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ABSTRACT 

 
Exploring Transfer Learning Focused on Physiological Signals for Emotion Recognition 

 
 

Cameron Lopez 
Department of Computer Science 

Texas A&M University 
 
 

Research Advisor: Dr. Theodora Chaspari 
Department of Computer Science 

Texas A&M University 
 
 

Recent work in the area of automatic emotion recognition has leveraged a large amount 

of publicly available data with transfer learning techniques to detect emotion on low-resource 

data.  Previous work demonstrated that the use of maximum independence domain adaptation 

and transfer component analysis show promise in generalizing on unseen domains. While the 

accuracy increases are significant, they remain below within-dataset models. Other research 

concluded that a subspace alignment auto-encoder (SAAE) is useful for domain adaptation and is 

more effective than current techniques. Despite the encouraging results of these studies, more 

work needs to be done to extend this to real-world brain computer interaction (BCI) applications. 

The primary goal of this thesis is to develop transfer learning techniques that leverage existing 

data and attempt to generalize them on unseen domains accurately enough for real-world 

applications. If the proposed endeavor is successful, emotion recognition for real-life 

applications will not need to include large amounts of data from the target domain since transfer 

learning techniques will be able to accurately generalize on unseen domains. 
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NOMENCLATURE  

 
 

SEED  SJTU Emotion EEG Dataset 
 
 
DEAP  Dataset for Emotion Analysis of Physiological Signals 
 
 
PS  Per Subject Normalization 
 
 
AD  Across Dataset Normalization 
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CHAPTER I 

INTRODUCTION 

 

The ability to recognize emotion can play a large role in people’s daily lives and can 

provide a number of benefits across a wide range of disciplines. It can be used in harmony with 

music therapy to help alleviate pain and depression or can be used to recognize public speaking 

anxiety in order to recommend techniques to help alleviate it [7], [8]. The goal of this thesis is to 

provide a way to accurately recognize emotion given electroencephalogram (EEG) data.  

While emotion recognition has many beneficial applications for humans, the ability to 

actually train a model that is accurate enough to be used in these applications is a challenge. We 

do have access to in-lab datasets that provide EEG signals that are labelled according to what 

emotion a participant feels but there is not a lot of data available overall. Given this, the machine 

learning systems that are created often have trouble generalizing between training and testing, as 

well as on unseen data.  

The challenge to generalizable machine learning systems is a difficult one but can be 

overcome with emerging transfer learning techniques. Transfer learning involves training a 

model on one data set and testing the model on a different yet similar dataset. Rather than 

splitting a single data set into training and testing portions, this process allows us to utilize more 

data when creating a model, therefore increasing the likelihood that the model can generalize on 

unseen data. Recent work in the area of emotional recognition involved comparing transfer 

learning techniques on publicly available datasets and an introductory study to cross-dataset 

adaptation [1]. This preliminary study demonstrated that the use of maximum independence 

domain adaptation and transfer component analysis show promise in regards to generalizing on 
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unseen domains, with accuracy increases from 7.25 to 13.40 percent. While these increases are 

significant, they remain below within-dataset models. In order to allow for real-world 

application, more studies are required in order to fine tune the transfer approaches for increasing 

the accuracy between datasets [1]. Other work included the proposal of a component called the 

subspace alignment auto-encoder (SAAE). This research involved using an EEG dataset and 

comparing subject-to-subject and session-to-session evaluations using current transfer learning 

techniques and the new one proposed. Results concluded that SAAE is useful for domain 

adaptation and more effective than current techniques in some cases but more research needs to 

be done to extend this to real-world brain computer interaction (BCI) applications [2]. 

In this thesis, we develop transfer learning techniques that leverage existing data and 

attempt to generalize machine learning systems on unseen domains accurately enough for real-

world applications. In order to evaluate whether transfer learning can bring substantial 

improvement in existing models, we gathered baseline accuracies on in-domain experiments in 

two datasets and then compared these accuracies with the accuracies gathered when performing 

between the two datasets. Results indicate that transfer learning allowed the machine learning 

system to generalize on unseen data yielding 10% relative improvement over in-domain 

experiments in one of the two datasets. Results are discussed in relation to limitations of the 

proposed algorithms and in the light of potential ways of improvement as part of the future work. 
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CHAPTER II 

METHODS 

 
 

Datasets 

The public Dataset for Emotion Analysis of Physiological Signals (DEAP) [4] and SJTU 

Emotion EEG Dataset (SEED) [5] were used throughout this research and are outlined below. 

