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ABSTRACT 

Determining Taxonomic Resolution provides greater insight to impact of mass morality events 

on early carrion colonizers 

 

 

Abby Jones 

Department of Entomology 

Texas A&M University 

 

 

Research Advisor: Dr. Jeffery Tomberlin 

Department of Entomology 

Texas A&M University 

 

 

Mass mortality events (MME) impact local ecosystems especially in systems where 

insects play a major role in recycling carrion. Insects may be unable to efficiently recycle the 

carrion. Selecting the appropriate taxonomic resolution will be advantageous especially when 

assessing sensitivity of arthropod communities to variably sized MMEs. A collaborative study 

examining an artificial MME using feral swine (Sus scrofa Linnaeus) was conducted at 

Mississippi State University (MSU). Five different masses of swine carcasses ranging from 24.9 

kg to 725.7 kg were placed in a pine forested area, starting in the spring of 2017. Different plots 

(1 km apart) were created based on density, carrion presence or absence and accessibility by 

scavengers. Sticky traps were placed among the plots to collect insects and were replaced as 

needed (between 24 hours and two weeks). Sticky traps were sent to Texas A&M University for 

identification of insects. This project involves determining the most useful and practical 

taxonomic level to identify insects using the MME experiment. Based on the different biomass 

sites, the hypothesis is the diversity and richness of the arthropod community will not vary at 

each site over time regardless of taxonomic resolution and the best taxonomic resolution is the 

species level.  
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NOMENCLATURE 

 

MME  Mass Mortality Event 

MSU  Mississippi State University 

TAMU  Texas A&M University 
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PMI   Post Mortem Interval 

TOC  Time of Colonization 

IACUC The Institutional Animal Care and Use Committee 

NMDS  Non-metric Dimensional Scaling 
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CHAPTER I 

INTRODUCTION 

 

Ecological Community and Diversity 

 Ecology involves the study of the environment and community interactions within it 

(Michaud et al. 2015). Ecologists (especially before 1900) have long been interested in 

environment succession (Tansley 1935), which can be defined as changes in the composition of a 

community over time (Cain et al. 2008, Michaud et al. 2015). To this day, there are still 

discussions centered around questions involving Clements v. Gleason in relation to succession 

(Michaud et al. 2015). Clements initiated the discussion on this topic by pontificating about 

community structure and how the community behaves in a “superorganism” fashion with 

succession of the community leads to the environment reaching a stable state/climax over time 

(Clements 1916). In contrast, Gleason was more flexible with his definitions and believed each 

individual plays an independent part in the ecosystem and the process of succession (Clements 

1916, Gleason 1926, Michaud et al. 2015). An ecosystem can instead have multiple climaxes 

throughout time and succession can be disrupted by disturbance events. Communities consist of 

many different food webs, creating different forms of competition (Hutchinson 1959). This 

kaleidoscope of species interactions can generate a wide variety of community structures and 

ecological niches resulting in a complex diversity and species richness (Elton 1927). 

Species richness is the number of species within an area (Simon et al. 2009). Diversity 

can also be seen and compared at different sites and carrion biomasses (Mittelbach 2012), and 

consists of multiple factors, including the variability of different species and differing relative 

abundances (Magurran 1988). When comparing diversity, boundaries are determined by the 
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circumstances of the habitats as well as what the ecologist/scientist suggests and determines 

them to be (Mittelbach 2012). There is already a general species variation in terms of species 

richness across the globe (Mittelbach 2012) with most species richness occurring at the equator 

(Mittelbach 2012). There are several theories as to why this may exist. The null model theory 

suggests a pattern will form, and does form, without the presence of a mechanism (Mittelbach 

2012). There is also the theory that evolution simply led to the ecological diversification of 

species. Historical effects could also be the culprit (Mittelbach 2012). Ice ages can alter the pole 

climates which can drive extinction or speciation events (Mittelbach 2012). One of the most 

popular theories is that species diversification is due to climate changes from pole to equator. 

More species will occur and be more diverse around the equator while that will be restricted 

around the poles (Mittelbach 2012).  

 Species diversity can be measured in several ways: alpha diversity is the differences in 

species richness and diversity within a local habitat, such as within different areas in the thesis 

research (Mittelbach 2012), and beta diversity, the species richness and differences across two 

habitats (Mittelbach 2012). Alpha diversity multiplied by Beta diversity reveals Gamma diversity 

(Mittelbach 2012), which is the species differences and richness over an entire region (such as 

several different habitats or between our five biomass sites) (Mittelbach 2012). These terms 

allow for a comparison of diversity across habitats (as well as individual spaces).  

Forensic Entomology 

 The National Research Council of 2009 determined a whole range of the forensic 

sciences needed to invest more in research. An overhaul of forensic science must be performed 

to achieve better and more accurate results (Tomberlin et al. 2011). There had been a wide range 
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of errors involved with criminal investigations and evidence present. Forensic entomology is no 

exception to the National Research Council ruling.  

