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ABSTRACT 
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The electroencephalogram (EEG) signals are a measurable brain electrical activity. EEG 

signals can be used to detect and classify motion intention of any voluntary action. Successful 

detection of EEG signals and classification of motion intention is crucial in Brain-Computer 

Interface (BCI) applications. BCI can be used for upper limb rehabilitation through the use of 

prosthetics or exoskeletons. In this project, a method is proposed to distinguish three motions, 

including moving an arm forward, grabbing an object, and moving an arm upwards as well as the 

rest position, a total of 4 different tasks. The data is collected using ENOBIO 8 system with 

seven electrodes. Four time-domain features extracted from the data include the mean absolute 

value, zero crossing, waveform length, and slope sign change. The k-Nearest Neighbor (k-NN) 

algorithm is used to classify the four classes. This study investigates various window sizes and 

different numbers of neighbors to achieve a higher classification accuracy. Using a grid search 

approach, it was determined that a window size of 1500 ms and a number of neighbors of 5 
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produced the highest classification accuracy. The classification accuracy was 85.6 ±2.38%, while 

previous studies were only able to achieve classification accuracies between 60% and 78%. This 

result proves that varying the window size and the number of neighbors profoundly influence 

classification accuracy of motion intention; therefore, improving rehabilitation techniques for 

people with minimal arm movement and muscular dystrophy. The classified signals can be used 

for further biomedical research and be utilized to expand the growing biomedical research field 

in Qatar that relates to Brain-Computer Interface (BCI) technology. 
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CHAPTER I 

INTRODUCTION 

 
 

An electroencephalogram (EEG) measures brain electrical activity. The analysis of EEG 

signals has great potential in the biomedical field as the brain controls the human body. 

Recognizing motion intention is vital for limb rehabilitation and the improvement of prosthetic 

and exoskeleton devices’ performance. EEG provides an enormous advantage in diagnosing 

medical conditions, such as epilepsy (or any seizure disorders), brain tumors, sleep disorders, 

and dementia. Another application is the rehabilitation of patients suffering from limited to no 

movements due to paralysis, amputations, and any genetic disorders. Brain-Machine Interface 

(BMI) technology has been used for the detection and processing of brain signals to control an 

external device such as an exoskeleton or a robotic wheelchair [1]. 

However, analyzing EEG signals is usually challenging, as signals are noisy and are 

highly influenced by both anatomical and physiological properties. Moreover, EEG depends on 

the electrode placement and varies with the state of skin where electrodes are attached [2, 3]. In 

addition, information extracted from the signals may substantially vary between different 

subjects. Nonetheless, analyzing EEG signals can require significant pre- and post-processing as 

they are highly sensitive to motion. 

Brain signals collected through EEG may be measured through non-invasive wet or dry 

electrodes with amplification as the signals typically have very low amplitudes. According to 

previous studies [4] and [5], dry electrodes can measure the EEG signals similar to the wet 

electrodes. Dry electrodes are also easier, faster to set up, and require no cleaning compared to 

wet electrodes.  
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Various studies with different machine learning algorithms have been investigated 

previously to predict the subject’s motion intention. For example, Bandara et al. [6] classified 

different states of arm movement, including rest position and grabbing a cup of water using both 

artificial neural network (ANN) and support vector machine (SVM) algorithms. The authors [6] 

reported an overall accuracy of 71.3-72.6% and 81.9-82.1% for the ANN and SVM algorithms, 

respectively. Other studies have used the Linear Discriminant Analysis (LDA) to detect motion 

intention of different hand and arm movements [1, 7]. In [7], two healthy subjects and three-

stroke patients were recruited to perform center-out upper limb reaching task. The obtained 

overall accuracies for the healthy and stroke subjects were 76% and 47%, respectively [7]. 

Another study found an accuracy of 83% using 12 subjects [1]. Different types of activity 

recognition have also been investigated such as reaching movements of either the left or right 

arm [1], cursor movement [8], different reach-and-grasp movements [9], individual finger 

movements [10], mouse movements using a visual stimulus [11], reach-and-touch tasks [12], and 

free arm reaching movements [13]. 