DEAP 

The electroencephalogram (EEG) and peripheral physiological signals of 32 participants 

were gathered as each participant watched 40 one-minute long excerpts of music videos [4]. 

Each participant rated each video in terms of level of arousal, valence, like/dislike, dominance, 

and familiarity.  

SEED 

The EEG signals of 15 participants were gathered as each participant watched each of 15 

Chinese film clips. Each film was labeled beforehand as either negative, positive, or neutral. A 

total of 15 trials were conducted for each film [6]. 

Domain Adaptation 

Both of the above datasets have labeled data but are labeled in different ways, meaning 

that they are domain-specific. This allowed us to verify the effectiveness of transfer learning 

techniques. A neural network was trained on both of the datasets and the following domain 

adaptations were performed: subject-to-subject used both of the datasets (DEAP → DEAP) and 

(SEED → SEED). In order to check the validity of using transfer learning techniques, the 

following domain adaptations were also performed: (DEAP → SEED) and (SEED → DEAP). 
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Neural Network Model 

Two neural networks were trained and tested on the DEAP and SEED data sets and 

utilized the open-source Python neural network library Keras and the machine learning library 

Scikit-learn.  

Four neural networks were trained and tested, one each for (DEAP → DEAP), (SEED → 

SEED), (DEAP → SEED), and (SEED → DEAP). In order to find the best hyperparameters for 

each of the networks, a five-fold cross validation was used with the training data. After these 

were found, a leave-one-out cross validation was used to test the trained model.  

Fine Tuning 

So as to perform transfer learning for the (DEAP → SEED) and (SEED → DEAP) 

domain adaptations, fine tuning was needed. After training each network on their respective 

datasets, DEAP and SEED, the last layer of each was frozen and then retrained using a five-fold 

cross validation on the dataset that was adapted to. After this, a leave-one-out cross validation 

was used to verify the fine tuned network 

Normalization 

Normalizing the data when training the model was used in order to have data within the same 

range across both domains, DEAP and SEED. Two normalization techniques were used and a 

model was trained on each. Normalization across the entire data set and normalization per 

subject were used.  
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CHAPTER III 

RESULTS 

 

In reference to Table 1, in-domain models after normalizing the data per subject for 

DEAP and SEED provided better results compared to population-wide normalization, with the 

model trained on SEED performing much better than the model trained on DEAP, having an 

accuracy of 0.6341 and 0.3782 respectively. Utilizing transfer learning on the domain of DEAP 

to SEED did not yield better results in comparison to the in-domain model trained on SEED for 

normalization per subject or normalization across all data. However, transfer learning did yield 

better results on the domain of SEED to DEAP when normalizing per subject. Normalizing 

across all data on this domain performed worse than the baseline accuracy found for DEAP. 

Table 1. Accuracies across each of the domains and normalizations 

Domain Normalization Unbalanced Accuracy 

DEAP across all subjects data 0.3304 

SEED across all subjects data 0.3082 

DEAP per subject 0.3782 

SEED per subject 0.6341 

SEED → DEAP per subject 0.4387 

SEED → DEAP across all subjects data 0.3333 

DEAP → SEED per subject 0.5126 

DEAP → SEED across all subjects data 0.5526 
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Visualizing Overall Results 

  
Figure 1. DEAP Class Distribution (0, 1, 2) Figure 2. SEED Class Distribution (0, 1, 2) 

  

Figure 3. SEED – PS confusion matrix Figure 4. SEED - AD confusion matrix 

  
Figure 5. DEAP - PS confusion matrix Figure 6. DEAP - AD confusion matrix 



 

11 

  
Figure 7. DEAP to SEED – PS confusion 
matrix 

Figure 8. DEAP to SEED – AD confusion 
matrix 

  