Forensic entomology is the use of insects in legal investigations (Byrd and Castner 2001). 

Insects are particularly useful in the case of Post Mortem Interval (PMI) and Time of 

Colonization (TOC) calculations. PMI is the time that has elapsed since the death (Byrd and 

Castner 2001) but can vary widely depending on the location, climate, temperature, and 

circumstances. Different insect species thrive and survive under different temperatures. 

Reference data can be used to help with these calculations (Byrd and Castner 2001). 

Development data for many different species of flies has been created. PMI can then be 

determined using this development data to determine age of the insect. PMI can also be 

calculated with stages of succession, comparing the insects present (or absent) on a carrion to the 

assemblage of insects that would be present during that phase of succession. An estimation of the 

PMI can potentially be determined based on varying factors including temperature, location, and 

list them (Byrd and Castner 2001). Time of colonization is the time that the insects detected and 

reached the carrion. It is important to determine when the insects colonized the body as this 

might provide more information on the deceased, including how and when they died (Tomberlin 

et al. 2011).  

Overall, forensic entomologists were heavily focused on the estimation of the PMI and 

TOC. There was also an interest in insect succession (Byrd and Castner 2001). Understanding 

these processes may provide greater insight into the mechanisms regulating ecological 

phenomena ranging from trophic interactions to nutrient cascades.  However, most studies 

examining this relationship focus on a single or few carcasses in a location at a given time. A 
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large-scale event may have a larger effect on the environment and arthropod community than 

smaller events.  

To fully understand the concept of insect colonization, the different phases of 

colonization of carrion must be studied. The decomposition process can be split into two 

different intervals: the pre-colonization and the post-colonization intervals (Tomberlin et al. 

2011), which are separated by the TOC. The first phase after death is the exposure phase, which 

involves the carrion being accessible to insects (Tomberlin et al. 2011). Then the detection 

phase, occurs when the insects being to detect the carcass, often due to the presence of volatiles 

(Tomberlin et al. 2011). The acceptance phase then begins once the first insects locate that 

carrion and ends when the insects colonize that carrion. Afterwards the consumption phase starts 

as well as the post-colonization interval (Tomberlin et al. 2011). After the carcass is consumed as 

much as possible, the insects begin to leave the carrion in the dispersal phase. The post-

colonization interval is what the focus of both this forensic entomology and carrion ecology 

(Tomberlin et al. 2011). 

Historically, understanding the community composition in association with vertebrate 

remains at their time of discovery could be used potentially to estimate a minimum time of death 

(Tomberlin et al. 2011). Arthropod succession on vertebrate carrion is critical for its recycling.  

Calliphoridae  

 The order of Diptera has approximately 86,000 species, with 1,000 species being in the 

family Calliphoridae (blow flies) (Byrd and Castner 2001). Calliphoridae is one of several 

families of Diptera that have forensic importance, the other two being Sarcophagidae (flesh flies) 

and Muscidae (filth flies) (Byrd and Castner 2001). Blow flies are one of the first groups of 

insects to arrive on a carrion, and can arrive almost immediately after the death (Byrd and 
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Castner 2001).  Phormia regina (Meigen) may arrive soon after death or a little later such as a 

day or two (Byrd and Castner 2001). Cochliomyia macelleria (Fabricius) is another important 

species that will arrive within the first day of death, but not necessarily immediately (Byrd and 

Castner 2001). Multiple Lucilia species are also seen soon after the death, depending on the 

species (Byrd and Castner 2001). These species are active in warm weather in places such as 

Mississippi (Byrd and Castner 2001). A total of twelve different species of blow flies have been 

recorded in Mississippi as of 1983 (Goddard and Lago 1983). Phormia regina is the most 

common blow fly in Mississippi and is encountered year-round (Goddard and Lago 1983). These 

insects are particularly associated with decomposing organic matter. Cochliomyia macelleria is 

also very common throughout all of Mississippi and arrives to most types of carrion (Goddard 

and Lago 1983). Several species of Lucilia are also present in Mississippi (Goddard and Lago 

1983). Most of these species are either attracted to garage or decaying animal matter. Overall, 

these are some of the most important species when it comes to carrion feeding in Mississippi.  

 These species will mate on or around carrion and then oviposit (Byrd and Castner 2001). 

Temperature and humidity are key for these flies as the eggs cannot hatch under temperatures 

that are too hot or cold. This impact of temperature can vary depending on the species of the 

Calliphoridae (Byrd and Castner 2001). Under the optimal temperatures, the eggs will then hatch 

into the first stadium and continue growing up until the third stadium, they will then pupate, then 

emerge as adults (Byrd and Castner 2001).  

