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Topics to Cover

• Problem: Description of the systems and problems
• Chandlersville and St. Paul – 3 Centrifugal Compressors in parallel
• Vortex-Shedding System-Wide Vibrations problem

• Solutions: 
• Methods utilized to analyze the problem
• Resulting solutions that were implemented 

• Lessons Learned
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This presentation was adapted from a 2018 GMC presentation.
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Problem: Vortex-Shedding System-Wide Vibrations
• Description – any possible 

combination of 3 centrifugal 
compressors running in parallel

• Operators observed excessive 
vibration after startup

• Two similar stations experienced 
similar issues

• Vibration was worse with certain 
units running (the middle 
compressor)

• Pulsation and vibration data was 
measured in the field
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Areas of maximum 
vibration amplitudes 
(recycle piping)

• The root cause was determined to be flow induced 
pulsation due to vortex shedding at the tee to the 
recycle piping when recycle valve closed
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Field Testing Performed to Evaluate the 
System Problems

Example Test Conditions:
• Suction: 710 psig, 70 F
• Discharge: 977 psig, 119 F
• All units nominally operating at 

97% turbine speed
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Recycle 
Valve 
Cracked 
Open

Recycle Valve Closed

~12.5 Hz Acoustic Response 
Vanishes when Opening Recycle 

Valve Past 10%

Pulsation Measured Downstream of Discharge Valve
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Peak Pulsation Amplitude Measured: Unit 2 
Discharge  – Downstream of Valve

Peak Pulsation Amplitude ~13.6 psi p-p @ ~12 Hz
On Unit 2 discharge, downstream of valve
Units 1 & 2 operating, Unit 3 off

Pressure Tap 
Location –

Downstream of 
Valve

Pressure Tap Location –
Upstream of Valve

~5,500 Lbf shaking 
force  > Rhinoceros 
pushing on the pipe 

12 times/sec.
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Peak Vibration Amplitude Measured: 
2.8 ips 0-Pk on Unit 2 Recycle Line

Probe Location –
Recycle Line

Screening Chart for Piping 
Vibration Severity
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Peak Vibration Amplitude ~2.8 ips 0-p @ ~12 Hz
On Unit 2 discharge side of recycle valve
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Pulsation Amplitude Tracks with Flow
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Vortex-Shedding and Strouhal Number
• Vortex-Shedding occurs at flow disturbances
• Vortices form as a result of the flow disturbance
• Thermowell or Tee = flow disturbance
• Strouhal number defines relationship between the 

vortex-shedding frequencies, system geometry, and 
fluid properties
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Cylinder
(e.g., thermowell)

Vortices Propagating Downstream 

Flow Direction

Link to animation webpage:

http://disc.sci.gsfc.nasa.gov/oceancolor/additional/science-
focus/ocean-color/vonKarman_vortices.shtml

 
 

 

Flow Direction

 

(Images courtesy of S. Dequand, et al.)

Closed Branch
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Vortex-Shedding Calculations Show Low Strouhal 
Number Needed for a Problem to Occur

• Strouhal number calibrated based on 
field data

• St = (12.5 Hz x 0.98 ft)/(47 ft/s) = 0.26
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Vortex-Shedding Excitation

• Strouhal number is a useful non-
dimensional parameter that relates 
disturbance frequency to flow-speed, size 
of the flow disturbance, and geometric 
configuration.

• Vortex shedding frequency is dictated by 
the Strouhal number 

fs is the shedding frequency or frequency, 
d is characteristic dimension of  object 

generating disturbance (such as diameter 
of the branch piping in this case) and 

U is flow speed (velocity)

St=
𝑓𝑓𝑠𝑠𝑑𝑑
𝑈𝑈 Acoustic Response



T U R B O M A C H I N E R Y  &  P U M P  S Y M P O S I A

Chandlersville

St. Paul
3-units system + hdr +
cooler inlets
1-unit system (infinite
header)

Modeling Indicates System Acoustic 
Response is Excited

Relative Pulsation Amplitude

Note: Only a single unit is running 
during both tests for each station.
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• Pulsation measured in 
recycle piping at field 
tap location (recycle 
valve closed)

• Pulsation in recycle 
piping for larger (3-
units) system resulted 
in much higher 
amplitude than 
simplified (1-unit) 
system 

• Conclusion:  The 
acoustic response is a 
function of the entire 
piping system, not 
just a localized issue
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Modeling Indicated Acoustic Shift and Lower 
Amplitudes with Piping Modification

• ~75% pulsation amplitude reductions predicted at 
peak pulsation amplitude locations when 
implementing tee diameter increase & reducer for 
the center unit only
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Before

After• No excitation predicted for 
center unit 

• Acoustic natural 
frequency shifts up due 
to piping modification

• Vortex-Shedding (V-S) 
excitation frequency 
shifts down due to 
piping modification

Before and 
After

Acoustic 
Responses

After and Before V-S



T U R B O M A C H I N E R Y  &  P U M P  S Y M P O S I A

Conclusions: Vortex-Shedding Vibrations 
Summary
• Problem described – high vibrations and pulsations
• Flows not unusually high.
• ~12.5 Hz acoustic response + piping vibration does go away when the recycle 

valve is cracked
• ~12.5 Hz acoustic response + piping vibration does not track with compressor 

running speed
• ~12.5 Hz acoustic response + piping vibration does change as operating 

conditions change
• Entire system needed to be modeled to determine why the acoustic response 

was so dominant (significantly excited)
• Solution – alter the acoustics with the piping modification shown on the 

previous slide
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Follow-up Field Testing: Pulsation Amplitudes 
Reduced After Piping Modification
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St Paul - visit1 - Lateral After Block Vlv
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Chandlersville - visit 2 - Unit4 LatChandlersville – Piping Modified

St. Paul – High Flows

Chandlersville – No Modifications

Tallgrass confirmed that they no longer have problems.  
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Follow-up data 
was not 
available for St. 
Paul, but it is 
estimated to be 
as depicted or 
less.  
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Lessons Learned:  Piping Restraints & Acoustics
• Piping vibration is a function of both the excitation in the piping and how well the 

piping is physically restrained.
• If pulsation levels are low in amplitude, then effective mechanical restraint will often 

adequately control vibration.
• However, many non-recip piping systems are often restrained with more flexible 

“guide” type restraints that do not provide effective vibration control.
• New techniques are emerging in industry (by SwRI & others) to predict pulsation 

amplitudes (instead of old-school frequency avoidance methodologies).  This can 
result in pulsation energy in the piping.

• Effective clamping must be considered as part of the design.
• Significant acoustic amplification can occur for parallel systems at lower Strouhal

numbers – greater amplification than individual systems or localized responses (for 
additional details reference to similar phenomenons Zaida, S. and Shine, S., 1999)
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Thank You.  Questions?

• Eugene “Buddy” Broerman
• Eugene.Broerman@SwRI.org
• (210) 522-2555
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