Figure 9. DEAP to SEED – PS confusion 
matrix 

Figure 10. SEED to DEAP – AD confusion 
matrix 

 

The above matrices are known as confusion matrices. The diagonal starting from the upper left 

that goes down to the lower right are the number of times that our models predicted the correct 

value. For example, in the SEED - PS matrix, 0 was correctly predicted 102 times. Looking at 

these matrices as an entire idea show us that the per subject normalization performed better on 

average than the across dataset normalization. We can also further support our conclusion that 

the SEED → DEAP transfer learning outcomes faired worse than their counterpart. As we can 

see from the SEED → DEAP - AD matrix, the model predicted ‘2’ for every sample. This may 

infer that our model has been overfitted or improperly tuned. In an ideal scenario, each of our 
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matrices would display the same distribution as seen in Figure 1 (DEAP Class Distribution) and 

Figure 2 (SEED Class Distribution). 

 

Visualizing Results by Subject 

SEED → DEAP per subject - normalization per subject 

  
Figure 11. SEED to DEAP – PS Subject 1 
confusion matrix 

Figure 12. SEED to DEAP – PS Subject 2 
confusion matrix 

  
Figure 13. SEED to DEAP – PS Subject 3 
confusion matrix 

Figure 14. SEED to DEAP – PS Subject 4 
confusion matrix 

 
Figures 11, 12, 13, and 14 are the confusion matrix outputs for subjects 1, 2, 3, and 4.  
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SEED → DEAP per subject - normalization per subject - continued  

  
Figure 15. SEED to DEAP – PS Subject 5 
confusion matrix 

Figure 16. SEED to DEAP – PS Subject 6 
confusion matrix 

  
Figure 17. SEED to DEAP – PS Subject 7 
confusion matrix 

Figure 18. SEED to DEAP – PS Subject 8 
confusion matrix 

 
Figures 15, 16, 17, and 18 are the confusion matrix outputs for subjects 5, 6, 7, and 8.  
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SEED → DEAP per subject - normalization per subject - continued  

  
Figure 19. SEED to DEAP – PS Subject 9 
confusion matrix 

Figure 20. SEED to DEAP – PS Subject 10 
confusion matrix 

  
Figure 21. SEED to DEAP – PS Subject 11 
confusion matrix 

Figure 22. SEED to DEAP – PS Subject 12 
confusion matrix 

  
Figure 23. SEED to DEAP – PS Subject 13 
confusion matrix 

Figure 24. SEED to DEAP – PS Subject 14 
confusion matrix 
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SEED → DEAP per subject - normalization per subject - continued 

  
Figure 25. SEED to DEAP – PS Subject 15 
confusion matrix 

Figure 26. SEED to DEAP – PS Subject 16 
confusion matrix 

 
Figures 19 through 26 are the confusion matrix outputs for subjects 9 through 16.  

  
Figure 27. SEED to DEAP – PS Subject 17 
confusion matrix 

Figure 28. SEED to DEAP – PS Subject 18 
confusion matrix 
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SEED → DEAP per subject - normalization per subject - continued 

  
Figure 29. SEED to DEAP – PS Subject 19 
confusion matrix 

Figure 30. SEED to DEAP – PS Subject 20 
confusion matrix 

  
Figure 31. SEED to DEAP – PS Subject 21 
confusion matrix 

Figure 32. SEED to DEAP – PS Subject 22 
confusion matrix 

  

  
Figure 33. SEED to DEAP – PS Subject 23 
confusion matrix 

Figure 34. SEED to DEAP – PS Subject 24 
confusion matrix 
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SEED → DEAP per subject - normalization per subject - continued 

  
Figure 35. SEED to DEAP – PS Subject 25 
confusion matrix 

Figure 36. SEED to DEAP – PS Subject 26 
confusion matrix 

  
Figure 37. SEED to DEAP – PS Subject 27 
confusion matrix 

Figure 38. SEED to DEAP – PS Subject 28 
confusion matrix 

 
 