 Since this mock mass mortality event (MME) takes place in Mississippi, the 

Calliphoridae species present in this state need to be analyzed. In 1983, Goddard and Lago 

identified 15 calliphorid species within eight genera in Mississippi. These genera included 

Cochliomyia, Phormia, Protocalliphora, Bufolucilia, Phaenicia (Lucilia), Calliphora, 
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Cynomyopsis (Cynomya), and Pollenia (Goddard and Lago 1983). Several of these species were 

found in throughout our research that were indeed present in the Mississippi data from several 

Lucilia species (L. coeruleiviridis, L. cuprina, and L. sericata), C. macalleria, and P. regina. 

Seasonality was also observed for most of the species as done in the study of from Goddard and 

Lago in 1983.  

Mass Mortality Events (MMEs) 

Mass mortality events are episodes of high mortality for a population of a given species 

(Fey et al. 2015). Little information on mass mortality events is available because there are very 

few opportunities to observe these largely unpredictable events (Fey et al. 2015). Fey et al. 

(2015) conducted a review on MMEs of multiple taxa, including fish, reptiles, amphibians, 

invertebrates, birds, and mammals (Fey et al. 2015). The cause of a MME can range from 

disease, poisoning, pollution, to other stress factors on the environment and population have 

generally increased in frequency across taxa since 1940 (Fey et al. 2015). MMEs have a wide 

effect on the entire ecosystem including the animals and environment and can affect other 

organisms and environments outside of the original ecosystem (Fey et al. 2015).  The spread of 

disease can occur with the effects to the microbes in the soil and further spread that disease to 

other areas (Pain et al. 2003, Markandya et al. 2008). Mass animal mortalities are one example of 

a unifying problem that unite ecology and entomology.  

One of the other potential issues with MMEs is the huge amount of nutrients being placed 

into the system (Tomberlin et al. 2017). A system is defined as the whole complex of factors 

within an environment that connect and may work together (Tansley 1935). This influx of 

nutrients can change soil composition as large amounts elements such as nitrogen and carbon are 

added into the earth (Zak 2014). This also influences both vertebrate and invertebrate 
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communities by altering the ecosystem and changing their food source (Tomberlin et al. 2017). 

Decomposers become an even more crucial part of the process as they become a large part of the 

environment and effected other organisms (Tomberlin et al. 2017). Fungi, bacteria, scavengers 

and necrophagous insects become extremely useful in the recycling of carrion (Tomberlin et al. 

2017).  

Soil nutrients have a significant effect on the biodiversity of various microbial 

communities (Novais and Sousa 2017). The only caveat is this involved aquatic carrion and an 

aquatic mass mortality event rather than terrestrial carcasses. It does observe the terrestrial 

microbial communities; however, insects are not a factor nor is the experiment under similar 

conditions to the set-up mass mortality event. It is essential to discover the effects this 

environmental change will have on the entomological communities.  

Taxonomic Resolution 

Taxonomic resolution is defined as the most informative level in taxonomy (e.g., species, 

genus, family) to identify a specimen for explaining ecological phenomena (Marshall et al. 

2006). If the taxonomic level is too broad, it will be difficult to see the individual effects. If the 

taxonomic level is too specific, it may be difficult to discern the whole picture. Taxonomic 

resolution can help create clarity in understanding this relationship. This taxonomic level must 

provide the best level of information while conserving resources and time (Marshall et al. 2006). 

In some instances, researchers have determined genus level identification provide similar 

information as species level identifications (Marshall et al. 2006, Waite et al. 2004). Even more 

interesting, enhanced taxonomic resolution from genus to species yielded practically the same 

results at 92% (Marshall et al. 2006). In the event of some more coarse impacts, genus did reveal 

a few more differences (Waite et al. 2004). Genus may also be used in richer areas to detect other 
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impacts that family may not involving factors such as pollution (Waite et al. 2004). In the case of 

Waite et al. papers work, species were unidentifiable, which is why genus was more commonly 

used (Waite et al. 2004). However, family was still determined as the best detection factor for the 

effects of macroinvertebrates in benthic communities (Waite et al. 2004). Overall, family 

identifications were useful for visualizing community patterns (Hirst 2006). For conservation 

studies and biodiversity, species level taxonomic level is more accurate and provides more 

information about the effects on species involved in these biodiversity studies (Fjeldsa 2000; 

LaFerla et al. 2002) and should be used when monitoring invasive species (Konar and Iken 

2009).  

Natural disasters and pollution may also have affects that can only be seen at the species 

level (Olsgard et al. 1998). Family can be an acceptable taxonomic level for identification of 

macroinvertebrates as shown in a study where family compared to species was only 6% less 

informative (Marshall et al. 2006). Even with pollution, the resolution between family and 

species is not great therefore making family the best taxonomic level as well (Olsgard et al. 

