
UNDERSTANDING AND EVALUATING DYNAMIC RACE DETECTION

WITH GO

An Undergraduate Research Scholars Thesis

by

ANDREW H. CHIN

Submitted to the Undergraduate Research Scholars program at
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by Research Advisor: Dr. Jeff Huang

May 2020

Major: Computer Science

TABLE OF CONTENTS

Page

ABSTRACT ... 1

ACKNOWLEDGMENTS ... 2

NOMENCLATURE ... 3

I. INTRODUCTION ... 4

II. MOTIVATING EXAMPLE .. 6

III. UNDERSTANDING THE GO RACE DETECTOR .. 8

Architecture ... 8
The Go Compiler ... 8
Instrumentation for Data Race Detection ... 9

Manual Instrumentation ... 10
Compiler Instrumentation .. 11

Optimizations .. 11
Discussion ... 12

IV. EVALUATING THE GO RACE DETECTOR.. 13

Methodology ... 13
Performance .. 14

Minikube ... 14
Kubernetes ... 15

Instrumentation .. 15
Discussion ... 17
Reported Race ... 17

V. RELATED WORK.. 18

VI. CONCLUSION ... 19

REFERENCES ... 20

1

ABSTRACT

Understanding and Evaluating Dynamic Race Detection with Go

Andrew H. Chin
Department of Computer Science & Engineering

Texas A&M University

Research Advisor: Dr. Jeff Huang
Department of Computer Science & Engineering

Texas A&M University

With the prevalence of concurrent software and the difficulties that come with properly

synchronizing threads, it is easy to introduce data races into programs. A data race is a software

bug which occurs when at least two threads simultaneously access shared memory, with at least

one of them performing a write. Because of the indeterministic nature of thread scheduling, data

races lead to undefined behavior which may only manifest in rare thread schedules. The diffi-

culty lies in detecting hidden data races based on observed program executions.

Go (Golang) is a modern, open source programming language designed for simplicity,

efficiency, and reliability. With the introduction of Goroutines and other primitives, Go enables

quick development of highly concurrent software. However, this model makes it necessary to ap-

ply race detection to programs written in Go.

We present an in-depth study of the Go race detector, a dynamic analysis tool developed

by Google. The Go race detector traces program events and provides detailed information re-

garding detected races. Furthermore, we evaluate the race detector on Kubernetes, the most pop-

ular open source project written in Go.

2

ACKNOWLEDGMENTS

I would like to thank my faculty advisor, Dr. Jeff Huang, for being extremely patient, re-

viewing my thesis, and guiding me as I pursued my research. I would like to thank my colleague,

PhD student Yahui Sun, for working very closely with me and also reviewing my thesis. I also

would like to thank the Automated Software Engineering Research group for their hospitality

during the past two years. Finally, I would like to thank my family and friends for their encour-

agement during difficult times and their unconditional support.

3

NOMENCLATURE

Go Go programming language

TSAN Thread Sanitizer

HB Happens-Before relationship

RTL Run-Time Library

LLVM LLVM Compiler Infrastructure Project (not an acronym)

GitHub A Platform used to host source code, perform version control, track issues, and
 collaborate on projects

AST Abstract Syntax Tree

SSA Static Single Assignment form

VM Virtual Machine

4

CHAPTER I

INTRODUCTION

In modern computing, concurrency is crucial to both the development and performance

of software applications and systems. However, as the level of concurrency increases, so does

the complexity. When the number of threads increases, the space of possible thread interleavings

explodes, making it impossible to reason about. Because of this, it is easy to unknowingly intro-

duce data races. A data race occurs when at least two threads access shared memory concur-

rently, with one of them performing a write operation. Data races are dangerous because they

lead to undefined behavior. Because data races arise as a result of nondeterminism, it becomes

necessary to create ways to automatically detect these kinds of bugs.

In 2009, Google introduced ThreadSanitizer [1, 2], a precise data race detector for pro-

grams written in C/C++. TSAN uses dynamic program analysis to partially order the events of a

program execution over the Happens-Before relation [3]. If two threads access the same memory

with one of them performing a write and are unordered by Happens-Before, then they are con-

current, causing TSAN to report a data race. TSAN consists of a compiler instrumentation li-

brary that generates information about program events and a state machine that detects data races

at runtime. TSAN uses a heavily optimized [4] vector clock implementation to track memory ac-

cesses, making it the most well-known, fast (relatively) data race detector used in practice.