Studies on the motor imagery [14-18] have proven that the actual limb movement 

provided similar classification accuracies [19]. Furthermore, motor signals obtained from EEG 

contain valuable information such as movement intention before the motion is executed, which 

can further advance Brain-Computer Interface (BCI) devices’ executions [19].  

The limitation of the previous studies was not observing the effect of different window 

sizes on the classification accuracy of the machine learning algorithm. Different studies used 

different window sizes that ranged from 500-2000 milliseconds [1, 8, 9, 11, 20, 21], without 

identifying a widely accepted window size that would give the best accuracy. Various studies 

have also chosen a window size of 1 second without experimenting different window sizes; 
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therefore, classification accuracies were not high. For example, one study obtained a 

classification accuracy of 72% [11], a second obtained an accuracy of 80% [20], and a third one 

obtained accuracies between 76% and 79% [21]. 

This project utilized a subject-specific strategy to train the machine learning algorithm (k-

NN). It aims to experiment and find the best window size and number of neighbors to help 

develop the algorithm, thus producing the highest percentage of classification accuracy for upper 

limb movement. The results of the developed algorithm will be beneficial for the rehabilitation 

of patients with upper-limb impairment in performing the activities of daily living, such as 

drinking water from a bottle. Moreover, it will help expand a growing field in biomedical 

research that relates to Brain-Computer Interface (BCI) technology, and improved prosthetics to 

help people with minimal arm movement, muscular dystrophy in a less invasive method. 
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CHAPTER II 

METHODOLOGY 

 

The experimental protocol and methods used in this study are described in the following 

subsections. 

Experimental Protocol 

A twenty-year-old healthy subject without any history of the upper-limb disorder and 

cognitive impairment was recruited for this research work. The study was approved by the 

Institutional Review Board (IRB) from both Texas A&M University, College Station, USA 

(IRB2019-1254DQ) and Qatar University (IRB 1222-EA/20). The participant signed a consent 

form in accordance with the protocols. The subject was asked to perform a total of four tasks (see 

Figure 1), including 1) rest, 2) moving the right arm forward, 3) grabbing an object, and 4) 

moving the right arm upward ten times each for twenty seconds. The subject was asked to follow 

the instructions given verbally by the instructors and trained to do the task several times prior to 

the actual data collection to ensure better execution and detection of motion. During the 

experiment, the subject was asked to perform ten trials for each task and then rest for 10 - 15 

minutes. 

 

Figure 1. Four Classes: (1) Rest; (2) Moving Arm Forward; (3) Grabbing Object; (4) Moving 

Arm Upward  
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Figure 2 shows the experimental protocol for task-4 (moving an arm upward) as an 

example. A break was also provided whenever the subject felt the need to rest to prevent arm 

fatigue. The tasks executed were self-paced. The subject was told to minimize eye blinking and 

head movement to reduce artifacts in the data.  

Data Acquisition 

The EEG signals were acquired using the Neuroelectrics’ EEG module called ENOBIO 8 

and the Neuroelectrics® Instrument Controller (NIC) software. The module includes a cap with 

10-20 international positions for electrodes placement, and a control box for noise measurement 

less than 1 uV RMS with a bandwidth of 0-125 Hz. The sampling rate of the acquired data was 

500 Hz. While wearing the headset and before placing the electrodes, a diluted glycerin solution 

was placed on the subject’s scalp to reduce skin impedance and to increase the signal 

conductivity. Once the electrodes were placed, data were collected. The EEG data were 

acquired from 7 electrodes (Channel 1 - C3, Channel 2 - C1, Channel 3 - FC1, Channel 4 - Cz, 

Channel 6 - C2, Channel 7 - FC2, and Channel 8 - C4). The EEG module, dry electrodes, and the 

electrode placements on the scalp are shown in Figure 3.  

