Blade failure analysis for steam turbines used for driving centrifugal compressors

48th Turbomachinery & 35th Pump Symposia | Sept. 9-12, 2019

TURBOMACHINERY

& PUMP SYMPOSIA

TURBOMACHINERY LABORATORY TEXAS A&M ENGINEERING EXPERIMENT STATION

Author

Mr. Norihito Fujimura Mitsubishi Heavy Industries Compressor Corporation Project Management Group norihito_fujimura@compressor.mhi.co.jp

Mr. Yuzo Tsurusaki Mitsubishi Heavy Industries Compressor Corporation Engineering & Design Division yuzo_tsurusaki@compressor.mhi.co.jp

Mr. Yuichi Sasaki Mitsubishi Heavy Industries Compressor Corporation Engineering & Design Division yuichi2_sasaki@compressor.mhi.co.jp Mr. Yusuke Oishi

Mitsubishi Heavy Industries Compressor Corporation Engineering & Design Division <u>yusuke_oishi@compressor.mhi.co.jp</u>

Mr. Yuki Nakamura Mitsubishi Heavy Industries Compressor Corporation Engineering & Design Division yuki4_nakamura@compressor.mhi.co.jp

Mr. Akihiro Hara

Mitsubishi Heavy Industries Compressor Corporation Engineering & Design Division <u>akihiro1_hara@compressor.mhi.co.jp</u>

Contents

- 1. Background
- 2. History of this Turbine
- 3. Fault Tree Analysis for root cause of failure
- 4. Material Factor
- 5. Stress Factor
- 6. Environmental Factor
- 7. Summary
- 8. Lessons learned

1. Background

In 2016, the compressor drive steam turbine was tripped by high radial vibration. After that, turbine casing was opened for internal parts check.

1. Background

- 4th stage disk failure was found
 - 9 blades broke away and disc failure occurred at serration part of the groove.
 - 8 blade roots of disk side situated next to failed blades were cracked

4th stage disk condition (Magnification A)

2. Rotor history of this turbine

The history of both rotors are shown in table below.

Rotor A: Original rotor Rotor B: Revamped rotor (Damaged)

- *1 Plant started with rotor A in 2007 and 8 years of normal operation was completed.
- *2 Rotor B was modified for revamped turbine to increase the plant capacity. Only HP stages design was changed but 4th stage (LP stage) was not changed.
- *3 Rotor was replaced from rotor A to rotor B.
- *4 After 6 months of operation, Turbine tripped due to high vibration. High vibration occurred due to the failure of 4th stage blade and related disk area.

3. Fault Tree Analysis for root cause of failure

4. Material Factor – Investigation for base metal

Conclusion

- Abnormality was not observed after chemical composition check.
- > Mechanical properties are satisfied by material specification.
- Result : Proper material selection was carried out and there was no problem with the design.

TURBOMACHINERY & PUMP SYMPOSIA

- 5. Stress Factor Checking of groove wall stress
- In order to evaluate the stress on failed stage disc, groove wall stress was calculated.

Table. Result of groove wall stress of 4th stage disc.

TURBOMACHINERY & PUMP SYMPOSIA

6. Environmental Factor

 According to material factor and stress factor analysis, no abnormality was found.

Therefore, following items were carried out to investigate environmental factor:

- Investigation of fractured surface.
- > Operation data review.
- Analysis of severe cracking area.

6. Environmental Factor – Investigation of fractured surface.

Findings:

> Na, Cl, K were detected from fractured surface except from base material.

Corrosive material such as Na, Cl were detected on fractured surface.

6. Environmental Factor – Investigation of fractured surface.

Magnified

Finding

The intergranular sub-surfaces were observed on fractured surface, which is a typical characteristic of SCC.

6. Environmental Factor – Investigation of fractured surface.

BOMACHINERY & PUMP SYMPOSIA

Finding

Some corrosion pits and sub-cracks were found on disc surface near the crack.

6. Environmental Factor – Operation data review.

- In order to evaluate the environmental effect on failed stage, operation data was reviewed.
 - According to operating data of damaged rotor, distinct overshoots of pH value in inlet steam were found. This implies that some corrosive material was mixed into inlet steam.
 - No other abnormal condition was found.
 (Ex. Speed, steam pressure, temperature and flow rate)

6. Environmental Factor – Analysis of severe cracking area.

Following analysis explains the reason behind the particular failure of 4th stage

Operating condition;

Ref. J. K. Nelson, PPG Industries, inc., Materials of Construction for Alkalies and Hypochlorites, Process Industries Corrosion., pp.297- pp.310

RBOMACHINERY & PUMP SYMPOSIA

15

6. Environmental Factor

- As a result of investigation for environmental factors, following items were confirmed:
 Large corrosive element (Na) was found on fractured surface.
 - ➤The intergranular sub-surfaces were observed on fractured surface.
 - Some corrosion pits and sub-cracks were found on disc surface near the crack.
 - Distinct overshoots of pH value in inlet steam were found.
 - ➢Concentration of NaOH solution in 4th stage was 15-35%. This concentration falls in severe cracking area and this result corresponds with actual failure location in turbine.

7. Summary

Conclusion

Some corrosive material was mixed into inlet steam.

However, SCC occurred only for 4th stage disc. This is because NaOH concentration

of 4th stage fell under the severe cracking area.

8. Lessons learned

• According to this experience, following items were proposed about steam environment.

Factors	OEM	User	
ENVIRONMENT	 Online monitoring system of user's steam inlet condition and operation data should be developed. 		
	• Discussion about user's steam condition should be carried out before manufacturing the machine at OEM.		
	_	 If there is any possibility of some corrosive material getting mixed into steam or steam water, user should inform this to OEM. *1) 	

Note*) Steam purity limits are shown as following for reference: STEAM PURITY-LIMITS

	Continuous	Start-Up	
Conductivity-			
Micromhos∕cm at 25℃			
Drum	0.3	1.0	
Once through	0.2	0.5	
SiO, ppb, max	20	50	
Fe, ppb, max	20	50	
Cu, ppb, max	3	10	
Na + K, ppb, max			
Up to 800 psi [5516kPa (gauge)]	20	20	
801 to 1450 psi [5517 to 9998kPa(gauge)]	10	10	
1451 to 2400 psi [9999 to 16548(gauge)]	5	5	
Over 2400 psi [over 16548kPa(gauge)]	3	3	Ref. NEMA SM 23. 1991.Item.9.7