 

rod and then sent to a dropping funnel. The basic solution was transferred to a second dropping 

funnel and the solution was added dropwise along with the precursor solution until it reaches a pH 

of 9 and a slurry solution is therefore formed at speed 700 rpm. Then, the slurry solution with 

adding DIW and the mixture is heated at 900C and stirred at 700 rpm, to form a crystalline shape. 

Afterwards, the slurry solution is washed 10 times with deionized water until reaching pH 7. The 

resulting solid is filtered using a pump resulting in water removal from the slurry solution and a 

solid product is formed. Then the solid product is cooled for 10 minutes at room temperature and 
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then transferred to a small beaker for drying process at 1200C for 24 hours. The final step is 

calcination process at 7000C for 5 hours in which MgO, ZnO, and Al2O3 are formed as solid 

particles and carbonate is vaporized. Afterward, the solid particles are ground to a fine powder to 

be further characterized. 

The synthesis of Mg(1wt%, 5wt%, 10wt%)Al follows the same calculation method and 

preparation procedure as Mg(3wt% Zn)Al. 

 

 

Figure 10: Mg(Zn)Al and Mg-Al fine powders 

 

3.2.3 Sample preparation of MgO support 

10 g Mg(NO3)2.6H2O was dissolved completely in 200 mL deionized water (DIW). Then the 

basic solution was prepared, 16 g NaOH with 200 mL DIW and it was added to a dropping funnel. 

The basic solution was added to the precursor dropwise until reaching pH 9 while continuously 

stirring the solution at 700 rpm. A slurry solution is formed. After the metal solution reaches pH 9 

a slurry solution is formed, and the dropping funnel is then closed. The heating process of the metal 

solution is at 900C and 790 rpm for 1 hour, and it is used to form a crystalline shape. Afterward, 
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the slurry solution is washed several times with deionized water until the solution reaches pH 7. 

In this process, the precipitation of the solution occurs at the bottom of the beaker.  

The filtration process is then followed using a pump centrifugal in which sodium and DIW 

are removed from the slurry solution in which after using the pump it forms as a solid particle. The 

solid particles are dried in an oven at 1200C for 24 hours. Finally, the solid particles are calcined 

at 7000C for 5 hours for oxidation forming MgO and remove impurities in the particles. The dried 

solid particles are crushed using a mortar and pestle to produce a fine powder. 

The sample preparation of Al2O3 support has the same procedure as MgO except for the mass 

of the precursor (Al(NO3)2.9H2O)  is 36.8022g dissolved in 200 mL DIW. The mass after drying 

is 6.4609 g. Also, the synthesis of 10g ZnO is the same as MgO. However, 26.972g of Zinc nitrate 

is required.  

3.3 Ni-based catalysts preparation 

10wt% of Ni was constant in all the catalyst synthesis. The preparation of 10wt% Ni/Mg-

Al, 10wt% Ni/Mg(Zn: 1wt%,3wt%, 5wt% and 10wt%)Al, 10wt% Ni/MgO, and 10wt% Ni/Al2O3 

were prepared at the same conditions and parameters. 

The supports of the catalysts were prepared earlier. The addition of Nickel to the support 

consist of several mathematical calculations as the following: 

 

a.  

 

b. 4 g Ni/Mg-Al - 0.4 g Ni = 3.6 g Mg-Al 
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c.  

 

Therefore, 1.9818 g of Ni-precursor will be stirred with 5 mL DIW until the solution is 

completely dissolved. Then, 3.6 g of support catalyst will be added to the Ni precursor solution 

and stirred under heating at 900C. Afterwards, the Ni-doped samples were transferred for drying 

in the oven for 24 hours at 1200C and then grounded for characterization purposes.  
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4. SYNTHESIZED CATALYSTS CHARACTERIZATION 
 

4.1 XRD characterization 

Determining the HT structure of the catalysts is determined by XRD. According to the XRD 

pattern shown in Figure 11 illustrating sharp peaks for (003), (006), (012) basal peaks and non-

basal peaks for (015), (018), (110) and (11013) planes are observed. Peaks matched the 

International Centre for Diffraction Data (ICDD) peak pattern of the typical MgAl(CO3).2H2O-

HT structure thus confirming the hydrotalcite structure for all of the catalysts. From these patterns, 

Mg-Al hydrotalcites show to have crystallized structure, thermal stability, and crystallization 

performance. The Mg-Al HT structure is affected by pH, Mg-Al molar ratio and temperature [25].  

 

Figure 11: XRD patterns for Mg-Al and Mg(%Zn)Al supports 
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4.2 BET characterization 

 

4.2.1 Mg-(x%) Zn-Al of fresh calcined support 

BET is used to determine surface area, volume pore and pore diameter using He and N2 gas. 