 

Figure 2. Protocol for Task 4 
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(a) (b) (c) 
 

Figure 3. Illustrations of EEG module (a) ENOBIO 8, (b) dry electrodes, and (c) electrode 

placements 

Data Preprocessing  

The signals were processed using MATLAB. A band-pass filter of 2-40Hz was applied to 

the data, which removed the 50 Hz line noise. The data was amplified from nanovolts to 

microvolts. The first two seconds of data were removed due to high noise. After mean 

referencing the EEG signals, the Fast Fourier Transform (FFT) of the data was used for each 

channel to observe the effect of the filters on the data and to ensure only noisy signals were 

filtered. 

Feature Extraction 

The filtered and mean referenced EEG signals were then segmented using the sliding 

window and overlapping strategy. The window size was varied from 500-2000 ms to observe the 

effect of different window sizes on the classification accuracy. In this study, 85% window 

overlapping was used to increase the number of observations. Window overlapping occurs when 

each window interval overlaps with the previous window, shown in Figure 4. Four time-domain 

features were extracted from each of the windows: 

- Mean Absolute Value (MAV) 

MAV=!
"
∑ |𝑥&|"
&'!      (1) 
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- Zero-Crossing (ZC) 

𝑍𝐶 = ∑ [𝑠𝑖𝑔𝑛(𝑥&1!𝑥&)"3!
&'! ∩ |𝑥&1! − 𝑥&| ≥ 0]  (2a) 

 

𝑠𝑖𝑔𝑛(𝑥) = 90, 𝑥 < 0
1, 𝑥 ≥ 0     (2b) 

 
- Waveform Length (WL) 

𝑊𝐿 = ∑ |𝑥&1! − 𝑥&|"3!
&'!     (3) 

 
- Slope Sign Change (SSC) 

𝑆𝑆𝐶 = ∑ 𝑠𝑖𝑔𝑛[(𝑥& − 𝑥&3!) × (𝑥& − 𝑥&1!)]"3!
&'A   (4) 

 
where 𝑥& is the EEG amplitude at the n-th data point and 𝑁 is the length of the sliding 

window. 

Classification 

The k nearest neighbor (k-NN) algorithm was used to classify the four tasks specified in 

the experimental protocol subsection. The number of nearest neighbors was varied from 1 to 13 

neighbors in order to evaluate its effect on the classification accuracy.  

 

Figure 4. Illustration of sliding windows and overlapping windows in the time domain 

To prevent bias in the algorithm, a holdout approach was used to evaluate the k-NN 

algorithm, where 70% of the data was chosen to be used in the training phase while the rest of 

the 30% was used in the testing phase. The data used in the training phase of the classifiers were 
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chosen using a random permutation.  The methodology outline used in the study is shown in 

Figure 5. A schematic of the holdout method is shown in Figure 6. The procedure was repeated 

50 times to estimate the overall mean accuracy. The K-fold cross-validation was not used as 

some of the trials had corrupted data that was removed from the set, and so the four classes did 

not have equal numbers of trials.  

 

 

Figure 5. Methodology outline used in the study 

 

Figure 6. Holdout method in choosing testing and training trials 

Finally, the performance of the algorithm in classifying the motions was evaluated by the 

overall mean accuracy: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 !
&
∑ 𝐼(	𝑦ˆ	𝑖	 = 	𝑦	𝑖&
K'! )   (5) 
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where, n refers to the number of samples, I is the indicator function, 𝑦ˆ	𝑖 and 𝑦	𝑖 are the ith 

predicted class and original class, respectively. 

Data Analysis 

 A paired t-test was used to compare the classification accuracies between two classes. 

The level of significance was set at p<0.05. It should be noted that the holdout validation strategy 

was repeated for six additional times. As this study only includes one human subject due to 

unforeseen COVID-19 pandemic incident and the EEG signals are highly variable even within a 

subject in a different trial, each of the iterations was considered data from different human 

subjects.   
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CHAPTER III 

RESULTS 

 
 

 The initial raw data of task-1 (rest) for all the channels is plotted in Figure 7. There is 

evident noise throughout the data. Figure 8A shows a sample Fast Fourier Transform (FFT) of 

EEG data for channel 1, task-1, where the evident peak at 50 Hz is due to the powerline noise. 

Figure 8B shows the FFT of bandpass-filtered data in which the powerline noise, as well as the 

low-frequency artifacts, were removed.  