Also in 2009, Google released Go [5], an open-source programming language designed

for the creation of simple, highly concurrent code. Go's core design consists of two features:

goroutines and channels. A goroutine is a lightweight unit of execution, similar to threads in C++

or Java. A channel is a synchronization primitive that orders two goroutines through message

5

passing. Although the design principles are heavily catered towards concurrent software, a recent

study [6] found that Go may potentially introduce more concurrency bugs than classical lan-

guages like C++. Thus, there is still a need for automated detection of concurrency bugs, includ-

ing data races. TSAN has been officially ported to Go as the Go race detector. In the context of

Go, a data race occurs when two goroutines access the same variable concurrently and at least

one of them is a write.

This paper makes the following contributions:

• We present an in-depth study of the Go race detector internals, specifically target-

ing the compiler instrumentation. We study the optimizations implemented for re-

ducing redundant instrumentation and compare them to the more mature optimiza-

tions implemented in LLVM TSAN. In summary, we suggest one redundancy pat-

tern which may reduce the overall instrumentation by up to 33%.

• We present the first public (to our knowledge) empirical evaluation of the Go Race

Detector on a real-world application, Kubernetes.

• We introduce and discuss a real data race reported during our evaluation of the

data race detector.

6

CHAPTER II

MOTIVATING EXAMPLE

First, we present a small, motivating example showing a data race in Go, show in Figure

1. In this simple Go program, there are two functions and a global integer variable x, which is set

to 0. The function addOne simply takes the variable x and adds 1 to it. In function main, we start

two goroutines on lines 8 and 9, which will concurrently execute the addOne function. What will

be the value of x in the print statement on line 12? Intuitively, it should be 2. However, it is pos-

sible for x to have a value of 1 at the end of the program. How is this possible?

Figure 1. Simple Go program exemplifying a data race between two goroutines.

First, we must understand how the code x=x+1 is actually translated by a compiler. It is

actually broken into multiple instructions: the value of x is read and stored into a temporary vari-

able, the temporary variable is incremented by 1, and then x is set to the value of the temporary

variable. As you can see from the left half of Figure 2, the goroutines executions may interleave.

7

This is a data race, as they concurrently access the variable x, with one of them performing a

write operation.

Figure 2: Go program execution which results in x being 1.

Data races are dangerous because they are elusive and may lead to undefined behavior.

As shown in the example, a program may exhibit illogical behavior leading to hard-to-explain

software or system failures. How might we resolve a data race? In this example, we can easily

wrap function addOne with a mutex lock (Figure 3). This synchronization primitive prevents in-

struction interleaving as show in the left half of Figure 2 by enforcing atomicity of the three in-

structions corresponding to x=x+1.

Figure 3: Mutex lock which prevents a data race on variable x.

8

CHAPTER III

UNDERSTANDING THE GO RACE DETECTOR

The Go race detector is a powerful data race detector which uses dynamic program anal-

ysis to verify the correctness of concurrent programs. It is integrated into the Go compiler, which

is available at the Go GitHub repository [5]. The goal of this chapter is to deeply understand the

internals of the race detector: the architecture and race detection instrumentation.

Architecture

Like TSAN, the Go race detector consists of a compiler instrumentation library and a

runtime state machine. However, the runtime state machine is compiled from the original LLVM

project [7] and linked to the Go runtime as an external library. Thus, the Go compiler only needs

to reimplement the instrumentation library. The purpose of the instrumentation library is to pro-

vide the runtime state machine with instruction metadata required to track the ordering of events.

For details on the state machine, see [8].

The Go Compiler

Before getting into race instrumentation, we present a primer on the Go compiler. The

purpose of a compiler is to translate programs written in a high-level programming language

(Go, C/C++, Java) into instructions which can be executed by a processor. Like most compilers,

the Go compilation process is logically split into four phases (Figure 4):

1. Parsing

2. Type-checking and AST transformations

3. Generic SSA

4. Generating machine code

9

Figure 4: Race detection instrumentation in the Go compiler.