Before conducting the BET analysis, the supports are degassed at T= 2000C to the moisture in the 

samples and then transferred to BET equipment. He gas is used as an inert gas and N2 is adsorbed 

on the surface area including the pores of the support and then desorbed to determine the surface 

area, pore volume, and pore diameter and to determine the structure of the support, as illustrated 

in Table 3 and Figures 12-13, the pore radius of all the supports are in the range of mesoporous 

structure (2-50 nm). From the BET analysis, Mg(3%Zn)Al calcined sample showed the highest 

BET surface area (225 m2/g) and pore volume (1.01 cm3/g) among the synthesized supports. 

 

Table 3: Mg(Zn)Al with different weight percentages of Zn after calcination 

Catalyst 
BET-SA 

(m2/g) 

Pore volume 

(cm3/g) 
Pore diameter (nm) 

Mg-Al 168 0.59 14.0 

Mg-1%Zn-Al 187 0.67 15.2 

Mg-3%Zn-Al 225 1.01 12.2 

Mg-5%Zn-Al 212 0.92 13.3 
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Table 3 Continued 

 

 

Figure 12: BET adsorption isotherms for Mg(Zn%)Al 
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Mg-10%Zn-Al 135 0.42 20.6 
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Figure 13: Pore size distribution profile for Mg(Zn%)Al supports 

4.2.2 Ni/Mg-(x%) Zn-Al of fresh calcined catalysts 

The BET catalyst characterization process is the same as the support. As shown in the table 

below, increasing the Zn content, the surface area and pore volume increase. However, after 

increasing Zn content above 3wt%, a decrease in the surface area and pore volume was observed 

via BET analysis. Since the pore radius for all the prepared catalysts is in the range of 2-50 nm, 

this shows that the synthesized catalysts have a mesoporous structure and it means that they are 

similar to type IV (isotherm). As shown in Table 4 and Figure 14, Ni/Mg(3%Zn)Al has the highest 

BET surface area (198 m2/g)and pore volume (0.62 cm3/g) among the rest of the synthesized 

catalyst. 
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Table 4: BET SA for Ni/Mg(Zn%)Al 

Catalyst BET-SA (m2/g) Pore volume (cm3/g) Pore diameter (nm) 

Ni/Mg-Al 132 0.28 8.7 

Ni/Mg-1%Zn-Al 144 0.52 9.6 

Ni/Mg-3%Zn-Al 198 0.62 9.3 

Ni/Mg-5%Zn-Al 164 0.45 10.4 

Ni/Mg-10%Zn-Al 110 0.25 9.9 

  

 

Figure 14: BET adsorption for Ni/Mg(Zn%)Al 
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4.3 H2-Temperature Programmed Reduction (H2-TPR) Characterization 

H2-TPR via AutoChem II 2920 chemisorption analysis was used to determine the effect of 

temperature reduction (Tmax) using 10%H2/Ar gas and 0.05 g of the Ni-based catalyst transferred 

to a U-tube quartz cell. The temperature reduction determines the metal (Ni) reduction behavior; 

meaning the temperature at which a metal oxide (NiO) is reacted with hydrogen and reduced into 

metallic oxide. In this case, the metal is Ni and metallic oxide is Nio and the stability of Mg-Al 

(support) makes it unreducible to the metallic oxide state. Figure 15 shows that Ni/Mg(3%Zn)Al 

is the optimum condition in which NiO is reduced to Nio since the highest temperature is (884 C) 

to reduce the catalyst. Moreover, Table 5 illustrates that the H2-TPR helps to determine the metal-

support interaction by which Ni/Mg(3%Zn)Al showed the highest metal-support interaction 

among the rest of the synthesized catalysts.  The reduction peak in Figure 15 is at 3970C. The peak 

indicates a weak metal-support interaction between NiO and the support and the peak at 

approximately 8000C indicated a strong metal-support interaction which might be the Nickel spinel 

or NiO-MgO [26].  

 

 

Table 5: H2-uptake and degree of reduction for Ni/Mg(Zn%)Al 

Catalyst 
H2-uptake 

( moles/gcat) 

Degree of reduction 

(%) 

Ni/Mg-Al 56.98 67 

Ni/Mg-1%Zn-Al 66.79 78 
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Table 5 Continued 

Catalyst 
H2-uptake 

( moles/gcat) 
Degree of reduction (%) 

Ni/Mg-3%Zn-Al 71.94 84 

Ni/Mg-5%Zn-Al 64.67 75 

Ni/Mg-10%Zn-Al 59.59 70 

 

 

 
Figure 15: H2-TPR profile for Ni/Mg(Zn%)Al 
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4.4 Fourier transform-infrared (FT-IR) spectroscopy characterization 

FT-IR analysis for the Mg(%Zn)Al-LDH is used to determine the presence of functional group 

and CO3
2-, vibrations of the structure of OH- groups and vibrational physically adsorbed water. 