 

Figure 7. Raw EEG signals from seven channels for task-1 (rest) 
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      (A)       (B) 

 

Figure 8. FFTs for task-1, channel-1 (A) before filtering, (B) after filtering 

 
          (A) 

 
           (B) 

Figure 9. Corrupted EEG signals from different trials due to head movement and eye-blinking 

Besides filtering, the EEG signals from all trials were visually inspected for artifacts 

related to head motion and eye-blinking. Figure 9 shows examples of corrupted EEG signals, 

whereas Figure 10 shows clean EEG signals from each of the classes. The corrupted trials were 

discarded from the analysis. 
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Figure 10. Filtered EEG signals without head movement and eye-blinking artifacts for 

each of the four classes 

To determine the best window size and the number of neighbors for the k-NN algorithm, 

the accuracies for each window size and neighbors were computed and plotted in Figure 11. This 

analysis was conducted for all six iterations. For all the neighbors, the accuracy generally 

increases by increasing the window size. The number of neighbors in the range of 5 to 9 was 

found to produce better classification accuracies. 
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                                        (1)                                       (2) 

 
                                         (3) 

 
                                      (4) 

 
                                        (5) 

 
                                       (6) 

 
Figure 11. Accuracy versus nearest neighbor number for six iterations 
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The confusion matrix was computed using the window size of 1500 ms and 7 neighbors 

as they showed to produce better classification accuracies. The confusion matrices for all six 

iterations are shown in Figure 12. In the confusion matrix, the diagonal values represent the 

accurate classification, while the off-diagonal values indicate the miss-classification rate. The 

columns showed the predicted classes, whereas the rows showed the actual classes. For example, 

in Figure 12(1), 2444 instances were accurately classified by the k-NN algorithm as task-3 

(grabbing an object, GR). However, the algorithm was falsely classified task-1, task-2, and task-

4 as a task-3 for 136, 396, and 108 instances, respectively. Overall, the prediction accuracy for 

task-3 was 79.2%. The highest prediction accuracy was observed for the rest class (97.3%), 

closely followed by the moving upward task (95.2%). The class with the least accurate 

classification was the grasp class, which had an accuracy of around 73.8% in the sixth run. 

Approximately, the total number of observations per class was 50 times as the process was 

repeated 50 times for each of the confusion matrices. The model most accurately predicted the 

rest class, followed by move-upward class with a lower prediction accuracy in some of the runs.  
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(1) 

  
(2) 

 
(3) 

 
(4) 

 
(5) 

 
(6) 

Figure 12. Confusion matrices for six runs that include the prediction accuracy for the four 

classes: GR, grasp; MF, moving forward; MU, moving upward; and RT, rest 
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Table 1 shows the mean and standard deviation for all of the matrices. The average 

classification accuracy was 85.6%, with the overall standard deviation of 2.38. Due to an 

inadequate number of subjects, the results from each iteration were considered as results from 

different subjects. A paired t-test was conducted to compare the prediction accuracies between 

task-1 (rest) and task-4 (moving up) as they produced the maximum values. Although the 

prediction accuracy was higher for task-1 (94.58%) compared to task-2 (92.68%), the difference 

was not statistically significant (p=0.18). This finding indicates that moving up produces more 

discriminative patterns in the EEG signals compared to other movement tasks and can be predicted 

with similar high accuracy of rest class. The results of the t-test are shown in Table 2. 

Table 1. Prediction accuracy for the four classes within six iterations 

 

 
Table 2. T-test results for two classes 

t-Test: Paired Two Samples for Means 

 Moving Upward Rest 

Mean 92.68 94.58 

Variance 15.39 2.022 

Degree of Freedom 5 5 

P(T<=t) one-tail 0.0931 0.0931 

 Prediction Accuracy (%) 
Iteration 
Number 1 2 3 4 5 6 Mean Std 

Grasp 79.2 77.2 75.2 79.7 78.9 73.8 77.33 2.39 

Moving 
Forward 75.8 80.0 78.5 75.5 78.3 78.8 77.82 1.78 

Moving 
Upward 97.3 89.9 94.3 86.3 94.5 93.8 92.68 3.92 

Rest 95.2 94.1 94.2 92.4 94.9 96.7 94.58 1.42 

Overall       85.60 2.38       
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CHAPTER IV 