1998). However, this may depend on the circumstances (Bowman and Bailey 1997). Aquatic 

environments are also said to have a greater taxonomic diversity, so species level identification 

may be more appropriate (Bowman and Bailey 1997). However, many of the taxonomic 

resolution papers discussed involve aquatic rather than terrestrial communities. However, even 

those studies that focus on terrestrial and carrion ecology may still contain several differences 

(Chin 2016). In the case of Chin 2016, family was determined as the best taxonomic resolution. 

However, there was still a marked difference between order and genus. Also, in this case, fewer 

carrion were used. This was not a mass mortality event level of disturbance (Chin 2016). It is 
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possible that the level of disturbance a mass mortality event has will alter the taxonomic 

resolution.  

In general, most papers had different objectives which may affect what taxonomic 

resolution may be the most useful. Data that predicted species and family data had less than a 6% 

resolution loss was observing quantification and identification of macroinvertebrates (Marshall et 

al. 2006). Other objectives can also be detected or observed. 
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CHAPTER II 

METHODS 

 

Field Site 

Sites for collecting insects were set up by Mississippi State University (MSU). Feral pigs 

(Sus scrofa) were killed under a federal removal program and given to MSU. This study, 

however, did not require IACUC approval. The pigs were later thawed before placement. Five 

different sites were created in a mixed pine forest in Mississippi. Each site was one kilometer 

apart for the next adjacent site. The individual plots within the site were 15 m in circumference 

and at least 100 meters away from the next plot. Each site had a varying biomass to simulate a 

mock mass mortality event. The sites each contained one of the following amounts of pigs: 55 

kg, 130 kg, 400 kg, 800 kg, 1600 kg. Sites are numbered 1 through 5 respectively. Within each 

site was six different areas containing different plots. Treatments (nutrient additive group, 

control group (no pigs), or pig carcass group) were randomized within plots, and plots were 

either opened or closed with fencing to prevent scavengers and birds from accessing the pigs.  
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Figure 1. This map shows the location of the five different sites in Mississippi as taken from 

Google Earth. 
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Figure 2. An example of one of the sites (out of five total) by Mississippi State University to 

demonstrate the different treatments used. The three different colors represent the three 

different treatments: nutrient additive, control group, and pig carrion. The solid lines 

around circle indicate a closed plot while the dashed lines indicated an open plot.  

Chicken wire cages were made to be 1 m by 15 m in circumference and placed in the 

closed plots to protect from scavengers. To monitor any vertebrates that did show up, trail 

cameras were used. Pigs were then laid side by side and multiple sticky traps were placed in each 

area. These sticky traps were then collected and placed either in large plastic bags or in boxes 

according to the date range. The traps were collected when they were full or after two weeks. 

These traps were then sent to Texas A&M University, where they were identified. 
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Texas A&M University Identification 

The sticky traps were processed by Texas A&M University. The identifications made 

were only for forensically-important blow flies such as C. macelleria, P. regina, and various 

Lucilia sp. using Whitworth (2006) key. 

Statistical Analysis 

 Community ecology with R programming will be used for statisitical analysis. Typical 

packages used for this include ellipse, ecodist, Biodiversity R, and vegan (community ecology 

package). Traditionally, a variety of different statistical analyses have been performed for 

taxonomic resolution. These include PERMANOVA, , NMDS, Analysis of Covariance, Mantel’s 

matrix, Chi-square, Shannon Index, and more (Marshall et al. 2006, Waite et al. 2004, Bailey and 

Bowman 1997). The used statistics vary based on the objective used with taxonomic resolution. 

In this case of this project, Permutational Multivariate Analysis of Variance (PermANOVA) will 

first be used to assess the combinations of variables for the dataset (Anderson and Walsh 2013). 

This will be followed by Bray-Curtis Dissmilarity, which will be performed to obtain the Non-

Metric Multidimensional Scaling (NMDS). Bray-Curtis is a type (indicate p value) of ordination 

that will help when clarifying the relationships that will be used in NMDS (Gauch Jr. 1973). 

NMDS will compare distances between the genus and species (taxonomic levels) across time 

period, site, and treatment by clustering the data (Kenkel and Orlocs 1986). NMDS has been 

used before in cases of carrion ecology (Pechal et al. 2015). This observed insect community 

structure and decomposition over time with nonparametric dimensional analysis (Pechal et al. 

2015). Finally, species indicator analysis was used to identify the most important out of the 

variables that contribute to the taxonomic resolution among plots (Pechal et al. 2015). 
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CHAPTER III 

RESULTS 

 

Approximately 275 of the traps had Calliphoridae species present. There were three 

genera identified: Lucilia, Cochliomyia, and Phormia. Five species were identified including 

Phormia regina, Cochliomyia macelleria, Lucilia coeruleiviridis, Lucilia cuprina, and Lucilia 

sericata. However, there were only 22 total Lucilia cuprina identified and 3 Lucilia sericata.   