In the first phase, the source code files are tokenized, parsed, and converted into abstract

syntax trees. Each syntax tree is an exact representation of its source file with expressions, decla-

rations, and statements. In the second phase, the abstract syntax tree is type-checked and trans-

formed. This includes performing the first round of dead code elimination, function call inlining,

and escape analysis. In the third phase, the full abstract syntax tree is converted to generic SSA

(Static Single Assignment) form, a lower-level intermediate representation which makes it easy

to perform machine-independent optimization passes. Finally, in the fourth phase, the generic

SSA is lowered into machine-specific SSA, optimized specifically for the current architecture.

From this point, it is straightforward to translate optimized SSA into machine code.

For race detection, the compiler is modified to insert special race instrumentation func-

tions during phases 3 and 4: Generic and Machine-Specific SSA.

Instrumentation for Data Race Detection

For data race detection, the Go compiler instruments Go source code by inserting addi-

tional function calls in order to record program events. By providing instruction metadata to the

runtime state machine, the race detector can maintain the happens-before ordering over events

and detect data races (Figure 5). Special race functions are inserted before the following events:

10

reads, writes, function entry and function exits, synchronization acquires, synchronization re-

leases, process create and destroys, dynamic memory allocations and frees, and atomic opera-

tions. To accomplish this goal, the compiler inserts instrumentation in two ways: manual instru-

mentation at the source code level and compiler instrumentation at the SSA level.

Figure 5: Visualization of the Go race detector at runtime.

Manual Instrumentation

Go source code can be manually instrumented by a developer using the race package.

This package is a standard library of Go functions that can be added into code to influence the

behavior of the data race detector. Additionally, the manual source code approach is used to pro-

vide race detection capabilities to built-in Go synchronization primitives and containers residing

in the Go runtime package. Some objects that are instrumented include Channels, Mutex,

RWMutex, WaitGroups, Maps, Strings, and architecture-specific atomic instructions.

11

Compiler Instrumentation

Whereas manual instrumentation is inserted by a developer at the source-code level and

explicitly translated, compiler instrumentation is inserted by the compiler at specific program

events. Compiler instrumentation occurs during the construction of the generic SSA, with a few

race function optimization passes occurring as a normal SSA pass. During the building of the ge-

neric SSA, the compiler prepends racewrite and raceread functions before memory loads and

stores (zero, move, storeType instructions), respectively. For composite loads and stores (arrays),

there is racereadrange and racewriterange. These functions all pass the address and the length

of the value being accessed to the runtime state machine.

Optimizations

In order to keep data race detection as lightweight as possible, instrumentation that can be

proven as redundant should be removed. The Go compiler has implemented a number of optimi-

zations. First, during instrumentation, functions are prepended and appended with racefuncenter

and racefuncexit, respectively. These functions serve to restore stack traces on reports. Thus, in

functions with no instrumented instructions, we can safely remove these two calls. This is imple-

mented as an SSA pass. Second, when the compiler is instrumenting memory loads and stores, it

can safely skip stack addresses, read-only fields (Itabs, string data, and closure fields), and ad-

dresses in the static read-only data segment, as they are guaranteed to be data race free. Third,

certain instruction patterns are proven to be redundant. A read instruction before a write instruc-

tion is redundant if they are within the same basic block and there are no calls in between them.

This is because a race on the read will also race with the write. Finally, redundant instrumenta-

tion optimization does not need to be too aggressive, as many redundant patterns will not survive

12

the classical compiler optimizations. For example, two reads from the same temp will be re-

moved by common subexpression elimination and two writes to the same location will be re-

moved by dead-store elimination.

Discussion

 We compared the LLVM TSAN instrumentation library with the Go instrumentation li-

brary. Since the Go race detector is not as mature as TSAN, it is expected to be lagging behind in

terms of development. In particular, we noticed one instruction pattern optimization present in

TSAN which has not yet been implemented in the Go race detector [9]. Uncaptured pointers are

guaranteed to be safe as they will not escape the current function. In this case, capturing a pointer

means that no part of the value will be returned from the function nor stored in memory else-

where. In TSAN, this optimization reduces the amount of instrumentation by up to 33% [9].

13

CHAPTER IV

EVALUATING THE GO RACE DETECTOR

Now that we understand the internals of the Go race detector, we seek to evaluate it on

real-world large Go programs. The objectives of our experiments are to measure the performance

overhead of software instrumented for races in combination with the Go race detector. We also

aim to measure the size increase due to race instrumentation.