DISCUSSIONS 

 
 

This research aimed to investigate the prediction accuracy of rest (task-1) and different 

hand movements, including moving the arm forward (task-2), grabbing an object (task-3), and 

moving arm upward (task-4). The EEG signals and the k-NN algorithm were used to predict 

these tasks. Furthermore, the best window size and neighbor numbers for the algorithm were 

determined. In most cases, it was found that the classification accuracy increased with larger 

window sizes for all the neighbor numbers. However, window size of 1500ms produces similar 

accuracy values compared to window size of 2000ms (Figure 11). The best window size was 

found to be 1500 ms with a nearest neighbor number of 7, as it showed the highest overall 

classification accuracy (over 70% for all tasks). The overall classification accuracy was found to 

be 85.6 ±2.38%. This accuracy was higher than that obtained in and most other studies reported 

in the introduction section (maximum 83% [1]).  

The confusion matrices indicate a high accuracy value in predicting the four classes. The 

accuracy is consistent with every iteration of the algorithm, which indicates that it is reliable as 

each class’s prediction accuracy does not vary drastically in the six iterations. Moreover, the 

classification of the moving upward and rest classes showed high prediction accuracies of 

92.68% and 94.58 %, respectively. The classes with the least accuracies were grasp, followed by 

the moving forward motion. The higher prediction accuracy for moving upward compared to all 

other motions indicate that the EEG signals were more discriminative for the former task as it 

required a greater deal of musculoskeletal activities compared to other tasks. Another possible 
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reason behind the lower prediction accuracy could be due to the data acquisition of their trials 

where a delay between the tasks and the commands occur. 

The k-NN algorithm performed comparatively better when the window size and neighbor 

numbers were 1500 ms and 7, respectively. In Figure 11, the best accuracy was produced using 

window sizes 1500 and 2000 ms, while the lowest accuracies were for the lower window sizes. 

This is expected since lower window size usually unable to capture the discriminative features 

for tasks that may require less musculoskeletal activity such as grab an object or move forward. 

This study has some limitations as only one subject was used, and a small number of 

motions were classified. A large number of trials were collected for the subject to increase the 

size of the data used in machine learning and reduce the impact of these limitations. A holdout 

method was used to reduce the effect of overfitting in machine learning where the model learns 

the details of the training data. Possible sources of error are inconsistency in the subject’s task 

executions, as well as the delay time due to human reaction time. The lack of proper detection of 

artifacts can may increase error in the detection of tasks. Motion and eye blinking artifacts were 

removed manually through visual inspection by discarding trials with significant noise. 

Although the results indicate good prediction accuracy, only one subject was used in the 

data acquisition.  With a higher number of subjects as well as trials, the algorithm is expected to 

be more reliable and accurate at classifying the various tasks. The aim was to collect data from a 

total of 10 subjects but due to the unforeseen events surrounding the COVID-19 virus in spring 

2020, complete data was unavailable at the time of publication. 
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CHAPTER V 

CONCLUSIONS 

 
 

Recognizing motion intention is very vital in a variety of areas, including limb 

rehabilitation, and improving the performance of prosthetic and exoskeleton devices. In this 

research, a k-NN machine learning algorithm was employed for accurate detection of arm motion 

by finding an acceptable window size for the data processing. The various window sizes 

investigated ranged from 500 ms to 2000 ms. The various neighbor numbers considered ranged 

from 1 to 13. The best window size was found to be 1500 ms with a nearest neighbor number of 

5. The overall average accuracy of the classification was 85.6 ±2.38% for a total of six iterations. 

The employed technique was superior to previous research that showed accuracies ranging 

between 60% and 78% [22-24].  

Future work includes testing different machine learning algorithms and extracting 

different features to identify the most accurate method. This will help improve BCI devices 

significantly, such as improving the functionality smoothness of exoskeleton and prosthetic 

devices through the recognition of the motion intention. 
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