Figure 1: This shows the resulting data of the PermANOVA test. The bold indicates a 

significant relationship between multiple treatments or treatment and variable. Italicized 

indicates approaching significance.  

Factor F P R2 

Date 

N (Total) 

13.2146 0.001 

12 

0.23172 

Biomass 

N (Total) 

12.8622 0.001 

5 

0.08201 

Treatment 

N (Total) 

19.0920 0.001 

3 

0.06087 

Fencing 

N (Total) 

7.5777 0.001 

3 

0.02416 

Date:Biomass 

N (Total) 

3.2548 0.001 

31 

0.15565 

Date:Treatment 

N (Total) 

3.6032 0.001 

11 

0.05744 
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Biomass:Treatment 

N (Total) 

1.3361 0.189 

7 

0.01278 

Date:Fencing 

N (Total) 

1.1058 0.303 

11 

0.01763 

Biomass:Fencing 

N (Total) 

3.6022 0.001 

5 

0.02297 

Treatment:Fencing 

N (Total) 

1.6952 

 

0.130 

3 

0.00540 

Date:Biomass:Treatment 

N (Total) 

2.5871 0.067 

2 

0.00412 

Date:Biomass:Fencing 

N (Total) 

1.2336 0.143 

22 

0.04130 

Date:Treatment:Fencing 

N (Total) 

1.0292 0.410 

3 

0.00328 

Biomass:Treatment:Fencing 

N (Total) 

0.5338 0.771 

3 

0.00170 

Total 

N 

-- -- 

283 

1.0000 

--- -- -- -- 

 

 Significant interactions of date and biomass as well as date and treatment were 

determined for calliphorid abundance (figure 1). There was some noted significance across three 

treatments which are date, biomass, and treatment 
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 Bray-Curtis dissimilarity index was used to conduct Non-Metric Multidimensional 

Scaling (NMDS). The stress treatment indicates that our data are explained through 3 dimensions 

(appendix 1). NMDS was then tested for all variables including date, biomass, treatment, and 

fencing.  

Figure 2: Letters indicate what they mean in terms of date ranges in figure 3. 

a 6/24 to 7/05 

b 07/05 to 07/07 

c 07/07 to 07/09 

d 07/07 to 07/12 

e 07/12 to 07/19 

f 07/18 to 7/19 

g 07/19 to 07/20 

h 07/28 to 08/02 

i 08/02 to 08/09 

j 08/19 to 08/27 

k 08/27 to 09/06 

Figure 3: Clusters of the different date ranges in two dimensions (x and y axis) to 

determine community response.  
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Figure 4: Clusters of different fencings in two dimensions (x and y axis) to determine 

community response.  
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Figure 5: Clusters of different biomasses in two dimensions (x and y axis) to determine 

community response. 
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Figure 6: Representative data from Multiple Response Permutation Procedure Analysis 

performed after NMDS for the biomass data, indicating the different amounts and 

significance.  

 

 

 

This shows how different or similar the biomass are with the Calliphoridae species 

present at each site. Zero or a number close to zero indicates the species in the biomass are 

similar. As noted, most of these biomasses all had similar, not very diverse species.  

Figure 7: Clusters of different treatments in two dimensions (x and y axis) to determine 

community response. 
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Figure 8: MRPP results indicating amount per treatment (N) and significance. The low 

numbers indicate similar species groups. C is the control group, N is nutrient additive, and 

P is the pig carrion.  

 

NMDS, it appears that in most instances, the species were all relatively similar. This 

would provide data for genus level being an accurate taxonomic resolution.  

Figure 9: Indicator species analysis, which shows what variables are important and used 

for determining significance (as noted in the p value) specifically for treatment types.  
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Indicator Species Analysis was run to determine what variables had a significant effect. 

All treatments were insignificant representatives of the community structure. However, the 

family level of Calliphoridae did have significant effects, suggesting that family represents 

community patterns best.  

Figure 10: General Indicator species analysis, which shows what variables are important 

and used for determining significance (as noted in the p value). 
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Abundance was clearly, as predicted, higher where pig carrion was located. There was 

some presence of Calliphoridae in the other two treatment areas, but this was not significant.  

Figure 11: The change in abundance data over time per biomass. Each biomass is indicated 

by the line and shows the change over time.  

 

The highest presence of Calliphoridae occurred within the first couple of days after the 

presence of carrion. The larger biomasses may have had such a high increase in Calliphoridae 

abundance that it may be generations for the population to stabilize. The populations are at such 

a carrying capacity (K) that time will be needed for the population to fall back under K. The last 

date recorded here was June 27th
 while the start date of pig carrion placement was July 5th. 