Methodology

 We have selected Kubernetes [10] for our evaluation. Kubernetes is an ecosystem of

tools and services used to coordinate a highly available cluster of computers that are connected

to work as a single unit [11]. Kubernetes provides automated distribution and scheduling capabil-

ities for containerized applications. Kubernetes also provides other features such as deployment,

monitoring, and recovery. Kubernetes is production-grade, and is used by many large, successful

companies, such as Adidas, eBay, The New York Times, etc. [12]. Additionally, since we are

constrained to a single machine for testing, we use Minikube [13], a tool which runs a single-

node Kubernetes cluster inside a VM. Minikube enables quick development and local testing of

Kubernetes, and is also widely used by developers.

 All of our experiments were conducted on a 6-core 2.6 GHz Intel Core i7 machine with

16 GB of memory running macOS 10.14.6. We used Go version 1.13.8, cloned Kubernetes from

the master branch on April 2, 2020 and used Minikube version 1.7.2.

14

Performance

Minikube

 Figures 6 and 7 summarize the results of our performance experiments on Minikube. We

measured the time required to execute Minikube commands with and without race instrumenta-

tion. For each command, we averaged the result of 10 independent runs. We see that on average,

the Go race detector incurs 1-7x slowdown compared to the native application with no race de-

tection.

Figure 6: Performance evaluation on Minikube.

Figure 7: Performance evaluation on Minikube, visualized.

15

Kubernetes

 For evaluating Kubernetes, we ran the tests available in the k8s.io/client.go repository

[14]. These tests were selected because the client-go package uses many mutexes and channels,

and most tests are concurrent. Figure 8 shows the distribution of tests according to their slow-

down when compiled for data race detection.

Figure 8: Distribution of Kubernetes client-go test slowdown when enabling the race detector.

We see that the majority of instrumented tests run 26-31x slower than the native test. This is

quite more overhead than expected, as TSAN reports that typical program slowdown is 5-15x

[15]. Figure 9 presents the full test results of our experiments on Kubernetes. Again, the execu-

tion time for each test is the average of 10 independent runs.

Instrumentation

 We want to measure how much the size of a compiled binary increases when it is com-

piled for race detection. We compiled three tools in the Kubernetes family with and without race

detection. These three tools are Minikube, Kops [16], and Kompose [17]. Statistics of the three

programs and experiment results are shown in Figure 10.

16

Figure 9: Performance evaluation on Kubernetes client-go tests.

17

Figure 10: Comparison of applications with and without race instrumentation.

Discussion

 Through our experiments, we have measured the performance and size overhead incurred

by the Go race detector. While TSAN, the base of the Go race detector, boasts exceptional per-

formance compared to other precise dynamic data race detectors, our data shows that it is much

too heavy to run in production with program slowdown of up to 64x.

 One important observation is that the performance overhead incurred by the Go race de-

tector differs greatly between Minikube and the Kubernetes client-go tests. This is largely due to

a large number of goroutines being created in the client-go tests as opposed to the more light-

weight Minikube commands.

Reported Race

 In addition to performance measurements, our test resulted in the report of one unique,

real data race in Minikube (5 reports). This issue is related to a failing test, TestTeePrefix, which

was reported in July of 2019 [18]. The function teeSSH runs an SSH command, streaming stdout

and stderr to logs. Within this function, two goroutines are created to log and stream stdout and

stderror, respectively. Underlying, stdout and stderror share a single fixed buffer, where the race

occurs. We have shared our Go race detector reports and findings with the developers [19] and

are working on a patch.

18

CHAPTER V

RELATED WORK

 Our work focuses on redundant instrumentation, or rather, instrumentation which cannot

result in a reported race. However, there are other definitions of redundancy when it comes to

race detection. ReX [20], a dynamic analysis algorithm, removes multiple races reported on the

same memory accesses, which they call redundant events. Bigfoot [21], a hybrid static and dy-

namic analysis data race detector, combines multiple race checks on a composite object into a

single check. RedCard [22] is a static analysis technique which removes redundant race checks

for memory accesses within the same "release-free" span. Finally, Thread Sharing Analysis [23]

provides both a static and dynamic algorithm for determining if objects escape a thread with

fine-grained access, which may help instrument only concurrently accessible objects.