Figures 27 through 38 are the confusion matrix outputs for subjects 17 through 28.  
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SEED → DEAP per subject - normalization per subject - continued 

  
Figure 39. SEED to DEAP – PS Subject 29 
confusion matrix 

Figure 40. SEED to DEAP – PS Subject 30 
confusion matrix 

 

 

Figure 41. SEED to DEAP – PS Subject 31 
confusion matrix 

 

 

Figures 39 through 41 are the confusion matrix outputs for subjects 29 through 31.  
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SEED → DEAP per subject - normalization across all data 

  

Figure 42. SEED to DEAP – AD Subject 1 
confusion matrix 

Figure 43. SEED to DEAP – AD Subject 2  
confusion matrix 

  

Figure 44. SEED to DEAP – AD Subject 3  
confusion matrix 

Figure 45. SEED to DEAP – AD Subject 4  
confusion matrix 
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SEED → DEAP per subject - normalization across all data - continued 

  

Figure 46. SEED to DEAP – AD Subject 5  
confusion matrix 

Figure 47. SEED to DEAP – AD Subject 6  
confusion matrix 

  

Figure 48. SEED to DEAP – AD Subject 7  
confusion matrix 

Figure 49. SEED to DEAP – AD Subject 8  
confusion matrix 

 
 
Figures 42 through 49 are the confusion matrix outputs for subjects 1 through 8. 
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SEED → DEAP per subject - normalization across all data - continued 

  

Figure 50. SEED to DEAP – AD Subject 9  
confusion matrix 

Figure 51. SEED to DEAP – AD Subject 10  
confusion matrix 

  

Figure 52. SEED to DEAP – AD Subject 11  
confusion matrix 

Figure 53. SEED to DEAP – AD Subject 12  
confusion matrix 
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SEED → DEAP per subject - normalization across all data - continued 

  

Figure 54. SEED to DEAP – AD Subject 13  
confusion matrix 

Figure 55. SEED to DEAP – AD Subject 14  
confusion matrix 

  

Figure 56. SEED to DEAP – AD Subject 15  
confusion matrix 

Figure 57. SEED to DEAP – AD Subject 16  
confusion matrix 

 
 
Figures 50 through 57 are the confusion matrix outputs for subject 9 through 16.  
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SEED → DEAP per subject - normalization across all data - continued 

  

Figure 58. SEED to DEAP – AD Subject 17  
confusion matrix 

Figure 59. SEED to DEAP – AD Subject 18  
confusion matrix 

  

Figure 60. SEED to DEAP – AD Subject 19  
confusion matrix 

Figure 61. SEED to DEAP – AD Subject 20  
confusion matrix 
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SEED → DEAP per subject - normalization across all data - continued 

 
 

Figure 62. SEED to DEAP – AD Subject 21  
confusion matrix 

Figure 63. SEED to DEAP – AD Subject 22  
confusion matrix 

  

Figure 64. SEED to DEAP – AD Subject 23  
confusion matrix 

Figure 65. SEED to DEAP – AD Subject 24  
confusion matrix 

 
Figures 58 through 65 are the confusion matrix outputs for subjects 17 through 24. 
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SEED → DEAP per subject - normalization across all data - continued 

  

Figure 66. SEED to DEAP – AD Subject 25  
confusion matrix 

Figure 67. SEED to DEAP – AD Subject 26  
confusion matrix 

  

Figure 68. SEED to DEAP – AD Subject 27  
confusion matrix 

Figure 69. SEED to DEAP – AD Subject 28  
confusion matrix 
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SEED → DEAP per subject - normalization across all data - continued 

  

Figure 70. SEED to DEAP – AD Subject 29  
confusion matrix 

Figure 71. SEED to DEAP – AD Subject 30  
confusion matrix 

 

 

Figure 72. SEED to DEAP – AD Subject 31  
confusion matrix 

 

 

Figures 66 through 72 are the confusion matrix outputs for subjects 25 through 31. 
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DEAP → SEED per subject - normalization per subject 

  

Figure 73. DEAP to SEED – PS Subject 1  
confusion matrix  

Figure 74. DEAP to SEED – PS Subject 2  
confusion matrix  

  