 

 

 



27 

CHAPTER IV 

DISCUSSION 

 

 Family level appears to be the most significant taxonomic level and resolution. However, 

the significance may have been due to the testing only involving one family. Excluding family, 

genus was the most significant level. Multiple interaction effects could have influenced these 

results (figure 1). Overall, the Calliphoridae abundance followed the same general pattern for all 

biomasses with some abundance variation (figure 11).  

Ecology involves studies of organisms and their interactions within the environment 

(Michaud et al. 2015). An important aspect of ecology is observing species richness. This can 

also play a role when observing forensic entomology and insect colonization (Byrd and Castner 

2001). One such forensically important Diptera family is Calliphoridae, which often lays its eggs 

and consumes decomposing material (Byrd and Castner 2001). Mass mortality events (MME) 

have high amounts of carrion, which therefore may attract Calliphorids. These events occur 

when an abnormally large group of animals die in an area (Fey et al. 2015). The three most 

prevalent species of Calliphoridae to arrive to the created MME were Lucilia coeruleiviridis, 

Phormia regina, and Cochliomyia macelleria. It is possible taxonomic resolution can help 

understand more about the Diptera involved. Taxonomic resolution helps understand what 

taxonomic level will provide enough evidence for the given objective. In this case, genus and 

species taxonomic levels were analyzed.  

PermANOVA was used to analyze and compare relationships of the treatment types to 

the resulting variables (Anderson et al. 2013). It is important to understand how interactions 

occur across different levels of analysis (Andersson et al. 2014). There were several interactions 
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noted between two factors including biomass and fencing, biomass and date, and date and 

treatment (figure 1). The two factors simultaneously drive the taxa abundance. In the first 

instance, the different biomasses may vary and/or be similar depending on the fencing type. In 

other words, both of these factors work together to drive abundance. The abundance may be 

driven by both due to the potential creation of microclimates (Perillo et al. 2015, Payne 1965). It 

is also notable that vertebrates that arrive to carrion may also affect insects (Turner et al. 2017). 

Some vertebrates may include large scavengers such as vultures, which were noted at the open 

scenes. It is possible that, with the varying biomass, these vertebrates were attracted to some 

biomasses over others. This would then correlate with vertebrates attempting to consume those 

carrion. Depending on the vertebrate, it is possible some vertebrates are attracted to large carrion. 

Fencing is often used to protect carrion (Payne 1965, Lopes de Carvalho and Linhares 2001) 

from vertebrate scavengers. There are fewer experiments observing decomposition and insects 

that do not include some fencing. 

Another potential explanation is the unequal sample effort (Anderson 2001). Some traps 

from different locations were destroyed or damaged either by the weather or large animals. 

Therefore, some sites had more samples than others creating an unequal sampling size. 

PermANOVA can often be affected by unequal sampling and misinterpret significant 

relationships (Anderson 2001). One example can be seen in figure 8, where there is an inordinate 

amount pig carrion samples that contain Calliphoridae, but very few Calliphorids present within 

the other two treatments. Only traps that contained Calliphorids were sampled so as to not skew 

the results. Therefore, there were far more pig carrion treatments that had Calliphoridae samples 

than any other treatment type. If we were to repeat this experiment, it would be wise to have 

more samples. The lack of sample size is also because sites were not replicated. Each site was a 
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different amount of biomass and each area within those were individual as well. The sticky traps 

that contained the samples were noted as pseudo replicates (Okansen 2001, Hurlbert 1984). 

These issues may have caused the PermANOVA results to be concluded as inaccurate. The 

unequal sampling or too few samples could have skewed the PermANOVA results as each 

section has to have an equal amount of sample for the results to be accurate (Anderson 2001).  

Date and treatment as well as date and biomass were two other interactions. Control and 

pig treatment plots vary widely in the soil nutrients. Control groups do not alter the soil from its 

initial composition as nothing is added to the pig carrion. Treatment groups with pig carrion 

would have altered the soil and environment due to the addition of nutrients (Barton et al. 2012). 

Therefore, the potential differences in the factors can both have a simultaneous effect on the taxa 

abundance.  

As for the biomass and date, the carrion size may have had multiple effects. Smaller 

carrion and biomasses actual decompose faster, influencing the date and time (Payne 1965, Lane 

1975). Biomass size can also affect the size and present Calliphoridae species on the carcass 

(Davies 2002). As a result, abundance of the different species is also affected (Davies 2002).  