19

CHAPTER VI

CONCLUSION

 Through the project, we have gained a strong understanding of how the Go race detector

is implemented, and how it has been optimized to be widely used in practice. We studied the Go

race instrumentation library and the architecture of the runtime data race detector, and then com-

pared the project to TSAN. By comparing the LLVM TSAN instrumentation library with Go's,

we found an unhandled redundant instruction pattern which may significantly reduce the amount

of instrumentation required for Go race detection, improving the performance of the race detec-

tor. We conducted the first public empirical evaluation of the Go race detector, using a variety of

Kubernetes tools and tests to measure the performance and instrumentation overhead of dynamic

race detection. Although we show that the Go race detector is not practical for production use,

there is still work to be done. A more comprehensive study on the taxonomy of benchmark pro-

grams used would significantly increase our understanding of the nature of the race detector and

how we can improve it. Lastly, we discussed a real reported race by the Go race detector which

we have reported to the developers. We hope that our findings will provide motivation for future

research and improvements to the performance and scalability of the Go race detector, making it

a more practical tool.

20

REFERENCES

[1] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: data race detection
in practice. In Proceedings of the Workshop on Binary Instrumentation and Applications
(WBIA ’09). Association for Computing Machinery, New York, NY, USA, 62–71.

[2] Konstantin Serebryany, Alexander Potapenko, Timur Iskhodzhanov, and Dmitriy Vyukov.

2011. Dynamic race detection with LLVM compiler. In Proceedings of the Second interna-
tional conference on Runtime verification (RV’11). Springer-Verlag, Berlin, Heidelberg,
110–114.

[3] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Com-

muications of the ACM, 21, 7 (July 1978), 558–565.

[4] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: efficient and precise dynamic

race detection. In Proceedings of the 30th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI ’09). Association for Computing Machinery, New
York, NY, USA, 121–133.

[5] Go. https://github.com/golang/go.

[6] Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. 2019. Understanding Real-World

Concurrency Bugs in Go. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS ’19).
Association for Computing Machinery, New York, NY, USA, 865–878.

[7] LLVM. Downloads. https://releases.llvm.org/download.html.

[8] ThreadSanitizerCppManual. ThreadSanitizer. https://github.com/google/sanitiz-

ers/wiki/ThreadSanitizerCppManual.

[9] Issue 19054. Go. https://github.com/golang/go/issues/19054#issuecomment-279327160.

[10] Kubernetes. https://github.com/kubernetes/kubernetes.

21

[11] Kubernetes. Production-Grade Container Scheduling and Management.

https://github.com/kubernetes/kubernetes.

[12] Kubernetes User Case Studies. Kubernetes. https://kubernetes.io/case-studies/.

[13] Minikube. https://github.com/kubernetes/minikube.

[14] Client-go. https://github.com/kubernetes/kubernetes/tree/master/staging/src/k8s.io/client-go.

[15] ThreadSanitizer. Clang 11 Documentation. https://clang.llvm.org/docs/ThreadSani-

tizer.html.

[16] Kops. https://github.com/kubernetes/kops.

[17] Kompose. https://github.com/kubernetes/kompose.

[18] Issue 4767. Minikube. https://github.com/kubernetes/minikube/issues/4767.

[19] Issue 7427. Minikube. https://github.com/kubernetes/minikube/issues/7427.

[20] Jeff Huang and Arun J. Rajagopalan. 2017. What'’s the Optimal Performance of Precise Dy-

namic Race Detection?–A Redundancy Perspective. In 31st European Conference on Ob-
ject-Oriented Programming (ECOOP 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2017.

[21] Dustin Rhodes, Cormac Flanagan, and Stephen N. Freund. 2017. BigFoot: static check

placement for dynamic race detection. In Proceedings of the 38th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI 2017). Association for
Computing Machinery, New York, NY, USA, 141–156.

[22] Flanagan, Cormac & Freund, Stephen. (2013). RedCard: Redundant Check Elimination for

Dynamic Race Detectors. 255-280. 10.1007/978-3-642-39038-8_11.

22

[23] Jeff Huang. 2016. Scalable thread sharing analysis. In Proceedings of the 38th International
Conference on Software Engineering (ICSE ’16). Association for Computing Machinery,
New York, NY, USA, 1097–1108.