Figure 75. DEAP to SEED – PS Subject 3  
confusion matrix 

Figure 76. DEAP to SEED – PS Subject 4  
confusion matrix 

  

Figure 77. DEAP to SEED – PS Subject 5  
confusion matrix 

Figure 78. DEAP to SEED – PS Subject 6  
confusion matrix 
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DEAP → SEED per subject - normalization per subject - continued 

  

Figure 79. DEAP to SEED – PS Subject 7  
confusion matrix 

Figure 80. DEAP to SEED – PS Subject 8  
confusion matrix 

  

Figure 81. DEAP to SEED – PS Subject 9  
confusion matrix 

Figure 82. DEAP to SEED – PS Subject 10   
confusion matrix 

  

Figure 83. DEAP to SEED – PS Subject 11  
confusion matrix 

Figure 84. DEAP to SEED – PS Subject 12  
confusion matrix 

 
Figures 73 through 84 are the confusion matrix outputs for subjects 1 through 12. 
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DEAP → SEED per subject - normalization per subject - continued 

  

Figure 85. DEAP to SEED – PS Subject 13  
confusion matrix 

Figure 86. DEAP to SEED – PS Subject 14  
confusion matrix 

 

 

Figure 87. DEAP to SEED – PS Subject 15  
confusion matrix 

 

 
 
Figures 85 through 87 are the confusion matrix outputs for the subjects 13 through 15. 
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DEAP → SEED per subject - normalization across all data 

  
Figure 88. DEAP to SEED – AD Subject 1  
confusion matrix 

Figure 89. DEAP to SEED – AD Subject 2  
confusion matrix 

  
Figure 90. DEAP to SEED – AD Subject 3  
confusion matrix 

Figure 91. DEAP to SEED – AD Subject 4  
confusion matrix 

  
Figure 92. DEAP to SEED – AD Subject 5  
confusion matrix 

Figure 93. DEAP to SEED – AD Subject 6  
confusion matrix 
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DEAP → SEED per subject - normalization across all data - continued 

  
Figure 94. DEAP to SEED – AD Subject 7  
confusion matrix 

Figure 95. DEAP to SEED – AD Subject 8  
confusion matrix 

 
 
Figures 88 through 95 are the confusion matrix outputs for subjects 1 through 8. 

 

  
Figure 96. DEAP to SEED – AD Subject 9  
confusion matrix 

Figure 97. DEAP to SEED – AD Subject 10  
confusion matrix 
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DEAP → SEED per subject - normalization across all data - continued 

  
Figure 98. DEAP to SEED – AD Subject 11  
confusion matrix 

Figure 99. DEAP to SEED – AD Subject 12  
confusion matrix 

  
Figure 100. DEAP to SEED – AD Subject 13  
confusion matrix 

Figure 101. DEAP to SEED – AD Subject 14  
confusion matrix 

 

 

Figure 102. DEAP to SEED – AD Subject 15  
confusion matrix 

 

Figures 96 through 102 are the confusion matrix outputs for subjects 9 through 15. 
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The above portion shows the confusion matrices for each subject across the four transfer learning 

methods and two normalization techniques. As we can conclude from the above data, the DEAP 

→ SEED transfer learning methods performed much better than the DEAP → SEED methods. 

Furthermore, we can further support our conclusion that the per subject normalization technique 

is much better than the across dataset technique. The SEED → DEAP method that used 

normalization across the entire dataset indicates that this is a valid conclusion. 
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CHAPTER IV 

CONCLUSION 

 
 

In this paper we explored performing transfer learning techniques across two publicly 

available datasets in an attempt to generalize unseen data well enough for real-world 

applications. We also investigated two normalization methods, per subject and entire dataset. We 

concluded that transfer learning is relatively beneficial in comparison to traditional machine 

learning methods. We also concluded that per subject normalization performs better than across 

dataset normalization. While these conclusions were made, the accuracies obtained through our 

experiments were not as high as we would have hoped. Because of this, more work needs to be 

done in the realm of transfer learning in order to apply emotion recognition to real-world 

applications. 
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