These two interactions can help explain the one three-way interaction noted in figure 1 as 

having partial significance. The three-way partial interaction was between date, biomass, and 

treatment. Unfortunately, there is no way to graph these three into a single graph; there is just a 

known interaction effect. There are too many factors and variables involved. There are many 

possibilities as to why a semi-significant interaction could have been noted. One example is if 

another animal dies nearby, the event could be affected in some way. More research needs to be 

done to determine if these factors are due to outside forces.  
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 Each of the four treatment variables were tested using NMDS. While there may have 

been an abundance change, as noted in figures 3, there was no noted dissimilarity of species or 

genera within the family. The same results occurred when observing the community response to 

fencing in figure 4. There are two possibilities for this inconsistency. One may be that, as 

previously noted, the PermANOVA is incorrect due to lack of equal samples. Another possibility 

is that there may be a correlation, but there are too many complicated or overlapping clusters in 

the ordination plot. For the most part, the NMDS plots were biologically irrelevant.  

 However, biomass did have dissimilarity results and clusters. Multiple Response 

Permutation Procedure (MRPP) could be used for this analysis. Based on the low p values, the 

biomasses all had a relatively similar species richness. Species richness indicates the variety of 

species within an area. As for species evenness, the appropriation of species among the different 

sites is similar (Smith and Wilson 1996). The low p values also indicate that species dissimilarity 

is low, referring back to species evenness. Species evenness is the appropriation of different 

species across the community (Smith and Wilson 1996). Species are therefore similar across 

biomass sites. The diversity of species and genera is low in many areas, depending on the season 

and weather (Matuszewski et al. 2008, Lopes de Carvahlo and Linhares 2001). Therefore, it is 

possible for this NMDS plot to hold some accuracy.  

Treatment studies with NMDS and MRPP also gave related results. Across each 

treatment, there were similar results like the biomass analysis. Species were relatively similar 

across all the treatments. In terms of abundance, there were more Calliphoridae present in the pig 

carrion treatments, which may have affected the results. The Calliphorids in the nutrient additive 

and control regions were far fewer than the pig carrion. Even so, according to figure 10, species 

and genus have similar p values in direct relation to each other. This may be because some 
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genera only had one species such as the Cochliomyia genera only containing the species 

Cochliomyia macelleria. Even so, this plot was difficult to interpret.  

 The final R programming analysis was performed with Indicator Species Analysis (ISA). 

As stated, the analysis was done using all four treatment types including date, biomass, 

treatment, and fencing. However, all of these had relatively similar results. Indicator species 

analysis observes the different variables, and which one has the highest and most important 

effect (Hill 1975). In the case of comparing across genus and species for dates, genus had the 

lowest p value overall (except for Calliphoridae), and therefore was the most significant. 

Calliphoridae was statistically significant (p=0.001), indicating that family best explains changes 

within the community. Some approached significant results for date. However, there were almost 

no significant results across the treatments for any of the groups, as seen in figure 9. The genus, 

however, was still the lowest when observing treatments, followed by family and then species. 

Once again, the lack of Calliphoridae evidence in general from the nutrient additive and control 

areas may have caused these results. The uneven trap amounts also most likely affected why 

none of the groups were significant. Therefore, there is also a better estimate of different taxa 

significance.  

Family was not one of the taxonomic resolution levels that was being tested in this 

experiment. While it may have had the most significant effect on taxa abundance as according to 

the ISA, all the data was under one family, making this result expected. In most papers (Marshall 

et al. 2006, Fjeldsa 2000, LaFerla et al. 2002, Konar and Iken 2009), a large community of 

multiple families are observed. Family level identifications have often been used for larger and 

more stable communities (Marshall et al. 2006). However, other papers observing specific 

communities such as necrophagous communities can still require a family level taxonomic 
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resolution (Chin 2016). It would be worthwhile for future studies to look at other Diptera 

families. It would also be useful to observe solely forensic important Dipteran families, or all 

Dipteran associated with mass mortality events. Family level could then be analyzed to 

determine if identifying down to genus is not necessary.   

Since family level provided significance, it was used to create an abundance graph (figure 

11). A general trend can be observed from all five biomasses present. This trend is also seen in 

normal insect succession where carrion insects follow a normal type pattern (Benbow et al. 

2016). Even if biomass may alter the taxa and abundance of Calliphoridae, all the sites still 

follow the basic trend of necrophagous insect succession.  

 Referring to the objectives, taxonomic resolution will provide the most detail and how 

this will be affected by the different variables and differences. Unfortunately, the PermANOVA 

was not fully accurate in showing what treatment groups had significance, however, we were 

able to determine that this data did not have stress amounts that were too high to analyze. Three 

dimensions is a good point to focus on as it can be analyzed.  

 These results can indicate a few things for taxonomic resolution and mass mortality 

events. None of the plots created from NMDS were clean or clear. Therefore, it was difficult to 

determine how the treatment variables clustered together dimensionally. There was no distinct 

line of the difference between the different created groups of variables. These plots may have 

been partly affected by the inaccuracies seen in the PermANOVA. However, there may still be 

several reasons that biomass and treatment provided results. It could be an inaccuracy, or it could 

be that these two treatments best clustered resulting variables. Treatment had an effect on the 

Calliphoridae abundance as there were clearly more Calliphorids at the pig carrion site versus the 

others. Calliphoridae abundance was also influenced by biomass as the more carrion, the more 
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Calliphorids (Pechal et al. 2014). It was difficult to discern whether or not there was a significant 

difference between the different biomasses and their abundances (figure 11) as indicated by the 

large error bars. Overall, the larger biomasses did have a higher abundance of Calliphoridae, as 

to be expected.  