The used reference sample is KBr pellet that was mixed with a small amount of the support and 

FT-IR spectra were in the range of 400-4000 cm-1. Nitrogen was used to purge the FT-IR chamber. 

Figure 16 illustrates the strong and broadband at around 3440 cm-1 can be described to the 

stretching of O-H groups that are attached to Mg, Al and Zn ions in the layers [26]. The peak at 

1740 cm-1 is the bending vibration of the interlayer water. The band at 1360 cm-1 is assigned to the 

carbonate anion asymmetric stretching. The band at 1230 cm-1 may be due to the deformation 

mode of Al-OH. The band at 777 cm-1 may be due to translation modes of the hydroxyl groups 

that are influenced by the trivalent aluminum [28]. 

 

 

Figure 16: FT-IR spectrum of Mg(Zn%)Al 
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5. Catalytic Performance in the DRM Reaction 
 

The experimental setup of DRM reactor was conducted in a 4 mm diameter and 32 cm length 

quartz reactor tube. The prepared catalysts are loaded into the DRM reaction unit using 20 mg of 

catalyst and 80 mg of silica into a quartz reactor tube. Before the DRM reaction was conducted, 

calibgas and DRM gas readings were calibrated. Four steps were conducted within the DRM 

reaction as follows: 

Step I: pre-treatment step, the catalyst is under He gas at 1500C for 2 hours to remove the 

moisture for further processing. 

Step II: reduction step, flow 10%He/Ar (reduction agent) into the catalyst. 

Step III: After reduction flow He gas at 6500C/ 30 minutes to remove physically adsorbed 

hydrogen. 

Step IV: DRM reaction, DRM gas flow is 30 mL/min and the gas mixture contain 10 vol% CH4, 

10 vol% CO2 and 80 vol% He. At 6500C run the DRM reaction for 10 hours TOS (Time on Stream). 

Catalyst performance of CH4 conversion and H2/CO ratio are obtained at 6500C with 20 hour on 

stream at 6500C over Ni/Mg-Al and Ni- Mg(Zn%)Al catalysts. It was obtained in Figure 17 that 

Ni-Mg(3%Zn)Al has the highest activity and stability (0.115 mol/min/g), while Ni/Mg-Al has the 

lowest activity and stability (0.098 mol/min/g). Moreover, Figure 18 represents the CO2 

conversion during 20 hours on stream, Ni/Mg(3%Zn)Al the highest activity with 0.124 mol/min/g 

conversion of CO2, the lowest activity obtained using Ni/Mg-Al with 0.110 mol/min/g of CO2 

conversion. It is observed in Figure 19 that the H2/CO ratio is highest in Ni/Mg(3%Zn)Al and 

lowest in Ni/Mg-Al catalysts.  
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Figure 17: supported Ni catalysts at different Zn content during DRM reaction: a) CH4 and 
b) CO2 conversions at 6500C 

 

 

                      Figure 18: H2/CO ratio of supported Ni catalysts at different Zn content 
during DRM reaction at 6500C 
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6. CONCLUSION 
 

The production of syngas from natural gas through DRM by utilizing two greenhouse gases is 

an approach for climate change mitigation. In this study different catalysts were synthesized and 

characterized to justify the LDH structure and metal-support interactions. The DRM process is 

known to be associated with carbon deposition and sintering therefore in this work the DRM 

reaction temperature was at 6500C in order to avoid the two major issues of the DRM reaction. 

The impregnation method was used for synthesizing the Ni-based catalysts on Mg(%Zn)Al with 

Mg:Al of 2:1 molar ratio. The results for XRD analysis confirmed the Mg-Al(CO3).2H2O-HT 

structure. BET results showed Ni/Mg(3%Zn)Al to be the optimum catalyst for highest pore 

volume, highest BET SA and metal-support interaction among the rest of synthesized catalysts. 

Moreover, the H2-TPR analysis revealed that Zn doped catalyst has higher metal-support 

interaction compared to the Ni-Mg-Al catalyst. Besides, the DRM reaction showed that the 

catalytic activity of  Ni/Mg(3%Zn)Al was highest with high CH4 and CO2 conversion and H2/CO 

ratio compared to rest prepared catalysts. 
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