 Species Indicator Analysis shows that either genus or even family would be the best 

taxonomic resolution level. Family level was not being tested in this instance, however, as noted 

in the ISA for date, family level was significant. However, it may be because there was only one 

family tested so it would have significance. Even so, it is possible to look at family, but there are 

also limitations. In this instance, it depends on the question at hand. As previously mentioned, 

biodiversity, nature conservation, and monitoring invasive species all need species level 

taxonomic resolution (Fjeldsa 2000; LaFerla et al. 2002, Konar and Iken 2009).  

 The reasoning behind the hypothesis was that mass mortality events may be similar to 

monitoring invasive species. Initially, it was believed that this work would have similar results to 

those when monitoring disturbance events (Chin 2016). However, as can be analyzed from the 

multiple amounts of statistical and abundance data, genus level appears to be a normal 

taxonomic resolution identification. Implications for this research could help in future research 

studies involving mass mortality events. While, in many instances, Calliphoridae must be 

identified down to species for death investigations (Byrd and Castner 2001), the taxonomic 

resolution information from this work can be especially useful for future studies. Identify down 

to genus helps save time, energy, and money that is required for identifications.  

 Mass mortality events have become of great interest recently as noted in journals such as 

the National Geographic. There is currently little known about why mass mortality events occur 

or what the effects of mass mortality events are (Fey et al. 2015). The implications of this work 
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could help better understand mass mortality events and how to analyze them. Numerous studies 

that do not contain work with PMI or TOC could benefit from the results presented.   

 However, there are also ways to improve the work. As previously stated, limitations 

could be the cause of a lack of replications with different biomasses. The study design could be 

improved in other ways as well. For example, more samples could be placed to further the 

accuracy of the work.  

 Further limitations could include the scope of taxonomic resolution. Only the 

Calliphoridae family was observed for necrophagous effects. Improvements could be made by 

extending the field of scope to all the other necrophagous insects including the families 

Muscidae, Sarcophagidae and others (Byrd and Castner 2001). It would also be beneficial to 

extend future studies to include all families under the order Diptera, not just necrophagous 

insects. More beneficial information and a wider scale of samples may provide more 

information.  

 Future work could also focus on other insects present in mass mortality events that may 

otherwise be absent. Even the field of forensically significant insects could be expanded upon. 

Other work could be expanded upon from information in the research. For example, as 

previously noted, fencing may have a simultaneous effect with biomass on taxa abundance. It 

would be an interesting point to observe fencing and what effects, if any, invertebrate and 

vertebrate competition have (Beasley et al. 2012). This knowledge is unclear from this research 

alone. There are many ways to further the research ideas and knowledge that has come from this 

experiment.  

 Overall, it is important to understand that genus is the most significant and beneficial 

taxonomic resolution level to identify Calliphorids for mass mortality events (MME). Money, 
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time, and resources can be saved by only identifying down to the genus level. Future work with 

mass mortality events could benefit from the correct identification with taxonomic resolution. 

However, in the future work could be improved with more samples and replicates. Research 

could also be expanded by identifying more insects involved in mass mortality events. In the 

case of these necrophagous insects, genus provides the appropriate level of information.  
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CHAPTER V 

CONCLUSION 

 

 Overall, the species and genus diversity across the different biomasses, dates, fencing 

types, and treatments were all relatively similar. There was only a total of three different genera 

and five different species. Lucilia cuprina and Lucilia sericata, however, were not very common. 

In most instances, there was one species per each genera. This made the species diversity and 

richness very low within the family level. 

 Statistical analysis with R further provided information. There were also a few other 

treatments that related significantly with effects on each other. However, this was noted as a 

potential error, although there are some ways they could relate to each other. NMDS plots, where 

the biomass and treatment groups had significant clusters of Calliphoridae abundance. As for the 

Indicator Species Analysis, the family and genus levels were noted as the most significant.  

 Future experiments with mass mortality events can benefit from the information that 

resulted from this research. Rangers investigating poaching but who do not have access to 

professional entomologists could also benefit and use these results. There are many uses for 

using the correct taxonomic resolution. In conclusion, when comparing the statistics and 

abundance, genus level out of species and genus appear to be the best for taxonomic resolution 

when it comes to analyzing mass mortality events.   
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APPENDIX 

Figure 1: The stress data showing the number of dimensions for the NMDS 

data sets.  

 

 

 


